nstignuuazn1InsAdusassani lmvasllsunsanmaudys

WuANARS AT94N5

?swmﬁwuﬁiﬂumwﬁwmmiﬁm:mmmuzﬁ"ﬂzgma?ﬂ?tyfyﬁmniiummawqﬁmﬁm
ANUNITIRAINITNABNNIUADT NIAYTNIAINTINADNNALADT
ANEAFAINIINANART NAINTINNNINENAE
Tnnsdnen 2550

s

A1ANVR99NNAINTUINMNINENAE

DEFINITION AND DETECTION OF BAD SMELLS OF ASPECT-ORIENTED PROGRAM

Mr. Komsan Srivisut

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2007

Copyright of Chulalongkorn University

Thesis Title DEFINITION AND DETECTION OF BAD SMELLS OF ASPECT-

ORIENTED PROGRAM
By Mr. Komsan Srivisut
Field of Study Computer Engineering
Thesis Advisor Associate Professor Pomnsini Muenchaisri, Ph.D.

.............. 0. Yot el . W Chairman
anawood, Ph.D.)

hes 3 Advisor

nchai@' Ph.D.}

R oS TiIPT e

QW’]@\%&?W‘HTIM&HN d

(Makornthip Prompoon)

“mjm{‘%““& Member

(Songsak Rongviriyapanich, Ph.D.)

puAad AFiqVs - nisflouuarniRsadusasseniltiAuaslusunsndudny
(DEFINITION AND DETECTION OF BAD SMELLS OF ASPECT-ORIENTED
PROGRAM) 2. Ttfinwn: 3m.eens#s wilulyeed, 115 win,

saareeilaididudrquanguiuifessursuuugtressenduaififedeaiy
mseanuuufliAusenisTsunsuiilif fassenRbifiarisoindaldlaensldinatia
Furaneds %4I.‘n‘ul'll'lﬂ'ﬁﬂﬂiﬂuﬂﬁfﬂ%‘ﬂ;(wWHWEQiﬁﬂﬁLLﬂf QRENT UL T
Liaudqu‘l&’ﬂuLinumﬁnlnﬂgﬁ:’ifﬁ'@hnﬁﬁi/&maﬂﬁﬁuqfﬁ'umnﬁwlﬂmnnﬁu uas
uAtlyunasiimeang Mygﬁi fowantunizaenuuyuiirnallsnidald fadu

L

o - ‘ - i mia ;
7 Wzt FinseenuuLTitaRas s TUsunsuflaiAdauey lu

NYSHUTNTUATEIF Y
L DU TTGE I RO ,
- v o PR ‘;-l - -
nudeliaug | ﬁﬁﬂ#_t‘ﬁnﬁqudqu 5 aiialminiuansenusaaduLf
198U f uanan; paskidonfieivdnrlinsesiasrendiliflugures
YUUNITTUH AN ETI T adde uuui;wmﬁ;ﬁﬁwm-ﬂﬁmmn’ﬂmﬂﬁn Wedaslunig

- - o il (7 % R - el e w a2 -
ReradurtinTnsinssetn LRMATIAL GaZiAER MR T LT B e T AT gn RN (e

1 i, kTl A - - o P |
dueTediatasluntsnsradls a?ﬂﬁw'_l@mﬁﬁ nantsUsziiusassauliafiaue

p— ——

uwanaliiviudn wdasnindnsiisagaiasesnt

L
MaduLAT AdULRITaTeWiufana

\"3 - ;(Y
e -
L_/ 4 _"\.J
L) L

MMATE. . Amnssurauiomes. . anlintelifn /’M \

- - el w . -.‘ !
@173 Aranssupeniiamed .. aefieteersistTilinen . v ut/iness
Unsfnw......... 25500 00

4670659821 : MAJOR COMPUTER ENGINEERING
KEY WORD: ASPECT-ORIENTED PROGRAMMING / BAD SMELLS / SOFTWARE METRICS
/ REFACTORING
KOMSAN SRIVISUT : DEFINITION AND DETECTION OF BAD SMELLS OF
ASPECT-ORIENTED PROGRAM. THESIS ADVISOR : ASSOC.PROF. PORNSIRI

MUENCHAISRI, Ph.D., 115“',”/

,'hur'ﬁesware patterns that are generally

“Bad smell" |

associated with bad designs and bac . It can be removed by using the

software development, whigh drwolves:r .and different ways of thinking for
developing softwarg’an ng 7 . ing problem, possibly introduces different

kinds of design flaws. Defi smellkinds hidden in AO software, in order to point out

This research propos new kinds of AO bad smells affecting
coupling of software. Moreove i ion to eliminate each kind of bad smell is
presented in temlsﬁf reﬁmming/ xxxxxxx ' ﬁr designed and thresholds are
determined to suppart ecting su miel Bad-smell detector is further
developed as a taullg suﬁpi‘: ' for automatic bad-smeli g}tection. The results of bad-smell

validation show that after nwng the bad-smell kmds software coupling is decreased.
(-8

FOUUIMNUINNG N
QW’]@QﬂiﬂLﬂJW]’WI el 1N e

DepartmentComputer Engineering... Student's Signature M ﬂr* i
Field of study ..Computer Engineering... Advisor's Signature ? 2 Muernehoaen, £

Vi

ACKNOWLEDGEMENTS

None of this work would have been possible without my thesis advisor,
Associate Professor Dr. Pornsiri Muenchaisri. Since | started working with her, | have
started to understand and enjoy the peculiarities of research. For all your persistent
attention, your constant guidance, and your skill in prodding me to work hard,
“Ajarn Pornsiri”, thank you.

| additionally would like to sincerely thank the rest of my thesis committee:
Assistant Professor Dr. Wiwat Vatanawood, Assistant Professor Dr. Twittie Senivongse,
Ajarn Nakornthip Prompoon, and Dr. Songsak Rongviriyapanich, who reviewed my work
and gave insightful comments.

| also would like to thank all my colleagues and friends at the Software
Engineering Laboratory who have amused, supported, and loved me. Special thanks to
my sisterliness, Matinee Kiewkanya, who helps and discusses on my thesis.

Most of all, | would like to express my sincere gratitude to my parents and family

members for their eternal love, supports and hearty encouragements throughout my life.

TABLE OF CONTENTS

Page
ABSTRACT (THAI ottt ettt e e et eaeeeaae e \Y
ABSTRACT (ENGLISH) 1ottt e v
ACKNOWLEDGEMENTS ...ttt ettt e et e e et a e e ane s eneeeeeenees Vi
TABLE OF CONTENTS ... ettt e vii
LIST OF TABLESttt ettt e e e e e e e et e e e e e e e enaeeas X
LIST OF FIGURES % e ol e i
Chapter
| INTRODUCTION.......oa 8 L AN s i .o 1
1.1 Motivation......... . g 0 FFE ol BN M s 1
1.2 Objective........ ...l M0 0 PR et NN NN 2
1.3Scope..cccc..... S0 B B (PR AR 2
1.4 CONTIDULION. ... ettt ettt ettt e et e e 3
1.5 PUDNICALIONS. ..o i e e 3
1.6 Research MethOdOIOQYcciiiiiiei ittt 3
1.7 Organization Of the TRESIS ...ttt 4
I BACKGROUND AND LITERATURE REVIEW. ... 5
P2t I = =T e o 11 o B USSR USRRRPRR 5
2.1.1 Aspect-Oriented Programming (AOP)ccvviiiiiiiieiieiieeie e 5
202 ASPECI i 8
A IRC B < 103 (o 1 T T S PP 11
2.1.4 Bad SMEIIS....oiiiiiii 5 e e 12
2.1.5 SoftWare MEaSUMEMENT....iv. ittt ettt bt 13
2.2 LItEratUre REVIEWuiiiiiiiiiii ettt e 14
2.2.71 REFACIONNG .oiiieii it e 14
2.2.2 Bad SMEIIS ..o 15
2.2.2.1 Anonymous Pointcut Definition ... 16
2.2.2.2 FEatUre ENVY .o e 17

2.2.2.3 Abstract Method INtrodUCTIONiiiieei e, 18

Chapter Page
2.2.3 MBITICS et 19
[ASPECT-ORIENTED BAD SMELLS ..ottt 20
3.1 U ADIOACKN ittt ettt e bbb 20
3.1.1 Bad-Smell DEfiNItIONiiiiei e 21
3.1.2 Bad-Smell Validationccccooiiiiiiii e 21
3.2 Definitions of Bad SMEIIScooiiiiiiii it 21
3.2.1 BOrrowed POINTCULviiiiiiiiii it 22
3.2.2 Duplicated POINTCULcvii it e 24
3.2.3 VariOUS CONCEINS tiitiiiiutiieiiiee ettt s itttk ettt ettt et e e s e nee e 25
3.2.4 Identical ROl af ddff. & AN . e e 27
3.2.5 Junk Material ..o 29
IV BAD-SMELL METRICS ..o it ittt et e 32
4.1 BOrroWed POINTCUL ..ottt it e 32
4.2 Duplicated POINTCULo i e e e 33
4.3 VarIOUS CONCEIMS ..ottt itttk itttk st 33
4.4 1deNtiCal ROIE.. ... e e 34
4.5 JUNK MAEIIAL. ... e e e 35
4.6 Anonymous Pointcut DefiNItioNoooiiiiiii i 36
4.7 Feature ENvy. . . e e e e e eeeeenrrnnnrersrneeeeesssnssnnnnees 37
4.8 Abstract Method INtrodUCTIONiviiiiiiiciii i e 37
V BAD-SMELL VALIDATION /.ot ee e eeeaeeie e e e e e e s e 38
5.1 Bad-Smell Metric and Threshold Validation..............iccioiiiiisiicee e 38

5.1.1 Applying Bad-Smell Metrics and Detecting Bad ‘Smells before
ElimMinating Bad SMEIISuv i e ettt bt 39

5.1.2 Applying Bad-Smell Metrics and Detecting Bad Smells after Eliminating

Bad SMEIIS ..o 40
5.2 Bad-Smell Validationcocviiiiiiii e 40
5.3 DISSCUSSION. .t ittt ettt ettt e e 42
VI CONCLUSION AND FUTURE WORKuoiiiiiiiiiit et 46

8.1 CONCIUSION . et e 46

Chapter Page
D2 I o 11 2= 1] o SRS 47
B.3 FUTUIE WOTK. ... e e 47
REFERENGCES ...ttt e et e e e neeeeeenees 49
APPENDICES. ...ttt e 52
APPENDIX A, PUBLICATIONS ...t ettt e 53
APPENDIX B. ZHAQO'S METRICS ..ottt 70
APPENDIX C. REFACTORING SOFTWARE CODE........cccooiiiiiiiiiiiiiice e 75
APPENDIX D. VALIDATION RESULTS ... i it e 79

APPENDIX E. USER MANUAL OF A TOOL FOR DETECTING AO BAD SMELLS
IN ASPECT Js@ODE /. L. o i e e 110
BIOGRAPHY ...ovvveeeciagl B RN NN e 115

Table
5.1
52
5.3
54
55
5.6
D.1
D.2
D.3
D.4

D.5

D.6

D.7

D.8

D.9
D.10

D.12

D.13
D.14

D.15

LIST OF TABLES

Page

Bad smells in four software samples before eliminating bad smells 40
Bad smells in four software samples after eliminating bad smells..............cc.......... 41
Measured values of Zhao’s metrics in TEIECOMcoocvviiiiiiiiiii e 43
Measured values of Zhao’s metriCs in SPacewar.........cccooveiiiie e 43
Measured values of Zhao’s metrics in AspectTetris.........ccooiiiiiiiiiiiicccci . 44
Measured values of Zhao’s metrics in AJHOtDraw ... 45
Measured values of pointcut metrics in Telecom before refactoringcce..... 80
Measured values of pointcut metrics in Telecom after refactoringcccuvvve... 80
Measured values of pointcut metrics in Spacewar before refactoring................... 81
Measured values of pointcut metrics in Spacewar before refactoring

(continued) ... dF.. & FF s 8 N N 82
Measured values of pointcut metrics in Spacewar before refactoring

(continued) B o e e R 83
Measured values of pointcut metrics in Spacewar after refactoring...........cc......... 84

Measured values of pointcut metrics in Spacewar after refactoring (continued) ..85
Measured values of pointcut metrics in Spacewar after refactoring (continued) ..86
Measured values of pointcut metrics in AspectTetris before refactoring............... 87
Measured values of pointcut metrics in AspectTetris before refactoring

[(oTe] a1 (g TN Yo) IO 88
Measured values of pointcut-metrics in AspectTetris before refactoring

[(oTe] a1 (g T8 1=Te) IR 89
Measured values of pointcut metrics'in AspectTetris before refactoring

[(eTe] a1 (TgT8T=Ye) IR 90
Measured values of pointcut metrics in AspectTetris after refactoring 91
Measured values of pointcut metrics in AspectTetris after refactoring

[(oTe] a1 (g TN Yo) IO 92
Measured values of pointcut metrics in AspectTetris after refactoring

(CONEINUEA) <. e 93

Table
D.16

D.17
D.18

D.19
D.20

D.21
D.22
D.23
D.24
D.25
D.26
D.27
D.28

D.29

D.30

D.31
D.32

Xi

Page
Measured values of pointcut metrics in AspectTetris after refactoring
[(oTo10) {1 a1UT=Te) PP 94
Measured values of pointcut metrics in AJHotDraw before refactoring................. 95
Measured values of pointcut metrics in AJHotDraw before refactoring
(CONEINUEA) <. e 96
Measured values of pointcut metrics in AdJHotDraw after refactoring.................... 97
Measured values of pointcut metrics in AdJHotDraw after refactoring
(CONLINUEA) ... TE oot e e e e e e e e e e e e e eeeeeeens 98
Measured values of aspect metrics in Telecom before refactoringccuee... 99
Measured values of aspect metrics in Telecom after refactoringcccccoeeeennee. 99
Measured values of aspect metrics in Spacewar before refactoring................... 100
Measured values of aspect metrics in Spacewar after refactoringc..cccoe... 101
Measured values of aspect metrics in AspectTetris before refactoring............... 102
Measured values of aspect metrics in AspectTetris after refactoring.................. 103
Measured values of aspect metrics in AJHotDraw before refactoring................. 104
Measured values of aspect metrics in AJHotDraw before refactoring
(COMEINUBA) it e e 105
Measured values of aspect metrics in AJHotDraw before refactoring
(CONMEINUEA) <.t e 106
Measured values of aspect metrics in AJHotDraw after refactoring.................... 107

Measured values of aspect metrics in"/AJHotDraw after refactoring (continued) 108

Measured values of aspect metrics in AJHotDraw after refactoring (continued) 109

il

LIST OF FIGURES

Figure Page
2.1 Logging concern crosscuts other MOAUIESccveeiiiiiiiiiieee e 5
2.2 Code scattering into other MOAUIESc..oiiiiiiii e 6
2.3 Code tangling in @ MOAUIE ..o e e e e 7
2.4 Logging concern is encapsulated in its own MOdUIE.........ciiiiiiiiiiiiiiiiiee e 7
2.5 AN example Of JOIN POINT. ... ittt e e e e e e e 8
2.6 An example Of POINTCULuuuiueiiiiitiiiiis e ittt e e e e e e 8
2.7 AN eXamPIE OF AOVICE tiiiuuiieiiiiiee ittt ettt e et e nee e eeee e 9
2.8 Anexample of INTFOUCTIONuuuiiiiiiiiiieiiie it 9
2.9 AN eXample OF @SPECT .. cui ittt e 10
2.10 An example of ASPECTS PrOGIIM ..uieiiie ettt e e e e raeeeeeas 10
211 REFACIOMNNG PrOCESS c ittt ettt e e e e e e e eneeee s 11
2.12 The characteristic of the anonymous pointcut definition bad smell........................ 16
2.13 After eliminating the anonymous pointcut definition bad smell.............ccccoovivinnnen. 16
2.14 The characteristic of the feature envy bad smell............ccccoiiiiiiiiiiii 17
2.15 After eliminating the feature envy bad smelloooviiiiiiiii e, 18
2.16 The characteristic of the abstract method introduction-bad smell............cccccoeeeee. 19
T B O LU =T o] o1 oY= Lo B O TP PP PP T PP PO P USPPPPPPPPPPN 20
3.2 The characteristic of the borrowed pointcut bad smell...........cccvvvvvvviiiiiiiiiiiiiiiiiene, 23
3.3 After eliminating the borrowed pointcut bad smell..........ccccoviiiiiiiii 23
3.4 The characteristic of the duplicated pointcutbad smell ... 24
3.5 After eliminating the duplicated pointcut bad smell........cccccoiiiiiiiii 25
3.6 <The characteristic of the various concerns bad smell...c....oi i . 26
3.7 After eliminating the various concerns bad smell..........ccccoiiiiiiie e 27
3.8 The characteristic of the identical role bad smell..........ccooooiiii 28
3.9 After eliminating the identical role bad smell...........ccovviiiiiiiiiiiii e, 29
3.10 The characteristic of the junk material bad smell ... 30
3.11 After eliminating the junk material bad smell...........ociiiii i, 31

C.1 Aspect Timing of Telecom software before applying refactoring procedures........ 75

xiii

Figure Page
C.2 Aspect TimerLog of Telecom software before applying refactoring procedures ...76
C.3 Aspect Billing of Telecom software before applying refactoring procedures......... 76
C.4 Aspect Timing of Telecom software after applying refactoring procedures 77
C.5 Aspect TimerLog of Telecom software after applying refactoring procedures....... 77
C.6 Aspect Billing of Telecom software after applying refactoring procedures............. 78
C.7 Aspect XPI of Telecom software taken place from the eliminating borrowed

E.1
E.2
E.3
E4
E.5
E.6

POINTCUL SOIUTIONt e e e 78
Main preference page of Eclipse after extracting the plug-in’s zip file 110
AO Bad SMEIIS VIBW ... it ittt 111
Opening AO Bad SMEIIS VIEWcoiiiiiiiiiiiie e 112
Show View dialog 4. £ £ B st U . W e 112
Bad Smell DeteCiOr MENU ..ot ittt e 113

An example of detection FESUILSvveviiiiiiiiiiii 114

CHAPTER |

INTRODUCTION

1.1 Motivation

As the traditional Object-Oriented (OO) programming (OOP) unintently
introduces the problem of code scattering and code tangling in software development
which is called crosscutting concern, Aspect-Oriented (AO) programming (AOP) [1] is
emerging as the new programming paradigm to solve such problem by separating the
crosscutting concerns into their own modules called aspects.

Coupling [2] is an internal quality attribute of software that can be used to
indicate the degree of interdependence among the components of a software system. It
has been recognized that good software design should obey the principle of low
coupling. A system that has strong coupling is difficult to understand, change, and
correct highly interrelated components in the system. There are two types of software
coupling i.e. interaction coupling and inheritance coupling. In the event of developer
cannot avoid coupling in software, inheritance coupling is more desirable than
interaction coupling.

Bad smells [3] are design flaws in existing software that should be removed
through refactoring. Having bad smells do not always suggest that a refactoring is
needed. It rather suggests something may be wrong in the design or code. Decisions
for removing bad. smells-thus: depend on-the specific-aims of-a programmer and the
specific state and structure of the code on which he is working. Refactoring [3] is a
technique for-improving -the :design of an:existing software by changing the internal
structure of the software, while the behavior of the original software is preserved.

Since new notions and the different ways of thinking are introduced in order to
support for identification, modularization, representation, and composition of
crosscutting concerns, they perhaps introduce different kinds of design flaws.
Interaction coupling between aspects and classes is also introduced. Therefore,

defining the bad-smell kinds hidden in AO program is required as a means to identify

possibly anomalies. This research proposes the definition of new kinds of AO bad smells

affecting coupling of software. Existing AO refactoring methods, which correspond to

the solution for eliminating each kind of bad smell, are further presented. Also, AO

software metrics are designed and thresholds are determined as indicators to identify

bad smells hidden in AO program. Automatic tool is also developed to support for bad-

smell detection.

1.2 Objective

The objectives of this research are as follows:

1.
2.

1.3 Scope

To define specific kinds of bad smells hidden in AO program.

To design AO software metrics and determine thresholds for supporting the
bad-smell detection phase.

To suggest appropriate AO refactoring methods, which correspond to
solution for eliminating each kind of bad smell.

To develop supporting tool for detecting bad smells in AspectdJ code.

There are several techniques used to support bad-smell detection. This
research focuses on software metrics.

The bad-smell metrics and their thresholds are designed and determined to
support for detecting our kinds of bad smells and Piveta’s bad smells.

The solution for eliminating each kind ‘of AO bad smell can be used for a
particular fraction of code which conforms to our problem examples. For
more complex structure of code, our solution can partially be applied.

The defined bad-smell kinds are validated by comparing coupling before
and after eliminating these bad smells.

The supporting tool covers only bad-smell detection and appropriate
refactoring suggestions.

Sample program codes used for testing supporting tool must be developed

based on Aspectd version 1.2 and priorly compiled.

7. At least two sample programs are used to test the supporting tool. Also, all

samples should include at least ten classes and five aspects.

1.4 Contribution

The outcomes of this research are the followings:

1.

The defined bad-smell kinds can be used to identify possibly anomalies in
AO software. Then, to improve the quality of the software, appropriate
refactoring methods, which we suggest, could be applied.

The designed bad-smell metrics and determined thresholds can be used to
support for bad-smell detection and be applied to refactoring application
phase for automation.

An automated supporting tool can be used for automatically detecting bad

smells in Aspectd code.

1.5 Publications

Several parts of our research have been selected to be presented in both

national and international conferences and published in the corresponding proceedings

detailed in Appendix A.

1.6 Research Methodology

Study all topics related to the researches including AOP, AspectJ
programming language, refactoring technique, bad smells, and software
measurement.

Review. and study the research papers in both paradigms i.e. object
orientation and aspect orientation which are related to refactoring, bad
smells, and metrics.

Define the kinds of AO bad smells and their metrics. Besides, determine

threshold for each bad-smell metric.

4. Suggest the proper solution in order to eliminate these kinds of bad smells.
After that, match appropriate refactoring methods to each bad-smell
eliminating solution.

5. Develop a supporting tool for detecting the bad smells in AspectJ code.

6. Validate the bad-smell kinds with quality metrics by comparing the measured
values of coupling metrics before and after eliminating them.

7. Analyze the results and make conclusions.

8. Write thesis.

1.7 Organization of the Thesis

The remainder of the thesis is organized into six chapters as follows.

Chapter 1l presents theoretical background including introduction of AQOP,
Aspectd, refactoring, bad smells, and software measurement. This chapter also reviews
several researches related to refactoring, bad smells, and metrics in the light of aspect
orientation.

Chapter Il describes the approach of this research and the definitions of five AO
bad smell kinds.

Chapter IV presents metrics and thresholds, which are used to support for
detecting AO bad smells including our five kinds of bad smells and three kinds of
Piveta’s bad smells.

Chapter V shows the results from validating the AO bad smells, bad-smell
metrics and their thresholds.

Finally, chapter VI .concludes research work and presents some directions for

the future work. Limitations.of our work are.also.detailed.

CHAPTER I

BACKGROUND AND LITERATURE REVIEW

2.1 Background

This section reviews the theoretical background used in this thesis including

AOP, Aspectd, refactoring, bad smells, and software measurement.

2.1.1 Aspect-Oriented Programming (AOP)

Separation of concerns [4] is about breaking down software into distinct parts
that overlap in functionality as little as possible. All programming methodologies —
including procedural programming and OOP - support some separations and
encapsulations of concerns into single entities. For example, procedures, packages,
classes, and methods all help programmers encapsulate concerns into single entities.

Unfortunately, there are some concerns defy these forms of encapsulation
namely “crosscutting concerns” For example, a logging strategy necessarily affects
every single logged part of the system e.g. accounting, ATM, and database as shown in

Figure 2.1. Logging thereby crosscuts all logged classes and methods.

AP Invacations
H
A

]

—_— { ; 1

P

> 1 P
Accounting maduls f
T I."I
J ! Logging
—_— ' modiile
1 f
. | |
ATM module ’."

Database module

Figure 2.1: Logging concern crosscuts other modules [5].

The crosscutting concerns introduce the problem of code scattering and code

tangling in software development as follows [5]:

— Code scattering occurs when a single concern is implemented in multiple
modules. Since crosscutting concern is spread over many modules, related
implementations are also scattered over all those modules. For example,
many modules on the system must embed the code to ensure that only

authorized users access the services as shown in Figure 2.2.

Accoumiing | ke
T ol £
A L ~
| 4 e 4
P o W e ‘.:-."((
. .m.nilrstr;hr.;nq'/_]
L ", DN j
Z ‘| ‘_,' \.:} \
v A . f ey
&= 4 '| ¥ 4 - .
’ r : ,‘-'r"
— =+ . ",
f 4 \xv /r .
I'&-'-'-" 3 ,
Cusiomer J;f’EJ By

Figure 2.2: Code scattering into other modules [5].

— Code tangling taken place when a module is implemented in a way that it
handles multiple concerns simultaneously. A programmer often considers
concerns such as business logic, performance, synchronization, logging,
security, and so. forth while implementing a module. This leads to the
simultaneous presence of elements from each concern’s implementation and
results in the code tangling. For example, the module in the system manages
a part of multiple concerns as shown in Figure 2.3.

Both of code scattering and code tangling affect software design and

development in many ways: poor traceability, lower productivity, lower code reuse, and

harder evolution, resulting in poor software quality.

Husingss logic

’ . = Logging
Socurity < S
—

.= Powsisionce

L=

Figure 2.3: Code tangling in a module [5].

AOP is the new programming paradigm which attempts to aid programmers in
the separation of concerns, specifically crosscutting concerns, as an advance in
modularization. For example, logging concern, which previously spread over many

modules, is encapsulated in its own module i.e. Logging aspect as shown in Figure 2.4.

Automatleally woven

Invocationg
!
f
i)
¢ fof
| i |
w3 d g
Accounting maduls -+
¥
ATW module
|
DOatabase module

Figure 2.4: Logging concern is encapsulated in its own module [5].

Benefits of AOP are cleaner responsibilities of the individual module, higher
modularization, easier system evolution, late binding of design decisions, more code
reuse, improved time-to-market, and reduced costs of feature implementation.

The Aspectd language [5], which is the most popular one and already has a

large community, is detailed in the next section.

2.1.2 AspectJ

Aspectd [5] is an AO extension to the Java programming language. It uses Java-
like syntax, all valid Java programs are also valid AspectJ programs, but Aspectd also
allows programmers to define special constructs called aspects. Aspects can contain
several entities unavailable to standard classes. There are join point, pointcut, advice,
and introduction. Each entity and also the aspect will be discussed in depth in the

following sections.

2.1.2.1 Join Point

Join point is an identifiable point in the execution of a program. It could be a call
to a method or an assignment to a member of an object. For example as shown in
Figure 2.5, the join points in the account class include the execution of the credit ()

method and the access to the _balance instance member.

public class Account {

void credit (float amount) {
_balance += amount;

}

Figure 2.5: An example of join point [5].

2.1.2.2 Pointcut

Pointcut is a program construct that selects join points and collected context at
those points. For example as ‘shown in Figure 2.6, this pointcut captures the execution of

the credit () method in the Account class.

execution (void Account.credit (float))

Figure 2.6: An example of pointcut [5].

2.1.2.3 Advice

Advice is the code to be executed at a join point that has been selected by a
pointcut. Advice can execute before, after, or around the join point. The body of advice
is much like a method body-it encapsulates the logic to be executed upon reaching a
join point. Using the earlier pointcut, we can write advice that will print a message before

the execution of the credit () method in the Account class as shown in Figure 2.7.

before() : execution(void Account.credit(float)) {
System.out.println (“About to perform credit operation”);

}

Figure 2.7: An example of advice [5].

2.1.2.4 Introduction

Introduction or intertype declaration is an instruction that introduces changes to
the classes, interfaces, and aspects of the system. It makes static changes to the
modules that do not directly affect their behavior. Figure 2.8 shows an introduction

which declares the Account class to implement the BankingEntity interface.

declare parents: Account implements BankingEntity;

Figure 2.8: An example of introduction [5].

2.1.2.5 Aspect

Aspect is the central unit of Aspectd, in the same way that a-class is the central
unit in Java. It contains the code that expresses the weaving rules for both dynamic and
static crosscutting. Pointcuts, advices, introductions, and declarations are combined in
an aspect. In addition to the Aspectd elements, aspects can contain data, methods, and
nested class members, just like a normal Java class. All the code examples from section

2.1.2 can be merged together in an aspect as shown in Figure 2.9.

10

public aspect ExampleAspect {
before() : execution(void Account.credit (float)) {

System.out.println(“About to perform credit operation”);

}

declare parents: Account implements BankingEntity;

Figure 2.9: An example of aspect [5].

public class Home ({
public void enter () {
System.out.println (“Entering”) ;
}
public void exit () {
System.out.println (“Exiting”);
}
}

public aspect HomeSecurityAspect {
before() : call(void Home.exit ()) {
System.out.println (“Engaging”) ;
}
after () : call(void Home.enter ()) {
System.out.println(“Disengaging”) ;
}
}

public aspect SaveEnergyAspect {
before() : call(void Home.exit()) {
System.out.println(“Switching off 1lights”);
}
after () : call(void Home.enter()) {
System.out.println(“Switching on lights”);
}
}

public aspect HomeSystemCoordinationAspect {
declare precedence: HomeSecurityAspect, SavekEnergyAspect;

}

public class TestHome ({
public static void main(Stringl[] args) |
Home home = new Home () ;
home.exit () ;
System.out.println();
home.enter () ;

Figure 2.10: An example of AspectJ program [5].

11

The simple example of AspectJ program is shown in Figure 2.10. This example
represents the management of security system and conserving energy system in the
home. Whenever home’s owner leave, the security system is opened and the lights are
switched off to conserve the energy. Otherwise, the lights are switched on and the

security system is closed when home’s owner come back.

2.1.3 Refactoring

Opdyke [6], who defined the refactoring technique, stated in his PhD
dissertation that refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes the chances of
introducing bugs. In essence when you refactor you are improving the design of the
code after it has been written. There are seventy-two refactoring methods used to

restructure OO codes.

/,/—\

Refactoring

Planning

Program Weak
Plan Evaluation Improvement Plan
Points
Bad-smell Refactoring
Analysis
3. Improvement
Bad-Smell Refactoring Validation Refactoring
Bad-smell
Detection
Original Source Improved Source
Functional Equivalence Validation v
Code Code

2. Improvement

Deployment

1. Improvement

Planning

|

Refactoring

Application

Validation

Figure 2.11: Refactoring process [7].

Execution

12

The refactoring process [7] consists of three major subprocesses, which are
improvement planning, improvement validation, and improvement execution illustrated
in Figure 2.11.

1. Improvement planning

The goal of this subprocess is to identify refactoring candidates. Starting with the
identification of program points to be refactored, it includes organization of refactorings
and selection of refactoring to be applied.

2. Improvement validation

This subprocess consists of three different validations. Each validation has its
own objective. At the developer level, mainly the functional equivalence before and after
the refactoring should be validated. At the analyst level, the intended effect should be
validated. At the manager level, the cost-effect trade-off should be substantiated.

3. Improvement execution

The major objective of the subprocess is to apply refactoring to the target
program. It includes the ordering of each refactoring according to the priority in terms of
cost-effect trade-off by the analyst and the actual code modification by the developer.

In this research, we only focus on the bad-smell detection phase which is the

first phase of the improvement planning subprocess.

2.1.4 Bad Smells

According to Beck [3], bad smells are “structures in the code that suggest
(sometimes scream for) the possibility of refactoring”. In_other words, bad smells are
design flaws in existing ‘code that should be removed through refactorings. Having bad
smells.do not always indicate that a refactoring must be. performed. Instead, it suggests
symptoms indicating something might be wrong in design or code. Programmers are
required to develop their own sense of when a symptom indeed warrants a change.
Decisions also depend on the specific aims of the programmers and the specific state
and structure of the code on which they are working.

For Object Orientation, there are twenty-two kinds of bad smell. For example,
Feature Envy is a method that is more interested in a class other than the one it's

actually in. In general, try to put a method in the class that contains most of the data the

13

method needs. Move method refactoring method can be applied to remove such kind of
bad smell.

Another example of bad smell is /arge class. A class that is trying to do too
much can usually be identified as /arge class by looking at how many instance variables
it has. When a class has too many instance variables, duplicated code can not be far
behind. To remove this kind of bad smell, extract class refactoring method can be
applied.

There are several techniques used to detect bad smells in code for example,
clone analysis tool, logic meta programming, ac hoc approach, visualization mechanism,
and OO metrics [8]. In this research, we use software metrics to detect AO bad-smell

kinds.

2.1.5 Software Measurement

Measurement is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them according to
clearly defined rules [9]. In the assessment process prescribed by ISO-9126 [10], the
goals of measurement must first be defined, then the measurement itself is specified,
the means of measurement are implemented and the measurement is carried out. In a
final step, the measurement results are evaluated.

Software metrics have been classified by Fenton [9] into three classes.

- Process metrics are used to measure characteristics of software processes
such-as.the development process, the maintenance process or the testing
process. Typical process characteristics are effort involved, costs occurred,
tasks accomplished and elapsed time.

- Product metrics ‘are used to measure characteristics of software products
such as programs, components, system and databases. Typical product
characteristics are size, complexity and various qualities.

- Resource metrics are used to measure characteristics of software resources
which may be hardware, software or people. Typical resource

characteristics are performance, availability, reliability and productivity.

14

Fenton distinguishes further between internal and external attributes.

- Internal attributes of a product, process or resource are those which can be
measured purely in terms of the product, process or resource itself. Internal
attributes of software products are, for example, complexity, modularity,
testability and reusability. They can be measured by examining the source
code itself.

- External attributes are those which can only be measured with respect to
how the product, process or resource relates to its environment. External
attributes of software products are, for example, reliability, security, usability
and performance. They can only be measured by testing the product in a
particular environment.

Coupling [2] is one of internal quality attributes that can be used to indicate the
degree of interdependence among the components of software system. Coupling is
thought to be a desirable goal in software construction, leading to better values for
external attributes such as maintainability, reusability, and reliability. In this research, we
use Zhao's metrics suite [11] with regard to the coupling to validate our kinds of bad

smells. The definitions of Zhao’s metrics are detailed in Appendix B.

2.2 Literature Review

Several research works related to refactoring, bad smells, and metrics in the
light of aspect orientation are reviewed in this section.

Bad smells and refactorings are closely related, since bad smells can be
removed by using the refactoring technique. However, the prior researches in the light
of aspect orientation focused mostly on the refactoring technique i.e. very few are
related to bad smells. Several researchers proposed refactoring methods to support the

refactoring process.

2.2.1 Refactoring

Refactorings which are related to AOP can be classified into two major groups.

The first group covers extracting the crosscutting concerns, which are embedded in

15

base code, into aspect modules. The second group covers restructuring the aspect
code in order to improve the design of AO software.

Runa [12] proposed thirty new fundamental AOP-specific refactorings and
recasted the existing (OO) refactorings to preserve program behavior in AO code.
Composite refactorings, which are built from their fundamental refactorings, are
additionally presented to aid in the extraction of crosscutting concerns by deploying
AOP techniques in existing programs. In order to guarantee behavior preservation in
Aspectd, preconditions are further introduced to Runa’s refactoring methods.

Hanenberg et al. [13] introduced a number of new AO refactorings which help to
migrate from OO to AO software and to restructure existing AO code. There are three
refactorings to restructure existing AO code such as Exiract Advice, Extract Introduction,
and Separate Pointcut. Likewise, Monteiro and Fernades [14] proposed a collection of
twenty-eight AO refactorings cover both the extraction of aspects from OO legacy code
and subsequent tidying up of the resulting aspects. They also reviewed the traditional
OO0 code smells in the light of aspect orientation and proposed some new smells for the
detection of crosscutting concerns. In addition, they firstly proposed a new code smell
that is specific to aspect named Aspect Laziness — an aspect that does not carry the full
weight of its responsibilities and instead pass the burden to classes.

Runa’s refactorings and Monteiro and Fernades’s refactoings are selected to

match with solution for eliminating each kind of AO bad smells in this research.

2.2.2 Bad Smells

Piveta et al. [15] defined five kinds of bad smells that occur in AO systems i.e.
anonymous pointcut definition, large aspect, lazy aspect, feature envy, and abstract
method ‘introduction. “They ‘also complemented their "work = with ~algorithms to
automatically detect their five defined bad-smell kinds, more specifically those written
using Aspectd language [16]. Characteristics of some Piveta’s bad smells resemble to
our bad smells, but the main difference is the technique which is used for detecting bad
smells. Details of some Piveta’s bad smells are described next. We additionally map

refactoring method to some of bad-smell eliminating solutions.

16

2.2.2.1 Anonymous Pointcut Definition

Definition: A pointcut is unnamed [15].

Impact: In AspectJ, as pieces of advice are not named, sometimes it is
necessary to rely on the pointcut definition to remark on the affected points in base code.
The reusability of common pointcuts is also reduced.

Figure 2.12 illustrates an example of anonymous pointcut definition. Advice
adviceA1 of aspect aspectA includes a pointcut which is unnamed. Hence, such

pointcut is considered to be the anonymous pointcut definition.

aspectA

Figure 2.12: The characteristic of the anonymous pointcut definition bad smell.

Solution: A name, that clearly defines the pointcut intention, could be defined
and referenced by any advice and declare-construction [16]. Anonymous pointcut
definition is removed by applying refactoring procedure as follows:

1. Create a new pointcut and give it the name by using Create Named Pointcut

[12].

As pointcut of advice adviceA7 could be the candidate of the anonymous

pointcut definition kind, the above refactoring procedure is applied and the result is

illustrated in Figure 2.13.

aspectA

. O
pointcutA1
1 [

Figure 2.13: After eliminating the anonymous pointcut definition bad smell.

17

2.2.2.2 Feature Envy

Definition: A single aspect uses a class-defined pointcut [15].

Impact: In Aspectd, pointcuts could be defined in aspects and also in classes. If
a single aspect uses a class-defined pointcut, the interaction coupling between aspect
and class unnecessarily takes place. The same problem might occur also among
classes. It happens when a class extensively refers to members of another class instead
of referring to that of its own.

This bad smell resembles to our borrowed pointcut bad smell presented next
but the pointcut, which is within the scope of borrowed pointcut, is defined in an aspect.

Figure 2.14 illustrates an example of feature envy. Advice adviceB2 refer to
pointcut pointcutA1 defined in class classA. Hence, aspect aspectB is considered to be

the feature envy.

classA aspectB

T n
attributeA1 © [pointcutB1 “|e-
A i

1

‘ 5
methodAf | adviceB1

T 0 R e—
pointcutAl |q--{-{===TEle}%[¢
= . T

e

Figure 2.14: The characteristic of the feature envy bad smell.

Solution:. The suspected pointcut should be moved from a class to the aspect
using it by applying refactoring procedure as follows:
1. Move suspected pointcut to the referring aspect by using Move Named
Pointcut[12].
As aspect aspectB could be the candidate of the feature envy kind, the above

refactoring procedure is applied resulting as illustrated in Figure 2.15.

18

classA aspectB
- pointcutB1 . -
1 I
T I
methodA1 .- pointcutA1 !
u| 0

Figure 2.15: After eliminating the feature envy bad smell.

2.2.2.3 Abstract Method Introduction

Definition: An abstract method is inserted in application class through the inter-
type declaration mechanism [15].

Impact: Aspect could be used to add state and behavior into existing classes.
This is made through the inter-type declaration mechanism. This mechanism allows
methods and/or attributes to be inserted in classes. However, the use of this functionality
may cause problems when abstract methods are inserted in application classes. This
introduction forces the programmer to provide concrete implementations to the
introduced methods in every affected class and subclass. This dependency
unnecessarily increases the coupling between the aspect and the affected classes [16].

Figure 2.16 illustrates an example of abstract method introduction. Aspect
aspectA introducing method methodD1 to class classB and class classC, cause method
methodD1 is introduced to class classD. Hence, this aspect is considered to be the
abstract method introduction.

Solution: This kind of bad smell'is not-harmful and unnecessary to be eliminated
from software code, because this kind of dependency occurs according to the
generalization of classes. For instance, common introduced methods of subclasses are

pulled up into their superclass.

19

aspectA

classD

methodD1

classB classC

methodD1 methodD1

Figure 2.16: The characteristic of the abstract method introduction bad smell.

To reconcile with our work, we additionally propose bad-smell metrics and their

thresholds to some Piveta’s bad smells in Chapter IV.

2.2.3 Metrics

Metrics for AOP can be classified into two groups. One is revised from traditional
OO metrics and the other one is AO specific metrics.

There are several AO metrics revised from traditional OO metrics. For example,
Ceccato and Tonella [17] proposed AO metrics which were revised from the Chidamber
and Kemerer's metrics suite [18]. - Some of their metrics were adapted or extended in
order to make them applicable to the AOP software. They also proposed other metrics
which measure specifically the novel kinds of coupling introduced by AOP.

Zhao [11] proposed metrics suite to measure coupling in AO system thoroughly.
In AO systems, coupling is-mainly about the degree ‘of interdependence among aspects
and/or classes. They formally defined various coupling metrics in.term of different types
of dependencies between aspects and classes.

In this research, we use Zhao's metrics to validate our defined bad-smell kinds

in Chapter V.

CHAPTER I
ASPECT-ORIENTED BAD SMELLS

This chapter is divided into two parts. The first part describes the approach of

this research. The second part details the definitions of five defined bad-smell kinds.

3.1 Our Approach

The approach of this research consists of two main processes i.e. defining bad

smells and validating bad smells. Figure 3.1 shows activity diagram of our approach.

1. Definition ,

\

AO bad smells |/|\ Define bad smells

\|/
={ Define metrics >|I Metrics and their thresholds }
%uggest the proper soluti09 ————————————————————————— Refactoring procedures }
2. Validation
AO software
(before refactoring t------------—---, < Lt { Quality attribute metrics
Measure the quality attributes of software)
AO software (Eetect bad smells and refactor software)
(after refactoring) [~ | -
,,,,,,,,,,,,,,,,,,,,,,,,,,,, Measured results
Measured results @easure the quality attributes of software 1agai19 (before refactoring].
(after refactoring) [~ =
%ompare the measured resul%

.

Figure 3.1: Our approach.

21

3.1.1 Bad-Smell Definition

In bad-smell definition process, we first define kinds of AO bad smells by
considering programming patterns that affect coupling of software. Coupling is crucially
considered in this thesis because having low coupling is thought to be a desirable goal
in software construction, leading to better values for external attributes such as
maintainability, reusability, and reliability. In addition, AOP introduces interaction
coupling between aspects and classes. We would like to study on the trade-off between
the advantages obtained from AOP and disadvantages caused by the coupling
introduced by aspects.

After that, the metrics, which correspond to the characteristics of these kinds of
bad smells, are designed. Also, the ranges of measured values of the designed metrics
are determined in order to indicate suspected entities in program as the bad smells. For
the purpose of eliminating the bad smells, the proper solutions, which improve quality of
software affected by AO bad smells, are suggested. Existing refactoring methods are
then mapped to these solutions. The details of each defined bad smell are described in

section 3.2. As for bad-smell metrics and thresholds are presented in Chapter IV.

3.1.2 Bad-Smell Validation

In order to validate the defined bad-smell kinds, we compare the values from
quality attribute metrics applied before and after removing these bad smells from AO
programs. If the results are in the way that coupling is improved, then the defined bad-
smell kinds can be used to indicate design flaws in-AO software. Chapter V shows the

results from the validation.

3.2 Definitions of Bad Smells

In this section, the definition of each bad-smell kind is summarized according to
the following template:
Definition: The explanation of a bad-smell kind characteristic.

Impact: The description on how the bad-smell kind affects software.

22

Solution: The way to improve software quality. In this part, the appropriate
refactoring procedure, which maps to the solution, is presented.

There are five kinds of bad smells detailed here, including borrowed pointcut,
duplicated pointcut, various concerns, identical role, and junk material. In order to
consider our defined bad-smell kinds, all considered pointcuts should be named

according to the characteristics of these bad smells.

3.2.1 Borrowed Pointcut

Definition: A pointcut is referred to by advices of the aspects of which are not
subaspectsw.

Impact: In OO design, there are two types of coupling between classes which
are interaction coupling and inheritance coupling [2]. Interaction coupling is the
interconnection between classes through message passing. Inheritance coupling is the
interconnection between classes through inheritance. Since aspect is a conceptual unit
likes object in OOP, similarly coupling between aspects are interaction coupling and
inheritance coupling. AOP also introduces the interaction coupling between classes and
aspects. Coad and Yourdon [19] suggest that high inheritance coupling is desirable. As
opposed to inheritance coupling, low interaction coupling is desirable in OO software
systems.

In the case of several advices of other aspects refer to a pointcut of the aspect
of which is not a superaspect; it possibly creates the interaction coupling between
unrelated aspects. Although this kind of reference reduces. the interaction coupling
between classes and aspects. Such pointcut is'considered to be borrowed pointcut.

Figure 3.2 illustrates an.example of borrowed pointcut. The dashed arrows show
a reference from ‘advice to pointcut.” Advice adviceB2 and-advice adviceC1 refer to
pointcut pointcutA7 in aspect aspectA but aspect aspectA is not the superaspect of the

other aspects. Hence, pointcut pointcutA1 is considered to be the borrowed pointcut.

"A subaspect is the concrete extension of an abstract aspect, the concept being similar

to subclasses in OO language [20].

23

aspectC aspectA aspectB
T O T O
---' —» pointcutA1 le--}, pointcutB1 la--
Cle O [! u m

Figure 3.2: The characteristic of the borrowed pointcut bad smell.

Solution: Since the borrowed pointcut introduces the interaction coupling
between unrelated aspects, crosscutting programming interface’ (XPI) [21, 22] is used
to reduce such kind of coupling by changing it to be inheritance coupling. Refactoring
procedure should be applied as follows:

1. Create a new aspect as XPI to collect unrelated aspect pointcuts by
using Create Empty Aspect [12] and specify this aspect to be public.

2. Move suspected pointcuts to the created aspect by using Move Named
Pointcut [12] and specify these pointcuts to be public.

As pointcut pointcutA1 could be the candidate of the borrowed pointcut kind,
the above refactoring procedure is applied and the result is illustrated in Figure 3.3. The

interaction coupling is decreased.

adviceA2

aspectD

; --q pointcutA1 e--t,

v R

I —N PN

aspectC E /" iaspectB

= ulinr ¥

| adviceA1 K pointcutB1 a--1---
: [1] '

LELPF LA : I ;

. ao eB B

Figure 3.3: After eliminating the borrowed pointcut bad smell.

? XPls are explicit, abstract interfaces that decouple aspects from details of advised

code.

24

3.2.2 Duplicated Pointcut

Definition: Pointcuts, which are of the same type, collecting the same set of join
points in base code.

Impact: Many pointcuts, which might differently be defined and are of the same
type, collect the same set of join points in base code. This is a kind of duplicate codes
that affects the size of code. In general, the larger the system size, the more difficult it is
to understand the system. The interaction coupling also occurs among aspects and
classes, since aspect intercepts the execution of classes. Pointcuts, which collect the
same set of join points and are of the same type, are the duplicated pointcuts.

Figure 3.4 illustrates an example of duplicated pointcut. The dotted arrows show
a crosscutting from aspect to classes. Pointcut poinfcutA1 and pointcut pointcutB1,
which are differently defined and are of the same type, are intercepting to the same set
of join points in both classes. Hence, pointcut pointcutA1 and pointcut pointcutB1 are

considered to be the duplicated pointcut.

aspectA classC aspectB
F
oy pointcutA1 @ ~ pointcutB1 Te-.l -
O m— N A
L L\) _ Vo
| e |
» methodC2 " |«
classD
attributeD2
methodD1

Figure 3.4: The characteristic of the duplicated pointcut bad smell.

25

Solution: Since the duplicated pointcut introduces the interaction coupling
among aspects and classes, XPI [21, 22] is used to reduce such kind of coupling and
duplication of codes by applying refactoring procedure as follows:

1. Create a new aspect as XPI to collect duplicated pointcuts by using
Create Empty Aspect [12] and specify this aspect to be public.

2. Move suspected pointcuts to the created aspect by using Move Named
Pointcut [12] and specify this pointcut to be public.

3. Delete the redundant pointcuts by using Delete Named Pointcut [12].

As pointcut pointcutA1 and pointcut pointcutB1 could be the candidates of the
duplicated pointcut kind, the above refactoring procedure is applied and the result is
illustrated in Figure 3.5. The interaction coupling and also duplication of codes are

decreased.

classC aspectA

attributeC1

aspectE

= pointcutA1 .
m| [

methodC1

methodC?2

A

A
e -----
Q
[%2]
©
@

Q
~
o

classD T

attributeD1

attributeD2

methodD1

Figure 3.5: After eliminating the duplicated pointcut bad smell.

3.2.3 Various Concerns

Definition: A pointcut is referred to by more than one advice, which are the same

kind (either before advice or after advice), in an aspect.

26

Impact: An aspect performs too many functions which often shows up as too
many pointcuts. In general, an aspect modularizes a unique concern. When an aspect
has too many pointcuts and advices, it implicitly indicates that there may be more than
one unrelated concern in such aspect.

This bad smell is similar to /arge aspect bad smell proposed by Piveta et al. [15].
The difference between various concerns and large aspect is on how to consider the
number of concerns in an aspect. For instance, in various concerns bad smell, the
relationship between pointcuts and advices in an aspect is considered, but in large
aspect, the number of members in an aspect is considered. Large aspect threshold is
defined by the user of the function or given as a constant. In [16], the threshold is
defined according to the number of crosscutting members of its aspect. The range is
defined by analyzing the data from AJHotDraw [23] with the negative binomial statistical
distribution. The results from an analysis determine that an aspect with ten or more
crosscutting members is marked as a large aspect.

Figure 3.6 illustrates an example of various concerns. Pointcut pointcutAZ2 is
referred to by advice adviceA2 and advice adviceA3 which are the same kind. Hence,

aspect aspectA is considered to be the various concerns.

aspectA

ointcutA1
= pointcu P ﬂ_

T O
1= pointcutA2 |
N | [

| e

s

Figure 3.6: The characteristic of the various concerns bad smell.

27

Solution: Since the various concerns consist of at least two unrelated concerns
which are not correspond to separation of concerns, unrelated concerns should be
extracted and moved into their own aspects by applying refactoring procedure as
follows:

1. Create a new aspect in order to include another concern of the old one
by using Create Empty Aspect [12]. The amount of new created aspects
is up to the number of advices which refer to the same pointcut.

2. Since all concerns in an aspect share the same pointcut, it is reasonable
to apply XPI in order to collect the shared pointcut. Thus, a new aspect
as XPl is created by using Create Empty Aspect [12].

3. Move a shared pointcut into XPI by using Move Named Pointcut [12].

4. Move another concern such as its advice into the new aspect by using
Move Aadvice [12].

As aspect aspectA could be the candidate of the various concerns kind, the
above refactoring procedure is applied and the result is illustrated in Figure 3.7.

Concerns are more clearly separated.

aspectA aspectB
\:_\I . L] B :
T4 pointcutA1 = - pOINtCUtA2 |e--|---

Figure 3.7: After eliminating the various concerns bad smell.

3.2.4 |dentical Role

Definition: Members of intercepted classes, which inherit from the same class or

interface through the inter-type declaration mechanism, are introduced.

28

Impact: An aspect intercepts control-flow of the base code sometimes requires
members of base code to use in execution of the aspect’s function. In some cases,
there are members of classes, which are newly related by ancestor through the inter-
type declaration mechanism, introduced into an aspect. Resulting in the duplication of
code of introduced members and preventing them from being reused. Duplication of
code further occurs when those introduced members are called or accessed in an
aspect. Coupling between an aspect and the affected classes are also unnecessarily
increased.

Figure 3.8 illustrates an example of identical role. Aspect aspectA declares
class classD to be a parent of class classB and class classC. Also, attribute attributeD1
and method methodD1, which are members of class classD, are introduced to both of
class classB and class classC in aspect aspectA. Hence, aspect aspectA is considered

to be the identical role.

aspectA
| |
classB.attributeD1 classC.attributeD1
classB.methodD1 classC.methodD1
classB classC
methodD1 methodD1

Figure 3.8: The characteristic of the identical role'bad smell.

Solution: 'Since the identical roleintroduces ‘unnecessary interaction coupling
between an aspect and classes and duplication of codes, all classes, which are
introduced the same members in an aspect, should be formed with a representative,
and then all references should be changed from those classes to the representative by
applying refactoring procedure as follows:

1. Create an inner marker interface to represent all suspected classes by

using Generalize Target Type with Marker Interface [14].

29

2. Since the members of suspected classes are not declared by the marker
interface, Extend Marker Interface with Signature [14] is used to extend
them with that signature.

As aspect aspectA could be the candidate of the identical role kind, the above
refactoring procedure is applied and the result is illustrated in Figure 3.9. The interaction

coupling and also duplication of codes are decreased.

aspectA interfaceE.attributeD1

interfaceE interfaceE.methodD1

attributeD1)

methodD1

LIassB classC

Figure 3.9: After eliminating the identical role bad smell.

3.2.5 Junk Material

Definition: An aspect or pointcut is not used (except abstract aspect and
abstract pointcut).

Impact: Unused aspect and unused pointcut are unnecessary code in program.
It might be ccreated by any reasons and results in increasing the needless entities and
size in program.

Figure 3.10 illustrates an example of junk material. Aspect aspectA consists of
pointcut pointcutA1 and pointcut pointcutA2. Pointcut pointcutA2 is referred to by

advice adviceB2. Hence, this aspect is considered to be the junk material.

30

aspectA aspectB
T O T O
pointcutA1 pointcutB1 |q--
u [| m
T O |
pointcutA2 |q--1- L
| [

Figure 3.10: The characteristic of the junk material bad smell.

Solutions: Since the junk material is unnecessary code in program, this code
should be deleted by applying refactoring procedure as follows:
Aspect:

In the case of an empty aspect or an aspect which consists of
unreferred pointcuts:

1. Delete the aspect by using Delete Unreferenced and Empty

Aspect [12].
In the case of pointcuts, which are defined in the aspect, are
referred to by advices of other aspects, we can apply refactoring
methods in two ways:
® |f there is a pointcut which is referred to by advices of another aspect:
1. Move such pointcut to the aspect which refers to it by using
Move Named Pointcut [12].

2. 'Delete the rest of pointcuts which are not referred to by other
aspect by using Delete Unreferenced Named Pointcut [12].

3. Delete empty aspect by-using Delete Unreferenced and
Empty Aspect.[12].

® |[fthere is a pointcut which is referred to by advices of many aspects:
1. Keep such pointcut and change the aspect to be XPI.
2. Delete the rest of pointcuts which are not referred to by other

aspect by using Delete Unreferenced Named Pointcut [12].

31

Pointcut:
1. Delete unreferred pointcut by using Delete Unreferenced
Named Pointcut [12].
As aspect aspectA could be the candidate of the junk material kind, the above
refactoring procedure is applied and the result is illustrated in Figure 3.11. Unnecessary

code is eliminated.

adviceB1

adviceB2

Figure 3.11: ng the junk material bad smell.

AOUUINBUINT)
RN TN INENAY

CHAPTER IV

BAD-SMELL METRICS

This chapter presents metrics and thresholds, which are used to support for
detecting AO bad smells. AO bad smells stated here cover both of our bad smells and
Piveta’'s bad smells. For each AO bad smell, metrics and thresholds are presented
according to the following template:

Metric: A name of a metric for detecting the bad-smell kind.

Definition: A definition of the metric.

Threshold: The range of measured value, which is suspected to reveal the bad-

smell kind.

4.1 Borrowed Pointcut

Metric:
® Number of Non-Subaspect Advices refers to a Pointcut of an aspect
(NNSAdJP)
Definition:
® NNSAdP-is the total number of advices of the aspects of which are not
subaspects refer to a given pointcut.
Threshold: NNSAdP, >0
Given:
P are all pointcuts in an aspect.
P, is a given pointcut.
i equals'to 1,...,n, where n is the total number of P.
In order to emphasize that pointcut pointcutA1 in Figure 3.2 of Chapter Il (p.23)
contains the borrowed pointcut, NNSAdJP is applied to pointcut poinfcutA1. The
NNSAJP of pointcut pointcutAT is equal to 2 which is on the threshold. Consequently,

pointcut pointcutA1 is of the kind borrowed pointcut.

33

4.2 Duplicated Pointcut

Metric:
® Set of the corresponding Join points of a Pointcut (SJP)
Definition:
® SJP is the set of join points, which is attached with pointcut type,
corresponding to a given pointcut.
Threshold: SJP, NSJP, =SJP,
SJP, N\ SJP, =SJP, ,which F,,P, € P and F, # P,
Given:
P are all pointcuts in the software.
P.is a given pointcut.
P, are other pointcuts in the software.
i, j equal to 1,...,n, where n is the total number of P.
In order to emphasize that pointcut pointcutA1 and pointcut pointcutB1 in Figure
3.4 of Chapter Il (p.24) contain the duplicated pointcut, SJP is applied to pointcut
pointcutA1 and pointcut pointcutB1. The SJP of pointcut pointcutA7 and pointcut
pointcutB1 are shown below:

execution(classC.methodCl),
SIP, ik i = § execution(classC.methodC?2),
execution(classD.methodD]1)

execution(classC.methodCl),
SIP i cum = execution(classC.methodC2),

execution(classD.methodD])

Both pointcuts collect the same set of join points in base code and are the same
type. It corresponds to the threshold. Consequently, pointcut pointcutA71 and pointcut

pointcutB1 are of the kind duplicated pointcuts.

4.3 Various Concerns

Metric:

® Number of Advices of an Aspect refer to a Pointcut (NAJASP)

34

Definition:
® NAdJASP is the total number of the same kind advices (either before or
after) in an aspect referring to a given pointcut.
Threshold: NAdAsP, >1
Given:
P is all pointcuts in an aspect.
P, is a given pointcut.
i equals to 1,...,n, where n is the total number of P.
In order to emphasize that pointcut pointcutA2 in Figure 3.6 of Chapter Il (p.26)
contains the various concerns, NAdAsP is applied to pointcut pointcutA2. The NAJAsP
of pointcut pointcutA2 is equal to 2 which is on the threshold. Consequently, pointcut

pointcutA2 is of the kind various concerns.

4.4 |dentical Role

Metric:
® Set of the introduced members of a Class in an Aspect (SCAs)
Definition:
® SCAs is the set of introduced members of a given class, which declared
to be an inherited class of a class or an interface, in an aspect.
Threshold: SCAs. NSCAs. = SCAs,
SCAs . mSCAst = SCAst , which C;,C; € C and C,; #C,
Given:
C are all classes, which declared to be an inherited class of a
class or an interface, in an aspect.
C, is a given class.
C, are other classes, which declared to be an inherited class of a
class or an interface, in an aspect.
i, j equal to 1,...,n, where n is the total number of C.
In order to emphasize that aspect aspectA in Figure 3.8 of Chapter Ill (p.28)
contains the identical role, SCAs is applied to class classB and class classC. The SCAs

of class classB and class classC are shown below:

35

SCAs .5 = {attributeDl,methole}
SCAs = {attributeDl, methole}

classC

Both classes are introduced the same members and thus corresponds to the

threshold. Consequently, aspect aspectA is of the kind identical role.

4.5 Junk Material

Metric:
® Number of Pointcuts defined in Aspect (NPAs)
® Number of Advices in Aspect (NAJAS)
® Number of Introductions in Aspect (N/AS)
® Number of Members in Aspect (NMAS)
® Number of Other Aspects refer to a Pointcut (NOASP)
® Sum of NOAsSP (SNOAsP)
® Number of Advices refer to a Pointcut (NAdP)
Definition:
® NPAs is the total number of pointcuts defined in an aspect.
® NAdJAs is the total number of advices in a given aspect.
® N/As s the total number of introductions in a given aspect.
® NMAs is the total number of attributes and methods in a given aspect.
® NOASP is the total number of other aspects referring to pointcut defined
in a given aspect.
® SNOAsP s the sum of NOASP of all pointcuts defined in a given aspect.

® NAAJP is the total number of advices referring to a given pointcut.

Threshold:
Aspect.
® NPAs>0 and NAdAs =0 and NIAs =0 and NMAs =0
and SNOAsP >0 or
® NPAs=0 and NAdAs =0 and NIAs =0and NMAs =0
Pointcut:

NAdP =0

36

Description:

1. If NPAs =0 and NAdAs =0 and NIAs =0and NMAs =0,
an empty aspect is found.

2. If NPAs >0 and NAdAs =0 and NIAs =0 and NMAs =0
and SNOAsP =0, an aspect which consists of unreferred
pointcuts is found.

3. If NPAs >0 and NAdAs =0 and NIAs =0 and NMAs =0
and SNOAsP > 0, an aspect consists of pointcuts which are
referred to by advices of other aspects is found.

To better understand these thresholds, solution’s details of junk material bad
smell in Chapter Il (p.30) describes possible cases of the junk material.

In order to emphasize that aspect aspectA in Figure 3.10 of Chapter Ill (p.29)
contains the junk material, NPAs, NAdAs, NIAs, and SNOAsP are applied to aspect
aspectA. The NPAs, NAdAs, NIAs, NMAs, and SNOASP of aspect aspectA are equal to
2, 0, 0, 0, and 1, respectively. Those measured values are on the threshold.

Consequently, aspect aspectA is of the kind junk material.

4.6 Anonymous Pointcut Definition

Metric:

® Set of Unnamed Pointcuts defined in an Aspect (SUPAS)
Definition:

® SUPAs is the set of unnamed pointcuts defined in an aspect.

Threshold: SUPAs + &

In order to emphasize that the pointcut of-advice adviceA7-in Figure 2.12 of
Chapter Il (p.16) contains the anonymous pointcut definition, SUPAs is applied to
aspect aspectA. The SUPAs of aspect aspectA is shown below:

SUPAs = {anonymous _pointcut_of_adviceAl }
Such measured value is on the threshold. Thus, such pointcut of advice

aaviceAT is of the kind anonymous pointcut definition.

37

4.7 Feature Envy

Metric:
® Number of Class-defined Pointcuts in an Aspect (NPCAs)
Definition:
® NPCAs is the total number of class-defined pointcuts which are referred
to by advices of a given aspect.
Threshold: NCPAs >0
In order to emphasize that aspect aspeciB in Figure 2.14 of Chapter Il (p.17)
contains the feature envy, NPCAs is applied to aspect aspectB. The NPCAs of aspect
aspectB is equal to 1 which is on the threshold. Consequently, aspect aspectB is of the

kind feature envy.

4.8 Abstract Method Introduction

Metric:
® Number of introduced Abstract Methods in an Aspect (NAMA)
Definition:
® NAMA is the total number of abstract methods introduced in an aspect.
Threshold: NAMA >0
In order to emphasize that aspect aspecitA in Figure 2.16 of Chapter Il (p.19)

contains the abstract method introduction, NAMA is applied to aspect aspectA. The
NAMA of aspect aspectA is equal to 1 which is on the threshold. Consequently, aspect

aspectA is of the kind abstract method introduction.

CHAPTER V

BAD-SMELL VALIDATION

This chapter shows the results from validating the proposed bad-smell kinds and
the metrics including their thresholds. There are three different kinds of software used
for this validation, tutorial software (Telecom and Specewar), academic software
(AspectTetris), and open-source software (AJHotDraw).

Telecom and Spacewar [24] was implemented by Xerox Corporation as
exploring AspectJ examples in Eclipse [25]. Those Aspect) examples provide
illustrative source code to teach the users on the development of AO programs using
the language. There are ten classes and three aspects in Telecom simulation. Spacewar
consists of twenty-two classes, five aspects, and four inner aspects in classes.

AspectTetris [26] is the game Tetris made in Aspectd. It is implemented by
Evertsson as a part of the Advanced Software Engineering course at Blekinge Institute
of Technology, Sweden. There are sixteen classes, one interface, and eight aspects in
AspectTetris.

AJHotDraw [23] is an AO refactoring of JHotDraw, a relatively large and well-
designed open-source Java framework for technical and structured 2D graphics.
AJHotDraw composes of three hundred and fifty classes, fifty interfaces, and ten
aspects.

This chapter is structured.into three parts. The first part illustrates the results of
validating the bad-smell metrics and their thresholds. The second part shows the results
of validating our defined bad smells. The end of this'chapter discusses the results of the

research.

5.1 Bad-Smell Metric and Threshold Validation

Bad-smell metrics and their thresholds are validated in order to ensure that they
can be used to specify bad smells in AO programs. To validate them, we consider the

measured values from bad-smell metrics applied after removing the bad smells from AO

39

programs. If the results are not within thresholds, then bad-smells metrics and their
thresholds is utilizable.
To apply bad-smell metrics and their thresholds, Appendix C shows an example

of software code before and after refactoring its structure.

5.1.1 Applying Bad-Smell Metrics and Detecting Bad Smells before Eliminating
Bad Smells

The measured values of all metrics apply before removing bad smells in all
samples are summarized in Appendix D.

In Telecom software (Table D.1, p.79), for example, metric threshold indicates
that pointcut endTiming of aspect Timing is of the kind borrowed pointcut. Also, one
pointcut of aspect Billing, two pointcuts of aspect TimerLog, and one pointcut of aspect
Timing are suspected to be the anonymous pointcut definition. Besides, aspect Billing is
indicated by the metric threshold that it contains the abstract method introduction bad
smell.

In Spacewar software (Table D.3 - Table D.5, p.80 - p.82), aspect
EnsureShipAlive is indicated by threshold to be the feature envy bad smell. Pointcut
guilnit, pointcut deleteLines, and pointcut newGame in AspectTetris (Table D.9 — Table
D.12, p.86 — p.89) software could be candidates of the duplicated pointcut bad smells.
Aspect FigureSelectionObserverRole is of the kind identical role in AJHotDraw software
(Table D.17 — Table D.18, p.94 — p.95).

The results presented in Table 5.1 are the number of existences of bad smells
which are specified by our metric thresholds.

Various concerns bad smell and junk material bad smell however, are not found
in the tested software samples. It could not be concluded whether the bad-smell metric
and their threshold can indicate these bad smells in AO software, but all software
samples possibly do not have an aspect which corresponds to the characteristics of

various concerns and junk material.

40

Table 5.1: Bad smells in four software samples before eliminating bad smells.

Bad smell Numbers of existences
Telecom Spacewar | AspectTetris | AdJHotDraw
Borrowed pointcut 1 0 0 0
Duplicated pointcut 0 0 3 0
Anonymous pointcut definition 4 7 2 2
Feature envy 0 1 0 0
Various concerns 0 0 0 0
|dentical role 0 0 0 1
Abstract method introduction 1 0 0 0
Junk material 0 0 0 0

5.1.2 Applying Bad-Smell Metrics and Detecting Bad Smells after Eliminating
Bad Smells

The measured values of all metrics apply after removing bad smells in all
samples are also summarized in Appendix D.

With an exception of abstract method introduction bad smell, after removing all
candidates of AO bad smells and applying bad-smell metrics, it can be observed that
all measured values are not within thresholds. The reason of unchanging of measured
values of NAMA is that we do not suggest removing kind of bad smell from code. Hence,
our bad-smell metrics and thresholds are utilizable.

The results presented in Table 5.2 are the number of existences of bad smells

which are specified by our metric thresholds after eliminating bad smells.

5.2 Bad-Smell Validation

Our bad smell kinds are validated for the purpose of examining that the defined
bad-smell kinds precisely affect the quality of software. The means to validate our bad
smells is to compare the results of coupling metrics before and after removing those
bad smells from AO software samples. If the results are in the way that coupling is

reduced, then the defined bad-smell kinds is able to indicate design flaws in AO

41

software. The quality attribute metrics, which are used in this thesis, are the coupling
metrics proposed by Zhao [11]. The coupling metrics are detailed in Appendix B. Table
5.3 — Table 5.6 shows the measured values of Zhao's metrics before and after

eliminating bad smells in four software samples.

Table 5.2: Bad smells in four software samples after eliminating bad smells.

Bad smell Numbers of existences
Telecom Spacewar | AspectTetris | AJHotDraw
Borrowed pointcut 0 0 0 0
Duplicated pointcut 0 0 0 0
Anonymous pointcut definition 0 0 0 0
Feature envy 0 0 0 0
Various concerns 0 0 0 0
|dentical role 0 0 0 0
Abstract method introduction 1 0 0 0
Junk material 0 0 0 0

From the results in Table 5.3 — Table 5.6, it can be observed that only couplings
particularly related to intertype-class dependence (/C), pointcut-class dependence (PC),
and pointcut-method dependency (PM) are decreased. The reason is that all kinds of
AO bad smells found in these software samples i.e. borrowed pointcut, duplicated
pointcut, anonymous pointcut definition, feature—envy, identical role, and abstract
method introduction are related to intertype-declaration and pointcut. More specifically,
identical role and abstract method introduction are related to intertype-declaration and
the rest of found bad-smell kinds are related to pointcut. Therefore, IC, PC, and PM are
decreased after eliminating those kinds of bad smells.

For example, the IC of aspect FigureSelectionObserverRole of AJHotDraw
software is decreased from 5 to 1 that is because aspect FigureSelectionObserverRole
is considered to be identical role bad smell. The PC and PM of all bad-smell candidates
i.e. aspect Billing, aspect Timing, aspect EnsureShiplsAlive, aspect Counter, aspect

Gamelnfo, aspect Levels, aspect Menu, and aspect NexiBlock are decreased. However,

42

the /C of aspect Billing is not decreased even it is a candidate to the abstract method
introduction bad smell. That is because this kind of bad smell is not harmful and
unnecessary to be eliminated from software code.

As coupling are decreased after removing these kinds of AO bad smells, our
defined bad-smell kinds can preliminarily indicate some kinds of design flaws in AO

software.

5.3 Discussion

From the results of our research, developer can apply our bad-smell kinds to
avoid these programming patierns in implementation phase of AO software
development, since our kinds of bad smells exactly affect coupling of software. For
instance, a named pointcut can possibly be reused by advices, which are not the same
kind, in an aspect. Pointcuts, which collect the same set of join points and are of the
same type, can be combined for the purpose of reusability by supporting of XPI to avoid
interaction coupling among aspect. Also, an advice should refer to a pointcut defined in
an aspect or a superaspect of the advice. An aspect should cover only one concern.
Even developer errs from avoiding these bad-smell kinds, our bad-smell metrics can be
used to support for detecting kinds of bad smells. In addition, although AOP supports
developer for separation of concerns, coupling should be considered cautiously.

The Zhao's metrics used in this thesis mainly consider the degree of
interdependence among aspects and classes. However, the interdependence among
aspects should also be considered. Unfortunately, there is none of coupling metrics

thoroughly details on such kind of interdependence at this moment.

Table 5.3: Measured values of Zhao's metrics in Telecom.

43

Software: Telecom

Aspect AtC AC IC MC Re, AM IM MM PM
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After
Billing 0 0 3 3 0 0 2 2 1 0 3 3 0 0 0 0 4 3
TimerLog 0 0 2 2 0 0 0 0 0 0 2 2 0 0 0 0 2 2
Timing 0 0 2 2 0 0 1 1 1 0 6 6 1 1 0 0 2 1
Table 5.4: Measured values of Zhao’s metrics in Spacewar.
Software: Spacewar
Aspect AtC AC IC MC PC AM IM MM PM
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After
Coordinator 0 0 0 0 0 0 11 11 0 0 4 4 0 0 39 39 0 0
Debug 0 0 9 9 0 0 0 0 0 0 37 37 0 0 0 0 58 58
EnsureShiplsAlive 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 3 0
GameSynchronization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
RegistrySynchronization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4

1927

Table 5.5: Measured values of Zhao's metrics in AspectTetris.

Software: AspectTetris

Aspect AtC AC IC MC Le, AM IM MM PM
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After
Counter 1 1 0 0 0 0 0 0 0 0 5 5 0 0 0 0 5 3
DesignCheck 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92 92
Gamelnfo 1 1 0 0 0 0 0 0 0 0 6 6 0 0 0 0 1 0
Levels 2 2 3 3 0 0 0 0 3 3 5 5 0 0 0 0 2 0
Menu 4 4 1 1 0 0 1 1 1 1 16 16 0 0 6 6 2 1
NewBlocks 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 4 4
NextBlock 1 1 0 0 0 0 0 0 0 0 9 9 0 0 0 0 2 1
TestAspect 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 1 1

142

Table 5.6: Measured values of Zhao’s metrics in AJHotDraw.

Software: AJHotDraw

Aspect AtC AC IC MC PC AM M MM PM
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After
CmdCheckViewRef 0 0 1 1 0 0 0 0 0 0 4 4 0 0 0 0 10 10
FigureSelectionObserverRole 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0
FigureSelectionSubjectRole 0 0 2 2 4 4 2 2 2 2 4 4 5 5 0 0 2 2
PersistentAttributeFigure 0 0 0 0 2 2 0 0 0 0 0 0 9 9 0 0 0 0
PersistentCompositeFigure 0 0 0 0 2 2 0 0 0 0 0 0 9 9 0 0 0 0
PersistentDrawing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PersistentFigure 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
PersistentimageFigure 0 0 0 0 2 2 0 0 0 0 0 0 14 14 0 0 0 0
PersistentTextFigure 0 0 0 0 2 2 0 0 0 0 0 0 22 22 0 0 0 0
SelectionChangedNotification 0 0 2 2 0 0 0 0 3 8 2 2 0 0 0 0 5 5

45

1%

CHAPTER VI

CONCLUSION AND FUTURE WORK

This chapter concludes the research work and presents some directions for the

future work. Limitations of our work are also detailed.

6.1 Conclusion

Since new notions and the different ways of thinking of aspect-orientation are
emerging, they perhaps introduce different kinds of design flaws and introduce
interaction coupling between aspects and classes. Hence, defining bad-smell kinds
hidden in AO software as indicators to identify possibly anomalies are required. This
thesis defines five kinds of specific AO bad smells affect software coupling namely,
borrowed pointcut, duplicated pointcut, various concerns, identical role and junk
material. Other three kinds of AO bad smells i.e. anonymous pointcut definition, feature
envy, and abstract method introduction, which are proposed by Piveta [16], are further
studied. The metrics which correspond to the bad-smell characteristics are designed to
support for detecting our five kinds of bad smells and Piveta’'s bad smells in AO
programs. In order o indicate which particular fraction of code contains the bad smell,
the bad-smell thresholds are specified. The refactoring methods, which map to the bad-
smell eliminating solutions, are also suggested.

The bad-smell-kinds and their metrics. are validated through four AO software
samples i.e. Telecom, Spacewar, AspectTetris, and AJHotDraw. The bad-smell kinds
are validated by comparing the results of applying-coupling metrics before and after
removing these kinds of bad smells from AO programs. Otherwise, the bad-smell
metrics are validated by checking the measured values of these metrics after removing
bad smells.

The designed bad-smell metrics indicate that there are borrowed pointcut,
duplicated pointcut, anonymous pointcut definition, feature envy, abstract method
introduction, identical role, and junk material in software samples. After eliminating these

bad smells, the coupling is decreased. We can conclude that the bad-smell metrics

47

could be used to indicate AO bad smells in software. Also, the defined bad-smell kinds

precisely affect coupling of AO software.

6.2 Limitation

1. The duplicated pointcut threshold determined in this work is to show a
simple case of this bad smell kind i.e. the equivalence of set. The duplicated
pointcut thus neither covers the case of overlapping of set nor is-a-subset.

2. In general, a developer perhaps implements an advice to cover more than
one concern, which is considered to be bad programming practice. To avoid
this kind of bad practice, a developer should implement an advice to cover
only one concern. The various concerns bad smell is based on the later
practice, thus this bad smell kind can be found only when an advice covers
a concern.

3. AOP introduces three types of coupling between modules e.g. coupling
among aspects, coupling among classes, and coupling among aspects and
classes. Zhao's metrics used in the bad smell validation covers only the
degree of interdependence among aspects and classes.

4. There are no metrics, which thoroughly detail on other internal quality
attributes such as cohesion and complexity, used to analyze possible impact
of AO bad smells on those internal attributes deeply.

5. Various concerns bad smell and junk material bad smell are not found in the
tested software samples. The reason is that all software samples possibly do
not have an aspect which corresponds'to the characteristics of these bad

smell kinds.

6.3 Future Work

1. As mentioned many times that AOP involves new notions and the different
ways of thinking. Besides our defined bad-smell kinds, AOP perhaps
introduces further kinds of AO bad smells. For this reason, other kind of AO

bad smells should be defined.

48

According to the software quality, there are several approaches to improve
the software quality. Hence, other proper approaches should be considered
in order to remove the bad smells.

Our AO bad smells, bad-smell metrics, and bad-smell metric thresholds
should be validated with other software samples for more reliability and
correctness.

In order to validate the bad-smell kinds, other quality attributes such as
cohesion, complexity, separation of concerns, and size should be applied to
analyze the impact of AO bad smells to those quality attributes.

All defined bad-smell kinds are specific to Aspectd programming language.
In AOP, there are several programming languages to support the AOP
paradigm. The bad-smell kinds which can generally be found in several
programming languages, should be defined. Furthermore, the bad-smell
kinds, which are specific to individual programming language, should be
defined.

An automated tool for refactoring the codes could be constructed to support
programmers in the improvement execution subprocess of the refactoring

process.

[1]

[2]

[3]

[4]
(5]

[6]

[7]

8]

[9]

[10]

[11]

REFERENCES

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.

and Irwin, J. Aspect-Oriented Programming. Proceedings of the 11"

European Conference on Object-Oriented Programming (ECOOP’97).

Finland, 1997.
Eder, J., Kappel, G. and Schrefl, M. Coupling and Cohesion in Object-Oriented

Systems. Proceedings of Conference on Information and Knowledge

Management. Baltomore, USA, 1992.
Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. Refactoring:

Improving the Design of Existing Code. Addison-Wesley, 1999.

Dijkstra, E. W. A Discipline of Programming. Prentice Hall, 1976.

Laddad, L. Aspectd in Action: Practical Aspect-Oriented Programming. Manning

Publications Co., 2003.

Opdyke, W. Refactoring: A Program Restructuring Aid in Designing Object-

Oriented Application Framworks. Ph.D. Thesis University of lllinois at

Urbana-Champaign, 1992.
Kataoka, Y., Imai, T., Andou, H. and Fukaya, T. A Quantitative Evaluation of

Maintainability =~ Enhancement by Refactoring. Proceedings of

International Conference on Software Maintenance (ICSM’02). Montre’al,

Canada, 2002.

Mens, T. and Tourwe’, T. A-Survey of Software Refactoring. IEEE Transactions on

Software Engineering. 30, 2(February 2004): 126-139.

Fenton, N. E. and Pfleeger, S. L. Software Metrics: A Rigorous and Practical

Approach. PWS Publishing, 1997.

ISO/IEC: Standard 9126-Software Product Evaluation-Quality Characteristics and

Guidelines for Their Use. Geneva, 1995.

Zhao, J. Measuring Coupling in Aspect-Oriented Systems. Proceedings of the

10" International Software Metrics Symposium (Metrics 04). Chicago,

USA, 2004.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

50

Runa, S. Refactoring Aspect-Oriented Software. Bachelor Thesis Williams

College, 2003.
Hanenberg, S., Oberschulte, C. and Unland, R. Refactoring of Aspect-Oriented

Software. Proceedings of the 4" Annual International Conference on

Object-Oriented and Internet-based Technologies, Concepts, and

Applications for a Networked World (Net.ObjectDays). Erfurt, Germany,
2003.
Monteiro, M. P. and Fernandes, J. M. Towards a Catalog of Aspect-Oriented

Refactorings. Proceedings of AOSD 05. Chicago, Illinois, USA, 2005.

Piveta, E. K., Hecht, M., Pimenta, M. S. and Price, R. T. Bad Smells em sistemas

orientados a aspectos (in portuguese). Proceedings of Brazilian

Symposium in Software Engineering (SBES 2005). Uberlandia, Brazil,

2005.
Piveta, E. K., Hecht, M., Pimenta, M. S. and Price, R. T. Detecting Bad Smells in

Aspectd. Journal of Universal Computer Science. 12, 7(July 2006): 811-

827.
Ceccato, M. and Tonella, P. Measuring the Effects of Software Aspectization.

Proceedings of the 1° Workshop on Aspect Reverse Engineering (WARE)

at Working Conference on Reverse Engineering (WCRE). Delft,

Netherlands, 2004.
Chidamber, S. R. and Kemerer A. Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering. 20, 6(June 1994): 476-493.

Coad, P. and Yourdon, E. The Coad/Yourdon method: simplicity, brevity, and

clarity—keys to successful analysis-and design. Object development

methods. SIGS Publications, Inc., 1994.
Hannemann, J. and Kiczales, G. Design Pattern Implementation in Java and

Aspectd. Proceedings of the 17" Annual ACM Conference on Object-

Oriented Programming, Systems, lLanguages, and Applications

(OOPSLA2002). Washington, USA, 2002.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N. and Rajan,

H. Information Hiding Interfaces for Aspect-Oriented Design.

[22]

[23]

[24]

[25]

[26]

[27]

51

Proceedings of the 10" European Software Engineering Conference held

jointly with the 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (ESEC/FSE-13). Lisbon, Protugal,

2005.

Griswold, W. G., Shonle, M., Sullivan, K., Song, Y., Tewari, N., Cai, Y. and Rajan,

H. Modular Software Design with Crosscutting Interfaces. IEEE Software

Special Issue on Aspect-Oriented Programming. 23, 1(Jan-Feb 2006):

51-60.
Deursen, A. V., Marin, M. and Moonen, L. AJHotDraw: A showcase for

refactoring to aspects. Proceedings of Linking Aspect Technology and

Evolution Workshop (LATE), AOSD 2005. Chicago, USA, 2005.

Eclpise Foundation. AJDT — AspectJ Development Tools Project [Computer

software]. Available from: http://eclipse.org/ajdt/ [2007, August 31]

Eclpise Foundation. Eclipse Project [Computer software]. Available from:

http://eclipse.org/ [2007, August 31]
Evertsson, G. Tetris in Aspect) [Computer program]. Available from:
http://www.guzzzt.com/coding/aspecttetris.shtml [2007, August 31]

Briand, L. C., Daly, J. and Wuest, J. A Unified Framework for Coupling

Measurement in Object-Oriented Systems. |EEE Transactions on

Software Engineering. 25, 1(January/February 1999): 91-121.

AONUUINYUINNS)
ANRINTUNAINENRE

53

APPENDIX A

PUBLICATIONS

A.1 International Conferences

1)

Srivisut, K. and Muenchaisri, P. Defining and Detecting Bad Smells of

Aspect-Oriented Software. Proceedings of the 31" Annual International

Computer Software and Applications Conference (COMPSAC 2007). Beijing,

China, July 23-27, 2007.
Srivisut, K. and Muenchaisri, P. Bad-Smell Metrics for Aspect-Oriented

Software. Proceedings of the 6" IEEE/ACIS International Conference on

Computer and Information Science (ICIS 2007). Melbourne, Australia, July

11-13, 2007.

A.2 National Conference

1)

Srivisut, K. and Muenchaisri, P. Determining Threshold of Aspect-Oriented

Software Metrics. Proceedings of the 3" Joint_Conference on Computer

Science and Software Engineering (JCSSE 2006). Bangkok, Thailand, June

29-30, 2006.

54

Defining and Detecting Bad Smells of Aspect-Oriented Software

Komsan Srivisut
Center of Excellence in Software Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Bangkok, Thailand
Komsan.S @ Student.chula.ac.th

Abstract

Bad Smells are software patterns that are generally
associated with bad design and bad programming.
They can be removed by using the refactoring
technique which improves the quality of software.
Aspect-Oriented (AO) software development, which
involves new notions and the different ways of thinking
for developing software and solving the crosscutting
problem, possibly introduces different kinds of design
flaws. Defining bad smells hidden in AO software in
order to point out bad design and bad programming is
then necessary. This paper proposes the definition of
new AO bad smells. Moreover, appropriate existing
AO refactoring methods for eliminating each bad smell
are presented. The proposed bad smells are validated.
The results show that after removing the bad smells by
using appropriate refactoring methods, the software
quality is increased.

1. Introduction

As the traditional Object-Oriented (OO)
programming unintently introduces the problem of
code scattering and code tangling in software
development, AO programming [1] is emerging as the
new programming paradigm to solve such problem by
separating the crosscutting concerns into their own
modules called aspect. Bad smells [2] are design flaws
in existing software that should be removed through
refactorings. The bad smells themselves do not intend
to provide precise criteria for when refactoring should
maturely be performed. They rather suggest symptoms
indicating something may be wrong in design or code.
Decisions for removing the bad smells thus depend on

Pornsiri Muenchaisri
Center of Excellence in Software Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Bangkok, Thailand
Pornsiri. Mu@chula.ac.th

the specific aims of the programmer and the specific
state and structure of the code on which he is working.
Refactoring [2] is a technique for improving the design
of an existing software by changing the internal
structure of software, while the behavior of the original
software is preserved.

Since new notions and the different ways of thinking
are introduced in order to support for identification,
modularization, representation, and composition of
crosscutting concerns, they perhaps introduce different
kinds of design flaws. Therefore, defining bad smells
hidden in AO software as indicators to identify
possibly anomalies is required. This paper proposes the
definition of new AO bad smells. Appropriate existing
AO refactoring methods are further presented. The
quality attribute of software is also measured as a
means to validate the proposed bad smells. The results
show that the software quality attribute is increased
after removing the bad smells.

The rest of this paper is structured as follows.
Section 2 presents the definition of each bad smell, its
metric, its threshold, and its appropriate refactoring
methods. Section 3 illustrates the validation of bad
smells with AO sample software. In Section 4, related
works are discussed. Conclusions and future works are
given in Section 5.

2. Bad smell definition

2.1. Borrowed pointcut

Definition: A pointcut is referred by advices of the
aspects of which are not subaspects.

In Figure 1, the dashed arrows show a reference
from advice to pointcut. Advice adviceB2 and advice
adviceCl refer to pointcut pointcutAl in aspect

aspectA but aspect aspectA is not the superaspect of the
other aspects. Hence, pointcut pointcutAl is considered
to be the borrowed pointcut.
Metric: Number of Non-Subaspect Advices refers to
a Pointcut of an aspect (NNSAdP)

Threshold: NNSAdP >0

Solution: Crosscutting programming interface (XPI)
[3] is used to reduce this kind of interaction by
applying refactoring procedure as follows:

1. Create a new aspect as XPI to collect unrelated
aspect pointcuts by using Create Empty Aspect
[4] and specify this aspect to be public.

2. Move suspected pointcuts to the created aspect
by using Move Named Pointcut [4] and specify
these pointcuts to be public.

As pointcut pointcutAl is suspected to be
borrowed pointcut bad smell, the above refactoring
procedure is applied and the result shows that the
interaction coupling is reduced as illustrated in Figure
2. Code is flexible and easy to understand and reuse.

2.2. Duplicated pointcut

Definition: Pointcuts collect the same set of
joinpoints in base code.

In Figure 3, the dotted arrows show a crosscutting
from aspect to class. Pointcut pointcutAl and pointcut
pointcutBI, which are differently defined, are
intercepting to the same set of joinpoints in both
classes. Hence, pointcut pointcutAl and pointcut
pointcutBI are considered to be the duplicated
pointcut.

Metric: Set of the corresponding Joinpoints of a
Pointcut (SJP)

Threshold:

SJPPi M SJPPJ = SJPPi

SJPpj N SJPp; = SJPp;, which P;, P; €P and P; # P;

Given:

P is all pointcuts in the software.

P; is a given pointcut.

P; is other pointcuts in the software.

i, j equal to 1,...,n, where n is the total number of P.

Solution: XPI is used to reduce the duplication of
code by applying refactoring procedure as follows:

1. Create a new -aspect as XPI to collect

duplicated; aspect pointcuts: by using Create
Empty Aspect [4] and specify this aspect to be
public.

2. Move suspected pointcuts to the created aspect
by using Move Named Pointcut [4] and specify
this pointcut to be public.

3. Delete the redundant pointcuts by using Delete
Named Pointcut [4].

55

As pointcut pointcutAl and pointcut pointcutBl are
suspected to be duplicated pointcut bad smell, the
above refactoring procedure is applied. The result
shows that the size of code and interaction coupling are
decreased and the reusability is increased as illustrated
in Figure 4.

2.3. Various concerns

Definition: A pointcut is referred by more than one
advices, which are the same kind (either before advice
or after advice), in an aspect.

In Figure 5, pointcut pointcutA2 is referred by
advice adviceA2 and advice adviceA3. Hence, aspect
aspectA is considered to be the various concerns.

Metric: Number of Advices refer to a Pointcut
(NAdP)

Threshold: NAdPp; > 1

Given:

P is all pointcuts in an aspect.

P; is a given pointcut.

i equals to 1,...,n, where n is the total number of P.

aspectC aspectA aspectB
m‘] -;’t‘ pointcutA1 ::I(-| |:: pointcutB1 II:I"
o 1 I
() ! |
: = -I adviceAl | : | adviceB1 |- =
[1
'1- -I adviceA2 | '1- -I adviceB2 |

Figure 1. The characteristic of borrowed
pointcut

aspectD

]]
r pointcutA1 T
i L1] |

s
laspectA

aspeciC

[-

aspectB

1
|
|
|
|
1
| pointcutB1 1 -
|
1
|
|
|
|

adviceAl |— =

-I adviceA2 | | adviceB1 |-— r

1 -<| adviceB2

Figure 2. Eliminating borrowed pointcut

aspectA classC aspectB

[]
...... . @ .ol pointcutB1
L1

| adviceB2 |--

P
T

]]
2|3

= 3
8|2
=z

1 [

1 .

| Pyppppp——}

methodC1

1 --I adviceA2

S

methodC2

classD

attributeD1
attributeD2
. methodD1 1

Figure 3. The characteristic of duplicated
pointcut

classC aspectA

aspectE

0
1

oo pointcutA B
methodC1 E

methodC2 -t

- i - - -
" X ’ '
o
@
kel
@

Q
™

classD

attributeD1

attributeD2

methodD1 .

Figure 4. Eliminating duplicated pointcut

aspectA

pointcutA1
u

a
|
|

pointcutA2 :

|
|

1
1
f 1
K adviceA -
1
it
: = adviceA2 |

|
1
1

1= adviceA3

Figure 5. The characteristic of various
concerns

Solution: Unrelated concerns are extracted and
moved into their own aspect by applying refactoring
procedure as follows:

1. Create a new aspect in order to include another
concern of-the old one by using Create Empty
Aspect [4].

2. Since all concerns in an aspect share the same
pointcut, it is reasonable to apply XPI in order
to collect the shared pointcut. Thus, a new
aspect as XPI is created by using Create Empty
Aspect [4].

3. Move a shared pointcut into XPI by using Move
Named Pointcut [4].

56

4. Move another concern such as their advices
into the new aspect by using Move Advice [4].
As aspect aspectA is suspected to be various
concerns bad smell, the above refactoring procedure is
applied and the result shows that a concern is
modularized in its own aspect and the complexity of
the aspect is decreased as illustrated in Figure 6.

2.4. Identical role

Definition: Members of intercepted classes, which
inherit from the same class or interface, are introduced.

In Figure 7, aspect aspectA includes the specific
concrete classes: class classB and class classC. Both
specific concrete classes are extended from class
classD. The inherited members of both classes are
duplicated. Hence, this aspect is considered to be the
various concerns.

Metric: Set of the inherited Classes of a given Type
(SCT)

Threshold: n(SCT) > 1

Solution: All related types are formed with a
representative, and then all references are changed
from related types to the representative by applying
refactoring procedure as follows:

1. Create inner marker interface to represent all
inherited classes of a given type by using
Generalize Target Type with Marker Interface
[S].

2. Since marker interface does not declare the
members of inherited classes, Extend Marker
Interface with Signature [5] is used to extend
them with that signature.

As aspect aspectA is suspected to be identical role
bad smell, the above refactoring procedure is applied
and the result shows that the size of code is decreased
and the fragment of code is reused as illustrated in
Figure 8.

3. Validation

The proposed bad smells are validated with two
sample software named Telecom [6] and AspectTetris
[7]. Firstly, a quality attribute i.e., coupling of both
samples is _measured by using quality metric called
Coupling between Modules (CBM). This metric was
proposed by Ceccato-and Tonella [8]. It revised the
well known Chidamber and Kemerer’s metric [9]
named Coupling Between Objects (CBO) to make it
applicable to AO software. Then, the bad smell metrics
are used to detect the bad smells in sample software.
One borrowed pointcut bad smell and three duplicated
pointcut bad smells are discovered in Telecom and

AspectTetris, respectively. After detecting the bad
smells, the appropriate refactoring methods are applied.
The quality attribute of sample software after removing
the bad smells is measured once again. The measured
results of quality metric (both before and after
refactoring) are compared to ensure that the quality
attribute of sample software is improved as shown in
Table 1.

4. Related works

In order to improve AO software, several authors [4,
5, 10-12] proposed refactoring techniques, but specific
AO bad smells were still limited. Monteiro and
Fernades [5] proposed a collection of AO refactoring
cover both the extraction of aspects from OO legacy
code and the subsequent tidying up of the resulting
aspects. They also reviewed the traditional OO code
smells in the light of aspect orientation and proposed
some new smells for the detection of crosscutting
concerns. In addition, they firstly proposed a new code
smell that was specific to aspect named Aspect
Laziness.

5. Conclusions and future works

This paper proposes four specific AO bad smells
e., borrowed pointcut, duplicated pointcut, various
concerns, and identical role. Appropriate AO
refactoring methods are selected to eliminate the bad
smells. The proposed bad smells are validated through
two AO sample software. After eliminating the bad
smells found in both samples, their quality is improved.
We plan to validate the proposed bad smells with other
AO sample software and with other quality attributes.
Also we intend to define further AO bad smells, their
metrics, and their appropriate refactoring methods.
Tool-support for the detection is also our future works.

6. References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, "Aspect-Oriented
Programming," presented at Eiropean Conference on
Object-Oriented Programming (ECOOP), Finland, 1997.

[2] M. Fowler, Refactoring: Improving the Design of
Existing Code, 1 ed: Addison-Wesley, 1999.

[3] W. G. Griswold, M. Shonle, K. Sullivan, Y. Song, N
Tewari, Y. Cai, and H. Rajan, "Modular Software
Design with Crosscutting Interfaces," IEEE Software,
Special Issue on Aspect-Oriented Programming, vol.
January/February 2006, 2006.

57

[4] S. Runa, "Refactoring Aspect-Oriented Software," in
Computer Science. Williamstown, Massachusetts:
WILLIAMS COLLEGE, 2003, pp. 82.

[5] M. P. Monteiro and J. M. Fernandes, "Towards a
Catolog of Aspect-Oriented Refactorings," presented at
AOSD 05, Chicago, Illinois, USA, 2005.

[6] http://www.eclipse.org/ajdt/.

[7] http://www.guzzzt.com/coding/aspecttetris.shtml.

[8] M. Ceccato and P. Tonella, "Measuring the Effects of
Software Aspectization," presented at 1st Workshop on
Aspect Reverse Engineering (WARE) at Working
Conference on Reverse Engineering (WCRE), Delft,
The Netherlands, 2004.

[9] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite
for Object Oriented Design," presented at IEEE
Transactions on Software Engineering, 1994.

[10]JA. v. Deursen, M. Marin, and L. Moonen, "Aspect
Mining and Refactoring," presented at First International
Workshop on REFactoring: Achievements, Challenges,
Effects (REFACE), University of Waterloo, 2003.

[11]M. Iwamoto and J. Zhao, "Refactoring Aspect-Oriented
Programs," presented at 4th AOSD Modeling with UML
Workshop, UML'2003, San Francisco, California, USA,
2003.

[12]S. Hanenberg, C. Oberschulte, and R. Unland,
"Refactoring of Aspect-Oriented Software," presented at
4th Annual International Conference on Object-Oriented
and Internet-based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays),
Erfurt, Germany, 2003.

aspect aspect

]] 7]]
1 oointcutA =-1-
u [

pointcutA
L1 [
aspect

|

!

|

|

'
(=]

|

|

!

!

1=====a

aspect

Figure 6. Eliminating various concerns

aspectA

classD) |

I\ 7

classB classC /

attributeD1 > attributeD1 >

classC.attributeD1
classC.methodD1

classB.attributeD1
classB.methodD1

methodD1 methodD1

Figure 7. The characteristic of identical role

58

Bad-Smell Metrics for Aspect-Oriented Software

Komsan Srivisut
Software Engineering Laboratory
Center of Excellence in Software Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Bangkok, Thailand
Komsan.S @ Student.chula.ac.th

Abstract

Aspect-Oriented Programming (AOP) is a new
programming paradigm that improves separation of
concerns by decomposing the crosscutting concerns in
aspect modules. Bad smells are metaphors to describe
software patterns that are generally associated with
bad design and bad programming of Object-Oriented
Programming (OOP). New notions and different ways
of thinking for developing Aspect-Oriented (AO)
software inevitably introduce bad smells which are
specific bad design and bad programming in AO
software called AO bad smells. Software metrics have
been used to measure software artifact for a better
understanding of its attributes and to assess its quality.
Bad-smell metrics should be used as indicators for
determining whether a particular fraction of AO code
contains bad smells or not. Therefore, this paper
proposes definition of metrics corresponding to the
characteristic of each AO bad smell as a means to
detecting them. The proposed bad-smell metrics are
validated and the results show that the proposed bad-
smell metrics can preliminarily indicate bad smells
hidden in AO software.

1. Introduction

One goal of software metrics is to identify and
measure the essential parameters that affect software
development. Software metrics provide a quantitative
basis for the development and validation of models of
the software development process. Metrics can be used
to improve software productivity and quality [1, 2].

Pornsiri Muenchaisri
Software Engineering Laboratory
Center of Excellence in Software Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Bangkok, Thailand
Pornsiri. Mu@chula.ac.th

Separation of concerns [3] entails breaking down
software into distinct parts that overlap in functionality
as little as possible. All programming methodologies —
including procedural programming and OOP — support
some separation and encapsulation of concerns into
single entities. For example, procedures, packages,
classes and methods all help programmers encapsulate
concerns into single entities. Unfortunately, there are
some concerns defy these forms of encapsulation calls
“crosscutting concerns”. For example, a logging
strategy necessarily affects every single logged part of
the system. Logging thereby crosscuts all logged
classes and methods. AOP [4] is the new programming
paradigm which attempts to aid programmers in the
separation of concerns, specifically crosscutting
concerns, as an advance in modularization.

Bad smells [5] are proposed by Beck and Fowler as
flaws in existing code that should be removed through
refactorings. Such bad smells do not aim to provide
precise criteria for when refactorings should maturely
be performed. Instead, it suggests symptoms indicating
something may be wrong in design or code.
Programmers are required to develop their own sense
of . when ~a- symptom -indeed warrants a change.
Decisions also depend on the specific aims of the
programmer and the specific state and structure of the
code on which he is working: AO bad smells, the
specific design flaws in AO software, are possibly
emerging according to the new notions and the
different ways of thinking in developing software.
Measuring the characteristics of AO bad-smells in
software by using software metrics is essentially
applied to determine whether a particular fraction of
AO code contains bad smells or not.

This paper proposes AO software metrics suite as
indicators to identify bad smells hidden in software.
The proposed bad-smell metrics are validated by using
them to detect the bad smells in four AO sample
software. The results show that the proposed metrics
can suggest bad smells in sample software.

The rest of this paper is structured as follows.
Section 2 presents the definition of each bad smell
detected by the proposed metrics. The metrics along
with bad-smell metric thresholds are presented in
Section 3. Section 4 illustrates validation of bad-smell
metrics with sample AO software and the results. In
Section 5, related works are discussed. Conclusions
and future works are given in Section 6.

2. AO bad smells

In this section, eight bad smells are detailed,
including our five AO bad smells and other three AO
bad smells [6]. All bad smells presented here are
classified into four pointcut bad smells (borrowed
pointcut, duplicated pointcut, anonymous pointcut
definition, and feature envy), three aspect bad smells
(various concerns, identical role, and abstract method
introduction) and one multi-entity bad smell (junk
material). In order to consider the pointcut bad smells
(except anonymous pointcut definition), various
concerns bad smell, and junk material bad smell, all
considered pointcuts should be named according to the
characteristics of the bad smells. Hence, unnamed
pointcuts considered in the bad smells are assumed as
the named pointcuts which are referred by their own
advice. Aspect] [7], an extension of the programming
language Java, is used as the current primary
representative AOP language to define the metrics in
this work. Aspect] is the most popular one and already
has a large community.

2.1. Borrowed pointcut

Borrowed pointcut bad smell occurs whenever a
pointcut is referred by advices of other aspects that are
not subaspect of the one it is actually defined. Although
this kind of reference reduces the coupling between
classes and aspects, it creates the coupling between
unrelated aspects. The desired design characteristic of
software is to have low interaction coupling and high
inheritance coupling [8].

2.2. Duplicated pointcut

Pointcuts that collect the same set of joinpoints in
base code are defined as duplicated pointcut bad smell.

59

This is a kind of duplicate code that affects the size of
code. In general, the bigger size, the more difficult it is
to understand the system. The interaction coupling also
occurs between class and aspect, since aspect intercepts
the execution of class.

2.3. Anonymous pointcut definition [6]

In Aspect], as pieces of advice are not named,
sometimes it is necessary to rely on the pointcut
definition to have an idea of the affected points in base
code. Also a named pointcut is possibly reused by other
advices which affect to the same points in base code.
Unnamed pointcut is defined as anonymous pointcut
definition bad smell.

2.4. Feature envy [6]

Feature envy bad smell is always found in an aspect
that uses a class-defined pointcut. In Aspect], although
pointcuts could be defined in aspects and also in
classes, it is possible to move the pointcut from the
class to the aspect that uses it. This kind of reference
increases unnecessarily coupling between modules.

This bad smell resembles to our borrowed pointcut
bad smell presented above but their pointcut is defined
in a class.

2.5. Various concerns

An aspect is marked as various concerns bad smell
when there are a non I-to-1 relationship between
pointcut and advice. In other words, many advices,
which are the same kind (either before advice or after
advice), refer to the same pointcut. In general, an
aspect modularizes a unique concern. When an aspect
has too many pointcuts and advices, it implicitly
indicates that there may be more than one unrelated
concern in such aspect.

This bad smell is similar to large aspect bad smell
proposed by Piveta et al. [6]. The difference between
various concerns bad smell and large aspect bad smell
is_on how to consider the number of concerns in an
aspect. Large aspect bad smell considers the number
of members in an aspect. Piveta et al. determined in [9]
that an aspect with ten or more crosscutting members is
marked as large aspect bad smell.

2.6. Identical role

Specific concrete types, which are closely related in
inheritance relationship, result in duplicated code and
prevent them from being reused. Also coupling arising

between an aspect and the affected classes are
unnecessarily increased. Those concrete types are
called identical role bad smell.

2.7. Abstract method introduction [6]

Abstract method introduction bad smell occurs
when abstract method is added into existing class
through the inter-type declaration mechanism of aspect.
This introduction forces the programmer to provide
concrete implementations to the introduced methods in
every affected class and subclasses. This dependency
unnecessarily increases the coupling between the aspect
and the affected classes.

This kind of bad smell is not harmful and
unnecessary to be eliminated from software code,
because this kind of dependency occurs according to
the generalization of classes. For instance, common
introduced methods of subclasses are pulled up into
their superclass.

2.8. Junk material

Unused aspect and unused pointcut are unnecessary
code in program and are considered to be junk material
bad smell. They might be created by any reasons and
results in increasing the needless entities and size in
program.

3. Bad-smell metrics

Fifteen metrics proposed in this paper are six
pointcut-level metrics, eight aspect-level metrics and
one class-level metric, and are summarized in Table 1.

In order to detect the bad smells in code, the range
of measured value of the metric should be specified to
reveal the bad smell. The range is called threshold.
Table 2 illustrates the threshold of each bad smell.

4. Validation

The proposed bad-smell metrics are validated by
using them to detect the bad smell hidden in-three
different kinds of software, including tutorial software
(Telecom and Spacewar -[10]),. academic —software
(AspectTetris [11]), and open-source software
(AJHotDraw [12]). For clear understanding on
measurement and bad-smell detection, Section 4.1
shows an example of measured values of those metrics
collected from sample software code. After obtaining
the measured values, bad-smell metric thresholds are
used to examine whether a piece of AO code contains

60

the bad smells or not. The bad smells found in each
sample are shown in Section 4.2.

4.1. Measurement and bad-smell detection

In order to measure the values of all metrics,
collecting each metric value is presented through a
fragment of code named aspect Billing of Telecom
software [10] illustrated in Listing 1.

According to Listing 1, the measured value of each
metric from aspect Billing is summarized in Table 3.
All metrics are used in aspect and class level. The rest
of the proposed metrics are pointcut-level metrics. As
mentioned above, unnamed pointcut is assumed as a
named pointcut which is referred by its own advice.
The measured value of each metric from unnamed
pointeut of aspect Billing is summarized in Table 4.

Another pointcut of aspect Billing is pointcut
endTiming which is defined in aspect Timing. Thus,
point of view for collecting pointcut level metrics is
moved to pointcut endTiming in aspect Timing. The
fragment of code of aspect Timing [10] is shown in
Listing 2. The measured value of each metric from
pointcut endTiming of aspect Timing is summarized in
Table 5.

After examining the measured values of metrics in
Table 3 with the threshold in Table 2, one anonymous
pointcut definition bad smell, and one abstract method
introduction bad smell in aspect Billing are discovered,
since NUPAs and NAMA of aspect Billing are greater
than zero. The number of existences of each bad smell
in aspect Billing are summarized in Table 6.

The results of bad-smell detection by using the
proposed metrics through four sample software are
summarized in Section 4.2.

Table 1. The proposed metrics

Level Metrics

Pointcut Number of Advices refer to a Pointcut (NAdP)

Number of Advices in Aspect refer to a Pointcut
(NAdAsP)

Number of Subaspect Advices refer to an aspect
Pointcut (NSAdP)

Number ‘of Non-Subaspect Advices refer to an aspect
Pointcut (NNSAdJP)

Set of the corresponding Joinpoints of a Pointcut (SJP)

Number of Other Aspects refer to a Pointcut (NOAsP)

Aspect Number of Pointcuts defined in Aspect (NPAs)

Number of Named Pointcuts defined in Aspect (NNPAs)

Number of Unnamed Pointcuts defined in Aspect
(NUPAs)

Set of the inherited Classes of a given Type (SCT)

Number of introduced Abstract Methods in an Aspect
(NAMA)

Number of Advices in Aspect (NAdAs)

Number of Introductions in Aspect (NIAs)

Sum of NOAsP (SNOAsP)

Class Number of Pointcuts defined in a Class (NPC)

Table 2. Threshold of each bad smell

Bad smell

Threshold

Borrowed pointcut

NNSAdP > 0

Duplicated pointcut

SJPP\ @) SJij = SJPP\

SJPPJ N SJPpi = SJPPJ, which P;, Pi eP and P; =
Pi
Given:

P is all pointcuts in the software.

P; is a given pointcut.

P; is other pointcuts in the software.

i, j equal to 1,...,n, where n is the total number
of P.

Anonymous pointcut | NUPAs >0

definition

Feature envy NPC >0

Various concerns NAdPg; > 1
Given:

P is all pointcuts in an aspect.

Pi is a given pointcut.

i equals to 1,...,n, where n is the total number of
P.

Identical role n(SCT) > 1
Abstract method NAMA > 0
introduction
Junk material Aspect:
NPAs > 0 and NAdAs = 0 and NIAs = 0 and
SNOAsP =0
NPAs = 0 and NAdAs = and NIAs 2 0
Pointcut:
NAdP =0

01 public aspect Billing {
02 declare precedence: Billing, Timing;

04 public static final long LOCAL_RATE = 3;

61

The limited space at our disposal in this paper does

not allow us to rigorously discuss all bad smells found
in all sample code in order to verify that the proposed
metrics can accurately be used to detect bad smells
hidden in software. Therefore, all bad smells found
only in Telecom software are thoroughly discussed.
The remaining samples show exclusively the results of
detecting bad smell using the proposed metrics.

Table 3. The measured values from aspect

Billing of Telecom software

05 public static final long LONG_DISTANCE_RATE = 10;

07 public Customer Connection.payer;

08 public Customer getPayer(Connection conn) { return
09 conn.payer;}

10

11 after(Customer cust) returning (Connection conn):
12 args(cust, ..) && call(Connection+.new(..)) {

13 conn.payer = cust;

14 }

15

16 public abstract long Connection.callRate();

17

18 public long LongDistance.callRate() { return

19 LONG_DISTANCE_RATE;}
20 public long Local.callRate() { return LOCAL_RATE; }

Bad-smell metric Measured value
NPAs 1
NNPAs 0
NUPAs 1
NPC N/A
SCT N/A
NAMA 1
NAdAs 2
NIAs 7
SNOAsP 0
Table 4. The measured values from unnamed
pointcut of aspect Billing of Telecom software
Bad-smell metric Measured value
NAdP 1
NAdAsP 1
NSAdP 0
NNSAdP 0
SJP {Connection.new(..),
Local.new(..),
LongDistance.new(..)}
NOAsP 0
01 public aspect Timing {
02
03
04 after (Connection c): target(c) && call(void
05 Connection.complete()) {
06 getTimer(c).start();
07 }
08
09 pointcut endTiming(Connection c): target(c) &&
10 call(void Connection.drop());
11
12 after(Connection c): endTiming(c) {
13 getTimer(c).stop();
14 c.getCaller().totalConnectTime += getTimer(c).getTime();
15 c.getReceiver().totalConnectTime += getTimer(c).getTime();

16 }
17)

Listing 2. Aspect Timing of Telecom software
[10]

Table 5. The measured values from pointcut
endTiming of aspect Timing of Telecom
software

22 after(Connection conn): Timing.endTiming(conn) {

23 long time = Timing.aspectOf().getTimer(conn).getTime();

24 long rate = conn.callRate();

25 long cost = rate * time;

gs getPayer(conn).addCharge(cost);

28 }

29 public long Customer.totalCharge = 0;

30 public long getTotalCharge(Customer cust) { return

31 custtotalCharge; }

32

33 public void Customer.addCharge(long charge){

gg totalCharge += charge;

36 } }

Listing 1. Aspect Billing of Telecom software

[10]

4.2. Validation with four sample code

Bad-smell metric Measured value
NAdP 2
NAdAsP 1
NSAdP 0
NNSAdJP 1
SJP {void Connection.drop()}
NOAsP 1

Table 6. Bad smells in aspect Billing of

Telecom software

Bad smell Number of existences
Borrowed pointcut
Duplicated pointcut
Anonymous pointcut definition
Feature envy
Various concerns
Identical role
Abstract method introduction
Junk material

o|=|(o|lo|o|=|o|o

After using our proposed metrics to identify bad
smells hidden in Telecom software, it indicates that
borrowed pointcut bad smell, anonymous pointcut
definition bad smell, and abstract method introduction
bad smell exist in Telecom software. The number of
existences of each bad smell in Telecom software is
summarized in Table 7. Borrowed pointcut bad smell is
found in aspect Timimg. Anonymous pointcut definition
bad smells are found in all aspects of Telecom
software. Abstract method introduction bad smell is
found in aspect Billing.

After that, the proposed metrics are verified by
investigating bad smells in program code. After
considering Telecom software at the code level,
observing that all suspected pointcuts and suspected
aspect indicated by the proposed metrics conform to
the characteristics of the bad smells mentioned in
Section 2. First, aspect Timing has a pointcut named
endTiming (Listing 2, lines 9-10), which is exactly
referred by an advice of aspect Billing (Listing 1, line
22). Pointcut endTiming conforms to the characteristic
of borrowed pointcut bad smell. Although this
reference reduces the coupling between class
Connection and both of the aspects: aspect Timing and
aspect Billing, it creates the coupling between both
aspects. It is interesting to use crosscutting interface
(XPI) [13] as an interface to collect such unrelated
aspect pointcut.

There are one, two, and one unnamed pointcuts in
code of aspect Billing (Listing 1, line 12), aspect
TimerLog (Listing 3, lines 3 and 7), and aspect Timing
(Listing 2, lines 4-5), respectively. All unnamed
pointcuts conform to the characteristic of anonymous
pointcut definition bad smell. It is possible to give a
name to all unnamed pointcuts. In aspect Billing, there
is certainly an abstract method callRate introduced: to
class Connection (Listing 1, line 16). This method
conforms to the characteristic of abstract method
introduction bad smell. It is not necessary to eliminate
this kind of bad smell according to the generalization
of the members of classes introduced in the aspect.

After investigating those suspects in program code
and conforming them with the characteristics of the bad
smells, it is confirming that our proposed metrics can

62

be used to detect bad smells in AO software. The rest
of samples are verified in the same way and the results
are similar. The number of existences of each bad smell
in Spacewar, AspectTetris, and AJHotDraw software
are summarized in Table 8.

5. Related works

Bad smells and refactorings are closely related,
since bad smells can be removed by using the
refactoring techniques in order to improve the qualities
of software. The prior researches in the light of aspect
orientation focused on refactoring techniques. Several
authors [14-17] propose refactoring techniques.
Iwamoto and Zhao [14] investigate the impact of
existing OO refactorings on AO program such as those
proposed by Fowler [5]. Their intention is to build a
catalog of AOP refactorings, but the information
provided about them is limited to the names of the
twenty four refactorings. Rura [15] proposes thirty new
fundamental AOP-specific refactorings and recasts the
existing (OO) refactorings to preserve program
behavior in AO code. Composite refactorings, which
are built from their fundamental refactorings, are
additionally presented in order to aid in the extraction
of crosscutting concerns by deploying AOP techniques
in existing programs.

Hanenberg et al. [16] introduce a number of new
AO refactorings which help to migrate from OO to AO
software and to restructure existing AO code. There are
three refactorings in order to restructure existing AO
code such as, Extract Advice, Extract Introduction and
Separate Pointcut. Monteiro and Fernades [17]
propose a collection of twenty eight AO refactorings
cover both the extraction of aspects from OO legacy
code and the subsequent tidying up of the resulting
aspects. They also review the traditional OO code
smells in the light of aspect orientation and propose
some new smells for the detection of crosscutting
concerns. In addition, they firstly propose a new code
smell thatis specific to aspect named Aspect Laziness —
an aspect that does not carry the full weight of their
responsibilities and instead pass the burden to classes.

Piveta et al. [6] defined five bad smells that occur in
AO systems i.e. anonymous pointcut definition, large
aspect, lazy aspect, feature envy, and abstract method
introduction.. They complement their work with
algorithms [9] to automatically detect their five
proposed bad smells, more specifically those written
using Aspect] language.

6. Conclusions and future works

As aspect orientation requires its new notions and
the different ways of thinking, it perhaps introduces
AO bad smells, the specific design flaws in AO
software. In order to detect AO bad smell in software,
software metrics corresponded to the characteristic of
each bad-smell are possibly used to determine whether
a particular fraction of code contains bad smells or not.
This paper proposes fifteen AO software metrics for
detecting eight bad smells hidden in AO software.
There are our five AO bad smells and other three AO
bad smells proposed by Piveta et al [6].

The fifteen proposed bad-smell metrics are
validated through four AO sample software. The
proposed bad-smell metrics preliminarily indicate that
there are AO bad smells in all sample software. After
investigating all suspected pointcuts and suspected
aspects in software code with the proposed metrics, all
suspected entities are conforming to the characteristics
of the bad smells. It is confirming that the proposed
metrics can be used to detect bad smells in AO
software. We plan to validate the proposed bad-smell
metrics with other AO sample software and also intend
to define further AO bad smells, their metrics, and their
appropriate refactoring methods.

7. References

[1] E. E. Mills, "Software Metrics," Software Engineering
Institute, Pittsburg, PA, USA, SEI Curriculum Module
SEI-CM-12-1.1 December 1988.

[2] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: PWS Publishing
Company, 1997.

[3] E. W. Dijkstra, A Discipline of Programming, 1st ed:
Prentice Hall, Inc., 1976.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, "Aspect-Oriented
Programming," presented at Eiropean Conference on
Object-Oriented Programming (ECOOP), Finland,
1997.

[5] M. Fowler, Refactoring: Improving the Design of
Existing Code, 1 ed: Addison-Wesley, 1999.

[6] E. K. Piveta, M. Hecht, M. S. Pimenta, and R. T. Price,
"Bad Smells em sistemas orientados a aspectos (in
portuguese),” presented at Brazilian Symposium in
Software Engineering, SBES 2005, Uberlandia, Brazil,
2005.

[71 R. Laddad, Aspect in Action: Practical Aspect-
Oriented Programming: Manning Publications Co.,
2003.

[8] A. J. Riel, Object-Oriented Design Heuristics:
Addison-Wesley Professional, 1996.

[91 E. K. Piveta, M. Hecht, M. S. Pimenta, and R. T. Price,
"Detecting Bad Smells in Aspect]," Journal of
Universal Computer Science, vol. 12, 2006.

[10] http://www.eclipse.org/ajdt/.

63

[11] http://www.guzzzt.com/coding/aspecttetris.shtml.

[12] A. v. Deursen, M. Marin, and L. Moonen,
"AJHotDraw: A showcase for refactoring to aspects,”
presented at Linking Aspect Technology and Evolution
Workshop (LATE) AOSD 2005, Chicago, USA, 2005.

[13] W. G. Griswold, M. Shonle, K. Sullivan, Y. Song, N.
Tewari, Y. Cai, and H. Rajan, "Modular Software
Design with Crosscutting Interfaces," IEEE Software,
Special Issue on Aspect-Oriented Programming, vol.
January/February 2006, 2006.

[14] M. Iwamoto and J. Zhao, "Refactoring Aspect-Oriented
Programs,” presented at 4th AOSD Modeling with
UML Workshop, UML2003, San Francisco,
California, USA, 2003.

[15] S. Runa, "Refactoring Aspect-Oriented Software," in
Computer Science. Williamstown, Massachusetts:
WILLIAMS COLLEGE, 2003, pp. 82.

[16] S. Hanenberg, C. Oberschulte, and R. Unland,
"Refactoring of Aspect-Oriented Software," presented
at 4th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts,
and Applications for a Networked World
(Net.ObjectDays), Erfurt, Germany, 2003.

[17] M. P. Monteiro and J. M. Fernandes, "Towards a
Catolog of Aspect-Oriented Refactorings," presented at
AOSD 05, Chicago, Illinois, USA, 2005.

Table 7. Bad smells in Telecom software

Bad smell Number of existences

Borrowed pointcut 1

Duplicated pointcut 0

Anonymous pointcut definition 4

Feature envy 0

Various concerns 0

Identical role 0

Abstract method introduction 1

Junk material 0
01 public aspect TimerlLog {
02
03 after(Timer t): target(t) && call(* Timer.start()) {
04 System.err.printin("Timer started: " + t.startTime);
05 }
06
07 after(Timer t): target(t) && call(* Timer.stop()) {
08 System.err.printin("Timer stopped: " + t.stopTime);
09
10} :

Listing 3. Aspect TimerLog of Telecom
software [10]
Table 8. Bad smells in the rest of sample
software
Bad smell Number of existences
Spacewar AspectTetris AJHotDraw

Borrowed pointcut 0 0 0
Duplicated pointcut 1 3 0
Anonymous pointcut 15 2 2
definition
Feature envy 1 0 0
Various concerns 0 0 0
Abstract method 0 0 1
introduction
Identical role 2 0 0
Junk material 0 0 1

64

Determining Threshold of Aspect-Oriented Software Metrics

Komsan Srivisut' and Pornsiri Muenchaisri’

I-2Software Engineering Laboratory
Center of Excellence in Software Engineering
Department of Computer Engineering, Faculty of Engineering
Chulalongkorn University, Bangkok, 10330, Thailand

E-mail: 'Komsan.S @Student.chula.ac.th and *Pornsiri.Mu @chula.ac.th

Abstract

Threshold of software metrics can be used as
indicators to identify possible anomalies in software.
Aspect-Oriented (AO) Programming is a new
programming paradigm that solved the crosscutting
problem by decomposes the crosscutting concern in
aspect module. Establishing the threshold of AO
software metrics in order to identify anomalies in AO
software is necessary. The Gang-of-Four (GoF)
patterns are widely accepted as good design. Metrics
extracted from the GoF patterns should be relevant
information for preliminary obtaining the threshold.
In this paper, we present some metric thresholds,
which established from the 23 aspect-based GoF
patterns. We also validate the thresholds through 2
AO software examples. The results show that it
indicates anomalies in the software example.

Keywords: Threshold, Software Metrics, Software
Quality, Aspect-Oriented Programming

UNAALD

. ' o Y w A A 2
%¥19909A10195 70 M1sa ldiudrFineszyda
a a a 1 < '
Aadndlurendurs TusunsumFadyanilunyuedia
] é 9 @ dl a d?
ms Tlsunsulvi Fadilgrimsdayneinatu Tag
' Y Ao 9 ') '
uendauvesnmnnaave A ludyy msasiega
' o IS da A A A a
YoIANInT IarerduITIFIdyy Messasrailnaly
s da ' A o o 7
oA s FaudyuIuiudduiu nuvgldunsdool
q' v ' ' g a
Tsiflufisousuiuediaunsvarviniumseonuuyi

@ anasiad Idanglunuunsdeen TWssauiludeya

v 1 Ea
AuaNurgiems 1duieaduueIrIvesnInIag

v
]

Ta unanuatuilidIted ninaues9venINIns In 49
Y
J 4 a
ai1awn 23 suugdunsfeen Tlsvunug U
4
wdy wennnigIeiinslszduriwesaias i
v o ' s da ' Ay v R
A78 2 A20019FeNALITIFIEYY Wafl TANUITIV

' o A a a o ' s
ﬂmmﬁaﬂmmmﬁzummﬂﬂ@l“lumamwavdmnﬂﬁ’

o_ o

[] 1 [@ 4 4
ATAIAY: FINVDINTNIATIA, MW@S?@WGWWLL’JS,

4 4 a]
Aamnsanans, 3 T sunsugadyy

1. Introduction

An appealing operational approach for quality
management using OO software metrics is to develop
thresholds. Thresholds are defined as [1] “heuristic
values used to set ranges of desirable and undesirable
metricvalues . for measured software. These
thresholds are used to identify anomalies, which may
or may not be an actual problem.” For example, we
can say that a certain coupling metric has a threshold
of seven. If the measured value for a particular class
is larger than seven, then we could flag that class as
high risk [2].

Thresholds have a practical, theoretical, and
methodological significance. It is much easier for
quality assurance personnel to.‘use thresholds for
identifying ~potentially 'high risk classes; they are
more actionable than statistical models and equations
that commonly resulted from validation studies [2].

AOP [3] is a new paradigm that addresses
crosscutting concerns: behavior of a software system
which is hard to decompose and isolate in existing
paradigm specifically in object orientation. Such
crosscutting concern requires its implementation to
be spread across many different modules. AOP aims
to improve evolvability and reusability of the

software system by capturing such -crosscutting
behavior in a new modularization unit calls “aspect”.

However, since the AO paradigm is still in its
infancy, it is important to determine the threshold
metrics to identify anomalies in AO software.

The GoF design patterns [4] offer flexible
solutions to common software development
problems. Each pattern is comprised of a number of
parts, including purpose/intent, applicability, solution
structure, and sample implementations. It is accepted
as good design. The extracted metrics from GoF
patterns should be relevant the information for
preliminary obtaining the threshold. As our research,
we establish AO software metric thresholds with the
23 GoF patterns and validate it with an AO software
example. The results show that it can indicates
anomalies in software example.

The rest of this paper is structured as follows. In
section 2, we review some existing AO software
metrics which is used to establish their thresholds,
design patterns and related research on software
metric thresholds. Section 3 presents the threshold
values of each metric as our main outcome. Section 4
dedicates to presenting the validation of such
thresholds through 2 AO software examples. Finally,
we conclude in section 5 along with the future works.

2. Literature Research

2.1 AO Software Metrics

In this paper, we focus on metrics suite proposed
by Ceccato and Tonella [5], which revised the well
known Chidamber and Kemerer’s metrics suite.
Some of the metrics are adapted or extended, in order
to make them applicable to the AOP software. In this
suite, module will be used as a common term for
classes and aspects. Similarly, methods, advices and
introductions will be indicated by the operation term.
There are 10 metrics as following:

Weighted Operations in Module (WOM)

WOM counts number of operations in a given
module [5].

Depth of Inheritance Tree (DIT)

DIT is a length of the longest path from-a given
module to the class/aspect hierarchy root [5]. Since
aspects can alter the .inheritance relationship by
means of static crosscutting, * such @ effects of
aspectization must be taken into account when
computing this metric [5].

Number Of Children (NOC)

NOC is a number of immediate subclasses or sub-
aspects of a given module [5].

Crosscutting Degree of an Aspect (CDA)

CDA is a number of modules affected by the
pointcuts and by the introductions in a given aspect
[5]. This is a brand new metric, specific to AOP

65

software. CDA measures all modules possibly
affected by an aspect. This gives an idea of the
overall impact an aspect has on the other modules.

Coupling on Advice Execution (CAE)

CAE is a number of aspects containing advices
possibly triggered by the execution of operations in a
given module [5]. If the behavior of an operation can
be altered by an aspect advice, due to a pointcut
intercepting it, there is an (implicit) dependence of
the operation from the advice. Thus, the given
module is coupled with the aspect containing the
advice and a change of the latter might impact the
former. Such kind of coupling is absent in OO
systems [5].

Coupling on Method Call (CMC)

CMC is a number of modules or interfaces
declaring methods that are possibly called by a given
module [5]. Aspect introductions must be taken into
account when the possibly invoked methods are
determined.

Coupling on Field Access (CFA)

CFA is a number of modules or interfaces
declaring fields that are accessed by a given module
[5]. In OO systems this metric is usually close to
zero, but in AOP, aspects might access class fields to
perform their function, so observing the new value in
aspectized software may be important to assess the
coupling of an aspect with other classes/aspects [5].

Coupling between Modules (CBM)

CBM is a number of modules or interfaces
declaring methods or fields that are possibly called or
accessed by a given module [5].

Response For a Module (RFM)

RFM is number of methods and advices
potentially executed in response to a message
received by a given module [5]. The main adaptation
necessary to apply it to AOP software is associated
with the implicit responses that are triggered
whenever a pointcut intercepts an operation of the
given module [5].

Lack of Cohesion in Operations (LCO)

LCO is-number of pairs of operations working on
different class fields. minus pairs of operations
working on common fields (zero if negative) [5]. In
[5], they also proposed another AO software metric
on whichwe do not focus. Such metric is CIM
(Coupling on Intercepted Modules).

We think that it is enough for using CDA metric
because CIM considers only explicit named modules,
while CDA measures all modules possibly affected
by an aspect. Thus, CDA is covering overall CIM of
each aspect.

The AO software metrics described above were
collected using AOPMetrics tool. AOPMetrics [6]
was a common metrics tool for the OO and AOP. It

was developed by Stochmialek as a master’s thesis
on Wroclaw University of Technology in Poland.

2.2 Design Patterns

The 23 GoF patterns illustrate a variety of design
and structural issues that would be hard to find in a
single code base (except in very large and complex
systems). The GoF patterns effectively comprise a
microcosm of many possible systems. They provided
us with a rich source of insights, without the need to
analyze large code based or learn domain-specific
concepts [7].

Design pattern examples are presented by
Hannemann and Kiczales [8]. For each of the 23
GoF patterns they developed a representative
example that makes use of the pattern, and
implemented the example in both Java and Aspect].
Aspect] [9], which is an extension of the
programming language Java, is the most popular one
and already has a large community.

Garcia et al. [10] complemented Hannemann and
Kiczales’ work [8] by performing quantitative
assessments of Java and Aspect] implementations for
the 23 GoF patterns. They have found that most
aspect-oriented solutions improved the separation of
pattern-related concerns. Monteiro and Fernandes [7]
emphasized that “The implementations presented by
Hannemann and Kiczales [8] are currently one of the
nearest things to examples of good AOP style and
design.”

Observer pattern, known as Model-View is
intented to “define a one-to-many dependency
between objects so that when one object changes
state, all its dependents are notified and updated
automatically” [11]. Object-oriented implementations
of the Observer pattern, usually add a field to all
potential Subjects that stores a list of Observers
interested in that particular Subject. When a Subject
wants to report a state change to its Observers, it calls
its own notify method, which in turn calls an update
method on all Observers in the list [8].

Figure 1 shows a concrete example of the
Observer pattern [8] in the context of ‘a simple figure
package. In such a system the Observer pattern is
used to cause mutating operations to figure elements
to update the screen. As shown in the figure, code for
implementing this pattern is spread across the classes.
The underlined methods contain code necessary to
implement this instance of such pattern.

All participants (i.e. Point and Line) have to know
about their role in the pattern and consequently have
pattern code in them. Adding or removing a role from
a class requires changes in that class. Changing the
notification mechanism (such as switching between
push and pull models [4]) requires changes in all
paticipanting classes [8].

66

Screen: Cbserver

updare()
dasplay(Stmg)

Figure |$

FigureElement

addCbservar{Observar)
removeQbsarver(Observar)

nanfif
o

Point: Subject ’ Line: Subfect

metX)t getP 10 Pount
et Y (i getF2) Poant
elColon() Color getColon () Colos

addObserver{bserver]

rermow el e ver [(e ver)

addObservenUbserver)

remmovel i hserver (e ver)

nobfyd) ool
setX(int setP1{Point)
selY (int) sel P2 Poant)
setiColor(Color) setColor(UCalor)

Figure 1. A simple Graphical Figure Element
System that uses the Observer pattern in Java

[8]

In the Aspect] version [8] all code pertaining to
the relationship between Observers and Subjects is
moved into an aspect, which changes the
dependencies between the modules, as shown in
Figure 2. Subject and Observer roles crosscut classes,
and the changes of interest (the subjectChange
pointcut) crosscuts methods in various classes.

ColorObserver

Display

Figure 2-The s:t.rijcture of an instance of the
Observer pattern in AspectJ [8]

2.3 Software Metric Thresholds

Henderson-Sellers [12] emphasized the practical
utility of thresholds by stating that “An alarm would
occur whenever the value of a specific internal metric
exceeded some predetermined threshold.”

Lorenz and Kidd [1] presented a number of
thresholds for object-oriented metrics based on their
experiences with Smalltalk and C++ projects.

Similarly, Rosenberg et al. [13] have developed
thresholds for a number of popular object-oriented
metrics that are used for quality management at
NASA GSFC.

French [14] described a technique for deriving
thresholds, and applied it to metrics collected from
Ada95 and C++ programs.

Benlarbi et al. [2] tested for threshold effects in
subset of the CK’s metric suite. Their results
indicated that there were no threshold effects for any
of the metrics studied.

However, none for the above research established
the software metric thresholds from Java programs.
Meananet [15] presented a number of thresholds of
object-oriented software metrics for detecting bad-
smells in Java codes.

3. Threshold of Metrics

The approach for determining threshold of AO
software metrics is shown in the activity diagram in
Figure 3.

23 aspeci-based
GoF pattern
examples

For each aspect Measurec

Collect the values of |—--> values of
all metrics each metric

Select Min and Max 4 Unvalidatec
values of each metric thresholds
‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Validate threshold\ Validated
of metrics thresholds

®

Figure 3. The approach

Assuming GoF patterns ‘are ‘good design. The
values of all metrics are firstly collected from the 23
GoF pattern examples, implementing with Aspect]
[8]. In order to collect the values of all metrics, we
illustrate with an example of aspect belonged to the
Observer pattern example [8]. Figure 4 shows aspect
ObserverProtocol which defines the general behavior
of the Observer design pattern. Aspect
ObserverProtocol consists of 4 methods namely
getObservers, addObserver, removeObserver and
updateObserver and 1 after-advice. Thus, WOM of
this aspect is equal to 5. There are 3 subaspects,
which inherit from ObserverProtocol, namely
CoordinateObserver, ColorObserver and

67

screenObserver. As a result NOC is equal to 3 and
DIT is equal to 0. CMC, CFA, and CBM are equal to
0 because ObserverProtocol is abstract and does not
call to the other methods and attributes. RFM is equal
to 4 since there are 4 methods in such aspect. The
measured values of each AO software metric for
aspect ObserverProtocol are summarized in Table 1.

Table 1. The measured values from aspect
ObserverProtocol
AO software metric | Measured value
WOM
DIT
NOC
CDA
CAE
CMC
CFA
CBM
RFM
LCO

ol |o|o|o|=|a|w|o|n

public abstract aspect ObserverProtocol {
protected interface Subject {}
protected interface Observer { }
private WeakHashMap perSubjectObservers;
protected List getObservers(Subject subject) {
if (perSubjectObservers == null) {
perSubjectObservers = new WeakHashMap();

List observers =
(List)perSubjectObservers.get(subject);

if (observers == null) {
observers = new LinkedList();
perSubjectObservers.put(subject, observers);

return observers;

public void = addObserver(Subject subject,
Observer observer) {
getObservers(subject).add(observer);

public void removeObserver(Subject subject,
Observer observer) {
getObservers(subject).remove(observer);

protected abstract pointcut subjectChange(
Subject s);
after(Subject subject): subjectChange(subject) {
Iterator iter = getObservers(subject).iterator();
while (iter.hasNext()) {
updateObserver(subject,
((Observer)iter.next()));

protected abstract void updateObserver(
Subject subject, Observer observer);

Figure 4. Aspect ObserverProtocol

Since AOP is a new paradigm that mainly affects
to the implementation of software and may affect to
the range of existing OO software metric thresholds.
Therefore, we separately consider such thresholds
both in class type and aspect type.

For each AO software metric, we collect the
metric values through all 23 GoF pattern examples.
The sample results are illustrated with WOM on a
frequency distribution table based on class and aspect
type in Table 2.

Table 2. WOM'’s results based on class and

aspect type
Metric value Number of Number of
classes aspects
0 3 3
1 70 15
2 54 8
3 45 4
4 26 2
5 7 1
6 2 4
7 3 -
8 - 1
9 - 2
10 1 1
Totals 211 41

After that, we select the minimum (Min.) and
maximum (Max.) values of each AO software metric
to be the range of thresholds. In Table 2, Min. and
Max. of WOM for both class and aspect type are 0
and 10 respectively. The summary of AO software
metric thresholds are shown in Table 3 based on class
and aspect type.

Table 3. AO software metric thresholds based

on class type
Software Class Aspect
metric Min. Max. Min. Max.
WOM(WMC) 0 10 0 10
DIT 0 5 0 1
NOC 0 2 0 -
CDA - 0 52
CAE - - 0 2
CMC - - 0 6
CFA - - 0 2
CBM(CBO) 0 7 0 6
RFM(RFC) 0 10 0 14
LCO(LCOM) 0 24 0 32
Note: The abbreviation. of each metric -in

parentheses is the original abbreviation of CK’s
metrics suite.

In Table 3, any aspect may be an anomaly if the
metric value is out of range. For example, if the value
of RFM is less than O or greater than 14, that aspect is
suspected to be an anomaly.

4. Validation of Metric Thresholds

We validate such metric thresholds with 2 AO
software examples name AJHotDraw [16] and
AspectTetris [17]. AJHotDraw is an AO refactoring

68

of JHotDraw, a relatively large and well-designed
open source Java framework for technical and
structured 2D graphics. There are 350 classes, 50
interfaces and 10 aspects in AJHotDraw.

AspectTetris is the game Tetris made in Aspect].
It was implemented by Evertsson as a part of the
course Advanced Software Engineering at Blekinge
Institute of Technology. AspectTetris consists of 16
classes, 1 interface and 8 aspects.

After considering the measured value results of
these examples, we found 63.14% of classes and 20%
of aspects in AJHotDraw are suspected to be
anomalies. In AspectTetris, 6.25% of classes and
12.5% of aspects are suspected to be anomalies. The
limited space at our disposal in this paper dose not
allow us to rigorously discuss all anomalies found in
both examples. Therefore, we discuss all anomalies
found only in aspect type. The metric results of all
aspects in AJHotDraw and AspectTetris are shown in
Table 4 and Table 5 respectively.

In Table 4, RFM metric values of aspects names
PersistentTextFigure and PersistentCompositeFigure
are greater than the range of its threshold. After
consider both of them at code level, methods in these
aspects invoked a large number of methods of other
aspects. Such methods in these aspects are a kind of
method introductions, which introduce to class
TextFigure and class CompositeFigure that they cut
across as a persistence concern.

In Table 5, CFA of aspect NextBlock is greater
than the range of its threshold. After considering, at
code level, NextBlock accesses to some fields of 3
classes to perform its function.

According to the validation of 2 software
examples above, the metric thresholds can
preliminary indicate the anomalies in them.

S. Conclusions and Future works
Thresholds are used to identify anomalies in
software, which may or may not be an actual
problem. Aspect-orientation is a newly programming
paradigm that solves the crosscutting problem, which
traditional object-orientation cannot solve. Therefore,
to identify such anomalies in AO software, it is
important to determine threshold for AO software
metrics. There are 10 AO software metrics proposed
by Ceccato and Tonella [5], which revise the well
known CK’s metrics suite. 'As it is widely accepted
that the GoF patterns are good design, so in this
research we establish such threshold for each AO
software metric from 23 aspect-based GoF pattern
examples. After that, we validate them through
AJHotDraw and AspectTetris software examples.
The results show that the established thresholds can
be used to preliminarily indicate the anomalies in

both examples. We plan to improve the range with
more design examples and with other techniques.

Acknowledgement
We would like to thanks Michal Stochmialek for
supporting and helping us with a great tool.

6. References

[1] M. Lorenz and J. Kidd, Object-Oriented Software
Metrics: Prentice Hall, Inc., 1994.

[2] S. Benlarbi, K. E. Emam, N. Goel, and S. N. Rai,
"Thresholds for Object-Oriented Measures," presented
at 11th International Symposium on Software
Reliability Engineering (ISSRE'00), 2000.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, "Aspect-Oriented
Programming," presented at Eiropean Conference on
Object-Oriented Programming (ECOOP), Finland,
1997.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns - Elements of Reusable Object-
Oriented Software: Addison-Wesley, 1994.

[5] M. Ceccato and P. Tonella, "Measuring the Effects of
Software Aspectization,” presented at 1st Workshop
on Aspect Reverse Engineering (WARE) at Working
Conference on Reverse Engineering (WCRE), Dellft,
The Netherlands, 2004.

[6] http://aopmetrics.tigris.org/.

[71 M. P. Monteiro and J. M. Fernandes, "Towards a
Catolog of Aspect-Oriented Refactorings," presented
at AOSD 05, Chicago, Illinois, USA, 2005.

69

[8] J. Hannemann and G. Kiczales, "Design Pattern
Implementation in Java and Aspect]," presented at
OOPSLA'02, Seattle, Washington, USA, 2002.

[9] R. Laddad, AspectJ in Action: Practical Aspect-
Oriented Programming: Manning Publications Co.,
2003.

[10] A. Garcia, C. Sant'Anna, and E. Figueiredo,
"Modularizing Design Patterns with Aspects: A
Quantitative Study," presented at AOSD'05, 2005.

[11] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite
for Object Oriented Design," presented at IEEE
Transactions on Software Engineering, 1994.

[12] B. Henderson-Sellers, Object-Oriented Metrics:
Measures of Complexity: Prentice-Hall, 1996.

[13] L. Rosenberg, R. Stapko, and A. Gallo, "Object-
Oriented Metrics for Reliability," presented at IEEE
International Symposium on Software Metrics, 1999.

[14] V. French, "Estiblishing Software = Metrics
Thresholds,” presented at the 9th International
Workshop on Software Measurement, 1999.

[15] P. Meananet, "Threshold of Object-Oriented Software
Metrics for Detecting Bad-Smells Code," in Computer
Engineering. Bangkok: Chulalongkorn University,
2004.

[16] A. v. Deursen, M. Marin, and L. Moonen,
"AJHotDraw: A showcase for refactoring to aspects,"
presented at Linking Aspect Technology and
Evolution Workshop (LATE) AOSD 2005, Chicago,
USA, 2005.

[17] http://www.guzzzt.com/coding/aspecttetris.shtml.

Table 4. The metric value results of all aspect types in AJHotDraw

Type name Metric
WOM DIT | NOC | CDA | CAE | CMC | CFA | CBM | RFM | LCO
PersistentimageFigure 2 0 0 1 0 4 1 5 10 0
PersistentFigure 2 0 0 2 0 0 0 0 2 0
PersistentDrawing 0 0 0 1 0 0 0 0 0 0
PersistentAttributeFigure 2 0 0 1 0 4 0 4 8 0
PersistentTextFigure 2 0 0 1 0 L, 1 5 22 0
PersistentCompositeFigure 2 0 0 1 0 6 0 6 17 0
SelectionChangedNotification 2 0 0 1 0 1 0 1 0 0
FigureSelectionObserverRole 5 0 0 7 0 2 0 2 7 0
FigureSelectionSubjectRole 9 0 0 3 0 3 0 3 8 30
CmdCheckViewRef 1 0 0 18 0 2 0 2 0 0
Table 5. The metric value results of all aspect types in AspectTetris
Type name Metric
WOM DIT. | NOC | CDA | CAE | CMC | .CFA | CBM | RFM | LCO
Gamelnfo 1 0 0 1 0 2 0 2 0 0
Menu 3 0 0 2 0 3 1 3 2 0
NextBlock 2 0 0 2 1 2 3 4 0 1
NewBlocks 5 0 0 3 0 1 1 2 0 0
DesignCheck 0 0 0 0 0 0 0 0 0 0
TestAspect 1 0 0 1 0 1 0 1 0 0
Counter 6 0 0 2 1 0 1 1 0 0
Levels 4 0 0 4 0 1 1 2 0 0

70

APPENDIX B

ZHAO’S METRICS

Zhao [20] proposed a measure suite for assessing the coupling in AO system.
The coupling in AO system is mainly about the degree of interdependence among
aspects and/or classes.

In order to formally define his coupling measures in AO systems, he defined a
terminology for an AO system, which is based on a similar terminology used in [27] for
OO0 systems.

1. System

Definition 1 (AO system) An AO system S consists of a set of aspects,

A(S) and a set of classes, C(S).

2. Modules

Definition 3 (Mudules of an Aspect or a Class) Let S be an AO system.
For each a € A(S), let A(a) be the set of advices of a, I(a) be the set of
intertype declarations of a, ®(a) be the set of poincuts of a, and M(a) be
the set of methods of a, and M, (a) be the set of all modules of a . For each
ceC(S), let M(c) be the set of methods of c.

In an AO system, advice, intertype declaration, pointcut, or method may
have a set of parameters that may also influence coupling measurement. So he
defines this issue as follows.

Definition 4 (Parameters) Let S bean AO'system. For each a € A(S),
ielI(S), pe®(S), or me M(S), let Par(a) be the parameters of advice
a , Par(i) be the parameters of intertype declaration i, Par(p) be the
parameters of pointcut p, and Par(m) be the parameters of method m .

3. Module Invocations

In AO systems modules such as advices, intertype declarations, and
methods in an aspect may invoke other modules of some classes. To measure

coupling of an aspect, it is necessary to define the set of modules that a piece of

71

advice, an intertype declaration, or a method of the aspect invokes. Also, the

frequency of these invocations should be defined.

Definition 5 (The Set of Invoked Methods) Let S be an AO system,

ae A(S) be an aspect of S, and c € C(S) be aclass of S .

For each piece of advice a € A(a), the set of invoked methods
of a is denoted as SIM () such that if Am € M(c) and the
body of o has a method invocation where m is invoked for an

object of ¢, then m € SIM (x) .

For each intertype declaration ie I(a), the set of invoked
methods of i is denoted as SIM (i) such that if dm e M(c)
and the body of i has a method invocation where m is invoked

for an object of ¢, then m € SIM (i) .

For each pointcut p € ®(a), the set of invoked methods of p is
denoted as SIM (p) such that if 3m e M(c) and the body of
p has a method invocation where m is invoked for an object
of ¢, then me SIM (p) .

For each method m € M(a), the set of invoked methods of m
is denoted as SIM (m) such that if Am' € M(c) and the body
of m has a method invocation where m' is invoked for an

object of ¢, then m' € SIM (m) .

Definition 6 (The Number of Method Invocations) Let S be an AO

system, a € A(S) be an aspect of S, and ce C(S) be aclass of §.

For each piece of advice a € A(a), NSI(a,m)is the number
of method invocations of m.-by a such that m € SIM () and
m is invoked for an object of c¢.

For each intertype declaration i € I(a), NSI(i,m) is the number
of method invocations of m by i such that m € SIM (i) and m
is invoked for an object of c.

For each pointcut p e ®(a), NSI(p,m)is the number of
method invocations of m by p such that m e SIM (p) and m

is invoked for an object of c.

72

® For each method m'e M(a), NSI(m',m)is the number of
method invocations of m by m' such that m € SIM (m") and
m is invoked for an object of c.

4. Attributes

Definition 7 (Attributes of Aspects and Classes) Let S be an AO
system. For each a e A(S), let A“(a) be the set of attributes of aspect a.
For each c € C(S), let A“(c) be the set of attributes of class c.

5. Types

Attributes and parameters contain types that all can contribute to
coupling measurement of AO systems.

Definition 8 (Available Types) Let S be an AO system. The set T of
available types in' S is T =T,, UT, 6 T OT,6 where T, is the set of build-in
types provided by the programming language, T, is the set of user-defined
types, T, is the set of class types, and T, is the set of aspect types.

Definition 9 (Types of Attributes and Parameters) Let S be an AO
system, x € A (a) be an attribute of aspect a, and y € A“(c) be an attribute
of class c. The type of x is denoted by T(x)eT and the type of y is
denoted by T(y)eT .

The coupling framework for AO systems is next described. The framework
focuses on coupling caused by dependencies that occur between aspect and class in
an AO system which are called aspect-class dependencies.

Definition 10 (Attribute-class dependence) There is an attribute-class
dependence between aspect a; andiclass c,if icis the type of an attribute of a. The
number of attribute-class dependencies from ato ¢ can formally be represented as

AtC(a,c)= ‘{x|x eA‘(a) AT (x)= c}‘

Definition 11 (Module-class Dependence) Let S be an AO system, a € A(S)
be an aspect of S, and ¢ e C(S) be a class ofS . There are four types of module-
class dependencies that can be defined as follows:

® Advice-class dependence:

There is an advice-class dependence between a and c, if ¢ is the

type of a parameter of a piece of advice a of a, or c¢ is the return type of

73

o . The number of advice-class dependencies from a to ¢ can formally
be represented as

AC(a,c) = z {x|x € Par(a) nT(x) = CH

aeA(a)

Intertype-class dependence:

There is an intertype-class dependence between a and c, if ¢ is
the type of a parameter of an intertype declaration i of a, or c¢ is the
return type of i. The number of intertype-class dependencies from a to ¢

can formally be represented as

IC(a,c) = ZHx|x € Par(i) nT(x) = CH

iel(a)
Method-class dependence:
There is an method-class dependence between a and c, if ¢ is
the type of a parameter of a method m of a, or c is the return type of m.
The number of method-class dependencies from a to c¢ can formally be
represented as

MC(a,c) = z {x’x € Par(m) AT (x) = CH

meM(a)

Pointcut-class dependence:

Let pbe a pointcut of aspect a.There is a pointcut-class
dependence between a and c, if ¢ is the type of a parameter of a
pointcut-p of a. The number of pointcut-class -dependencies from a to ¢
can formally be represented as

PC(a,c) = z {x|x € Par(p) AT (x) = CH

pe®(a)

Definition 12 (Module-method Dependence) Let. S be an AO system, a € A(S) be

an aspect of S, and ce C(S) be a class ofS-.. There are four-types of module-

method dependencies between a. and ¢ that can be defined as follows:

® Advice-method dependence:

There is an advice-method dependence between a and c, if a
piece of advice a of a directly invokes a method m of c¢. The number of

advice-method dependencies from a to ¢ can formally be represented as

AM (a,c)= Y. D |(NSI(a,m))|

aeA(a) meM(c)

Intertype-method dependence:

74

There is an intertype-method dependence between a and c, if an
intertype i of a directly invokes a method m of c. The number of
intertype-method dependencies from a to ¢ can formally be represented

as

IM(a,c)= Y D |(NSI(i,m))

iel(a) meM(c)

Method-method dependence:
There is an method-method dependence between a and c, if a
method m of a directly invokes a method m' of c¢. The number of

method-method dependencies from a to ¢ can formally be represented as

MM (a,c) = z z (NSI(m,m'))|

meM(a) m'eM(c)

Pointcut-method dependence:

There is an pointcut-method dependence between a and c, if a
pointcut p of a contains at least one join point that is related to a method
m of c¢. The number of pointcut-method dependencies from a to ¢ can

formally be represented as

PM(a,c)= > > |(NSI(p,m))

peP(a) meM(c)

75

APPENDIX C

REFACTORING SOFTWARE CODE

The software code before and after refactoring are presented here. Telecom
software is selected to depict the restructuring of a software code. The sample software
includes ten classes and three aspects before applying refactoring procedures. After
applying refactoring procedures, the sample software includes ten classes and four
aspects as a result of changing interaction coupling among aspects to be inheritance
coupling among aspects. Figure C.1 — Figure C.3 show fractions of code of all aspects
in Telecom software i.e. aspect Timing, aspect Billing, and aspect TimerLog before

applying refactoring procedures.

01 public aspect Timing {

02 public long Customer.totalConnectTime = O;

03

04 public long getTotalConnectTime (Customer cust) {
05 return cust.totalConnectTime;

06 }

07

08 private Timer Connection.timer = new Timer () ;

09 public Timer getTimer (Connection conn) { return conn.timer; }
10

11 after (Connection c): target(c) && call (void

12 Connection.complete()) {

13 getTimer (c) .start () ;

14 }

15

16 pointcut endTiming(Connection c): target(c) &&
17 call (void Connection.drop());

18

19 after (Connection ¢): endTiming(c) {

20 getTimer (c) .stop();

21 c.getCaller () .totalConnectTime += getTimer (c) .getTime () ;
22 ¢c.getReceiver () .totalConnectTime +=

23 getTimer (c).getTime () ;

24 }

25 }

Figure C.1: Aspect Timing of Telecom software before applying refactoring procedures.

76

01 public aspect TimerLog {
02
03 after(Timer t): target(t) && call(* Timer.start()) {
04 System.err.println("Timer started: " + t.startTime);
05 }
06
07 after (Timer t): target(t) && call(* Timer.stop()) {
08 System.err.println("Timer stopped: " + t.stopTime);
09 }
10 }
Figure C.2: Aspect TimerLog of Telecom software before applying refactoring
procedures.
01 public aspect Billing {
02 declare precedence: Billing, Timing;
03
04 public static final long LOCAL_RATE = 3;
05 public static final long LONG_DISTANCE_RATE = 10;
06
07 public Customer Connection.payer;
08 public Customer getPayer (Connection conn) { return
09 conn.payer; }
10
11 after (Customer cust) returning (Connection conn):
12 args(cust, ..) && call(Connection+.new(..)) {
13 conn.payer = cust;
14 }
15
16 public abstract long Connection.callRate();
17
18 public long LongDistance.callRate() { return
19 LONG_DISTANCE_RATE; }
20 public long Local.callRate() { return LOCAL_RATE; }
21
22 after (Connection conn): Timing.endTiming(conn) {
23 long time = Timing.aspectOf().getTimer (conn).getTime () ;
24 long rate = conn.callRate();
25 long cost = rate * time;
26 getPayer (conn) .addCharge (cost) ;
27 }
28
29 public long Customer.totalCharge = 0;
30 public long getTotalCharge (Customer cust) { return
31 cust.totalCharge; }
32
33 public void Customer.addCharge (long charge) {
34 totalCharge += charge;
35 }
36 }

Figure C.3: Aspect Billing of Telecom software before applying refactoring procedures.

7

Figure C.4 — C.7 show fractions of code of all aspects in Telecom software i.e.

aspect Timing, aspect Billing, and aspect TimerLog after applying refactoring

procedures. Aspect XPI is also presented as the new aspect taken place from the

eliminating borrowed pointcut solution.

01 public aspect Timing {

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

public long Customer.totalConnectTime = 0;

public long getTotalConnectTime (Customer cust) {
return cust.totalConnectTime;

}

private Timer Connection.timer = new Timer ();
public Timer getTimer (Connection conn) { return conn.timer; }

pointcut completeMethod(): call(void Connection.complete());

after (Connection c¢): target(c) && completeMethod() {
getTimer (¢) .start () ;

after (Connection c): XPI.endTiming(c) {
getTimer (c) .stop () ;
c.getCaller () .totalConnectTime += getTimer (c).getTime () ;
c.getReceiver () .totalConnectTime +=

getTimer (c) .getTime () ;

}

}

Figure C.4: Aspect Timing of Telecom software after applying refactoring procedures.

01 public aspect TimerLog {

02
03
04
05
06
07
08
09
10
11

}

pointcut startMethod(): call(* Timer.start());

after (Timer t): target(t) && startMethod() {
System.err.println("Timer started: " + t.startTime);

}

pointcut stopMethod(): call(* Timer.stop());

after(Timer t): target(t) && stopMethod() {
System.err.println("Timer stopped: " + t.stopTime);

}

Figure C.5: Aspect TimerLog of Telecom software after applying refactoring procedures.

78

01 public aspect Billing {

02 declare precedence: Billing, Timing;

03

04 public static final long LOCAL_RATE = 3;

05 public static final long LONG_DISTANCE_RATE = 10;
06

07 public Customer Connection.payer;

08 public Customer getPayer (Connection conn) { return
09 conn.payer; }

10

11 pointcut connectionConstructor(): call(Connection+.new(..));
12

13 after (Customer cust) returning (Connection conn):
14 args(cust, ..) && connectionConstructor () {

15 conn.payer = cust;

16 }

17

18 public abstract long Connection.callRate();

19

20 public long LongDistance.callRate() { return

21 LONG_DISTANCE_RATE; }

22 public long Local.callRate() { return LOCAL_RATE; }
23

24 after (Connection conn): XPI.endTiming(conn) {

25 long time = Timing.aspectOf ().getTimer (conn).getTime () ;
26 long rate = conn.callRate();

27 long cost = rate * time;

28 getPayer (conn) .addCharge (cost) ;

29 }

30

31 public long Customer.totalCharge = 0;

32 public long getTotalCharge (Customer cust) { return
33 cust.totalCharge; }

34

35 public void Customer.addCharge (long charge) {

36 totalCharge += charge;

37 }

38 }

Figure C.6: Aspect Billing of Telecom software after applying refactoring procedures.

01 public aspect XPI {

02

03 pointcut endTiming(Connection c) : .target(c) &&
04 call (void Connection.drop());

05

06 1}

Figure C.7: Aspect XP/ of Telecom software taken place from the eliminating borrowed

pointcut solution.

79

APPENDIX D

VALIDATION RESULTS

The measured values of all bad-smell metrics, which are obtained from four
sample software, are summarized here. The bad-smell metrics are separated into two
groups: pointcut metrics and aspect metrics. Table D.1 - Table D.20 summarize the
measured values of pointcut metrics and Table D.21 — Table D.32 summarize the

measured values of aspect metrics.

Table D.1: Measured values of pointcut metrics in Telecom before refactoring.

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP
Billing advice@line? 0 {Connection.new(), LongDistance.new(), Local.new()} after 1 0 1
TimerLog advice@line2 0 {Timer.start()} after 1 0 1
advice@line5 0 {Timer.stop()} after 1 0 1
Timing advice@line7 0 {Connection.complete()} after 1 0 1
endTiming 1 {Connection.drop()} after 1 1 2
Table D.2: Measured values of pointcut metrics in Telecom after refactoring.
Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP
Billing connection 0 {Connection.new(), LongDistance.new(), Local.new()} after 1 0 1
Constructor
TimerLog startMethod 0 {Timer.start()} after 1 0 1
stopMethod 0 {Timer.stop()} after 1 0 1
Timing completeMethod 0 {Connection.complete()} after 1 0 1
XPI endTiming 0 {Connection.drop()} 2 2

08

Table D.3: Measured values of pointcut metrics in Spacewar before refactoring.

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP
Coordinator synchronizationPoint 0 %) before | 1 0 2
after 1
Debug advice@line16 0 {SWFrame.new()} after 1 0 1
allConstructorsCut 0 {Bullet.new(), Display1.new(), Display2.new(), before | 1 0 2
Display.new(), EnergyPacket.new(),
EnergyPacketProducer.new(), Game.new(),
GameSynchronization.new(), Pilot.new(), Palyer.new(),
Registry.new(), RegistrySynchronization.new(), ater 1
Robot.new(), Ship.new(), SpaceObject.new(),
SWFrame.new(), Timer.new()}
alllnitializationsCut 0 {Bullet.new(), Display1.new(), Display2.new(), before | 1 0 2
Display.new(), EnergyPacket.new(),
EnergyPacketProducer.new(), Game.new(),

81

18

Table D.4: Measured values of pointcut metrics in Spacewar before refactoring (continued).

82

Aspect

Pointcut

NNSAdP

SJP

NAdAsP

NOAsP

NAdP

GameSynchronization.new(), Pilot.new(), Palyer.new(),
Registry.new(), RegistrySynchronization.new(),
Robot.new(), Ship.new(), SpaceObject.new(),

SWFrame.new(), Timer.new()}

after

1

allMethodsCut

{Bullet.new(), Display1.new(), Display2.new(),
Display.new(), EnergyPacket.new(),
EnergyPacketProducer.new(), Game.new(),
GameSynchronization.new(), Pilot.new(), Palyer.new(),
Registry.new(), RegistrySynchronization.new(),
Robot.new(), Ship.new(), SpaceObject.new(),

SWFrame.new(), Timer.new()}

before

after

Z8

Table D.5: Measured values of pointcut metrics in Spacewar before refactoring (continued).

Aspect Pointcut NNSAdP SJP NAdJAsP NOAsP | NAdP
advice@line61 0 {clockTick()} after 1 0 1
advice@line69 0 {register(), unregister()} after 1 0 1
advice@line76 0 {Ship.fire()} after 1 0 1
advice@line80 0 {Ship.handleCollision()} after 1 0 1
advice@line85 0 {Ship.bounce()} after 1 0 1
advice@line90 0 {Ship.inflictDemage()} before | 1 0 1
EnsureShiplsAlive - - t - - -
GameSynchronization synchronizationPoint 0 {Game.handleCollisions(), Game.newShip()} 0 0 0
RegistrySynchronizatio | synchronizationPoint 0 {Registry.register(), Registry.unregister(), 0 0 0

n

Registry.getObjects(), Registry.getShips()}

83

€8

Table D.6: Measured values of pointcut metrics in Spacewar after refactoring.

84

Aspect Pointcut NNSAdP SJP NAdJAsP NOASsP | NAdP
Coordinator synchronizationPoint 0 %) before | 1 0 2
after 1
Debug SWFrameConstructor 0 {SWFrame.new()} after 1 0 1
allConstructorsCut 0 {Bullet.new(), Display1.new(), Display2.new(), before | 1 0 2
Display.new(), EnergyPacket.new(),
EnergyPacketProducer.new(), Game.new(),
GameSynchronization.new(), Pilot.new(), Palyer.new(),
Registry.new(), RegistrySynchronization.new(), ater 1
Robot.new(), Ship.new(), SpaceObject.new(),
SWFrame.new(), Timer.new()}
alllnitializationsCut 0 {Bullet.new(), Display1.new(), Display2.new(), before | 1 0 2
Display.new(), EnergyPacket.new(),
EnergyPacketProducer.new(), Game.new(),

v8

Table D.7: Measured values of pointcut metrics in Spacewar after refactoring (continued).

Aspect

Pointcut

NNSAdP

SJP

NAdAsP

NOAsP

NAdP

GameSynchronization.new(), Pilot.new(), Palyer.new(),
Registry.new(), RegistrySynchronization.new(),
Robot.new(), Ship.new(), SpaceObject.new(),

SWFrame.new(), Timer.new()}

after

1

allMethodsCut

{Bullet.new(), Display1.new(), Display2.new(),
Display.new(), EnergyPacket.new(),
EnergyPacketProducer.new(), Game.new(),
GameSynchronization.new(), Pilot.new(), Palyer.new(),
Registry.new(), RegistrySynchronization.new(),
Robot.new(), Ship.new(), SpaceObject.new(),

SWFrame.new(), Timer.new()}

before

after

g8

85

Table D.8: Measured values of pointcut metrics in Spacewar after refactoring (continued).

86

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP

clockTickMethod 0 {clockTick()} after 1 0 1
regisunregisMethod 0 {register(), unregister()} after 1 0 1
fireMethod 0 {Ship.fire()} after 1 0 1
handleCollision 0 {Ship.handleCollision()} after 1 0 1
Method
bounceMethod 0 {Ship.bounce()} after 1 0 1
inflictDemageMethod 0 {Ship.inflictDemage()} before | 1 0 1

EnsureShiplsAlive helmCommandsCut 0 {rotate(), thrust(), fire()} around | 1 0 1

GameSynchronization | synchronizationPoint 0 {Game.handleCollisions(), Game.newShip()} 0 0 0

RegistrySynchronizatio | synchronizationPoint 0 {Registry.register(), Registry.unregister(), 0 0 0

n

Registry.getObjects(), Registry.getShips()}

98

Table D.9: Measured values of pointcut metrics in AspectTetris before refactoring.

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP
Counter guilnit 0 {TetrisGUI.new()} after 1 0 1
deletelLines 0 {AspectTetris.deleteLines()} before | 1 0 2
after 1
deleteLine 0 {Blocks.deleteLine()} before | 1 0 1
Newgame 0 {AspectTetris.restartGame()} before | 1 0 1
gameQver 0 {AspectTetris.gameOver()} after 1 0 1
DesignCheck declarewarning@line2 0 {BlockPanel.new(), IEventListener.incomingEvent(), - 0 1

Blocks.new(), Blocks.combineBlocks(),

Blocks.deleteBlocks(), Blocks.checkCombineBlocks(),

Blocks.turnBlock(), Blocks.deleteLine(),
Blocks.getBlocks(), Blocks.typeToString(),
Blocks.typeToColor(), Blocks.typeTolmage(),
Tetrisimages.prelLoad(), Tetrisimages.new(),
Tetrisimages.setinstance(), Tetrisimages.getimage(),
Tetrisimages.loadlmage(), Timer.new(),

Timer.setSleepTime(), Timer.start(), Timer.stop(),

87

/8

Table D.10: Measured values of pointcut metrics in AspectTetris before refactoring (continued).

Aspect

Pointcut

NNSAdP

SJP

NAdAsP

NOAsP

NAdP

Timer.run(), AspectTetris.startTetris(),
AspectTetris.incomingEvent(), AspectTetris.newBlock(),
AspectTetris.deletelines(), AspectTetris.gameOver(),
AspectTetris.restartGame(), AspectTetris.pauseGame,

AspectTetris.getRandomBlock()}

declarewarning@line4

{ AspectTetris.startTetris(),
AspectTetris.incomingEvent(), AspectTetris.newBlock(),
AspectTetris.deletelLines(), AspectTetris.gameOver(),
AspectTetris.restartGame(), AspectTetris.pauseGame,
AspectTetris.getRandomBlock(),
|[EventListener.incomingEvent(), Blocks.new(),
Blocks.combineBlocks(), Blocks.deleteBlocks(),
Blocks.checkCombineBlocks(), Blocks.turnBlock(),
Blocks.deleteLine(), Blocks.getBlocks(),
Blocks.typeToString(), Blocks.typeToCalor(),

Blocks.typeTolmage(), Tetrisimages.prelLoad(),

88

88

Table D.11: Measured values of pointcut metrics in AspectTetris before refactoring (continued).

Aspect Pointcut NNSAdP SJP NAdJAsP NOAsP | NAdP
Tetrislmages.new(), Tetrisimages.setinstance(),
Tetrisimages.getimage(), Tetrisimages.loadlmage(),
Timer.new(), Timer.setSleepTime(), Timer.start(),
Timer.stop(), Timer.run(), BlockPanel.new(),
BlockPanel.paintComponent(), BlockPanel.setBlocks(),
BlockPanel.setBlock(), BlockPanel.getMiniminSize(),
BlockPanel.getMaximunSize(),
BlockPanel.getPreferredSize(), Driver.new(),
Driver.setup(), Driver.run(), TetrisGUl.new()}
Gameilnfo guilnit 0 {TetrisGUI.new()} before | 1 0 1
Levels guilnit 0 {TetrisGUI.new()} after 1 0 1
timerlnit 0 { Timer.new()} before | 1 0 1
deletelines 0 {Counter.totalLines} after 1 0 1
newGame 0 {AspectTetris.restartGame()} before | 1 0 1
Menu guilnit 0 {TetrisGUI.new()} after 1 0 1
tetrislnit 0 { AspectTetris.new()} before | 1 0 1

89

68

Table D.12: Measured values of pointcut metrics in AspectTetris before refactoring (continued).

Aspect Pointcut NNSAdP SJP NAdJAsP NOAsP | NAdP
NewBlocks getBlock 0 { Blocks.getBlocks()} around | 1 0 1
typeToString 0 { Blocks.typeToString()} around | 1 0 1
typeToColor 0 {Blocks.typeToColor()} around | 1 0 1
typeTolmage 0 {Blocks.typeTolmage()} around | 1 0 1
numberOfTypes 0 {Blocks.NUMBEROFTYPES} around | 1 0 1
NextBlock guilnit 0 {TetrisGUI.new()} after 1 0 1
getNextBlock 0 {AspectTetris.getRandomBlock()} around | 1 0 1
TestAspect logPoint 0 {Tetrisimages.loadlmage()} before | 1 0 1

90

06

Table D.13: Measured values of pointcut metrics in AspectTetris after refactoring.

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP
Counter deleteLine 0 {Blocks.deleteLine()} before | 1 0 1
gameOver 0 {AspectTetris.gameOver()} after 1 0 1
DesignCheck outsideGUIPackage 0 {BlockPanel.new(), IEventListener.incomingEvent(), - 0 1

Blocks.new(), Blocks.combineBlocks(),

Blocks.deleteBlocks(), Blocks.checkCombineBlocks(),

Blocks.turnBlock(), Blocks.deleteLine(),
Blocks.getBlocks(), Blocks.typeToString(),
Blocks.typeToColor(), Blocks.typeTolmage(),
Tetrisimages.prelLoad(), Tetrisimages.new(),
Tetrisimages.setinstance(), Tetrisimages.getimage(),
Tetrislmages.loadlmage(), Timer.new(),

Timer.setSleepTime(), Timer.start(), Timer.stop(),

91

16

Table D.14: Measured values of pointcut metrics in AspectTetris after refactoring (continued).

Aspect

Pointcut

NNSAdP

SJP

NAdAsP

NOAsP

NAdP

Timer.run(), AspectTetris.startTetris(),
AspectTetris.incomingEvent(), AspectTetris.newBlock(),
AspectTetris.deletelines(), AspectTetris.gameOver(),
AspectTetris.restartGame(), AspectTetris.pauseGame,

AspectTetris.getRandomBlock()}

dontCallAspectTetris

outside

{ AspectTetris.startTetris(),
AspectTetris.incomingEvent(), AspectTetris.newBlock(),
AspectTetris.deleteLines(), AspectTetris.gameOver(),
AspectTetris.restartGame(), AspectTetris.pauseGame,
AspectTetris.getRandomBlock(),
|[EventListener.incomingEvent(), Blocks.new(),
Blocks.combineBlocks(), Blocks.deleteBlocks(),
Blocks.checkCombineBlocks(), Blocks.turnBlock(),
Blocks.deleteLine(), Blocks.getBlocks(),
Blocks.typeToString(), Blocks.typeToCalor(),
Blocks.typeTolmage(), Tetrisimages.preLoad(),

92

c6

Table D.15: Measured values of pointcut metrics in AspectTetris after refactoring (continued).

Aspect

Pointcut

NNSAdP

SJP

NAdAsP

NOAsP

NAdP

Tetrisimages.new(), Tetrisimages.setinstance(),
Tetrisimages.getimage(), Tetrisimages.loadlmage(),
Timer.new(), Timer.setSleepTime(), Timer.start(),

Timer.stop(), Timer.run(), BlockPanel.new(),

BlockPanel.paintComponent(), BlockPanel.setBlocks(),

BlockPanel.setBlock(), BlockPanel.getMiniminSize(),
BlockPanel.getMaximunSize(),
BlockPanel.getPreferredSize(), Driver.new(),

Driver.setup(), Driver.run(), TetrisGUl.new()}

Gamelnfo

Levels

timerlnit

{ Timer.new()}

before | 1

Menu

tetrisInit

{ AspectTetris.new()}

before | 1

93

€6

Table D.16: Measured values of pointcut metrics in AspectTetris after refactoring (continued).

94

Aspect Pointcut NNSAdP SJP NAdJAsP NOAsP | NAdP
NewBlocks getBlock 0 { Blocks.getBlocks()} around | 1 0 1
typeToString 0 { Blocks.typeToString()} around | 1 0 1
typeToColor 0 {Blocks.typeToColor()} around | 1 0 1
typeTolmage 0 {Blocks.typeTolmage()} around | 1 0 1
numberOfTypes 0 {Blocks.NUMBEROFTYPES} around | 1 0 1
getNextBlock 0 {AspectTetris.getRandomBlock()} around | 1 0 1
TestAspect logPoint 0 {Tetrislmages.loadImage()} before | 1 0 1
XPI guilnit 0 {TetrisGUl.new()} 0 5 5
deletelLines 0 {Counter.totalLines} 0 2 3
newGame 0 {AspectTetris.restartGame()} 0 2 2

v6

Table D.17: Measured values of pointcut metrics in AdJHotDraw before refactoring.

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP

CmdCheckViewRef commandExecute 0 {AbstractCommand.execute(), before | 1 0 1

UndoCommand.execute(), RedoCommand.execute(),

ToggleGridCommand.execute(),

SendToBackCommand.execute(),

DelectAllCommand.execute(),

FigureTransferCommand.execute(),

ChangeAttributeCommand.execute(),

BringToFrontCommand.execute(),

AlignCommand.execute()}
FigureSelection - - - - - -
ObserverRole
FigureSelectionSubject | advice@line3 0 {StandardDrawingView.new()} after 1 0 1
Role advice@line9 0 {StandardDrawingView.readObject()} after 1 0 1
PersistentAttribute - - - - - -
Figure

PersistentComposite

Figure

95

g6

Table D.18: Measured values of pointcut metrics in AJHotDraw before refactoring (continued).

96

Aspect Pointcut NNSAdP SJP NAdJAsP | NOAsP | NAdP
PersistentDrawing - - - - - -
PersistentFigure - - = - - -
PersistentimageFigure - - - - - -
PersistentTextFigure - - e - - -
SelectionChanged invalidateSelFigure 0 { StandardDrawingView.addToSelectionImpl(),Standard | after 1 0 1
Notification DrawingView .removeFromSelection()}

clear_toggleSelection 0 { StandardDrawingView.clearSelection(),StandardDrawi | after 1 0 1
ngView.toggleSelection()}

96

Table D.19: Measured values of pointcut metrics in AdJHotDraw after refactoring.

97

Aspect Pointcut NNSAdP SJP NAdJAsP NOASP | NAdP
CmdCheckViewRef commandExecute 0 {AbstractCommand.execute(), before | 1 0 1
UndoCommand.execute(), RedoCommand.execute(),
ToggleGridCommand.execute(),
SendToBackCommand.execute(),
DelectAllCommand.execute(),
FigureTransferCommand.execute(),
ChangeAttributeCommand.execute(),
BringToFrontCommand.execute(),
AlignCommand.execute()}
FigureSelection - - - - - -
ObserverRole
FigureSelectionSubject | StandardDrawing 0 {StandardDrawingView.new()} after 1 0 1
Role ViewConstructor
readObjectMethod 0 {StandardDrawingView.readObiject()} after 1 0 1
PersistentAttribute - - - - - -
Figure

/6

Table D.20: Measured values of pointcut metrics in AJHotDraw after refactoring (continued).

Aspect Pointcut NNSAdP SJP NAdAsP | NOAsP | NAdP
PersistentComposite - - 3 - - -
Figure
PersistentDrawing - - = - - -
PersistentFigure - - S - - -
PersistentimageFigure - - % - - -
PersistentTextFigure - - S - - -
SelectionChanged invalidateSelFigure 0 { StandardDrawingView.addToSelectionImpl(),Standard | after 1 0 1
Notification DrawingView .removeFromSelection()}

clear_toggleSelection 0 { StandardDrawingView.clearSelection(),StandardDrawi | after 1 0 1
ngView.toggleSelection()}

98

86

Table D.21: Measured values of aspect metrics in Telecom before refactoring.

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Billing {advice@line7} 0 - 1 1 2 7 4 0
TimerLog {advice@line2, 0 - 0 2 2 0 0 0

advice@line5}
Timing {advice@line7} 0 - 0 2 2 2 2 1
Table D.22: Measured values of aspect metrics in Telecom after refactoring.

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Billing %) 0 - 1 1 2 7 4 0
TimerLog @ 0 = 0 2 2 0 0 0
Timing %) 0 = 0 1 2 2 2 0
XPI %) 0 - 0 1 0 0 0 2

66

99

Table D.23: Measured values of aspect metrics in Spacewar before refactoring.

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Coordinator %) 0 o 0 1 2 0 17 0
Debug {advice@line16 0 - 0 10 13 0 0 0

advice@line61,

advice@line69,

advice@line76,

advice@line80,

advice@line85.

advice@line90}
EnsureShiplsAlive @ 1 = 0 0 1 0 0 0
GameSynchronization % 0 = 0 1 0 0 1 0
RegistrySynchronization | (/§ 0 - 0 1 0 0 1 0

100

00l

Table D.24: Measured values of aspect metrics in Spacewar after refactoring.

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Coordinator @ 0 2 0 1 2 0 17 0
Debug %) 0 5 0 10 13 0 0
EnsureShiplsAlive @ 0 : 0 1 1 0 0 0
GameSynchronization %) 0 - 0 1 0 0 1 0
RegistrySynchronization | (/§ 0 ! 0 1 0 0 1 0

101

LOL

Table D.25: Measured values of aspect metrics in AspectTetris before refactoring.

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Counter @ 0 2 0 5 6 0 3 0
DesignCheck {declarewarnin 0 - 0 2 0 0 0 0

g@line2,

declarewranin

g@line4}
Gamelnfo @ 0 = 0 1 1 0 0 0
Levels @ 0 e 0 4 4 0 5 0
Menu @ 0 3 0 2 2 0 5 0
NewBlocks @ 0 = 0 5 5 0 2 0
NextBlock @ 0 = 0 2 2 0 2 0
TestAspect @ 0 = 0 1 1 0 0 0

102

col

Table D.26: Measured values of aspect metrics in AspectTetris after refactoring.

103

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Counter @ 0 2 0 2 6 0 3 0
DesignCheck @ 0 5 0 2 0 0 0
Gamelnfo @ 0 : 0 0 1 0 0 0
Levels @ 0 2 0 1 4 0 5 0
Menu @ 0 % 0 1 2 0 5 0
NewBlocks @ 0 - 0 5 5 0 2 0
NextBlock @ 0 5 0 1 2 0 2 0
TestAspect @ 0 3 0 1 1 0 0 0
XP %) 0 = 0 3 0 0 0 3

€0l

Table D.27: Measured values of aspect metrics in AdJHotdraw before refactoring.

104

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
CmdCheckViewRef (%) 0 Y 0 1 1 0 0 0
FigureSelection %) 0 Abstract {figureSelectionChanged(0 0 0 12 0 0
ObserverRole Command)

Undoable {figureSelectionChanged(
Command |)}
Drawing %
Editor
DrawApplet | {figureSelectionChanged(
)}
Draw {figureSelectionChanged(
Application |)}
JavaDraw {figureSelectionChanged(
Viewer)}
FigureSelectionSubject | {advice@line3, 0 Drawing %) 0 2 2 7 3 0
Role advice@line9} View

0l

Table D.28: Measured values of aspect metrics in AJHotdraw before refactoring (continued).

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Standard {addFigureSelectionListe
Drawing ner(),
View removeFigureSelectionLis
tener(),
fireSelectionChanged()}
Null {addFigureSelectionListe
Drawing ner(),
View removeFigureSelectionLis
tener()}
PersistentAttribute %) 0 = 0 0 0 2 0 0
Figure
PersistentComposite % 0 = 0 0 0 2 0 0
Figure
PersistentDrawing @ 0 Drawing @ 0 0 0 1 0 0
PersistentFigure %) 0 Figure %) 0 0 0 3 0 0
Abstract {write(), read()}
Figure

105

G0l

Table D.29: Measured values of aspect metrics in AJHotdraw before refactoring (continued).

106

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
PersistentimageFigure @ 0 L 0 0 0 2 0 0
PersistentTextFigure % 0 s 0 0 0 2 0 0
SelectionChanged @ 0 Y 0 2 2 0 0 0
Notification

90l

Table D.30: Measured values of aspect metrics in AJHotdraw after refactoring.

Aspect

SUPAs

NPCAs

SCAs

NAMA

NPAs

NAdAs

NIAs

NMAs

SNOAsP

CmdCheckViewRef

%)

0

0

1

1

0

FigureSelection

ObserverRole

%)

0

Abstract

Command

Undoable

Command

Drawing

Editor

DrawApplet

Draw

Application

JavaDraw

Viewer

0

0

0

12

0

FigureSelectionSubject

Role

Drawing

View

107

01

Table D.31: Measured values of aspect metrics in AJHotdraw after refactoring (continued).

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
Standard {addFigureSelectionListe
Drawing ner(),
View removeFigureSelectionLis
tener(),
fireSelectionChanged()}
Null {addFigureSelectionListe
Drawing ner(),
View removeFigureSelectionLis
tener()}
PersistentAttribute %) 0 = 0 0 0 2 0 0
Figure
PersistentComposite % 0 = 0 0 0 2 0 0
Figure
PersistentDrawing @ 0 Drawing @ 0 0 0 1 0 0
PersistentFigure %) 0 Figure %) 0 0 0 3 0 0
Abstract {write(), read()}
Figure

108

801

Table D.32: Measured values of aspect metrics in AJHotdraw after refactoring (continued).

Aspect SUPAs NPCAs SCAs NAMA | NPAs | NAdAs | NIAs | NMAs | SNOAsP
PersistentimageFigure @ 0 L 0 0 0 2 0 0
PersistentTextFigure % 0 s 0 0 0 2 0 0
SelectionChanged @ 0 Y 0 2 2 0 0 0
Notification

109

601

110

APPENDIX E

USER MANUAL OF A TOOL FOR DETECTING AO BAD SMELLS IN
ASPECTJ CODE

The supporting tool for detecting AO bad smells is developed as a plug-in to the
Eclipse program tool. This user manual is structured into two parts. The first part
describes on how to install the plug-in. The second part shows the utilization of the plug-

in.

E.1 Tool Installation

The plug-in can manually be installed by extracting the zip file of developed

AOBadsmelDe:
plug-in 2228201885 into the plugins directory of Eclipse for example C:\eclipse\plugins\,

while Eclipse does not run.
Bad Smell Detector menu on the Eclipse’'s menu bar will appears when Eclipse

runs as shown in Figure E.1.

Wi EE Semto feeges Sasth Fowc fadeleeds oo Snde ep
® 0-0-Q- TN Ny : X il

| AT —

S S i [il

Emmpln Eruanie

o Wamngs {5 der)
L P S p——

FFFEE @

Figure E.1: Main preference page of Eclipse after extracting the plug-in’s zip file.

111

AO Bad Smells View is an Eclipse View perspective that is used to illustrate all
candidates of AO bad smells in all opened projects presented on the Eclipse Package

Explorer perspective. AO Bad Smells View is shown in Figure E.2.

Fia B Sefsi levwgas Sasth Fowd Badteel Celeco Fon indes g
* e-0-%- DHNG- IS

= = . A
AT - < : i

F L H‘VWFWWWMWI%w“mllhww_

Figure E.2: AO Bad Smells View.

If AO Bad Smells View does not appear, user.can-open the View perspective by

selecting Window->Show View->Others... on the Eclipse’s menu bar as shown in Figure
E.3.

112

ﬁ“l‘“ﬁ_ﬂ_u_l—'--._

Heh o @l w0 DOWF- P ks |
1 [=
Peam l-l-.:q pan Parpacovs .
- =8 T
o U e s e bt | 15 Cartie Eawa, €
[. [a1, O
R it g
e g I e B, 1
Jome & Fermpeciem [—— e, 1
[—— » I Niragtr
1 2E i
Sy s e e
B (¥ Feobiems
& e
S ST, Y

=il
= O 3 e 11 =0
T bt ol et
L] -

»v=0

B Pl Cil e e rmd iy Gl i
B o] il v e i il e Cnll ww
B Tppa aetery The mettod ;O 5 Ol s
B Typm salty The st i ot | b Ol st
B Frpet walery i et i i ot | . Cud e en

P sl e b
e A]
e
Tty e b
Ttez Lyapln o boiecam

L]
(5]
k]
b
w1

Figure E.4: Show View dialog.

113

E.2 Tool Utilization

To detect AO bad smells, a program which user want to detect the AO bad
smells must be appear on the Package Explorer perspective. After that, select Bad
Smell Detector->Detect Aspect-Oriented Bad Smells on the Eclipse’'s menu bar as

shown in Figure E.5.

! riam e i : -
21 i o et

i e e (N |7 i

] T T Dol | WOAR 3P WA MORF M NP WG SCR ROR WE W W WS TS |

Figure E.5: Bad Smell Detector menu.

Consequently, measured values of all bad-smell metrics and all candidates of

AO bad smells are presented on the AO Bad Smells View as shown in Figure E.6.

Sl SRl e BB EEEE""
B[

R 8 0-0-% DOWE: S G LB - T —
"I_':-'_-"_‘"a 1 ey TE o i ¥
L Es e phepmey

O e Lo

{5 d e / ii
gu D, AN examp
d - |
5 5 \
% = '
= g
dddias
W Ty v
v
/

AONULANEUIMT
RN ITNINENAY

Name

Sex

Date of Birth
Place of Birth
Education:
2007

2003

115

BIOGRAPHY

Komsan Srivisut
Male
October 21, 1981

Phrae, Thailand

M.Eng. in Computer Engineering, Chulalongkorn University
B.Eng. in Computer Engineering, Suranaree University of

Technology

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I INTRODUCTION
	1.1 Motivation
	1.2 Objective
	1.3 Scope
	1.4 Contribution
	1.5 Publications
	1.6 Research Methodology
	1.7 Organization of the Thesis

	Chapter II BACKGROUND AND LITERATURE REVIEW
	2.1 Background
	2.2 Literature Review

	Chapter III ASPECT-ORIENTED BAD SMELLS
	3.1 Our Approach
	3.2 Definitions of Bad Smells

	Chapter IV BAD-SMELL METRICS
	4.1 Borrowed Pointcut
	4.2 Duplicated Pointcut
	4.3 Various Concerns
	4.4 Identical Role
	4.5 Junk Material
	4.6 Anonymous Pointcut Definition
	4.7 Feature Envy
	4.8 Abstract Method Introduction

	Chapter V BAD-SMELL VALIDATION
	5.1 Bad-Smell Metric and Threshold Validation
	5.2 Bad-Smell Validation
	5.3 Discussion

	Chapter VI CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Limitation
	6.3 Future Work

	References
	Appendix
	Vita

	Button20:
	Button21:

