ใหมดกึ่งปกติของหลุมดำในมิติต่างๆ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาฟิสิกส์ ภาควิชาฟิสิกส์
คณะวิทยาศาสตร์ จุฬ์าลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2553
ลิขสิทธิ์ของจุฬ์าลงกรณ์มหาวิทยาลัย

Thesis Title	QUASINORMAL MODES OF BLACK HOLES IN VARI-
	OUS DIMENSIONS
By	Mr. Supakchai Ponglertsakul
Field of Study	Physics
Thesis Advisor	Piyabut Burikham, Ph.D.
Thesis Co-Advisor	Suphot Musiri, Ph.D.

$$
\begin{aligned}
& \text { (Rujikorn Dhanawittayapol, Ph.D.) }
\end{aligned}
$$

(Khamphee Karwan, Ph.D.)

สุภัคชัย พงศ์เลิศสกุล: โหมคกึ่งปกติของหลุมคำในิิติต่างๆ. (QUASINORMAL MODES OF BLACK HOLES IN VARIOUS DIMENSIONS) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: อ. คร. ปียบุตร บุรีคำ, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร. สุพจน์ มุศิริ, 100 หน้า.

โหมคกึ่งปกติคือโหมดของคลื่นสสารที่พลวัตไปในบริเวณกาลอวกาศของหลุมดำ หรือ ในอีกแง่หนึ่งก็คือือผลเฉลยของสมการคลื่นภายใต้เง่อนไขขอบเขตเฉพาะตัวคือ ที่บริเวณขอบ ฟ้าเหตุการณ์ของหลุมคำจะปรากภูเก) /) เมคที่เคลื่อนที่เข้าหาหลุมคำเท่านั้น และที่ อินฟินิตี้มีเฉพาะโหมดของคสุ่ 1 . 1 บเขตคังกล่าวทำให้ ความถี่กึ่งปกติที่ สอดคล้องกับโหมดกึ่งปกนกำ อเทิ่งงแ นวนจินตภาพติดลบ ซึ่งแสคงถึง โหมดการสลายตัวของผผพะ. คื่ ค \sim ค०งานฉบับนี้เราทำการทบทวนวิธี คำนวณเชิงวิเคราะห์สำ.ฑง

 อวกาศโค้ง และทำดรา บร่ บริเวณขอบฟ้าเหตุการณ์ และอินฟินิตี้
 งื่อนไขขอบเหตุข้างต้นและ คำนวณความถี่กึ่งปกติ ลการคाน…ㄴ..ำเบกติข ใูกลุมดำคังกล่าวมีค่าน้อยลงเมื่อ หลุมคำหมุนเร็วขึ้น และมีส่ามึ้มุ้มยย่กกับลลขควอนตัมพื้นฐาน

ศูนยวทยทรพยากร
 จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา \qquad ฟิสิกส์ \qquad ลายมือชื่อนิสิต.......nกักำ
สาขาวิชา \qquad .ฟิสิกส์ \qquad ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ปีการศึกษา .2553 \qquad ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม
\#\# 5172517523: MAJOR PHYSICS
KEYWORDS: QUASINORMAL MODES/ BLACK HOLE
SUPAKCHAI PONGLERTSAKUL : QUASINORMAL MODES OF BLACK HOLES IN VARIOUS DIMENSIONS. THESIS ADVISOR : PIYABUT BURIKHAM, PH.D., THESIS CO-ADVISOR : SUPHOT MUSIRI, PH.D., 100 pp.

Quasinormal modes are the $)$ /f a wave propagating in the spacetime around the black hole. The boundary conditions, i.e.
 e solution that satisfies certain zon and the outgoing at the infinity. According to the ary cor corresponding frequencies namely, quasinormal frec" \sim discrete set of complex number. These yield damprn an. Practically, quasinormal
 under particular bour $\begin{array}{llll}\mathrm{y} & 10 \Longrightarrow \text { Ov } & \text { 1a } \text { previous works have sug- }\end{array}$ gested the possibility t a analytically. Therefore in
 ious dimensions by usin a ytistan相执 F t. ee dimensional cases, quasi-

 modes are also obta (1) d \quad ion on four dimensional Schwarzschild metre dimensions, first order perturbation is applie $]$ or un. anal $]$ odes of a five dimensional AdS Schwarzschild background. Ultimately, we have proposed semi-analytic cal-

จุหาลงกรณ์มหาวิทยาลัย

ACKNOWLEDGEMENTS

I am very delighted to express my gratitude to Dr. Piyabut Burikham, my supervisor. He always provides me a very useful discussion and suggestion. He has a very good attitude in doing research which inspires me to continuously pursue my dream. His speculation on \quad ary fascinating. I also would like to thank him for proofreadins ful to my co-advisor Dr. Suphot Musiri. He suggests man ionyec bich appear in this thesis. His specialization helps m

I am very graurt1
 committee.
 ica code which is very pter 5. Thank to P' Pit and
 the research group. Mary thensers of theoretical high-energy
 Mr. Albert Einstei inspired me and broult me invo und woruertul fiel ff study.

Above all this thés fulness and firlances ent and to dedicate this work to them.

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

page

II RELATIVITY AぶュBLACK HCUES 3
 3
2ว้หาล้งกรรรณ์มหาวิทยาลัย
2.3 ¢Black Holes 7
2．3．1 Schwarzschild Black Hole 8
2．3．2 Reissner－Nordström Black Hole 10
2．3．3 Kerr Black Hole 13
2．3．4 BTZ Black Hole 16
Chapter page
III BLACK HOLE PERTURBATIONS 18
3.1 Literature Review 18
3.2 Wave Equations Near Black Holes 20
3.3 Quasinormal Modes 22
3.3.1 Mathematical Definition of Quasinormal Modes 23
3.4 Application of Quasin 25
3.4.1 AdS/CFT 25
3.4.2 Black 26
3.4.3 Black 28
IV QUASINORMAT 1 定 HOLES 30
4.1 Quasinormal 15 30
4.1.1 Scalar or bat malaind d L Z Black Hole 32
4.1.2 The Exac Su 33
4.2 Quasinorr 35
4.2.1 Wav iquation on nealar Fiffl 36
4.2.2 Resultsrand Discussion 39
 39
 41 43
V QUASINORMAL MODES OF FOUR DIMENSIONAL BLACK HOLES 45
5.1 Quasinormal Modes of Schwarzschild Black Hole 45
5.1.1 Scalar Perturbation Near Schwarzschild Black Hole 47
5.1.2 Continued Fraction 48
5.1.3 Results and Discussion 51
VI QUASINORMAL MODES OF FIVE DIMENSIONAL BLACK HOLES 53
6.1 Quasinormal Modes of 5d AdS-Schwarzschild Black Hole 53
6.1.1 The Wave Equation 55
6.1.2 First Order Perturbation 59
6.1.3 Results and Γ 62
 67 69 73798185
86
Appendix A: Useful Calculation
 91
 96
Vitae 100

LIST OF TABLES

Table
page

LIST OF FIGURES

Figure

page
5.1 This shows the first thr //ymental modes at each particular value of the scalar $f \circ$) by using the Nollert's improvement. $\mathrm{T}=$ is pro \longrightarrow. Zhidenko et al, $[40]$. . 52
6.2 Quasinormal e ies in in ar he rotating squashed Kaluza-Klein r o For $\lambda=0$ is the ghthend $=0.5$ is on the left-most, whereas r_{∞} of each 50 . For $\lambda=0, \omega$ corresponds to modes
6.3 Plotting
 xed $a=0.1, l=$ parameter λ, where $2, \mu=1$. $\lambda=0$ (blue), $\lambda=0.5$ (green), $\lambda=1$ (red), $\lambda=1.5$ (black). ω cor-

6.4 Potang the seat
$\stackrel{\mathbf{q}}{\lambda}=0.5$ (green), $\lambda=1$ (red), $\lambda=1.5$ (black). ω corresponds to modes ν as follow $\frac{5}{2}$ (blue), 2.45 (green), 2.29(red) and 2(black).
6.5 Plotting the imaginary part against r_{∞}, for fixed $a=0.1, \lambda=$ $0, \mu=1$. Each lines show the differences in parameter l, where $l=0$ (blue), $l=1$ (green), $l=2$ (red). ω corresponds to modes ν as follow $\frac{1}{2}$ (blue), $\frac{3}{2}$ (green) and $\frac{5}{2}$ (red). 77
6.6 Plotting the real part against r_{∞}, for fixed $a=0.1, \lambda=0, \mu=1$. Each lines show the differences in parameter l, where $l=0$ (blue), $l=1$ (green),$l=2$ (red). ω corresponds to modes ν as follow $\frac{1}{2}$ (blue), $\frac{3}{2}$ (green) and $\frac{5}{2}$ (red)
6.7 Plotting the imagianary part against r_{∞}, for fixed $a=0.2, \lambda=$ $0.5, \mu=1$. Each lines show the differences in parameter l, where $l=1$ (blue), $l=2$ (green), $l=3$ (red). whereas r_{∞} of each line runs from 2-50. ω corresponds to modes ν as follow 1.41(blue), 2.45 (green) and 3.46 (r
6.8 Plotting the real ed $a=0.2, \lambda=0.5, \mu=1$. Each lines sho $=$ renges l, where $l=1$ (blue), $l=2$ (green), 1 N 50. ω correspon $/ 1 /$ o a ~ $1+$ rue), 2.45 (green) and 3.46(red).
B. 1 This figure sh \quad iver and its coeff or is, ais.
B. 2 Mathematica's for that inda of e ontinued fraction.
B. 3 This code is used for quasinormal frequencies of rotating scuashed suppose lies at 1.
 an outer horizon
C. 1 The effective pontial of the BGZ(AdS) black hole, for fixed $M=$
 $m=2$ Red), $m=3$ (Black), $m=4$ (Orange), $m=5$ (Purple).
 $l=2$ (Red), $l=3$ (Black), $l=4$ (Orange), $l=5$ (Purple).97
C. 3 The effective potential of the Squashed KK black hole, for fixed $\mu=1, r_{\infty}=2, \lambda=0$ and parameter l ranges from 1-4. The depth of the potential increases with parameter l.98
C. 4 The effective potential of the Squashed KK black hole, for fixed $\mu=1, r_{\infty}=2, \lambda=1.5$ and parameter l ranges from 1-4. The depth of the potential increases with parameter l.
C. 5 The effective potential of the Squashed KK black hole, for fixed $\mu=1, r_{\infty}=2, l=2$ and parameter λ between 0-2 (0.5 for each step). The depth of the potential increases with parameter λ. The overall potential also increases with λ.

Chapter I

INTRODUCTION

Abstract

ingly, the results show that after black holes were disturbed they will be under waves which rafiate energy away to Infinity. Based on this work, Viveshwara 1970 has proved that oscillation frequencies External fieldedtside black hole frequences" and corresponding modes are so-called "quasinormal modes". More precisely, quasinormal modes are the modes of oscillation which have their own characteristics. They are not truly stationary but damped quite rapidly, some parts of wave are absorbed into the black holes during decay process. Also, its frequencies depend on black hole intrinsic parameters which are mass, charge and angular momentum.

Nowadays, quasinormal modes have been studied widely for various black hole types and also different kinds of external field, i.e., scalar and, vector fields.

Most of these studies have been done by numerical calculation. The most popular technique would be a continued fraction which is developed by Leaver [9] and was improved further by Nollert [10]. However, one found that for three dimensional black holes (BTZ for example), it turns out there is a possibility to obtain quasinormal frequencies analytically $[11,12]$ by transforming the ReggeWheeler equation into hypergeometric differential equation. This fact motivated us to apply the same technique for others black hole system and try to calculate quasinormal frequencies. Hence, in this thesis, we aim to investigate many black hole models which are able to cal //) 12sinormal modes analytically.

This thesis is organi idea about relativity the $=$ or apec neral version. Then, four wellknown black hole solvier ed ing order, (i) Schwarzschild black hole, (ii) Reissn \quad a \sim rr black hole and finally (iv) BTZ black hole. In C IT An or ormal modes is stated and Regge-Wheeler equatio 18 2

 lowing the work done by or 1
 is obtained. In the less scalar field in
 Then in Chapter 5, Schwarzschild black holeseby using a cortinued fraction method which has been
 sional black ho ${ }_{s}$ are reviewed. We first begin with a large AdS five dimensional
 order peqrtarbation method nally, we follow the matching solution technique $[14,15]$ to calculate quasinormal frequencies of a rotating Kaluza-Klein black hole with squashed horizons and observe the effect of compactified extra dimensions to those frequencies. Lastly, we summarize all the results of our study in Chapter 7.

For the sake of simplicity throughout this thesis, we shall assume geometrized unit $G=c=1$ unless otherwise stated.

Chapter II

RELATIVITY AND BLACK

 light cannot escape from, later-called black holes. More specifically, black holes
 hole solutions emdiget from GR.Inthischapte, we will 1riefly review both the special and general relativity therry. Later, the most four well known exact solution.ar 9 ischan solution the first non-trivial exact solution. Second, Reissner-Nordström solution: charged black hole. Third, Kerr solution: spinning black hole. Finally, BTZ solution: $(2+1)$ dimensional black hole.

2.1 Special Relativity

1905, the Annus Mirabillis (miracle year) of Albert Einstein. He wrote four fundamental papers in that year. These four articles contributed widely to the modern
physics and also revolutionized our concept about space, time and matter. His third paper in that year was about the reconcilement between Maxwell's Equations and the law of classical mechanics; by re-considering the Newtonian mechanics in the speed of light regime. This theory became known later as special theory of relativity (SR) [16]. SR is based on two important postulates. 1) All inertial observers are equivalent. 2) The speed of light c in vacuum is the same in all inertial systems. By applying these two postulates, one can obtain Lorentz transformation which connecting two different inertial frames with relative velocity v,
where $\beta=v / c$ and as a boost in x-direct. 1. coordinates are mixed. \% rared) between two events in an inertial frame S ch

 equation, we are four-dimensional object called spacetime. strange phenomenon] light- Time-dilation and Length-contraction.
 Einstein publisiled his fourth paper $[17]$ in 1905. He proposed equivalence between
 After publishing SR, Einstein continued his work to a more "general" theory of relativity which will be discussed in the next section.

2.2 General Relativity

In SR, Einstein considered only an inertial frame of reference where acceleration was neglected. Then, in order to extent his SR to a more general theory, he needs
to consider a general frame of reference including the effect of acceleration. He tried to accomplish his new theory with a thought experiment about the free-falling elevator*. Finally, Einstein proposed the equivalence principle,

> In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the laws of physics are those of special relativity. [2]

The principle of equivalence explains that if we are in the free-falling frame under a gravitational field, locally gr il ceems to disappear so we recover special relativity. From this argumen 1 that gravity may not act as a force but pseudo force. gravitation,
 called general theory
 dependence property. At i formulated a tensorial equati equations takes th

where G and c is Newton constant and the speed of light in vacuum respectively. $G_{\mu \nu}$ is an Eicotendons a source for gravitational field. Whe divergen less of Einsthih tensor suggests
 mathematically as

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R . \tag{2.3}
\end{equation*}
$$

where $R_{\mu \nu}$ is Ricci tensor which is a contraction of Riemann tensor-i.e. $R_{\mu \alpha \nu}^{\alpha}=$ $R_{\mu \nu} . R$ is Ricci scalar or a curvature scalar. $g_{\mu \nu}$ is metric tensor which defines concept of distance on a manifold.

[^0]In fact, (2.2) is not the full form of Einstein field equations yet. The complete form is given by

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+g_{\mu \nu} \Lambda=\frac{8 \pi G}{c^{4}} T_{\mu \nu} . \tag{2.4}
\end{equation*}
$$

where Λ is a cosmological constant. It was originally introduced by Einstein to produce static universe. But the observation tells us that our universe is expanding not static as Einstein would assume. So Λ was removed ${ }^{\dagger}$. But recently, physicists have discovered the cosmic acceleration. This has renewed an interest of cosmological constant as a sca)|/ acceleration.

Solution of Einstein element or metric. $\mathrm{Th} \longrightarrow$ a \longrightarrow inval in any spacetime. Let's consider (2.1) as an i

This line-element shr pressed by Cartesian c 1 a en in a tensorial form
and

where $\eta_{\mu \nu}$ is mindourd special case of alifife id explabs doondety flat spadetime. In general, we obtain the general solution by repacing $\eta_{\mu \nu}$ with $g_{\mu \nu}$. Then (2.d) becomes
จุหาลงกร โู มต

There are three possible values for $d s^{2}$ as follows:

$$
\begin{aligned}
d s^{2} & >0 \text { is spacelike interval, } \\
d s^{2} & =0 \text { is lightlike or null interval, } \\
d s^{2} & <0 \text { is timelike interval. }
\end{aligned}
$$

[^1]Note that, these definition will interchange between spacelike and timelike if the metric signature becomes $(+,-,-,-)$. Spacelike interval represents nonphysically related region. Null interval express light trajectory in spacetime, it forms the light cone structure in the spacetime diagram. For timelike interval, non-zero massive particle must be contained within the light cone and shows a massive particle path in the spacetime. To describes the motion of particle in curved spacetime, we define equation of motion in GR as,

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma^{\mu} \left\lvert\, \frac{d x^{\nu}}{\lambda} \frac{d x^{\sigma}}{d \lambda}=0 .\right. \tag{2.9}
\end{equation*}
$$

This is geodesic equation "ing" motions of a particle that means there is no exter act an . Therefore, RHS of (2.9) is zero. λ is an affine pe the lll proper time " τ ". The effect of curved spacet+ from Christoffel connection $\Gamma_{\nu \sigma}^{\mu}$ given by

 spacetime.

2.3 Black

*The concept of blat holes was originally propose by John Michell in 1784. He discussed classical \%iocts which the escape velocities exceed the speed of
 massive stars whose gravity is so gtrong that not even light cay escape from it^{\dagger}. In 1918.9 ginchars By investigating the solution's structure, its mathematical singularity is emerged which implies the existence of black holes geometry called Schwarzschild black hole. Hence, the ideas about black holes were theoretically supported for the first time from the Schwarzschild solution. Einstein was surprised by this result. Since, he did not expect the exact solution will be found so soon. However, Einstein had never accepted the ideas about black holes until his death in 1955.

[^2]Schwarzschild's work had widely opened the study of black holes physics. In 1918, Hans Reissner and Gunnar Nordström successfully solved the EinsteinMaxwell equations for charged spherical-symmetric object [19, 20] called ReissnerNordstöm black hole. Five years later, George D. Birkhoff proved the uniqueness of the Schwarzschild solution. It stated that the spacetime outside a spherical symmetric object always governed by the Schwarzschild metric. At that time, physicists believe that black holes were originated from the exhausted stars via gravitational collapse process. Thus in 1939, J. Robert Oppenheimer and Hartland Snyder calculated the pressl) jomogeneous fluid sphere that collapses under the influence of gravit hows that the object will cut itself from the outside universe \rightarrow the 1 ce which confirms the existence of the black holes as an icalob \rightarrow ncharged axial-symmetric rotating system, Roy K a system in 1963 [22 there are many bral servational. For exar Stephen Hawking, the
 astrophysical object in a g bstank Bi koles are also used for testing

 equations. Many under particular asse
 both theoretical and obblack holes originated by ich later leads to the study of the well-known blacl- ole metrics. the Einstein equations , we will discuss some of

 tions anllytically. He reduces the complexity of the equations by assuming the spherical symmetry and solved for the vacuum solutions. His solution represents spacetime geometry outside a spherically symmetric matter distribution. To obtain such a solution, Schwarzschild needs to seek out for the most general form of the static spatially isotropic metric.

The word static imposes two properties for the metric: (i) all the metric component $g_{\mu \nu}$ must be independent of time coordinate (say x^{0}); (ii) line-element $d s^{2}$ are invariant under $x^{0} \longrightarrow-x^{0}$ transformation. A spacetime that satisfies only
(i) condition is called stationary [2]. We will encounter such a spacetime again when consider the spinning black hole. Spatially isotropic means that the metric looks the same from all directions. This condition implies spherical symmetric property to the Schwarzschild metric. Starting from the most general form of spatially isotropic metric [2],

$$
\begin{equation*}
d s^{2}=-A(t, r) d t^{2}+B(t, r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{2.11}
\end{equation*}
$$

It is trivial to obtain the static property. By requiring that the metric components are independent of x^{0}. Thus, th / ric reduces to

This is the most gen tic spatially isotropic properties. We can find A, re $A(r), B(r)$ by solving this
 tion via (2.10). Tiin onstructed by

Finally, the Schwarzscheld solution is obtained [2]

 means as $\mathrm{r} \longrightarrow \infty$ the metric becomes flat $g_{\mu \nu} \longrightarrow \eta_{\mu \nu}$. At first glance, the Schwarzschild metric seems to have two gravitational singularity at the surface $r=2 M$ and $r=0$. The first one is called Schwarzschild radius which defines the radius of the Schwarzschild black hole. It also acts as a boundary of the black hole called an event horizon, once anything come inside this boundary then it is impossible to be seen from the outside observer. The other singularity lies at the black hole's center. It is the place where the curvature (gravity) becomes infinite. In fact, the surface $r=2 M$ is only coordinates singularity which can be
removed out by choosing new coordinates properly. For example, if we introduce new coordinate as

$$
\begin{equation*}
t^{\prime}=t+2 M \ln \left|\frac{r}{2 M}-1\right| \tag{2.17}
\end{equation*}
$$

Using the above relation, thus we can transform (2.16) to

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{\prime 2}+\frac{4 M}{r} d t^{\prime} d r+\left(1+\frac{2 M}{r}\right) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) . \tag{2.18}
\end{equation*}
$$

This is Schwarzschild metric h in Eddington-Finkelstein coordinates $\left(t^{\prime}, r, \theta, \phi\right)$ instead of the $\mathrm{S} 上 \sim \mathrm{~L}(t, r, \theta, \phi)$. We see that $r=2 M$ is no longer problem, ol? 2.3) $1=$ at this surface. The metric (2.16) explains geomet cet \longrightarrow pherically symmetric object which being seen by t 2 perspective, every particle which tries to appro \quad in

 particle's frame of refe ir ey cara alaly n th ugh an event horizon. Inside the event horizon, coor i) hich is timelike and spacelike respectively at the outsidt 111 coordinate r becomes timelikne Schwarzschild black hole, every
 the singularity un

So far, we have omm nerically symmetric metric. In the next subsection, we will further investigate about the metric which describe the spacetime utside ${ }^{6}$ setic phericallenmetricharged object.

2.3.2 Reissner- Nordstrôn Black igle

In the last section, we discuss about the static spherically symmetric object and obtain the Schwarzschild solution. We will now further investigate more about a metric outside static spherically symmetric charged matter. The exterior of such an object is filled with a static electric field. Therefore, we need to solve Einstein field equations for a static spherically symmetric with the existence of energymomentum tensor for a pure electromagnetic field [2]. The Einstein-Maxwell field equations take the form

$$
\begin{equation*}
G_{\mu \nu}=8 \pi T_{\mu \nu} \tag{2.19}
\end{equation*}
$$

$T_{\mu \nu}$ is the Maxwell energy-momentum tensor. It is defined as [1]

$$
\begin{equation*}
T_{\mu \nu}=\frac{1}{4 \pi}\left(-g^{\sigma \rho} F_{\mu \sigma} F_{\nu \rho}+\frac{1}{4} g_{\mu \nu} F_{\sigma \rho} F^{\sigma \rho}\right) . \tag{2.20}
\end{equation*}
$$

where $F_{\mu \nu} \equiv \partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu} . F_{\mu \nu}$ and A_{μ} is Maxwell strength tensor and 4-vector potential respectively. Thus, it is obvious that the Maxwell tensor is anti-symmetric which implies the trace-free of the Maxwell energy momentum tensor. Then, the Einstein-Maxwell field equations become

Moreover, the Maxwell tel
arce-free Maxwell's equations [1]
 the coordinates syst \quad as potential takes the sir

where $\phi(r)$ and $a(r)$ may be andial
 has the form

In this ase we may interprets. $E^{r} r_{0}$ as therenal omponenfelectric field as $r \longrightarrow$ 2. Nuw

 and inselt them into field equations (2.21) together with the Maxwell's equations. Then determine the unknown function of the metric. Besides the metric defined in (2.12), we can use another form of such a metric which is defined as [1]$$
\begin{equation*}
d s^{2}=-e^{\nu(r)} d t^{2}+e^{\lambda(r)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} \tag{2.23}
\end{equation*}
$$

Finally, we obtain the Reissner-Nordström metric

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M}{r}+\frac{k^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{2 M}{r}+\frac{k^{2}}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}, \tag{2.24}
\end{equation*}
$$

where $d \Omega^{2} \equiv d \theta^{2}+\sin ^{2} \theta d \phi^{2}$. As $k \longrightarrow 0$, we recover the Schwarzschild metric therefore we may interpret k as a total charge of the particle. This solution shows the spacetime geometry around the non-rotating point charged particle. One can obtain the coordinate singularity of the metric (2.24) by setting $g^{11}=0$. This gives us a result

$$
\begin{equation*}
r_{ \pm}=M \pm \sqrt{M^{2}-k^{2}} \tag{2.25}
\end{equation*}
$$

The Reissner-Nortström has double event horizon, i.e., inner and outer horizon. Clearly, there exist three different 1) to determine the values of the ReissnerNordström's radius.

Case I $M^{2}>k^{2}: \mathrm{I}$, there singularities at $r=r_{ \pm}$. These surfaces represent the Nordström black hole. In the region $r_{-}<r<r_{+}$, th \sim Schwarzschild. Once inside

 approach the r_{-}surfo ool and t 'c \quad linate r will return to their
 $r<r_{-}$, particles can mane theata is different from the Schwartachernery eover, if we do maximally analytic extension of the Reissner-N hypothetical solut hole. In the white the hole and nothint an acroso wown the holfor In fact, the Schwarzschild solution can give such awhite hole solution by extending the Eddinton-Finkelstein
 it is beyond ouldscope here. As a result, g^{11} is regular everywnere except $r=0$ thus there are no coordinate singularities anymore. Both event horizons now disappear, only the intrinsic singularity is left nakedly; the absence of the event horizons lead to the fact that coordinate t and r remain their own properties which are timelike and spacelike. Thus, the naked singularity can also be avoided by the particles. However the physical situation that comes after the existence of the naked singularity is; for an example, there exist the closed timelike curves which allow the possible of the time traveling. Since such an extreme unphysical scenario emerges, Roger Penrose has proposed cosmic censorship conjecture in 1969. This conjecture stated that
the singularities must be covered by an event horizon to prevent the formation of a naked singularity. However, nowadays there are many theoretical evidences which give a contradiction to this conjecture. Thus, the naked singularities may not be necessarily covered and could possibly exist in the real universe.

Case III $M^{2}=k^{2}$: This one is called extreme Reissner-Nordström black hole. In this case, the outer hoizon r_{+}and inner horizon r_{-}will coincide at $r=M$. The coordinate r is always spacelike except at $r=M$ it becomes null. Hence, the singularity $r=0$ is a timelike as in the other cases. Thus for this black hole, it is again possible to avoid thr Moreover, an extremal black hole is practically used as a toy hole in quantum gravitu siaers theories, extremal black hole can leave the symmet able aid in calculations. [5]

Charged black not r discharged by the s it is worth to study that of the more comp $1 a^{+}$A (6)
 helps us to understand of abstrala face hat eometry.

In the last two sec accretion disk. However, tical structure is similar to But, most astrophys objects ancurating. flow, we need to construct the metric that describes sych an object. It appears that we cannot apply a static
 Hence, the isotappic property is destroyed. In order to represent steadily rotating

By considering 4-momentum of the particle approaching this metric (2.26), one can prove that the function $\omega(r, \theta)=\frac{d \phi}{d t}$. The rate of change of coordinate ϕ with respect to the coordinate time shows that the spacetime itself is rotating. Any particle reach at this neighborhood will has been dragged by the effect of pure gravitational field. This effect is called frame dragging effect.

In order to obtain the Kerr metric, we must insert the stationary metric (2.26) into (2.14) and then solve for the unknown function $A(r, \theta)$ and $B(r$, theta). Hence, we get the Kerr metric (written in Boyer-Lindquist coordinates)[2]
$d s^{2}=-\left(\frac{\Delta-a^{2} \sin ^{2} \theta}{\rho^{2}}\right) d t^{2}-\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} d t d \phi+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+\frac{\Sigma^{2} \sin ^{2} \theta}{\rho^{2}} d \phi^{2}$.
where

In the limit $a \longrightarrow 0$, sense to interpret pa momentum via $J=$ the event horizons of
 of
 must solve $\Delta=0$. Then,

The Kerr solution (2.27 $/$ rioc It has stationary and axi A metric has two event horizons outer horizon which cause from the quadratic factor in $g_{t t}=0$

These surfaces show anfore interesting Maracter for a stationary axisymmetric
 stationary it whl be forced to moye in the same direction with the black hole's
 the oute static surface and the outer horizon is called the Ergosphere. It is possible to extract the black hole's energy from this region of the rotating black hole which was proposed by Roger Penrose. Although (2.28) expresses the coordinate singularity of the Kerr solution but we could obtain the intrinsic singularity by setting $\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta=0$. These yields

$$
r=0, \quad \theta=\frac{\pi}{2}
$$

By using a proper coordinate transformation, one can transform the above condition to $x^{2}+y^{2}=a^{2}$. Hence, surprisingly, Kerr's singularity has ring-shaped
with the radius " a ". Let us investigate more on the event horizon of Kerr solution (2.28), it is clear that there exist three possible cases relevant to the relative valuses of M^{2} and a^{2}. This is in many way similar to that of the Reissner-Nordström black hole.

Case I $M^{2}>a^{2}$: In this case, both outer and inner horizon is real so two coordinate singularities exist. But they can be removed by changing the coordinates as the Schwarzschild metric. We can divide radial coordinate into three regions. $r_{+}<r$ this region lies at the outermost of the Kerr solution. In this region, t is time like warlike. $r_{-}<r<r_{+}$is the region where space and time int in is similar to region inside the Schwarzschild's radius. \longrightarrow cifally \longrightarrow must move in the decreasing direction of coordinat \quad is $\sim<r_{-}$, again time and radial coordinate regain the once again, the inti col can be avoided since it has the timelike singe 10 \% 4 , t of the Reissner-Nordström
 since this case seems

Case II $M^{2}<a^{2} 1$ e is sch al life nom the Charged black hole. Both coordinate singular es bearing.

Case III M
Nordström. Two

o the same as Reissnerhypersurface. Howe it may nat nextremal Kerr black hole could emerge in the real astrophysical situation. As the matters forming in the
 angular momequm to the hole. While the matters are falling in, they create a radiation in which carries away the angular n omentum. In \&dition, a detailed calculator and

In conclusion, we see that the stationary axisymmetric metric leads to two fascinating phenomena, ie., frame-dragging effect and stationary limit surfaces. These are the special characters of such a metric which differ from the Schwarzschild and Reissner-Nordström black hole. On the other hand, while the intrinsic singularity of the Schwarzschild solution are spacelike, ReissnerNordström and Kerr singularity is timelike. It is worthy to note that, although Einstein equation itself has non-linearity property but all of the exaction solutions can be derived by choosing appropriate assumptions and symmetries. In the next
section, we will introduce another interesting vacuum solution with the presence of cosmological constant in $(2+1)$ dimensional spacetime namely, a BTZ black hole.

2.3.4 BTZ Black Hole

From the definition of Riemann tensor, a vacuum solution of $(2+1)$ dimensional spacetime is essentially flat. Thus in the past, there was no anticipation for the existence of the black hole solutions in $(2+1)$ dimensional gravity. However, strikingly, in 1992 Bañados, Teitelbo lli discovered [24] the vacuum solution in $(2+1)$ dimensions with 1
 nstant; it is called BTZ solution. This solution is used as
 gravity and also super most general form of
where $-\infty<t<$ lives in three dimens s 2 -sphere as in four dim with negative cosmologic vacuum solution, thus fie

Then, plug in (2.30)

This solution asymptotically becomes $(r \longrightarrow \infty)$ anti de sitter, spacetime. Note that, $\frac{\pi}{2}^{2} 0 \pi^{2}$ an given bya

$$
\begin{equation*}
r_{ \pm}= \pm l \sqrt{M} . \tag{2.33}
\end{equation*}
$$

Moreover, we can construct spinning BTZ black hole solution as we have done in Kerr black hole. The rotating BTZ black hole takes the form
$d s^{2}=-\left(-M+\frac{r^{2}}{l^{2}}+\frac{J^{2}}{4 r^{2}}\right) d t^{2}+\left(-M+\frac{r^{2}}{l^{2}}+\frac{J^{2}}{4 r^{2}}\right)^{-1} d r^{2}+r^{2}\left(d \phi-\frac{J}{2 r^{2}} d t\right)^{2}$,
where $J=M a$ is total angular momentum. One easily sees that this metric reduces to spinless BTZ when $J \longrightarrow 0$. The hole's radius is given by

$$
\begin{equation*}
r_{ \pm}=l\left[\frac{M}{2}\left(1 \pm \sqrt{1-\left(\frac{J}{M l}\right)^{2}}\right)\right]^{1 / 2} \tag{2.34}
\end{equation*}
$$

As we expect, event horizons split into two surfaces, i.e., outer and inner horizon. If l grows very large the black hole exterior is pushed away to infinity and one is left just with the inside [24]. Moreover, if we set $M=-1$ and $J \longrightarrow 0$ the BTZ metric becomes ordinary anti-de sitter /rase we have shown the basic knowledge of the well-known black has $1+1$ encept of quasinormal modes of black holes will be int n tor n r.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Chapter III

3.1 Literature Review

In the mid 1950's, physicists wondered whether the black hole could be regarded as an astronomical object. In order to answer this question, they started to study the perturbation of black holes. More specifically, they studied the evolution of the physical fields outside black holes which has been proved later by Vishveshwara [7] that the fields can be treated as a perturbation in the black hole spacetime.

The physical fields are always assumed to be weak thus there is no effect of their energy-momentum tensor on the black hole metric [26]. Even though Einstein theory itself is a nonlinear theory, it turns out that the only linear perturbation is well suited. In fact, the study of perturbed black holes were first pioneered by Regge and Wheeler in 1957. Their question was whether the Schwarzschild black holes become unstable under small perturbations on black holes which are assumed in the linearized Einstein's equations. If black holes cannot stand against a small perturbation and turn into an unbounded state, then, black holes could not be determined as an astronh /hject. In their original paper [6], they studied the perturbations of
where $h_{\mu \nu}$ is sufficient linear terms in $h_{\mu \nu}$. $\mathrm{T} \quad \mathrm{C} / \quad \rightarrow 1$

ruation

i.
where effective potentis

0 ,

In (3.2), we have Wheeler in 1995.

rd Scharzschild radial coordinate by $\left.d r_{*}=\|-\frac{2 N \pi}{r}\right)$ ur. н1"H results 4 gest that when disturbed, black hole will experien a small oscillation and later regain its stable state once again. คو\&

Thereafter, their work was eytended to a Reissner-Nordström by Zerilli 1974,
 Howeve Teukolsky (1972) was successfully able to reduce the wave equation into a single equation by using Newman-Penrose formalism. Hence, the stability of Kerr black hole is explored by following Teukolsky's work. The detail on black hole perturbations both mathematically and physically can be found in Chandrasekhar's book (1973) [25] and Frolov,Novikov [26].

3.2 Wave Equations Near Black Holes

To describe dynamical system in general relativity, let's first consider the EinsteinHillbert action

$$
\begin{equation*}
S=\int \sqrt{-g}\left(R+\mathcal{L}_{M}\right) d^{4} x \tag{3.4}
\end{equation*}
$$

Where g is the determinant of the metric tensor $g_{\mu \nu}$ and \mathcal{L}_{M} is the matter Lagrangian which describes the matter field ϕ. By varying the above action with respect to the metric tensor, ona) the Einstein field equations (For more detail see Appendix A.1)

The field equations

tensor is defined as

Then, let's consider the r

We shall assur the perturbations are weak, erefore $\mathcal{O}\left(\delta g_{\mu \nu}\right)^{2}, \mathcal{O}\left(\delta \phi_{a}\right)$, $\mathcal{O}\left(\delta \phi_{a}\right)^{2}$ and higher ane arigible. After inserting perturbed metric and fields
 (3.5),(3.7) as Uual. Moreover, we also obtain linear equation for perturbation
 Schwarzschild-like metric

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3.10}
\end{equation*}
$$

For the sake of simplicity, we describe massless scalar field in such a background by using Klein-Gordon equation in curved background which takes the form (See Appendix A.3)

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \Phi(x)\right)=0 \tag{3.11}
\end{equation*}
$$

We now using separation of variable method by the following ansatz

$$
\begin{equation*}
\Phi(t, r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{\Psi(t, r)}{r} Y_{l, m}(\theta, \phi), \tag{3.12}
\end{equation*}
$$

where $Y_{l, m}(\theta, \phi)$ is the spherical harmonics, the integer $l \geq 0$ and $|m| \leq l$ are called the multipole number and the azimuthal number respectively. Spherical harmonics are also satisfied the following eigenvalue equation

$$
\begin{equation*}
\Delta_{\theta, \phi} Y_{l, m}(\theta, \phi)=-l(l+1) Y_{l, m}(\theta, \phi), \tag{3.13}
\end{equation*}
$$

where the angular part of Lapla) defined as
 treated as a perturbatign in the black holemetric. Beside scalar particle, we can
 equation of madion of the fields can be reduced to the wave-like equation (3.15).

$$
\begin{equation*}
V_{D_{ \pm}}=f(r) \frac{\kappa_{ \pm}^{2}}{r^{2}} \pm \frac{d}{d r_{*}} \frac{\kappa_{ \pm} \sqrt{f(r)}}{r}, \quad \kappa_{ \pm}=1,2,3, \ldots \tag{3.18}
\end{equation*}
$$

and for the electromagnetic field, the effective potential is defined as [29]

$$
\begin{equation*}
V_{E M}=f(r) \frac{l(l+1)}{r^{2}}, \quad l=1,2,3, \ldots \tag{3.19}
\end{equation*}
$$

Note that, these potential are only valid for the spacetime metric which is defined by (3.10). If we replace the Schwarzschild-like by other metrics, such as the axisymmetric metric, then we must re-derive the corresponding effective potential.

3.3 Quasinormal Modes

Everyone should be familiar with the concept of "normal modes". When we first studied about wave theory, we usually assume that there is no energy loss in the oscillating system, for an example, violin's strings vibration. By perturbing such a system, it will respond by choosing a discrete set of real frequencies which produces a "characteristic sound" [30]. The corresponding modes which are the superposition of stationary modes are so-called normal modes. Surprisingly, black holes can provide such an individ /htoo. By perturbing the fields near the black holes, one finds that $1 \rightarrow$ ond by producing a characteristic oscillation. Vishveshwar \longrightarrow he firs discovered this fact by investigation of a gaussian al yav yeloped in the Schwarzschild geometry. He found thr appears by the damper \quad a 1 a
 angular momentum. initial configuration.
 corresponding damped ar enciñavifarm th fuencies. The word "quasi-" shows the deviation fron thes.
 frequencies.

As we mentione

 as a violin, we usuall nake an ideally well-suited sty assumption, that there is no decaying modes exiss This fact leadsets the normal modes and corresponding
 loss from our ${ }^{3}$ stem. However, if we turn to the more realistic case, no such
 always exist "non-stationary" modes in the perturbed black hole metric. Since, black holes are just only the pure gravitational object; any spacetime perturbation generates the gravitational waves which radiate energy away to infinity. The deeper mathematical detail on quasinormal modes can be found in a very neat review by Kokkotas and Schmidt [31].

3.3.1 Mathematical Definition of Quasinormal Modes

In the previous discussion, we investigate the concept of quasinormal modes physically. Now, we shall further discuss about its mathematical structure. As previously mentioned, we can formulate the partial differential equation that describes the physical field's evolution in curved spacetime by using a background metric

$$
\begin{equation*}
d s^{2}=g_{\mu \nu}(x) d x^{\mu} d x^{\nu}, \tag{3.20}
\end{equation*}
$$

Then, substitute into the Klein-G / / 1ation (3.11) (for a scalar field). Finally, we obtain the wave-like equ

Where x is spatial on to place an event hor unless otherwise state spatial dependence,

Yet again, we have derive

In this section, w

ly flat spacetime. Thus, the effective potentic $]$ atishes

ศนย์วิทยัทัพยากร

Hence, at the A rizon and infinity the solution of (3.21) is just an ordinary plane

The boundary conditions for the quasinormal modes are the purely ingoing modes at an event horizon and outgoing at infinity. This means that the physical field can radiate away to both asymptotic regions and disappear from the study region.

$$
\begin{aligned}
\text { Ingoing } & : \psi(x) \sim e^{-i \omega x}, x \longrightarrow-\infty, \\
\text { Outgoing } & : \psi(x) \sim e^{i \omega x}, x \longrightarrow \infty .
\end{aligned}
$$

These boundary conditions imply an allowance of energy loss assumption. In addition, there is only a discrete set of complex frequencies which satisfy these boundary conditions [30]. These frequencies are the quasinormal frequencies and the wave function $\phi(x)$ are defined to be the quasinormal modes.

It has been proved by Vishveshwara [8] that for the Schwarzschild black hole, quasinormal frequencies must be negative imaginary. This reflects the fact that quasinormal frequencies are exponentially decay in time, more physically, that means the black hole geometry is losing its energy via the gravitational waves. For other geometry such as Schwar $)$ tter/anti-de-Sitter or Kerr, one finds that the quasinormal frequ rified as a negative imaginary. It is very difficult to solve \sim-Waeel (3.21) and obtain numerical values for the quasinc imaginary parts. However, Chandrasekhar and 1 : 40 some of the quasinormal modes for Schwarzsch. \quad © $11 \rightarrow i$ ical techniques which $1 /$ \% $1 / 2$

 tion method (this will b a a fish Nollert [10] was able to ir cov inslans which made the higher modes In 2000, Horowitz and Hubeny [33] were the first who calculo, fory spacetime. This w AdS/CFT correspone calculate quasinormed nodes but ror a less complicad system like non-rotating BTZ black hole, it tursent that one carrange the field equation (3.21) into
 first proved byivitor et.al [11] in 2001. After that, Siopsis et.al [13] was able to
 see $[27,31]$ and references therein.

In this note, we will only focus on the two following computational methods. First, the continued fraction will be used in chapter 4 when we deal with quasinormal modes of four dimensional Schwarzschild black holes. For the rest, we will apply an analytical method to obtain quasinormal frequencies of black holes in three and five dimensions.

3.4 Application of Quasinormal Modes

Black holes are nontrivial solutions of the general relativity. They let us investigate many rich physics in a strong gravitational regime. They have also been called a "hydrogen atom" in general relativity [30]. Like hydrogen atom in quantum mechanics, black holes are governed by a few parameters (mass, charge, angular momentum) which made them easy to study. All of the general relativistic properties are embedded in black holes. These give some notably importance of black holes in fundamental physics ther) we shall investigate further about the application of their unique

There are three mon frestu \longrightarrow physics of quasinormal modes which are discussed a

3.4.1

At present, standard m ar aribing the microscopic world. It has made many particles/anti-particles \& ie of enstence of the fundamental at the high level of accul y
 quantization of a placed by fields. QFT with gravity. mathematic structure.
 context weshall anly discuss the string thoof dn string theory we always as-
 theory attempts to describe gravity at small scale, we might say that string theory contains gravity. On the other hand, quantum chromodynamics (QCD) is a theory which describes matters in the nuclear level namely, quarks and gluons. QCD is based on gauge group $S U(3)$. This may be interpreted by saying that quarks have three colors [30]. Surprisingly, t' Hooft suggested that QCD has asymptotic freedom. That means as energy decreases the effective coupling constant increases and vice versa. This is a crucial point, at low energies; QCD becomes nonperturbative theory since the coupling constant is becomes strong. Hence, perturbative
calculation of QCD at low energies cannot be performed. Additionally, as we expand to higher order of perturbation, the higher order contributions cannot be neglected. This causes a major problem for the development of QCD. Fortunately, there exists a gauge-gravity duality suggested by Maldacena namely, AdS/CFT correspondence. It states that physics in a bulk d-dimensional anti-de sitter (AdS) space is dual to physics at the AdS (d-1)-dimensional boundary.

AdS/CFT was originally motivated by the duality between type IIB string theory in $A d S_{5} \times S^{5}$ (gravity side) and four dimensional $\mathcal{N}=4$ supersymmetric Yang-Mills theory (non-gravity $)$ duality allows us to perform a calculation for a thermalization investigating the physics in AdS space. According to Ad atic black holes in AdS can be approximately compar \sim rr al \sim in dual CFT, perturbing the black holes means normal frequencies)

 Consequently, quasin 19 des anay sed n hematical tool which allows us to avoid many diffic A , 人a,
 the boundary was first suggeserand and Hubeny [33].

3.4.2 Black

 In order to reconcile ravity and quantum mechanile besides the string theory
which we have already fisenssed, there is \&other attempt to develop such a theory
 of spacetime or ${ }^{2}$ quantum geometry that means in LQG gravitational field (space-
 the other hand, black holes play an ideal model of gravity, thus the quantization of black holes might gives us an initial footstep to the theory of quantum gravity. The first attempt of quantized black hole was pioneered by Bekenstein [37]. His concept was originally based on the idea about the (horizon) area of non-extremal black hole act as a classical adiabatic invariant which correlates with the discrete quantum spectrum. Therefore, Bekenstein proposed that the area of non-extremal quantum black hole should have a discrete spectrum. Inspired by Christodoulou's reversible processes and Heisenberg uncertainty principle, Bekenstein conjectured
the area quantization formula [37] of quantum black hole

$$
\begin{equation*}
A_{n}=\gamma l_{p}^{2} n, \quad n=1,2, \ldots, \tag{3.24}
\end{equation*}
$$

where γ is a dimensionless parameter and $l_{p}=\sqrt{\frac{\hbar G}{c^{3}}}$ is the Planck length. This formula can be implied that horizon area is consisted of small pieces of equal area γl_{p}^{2}. Each piece can be considered as degrees of freedom in which quantum mechanically being referred as distinct quantum states. By assumption that each patch is properly equivalent, thus the total number of quantum states is
where k is represented a physics, the entropy constant sets to be u

iates. As a result of statistical a horizon by $\ln \Omega$ (Boltzmann constant sets to be u

But we know the Haw

By comparing these

In addition, let's consider the area of the Schwarzschild black hole

$$
\begin{align*}
A & =4 \pi r_{s}^{2} \\
& =16 \pi M^{2} \tag{3.31}
\end{align*}
$$

where $r_{s}=2 M$ is Schwarzschild radius. Using relation $d M=E=\hbar \omega$ and from (3.30) $\operatorname{Re}\left(M \omega_{n}\right)=\frac{\ln 3 \text {. Therefore we conclude that }}{8 \pi}$.

$$
\begin{equation*}
\gamma=4 \ln 3 . \tag{3.32}
\end{equation*}
$$

Finally, the black hole area a

We see that with the heln ~inormal frequencies of Schwarzschild
 there is no a physio 10 有 1 mal modes and LQG $\quad \mathrm{i}$ n \quad al ar Hod which resulted in this prediction. There are
 followed the same argu to to in loop quantum gravity

3.4.3 Black

In astronomy, it is ve important wo ovserve many a ophysical objects and their phenomena. Besides, thenomers must door information from those objects
 oscillations. S\&h data can tell us information about the internal structure of a
 to be a supernova remnant. After supernova explosion, a left-out compact object will violently oscillate for a short period of time. Then gravitational radiation will carry away the energy to infinity and the initial oscillation will exponentially damp out. These gravitational waves also carry out information about the compact object too. According to quasinormal modes theory, this information could be referred as black hole parameters. However, gravitational waves have not been detected yet, but the indirect effect has been accurately investigated by Hulse and Taylor for a binary pulsar system [30]. Nowadays, many gravitational waves
detectors are now operating and starting to collect the data, for instance, LIGO and LISA. However, the weakness of the gravitational signal makes it hard to detect. In order to increase the chance, we have to extend the sensitivity of our detector and look for a very strong source of gravitational waves such as, black holes collision and massive binary stellar system. The quasinormal modes process take place in the final stage of the gravitational signal. On the other hand, since quasinormal modes are decaying with time thus only the fundamental modes (lowest imaginary part) can reach us. As we already mentioned earlier, quasinormal frequencies depend on the black $\mathrm{h}^{\mathrm{h}} \mid$ /jusic parameters. To illustrate this point, for Kerr black holes, the qu a depend only on black hole mass and its angular moment \geq fore, proximately extract the black hole parameters solely a rotating black hole, on \quad rutic formula which relates the frequencies and dampın $1 / A_{2}^{2}$ meters. These may take the form [34, 35]

From these two equations, if heasure the ringing frequencies and damping time, thus, we catery inverting both for

So far, we have iso gated the major equavion governing the perturbations in the black hole geometry. At the end, whave 0 ,
 mal modes and quasinormal frequencies of the black holes in three dimensional spee@ุุหาลงกรณมหาวทยาลย

Chapter IV

QUASINORMAL MODES OF

 THREE DIMENSIONAL In the previousand the application used beawog"
we are in a good positi
detail. We review the stu
solutions. Despite that, there spacetime with as black hole metric equations. Hence, it
 one could construct the ant to the Einstein field dimensional black holes. We shall first investigate the scalar perturbation in BTZ
 modes of a masivecidar deld infotating BIZ fetrctare dalculated. Finally, we determine quasinormal modes of three dimensinal AdS-Schweuschild black hole. It apposiat ibt ine cä frequendes analytically. This is a crucial point of the study of quasinormal modes of black hole in three dimensional spacetime.

4.1 Quasinormal Modes of BTZ Black Hole

So far, we have only discussed the quasinormal modes of asymptotically flat black holes. Now, the quasinormal modes of BTZ black hole will be investigated. As already mentioned in Chapter 2, BTZ black hole is an exact solution incorporative
with negative cosmological constant that emerges in $(2+1)$ dimensional spacetime. The BTZ solution has asymptotically anti-de sitter spacetime. According to AdS/CFT conjecture, BTZ black hole allows us to compute thermalization timescale in the dual 2d conformal field theory which was verified by Birmingham [36]. Quasinormal modes of AdS black holes were first discussed by Horowitz and Hubeny [33] but they concerned only black holes which live in four, five and seven dimensions. However, quasinormal modes of BTZ black hole were successfully computed by Cardoso and Lemos [11]. Surprisingly, they could manage to reduce the wave equation (3.2) to the k)/ /jferential equation and finally obtained an analytical formula for BT Wuencies. This made BTZ an important example becaus analytically.

In this section, as follows. First, we Second, we construct + curved background known equation caller are obtained. Most of t

Let us recall the B7 mind hapter2 (opposite in signature) $\begin{array}{ll}\text { where we choose } \\ \infty, 0<r<\infty, 0 \leq & r_{ \pm}= \pm l \sqrt{M} \text {. }\end{array}$
 metric above, can compute the metric tensor and its inverse as

$$
g^{\mu \nu}=\left(\begin{array}{ccc}
\left(-M+\frac{r^{2}}{l^{2}}\right)^{-1} & 0 & 0 \\
0 & -\left(-M+\frac{r^{2}}{l^{2}}\right) & 0 \\
0 & 0 & -\frac{1}{r^{2}}
\end{array}\right)
$$

The determinant of metric tensor is $\sqrt{-g}=r$. Now, all the prescription we need to construct the wave equation is obtained. We therefore formulate the Schrödingerlike equation in the next section.

4.1.1 Scalar Perturbation Around The BTZ Black Hole

The dynamics of a real massless scalar field in curved background is described by

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \Phi(x)\right)=0 \tag{4.3}
\end{equation*}
$$

Then, we can write down all of non-vanishing components as

$$
\begin{equation*}
\frac{1}{\sqrt{-g}}\left[\partial_{0}\left(g^{00} \sqrt{-g} \partial_{0} \Phi\right)+\partial_{1}\left(g^{11} \sqrt{-g} \partial_{1} \Phi\right)+\partial_{2}\left(g^{22} \sqrt{-g} \partial_{2} \Phi\right)\right]=0 \tag{4.4}
\end{equation*}
$$

where we choose $(0,1,2)=(t$, , each variable, we use the following ansatz
where m is angular qua \quad e $/$ s vor the results into the (4.4), we get

$$
\partial_{1}\left(\sqrt{-g} g^{11} \partial_{1} \Phi\right)=\left(\frac{3 A(r) \Psi}{4 r^{5 / 2}}-\frac{A(r) \Psi}{2 r^{5 / 2}}-\frac{\Psi}{\sqrt{r} l^{2}}\right),
$$

where we have use to the radial coor following form
 quation which takes the
 since other variables can be factored out. Additionally, lets introduce the tortoise coordinate r_{*} which is defined by

$$
d r_{*}=\left(-M+\frac{r^{2}}{l^{2}}\right)^{-1} d r
$$

or,

$$
r=-\sqrt{M} l \operatorname{coth}\left(\frac{\sqrt{M} r_{*}}{l}\right) .
$$

Here, we see that as $r \longrightarrow r_{+}$corresponds to $r_{*} \longrightarrow \infty$ and $r \longrightarrow \infty$ corresponds to $r_{*} \longrightarrow 0$. Under the tortoise coordinate, we use the following chain rules

$$
\frac{d}{d r}\left(\frac{d \Psi}{d r} \frac{d r}{d r_{*}}\right) \frac{d r}{d r_{*}}=A^{2} \Psi^{\prime \prime}+\frac{2 r A}{l^{2}} \Psi^{\prime}
$$

then using the above relation to transform (4.6) into the Regge-Wheeler equation.

$$
\begin{equation*}
\frac{d^{2} \Psi}{d r_{*}^{2}}+\left(\omega^{2}-V(r)\right) \Psi=0 \tag{4.7}
\end{equation*}
$$

where (See appendix C. 1 for the plotting of the effective potential.)

and we have set $l=$

equation with the appropriate boundary

4.1.2 The Exact

In order to obtain an

$$
\begin{equation*}
\frac{d^{2} \Psi}{d r_{*}^{2}}+\left[\omega^{2}-\frac{M}{4 \sinh ^{2}(\sqrt{M}) \text { andakid }}=\frac{m^{2}}{\cosh ^{2}\left(\sqrt{M} r_{*}\right)}\right] \Psi=0 . \tag{4.9}
\end{equation*}
$$

We introduce a

has a range from $[0,1]$ these correspond

$$
\frac{d x}{d r_{*}}=-2 \sqrt{M} \operatorname{sech}^{2}\left(\sqrt{M} r_{*}\right) \tanh \left(\sqrt{M} r_{*}\right)
$$

$$
\frac{d^{2} x}{d r_{*}^{2}} \text { ค }
$$

Thus, we substitute this result back to (4.9) and obtain the canonical form of 2nd-order differential equation with variable x

$$
\begin{equation*}
4 x^{2}(1-x) \frac{d^{2} \Psi}{d x^{2}}+\left(4 x-6 x^{2}\right) \frac{d \Psi}{d x}+\tilde{V}(x) \Psi=0 \tag{4.10}
\end{equation*}
$$

where effective potential is defined as

$$
\begin{equation*}
\tilde{V}(x)=\frac{1}{4 x(1-x)}\left[\frac{4 \omega^{2}(1-x)}{M}-3 M-x(1-x)-\frac{4 m^{2} x(1-x)}{M}\right] . \tag{4.11}
\end{equation*}
$$

In the final step, we replace the wave function Ψ with

$$
\begin{equation*}
\Psi=\frac{(x-1)^{3 / 4}}{x^{\frac{i \omega}{2 M^{1 / 2}}}} y . \tag{4.12}
\end{equation*}
$$

Finally, we obtain

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0, \tag{4.13}
\end{equation*}
$$

and,

This is the canonical is a hypergeometric f boundary conditions.

tial equation whose solution (4.13) with the appropriate defined as follows, $e^{i \omega r_{*}}$, (ii) near infinit effective potential (4.8),
 ns of quasinormal modes are at the black hole's horizon $e^{-i \omega r_{*}}$. However, from the then $V(r)$ becomes divergent.
 takes a following form [35]
here ${ }_{2} F_{1}$ is the star cond kind. This solution must satisfy the bour ry colrman $c-a-b=-1$ we therefore find that F must be zers at $x=1$. Let's consider the following identity

Note that, from now on we shall denote the standard form of hypergeometric function of the second kind with $F(x)$. To satisfy the boundary conditions, we finally get

$$
\begin{equation*}
a=-n \quad \text { or } \quad b=-n, \tag{4.15}
\end{equation*}
$$

where $n=0,1,2, \ldots$, these also yield

$$
\begin{equation*}
\omega= \pm m-2 i \sqrt{M}(n+1) . \tag{4.16}
\end{equation*}
$$

4.1.3 Results and Discussion

So far, the scalar perturbation of non-rotating BTZ black hole has been reviewed. Using an analytical method, one obtains the exact solution for the quasinormal frequencies of such a black hole. These frequencies are obtained as shown in (4.16). As promised, they depend on black hole intrinsic parameter (mass) and also have negative imaginary part. Some of the result is demonstrated by Table 4.1. One sees that the real part depends only on the angular quantum number m whereas the imaginary part scale with the hol) pr black hole's radius (recall $r_{+}=\sqrt{M} l$). This result also agrees well wid alculation which had been done by
 hole

Vitor's work [11].
 a toy model. Also,

จหำำลงกรณ์มหาวิทยาลัย

In the plevious section, we have discussed the quasinormal modes of non-rotating BTZ black hole. Now, we will move to a little bit more complicated system. Rotating BTZ black hole, it is also an exact solution in three dimensional stationary spacetime with the presence of a negative cosmological constant. The first study on quasinormal modes of rotating BTZ black hole was investigated by Birmingham [12]. He suggested the relation between quasinormal modes and Choptuik scaling parameter. Via AdS/CFT, he found that one can interpret Choptuik parameter as timescale for the returning to thermal equilibrium in dual conformal
field theory. Moreover, Birmingham also found the analytical way to compute the quasinormal frequencies of this black hole. We shall therefore follow the argument in [12] for this section. Let's recall rotating BTZ metric in the following form
$d s^{2}=-\left(-M+\frac{r^{2}}{l^{2}}+\frac{J^{2}}{4 r^{2}}\right) d t^{2}+\left(-M+\frac{r^{2}}{l^{2}}+\frac{J^{2}}{4 r^{2}}\right)^{-1} d r^{2}+r^{2}\left(d \phi-\frac{J}{2 r^{2}} d t\right)^{2}$,
again $J=M a$ is black hole total angular momentum. From the metric above, one can calculate event horizons by g, (4.18)

Finally, the determinant of the metric tensor is $\sqrt{-g}=r$.

4.2.1 Wave Equation of Massive Scalar Field

The equation of motion for a real massive scalar field in curved spacetime is described by

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \Phi(x)\right)-\frac{\mu}{l^{2}} \Phi(x)=0 \tag{4.20}
\end{equation*}
$$

where mass of scalar field is denoted by μ. As before, we use $(t, r, \phi) \longrightarrow(0,1,2)$. We can write down all the non-vanishing components of (4.20)

$$
\begin{align*}
& \frac{1}{\sqrt{-g}}\left[\partial_{0}\left(g^{00} \sqrt{-g} \partial_{0} \Phi+g^{20} \sqrt{-g} \partial_{2} \Phi\right)+\partial_{1}\left(g^{11} \sqrt{-g} \partial_{1} \Phi\right)\right. \\
&\left.+\partial_{2}\left(g^{02} \sqrt{-g} \partial_{0} \Phi+g^{22} \sqrt{-g} \partial_{2} \Phi\right)\right]-\frac{\mu}{l^{2}} \Phi=0 \tag{4.21}
\end{align*}
$$

Using the following ansatz

$$
\begin{equation*}
\Phi=R(r) e^{-i \omega t} e^{i m \phi} \tag{4.22}
\end{equation*}
$$

where again m is angular quantum $\left.r^{r}\right)$. Then substitute the ansatz into (4.21),

$$
\left.\frac{J m \omega}{\left(\frac{J^{2}}{4 r^{2}}+A\right)}\right] R(r) e^{-i \omega t} e^{i m \phi}
$$

$$
\partial_{2}\left(g^{02} \sqrt{-g} \partial_{0} \Phi+g^{22} \quad 9^{2} \quad \frac{A m^{2}}{\left(\frac{J^{2}}{4 r^{2}}+A\right)}\right] R(r) e^{-i \omega t} e^{i m \phi}
$$

 BTZ background

Then, we introduce
ศูนย์วิทยทิร่งยากร

$$
\begin{aligned}
\frac{d r}{d z} & =\frac{1}{2}\left[\frac{r_{+}^{2}-r_{-}^{2}}{(z-1)^{3 / 2}\left(z r_{-}^{2}-r_{+}^{2}\right)^{1 / 2}}\right] \\
\frac{d^{2} r}{d z^{2}} & =\frac{r_{+}^{2}-r_{-}^{2}}{4}\left[\frac{3 r_{+}^{2}+r_{-}^{2}(1-4 z)}{(z-1)^{5 / 2}\left(z r_{-}^{2}-r_{+}^{2}\right)^{3 / 2}}\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{d R}{d z} & =\frac{R^{\prime}}{2}\left[\frac{r_{+}^{2}-r_{-}^{2}}{(z-1)^{3 / 2}\left(z r_{-}^{2}-r_{+}^{2}\right)^{1 / 2}}\right] \\
\frac{d^{2} R}{d z^{2}} & =\frac{R^{\prime \prime}}{4}\left[\frac{r_{+}^{2}-r_{-}^{2}}{(z-1)^{3 / 2}\left(z r_{-}^{2}-r_{+}^{2}\right)^{1 / 2}}\right]^{2}+\frac{R^{\prime}\left(r_{+}^{2}-r_{-}^{2}\right)}{4}\left[\frac{3 r_{+}^{2}+r_{-}^{2}(1-4 z)}{(z-1)^{5 / 2}\left(z r_{-}^{2}-r_{+}^{2}\right)^{3 / 2}}\right]
\end{aligned}
$$

Now, we transform the following term into z variable

$$
\begin{aligned}
&\left(A+\frac{J^{2}}{4 r^{2}}\right) \longrightarrow \frac{z\left(r_{+}^{2}-r_{-}^{2}\right)^{2}}{l^{2}(z-1)\left(z r_{-}^{2}-r_{+}^{2}\right)}, \\
&\left(\frac{A}{r}+\frac{2 r}{l^{2}}-\frac{J^{2}}{4 r^{3}}\right) \longrightarrow \frac{\left(r_{+}^{2}-r_{-}^{2}\right)\left[r_{+}^{2}(2+z)-r_{-}^{2} z(1+2 z)\right]}{l^{2}(z-1)^{1 / 2}\left(z r_{-}^{2}-r_{+}^{2}\right)^{3 / 2}}, \\
&\left(\frac{\omega^{2}}{\left(A+\frac{J^{2}}{4 r^{2}}\right)}-\frac{J m \omega}{r^{2}\left(A+\frac{J^{2}}{4 r^{2}}\right)}-\frac{A m^{2}}{r^{2}\left(A+\frac{J^{2}}{4 r^{2}}\right)}\right) \longrightarrow \frac{(z-1)}{\left.z\left(r_{+}^{2}\right)-r_{-}^{2}\right)^{2}}\left[z\left(r_{-}^{2}-r_{+}^{2}\right) l^{2} \omega^{2}-\right. \\
&\left.2 m \omega r_{-} r_{+}(z-1) l-m^{2}\left(r_{-}^{2}-z r_{+}^{2}\right)\right]
\end{aligned}
$$

Ultimately, we obtain the radia
where,

Let's define a new radial

R
Then, the radial e

here,

$$
\begin{equation*}
\left.z(1-z) \frac{d^{2} R}{d z 2} \frac{\pi}{d d^{+}} \longrightarrow \frac{C}{1-z}\right) R=0 \tag{4.24}
\end{equation*}
$$

where prime representsderivative with respect to the variable z. Here,

$$
\begin{aligned}
& \text { ศูนยวิทยทรัพยากร }
\end{aligned}
$$

$$
\begin{align*}
& \alpha^{2}=-\tilde{A} \text {, } \\
& \beta=\frac{1}{2}(1 \pm \sqrt{1+\mu}) . \tag{4.27}
\end{align*}
$$

We choose $\alpha=-i \sqrt{\tilde{A}}$ and $\beta=\frac{1}{2}(1-\sqrt{1+\mu})$. At horizon $z=0$, there are two linearly independent solutions of (4.26) which take the form $F(a, b, c, z)$ and $z^{1-c} F(a-c+1, b-c+1,2-c, z)[39]$. According to the definition of the quasinormal modes, the purely ingoing modes at horizon are given by

$$
\begin{equation*}
R(z)=z^{\alpha}(1-z)^{\beta} F(a, b, c, z) \tag{4.28}
\end{equation*}
$$

Then, using the linear transformation which is given by [39]. Therefore, the above solution can be transformed to solution at infinity $z=1$

$$
\begin{array}{r}
R(z)=z^{\alpha}(1-z)^{\beta}(1-z)^{c-a-b} \frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)} F(c-a, c-b, c-a-b+1,1-z) \\
+z^{\alpha}(1-z)^{\beta} \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} F(a, b, a+b-c+1,1-z) \tag{4.29}
\end{array}
$$

Obviously, the first term vanishes when $z=1$ since $\beta+c-a-b$ is always positive. But we need the boundary con the field must completely vanish at infinity. So, this gives us \qquad and term
where ($n=0,1,2$,. rotating BTZ black

4.2.2 Results and D,
 These two results parameters which

 The above relations will reduce to (4.16) In the original paper [12], they further investigate th Ponto not discuss it siguce it is beyond our scope here. However, this example also shows us an important property of the fuasinormal 수odes of threclimensional black frequencles.

4.3 Quasinormal Modes of 3d AdS-Schwarzschild Black Hole

So far, we have seen two examples of the computation about the quasinormal modes of three dimensional black holes. In those cases, one can manage to reduce
the wave equation to the hypergeometric differential equation and determine the quasinormal frequencies. Similarly, in this section, we shall further study on three dimensional black hole namely, three dimensional AdS-Schwarzschild black hole. This work was pioneered by Siopsis and Musiri [13]. They proposed the perturbative calculation to obtain the quasinormal frequencies of AdS-Schwarzschild black hole in three and five dimensions. Hence, this section is covered by their work. Let's begin by introducing d-dimensional AdS Schwarzschild metric

$$
\begin{equation*}
\left.d s^{2}=-\left(\frac{r^{2}}{R^{2}}+1-\frac{\omega_{d-1} M}{r^{d}}\right)\right) t^{2}+\frac{d r^{2}}{\left(\frac{r^{2}}{R^{2}}+1-\frac{\omega_{d-1} M}{r^{d-3}}\right)}+r^{2} d \Omega_{d-2}^{2} \tag{4.32}
\end{equation*}
$$

where R is AdS radius black hole, then, the me

So, we can derived b

For now we consider in th e d A. A.

The event horizon above metric into

$$
\begin{equation*}
\overbrace{}^{2} s^{2}=\frac{1}{2}\left(r^{2}-r^{2}\right) d t<\frac{R^{2} d r^{2}}{r^{2}} d r^{2}+r^{2} d x^{2} \tag{4.36}
\end{equation*}
$$

$$
\begin{gathered}
\text { Then, the metथil tensor and its inverse are } \\
g_{\mu \nu}^{\mu \nu}=\left(\begin{array}{ccc}
-\frac{R^{2}}{\left(r^{2}-r_{+}^{2}\right)} & 0 & 0 \\
0 & \frac{\left(r^{2}-r_{+}^{2}\right)}{R^{2}} & 0 \\
0 & 0 & r^{-2}
\end{array}\right)
\end{gathered}
$$

The determinant of metric tensor is defined by $\sqrt{-g}=r$.

4.3.1 The Wave Equation

We now consider massive Klein-Gordon equation in curved spacetime

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \Phi(x)\right)-m^{2} \Phi(x)=0 \tag{4.37}
\end{equation*}
$$

Then, the spacetime indices are denoted by $(t, r, x) \longrightarrow(0,1,2)$. Let us write down all the non-zero components of the above equation

$$
\frac{1}{\sqrt{-g}}\left[\partial_{0}\left(g^{00} \sqrt{-g} \partial_{0} \Phi\right)+\partial_{1}\left(g^{11} \sqrt{ }{ }^{\Phi}\right)+\partial_{2}\left(g^{22} \sqrt{-g} \partial_{2} \Phi\right)\right]-m^{2} \Phi(x)=0
$$

The wave equation becom

The solution may b

 within the range $0<y$ and $y=1$ corresponds to $r \longrightarrow r_{+}$. Now wing chain rule

$\left(\frac{r^{2}-r_{+}^{2}}{r^{2}}\right) \partial_{1}^{2} \Phi=\left(\frac{r^{2}-r_{+}^{2}}{R^{2}}\right) e^{-i(\omega t+p x)}\left[\left(\frac{4 r_{+}^{4}}{r^{6}}\right) \psi^{\prime \prime}+\left(\frac{6 r_{+}^{2}}{r^{4}}\right) \psi^{\prime}\right]$,
$\frac{1}{R^{2}}\left[2 r+\left(\frac{r^{2}-r_{+}^{2}}{R^{2}}\right)\right] \partial_{1} \Phi=-\left(\frac{2 r_{+}^{2}}{R^{2} r^{3}}\right)\left[2 r+\frac{\left(r^{2}-r_{+}^{2}\right)}{r}\right] \psi^{\prime} e^{-i(\omega t+p x)}$.
Finally, we obtain the radial equation

$$
\begin{equation*}
(y-1) y^{2}\left[(y-1) \psi^{\prime}\right]^{\prime}+\hat{\omega}^{2} y \psi+\hat{p}^{2} y(y-1) \psi+\frac{\hat{m}^{2}}{4}(y-1) \psi=0 \tag{4.40}
\end{equation*}
$$

where,

$$
\begin{equation*}
\hat{\omega}=\frac{\omega R^{2}}{2 r_{+}}, \quad \hat{p}=\frac{p R}{2 r_{+}}, \quad \hat{m}=m R . \tag{4.41}
\end{equation*}
$$

Now, we shall investigate the solution on the near-horizon region. Let's consider

$$
x \equiv(1-y) \simeq 0, \quad(y \longrightarrow 1)
$$

Then our equation takes the form

$$
(1-x)^{2} x^{2} \frac{d^{2} \psi}{d x^{2}}+(1-x)^{2} x \frac{d \psi}{d x}+\hat{)}^{2}(1-x) \psi-\hat{p}^{2}(1-x) x \psi-\frac{\hat{m}^{2}}{4} x \psi=0,
$$

as $x \longrightarrow 0$,

Substitute this result in e a and

$$
x \psi=0
$$

The asymptotiog behavior at infinity $(y \longrightarrow 0)$ can be determined in the similar way. Then the solution at infinity is defined as 9

Note for a massless case $(m=0), \beta_{+}=1, \beta_{-}=0$. We now write the solution of (4.40)

$$
\begin{equation*}
\psi=y(1-y)^{i \hat{\omega}} F(y) \tag{4.44}
\end{equation*}
$$

Finally, the radial equation become the standard hypergeometric equation (for a massless case) [39]

$$
\begin{equation*}
y(1-y) F^{\prime \prime}+[2-(3+2 i \hat{\omega}) y] F^{\prime}-\left[\hat{p}^{2}-2 i \hat{\omega}-\hat{\omega}^{2}+1\right] F=0 \tag{4.45}
\end{equation*}
$$

comparing with (4.26), we get

$$
\begin{aligned}
a & =1+i(\hat{p}+\hat{\omega}), \\
b & =1+i(\hat{p}-\hat{\omega}), \\
c & =2 .
\end{aligned}
$$

Then, the solution at infinity $(y \longrightarrow 0)$ can be written as [39]

$$
\begin{equation*}
\psi=y(1-y)^{i \hat{\omega}} F(1+i(\hat{p}+\hat{\omega}), 1+i(\hat{p}-\hat{\omega}), 2 ; y) . \tag{4.46}
\end{equation*}
$$

ศูนย์วิทยทรัพยากกร

Quasinormal frequencies of massless scalar field in three-dimensional AdS Schwarzschild black hole are investigated. As shown by (4.49), these frequencies also have negative imaginary part and depend only on black hole intrinsic parameter (hidden in \hat{p}). From the result, one sees that as the black hole radius $\left(r_{+}\right)$decrease the real part of quasinormal frequencies increase while the imaginary part depends on integer n only. However, Schwarzschild metric was originally discovered in four dimensional spacetime but the study of quasinormal modes in three dimensions shows the possibility to transform the wave equation into hypergeometric function
and obtain an analytical formula for the quasinormal frequencies. This means that the lowest modes $(n=0)$ indicate the smallest damping rate. As we already mentioned in the previous section, the gravitational signals that reaches us are in these fundamental modes.

In the next chapter, we will continue the study on quasinormal modes of black hole in four dimensions by attempting to use another approach to determine the quasinormal frequencies.

Chapter V

QUASINORMAL MODES OF FOUR DIMENSIONAL BLACK

of questioning
-W. Heisenberg

In the previous sect , wisharise t quasinormal modes of three dimensional black holes whien casaresisher fir vave equation can be reduced to
 analytically. Howe ically by the meth 3) hose frequencies numerLeaver in 1985 [9] ar beconmonn methong calculating the quasinormal frequencies. Hence, in this section, we, will study the massive scalar field in
 using this techaque.

จหาลงกรณ์มหาวิทยาลัย
 5.1 Quasinormal Modes of Schwarzschild Black Hole

The study of quasinormal modes of Schwarzschild black hole was firstly investigated by Chandrasekhar in 1975 [32]. He has succeeded in finding some of the Schwarzschild quasinormal frequencies. His work had open widely many calculation techniques since then. Schwarzschild black hole is the most often used in the study of quasinormal modes because it is the simplest solution of Einstein field
equations. Another interesting work has been suggested by A. Starobinskii and I. Novikov; they studied a massive scalar field in Schwarzschild background. As a result they found that the massive modes will decay more slowly than the massless cases. So, it is very interesting to investigate how the scalar field's mass will affect the damping rate of the quasinormal frequencies. This question was answered by Konoplya and Zhidenko [40] in 2005. In this section, we shall therefore review their work in detail.

Finally, the determinant of metric tensor is determined to be

$$
\sqrt{-g}=r^{2} \sin \theta
$$

Here, all the prescription we need is calculated. Next, we are going to formulate the Schrödinger-like equation for a massive scalar field evolve in the four dimensional Schwarzschild background.

5.1.1 Scalar Perturbation Near Schwarzschild Black Hole

The dynamical of a massive scalar field in the curved spacetime is described by the Klein-Gordon equation (4.20)

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \Phi(x)\right)+m^{2} \Phi(x)=0 \tag{5.3}
\end{equation*}
$$

According to the Schwarzschild metric (5.1), all the non-vanishing components of Klein-Gordon in curved background can be expressed
$\left.\frac{1}{\sqrt{-g}}\left[\partial_{0}\left(g^{00} \sqrt{-g} \partial_{0} \Phi\right)+\partial_{1}\left(g^{11}\right)\right) \right\rvert\,$) $\left.\left(g^{22} \sqrt{-g} \partial_{2} \Phi\right)+\partial_{3}\left(g^{33} \sqrt{-g} \partial_{3} \Phi\right)\right]$

Here, we denote the following ansatz

where $Y(\theta, \phi)$ is $s p h$ as follows

$$
\partial_{11} \Phi_{6} \equiv e^{-i \omega t} Y(\theta, \phi)\left(\frac{\psi^{\prime \prime}}{r}-\frac{2 \psi^{2}}{r^{2}}+\frac{2 \psi}{r^{3}}\right)
$$

where "prime?

$$
\begin{aligned}
& \text { the Klein-Gordon equation becoms } \\
& {\left[-\omega_{r}^{2}-\underset{r}{2}-i\right. \text {. }} \\
& \left.-\cot \theta \frac{\psi}{r^{3}} e^{-i \omega t} \partial_{2} Y-\frac{\psi}{r^{3} \sin ^{2} \theta} e^{-i \omega t} \partial_{33} Y\right]+m^{2} \frac{\psi}{r} e^{-i \omega t} Y=0 .
\end{aligned}
$$

Then divide above equation with common factor $\frac{f^{-1} e^{-i \omega t} Y}{r}$

$$
\left[-\omega^{2} \psi-\psi^{\prime \prime} f^{2}-f f^{\prime} \psi^{\prime}+\frac{\psi}{r} f f^{\prime}-\frac{\psi f}{Y r^{2}}\left(\partial_{22} Y+\cot \theta \partial_{2} Y+\frac{1}{\sin ^{2} \theta} \partial_{33} Y\right)\right]+m^{2} f Y=0
$$

Now let's define a tortoise coordinate as

$$
d r_{*}=f(r)^{-1} d r .
$$

Thus we use an ordinary chain rule to transform radial coordinate r to a new one

$$
\begin{aligned}
\frac{d^{2} \psi}{d r_{*}^{2}} & =\frac{d}{d r}\left(\frac{d \psi}{d r} \cdot \frac{d r}{d r_{*}}\right) \frac{d r}{d r_{*}} \\
& =f^{2} \psi^{\prime \prime}+f f^{\prime} \psi^{\prime}
\end{aligned}
$$

Therefore, we get

$$
\frac{d^{2} \psi}{d r_{*}^{2}}+\omega^{2} \psi+f\left(-m^{2}-\frac{f^{\prime}}{r}+\frac{1}{r^{2} Y}\left[\partial_{22} Y+\cot \theta \partial_{2} Y+\frac{1}{\sin ^{2} \theta} \partial_{33} Y\right]\right) \psi=0
$$

Note that in the bracket [...] is $1+$ art of Laplacian operator in spherical coordinates. Also the sph must be satisfied the following eigenvalue equation [41]

Finally, we obtain t

appendix C. 2 for the plotting of the effective potentiar.

5.1.2 Continu H^{T}

After we get (5.5), we thus determel quasinormal frequencies by the continued fractiof methed. $\partial \mathrm{h} \% \mathrm{hec}$ substituting thid appropriate power series solution into wave equation, one can
 numerically. We now first introduce a proper solution for (5.5) which is defined by [40]

$$
\begin{equation*}
\psi(r)=e^{i r \xi} r\left(2 i M \xi+\frac{i M m^{2}}{\xi}\right)\left(1-\frac{2 M}{r}\right)^{-2 i M \omega} N(r) \tag{5.7}
\end{equation*}
$$

where,

$$
\xi \equiv \sqrt{\omega^{2}-m^{2}}, \quad N(r) \equiv \sum_{n} a_{n}\left(1-\frac{2 M}{r}\right)^{n} .
$$

In addition, before we substitute this solution into the wave equation, we must retransform the tortoise coordinate r_{*} to the former radial coordinate r first. Note that, in this section, we will describe the step of calculation roughly. Anyone who interested in the detail would be recommended to see Appendix B. 1 for a mathematica's code which is developed by Alexander Zhidenko. This code helped us to simplify many tedious works that we have to face if we choose the traditional way instead (by hand). However, we attempt to illustrate each step of calculation as much as possible. Hence, after we insert (5.7) into (5.5) and divide by the common factor $\left.e^{i r \xi} r\left(2 i M \xi+\frac{i M m^{2}}{\xi}\right)(M)\right)^{-2 i M \omega}$, we get

$$
N(r)=0,
$$

where $A(r), B(r)$ and a new variable z

Hence, the function coordinate r to a new

$$
(z)=0
$$

Then, multiply all the cofficients by pareheter z

$$
\begin{array}{r}
A\left(\ldots z^{2}+\ldots z^{1}+\ldots z^{0}\right) \sum_{n} n(n-1) a_{n} z^{n}+B\left(\ldots z^{2}+\ldots z^{1}+\ldots z^{0}\right) \sum_{n} n a_{n} z^{n} \\
\\
+C\left(\ldots z^{2}+\ldots z^{1}\right) \sum_{n} a_{n} z^{n}=0
\end{array}
$$

Let us define

$$
\begin{array}{r}
A\left(\Delta_{a} z^{2}+\square_{a} z^{1}+\nabla_{a} z^{0}\right) \sum_{n} n(n-1) a_{n} z^{n}+B\left(\Delta_{b} z^{2}+\square_{b} z^{1}+\nabla_{b} z^{0}\right) \sum_{n} n a_{n} z^{n} \\
+C\left(\Delta_{c} z^{2}+\square_{c} z^{1}\right) \sum_{n} a_{n} z^{n}=0
\end{array}
$$

Then, we need to expand all the term which takes the following

$$
\begin{array}{r}
A\left(\nabla_{a}\right) \sum_{n} n(n-1) a_{n} z^{n+0}+A\left(\square_{a}\right) \sum_{n} n(n-1) a_{n} z^{n+1}+A\left(\Delta_{a}\right) \sum_{n} n(n-1) a_{n} z^{n+2} \\
+B\left(\nabla_{b}\right) \sum_{n} n a_{n} z^{n+0}+B\left(\square_{b}\right) \sum_{n} n a_{n} z^{n+1}+B\left(\Delta_{b}\right) \sum_{n} n a_{n} z^{n+2} \\
+C\left(\square_{c}\right) \sum_{n} a_{n} z^{n+1}+C\left(\Delta_{c}\right) \sum_{n} a_{n} z^{n+2}=0 .
\end{array}
$$

Moreover, we can rearrange the above equation into the final form
 ($n \longrightarrow n-2$). Then, o

We can shift all the indices n he above equation by $n \longrightarrow n+1$ get the following results then, if one follows $\frac{1}{7}$

$\tilde{\alpha} \longrightarrow \alpha_{n}=(n+1)(\%$ 大 $1-4 M i \omega)$,

Thus, from (5.9) one can prove that

$$
\frac{a_{n+1}}{a_{n}}=-\frac{\gamma_{n+1}}{\beta_{n+1}-\frac{\alpha_{n+1} \gamma_{n+2}}{\beta_{n+2}-\alpha_{n+2} \gamma_{n+2} / \ldots}}=-\frac{\beta_{n}}{\alpha_{n}}+\frac{\gamma_{n}}{\alpha_{n}}\left[\frac{\alpha_{n-1}}{\beta_{n-1}-\frac{\gamma_{n-1} \alpha_{n-2}}{\beta_{n-2}-\gamma_{n-2} \alpha_{n-3} / \ldots}}\right] .
$$

Hence, the final equation can be expressed as

$$
\begin{equation*}
\beta_{n}-\frac{\alpha_{n-1} \gamma_{n}}{\beta_{n-1}-\frac{\alpha_{n-2} \gamma_{n-1}}{\beta_{n-2}-\alpha_{n-3} \gamma_{n-2} / \ldots}}=\frac{\alpha_{n} \gamma_{n+1}}{\beta_{n+1}-\frac{\alpha_{n+1} \gamma_{n+2}}{\beta_{n+2}-\alpha_{n+2} \gamma_{n+3} / \ldots}} . \tag{5.10}
\end{equation*}
$$

So in principle, the above equation can be solved numerically.

5.1.3 Results and Discussion

As mentioned above, one can numerically solve the above equation, by calculating for ω and then increase the depth of continued fraction, then see if ω does not change significantly. Hence, we obtain the correct answer for the quasinormal frequencies. Some of the results are shown in Table 5.1. They have been determined by using the code appears in Appendix B.2. It appears that the real part of quasinormal frequencies decrease as the mode " n " increase. However, during the numerical calculation, one can foul' be increased as the mode n order to obtain the quasinormal frequencies correctly. Fort one oye the convergence of the continued fraction by follo \Longrightarrow oll \longrightarrow t's \longrightarrow as done in $[10,40]$. This will also improve the accuract \quad enisumed calculating time. The results in which usins in $/ 1 /$ r th N Win $\operatorname{Fig}(5.1)$. As illustrated,
 field's mass increases \quad a $\quad \mathrm{h} \rightarrow \mathrm{c}_{\mathrm{c}} \mathrm{O}$ a me particular mass value, imaginary part vanishe 1 \% of long living modes namely,

Table 5.1: First three fundamental modes for $M=1, l=0$ in massless case

> ศูนย์วิทยทรัพยากร
> จุหาลงกรณ่มหาวิทยาลัย

Figure 51 . This shows the first three rundamental moats at each particular value of the scalar field mass (at fixed $M=1$) by using the Nollert's improvement. This figure is provided by A. Zhidenko et al, [40].

Chapter VI

QUASINORMAL MODES OF FIVE DIMENSIONAL BLACK

At present, the bec adiquaraishary quantum gravity is string theory.
 more than four. So, it is ver holes in higher dim 3 cases since its cor dimensions. Hence,
 from an ordinary four this crup inves ate quasinormal modes of black holes in five dimensional spacetime. First, we further study a large AdS
 order perturbatjon method. Then, we shall introduce a new black hole solution from the Einstein-Maxwell theory namely rotang Kaluza-KNH black hole with squashe approximation technique.

6.1 Quasinormal Modes of 5d AdS-Schwarzschild Black Hole

As in the Chapter 4, we have already discussed three dimensional AdS Schwarzschild black hole and also compute its quasinormal frequencies. Then for now, we shall
further investigate the quasinormal modes of a scalar field in five dimensional AdS Schwarzschild background. By following the work which has been done in Siopsis's work [13], one can manage to transform the Klein-Gordon equation into known differential equation namely, the Heun equation. Afterward, the Heun differential equation can be reduced to hypergeometric equation under some proper coordinate transformation. In addition, an obtained equation can be divided into two parts, (i) an ordinary hypergeometric equation, (ii) this part can be regarded as a perturbation term of the main equation. According to this method, we obtain the quasinormal frequencies analy) The study of quasinormal modes for 5 d AdS black holes would be of the thermal system w^{2} ges in nsional conformal field theory. Note that, this section $\mathrm{d} \mathrm{b} 4 \mathrm{Si} \longrightarrow$ er [13].
From (4.32), we derive ($d=5$)
where R is AdS radiv or is ar tho ont. Then, from (4.34), an event horizon can be de^{+}

$$
g^{\mu \nu}=\left(\begin{array}{ccccc}
-\frac{R^{2} r^{2}}{\left(r^{4}-r_{+}^{4}\right)} & 0 & 0 & 0 & 0 \\
0 & \frac{\left(r^{4}-r_{+}^{4}\right)}{R^{2} r^{2}} & 0 & 0 & 0 \\
0 & 0 & r^{-2} & 0 & 0 \\
0 & 0 & 0 & r^{-2} & 0 \\
0 & 0 & 0 & 0 & r^{-2}
\end{array}\right)
$$

The last one is determinant of metric tensor $\sqrt{-g}=r^{3}$. We shall denote spacetime indices with $(0,1,2,3,4) \longrightarrow(t, r, x, y, z)$.

6.1.1 The Wave Equation

The Klein-Gordon equation in the curved background is defined by

$$
\frac{1}{\sqrt{-g}} \partial_{\mu}\left[\sqrt{-g} g^{\mu \nu} \partial_{\nu} \Phi\right]-m^{2} \Phi=0
$$

here m represents mass of scalar field. Thus, non-vanishing components of the above equation may take the form

Hence, we get

$$
\left.\left.\frac{1}{\sqrt{-g}}\left[\partial_{0}\left(g^{00} \sqrt{-g} \partial_{0} \Phi\right)+\right]\right]^{11} \sqrt{-g} \partial_{1} \Phi\right)+\partial_{2}\left(g^{22} \sqrt{-g} \partial_{2} \Phi\right)
$$

$$
+\partial_{3}\left(g^{33}\right)
$$

$\sqrt{-g}\left[g^{22} \partial_{2}^{2} \Phi+g^{33} \partial_{3}^{2} \tau \quad \Phi\right]$ ai $2 \mathrm{aid}^{2}$
 the wave equation

$$
\begin{equation*}
-\frac{R^{4}}{r^{2}\left(1-\frac{r_{4}^{4}}{r^{4}}\right)} \partial_{0}^{2} \Phi r^{r^{2}} \text { We may introduce tl follome }+\frac{R^{2}}{r^{2}} \vec{\nabla}^{2} \Phi=m^{2} R^{2} \Phi \tag{6.2}
\end{equation*}
$$

 We thus changeythe radial coordinate r to y

จุหาลงกรณ์มหหวิวิทยาลัย

So as we approach an event horizon that means $y \longrightarrow 1$ while at infinity y goes to zero. Now let's consider the following chain rule

$$
\begin{aligned}
& \partial_{1} \Phi=-\frac{2 r_{+}^{2}}{r^{3}} \psi^{\prime} e^{-i(\omega t+\vec{p} \cdot \vec{x})} \\
& \partial_{1}^{2} \Phi=\frac{4 r_{+}^{4}}{r^{6}} \psi^{\prime \prime} e^{-i(\omega t+\vec{p} \cdot \vec{x})}+\frac{6 r_{+}^{2}}{r^{4}} \psi^{\prime} e^{-i(\omega t+\vec{p} \cdot \vec{x})}
\end{aligned}
$$

here, we denote the prime sign as derivative with respect to y. Therefore each components of the wave equation can be calculated

$$
\begin{aligned}
m^{2} R^{2} \Phi & =m^{2} R^{2} \psi e^{-i(\omega t+\vec{p} \cdot \vec{x})} \\
\frac{R^{2}}{r^{2}} \vec{\nabla}^{2} \Phi & =-\frac{|\vec{p}|^{2} R^{2}}{r^{2}} \psi e^{-i(\omega t+\vec{p} \cdot \vec{x})}, \\
-\frac{R^{4}}{r^{2}\left(1-\frac{r_{+}^{4}}{r^{4}}\right)} \partial_{0}^{2} \Phi & =\frac{\omega^{2} R^{4}}{r^{2}\left(1-y^{2}\right)} \psi e^{-i(\omega t+\vec{p} \cdot \vec{x})}, \\
\frac{1}{r^{3}} \partial_{1}\left[\left(r^{5}-r_{+}^{4} r\right) \partial_{1} \Phi\right] & =\left(4\left(1-y^{2}\right) \psi^{2} \psi^{\prime \prime}+\left[6\left(1-y^{2}\right) y+2 y^{3}-10 y\right] \psi^{\prime}\right) e^{-i(\omega t+\vec{p} \cdot \vec{x})} .
\end{aligned}
$$

The exponential factor can
en we obtain the radial equation

1. Let us define a new variable

Hence, the radial equaton (6.4) in the norizon limit becomes

$$
\begin{equation*}
4 x^{2} \frac{d^{2} \psi}{d x^{2}}+4 x \frac{d \psi}{d x}+\frac{\hat{\omega}^{2}}{4} \psi-\frac{\hat{p}^{2}}{4} x \psi-\frac{\hat{m}^{2}}{4} x \psi=0 . \tag{6.5}
\end{equation*}
$$

We introduce power series solution

$$
\begin{aligned}
\psi & =\sum_{n=0}^{\infty} a_{n} x^{n+\alpha}, \\
& =x^{\alpha}\left(a_{0}+a_{1} x+a_{2} x+\ldots\right), \\
& \simeq x^{\alpha} a_{0} .
\end{aligned}
$$

After substituting the above solution into the reduced wave equation, we thus obtain

$$
4 \alpha(\alpha-1) x^{\alpha}+4 \alpha x^{\alpha}+\frac{\hat{\omega}^{2}}{4} x^{\alpha}=0
$$

where we ignore the higher order term of power of x. Then, we obtain a constraint equation for α

$$
\alpha= \pm \frac{i \hat{\omega}}{4} .
$$

Finally, we approximately obtain in in ine hear horizon region

We use the above arg, we get

For massless case $(m) \approx$ However, there is another singularity occurs at ne
 parameter z as
 ; zero. We can determine this solution in the silar for fill e others region. Then, we obtain

$$
\begin{equation*}
\psi(y)=y^{2}(1-y)^{-i \hat{\omega} / 4}\left(\frac{1+y}{2}\right)^{-\hat{\omega} / 4} F(y) \tag{6.9}
\end{equation*}
$$

After substituting this solution into the radial wave equation (for massless case), one obtain

$$
\begin{equation*}
F^{\prime \prime}+\left[\frac{3}{y}+\frac{(1-i \hat{\omega} / 2)}{y-1}+\frac{(1-i \hat{\omega} / 2)}{y+1}\right] F^{\prime}+\left[\frac{(2-(1+i) \hat{\omega} / 4)^{2} y-q}{y\left(y^{2}-1\right)}\right] F=0, \tag{6.10}
\end{equation*}
$$

where $q=\frac{3(-1+i)}{4} \hat{\omega}-\frac{\hat{p}^{2}}{4}+\frac{\hat{\omega}^{2}}{4}$. This equation is so-called Heun differential equation. Any second order linear differential equation with four singularities can be transformed into this equation. We now again change the variable by $x=y^{2}$. Let's consider the following relation

$$
\begin{aligned}
\frac{d F}{d y} & =2 \sqrt{x} \frac{d F}{d x} \\
\frac{d^{2} F}{d y^{2}} & =4 x \frac{d^{2} F}{d y x^{2}}+2 \frac{d F}{d x}
\end{aligned}
$$

So, Heun equation will take the f ${ }^{r}$
$4 x \frac{d^{2} F}{d x^{2}}+2 \frac{d F}{d x}+2 \mathfrak{i}$

$$
\left.\frac{(1-i \hat{\omega} / 2)}{\sqrt{x}+1}\right] \frac{d F}{d x}
$$

where,
$\mathcal{H}_{0}=x(1-x) \frac{d^{2}}{d x^{2}}\left[2-(1-i) \frac{w}{4}-\left(3-(1+i) \frac{1}{4} x\right] \frac{d}{d x}-\left[\frac{1}{4}\left(2-(1+i) \frac{\hat{\omega}}{4}\right)^{2}-q\right]\right.$,

$$
\begin{equation*}
F=F_{0}+F_{1}+\ldots \tag{6.12}
\end{equation*}
$$

Now, let's discuss the zeroth-order equation

$$
\begin{equation*}
\mathcal{H}_{0} F_{0}=0 \tag{6.13}
\end{equation*}
$$

The standard hypergeometric equation may take the form [39]

$$
x(1-x) \frac{d^{2} F}{d x^{2}}+[c-(a+b+1) x] \frac{d F}{d x}-a b F=0
$$

Thus, from (6.13), we determine the following parameters

$$
\begin{aligned}
& c=2-(1-i) \frac{\hat{\omega}}{4} \\
& a=1+\left(-\frac{(1+i) \hat{\omega}}{8}+\frac{\sqrt{q}}{2}\right) \\
& b=1+\left(-\frac{(1+i) \hat{\omega}}{8}-\frac{\sqrt{q}}{2}\right) .
\end{aligned}
$$

Then the solution of zeroth-order equation at infinity $x=0$ is defined by [39]

$$
\begin{aligned}
F_{0} & =F(a, b, c ; x), \\
& =F\left(1+\left(-\frac{(1+i) \hat{\omega}}{8}\right.\right.
\end{aligned}
$$

Using the linear transio function, we can transform above relation to the somt
$F_{0}=$

 horizon there mus we require that

6.1.2 คq First Order Perturbation

To improve the accuracy of our result, we must include the contribution from the "perturbed" term \mathcal{H}_{1}. We need to expand B_{0} for small ω. Now let's recall

$$
\begin{equation*}
B_{0}=\frac{\Gamma\left(2-(1-i) \frac{\hat{\omega}}{4}\right) \Gamma(-i \hat{\omega} / 2)}{\Gamma\left(1-\left(\frac{1+i}{4} \hat{\omega}+\sqrt{q}\right) / 2\right) \Gamma\left(1-\left(\frac{1+i}{4} \hat{\omega}-\sqrt{q}\right) / 2\right)} \tag{6.16}
\end{equation*}
$$

For simplicity we may set $\hat{p}=0$. Hence, parameter q is shown as

$$
\begin{equation*}
\sqrt{q} \simeq \sqrt{\frac{3}{4}(-1+i)} \hat{\omega}^{1 / 2} \tag{6.17}
\end{equation*}
$$

Now we consider the Taylor's expansion (for small δ)

$$
\begin{aligned}
\Gamma(z+\delta) & =\left.\Gamma(z)\right|_{z=1}+\left.\delta \frac{d \Gamma(z)}{d z}\right|_{z=1}+\left.\delta^{2} \frac{d^{2} \Gamma(z)}{d z^{2}}\right|_{z=1}+\ldots \\
\frac{d \Gamma(z)}{d z} & =-\gamma \simeq 0.577 \\
\frac{d^{2} \Gamma(z)}{d z^{2}} & =\int_{0}^{\infty} e^{-t}(\ln t)^{2} d t=\gamma^{2}+\frac{\pi^{2}}{6}
\end{aligned}
$$

Therefore, let's consider

$$
\left.\Gamma\left(1-\frac{1}{2}\left(\frac{1+i}{4} \hat{\omega}-\sqrt{\frac{3}{4}(-1+}\right)\right)^{\prime}\right) 1+\frac{1}{2}\left(\frac{1+i}{4} \hat{\omega}+\sqrt{\frac{3}{4}(-1+i)} \hat{\omega}^{1 / 2}\right) \gamma
$$

$$
\geq(-1+i) \hat{\omega}\left(\gamma^{2}+\frac{\pi^{2}}{6}\right)
$$

$$
\left.\cdots \Gamma \cdots \cdots \cdots+\frac{i \hat{\omega}}{2}\right)=-\frac{2}{i \hat{\omega}}
$$

So, B_{0} can be comp eve

Since, any second order (e solutions. We now thus con equation. We use

where $W_{0}(x)$ is Wronskin which can be calculated via [41]

Here, $P\left(x_{1}\right)$ is the coefficient of the first derivative term. In our case, Wronskian is determined by

$$
\begin{equation*}
W_{0}=x^{-2+\frac{(1-i)}{4} \hat{\omega}}(1-x)^{-1+i \hat{\omega} / 2} \tag{6.20}
\end{equation*}
$$

Moreover, the first-order equation is considered

$$
\begin{equation*}
\mathcal{H}_{0} F_{1}=-\mathcal{H}_{1} F_{0} . \tag{6.21}
\end{equation*}
$$

One can construct the solution for the inhomogeneous differential equation via

$$
\begin{equation*}
F_{1}(x)=G_{0}(x) \int_{0}^{x} \frac{F_{0}\left(x^{\prime}\right) \mathcal{H}_{1} F_{0}\left(x^{\prime}\right) d x^{\prime}}{W_{0}\left(x^{\prime}\right)}-F_{0}(x) \int_{0}^{x} \frac{G_{0}\left(x^{\prime}\right) \mathcal{H}_{1} F_{0}\left(x^{\prime}\right) d x^{\prime}}{W_{0}\left(x^{\prime}\right)} . \tag{6.22}
\end{equation*}
$$

To expand both solutions F_{0}, G_{0}, we first transform F_{0} by using hypergeometric function identity and then expand by keeping only lowest order in $\hat{\omega}$. Thus, F_{0} may take the form
whereas for G_{0}, we may e, $F_{0}(x)=1-\frac{1-x)^{i \omega / 2}}{}+\ldots$,

Consequently, one c
where,

Then to the first

Applying the boundary condition at the horizon, so we have to set $B_{1}=0$

$$
\begin{align*}
\hat{\omega} & =-\frac{2(1+i)}{\ln 2}, \\
& =-2.89(1+i) . \tag{6.26}
\end{align*}
$$

We obtain analytical formula of quasinormal frequencies of 5d AdS Schwarzschild black hole in first-order perturbation. It is worthy to note that a positive real part can be derived by replacing the exponent of $\frac{1+y}{2}$ from $-i \hat{\omega} / 4$ to $+i \hat{\omega} / 4$.

6.1.3 Results and Discussion

So far, we have investigated quasinormal modes of five dimensional AdS Schwarzschild black hole. It appears that one can possibly transform the wave equation (6.4) into the hypergeometric differential equation and its perturbation part. First, we purely determine the zeroth-order part which is standard hypergeometric equation. Hence, one gets the quasinormal frequencies. However, if one needs to improve the results, the first-order perturbation must be included. Then, the first order solution can be constructed. ${ }^{\text {nately }}$ improved quasinormal frequencies are obtained.

6.2 Quasino tating Squashed

Einstein's theory of bined together as a fo d siojaidaldect. a) bservations confirm the cor-

 dimensionality of the spacetine candidates is the 1 heory, extra dimensions are required to fule 1cy of the theory. Some string scenario suggt ; that un-mon collifrs might be able to create mini black holes if the higher dimensions exist. Therefore, it is of particular inter-
 the extra dimeqions are expected to be compactified since we have never observed such an effect from them. Such eommetry wi웅 compactified extra dimension is
 was just extended to standard five dimensional spacetime, in this section we will consider a black hole in Kaluza-Klein geometry instead. Higher dimensional black hole equipped with this asymptotic structure is called a Kaluza-Klein black hole.

To construct such a Kaluza-Klein black hole, we equip the asymptotic structure with twisted S^{1} bundle over four dimensional flat spacetime. This leads us to the existence of Kaluza-Klein black hole with squashed horizons. Such a black hole look like five dimensional squashed black hole near the horizon and explicitly shows the Kaluza-Klein geometry at spatial infinity which is locally $\left(M^{4} \times S^{1}\right)$.

The Kaluza-Klein charged black hole with the squashed horizons was successfully constructed by Ishiara and Matsuno [43], and for the rotating case by Wang [44]. Thus, it is very interesting to study how the size of the compactified dimension affects the quasinormal modes of the Kaluza-Klein black hole.

In this section, we first begin with a brief introduction of rotating squashed Kaluza-Klein metric. Then, we will investigate the scalar perturbation around rotating squashed Kaluza-Klein black hole and try to determine its quasinormal frequencies.

6.2.1 Kaluza-Kle:

To construct the Kaluza-n the five dimensional
here R is the curvaty a field strength tensor. The solution that satisfies ar 2 a

Squashed Horizons

 $\left.F^{\mu \nu}\right)$,

$$
\begin{align*}
& { }^{6} \text { a } \tag{6.28}\\
& f(r) \text { थ }=\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{4}}, \quad k(r)_{\Sigma}=\frac{\left(r_{\infty}^{2}-r_{+}^{2}\right)\left(r_{\infty}^{2}-r_{-}^{2}\right)}{\left(r^{2}-\infty \omega_{2}\right.},
\end{align*}
$$

$$
\begin{aligned}
& \sigma_{3}=d \psi+\cos \theta d \phi,
\end{aligned}
$$

and $0<\theta<\pi, \quad 0<\phi<2 \pi, \quad 0<\psi<4 \pi$. The function $k(r)$ is squash function which characterizes the shape of our horizons. The rest undefined parameters will be termed when considering rotating black hole. This solution is a non-rotating Kaluza-Klein black hole with squashed horizons which derived by Ishihara et.al
[43]. To formulate a rotating version, Wang has suggested "squashing transformation" as follows [44]

$$
\begin{aligned}
& d r \longrightarrow k(r) d r, \\
& \sigma_{1} \longrightarrow \sqrt{k(r)} \sigma_{1}, \\
& \sigma_{2} \longrightarrow \sqrt{k(r)} \sigma_{2},
\end{aligned}
$$

Thus by following the above argument, one can transform an ordinary five dimensional Kerr black hole with equal angular momentum [45, 46] into rotating Kaluza-Klein black hole with
$\left.d s^{2}=-d t^{2}+\frac{\Sigma}{\Delta} k(r)^{2} \frac{a^{2}}{4} y^{[k}+\sigma_{3}^{2}\right]+\frac{\mu}{r^{2}+a^{2}}\left(d t-\frac{a}{2} \sigma_{3}\right)^{2}$,

The parameters are d

Where μ, a are black h

parameter respectively. The us.ardevingit sich are denoted by $r=r_{ \pm}, r=$ r_{∞}. These will restrict the ran within the range $0<r<r_{\infty}$. Note that one can obtain the

Moreover, one can eashy rove that $r_{+}^{2} \boldsymbol{\cup}_{r_{-}^{2}}^{2}=\mu-2 a^{2}$ and $\left(r_{+} r_{-}\right)^{2}=a^{4}$. To

Now consider three dimensional surface in which metric takes the form (for $t, r=$ constant)

$$
\begin{equation*}
d s^{2}=\frac{r^{2}+a^{2}}{4}\left[k(r)\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\sigma_{3}^{2}\right] . \tag{6.31}
\end{equation*}
$$

This surface can be regarded as S^{1} fiber over base space S^{2}. Note that, $\sigma_{1}^{2}+\sigma_{2}^{2}$ represents S^{2} metric. Hence, the ratio between S^{1} and base space is characterized by squash function (6.30). As $k(r) \longrightarrow 1$ our metric reduces to five dimensional

Kerr black hole. One can investigate the shape of horizon by considering function $k\left(r_{ \pm}\right)$[43]

$$
\begin{equation*}
k\left(r_{ \pm}\right)=\frac{r_{\infty}^{2}-r_{\mp}^{2}}{r_{\infty}^{2}-r_{ \pm}^{2}} . \tag{6.32}
\end{equation*}
$$

Since $k\left(r_{+}\right) \geq 1 \geq k\left(r_{-}\right)$, at the outer horizon S^{2} is larger than S^{1}, while at the inner horizon S^{2} is smaller than S^{1} [43]. These describe the shape of both horizons which is characterized by $k\left(r_{ \pm}\right)$. Note that in the case, $r_{+}=r_{-}$, the shape of horizons become perfectly S^{3}

Hence, near the horize a five-dimensional black hole with squashed horizons. To [44]. First let's introduc
where
ρ range from 0 to ∞ while r. We thus now transform our metric (6.29) to a new con may take the form [44]

where

$$
\begin{aligned}
& \text { ศูนย์วิทยทรัพยากร }
\end{aligned}
$$

$$
\begin{aligned}
& R^{2}=\frac{\left(\rho+\rho_{0}\right)^{2}}{K^{2}}, \\
& U=\left(\frac{r_{\infty}^{2}}{r_{\infty}^{2}+a^{2}}\right)^{2} \times \frac{\rho_{0}^{2}}{W^{2}-\frac{\rho r_{\infty}^{2}}{4\left(\rho+\rho_{0}\right)} V} .
\end{aligned}
$$

Then take limit $\rho \longrightarrow \infty$, ultimately the metric approaches [44]

$$
d s^{2}=-d t^{2}+d \rho^{2}+\rho^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\frac{r_{\infty}^{2}+a^{2}}{4} \sigma_{3}^{2}+\frac{\mu}{r^{2}+a^{2}}\left(d t-\frac{a}{2} \sigma_{3}\right)^{2}(6.35)
$$

The cross term between $d t$ and σ_{3} can be eliminated by introducing new coordinates

$$
\begin{aligned}
\bar{\psi} & =\psi-\frac{2 \mu a}{\left(r_{\infty}^{2}+a^{2}\right)^{2}+\mu a^{2}} t \\
\bar{t} & =\sqrt{\frac{\left(r_{\infty}^{2}+a^{2}\right)^{2}-\mu r_{\infty}^{2}}{\left(r_{\infty}^{2}+a^{2}\right)^{2}+\mu a^{2}} t}
\end{aligned}
$$

and define new parameter $\overline{\sigma_{3}} \equiv d \bar{\psi}+\cos \theta d \phi$. Hence, we obtain rotating KaluzaKlein black hole with squashed horizon in asymptotic $(\rho \longrightarrow \infty)$ limit

$$
\begin{equation*}
d s^{2}=-d \bar{t}^{2} \tag{6.36}
\end{equation*}
$$

This metric shows th Minkowski spacetime spacetime while the mension at infinity

Finally, the determinant of metric tensor is calculated

$$
\sqrt{-g}=\frac{A k^{2} \sin \theta}{8} \sqrt{\Sigma\left(r^{2}+a^{2}\right)} .
$$

We are now ready to formulate an equation of scalar perturbation around rotating Kaluza-Klein black hole with squashed horizons.

6.2.2 Scalar Field Near Rotating Squashed Kaluza-Klein Black Hole

Again, we consider the m

Hence, all the non-vants

We shall denote the spac

$3,4) \longrightarrow(\tau, r, \theta, \phi, \psi)$. We now substitute the following ansat rdon equation

where $|m| \leq l$ and defined by (6.33). Tinn, let's consider each components of field equation
$\frac{\tau-\text { component }}{1}$ Pは\&
$\frac{1}{\sqrt{-g}} \partial_{0}\left(g^{00} \partial_{0} \Phi \Phi^{\Omega}+\sqrt{-g} g^{03} \partial_{3} \Phi+\sqrt{-g} g^{04} \partial_{4} \Phi\right)=\left[\left(\left(r^{2}+a^{2}\right)^{2}+a^{2} \mu\right) \frac{\omega^{2}}{\Delta A^{2}}-\frac{2 a \mu \omega \lambda}{\Delta A}\right] \Phi$.

$$
\begin{aligned}
\frac{1}{\sqrt{-g}} \partial_{1}\left(\sqrt{-g} g^{11} \partial_{1} \Phi\right)= & {\left[\left(\frac{d \rho}{d r}\right)^{2} R^{\prime \prime}(\rho)+\left(\frac{d^{2} \rho}{d r^{2}}+\left(\frac{d \rho}{d r}\right)^{2}\left[\frac{\Delta^{\prime}}{\Delta}+\frac{\Gamma^{\prime}}{2 \Gamma}-\frac{\Sigma^{\prime}}{2 \Sigma}\right]\right) R^{\prime}(\rho)\right] } \\
& \times \frac{\Delta S(\theta) e^{-i(\omega \tau-m \phi-\lambda \psi)}}{k^{2} \Sigma}
\end{aligned}
$$

where prime denotes derivative with respect to ρ, and $\Gamma \equiv\left(r^{2}+a^{2}\right)$.
θ - component

$$
\frac{1}{\sqrt{-g}} \partial_{2}\left(\sqrt{-g} g^{22} \partial_{2} \Phi\right)=\frac{4}{\Gamma k}\left[S^{\prime \prime}(\theta)+\cot \theta S^{\prime}(\theta)\right] R(\rho) e^{-i(\omega \tau-m \phi-\lambda \psi)} .
$$

ϕ - component
$\frac{1}{\sqrt{-g}} \partial_{3}\left(\sqrt{-g} g^{33} \partial_{3} \Phi+\sqrt{-g} g^{34} \partial_{4} \Phi+\sqrt{-g} g^{30} \partial_{0} \Phi\right)=\frac{4}{\Gamma k \sin ^{2} \theta}\left[m \lambda \cos \theta-m^{2}\right]$

$$
\times R(\rho) S(\theta) e^{-i(\omega \tau-m \phi-\lambda \psi)} .
$$

ψ - component
$\frac{1}{\sqrt{-g}} \partial_{4}\left(\sqrt{-g} g^{44} \partial_{4} \Phi+\sqrt{-g} g^{40} \partial_{0} \Phi+\sqrt{-g} g^{43} \partial_{3} \Phi\right)=\left[\frac{4}{\Gamma k}\left(\frac{m \lambda \cos \theta}{\sin ^{2} \theta}-\lambda^{2} \cot ^{2} \theta\right)-\right.$

$$
\left.\frac{1}{\Delta}\left(4(\Gamma-\mu) \lambda^{2}+\frac{2 a \mu \omega \lambda}{A}\right)\right] \Phi .
$$

In addition, an eigenvalu A for $\mathrm{sl} \longrightarrow$ harmonics [41]

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}[\sin \mathrm{H} \tag{6.39}
\end{equation*}
$$

where $E=l(l+1)$ angular part yields

Now our Klein Gordon equatiowardis

$\Sigma(r) \longrightarrow \Sigma(\rho)=\frac{\rho r_{\infty}^{2}}{\rho+\rho_{0}}\left[\frac{\rho r_{\infty}^{2}}{\rho+\rho_{0}}+a^{2}\right]$,
$\Sigma^{\prime}(\rho)=\frac{\rho_{0} r_{\infty}^{2}}{\left(\rho+\rho_{0}\right)^{3}}\left[\rho r_{\infty}^{2}+a^{2}\left(\rho+\rho_{0}\right)\right]+\frac{\rho \rho_{0} r_{\infty}^{4}}{\left(\rho+\rho_{0}\right)^{3}}$,
$\Delta(r) \longrightarrow \Delta(\rho)=\frac{\left(\rho r_{\infty}^{2}+a^{2}\left(\rho+\rho_{0}\right)\right)^{2}}{\left(\rho+\rho_{0}\right)^{2}}-\frac{\mu \rho r_{\infty}^{2}}{\left(\rho+\rho_{0}\right)}$.
$\Delta^{\prime}(\rho)=\frac{\rho_{0} r_{\infty}^{2}}{\left(\rho+\rho_{0}\right)^{2}}\left[\frac{2\left(\rho r_{\infty}^{2}+\left(\rho+\rho_{0}\right) a^{2}\right)}{\left(\rho+\rho_{0}\right)}-\mu\right]$.

Let's determine these chain rule formula

$$
\begin{aligned}
\frac{d \rho}{d r} & =\frac{2 r \rho_{0} r_{\infty}^{2}}{\left(r_{\infty}^{2}-r^{2}\right)^{2}} \\
\frac{d^{2} \rho}{d r^{2}} & =\frac{2 \rho_{0} r_{\infty}^{2}\left(r_{\infty}^{2}+3 r^{2}\right)}{\left(r_{\infty}^{2}-r^{2}\right)^{3}}
\end{aligned}
$$

After a bit of tedious work, we ultimately obtain an equation of motion for a massless scalar field in rotating squashed Kaluza-Klein background
where

$$
\begin{equation*}
\left.\Theta \frac{d^{2} R(\rho)}{d \rho^{2}}+\frac{d \Theta}{d \rho} \frac{d R(\rho)}{d \rho}+\left[\tilde{\mathrm{N}}^{2}\right) \hat{1}-l(l+1)+\lambda^{2}\right] R(\rho)=0 \tag{6.41}
\end{equation*}
$$

(See appendix C. 3 for the ottiandak Our next task is to solve he asornand determine the quasinormal fre-

quencies

In order to obt:din approximation method and separate radial equation into two asymptotic regions:
 both regons will be matched in the intermediate region based on Chen [14] and Creek's work [15].

To follow the above argument, we now investigate the solution in the near horizon region ($\rho \sim \rho_{+}$). In order to formulate a known 2nd-order differential equation namely, hypergeometric equation, we first introduce a new coordinate as defined

$$
\begin{equation*}
z=\frac{\Theta}{\left(\rho+\frac{a^{2}}{r_{\infty}^{2}+a^{2}} \rho_{0}\right)^{2}} \Rightarrow \frac{d z}{d \rho}=(1-z) \frac{B}{\left(\rho+\frac{a^{2}}{r_{\infty}^{2}+a^{2}} \rho_{0}\right)}, \tag{6.42}
\end{equation*}
$$

where $B \equiv 1-\frac{\rho_{0} r_{\infty}^{2} a^{2}}{\rho\left(r_{\infty}^{4}-a^{4}\right)-a^{4} \rho_{0}}$. Thus, for the near horizon limit, the radial equation (6.41) can be expressed in the new variable as

$$
\begin{align*}
z(1-z) \frac{d^{2} R(z)}{d z^{2}}+\left(1-H_{*} z\right) \frac{d R(z)}{d z} & +\left[\frac{\mathrm{N}_{*}^{2}}{B\left(\rho_{+}\right)^{2}(1-z) z}\right. \\
& \left.-\frac{\left(l(l+1)-\lambda^{2}\right)-\Lambda\left(\rho_{+}\right)}{B\left(\rho_{+}\right)^{2}(1-z)}\right] R(z)=0 \tag{6.43}
\end{align*}
$$

where,

$$
\begin{aligned}
& \mathrm{N}_{*}^{2}=\left(1+\frac{\rho_{0}}{\rho_{+}}\right)\left[\rho_{+}+\frac{a^{2}}{r^{2}} \rho_{0}\right]^{2}\left[\omega-\frac{a \lambda \mathrm{~N}\left(\rho_{+}\right)^{2}\left(r_{\infty}^{2}+a^{2}\right)}{\rho_{0} r_{\infty}^{3}}\right]^{2}, \\
& \mathrm{H}_{*}=2-\frac{1}{B\left(\rho_{+}\right)},\left.\frac{\beta}{2}\right|_{\rho=\rho_{+} .} .
\end{aligned}
$$

Notice that, $z \longrightarrow 0 \mathrm{a} \longrightarrow$ he he $z \longrightarrow 1$ as r closes to the infinity. We redefine $z^{\alpha}(1-z)^{\beta} P(z)$. Then, we substitute a new rad $\quad 1 / 1$; \sim obtain the canonical form of the hypergeometr;
with

While deriving (6.44), it appedaceran to obtain hypergeometric equation

$$
\begin{aligned}
& \alpha_{ \pm}= \pm \frac{i \mathrm{~N},}{B(\rho+} \frac{1}{Q} \\
& \beta_{ \pm}=\frac{1}{2}\left[\left(2-i_{*}\right) \pm \sqrt{\left.\left(H_{*}-2\right)^{2}-\frac{\Psi N_{*}^{*}}{B\left(\rho_{+}\right)^{2}}+\frac{\left.\int(1+1)-\lambda^{2}\right)-\Lambda\left(\rho_{+}\right)}{B\left(\rho_{+}\right)^{2}}\right] . ~}\right.
\end{aligned}
$$

The near hor paing fornhisger momen eratons gefine by

$$
\begin{align*}
& \left.P_{N H} \text { थ1 }^{2}\right)=A_{-} z^{\alpha}(1-\boldsymbol{z})^{\beta} F\left(a_{1}, b, c ; z\right) \tag{6.45}
\end{align*}
$$

Recall that near horizon $z \longrightarrow 0$, then the above equation can be approximated as

$$
P_{N H}(z) \sim A_{-} z^{\alpha}+A_{+} z^{-\alpha},
$$

Let's define

$$
\begin{aligned}
\aleph & =\sqrt{1+\frac{\rho_{0}}{\rho_{+}}}\left[\rho_{+}+\frac{a^{2}}{r_{\infty}^{2}+a^{2}} \rho_{0}\right]^{2}\left[\omega-\frac{a \lambda \mathrm{~N}\left(\rho_{+}\right)^{2}\left(r_{\infty}^{2}+a^{2}\right)}{\rho_{0} r_{\infty}^{3}}\right] \\
y & =\frac{N^{2}\left(\rho_{+}\right) \ln z}{B\left(\rho_{+}+\rho_{0}\right)}
\end{aligned}
$$

so,

$$
\aleph y=\frac{N_{*}}{B} \ln z .
$$

Hence, we obtain another form of the near horizon solution

$$
P_{N H}(z) \sim A_{-} e^{ \pm i \aleph y}+A_{+} e^{\mp i \aleph y}
$$

The only ingoing modes are allowed at the horizon. This restrict us to $\alpha=\alpha_{-}$ and we also choose $A_{+}=0$. Moreover, the convergence of the hypergeometric function is also required. Hence, we must choose $\beta=\beta_{\text {_ }}$ Finally, we obtain the radial wave solution in the ne
To match the solutio horizon into the inte
 as $z \longrightarrow(1-z)$.
To stretch this solution into 2 $1-z$ can be writt

Then, the near horizon solution (6.47) is approximately expressed in a form
ศูนยิิทยทรัพยากร
where

$$
\begin{aligned}
& A_{2}=A_{-}\left[\frac{\mu\left(r_{\infty}^{2}-a^{2}\right)}{4 \rho_{0} r_{\infty}^{2}}\right]^{-\beta_{-} N_{*}+2} \frac{\Gamma(c) \Gamma\left(a_{1}+b-c\right)}{\Gamma\left(a_{1}\right) \Gamma(b)} .
\end{aligned}
$$

On the other hand, we now determine (6.41) in the far field limit $(\rho \longrightarrow \infty)$

$$
\begin{aligned}
\Theta & \approx \rho^{2}, \\
\Lambda & \approx\left[\frac{4 \rho_{0}^{2} r_{\infty}^{6}}{\left(r_{\infty}^{2}+a^{2}\right)^{4}} \omega^{2}-\frac{4 \lambda^{2}}{r_{\infty}^{2}+a^{2}}\right] \rho^{2}, \\
\tilde{N}^{2} & \approx \frac{\mu r_{\infty}^{2}}{\left(r_{\infty}^{2}+a^{2}\right)^{2}}\left[\omega-\frac{a \lambda\left(r_{\infty}^{2}+a^{2}\right)}{\rho_{0} r_{\infty}^{3}}\right]^{2} \rho^{4},
\end{aligned}
$$

hence, we approximately obtain an equation in the far field region

$$
\rho^{2} \frac{d^{2} R_{F F}(\rho)}{d \rho^{2}}+2 \rho \frac{d R_{F F}(\rho)}{d \rho}+\left[\Omega^{2} \rho^{2}-\left(l(l+1)-\lambda^{2}\right)\right] R_{F F}(\rho)=0,
$$

where

$$
\Omega^{2}=\frac{\mu r_{\infty}^{2}}{\left(r_{\infty}^{2}+a^{2}\right)^{2}}\left[\omega-\frac{a \lambda\left(r_{\infty}^{2}+a^{2}\right)}{\rho_{0} r_{\infty}^{3}}\right]^{2}+\left[\frac{4 \rho_{0}^{2} r_{\infty}^{6} \omega^{2}}{\left(r_{\infty}^{2}+a^{2}\right)^{4}}-\frac{4 \lambda^{2}}{\left(r_{\infty}^{2}+a^{2}\right)}\right] .
$$

Obviously, the above equation is a Bessel equation. Thus, far field solution of the field equation (6.41) can be displow) he following
where $\nu \equiv \sqrt{(l(l+1)}$ Noup) is Bessel of the first and second kind respecti= $\rho \longrightarrow 0$, the above

Now, we ready to mats of (6) 6.50). However, the different power of ρ prevent us to I ior que. We thus follow the method which has been done in [15]. atch both solutions, we first need to know an analytic expres: 21 E can be expresse fifth order

$$
\begin{aligned}
& E=l(l+1) \text { + }(a \omega)^{2} \frac{\left[2 \lambda^{2}-2 l(l+1)+1\right]}{(2 l-1) 2 l+3)}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\frac{2 \lambda^{4}[48+5(2 l-1)(2 l+3)]}{(2 l-3)(2 l+5)(2 l-1)^{3}(2 l+3)^{3}}\right]+\ldots \tag{6.51}
\end{align*}
$$

This form will be used everywhere E appears in our equation. But for E in the power of coefficient, we neglect $(a \omega)^{2}$ and higher order. Hence,

$$
\begin{aligned}
-\beta & \simeq l \\
\left(\beta+N_{*}-2\right) & \simeq-(l+1) \\
\nu & \simeq \frac{1}{2}(2 l+1) .
\end{aligned}
$$

This will restrict the validity of our results to the low black hole's angular momentum. By using the above approximation, we will obtain a constraint on coefficient B_{1} and B_{2} as follows

$$
\begin{equation*}
\frac{B_{1}}{B_{2}}=-\frac{\sqrt{\nu}}{\pi}\left[\frac{8 \rho_{0} r_{\infty}^{2}}{\mu \Omega\left(r_{\infty}^{2}-a^{2}\right)}\right]^{2 l+1} \frac{\Gamma^{2}(\sqrt{\nu}) \Gamma\left(c-a_{1}-b\right) \Gamma\left(a_{1}\right) \Gamma(b)}{\Gamma\left(a_{1}+b-c\right) \Gamma\left(c-a_{1}\right) \Gamma(c-b)} . \tag{6.52}
\end{equation*}
$$

In the far region, the far field solution can be written as

$$
\begin{equation*}
R_{F F}(\rho)=A_{\text {in }} \frac{e^{-i \Omega \rho}}{\rho}+A_{\text {out }} \frac{e^{i \Omega \rho}}{\rho} \tag{6.53}
\end{equation*}
$$

with $A_{\text {in }}$ and $A_{\text {out }}$ are defi condition, the solution
 Thus, we must set A_{i} solving the following

6.2.4 Results

To solve (6.54), we us t matand co wich is provided in Appendix B.3. Quasinormal frequerves, 6 as. Kaluza-Klein background a we found that as
 the real part of ω also but decreases later on. The right-most line case $a=0$ while the leftmost represents the case $a=0.3$ Hence, dye see that as " a " is getting larger, the numerical valpafted agsoreflapqualsob? fixed $l=2, \mu=91, a=0.1$ and plot from left to right as $\lambda=0.5$ and $\lambda=0$.

$$
\{1=0, \lambda=0, \mu=1\}
$$

$\operatorname{Re}(\omega)$

Figure 6.1: Quasino Kaluza-Klein black ho momentum, a, ranges Ir modes $\nu=\frac{1}{2}$.
d in the rotating squashed $\lambda=0, \mu=1$. The angular olin 2 to $100 . \omega$ corresponds to

In Fig 6.3 and Fig 6.4, whemy frequencies agains $2, \mu=1$ and vary is getting larger, the un (1) s , we fixed $a=0.1, l=$ in both figures. As λ is g imaginary part get blgger. While in Fig 6.5 and Fig 6.6, we fixed $a=0.1, \lambda=$ $0, \mu=1$ and
against r_{∞} ressectans modes $(l=0)$ seems to dominate ther othes however as \mathcal{C} is getting larger the fira $(9 \% 10$ a For Fig 96.6 , the real part increases as angular index l increasing. At last, Fig 6.7 and Fig 6.8, we plot the imaginary part and the real part of the quasinormal frequencies against r_{∞} for fixed $a=0.2, \lambda=0.5, \mu=1$. Each lines represent each values of the angular index l.

Figure 6.2: Quasincmal frequencies of scalar fiew in the rotang squashed

 from 2-50. For ${ }^{\text {Q }} \lambda=0, \omega$ correspords to modes $\nu=\frac{5}{2}$ while $\lambda_{0}=0.5$ relates with $v=$ จุุาลงกรณมหาวิทยาล้ย

1. Each lines show 0.5 (green), $\lambda=1$ (red $\frac{5}{2}$ (blue), 2.45 (green),

$$
\{\mathrm{a}=0.1, \mathrm{l}=2, \mu=1\}
$$

Figure 6.4: Plotting the real part against r_{∞}, for fixed $a=0.1, l=2, \mu=1$. Each lines show the differences in parameter λ, where $\lambda=0$ (blue), $\lambda=0.5$ (green), $\lambda=$ 1 (red), $\lambda=1.5$ (black). ω corresponds to modes ν as follow $\frac{5}{2}$ (blue), 2.45(green), 2.29(red) and 2(black).

$$
\{\mathrm{a}=0.1, \lambda=0, \mu=1\}
$$

 $l=2$ (red). ω corresp $/ \mathrm{c} ~ o d \mathrm{c} \hat{2}$ and foll b, p), $\frac{3}{2}$ (green) and $\frac{5}{2}$ (red)

Figure 6.6: Plotting the real part against r_{∞}, for fixed $a=0.1, \lambda=0, \mu=1$. Each lines show the differences in parameter l, where $l=0$ (blue), $l=1$ (green), $l=2$ (red). ω corresponds to modes ν as follow $\frac{1}{2}$ (blue), $\frac{3}{2}$ (green) and $\frac{5}{2}$ (red).

Figure 6.7: Plotting $1 /$. $1 /$ 2
 $l=3$ (red). whereas r_{C} in \quad in u corresponds to modes ν as follow 1.41 (blue), 2.40 g

$$
\{\mathrm{a}=0.2, \lambda=0.5, \mu=1\}
$$

Figure 6.8: Plotting the real part against r_{∞}, for fixed $a=0.2, \lambda=0.5, \mu=1$. Each lines show the differences in parameter l, where $l=1$ (blue), $l=2$ (green), $l=3$ (red). whereas r_{∞} of each line runs from 2-50. ω corresponds to modes ν as follow 1.41(blue), 2.45(green) and 3.46(red).

Chapter VII

SUMMARY

construct black hole solutions in three dimensions. Therefore, investigating their quasinormal modes may reveal the interpretation of the conformal field theory in two dimensions.

In Chapter 5, quasinormal modes of Schwarzschild black hole have been reviewed. Unlike chapter 4 , for four dimensions it turns out that we cannot reduce the wave equation into the standard hypergeometric differential equation. So, we need to use another approach to investigate quasinormal frequencies of the Schwarzschild black hole. Fortunately by substitution an appropriate power series solution into the Schrödinger-lil one obtains the recurrence relation in a continued fraction form. by solving these relationcmalla \quad ally \quad esults are shown by Table 5.1. Moreover, from Figur ZS \longrightarrow Zhidenko et.al[40], one sees that at particular val $1 / 10$ in inary part occurs.

Lastly, in Cher or the quasinormal modes of five dimensional blar 10 , Schwarzschild in five d 6 a formula for ω by pel or arg

 determine quasino 1 al the results are shown in Figure 6.1 and Fį parameter " a " increases the numerical value c), aco al observe that as λ is getting larger, the numerical values of the quasinormal frequencies get bigger. However,
 So, in the futhre whil vil

perturbation method.
 จุหาลึงกรณ์มหาวิทยาลัย

REFERENCES

[1] D'Inverno, R. Introducing Einstein's Relativity. Oxford: Oxford University Press, 1992.
[2] Hobson, M. P., Efstath) G. P., and Lasenby, A. N. General Relativity: A Dr Physicists. Cambridge: Cam-
[3] Einstein, A. Die Gravitation)
[4] Hawking, S. W. bridge: Cambr
[5] Carroll, S. M. Spac Chicago: Addisol

Black Hole.
 227, (1970): 936.
roduction to General Relativity. ture 227, (1970): 936.

[10] Nollert, H. P. Quasinormal Modes of Schwarzschild Black Holes: The Determination of Quasinormal Frequencies with Very Large Imaginary Parts. Phys. Rev. D47, (1993): 5253.
[11] Cardoso, V., and Lemos, J. P. S. Scalar, Electromagnetic and Weyl Perturbations of BTZ Black Holes: Quasi-Normal Modes. Phys. Rev. D63, (2001): 124015.
[12] Birmingham, D. Choptuik Scaling and Quasinormal Modes in the AdS/CFT Correspondence. Phys. Rev. D64, (2001): 064024.
[13] Musiri, S., and Siopsis, G. Perturbative Calculation of Quasi-Normal Modes of AdS Schwarzschild Black Holes. Phys. Lett. B563, (2003): 102-106.
[14] Chen, S., Wang B., and Su, R. Hawking Radiation in a Rotating Kaluza-Klein Black Hole with Squashed Horizons. Phys. Rev. D77, (2008): 024039.
[15] Creek, S., Efthimiou, O., Kanti P., and Tamwakis, K. Greybody Factors for Brane Scalar Field \quad Black-Hole Background. Phys. Rev. D75, (2007): 0840
[16] Einstein, A. Zur Fl nil be \longrightarrow ner (On the Electrodynamics (1905): 891.
[17] Einstein, A. abhängig? tent?). Annaler
 Einstein Theory. ceantank Ri lrussian Academy of Sciences 1, (1916): 189-196.
[19] Reissner, H.

[20] Nordström, G. On Engergy of the Gravitational Field in Einstein's Theory.

[22] Kerr, R. P. Gravitational field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 11, (1963): 237.
[23] http://en.wikipedia.org/wiki/Timeline-of-black-hole-physics.
[24] Bañados, M., Teitelboim, C., and Zanelli, J. Black hole in Three-Dimensional Spacetime. Phys. Rev. Lett. 69, (1992): 1849-1851.
[25] Chandrasekhar, S. The Mathematical Theory of Black Holes. Oxford University Press, 1983.
[26] Frolov, V. P., and Novikov, I. D. Black Hole Physics. Kluwer Academic, 1998.
[27] Zhidenko, A. Linear Perturbations of Black Holes: Stability, Quasi-Normal Modes and Tails. Doctoral's Thesis, Institute of Physics University of Sao Paulo, 2009.
[28] Brill, D. R., and Wheeler, J. A. Interaction of Neutrinos and Gravitational Fields. Rev. Mod. Pher 1 165-479.
[29] Mellor, F., and Mos D41, (1990):
[30] Cardoso, V. Qu Spacetimes. Ecnica de Lisł
[31] Kokkotas, K. D., $1 /$ tuicra (qi Vi nal Modes of Stars and Black Holes. Living R
[32] Chandrasekhar,

Schwarzschild Black 1
[33] Horowitz, G. and The 024027.

[35] Finn, L.S. Detection, Measurement and Cetivitational Rallation. Phys. Rev. จุหกดงทำณมหาวทยาลย
[36] Birmingham, D., Sachs, I., and Solodukhin, S. N. Conformal Field Theory Interpretation of Black Hole Quasinormal Modes. Phys. Rev. Lett. 88, (2002): 151301.
[37] Bekenstein, J. The Quantum Mass Spectrum of Kerr Black Hole. Lett. Nuovo Cimento 11, (1974): 467.
[38] Hod, S. Bohr's Correspondence Principle and The Area Spectrum of Quantum Black Hole. Phys. Rev. Lett. 81, (1998): 4293.
[39] Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions. Newyork: Dover, 1972.
[40] Konoplya, R. A. and A. Zhidenko, A. Decay of Massive Scalar Field in a Schwarzschild Background. Phys. Lett. B609, (2005): 377-384.
[41] Arfken, G. B., and Weber, H. J. Mathematical Methods For Physicists. Elsevier Academic Press, 2005.
[42] Ohashi, A., and Sakagami M. Massive Quasi-Normal Mode. Class. Quant. Grave. 2- 1 / 3984.
[43] Ishihara, H. and Ma Kaluz tack Holes with Squashed Hori-
[44] Wang, T. A
 471-422.
with Squashed Horizon. Nucl. Phys.
[45] Emparan, R. Living. Rev. f
[46] Myers, R. C., and Times. Annals P

Higher Dimensional Space-
[47] Seidel, E. A Comment wow

 จุหาลงกรณ์มหาวิทยาลัย

Appendix A

Useful Calculation

$$
\begin{align*}
& \left.=\int \dot{\boldsymbol{q}} g^{\mu \nu}\right) R_{\mu \nu} \sqrt{-g} d^{4} x \text { ъ } \int g^{\mu \nu} \delta\left(R_{\mu \nu}\right) \sqrt{-g} d^{4} x+\int g^{\mu \nu} R_{\mu \nu} \delta(\sqrt{-g}) d^{4} x, \\
& \text { Q. } \tag{A.2}
\end{align*}
$$

Let's examine δS_{2} first, The Riemann curvature tensor is given by

$$
\begin{equation*}
R_{\mu \lambda \nu}^{\rho}=\partial_{\lambda} \Gamma_{\nu \mu}^{\rho}-\partial_{\nu} \Gamma_{\lambda \mu}^{\rho}+\Gamma_{\lambda \sigma}^{\rho} \Gamma_{\nu \mu}^{\sigma}-\Gamma_{\nu \sigma}^{\rho} \Gamma_{\lambda \mu}^{\sigma} . \tag{A.3}
\end{equation*}
$$

Hence,
$\delta R_{\mu \lambda \nu}^{\rho}=\partial_{\lambda}\left(\delta \Gamma_{\nu \mu}^{\rho}\right)-\partial_{\nu}\left(\delta \Gamma_{\lambda \mu}^{\rho}\right)+\delta\left(\Gamma_{\lambda \sigma}^{\rho}\right) \Gamma_{\nu \mu}^{\sigma}+\Gamma_{\lambda \sigma}^{\rho}\left(\delta \Gamma_{\nu \mu}^{\sigma}\right)-\left(\delta \Gamma_{\nu \sigma}^{\rho}\right) \Gamma_{\lambda \mu}^{\sigma}-\Gamma_{\nu \sigma}^{\rho}\left(\delta \Gamma_{\lambda \mu}^{\sigma}\right)$.
*This appendix was covered by [5]

The variation of the curvature tensor can be obtained by first varying the connection with respect to the metric. Consider the variation of the Christoffel connection

$$
\begin{align*}
& \nabla_{\lambda}\left(\delta \Gamma_{\nu \mu}^{\rho}\right)=\partial_{\lambda}\left(\delta \Gamma_{\nu \mu}^{\rho}\right)+\Gamma_{\lambda \beta}^{\rho} \delta \Gamma_{\nu \mu}^{\beta}-\Gamma_{\lambda \nu}^{\beta} \delta \Gamma_{\beta \mu}^{\rho}-\Gamma_{\lambda \mu}^{\beta} \delta \Gamma_{\beta \nu}^{\rho}, \tag{A.4}\\
& \nabla_{\nu}\left(\delta \Gamma_{\lambda \mu}^{\rho}\right)=\partial_{\nu}\left(\delta \Gamma_{\lambda \mu}^{\rho}\right)+\Gamma_{\nu \beta}^{\rho} \delta \Gamma_{\lambda \mu}^{\beta}-\Gamma_{\nu \lambda}^{\beta} \delta \Gamma_{\beta \mu}^{\rho}-\Gamma_{\nu \mu}^{\beta} \delta \Gamma_{\beta \lambda}^{\rho} . \tag{A.5}
\end{align*}
$$

By using (A.4)-(A.5), we obtain the variation of the curvature tensor
and let $\rho=\lambda$

$$
\begin{equation*}
\delta R_{\mu \lambda \nu}^{\rho}=\nabla_{\lambda}\left(\delta \Gamma_{\nu \mu}^{\rho}\right)-\nabla_{\nu}\left(\delta \Gamma_{\lambda \mu}^{\rho}\right) \tag{A.6}
\end{equation*}
$$

with δS_{3}, let's consider the following identity first

$$
\begin{align*}
\ln \left(\operatorname{det} g_{\mu \nu}\right) & =\operatorname{Tr}\left(\ln g_{\mu \nu}\right) \\
\frac{1}{g} \delta g & =g^{\mu \nu} \delta g_{\mu \nu} \\
\delta g & =-g\left(g_{\mu \nu} \delta g^{\mu \nu}\right) \\
\therefore \delta(\sqrt{-g}) & =-\frac{1}{2}(-g)^{-\frac{1}{2}} \delta g \\
& =-\frac{1}{2} \sqrt{-g}\left(g_{\mu \nu} \delta g^{\mu \nu}\right) \tag{A.12}
\end{align*}
$$

By the principle of least get Einstein field equatr

$$
\begin{equation*}
\left.\mathcal{L}_{M}\right) d^{4} x . \tag{A.15}
\end{equation*}
$$

To obtain the Einstein ir ancon
where $\kappa=\frac{8 \pi G}{c^{4}}$ an

this action with respect

\qquad

$$
\begin{equation*}
\frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_{M}}{\delta g^{\mu \nu}}=-T_{\mu \nu} \tag{A.17}
\end{equation*}
$$

and put them back to (A.16). Then we recover the Einstein field equations

$$
\begin{equation*}
G_{\mu \nu}=\kappa T_{\mu \nu} . \tag{A.18}
\end{equation*}
$$

A. 2 An equivalent formulation of vacuum-space field equations

In empty space the Einstein field equations become

$$
\begin{align*}
G_{\mu \nu} & =0 \\
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R & =0 \\
R_{\mu \nu} & =\frac{1}{2} g_{\mu \nu} R \tag{A.19}
\end{align*}
$$

contract (A.19) with $g^{\mu \nu}$

Note that $g^{\mu \nu} g_{\mu \nu}=\mathrm{n}$
Substitute this result in $1 / 270$ ations in vacuum-space

For an empty-space fiel cto andind osmological constant, it reads

A. 3 Klein-Gordon Equation in Cuırved Spacetime จหาลงกรณมหาวทยาลย
 We begiq with an action for a real scalar field in the curved background

$$
\begin{equation*}
S=\int\left[\frac{1}{2} g^{\mu \nu}\left(\nabla_{\mu} \Phi\right)\left(\nabla_{\nu} \Phi\right)-V(\Phi)\right] \sqrt{-g} d^{4} x . \tag{A.23}
\end{equation*}
$$

The first term may be interpreted as a kinetic energy of the field while the second as its potential energy. Since Φ is scalar field, we therefore can replace covariant derivative with ordinary derivative.

$$
\begin{equation*}
S=\int\left[\frac{1}{2} g^{\mu \nu}\left(\partial_{\mu} \Phi\right)\left(\partial_{\nu} \Phi\right)-V(\Phi)\right] \sqrt{-g} d^{4} x \tag{A.24}
\end{equation*}
$$

By plugging the above action into the Euler-Lagrange equation

$$
\begin{equation*}
\partial_{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu} \Phi\right)}\right)-\frac{\partial L}{\partial \Phi}=0 \tag{A.25}
\end{equation*}
$$

we thus obtain an equation of motion for a real scalar field

$$
\begin{aligned}
\frac{\partial L}{\partial \Phi} & =-\frac{d V(\Phi)}{d \Phi} \sqrt{-g} \\
\partial_{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu} \Phi\right)}\right) & =\partial_{\mu}\left[g^{\mu \nu} \sqrt{-g}\left(\partial_{\nu} \Phi\right)\right]
\end{aligned}
$$

so,

It is convenient to choocer field equation becomes

This equation is kn \quad gle which describes dyna

which describes dy

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Appendix B

Mathematica Codes

Print["Calculating coefficients..."];
st $=0$;
While[! ((c[st, $\left.n_{-}\right]=$Simplify [(n-st) (n-st-1) Coefficient[SE, z, st] +
($\mathrm{n}-\mathrm{st}$) Coefficient [TE, z , st] + Coefficient [UE, z , st]]) ===0), Print[st++];
(*After the coefficient is zero we expect the all other are zero which usually happens.*)
Print["It seems the other are zeroes, so we have ",
st, " terms in the reccurence relation."];
Calculating coefficients...
0
1
2
It seems the other are zeroes, so wherms in the reccurence relation.

Figure B.1: This figures ${ }^{\text {shen }}$ a method $\boldsymbol{\mathcal { N }}$ determine the recurrence relation and

ข
 จุหาลงกรณ์มหาวิทยาลัย

B. 2 Continued Fraction

Figure B.2: Mathelinca's code for \&culation of the continued fraction.

คน นยวทยทรัพยากึร

จุหาลงกรณ์มหาวิทยาลัย

B. 3 Solving Omega for Rotating Squashed Kaluza Klein Black Hole

$$
\begin{aligned}
& v=1(1+1)+(a \omega)^{2}\left(\frac{2 \lambda^{2}-21(1+1)+1}{(2 l-1)(2 l+3)}\right)+ \\
& (a \omega)^{4}\left(\frac{2\left(-3+171(1+1)+1^{2}(1+1)^{2}(21-3)(21+5)\right)}{(21-3)(21+5)(21+3)^{3}(2 l-1)^{3}}+\frac{4 \lambda^{2}}{(21-1)^{2}(21+3)^{2}}\right. \\
& \left.\left(\frac{1}{(2 l-1)(2 l+3)}-\frac{3 l(1+1)}{(2 l-3)(2 l+5)}\right)+\frac{2 \lambda^{4}(48+5(2 l-1)(2 l+3))}{(2 l-3)(2 l+5)(2 l-1)^{3}(2 l+3)^{3}}\right)+\frac{1}{4} \text {; } \\
& \text { a1 }=\alpha[\rho]+\beta[\rho]+d[\rho]-1 \text {; } \\
& \mathbf{b}=\alpha[\rho]+\beta[\rho] ; \\
& \mathrm{c}=1+2 \alpha[\rho] \text {; } \\
& \Omega=\sqrt{\left.\frac{4 x^{2} \operatorname{Inf}{ }^{6} \omega^{2}}{\left(\operatorname{Inf} f^{2}+a^{2}\right)^{4}}-\frac{4 \lambda^{2}}{\operatorname{Inf}^{2}}+a^{2}\right)(\omega} \\
& \rho h=\frac{x r^{2}}{I n f^{2}-\mathrm{rh}^{2}} \text {; } \\
& r h=\sqrt{\frac{\left(\mu-2 a^{2}\right)+\sqrt{ }}{2}} \\
& x=\sqrt{\frac{\left(I n f^{2}+a^{2}\right)\left(\left(1 I^{\prime}\right.\right.}{4 I}+1} \\
& \alpha\left[\rho_{-}\right]:=-\frac{\dot{\mathbf{i} k}[\rho]}{\mathbf{A}[\rho]} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathbf{A}[\rho]:=1-\frac{\mathbf{x}}{\rho(\operatorname{Inf}}\right) \\
& \left.\mathrm{K}[\rho]:=\sqrt{\frac{\rho+\mathbf{x}}{\rho+\frac{\mathrm{a}^{2}}{\mathrm{Inf}^{2}+\mathrm{a}^{2}}} \mathbf{x}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { ant hin }
\end{aligned}
$$

ClearAll["Global`*"];
$1=0$;
$\lambda=0$;
$\mu=1$;
$\mathrm{a}=0.1 \mathrm{ap} ;$

Eq2 $=$ FindRoot [Eq1 $=-\dot{\text { in }},\{\omega, 1 .-0.5$ I $\}$, MaxIterations $\rightarrow 10000000$, PrecisionGoal \rightarrow 10];
For [ap = 0, ap ≤ 3, ap++,
$\{$ Print [For [Inf = 2, $\operatorname{Inf} \leq 100, \operatorname{Inf}++,\{\operatorname{Print}[t[\operatorname{Inf}, a]=$ Last[Last[Eq2]], " ", Inf, " ", a, " ", rh], Print [S

Figure B.3: This code

ing squashed Kaluza K1 hole mass equal to \pm alc lati asinormal frequencies of rotat-

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Appendix C

Effective Potential

Figure C.1: The effective potential of the BTZ(AdS) black hole, for fixed $M=1$, the curvature
$m=3$ (Black), ond 0^{2}
จุหาลงกรณ์มหาวิทยาลัย

C. 2 Effective Potential of the Schwarzschild Black Hole

$$
\{\mathrm{M}=1\}
$$

Figure C.2: The effecy Vi/2
 $l=3$ (Black), $l=4$ (Oran§

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

C. 3 Effective Potential of the Squashed Kaluza-Klein Black Hole

$$
\left\{\mu=1, r_{\infty}=2, \lambda=0, \mathrm{a}=0\right\}
$$

Figure C.3: The effec fotenchark e S a.jed KK black hole, for fixed
 increases with parameter l.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

$$
\left\{\mu=1, r_{\infty}=2, \lambda=1.5, \mathrm{a}=0\right\}
$$

V(ρ)

Figure C.4: The effe ve 1 (बि) S , h black hole, for fixed $\mu=1$, $r_{\infty}=2, \lambda=1.5$ and ar er \quad ait $2 / \mathrm{s} \mathrm{fi} \quad-$ The depth of the potential increases with paramet

Figure C.5: The effective potential of the Squashed KK black hole, for fixed $\mu=1$, $r_{\infty}=2, l=2$ and parameter λ between 0-2 (0.5 for each step). The depth of the potential increases with parameter λ. The overall potential also increases with λ.

VITAE

Mr. Supakchai Ponglertsakul was born in 5 July 1986 and received his Bachelor's degree in physics from Mahidol University in 2008. He has studied general relativity and quantum field theory for his Master's degree. His research interests are in theoretical physics, particularly in the area of black hole physics both classical and semi-classical level.

Presentations

1. Approximate C Klein Black $\mathrm{He}^{\prime} 1$ I 1 i hat Rajanagar 2010.

International

 tober 2010.
2. Pre-CERN S ${ }^{\circ}$ tober 2010.
3. Attended Siam hysics vornow waiv, Sai Y Kanchanaburi, Thailand, 25-27 March 2070
 land, 26 - 28 July 2009.
5. At 9 名 21 March 2009.

[^0]: *For more detail, see [1].
 ${ }^{\dagger}$ See Appendix A. 1 for the derivation of Einstein field equation.

[^1]: ${ }^{\dagger}$ Einstein calling this as "the biggest blunder he ever made of my life".
 *Due to the coordinate-independent, the flat metric can be described by the other coordinate system, e.g., in spherical coordinates it reads $d s^{2}=-c^{2} d t^{2}+d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}$.

[^2]: *See [23] for more detail about timeline in black holes research.
 ${ }^{\dagger}$ See [4] for the detail of his calculation.

