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Chapter 1

INTRODUCTION

“Space-time does not wits own right, but only as a

structural quality «
-A. Einstein

W is black holes. Black holes
N quations [1, 2, 3, 4, 5]. So,

%! singularities hidden inside

One of the mo#®
were firstly explored
they are purely gravit
the black holes are very ' s 34 \ ce pravity becomes infinite and
all the physics law are ” dg é’-"-
expected to be resolved b#tl J@

hand, black holes could be -2Z28274 2 4

7 ®his puzzling end of physics is
nmitm gravity effects. On the other

stage of exhausted massive stars
which make them (224 v . first attempt to evaluate
whether black hold 4 v“i v Regge and Wheeler in
1957 [6]. They pertififed Did® wand o]

ingly, the results show éhat after black holes were dlsturbed they will be under
a small oscill oducing gravitational
waves which @Hﬂg ﬂﬁ mﬁﬂ ﬂ:s@emnils work, Viveshwara
1970 roved that_oscillation ﬁeque #external field@Mitside black hole
must émﬁl\ %m ﬁﬁl ﬂ&]ﬂ EJ “quasinormal

frequenc es” and correspondmg modes are so-called “quasinormal modes“. More

prved its respond. Surpris-

precisely, quasinormal modes are the modes of oscillation which have their own
characteristics. They are not truly stationary but damped quite rapidly, some
parts of wave are absorbed into the black holes during decay process. Also, its
frequencies depend on black hole intrinsic parameters which are mass, charge and

angular momentum.

Nowadays, quasinormal modes have been studied widely for various black

hole types and also different kinds of external field, i.e., scalar and, vector fields.



Most of these studies have been done by numerical calculation. The most pop-
ular technique would be a continued fraction which is developed by Leaver [9]
and was improved further by Nollert [10]. However, one found that for three di-
mensional black holes (BTZ for example), it turns out there is a possibility to
obtain quasinormal frequencies analytically [11, 12] by transforming the Regge-
Wheeler equation into hypergeometric differential equation. This fact motivated
us to apply the same technique for others black hole system and try to calculate
quasinormal frequencies. Hence, in this thesis, we aim to investigate many black

hole models which are able to cal g glasinormal modes analytically.

v ﬂter 2, we introduce briefly some
d 1 -
, » eral version. Then, four well

This thesis is organigs
idea about relativity the<
known black hole soly sing order, (i) Schwarzschild
black hole, (i) Reissn : r black hole and finally (iv)
BTZ black hole. In ' gt ! Sowormal modes is stated and
Regge-Wheeler equatio gt 45 #f 4. j ot " R the application of quasinor-
mal modes in this ck D (1 N \uasinormal modes of three
g ; >ss scalar field perturbation
around BTZ black hole N ; ' \ Il frequencies analytically fol-
lowing the work done by A5 n, a massive scalar field evolves
in the rotating BTZ backgroi Aveétlgated which had been done by
Danny Birmingham [12 gaula of quasinormal frequencies

is obtained. In thigei s <4sinormal modes of mass-

-

)

SWarzschild black hole [13].
Then in Chapter 5, -.-i evaluate the quasinormal frédiencies of four dimensional
Schwarzschild black holgsby using a comginued fraction method which has been

done by Zhldﬂfu ﬂq w(&]%ﬁ w E}'&]aﬂ[@enmes of five dimen-

sional black hdMs are reviewed. We first begln with a large AdS five dimensional

B -h DL TR BN 111011

nally, we follow the matching solution technique [14, 15] to calculate quasinormal

less scalar field in & <

frequencies of a rotating Kaluza-Klein black hole with squashed horizons and ob-
serve the effect of compactified extra dimensions to those frequencies. Lastly, we

summarize all the results of our study in Chapter 7.

For the sake of simplicity throughout this thesis, we shall assume geometrized

unit G = ¢ = 1 unless otherwise stated.



Chapter 11

RELATIVITY AND BLACK
HOLES

“It is always plea - o (. crmmmm— i1, simple form at your

disposal”
-K. Schwarzschild

It is well knowr rity is general theory of rel-

ativity (GR) proposed | . GR has revolutionized our

idea about space and#in ”\ elr is not an absolute quantity

but relative; time flowiy
field. Moreover, in the G,

a force but only a curvature. :"F/..:'_ T aused by matter. There are many

presence of the gravitational

s#uld no longer be considered as

“the perihelion precession
J object. One of the most

situations which co®i

of Mercury’s orbit V.

astonishing about G]J] ! S, 10 o Pbmpact objects which even

s

light cannot escape Irom later-called black holes. l\/iore specifically, black holes
occur as solu i there are many black
hole solution@ﬂzl ﬁﬂnﬂjwﬁjﬂﬁleﬂy review both the
special and general relativity thedly. Later, tlg most four wgleknown exact so-

1umonQrws'E}sa1\aﬂ<§a‘§M1“.mqo@wﬁ o i) arﬂ Schwarzschild

solution the first non-trivial exact solution. Second, Reissner-Nordstrom solu-
tion: charged black hole. Third, Kerr solution: spinning black hole. Finally, BTZ
solution: (2+1) dimensional black hole.

2.1 Special Relativity

1905, the Annus Mirabillis (miracle year) of Albert Einstein. He wrote four funda-

mental papers in that year. These four articles contributed widely to the modern



physics and also revolutionized our concept about space, time and matter. His
third paper in that year was about the reconcilement between Maxwell’s Equations
and the law of classical mechanics; by re-considering the Newtonian mechanics in
the speed of light regime. This theory became known later as special theory of
relativity (SR) [16]. SR is based on two important postulates. 1) All inertial 0b-
servers are equivalent. 2) The speed of light ¢ in vacuum is the same in all inertial
systems. By applying these two postulates, one can obtain Lorentz transformation

which connecting two different inertial frames with relative velocity v,

where 3 = v/c and | nsformation is also known

as a boost in z-direct’ Sve see that time and spaces
coordinates are mixed. Muared) between two events in

an inertial frame S c:
Y-+ Az (2.1)

Clearly, (2.1) is invariant un: _,}:" e ormation. By observing the above

equation, we are [ yof 2 four-dimensional object
e — - 0

called spacetime. & 48 _ A Jostulates, there are two

strange phenomenon ! SCur W wOn]eq , \pproaches to the speed of

light— Time-dilation a?d Length—contraetlon

oy w4 8) VBN WEINVR s rastommation

Einstein publisid his fourth paper [17] in 1905. He proposed equivalence between

B 1RO e i R

After publishing SR, Einstein continued his work to a more “general” theory of

relativity which will be discussed in the next section.

2.2 General Relativity

In SR, Einstein considered only an inertial frame of reference where acceleration

was neglected. Then, in order to extent his SR to a more general theory, he needs



to consider a general frame of reference including the effect of acceleration. He
tried to accomplish his new theory with a thought experiment about the free-falling

elevator®. Finally, Einstein proposed the equivalence principle,

In a freely falling (non-rotating) laboratory occupying a small region of

spacetime, the laws of physics are those of special relativity. [2]

The principle of equivalence explains that if we are in the free-falling frame un-

der a gravitational field, locally gzl | pspems to disappear so we recover special

relativity. From this argume /.ply that gravity may not act as a

force but pseudo force. A , / ﬂ th an important concept about

gravitation,

gravity should Wt a manifestation of
the spacetime e of matter. [2]
This statement is the r e fheory of gravity which later
called general theory v : \ﬁ\ s®ibe the curvature of space-
time quantitatively, Eij ¥ tool that has coordinate in-
dependence property. Af, diahind error, Einstein successfully

formulated a tensorial equatie=: eory (GR) in 1915. Finstein field

7y
equations takes th B =
\ vl 3 ; I“‘d

where G and c is Newtg,n constant and the speed of light in vacuum respectively.

F-9 L
G, is an Ezﬂﬂﬂ@ﬂ;ﬂm?ﬂmmn about spacetime
geometry. qulis‘ ergy-omeén r Whith¥can be considered as

a source for gravitational field. The divereen@sless of Einst@f tensor suggests
eﬁ1

the coMefRio Q1 NF I ERH WA 0] B VB E) ve cxoresse

mathemltically as

(2.2)

1
G;u/ = R;LV_§g/LVR‘ (23)

where R, is Ricci tensor which is a contraction of Riemann tensor—i.e. R}, =

R,.,. R is Ricci scalar or a curvature scalar. g,, is metric tensor which defines

concept of distance on a manifold.

*For more detail, see [1].
fSee Appendix A.1 for the derivation of Einstein field equation.



In fact, (2.2) is not the full form of Einstein field equations yet. The complete

form is given by

871G

1
RH«V — §gluyR + g#VA = 71—;“,. (24)

where A is a cosmological constant. It was originally introduced by Einstein to
produce static universe. But the observation tells us that our universe is ex-
panding not static as Einstein would assume. So A was removed’. But recently,

physicists have discovered the cosmic acceleration. This has renewed an interest

> pcceleration.

év written in a form called line-

=w1val in any spacetime. Let’s

of cosmological constant as a scg

Solution of Einstein

element or metric. Th

(2.5)
This line-element she f Wl flat spacetime which ex-
pressed by Cartesian ce " \ \n in a tensorial form
(2.6)
and
X J (2.7)
\u U 01 ) ik
where 7, is Oﬁ‘; ’ qem ﬂ i OIEI/ﬂT i This solution is a
special case Dihat ﬂ ﬁ time. In general, we

obtain the general solution by rep#cing 7, wigl g, Then (2§) becomes

ARIRNNIU AU QVIEJWEIEJ 28

There are three possible values for ds? as follows:

ds®* > 0 is spacelike interval,
ds®> = 0 is lightlike or null interval,

ds® < 0 is timelike interval.

"Einstein calling this as “the biggest blunder he ever made of my life”.
*Due to the coordinate-independent, the flat metric can be described by the other coordinate

system, e.g., in spherical coordinates it reads ds® = —c2dt? + dr? + r2df? + r2 sin® 0d$?.



Note that, these definition will interchange between spacelike and timelike if
the metric signature becomes (+,—,—,—). Spacelike interval represents non-
physically related region. Null interval express light trajectory in spacetime, it
forms the light cone structure in the spacetime diagram. For timelike interval,
non-zero massive particle must be contained within the light cone and shows a
massive particle path in the spacetime. To describes the motion of particle in

curved spacetime, we define equation of motion in GR as,

= 0. (2.9)

This is geodesic equation  Ling” motions of a particle that
| . Therefore, RHS of (2.9) is
e the proper time “7”7. The

means there is no exterr
zero. A is an affine poj
effect of curved spacet from Christoffel connection

I'%  given by

W) (2.10)

In flat space the met;

2 pH .
reduces to dd;g =0, it |

Nuv- S0, geodesic equation

lwith constant velocity in flat

spacetime.

2.3 Black — : =)
*The concept of bla\ 4 holes was originally propose by John Michell in 1784.
He discussed ﬁssmal B‘tﬁts which theyesczziﬁ Velocmes exceed the speed of

light. Later i %ﬁﬂ MQ m ’:Itﬂ that there could be

massive stars XMlOSG gravity is so gtrong that not even light c escape from itf.

» YRS TS zm 14 B,
obtaine e si Ik exact solutio arzschild solution.

By investigating the solution’s structure, its mathematical singularity is emerged
which implies the existence of black holes geometry called Schwarzschild black
hole. Hence, the ideas about black holes were theoretically supported for the first
time from the Schwarzschild solution. Einstein was surprised by this result. Since,
he did not expect the exact solution will be found so soon. However, Einstein had
never accepted the ideas about black holes until his death in 1955.

*See [23] for more detail about timeline in black holes research.
See [4] for the detail of his calculation.



Schwarzschild’s work had widely opened the study of black holes physics.
In 1918, Hans Reissner and Gunnar Nordstrom successfully solved the Einstein-
Maxwell equations for charged spherical-symmetric object [19, 20] called Reissner-
Nordstom black hole. Five years later, George D. Birkhoff proved the uniqueness
of the Schwarzschild solution. It stated that the spacetime outside a spherical
symmetric object always governed by the Schwarzschild metric. At that time,
physicists believe that black holes were originated from the exhausted stars via
gravitational collapse process. Thus in 1939, J. Robert Oppenheimer and Hart-

land Snyder calculated the pressug b yomogeneous fluid sphere that collapses

under the influence of gravits v /hows that the object will cut itself

, ée which confirms the existence
of the black holes as an qcag 'ﬁnoharged axial-symmetric ro-

tating system, Roy Kerr ‘ mocquations in vacuum for such

from the outside universe

a system in 1963 [2Z]. 4 1 4 s, ferr black hole. Nowadays,
there are many brai®fice 4 # £ 5«75 S\ 2 ") both theoretical and ob-
| = “af black holes originated by
\ later leads to the study of
quasinormal modes, tfie \765 that occur due to a massive

astrophysical object ind Woles are also used for testing

many theories about the 0(

LT T

q@®ntum gravity.

Theoretically. black be the solution of Einstein field

equations. Many % ;f————— =>4 the Einstein equations

-

)

. 4 ! . .
under particular asS#¥=, ¢ ==, we will discuss some of
i | » i

the well-known blacl -.-i ole metrics.

sc@mmﬂmw 4N
AN TN e

tions arflytically. He reduces the complexity of the equations by assuming the
spherical symmetry and solved for the vacuum solutions. His solution represents
spacetime geometry outside a spherically symmetric matter distribution. To ob-
tain such a solution, Schwarzschild needs to seek out for the most general form of

the static spatially isotropic metric.

The word static imposes two properties for the metric: (i) all the metric
component g,,, must be independent of time coordinate (say z°); (ii) line-element

ds? are invariant under 2° — —2° transformation. A spacetime that satisfies only



(i) condition is called stationary [2]. We will encounter such a spacetime again
when consider the spinning black hole. Spatially isotropic means that the metric
looks the same from all directions. This condition implies spherical symmetric
property to the Schwarzschild metric. Starting from the most general form of

spatially isotropic metric [2],

ds® = —A(t,r)dt* + B(t,r)dr® + r*(df* + sin® §d¢?). (2.11)

It is trivial to obtain the static property. By requiring that the metric components

are independent of 2°. Thus, th gric reduces to

~ /Z % J6° + sin” 0de”). (2.12)

tic spatially isotropic prop-
A(r), B(r) by solving this

This is the most gen G
erties. We can find

line-element in vacuv

(2.13)
or in equivalent form #
(2.14)
From the metric (2.12), we cui __};-' A7 e non-vanishing Christoffel connec-
tion via (2.10). T M Y ronstructed by
R - =, (2.15)

puy = 3
.! pp

Finally, the Schwarzscfgl solution is ob

ﬂw@mnmmnmm
ARSI AN

means as r— oo the metric becomes flat g,, — 7,,. At first glance, the
Schwarzschild metric seems to have two gravitational singularity at the surface
r =2M and r = 0. The first one is called Schwarzschild radius which defines the
radius of the Schwarzschild black hole. It also acts as a boundary of the black
hole called an event horizon, once anything come inside this boundary then it is
impossible to be seen from the outside observer. The other singularity lies at the
black hole’s center. It is the place where the curvature (gravity) becomes infi-

nite. In fact, the surface r = 2M is only coordinates singularity which can be
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removed out by choosing new coordinates properly. For example, if we introduce

new coordinate as

{ = t+2Mln —1‘. (2.17)

‘ r
2M
Using the above relation, thus we can transform (2.16) to

P _( 2M

. AM 2M
1 —)dt 2 20 0 dr v (1 + —)dﬂ — r2(df? + sin? 0dg?).
T T T
(2.18)

This is Schwarzschild metric Eddington-Finkelstein coordinates

(t',r,0,¢) instead of the Sch: )S (t,r,0, ). We see that r = 2M
‘ | " ot this surface. The metric

is no longer problem, o1

(2.16) explains geomet spherically symmetric object

which being seen by & perspective, every particle
get inside the black hole
J, the Eddington-Finkelstein

g particle. Thus from the

which tries to appros
since our metric becor
coordinates represer;
particle’s frame of refe . 1gh an event horizon. Inside
the event horizon, coor: \ hich is timelike and spacelike

respectively at the outside rainate t will be spacelike while

F nidad <2 : .
coordinate r becomes timelh « chwarzschild black hole, every
motion will be forced to paeda e oordinate direction and hitting

the singularity un Qe 3
7 AX

So far, we have gowe iC mherically symmetric metric.

In the next subsectiors; we will further investigate abotit the metric which describe

| VEARR (20 [k LR
R WS a 'y

In the 18t section, we discuss about the static spherically symmetric object and
obtain the Schwarzschild solution. We will now further investigate more about a
metric outside static spherically symmetric charged matter. The exterior of such
an object is filled with a static electric field. Therefore, we need to solve Einstein
field equations for a static spherically symmetric with the existence of energy-
momentum tensor for a pure electromagnetic field [2]. The Einstein-Maxwell field

equations take the form

G = 87T, (2.19)
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T,, is the Maxwell energy-momentum tensor. It is defined as [1]

1
= G Fyp 7). (2.20)

1
T = —(=¢° FuUFVp+4

47

where F),, = 0,A,—-0,A,. F,, and A, is Maxwell strength tensor and 4-vector po-
tential respectively. Thus, it is obvious that the Maxwell tensor is anti-symmetric
which implies the trace-free of the Maxwell energy momentum tensor. Then, the

Einstein-Maxwell field equations become

(2.21)

We make an assumior & Y W le settles at the origin of

Sy symmetric, the 4-vector

where ¢(r) and a(r) may he (S ectrostatic potential and the radial

component of the 3-vectg ebe field(Maxwell)-strength tensor

has the form e

(V)

4z -

ﬂuﬂqwﬂw ﬂﬂn
S T e

and 1nse1t them into field equations (2.21) together with the Maxwell’s equations.

(2.22)

Then determine the unknown function of the metric. Besides the metric defined

n (2.12), we can use another form of such a metric which is defined as [1]
ds? = —e’dt? + A Mdr? + r2de* + r? sin® 6dp>. (2.23)

Finally, we obtain the Reissner-Nordstrom metric

2M k2 M K2\
ds® = _(1 - =5 —Q)dt2 + (1 -4 —2) dr? +r2dQ?,  (2.24)
T T T T
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where d0? = df? + sin?0d¢®. As k — 0, we recover the Schwarzschild metric
therefore we may interpret k as a total charge of the particle. This solution shows
the spacetime geometry around the non-rotating point charged particle. One can
obtain the coordinate singularity of the metric (2.24) by setting g'! = 0. This

gives us a result
re = M+EvVM?— k2 (2.25)

The Reissner-Nortstrom has double event horizon, i.e., inner and outer horizon.

to determine the values of the Reissner-

Clearly, there exist three different,

Nordstrom’s radius.

Case I M? > k% Timm— _{41 singularities at r = ry. These
surfaces represent the ex= : ' ordstrom black hole. In the
regionr_ < r <71y, tho g he Schwarzschild. Once inside
this region, the ¢ and » wsom timelike to spacelike and
vice versa respectively. ceu to move in the direction
of decreasing r unti! N Afterward, when they
approach the r_ surfe Noylinate r will return to their
usual timelike and spac \ ntly, inside the inner horizon

r < r_, particles can mé&na h¢ black hole’s singularity which

e
is different from the Schv} du

extension of the Reissner-Nadeibe one finds that there exist such a

‘eover, if we do maximally analytic

hypothetical soluthe Al black hole namely, white
hole. In the whitctds _

the hole and nothin I AIL ACTOSS—

P zon will be ejected from
| In fact, the Schwarzschild
solution can give such a‘wgte hole solutl%by extendmg the Eddinton-Finkelstein

coordinates f mwg %ﬁiﬂxﬂxf‘lﬂ) t the white hole since

it is beyond ougjscope here

e G AYDINA AN

singularities anymore. Both event horizons now disappear, only the intrinsic sin-

ne hol

gularity is left nakedly; the absence of the event horizons lead to the fact that
coordinate ¢ and r remain their own properties which are timelike and spacelike.
Thus, the naked singularity can also be avoided by the particles. However the
physical situation that comes after the existence of the naked singularity is; for
an example, there exist the closed timelike curves which allow the possible of the
time traveling. Since such an extreme unphysical scenario emerges, Roger Penrose

has proposed cosmic censorship conjecture in 1969. This conjecture stated that
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the singularities must be covered by an event horizon to prevent the formation
of a naked singularity. However, nowadays there are many theoretical evidences
which give a contradiction to this conjecture. Thus, the naked singularities may

not be necessarily covered and could possibly exist in the real universe.

Case III M? = k?: This one is called extreme Reissner-Nordstrom black hole.
In this case, the outer hoizon r, and inner horizon r_ will coincide at r = M.
The coordinate r is always spacelike except at r = M it becomes null. Hence,

the singularity » = 0 is a timelike as in the other cases. Thus for this black hole,

it is again possible to avoid the oreover, an extremal black hole is
Jv investigated the role of black
Sy T — heories, extremal black hole

sable aid in calculations. [5]

practically used as a toy 2
hole in quantum gravityz

can leave the symmetg

Charged black™i0! 4 { Wl i nature since it is rapidly
discharged by the s; ‘ accretion disk. However,
it is worth to study t! \wtical structure is similar to
that of the more comp! e ‘ \ which describe the rotating
black hole which we % i '. On the other hand it also

eometry.

2.3.3 Kerr B‘lack

k! ‘ ged spherical black hole.

But, most astrophysit I 1 0b ]eCUS o —— Luuatlng | ) we need to construct the

In the last two se y;

metric that describes Sp(&an object. If‘gppears that we cannot apply a static

isotropic metﬁ lﬁﬁeﬂcﬂsﬂ?ﬂgjﬂ ﬂ s a special direction.
Hence, the isotgppic property is destro n order to represent steadily rotating
ma“eﬁwﬁﬁﬁmﬁﬁsfﬁ‘ﬁﬁﬁi I1q

7“ 0)dr* + D(r,0)d6>.

9= —A(r,0)dt* + ) (dop — w(r, 0) dt
(2.26)

By considering 4-momentum of the particle approaching this metric (2.26), one
can prove that the function w(r, ) = %. The rate of change of coordinate ¢ with
respect to the coordinate time shows that the spacetime itself is rotating. Any
particle reach at this neighborhood will has been dragged by the effect of pure
gravitational field. This effect is called frame dragging effect.
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In order to obtain the Kerr metric, we must insert the stationary metric
(2.26) into (2.14) and then solve for the unknown function A(r,6) and B(r, theta).

Hence, we get the Kerr metric (written in Boyer-Lindquist coordinates)|2]

A —a?sin* 0 AM 0 >?sin” 6
i = - (AR g O g Bt g+ 2
(2.27)
where
In the limit @ — 0, {7 . ceeawarzschild case so it makes

"t a relates to total angular
% must solve A = 0. Then,

sense to interpret pas

momentum via J = 4

(2.28)

The Kerr solution (2.27, W und a massive rotating body.

It has stationary and axis gane: :f-": = . W8ke Reissner-Norstrom, the Kerr

metric has two event horlzons " outer horizon which cause from the

£

quadratic factor in gacegor Kerr solution, if we set

o
o -
wa? coffl. (2.29)

g =0

These surfaces Ehow arfhier interesting @aracter for a stationary ax1symmetrlc

Dk kI BN ks noning can remai

stationary it wHl be forced to moye in the same direction wi h the black hole’s

ARIINIHAI NS, EJegii’ e st

to extract the black hole’s energy from this region of the rotating black hole

metric excep

which was proposed by Roger Penrose. Although (2.28) expresses the coordinate
singularity of the Kerr solution but we could obtain the intrinsic singularity by
setting p? = r? + a%cos? § = 0. These yields
™
r=0, 0=—.
’ 2
By using a proper coordinate transformation, one can transform the above con-

dition to #2 + y?> = a®. Hence, surprisingly, Kerr’s singularity has ring-shaped
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with the radius “a”. Let us investigate more on the event horizon of Kerr solution
(2.28), it is clear that there exist three possible cases relevant to the relative val-
ues of M? and a?. This is in many way similar to that of the Reissner-Nordstrom
black hole.

Case I M? > a? In this case, both outer and inner horizon is real so
two coordinate singularities exist. But they can be removed by changing the
coordinates as the Schwarzschild metric. We can divide radial coordinate into
three regions. r, < r this region lies at the outermost of the Kerr solution.
In this region, ¢ is timelike w.% | celike.
where space and time intgas : )is is similar to region inside the
Schwarzschild’s radius. — cif — ‘.}nust move in the decreasing

r_ < r < ry is the region

direction of coordinatg < r_, again time and radial
coordinate regain the . ‘ . Le outer horizon. Therefore
. ®owle can be avoided since it
has the timelike singu! #fv 4 § & : D N of the Reissner-Nordstrom
solution. We expect#®ii 80 (1 real gravitational collapse

%
1

W other cases.

r i Srom the Charged black hole.
Both coordinate singular ##s a1 then naked singularity is ap-

gt
-

pearing. LM T
Case IIT M?|-4 .

Nordstrom. Two & V

J50 the same as Reissner-

..
el

g ‘ r = M which is a null

hypersurface. Howe _i AR AN v mellat n , -extremal Kerr black hole

—

could emerge in the regl gtrophysical siﬁyation‘ As the matters forming in the

accretion dis xu‘xtréa' W%TIQWSﬂ,’Tﬂ io increase mass and
ile f

angular momeggum to the hole. e matters are falling in, they create a

s WANNA ptl 1R it |

In conclusion, we see that the stationary axisymmetric metric leads to
two fascinating phenomena, i.e., frame-dragging effect and stationary limit sur-
faces. These are the special characters of such a metric which differ from the
Schwarzschild and Reissner-Nordstrom black hole. On the other hand, while
the intrinsic singularity of the Schwarzschild solution are spacelike, Reissner-
Nordstrom and Kerr singularity is timelike. It is worthy to note that, although
Einstein equation itself has non-linearity property but all of the exaction solutions

can be derived by choosing appropriate assumptions and symmetries. In the next
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section, we will introduce another interesting vacuum solution with the presence of

cosmological constant in (24+1) dimensional spacetime namely, a BTZ black hole.

2.3.4 BTZ Black Hole

From the definition of Riemann tensor, a vacuum solution of (2+1) dimensional
spacetime is essentially flat. Thus in the past, there was no anticipation for the
existence of the black hole solutions in (2+1) dimensional gravity. However, strik-
ingly, in 1992 Banados, Teitelho: i
in (2+1) dimensions with na ‘ | #* onstant; it is called BTZ solution.

' é (241) dimensional quantum
gravity and also super.m i :. N ’ solution, we begin with the

‘H‘q- . .
ahwarzschild coordinates”,

11i discovered [24] the vacuum solution

(2.30)

y 10 fact, since this solution
lives in three dimensid : , > becomes a disk instead of
2-sphere as in four dim g ffal C; ;.' : W the Einstein field equations
with negative cosmologic, :f-"" - /38 .4). We shall consider only the

vacuum solution, thus field edp 2 (See Appendix A.2)

"'/"l 7 e .‘-:
= _ (2.31)

Then, plug in (2'30). 0 U reget i

T T T

This solution aﬂymptotlcally becc&nes r— X ) anti de sﬁt&,spacetlme Note

o RIRATUNRY I

given b
re = +IvVM. (2.33)

Moreover, we can construct spinning BTZ black hole solution as we have done in
Kerr black hole. The rotating BTZ black hole takes the form

2 2 2 2\ 1 2
ds® = ( M+;2+J—)dt2+( M-l—;-i-J—) dr® +r* (qu——dt) ,
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where J = Ma is total angular momentum. One easily sees that this metric

reduces to spinless BTZ when J — 0. The hole’s radius is given by

1/2

M 7\

As we expect, event horizons split into two surfaces, i.e., outer and inner horizon.
If [ grows very large the black hole exterior is pushed away to infinity and one is left
just with the inside [24]. Moreover, if we set M = —1 and J — 0 the BTZ metric

-
X
A
-

¥
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Chapter 111

BLACK HOLE

“Black hole shows ™ 1 CCt — =ihe outside world (mass,

charge, spin) and. - '/ N room full of bald-pated

-J. A. Wheeler

After a brief revid CRAsA N
ready to make a discussi *@
study of quasinormal modegZiibzis 24 e begin with a brief introduction

the previous chapter, we now

'tuloation which later leads to the

about the beginnirjzAf 4gn. Then, the equation of

P ds us to the Schrodinger-
mougho , our study. After that, we

perturbation aroursds

o

like equation which §Jhe nia)ore

introduce the deﬁnitioxk(gquasinormal Iagdes and quasinormal frequencies both

mathematicaﬁa pﬁidcll f ﬂi cﬁleﬂﬁ ‘ﬁeviews are discussed.
ontri

Finally, we demte hé contribution of quasinormal modes to other fundamental

TR T INYAE

3.1 Literature Review

probl

In the mid 1950’s, physicists wondered whether the black hole could be regarded
as an astronomical object. In order to answer this question, they started to study
the perturbation of black holes. More specifically, they studied the evolution of the
physical fields outside black holes which has been proved later by Vishveshwara
[7] that the fields can be treated as a perturbation in the black hole spacetime.
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The physical fields are always assumed to be weak thus there is no effect of their
energy-momentum tensor on the black hole metric [26]. Even though Einstein
theory itself is a nonlinear theory, it turns out that the only linear perturbation
is well suited. In fact, the study of perturbed black holes were first pioneered
by Regge and Wheeler in 1957. Their question was whether the Schwarzschild
black holes become unstable under small perturbations on black holes which are
assumed in the linearized Einstein’s equations. If black holes cannot stand against
a small perturbation and turn into an unbounded state, then, black holes could

not be determined as an astronby ki ”‘)iect. In their original paper [6], they

studied the perturbations of;
(3.1)

where h,,, is sufficient! \\ erms in the calculation are

linear terms in hy,. T' % with an effective potential.

(3.2)
where effective potentiz

(3.3)
In (3.2), we have | — Ad+)was first introduced by
Wheeler in 1995. St £ ard Schwarzschild radial
coordinate by dr, =, L — ;’ o Tesults (il gest that when disturbed,
black hole will experiengegg small oscillatipp and later regain its stable state once

e AUHINUNTNYIN

Thereaftgll their work was e}gtended to a elssner-Nordstigm by Zerilli 1974,

but 0 WWM w comphcated
Howeveq eukols was successfully able to reduce the wave equation into a

single equation by using Newman-Penrose formalism. Hence, the stability of Kerr
black hole is explored by following Teukolsky’s work. The detail on black hole per-
turbations both mathematically and physically can be found in Chandrasekhar’s
book (1973) [25] and Frolov,Novikov [26].
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3.2 Wave Equations Near Black Holes

To describe dynamical system in general relativity, let’s first consider the Einstein-
Hillbert action

/ N (R + EM) diz. (3.4)

Where g is the determinant of the metric tensor g,, and Ly is the matter La-
grangian which describes the matter field ¢. By varying the above action with
respect to the metric tensor, on F ) the Einstein field equations (For more

detail see Appendix A.1)

(3.5)
Where we have set G wag tensor is defined as
(3.6)
The field equations 4
(3.7)
Then, let’s consider the 1} r‘ 118 Ltion as
| 2T - (3.8)
) D— 39)
We shall assur' 'the perturbations are weak, J erefore O(0g,,)% , O(6¢,)

$q)? and higher afagmegligible. Aft@y inserting perturbed metric and fields

o 05 U I TR IV TSI ATY S ot e i

(3.5),(3.7) as ®ual. Moreover, ) WS also obtam linear equatlon for perturbation
of dg, to contribute
neghgﬁwq a ﬁamﬂmgFIJﬁ nﬁﬂzjs consider the
Schwarzschild-like metric

ds® = —f(r)dt* + f(r)"'dr* 4+ r*(d6* + sin® 0d¢?), (3.10)

For the sake of simplicity, we describe massless scalar field in such a background
by using Klein-Gordon equation in curved background which takes the form (See
Appendix A.3)

\/L_—gau(g“”\/—_gau@(x)) = 0 (3.11)
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We now using separation of variable method by the following ansatz

Ot,r,0,0) = > Y. \P(t’r)Yl,m(ﬁ,é), (3.12)

r
=0 m=—1

where Y},,,(6, ¢) is the spherical harmonics, the integer [ > 0 and |m| < [ are

called the multipole number and the azimuthal number respectively. Spherical

harmonics are also satisfied the following eigenvalue equation

AG,QSYE,m(ea d)) = _l(l + 1)Y2,m(97 ¢)7 (313)

‘g4 defined as

F 1 82

cquation (3.11), we get the

where the angular part of Lapleg

Then, substitute the s

wave-like equation witl

0, (3.15)

where
) : (3.16)
Note that if we choose ¥ (- e j , v-—like equation becomes Regge-

Wheeler equation

(3.17)
This equation will Y A with quasinormal modes
of black holes. It de._ribes TLIC e S — enuii| curv background which can be

treated as a perturbatiqng the black h(*elmetric. Beside scalar particle, we can

also consider ﬁ%ﬁ’l@ % ﬂ?‘uﬁ Wﬂ qﬁﬁly, in most cases, the
) e fields can be reduced

equation of magjon o o the wave-like equation (3.15).

¢ & y |
tentiaam ﬁ‘ﬁm m ﬂ ﬁﬁ&a‘mmﬂv E]e effective po-
Vo = f(ﬂ%i%@y s G

and for the electromagnetic field, the effective potential is defined as [29]

I(l+1
Ven = f(r)(Lz,), 1=1,2,3,.... (3.19)
r
Note that, these potential are only valid for the spacetime metric which is de-
fined by (3.10). If we replace the Schwarzschild-like by other metrics, such as the

axisymmetric metric, then we must re-derive the corresponding effective potential.
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3.3 Quasinormal Modes

Everyone should be familiar with the concept of “normal modes”. When we first
studied about wave theory, we usually assume that there is no energy loss in
the oscillating system, for an example, violin’s strings vibration. By perturbing
such a system, it will respond by choosing a discrete set of real frequencies which
produces a “characteristic sound” [30]. The corresponding modes which are the
superposition of stationary modes are so-called normal modes. Surprisingly, black
dix
black holes, one finds that /ond by producing a characteristic
“he firs

holes can provide such an indivi 41 too. By perturbing the fields near the

oscillation. Vishveshwars : é) discovered this fact by inves-
tigation of a gaussian o ' sveloped in the Schwarzschild
geometry. He found th=2 ite time interval and later dis-

appears by the dampe 4 r Shese damped frequencies also

w,

depend on the para®#€ ; e “Wles, i.e., mass, charge and
- “s are not dependent of any
initial configuration. s Pty WS of the vibrating system in-
N

fr@uencies. The word “quasi-”

volving black holes. '_ s quasinormal modes and the
corresponding damped #ic feng WA

shows the deviation frond h,

not stationary modes becauzZiaiL <]

;7 Wquasinormal modes are in fact

ned by the exponentially damped

frequencies. 3
- > -

¥

As we mentiCrie, " ‘o= vhe resonant system such

as a violin, we usualle#nake an 1deally well-suited st@&dy assumption, that there is
no decaying modes exis€s&l his fact leadsats the normal modes and corresponding

N £ T TERE T ETUT B TE T T T S—

loss from our g'stem. However, &f we turn to the more realistic case, no such

BN 13 N VR AN (1) I
| .
impossilileftd proHibit m Oéesd i1¥ tHe k ematic. There

always exist “non-stationary” modes in the perturbed black hole metric. Since,
black holes are just only the pure gravitational object; any spacetime perturbation
generates the gravitational waves which radiate energy away to infinity. The
deeper mathematical detail on quasinormal modes can be found in a very neat

review by Kokkotas and Schmidt [31].
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3.3.1 Mathematical Definition of Quasinormal Modes

In the previous discussion, we investigate the concept of quasinormal modes phys-
ically. Now, we shall further discuss about its mathematical structure. As previ-
ously mentioned, we can formulate the partial differential equation that describes

the physical field’s evolution in curved spacetime by using a background metric
ds® = g (v)dz"dz”, (3.20)

Then, substitute into the Klein-(Gog

guation (3.11) (for a scalar field). Finally,

we obtain the wave-like equ.
= 0 (3.21)

Where z is spatial cq m —oo to co. It is usually

to place an event hor’ Wis note we shall assume so
unless otherwise stated \d into time dependence and

spatial dependence,

(3.22)

(3.23)

In this section, wed A ly flat spacetime. Thus,

the effective potentie _E atish

¥

AU ANINSNTNS

Hence, at the §drizon and 1nﬁn1ty the Solutlon of (3.21) is Just an ordinary plane

W”eﬁ“mmm;uum'mmaﬂ

iwt tiwz T 00

U(t,r) ~ e wiehivs DX — 00.

The boundary conditions for the quasinormal modes are the purely ingoing modes
at an event horizon and outgoing at infinity. This means that the physical field

can radiate away to both asymptotic regions and disappear from the study region.

Ingoing : ¥ (x) ~e ™ 1 — —o0,

Outgoing : () ~ ™" |1 — oo.
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These boundary conditions imply an allowance of energy loss assumption. In
addition, there is only a discrete set of complex frequencies which satisfy these
boundary conditions [30]. These frequencies are the quasinormal frequencies and

the wave function ¢(z) are defined to be the quasinormal modes.

It has been proved by Vishveshwara [8] that for the Schwarzschild black
hole, quasinormal frequencies must be negative imaginary. This reflects the fact
that quasinormal frequencies are exponentially decay in time, more physically, that
means the black hole geometry is losing its energy via the gravitational waves. For

other geometry such as Schway 't ,er/ anti-de-Sitter or Kerr, one finds

that the quasinormal frequgs rified as a negative imaginary. It

is very difficult to solve 2 (3.21) and obtain numerical
values for the quasincg
Chandrasekhar and g

modes for Schwarzsch,

 imaginary parts. However,
Ml some of the quasinormal
W had inspired many numer-
ical techniques which '4 g ‘One of the most popular
techniques was first v T (1 ' ulated quasinormal modes
for Schwarzschild and ‘ ] ’ \ robenius or continued frac-
tion method (this will b g @S ; . t . Based on Leaver’s method,
Nollert [10] was able to ir ffov== ZE of an infinite continued fraction

AT -
which made the higher modes #In 2000, Horowitz and Hubeny [33]

were the first who calculaés =7 e for Schwarzschild anti-de sitter

spacetime. This w% ;f————— <%0 be used for testing the
: '\

AdS/CFT correspd '-‘ . "= it Is a non-trivial task to

calculate quasinormes i mnodes but 101" a less complicaddd system like non-rotating
BTZ black hole, it tur#sgaut that one cagrarrange the field equation (3.21) into

o oo a3 RN TR A PG obpreined. This v

first proved byitor et.al [11] in 3001 After that Siopsis et al [13] was able to
derive of a large AdS
Schwa%cmqﬁmmﬁ qﬁﬂ/ﬂﬁﬁﬂcaﬂ techniques
see [27, 31] and references therein.

In this note, we will only focus on the two following computational methods.
First, the continued fraction will be used in chapter 4 when we deal with quasi-
normal modes of four dimensional Schwarzschild black holes. For the rest, we will
apply an analytical method to obtain quasinormal frequencies of black holes in

three and five dimensions.
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3.4 Application of Quasinormal Modes

Black holes are nontrivial solutions of the general relativity. They let us investigate
many rich physics in a strong gravitational regime. They have also been called
a “hydrogen atom” in general relativity [30]. Like hydrogen atom in quantum
mechanics, black holes are governed by a few parameters (mass, charge, angular
momentum) which made them easy to study. All of the general relativistic prop-
erties are embedded in black holes. These give some notably importance of black

holes in fundamental physics thec . we shall investigate further about the

application of their unique w3

There are three m=

s fog ‘sthéphysics of quasinormal modes

which are discussed as

3.4.1 AdS/CE

“%ribing the microscopic world.

kY

\
, c¥stence of the fundamental

At present, standard m

It has made many i#

l A cti W re experimentally confirmed

-

particles/anti-particles e o 3

at the high level of accui €y, f,f-r Wel based on prior theory called
quantum field theory (QFT)_* I I iom, particles were represented as a
quantization of a pigtie i gmental particles were re-

placed by fields. ;.« '\:’ - ‘been able to incorporate

1 in philosophical level and

¥

QFT with gravity. & i ce,

mathematic structure.

So far, ﬁf ﬂt@ Spﬁlﬁﬁ ﬁj w %6'}, combines QFT and

gravity togethq they are strin eory and loop quantum gravity theory. In this

AR a:mﬁﬂzmmmﬁ“am;

theory a tempts to describe gravity at small scale, we might say that string theory
contains gravity. On the other hand, quantum chromodynamics (QCD) is a the-
ory which describes matters in the nuclear level namely, quarks and gluons. QCD
is based on gauge group SU(3). This may be interpreted by saying that quarks
have three colors [30]. Surprisingly, t” Hooft suggested that QCD has asymptotic
freedom. That means as energy decreases the effective coupling constant increases
and vice versa. This is a crucial point, at low energies; QCD becomes nonpertur-

bative theory since the coupling constant is becomes strong. Hence, perturbative
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calculation of QCD at low energies cannot be performed. Additionally, as we
expand to higher order of perturbation, the higher order contributions cannot be
neglected. This causes a major problem for the development of QCD. Fortunately,
there exists a gauge-gravity duality suggested by Maldacena namely, AdS/CFT
correspondence. It states that physics in a bulk d-dimensional anti-de sitter (AdS)

space is dual to physics at the AdS (d-1)-dimensional boundary.

AdS/CFT was originally motivated by the duality between type IIB string

theory in AdSs x S° (gravity side) and four dimensional N' = 4 supersymmetric

Yang-Mills theory (non-gravity s gduality allows us to perform a calcu-

lation for a thermalization 38 /'investigating the physics in AdS
space. According to AdS -

ﬂje" un--d_ﬁtic black holes in AdS can be

approximately compar - erTfal o in dual CFT, perturbing the

black holes means per. decay of oscillation (quasi-

o

normal frequencies) is g TR\ N 1 O the system back to thermal

s
ki

d the conformal field theory in
# and Hubeny [33].

quasinormal modes of Dls fF ho#

/ - ]
the boundary was first sugges
2T T

3.4.2 Black [% —

In order to reconcilesfravity and quantum mechanrs® besides the string theory
which we havﬁready (ﬁsﬂssed, there is &@bther attempt to develop such a theory

remcly, the 1) &I IV IR LI A S vt mechonic

of spacetime oﬁ[luantum geometr% that means in LQG gravitational field (space-

i oy i 0 Q) - needs
o TN A R AT T VVELTREL, e o

the other hand, black holes play an ideal model of gravity, thus the quantization
of black holes might gives us an initial footstep to the theory of quantum gravity.
The first attempt of quantized black hole was pioneered by Bekenstein [37]. His
concept was originally based on the idea about the (horizon) area of non-extremal
black hole act as a classical adiabatic invariant which correlates with the discrete
quantum spectrum. Therefore, Bekenstein proposed that the area of non-extremal
quantum black hole should have a discrete spectrum. Inspired by Christodoulou’s

reversible processes and Heisenberg uncertainty principle, Bekenstein conjectured
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the area quantization formula [37] of quantum black hole
A, = Aln, n=12 ., (3.24)

where « is a dimensionless parameter and [, = \/% is the Planck length. This
formula can be implied that horizon area is consisted of small pieces of equal
area ’ylﬁ. Each piece can be considered as degrees of freedom in which quantum
mechanically being referred as distinct quantum states. By assumption that each

patch is properly equivalent, thus the total number of quantum states is

(3.25)

where k is represented a W sates. As a result of statistical
physics, the entropy will 2 2o horizon by In (Boltzmann

constant sets to be unrs

(3.26)
But we know the Haw! 4

(3.27)
By comparing these tws

(3.28)

:f-"" -
Hence, in order to complete. T ea quantization, we need to deter-
mined the constan ™. rameter was provided by
Hod [38] in 1998. | L7

transition frequencze E LG

,:.:' “Jorrespondence principle:
‘ V! equal classical oscillation
frequencies [30]. The Word large quantum numbers can be inferred to the asymp-
totic region ﬁ . This statement are
consistent Wlﬁﬁﬂse ﬁﬂmmilﬂ tzme which implicitly
associated these oscillations with téie highly daggped quasinornggl frequenmes [30].

o ARNAIATUURAINE TR B o

damped§quasinormal frequencies of Schwarzschild black hole that take the form
[30]

' 1
Mw, = 0.0437123 — % (n + 5) +O [(n+1)"17]. (3.29)

Thus, Hod made further observed that the numerical value of 0.0437123 agrees
with g‘—ﬂ?’. Thus Hod found the asymptotic structure (n — o0) of the above
equation

In3 1 1
M - <2 _Z Z). .
W, g 1 (n—l— 2) (3.30)
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In addition, let’s consider the area of the Schwarzschild black hole

A = 4mr?

S

= 167M?, (3.31)

where ry¢ = 2M is Schwarzschild radius. Using relation dM = E = hw and from
(3.30) Re(Mw,) =23 Therefore we conclude that

v = 4In3. (3.32)

Finally, the black hole area

e (3.33)
We see that with the helr : 7/ 1 & ‘ :normal frequencies of Schwarzschild
black hole, the compiet: f 4 Mil0n was obtained. However,
there is no a physic#®in- L J,vts consistently, quasinor-
mal modes and LQG : % Hod which resulted in this
prediction. There are s/ g = VR to confirm the deep connec-
tion between those tWo0 e ) \ tivated by Hod’s idea, Dreyer

followed the same argu 21 parameter which emerged

in loop quantum gravity #

3.4.3 Black Sommm—no—— =
In astronomy, it is ve. ..! importallt Lo GuSeLve many addophysical objects and their
phenomena. Besides, afftggnomers must ggok for information from those objects

as well, Praﬂ u Elj ’}%(Igﬂ@] jew(ﬂ’}ﬂtﬁmng stellar or solar

oscillations. S&¢h data can tell us information about the 1nternal structure of a

star. tract individual
inforrrh m&q ﬁﬁmﬂ mqﬁlmoﬂﬁfa S are believed
to be a supernova remnant. After supernova explosion, a left-out compact object
will violently oscillate for a short period of time. Then gravitational radiation
will carry away the energy to infinity and the initial oscillation will exponentially
damp out. These gravitational waves also carry out information about the com-
pact object too. According to quasinormal modes theory, this information could
be referred as black hole parameters. However, gravitational waves have not been
detected yet, but the indirect effect has been accurately investigated by Hulse

and Taylor for a binary pulsar system [30]. Nowadays, many gravitational waves
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detectors are now operating and starting to collect the data, for instance, LIGO
and LISA. However, the weakness of the gravitational signal makes it hard to
detect. In order to increase the chance, we have to extend the sensitivity of our
detector and look for a very strong source of gravitational waves such as, black
holes collision and massive binary stellar system. The quasinormal modes process
take place in the final stage of the gravitational signal. On the other hand, since
quasinormal modes are decaying with time thus only the fundamental modes (low-
est imaginary part) can reach us. As we already mentioned earlier, quasinormal
| psic parameters. To illustrate this point,

# s depend only on black hole mass
\Z)proximately extract the black

frequencies depend on the black hy
for Kerr black holes, the qu

and its angular momentsy
hole parameters solely 11 . iencies and damping time. For
a rotating black hole, org T1ES ‘Vtic formula which relates the

frequencies and dampin \ eters. These may take the

form (34, 35]
Mw =~
T R~ M (1.48 4+ 2.09a)
From these two equatlons i ‘A 1easure the ringing frequencies and
damping time, thus, we cas S -!:. oA “4 win the black hole parameters by
inverting both forggas -
| y: "\, d

So far, we hav 1 1S quaginormal modes and investi-

gated the major equé,lon governing the perturbatlon in the black hole geometry.

At the end, th ﬁ ‘ﬁﬁ‘w ﬁ uasinormal modes of
black holes. ufﬁ m ﬁ ﬂif ﬁ stigate the quasinor-
mal modes an quasmormal freqgencies of thgeblack holes ingfhree dimensional

RN AN I NAINENY



Chapter IV

QUASINORMAL MODES OF
THREE DIMENSIONAL

-P. Dirac
In the previous s 4 £ rood ition of quasinormal modes
and the application & ¢ ST A A% r Tundamental physics. Now,

we are in a good positiy jion of quasinormal modes in

detail. We review the stud® q jm
solutions. Despite that, theres " 7 J

a® of three dimensional black hole
olution exists in three dimensional
k Tyone could construct the
A d ant to the Einstein field

Lsinormal modes of the three

spacetime with as;™ Aot

black hole metric y

oiie q
dimensional black holes We shall first investigate the scalar perturbation in BTZ

black hole a ﬂﬁ ﬂhja quently, quasinormal
modes of a m ﬁ r ew ﬂﬂ(ﬁ’] lculated. Finally, we
determine quasinormal modes of tHree dimensiggal AdS-Schwaggschild black hole.

oA RGNS U NIRRT o

frequendes analytically. This is a crucial point of the study of quasinormal modes

equations. Hence, it i l ey

of black hole in three dimensional spacetime.

4.1 Quasinormal Modes of BTZ Black Hole

So far, we have only discussed the quasinormal modes of asymptotically flat black
holes. Now, the quasinormal modes of BTZ black hole will be investigated. As al-

ready mentioned in Chapter 2, BTZ black hole is an exact solution incorporative
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with negative cosmological constant that emerges in (2+1) dimensional space-
time. The BTZ solution has asymptotically anti-de sitter spacetime. According
to AdS/CFT conjecture, BTZ black hole allows us to compute thermalization
timescale in the dual 2d conformal field theory which was verified by Birmingham
[36]. Quasinormal modes of AdS black holes were first discussed by Horowitz and
Hubeny [33] but they concerned only black holes which live in four, five and seven
dimensions. However, quasinormal modes of BTZ black hole were successfully
computed by Cardoso and Lemos [11]. Surprisingly, they could manage to reduce

the wave equation (3.2) to the ky W }jTerential equation and finally obtained

an analytical formula for B /quencies‘ This made BTZ an im-
us thé éy to study quasinormal modes

portant example becausce

analytically.
aal modes of BTZ black hole

Ny . . .
W adetermine its metric tensor.

In this section, v
as follows. First, we ro
Second, we construct t! he Klein-Gordon equation in
curved background 7ill be transformed to the

“Ally, quasinormal frequencies

are obtained. Most of t! gr el , : \ Cardoso’s work [11].
Let us recall the BT #Fme= e & i1\ hapter2 (opposite in signature)
S '
ds* = [ —Mx {Fﬁ.}':'_ + —> dr? — r’d¢?, (4.1)

where we choose T

7

et 1/]2 —
4 1/1* and —o0 < t <

00, 0<r<oo, 0 Zzems are determined

¥

ry = il\/_ (4.2)

In our study,ﬂ uﬁu@%w&g w Hk{]ﬂeﬁaormon r,. From the

metric above, §f can compute the metric tensor and its inverse as

s;mwifsfmum ym}w

o\ —1
(—M +5) 0
g = 0 —(-M+%) 0
0 0 —1

T
The determinant of metric tensor is /—g = r. Now, all the prescription we need to
construct the wave equation is obtained. We therefore formulate the Schrédinger-

like equation in the next section.
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4.1.1 Scalar Perturbation Around The BTZ Black Hole

The dynamics of a real massless scalar field in curved background is described by
1
V)

Then, we can write down all of non-vanishing components as

OulgV=50,8(x)) = 0. (4.3)

\/%_g[30(900\/—_930@)—!-51(911\/—_981@)+@2(g22\/—_982<19)] _ 0, (44)

where we choose (0,1,2) = (

f 4 e each variable, we use the following

ansatz

(4.5)
where m is angular qua: ' \ i of the results into the (4.4),
we get

9P

gPo;0

O (V=—gg"01®) = AT A(r)w T )

452 sz ]

gs derivative with respect
Y quation which takes the

where we have usel!

to the radial coord V.'

following form

AP ) WA (o WA ACE Ay
VLRI (o311 e REA

u
o/

¢ = [
o QAR HNIANLTQ B e
since otlger variables can be factored out. Additionally, lets introduce the tortoise

coordinate r, which is defined by

2

-1
dr, = (—M+%> dr,

or,

r = —vMlcoth (@ﬂ)
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Here, we see that as r — r, corresponds to r, — oo and r — oo corresponds
to r, — 0. Under the tortoise coordinate, we use the following chain rules

d d\If d?“ d?“ - ZTA
%(%dr,) i - AT =

then using the above relation to transform (4.6) into the Regge-Wheeler equation.

d*v

+ (W =V(r)T = 0, (4.7)

appropriate boundary™®€w , \ omormal frequencies.
——

4.1.2 The Ex&

In order to obtain an Nnormal frequencies, we first

rewrite the effective ¥ AT AN nZe

d*W [ ) r ‘ m? v
W= — — — — =
dr? 4 sinh?® (V] 4Es - Iry,  cosh®(v/Mr,)
(4.9)
We introduce a n&= T =+ has a range from [0, 1]

¥ 1 .
these correspond t0% = P “Ct's consider,

ZZ = \/}_/fsech (\/_r*)tanh(\/_r*)

U 1%%&&% Sty
R magmmum:mmagw

d:c d dr,

Thus, we substitute this result back to (4.9) and obtain the canonical form of

2nd-order differential equation with variable x

> av -
42°(1 — ) —— 73 + (42 — 627 )E +V(zx)¥ = 0, (4.10)
where effective potential is defined as
= 1 4w?(1 —z) 4mPx(1 — )
1% = -3M—-—z(1l—2)— —= 4.11
@)= a=a M #(1—2) M (4.11)
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In the final step, we replace the wave function ¥ with

-1 3/4
g = @7 (4.12)
xa2ml/2
Finally, we obtain
e(1—2)y +c—(a+b+aly —aby = 0, (4.13)
and,
0= 14 imo W
This is the canonical fz /1A% S ial equation whose solution
is a hypergeometric fue 2 . (4.13) with the appropriate

boundary conditions.
defined as follows, (;

e (ii) near infinit

y15 of quasinormal modes are
ht the black hole’s horizon
N e~ However, from the
N then V(r) becomes divergent.

Therefore, the field at Tof oy m pish \r., ne of the solutions of (4.13)
takes a following form [39] u‘;ﬁ

—P;.:r- . .‘ Iy
N o lec: 1), (4.14)

"'i" cond kind. This solution

must satisfy the bour} h Ty COnG . i c—a—b = —1 we therefore

To

here 5 F} is the starg £

find that F' must be zeg) at x = 1. Let’s c nsider the following identity

f umnﬂm%tfﬂ%
AR IUNNAINYINE

Note that, from now on we shall denote the standard form of hypergeometric

function of the second kind with F'(x). To satisfy the boundary conditions, we

finally get
a=-n or b=-—n, (4.15)
where n =0, 1,2, ..., these also yield

w = 4+m—2ivVM(n+1). (4.16)
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4.1.3 Results and Discussion

So far, the scalar perturbation of non-rotating BTZ black hole has been reviewed.
Using an analytical method, one obtains the exact solution for the quasinormal
frequencies of such a black hole. These frequencies are obtained as shown in (4.16).
As promised, they depend on black hole intrinsic parameter (mass) and also have
negative imaginary part. Some of the result is demonstrated by Table 4.1 . One
sees that the real part depends only on the angular quantum number m whereas

or black hole’s radius (recall ;. = v/ MI).

This result also agrees well wii alculation which had been done by

the imaginary part scale with the hog

Table 4.1: Fundamentay - vtl frequencies of a BTZ black

hole

AR T
Vitor’s work [11]. Qne ca Eon s

aor investigate on AdS/CFT as

a toy model. Alsoj ‘:‘ many later works which

- ¥

12 QuEHHVNS W EAREs BT Black

Hol‘(!:l ¢

ARIAINTUNMIINGAY

In the pﬂevious section, we have discussed the quasinormal modes of non-rotating

attempt to determiil L

BTZ black hole. Now, we will move to a little bit more complicated system. Ro-
tating BTZ black hole, it is also an exact solution in three dimensional stationary
spacetime with the presence of a negative cosmological constant. The first study
on quasinormal modes of rotating BTZ black hole was investigated by Birming-
ham [12]. He suggested the relation between quasinormal modes and Choptuik
scaling parameter. Via AdS/CFT, he found that one can interpret Choptuik pa-

rameter as timescale for the returning to thermal equilibrium in dual conformal
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field theory. Moreover, Birmingham also found the analytical way to compute the
quasinormal frequencies of this black hole. We shall therefore follow the argument
in [12] for this section. Let’s recall rotating BTZ metric in the following form
r2 J2 2 g2\ ! 2
ds* = ( M+l—2+ﬁ>dt2+( M+l—2+4—2> dr® +r® <d¢——dt> :
(4.17)

again J = Ma is black hole total angular momentum. From the metric above, one

can calculate event horizons by grg

1/2

: (4.18)

where 7 denote outerg = —1/I2. Moreover, one

can easily prove

(4.19)

It is non-trivial tc§ X Je the following relation;

G g = 8, to deterl' e L

ET‘W?JZAM}.L’)TW‘“
am MNSUARIINYTRY

Finally, lhe determinant of the metric tensor is /—g = r.

4.2.1 Wave Equation of Massive Scalar Field

The equation of motion for a real massive scalar field in curved spacetime is
described by

Ou(g"V=g0,®(x)) — Hd(x) = 0, (4.20)
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where mass of scalar field is denoted by u. As before, we use (¢,r,¢) — (0,1, 2).

We can write down all the non-vanishing components of (4.20)
SO0l + 4V =G08) + 015G )
+05(g"2/—gd® + g%/ —g0s®)] — l%cp =0 (421)
Using the following ansatz
d = R(r)e ™™ (4.22)

where again m is angular quantumg ;. Then substitute the ansatz into (4.21),

11 A et _imé
al(g — K _ A‘l‘——T R e e,

80(900 /__gao(p_l_gQO\/_.——-—

82(g02\/ —g@oq) + 922‘ p

where A = (—M -+ \with respect to the radial

coordinate r. Eventu
BTZ background

Wor-like equation in rotating

(4.23)

ﬂumwam@zﬂgﬂm
S SN pfbt HIAMYTRY ™

dz 2 [(z — 1)3/2(27"_ — 7“+)1/2} ’
d*r r3 —r2 { 3r2 + 72 (1 —4z) }

dz? 4 (z —1)%2(2r? —r2)3/2
Hence,
dR R [ r2 —r? ]
dz 2 [(z—=1)32(zr2 —r2)1/2 )"
d*R R r3—r

R(r2 —r?) [ 3r2 + 13 (1—4z2)
(

" 2 2 2
dz I[(z—l)?’/?(zr%—ri)lﬁ} * 4 z—1)52(2r2 —r2)3/2
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Now, we transform the following term into z variable

(1 52) — e )
<

1)(
é_f_%_ﬁ . (r2 =r2) [r22+2) -1 z(1+22)}7
ro 12 4 (z — 1)Y2(2r2 — r2)3/2

( S Jmw A )_} (2 —1) 02 )P
(A+iz) r2(A+d) A+ 2(r2) —r2)P

2mwr_ry (z — 1)l —m?(r? — zr})],

Ultimately, we obtain the radiayg

2(1—2z) ) R = 0. (4.24)
where,
Let’s define a new radia
(4.25)
Then, the radial e -— Jifferential equation [39]
2(1 % ' . 0, (4.26)

]
u

where prime represents‘iﬂvatlve with reggpect to the variable z. Here,

ﬂumnﬂmw BN

a+b & 20+ 20m

QW'WMﬂ?M%’WMEﬂﬂEJ

s

%(1 +J/T5 7). (4.27)

We choose @ = —iVA and § = $(1 — T+ p). At horizon z = 0, there are
two linearly independent solutions of (4.26) which take the form F(a,b, ¢, z) and
217¢F(a—c+1,b—c+1,2—c, 2) [39]. According to the definition of the quasinormal

modes, the purely ingoing modes at horizon are given by

R(z) = 2z%(1—2)"F(a,b,c, 2). (4.28)
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Then, using the linear transformation which is given by [39]. Therefore, the above

solution can be transformed to solution at infinity z =1

Fe)T'(a+b—c)
['(a)l'(b)

sl(e)(c—a—D)

R(z) = 2%(1 — 2)P(1 — 2)*77°

Flc—a,c—bc—a—-b+1,1—2)

+2%(1 — 2)

F(a,b,a+b—c+1,1—2).
(4.29)

Obviously, the first term vanishes when z = 1 since f+4c¢—a—b is always positive.

But we need the boundary copg 4 the field must completely vanish at

infinity. So, this gives us a.c

(4.30)

".""\- . .
e quasinormal frequencies of

“] . (4.31)

4.2.2 Results and ”-ﬂ

u!r'

—F/l-" # _,. . ."‘
These two results LaAal . (& Jlepend on the black hole

A Jin ry,7_). These results

. meeeiiie) bydh Mtting l =1,J =0, = 0,

parameters which S
also agree with the E vious Core

The above relations wilp giuce to (4. 16 the original paper [12], they further
investigate thﬂfw | ﬁm ﬂ?FT arameter but we will
not discuss it sgyec 1t 1S beyond our scope here wever, this example also shows
us an ensional black
gt ERE I il )

frequenc es.

4.3 Quasinormal Modes of 3d AdS-Schwarzschild
Black Hole

So far, we have seen two examples of the computation about the quasinormal

modes of three dimensional black holes. In those cases, one can manage to reduce
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the wave equation to the hypergeometric differential equation and determine the
quasinormal frequencies. Similarly, in this section, we shall further study on three
dimensional black hole namely, three dimensional AdS-Schwarzschild black hole.
This work was pioneered by Siopsis and Musiri [13]. They proposed the perturba-
tive calculation to obtain the quasinormal frequencies of AdS-Schwarzschild black
hole in three and five dimensions. Hence, this section is covered by their work.

Let’s begin by introducing d-dimensional AdS Schwarzschild metric

ds? = — el /1% — 4+ 12ds*(By_s).  (4.33)

y)

(4.34)

For now we consider in th;, & ase, hence, the metric becomes

1 § == .
ds? = —— (r? T 2w, MR?) ™ dr? + r2da?. (4.35)

DO

The event horizon £ Y Jre, we can rearrange the

above metric into ";

i¥

dr® + r’da?®. (4.36)
. ﬁuﬁﬁmﬂﬁsWBﬁ
en, the metff tensor and its inverse are
e
QWWMﬂ?ﬂHiﬁ%WVI 8y

\ 0 (T2(_)T+> r?
(_ Tzlii 0 0

0 0 r2

The determinant of metric tensor is defined by /—¢g = r.
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4.3.1 The Wave Equation

We now consider massive Klein-Gordon equation in curved spacetime

L9 V=g0,0(@) - mP() = 0. (4.37)

]

Then, the spacetime indices are denoted by (¢,r,z) — (0,1,2). Let us write

down all the non-zero components of the above equation

1
\/—__g [80(900\/ —g@oq)) + 61 (gllw /_r;

The wave equation becom

) + 05(9%/ =90 ®)| — m*®(z) = 0.

- .2 - — O
0+ —; 1 = - T+) 07 + %83@ -m?® = 0.
p ! - - T
: (4.38)

(4.39)

where we introduce nev, A We can see that y is restricted

. . 1 _I = 3 i i
within the range 0 < y ;.r,._,_._

corresponds to r — 7. Now v
e !P . »
e ,

"’ ds with r — oo and y = 1

ing chain rule

.*-:d

w e*’L thrpx)

o ¥ e

/

P omoongy ﬁﬁﬁwmw N9

- 82 _ —z(wt—i—pw)

qmasassiimInnd
) - (57)em () (3)4]
% [27"-1— (T 1;27“ )] Hod — — ( 22:3) % + @] et pn),

Finally, we obtain the radial equation

/ A2

(v =Dy (= D] +@%+ 5y — Do+ "y — 1w = 0, (440)
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where,

R R
o= S=P R (4.41)
27’+ 27'+

Now, we shall investigate the solution on the near-horizon region. Let’s consider

r=(1—-y)~0, (y — 1).

Then our equation takes the form

2w de S 2
(1 - 22?28 4+ (1= ) e = ) — (- 2)ey = Loy = 0,
asx — 0
= 0,
The solution may be =
Substitute this result i#0 1 ~'. b eep only lowest order in x, it

yields
v R
Hence, we obtain thd hlution Orammsme ) o l izon limit (y — 1)

(4.42)

The asymptoﬁill anor at E\! % %‘m can be etermmed in the Slrn'llar
" RIS &"ﬂ%@ﬁg 31 Mangay |,

2
Note for a massless case (m ), B+ = 1,5- = 0. We now write the solution of
(4.40)

v o= y(1—y)“F(y). (4.44)

Finally, the radial equation become the standard hypergeometric equation (for a

massless case) [39]

y(1—y)F" +[2— B+ 20| F — [p? - 20 —*+1]F = 0, (4.45)
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comparing with (4.26), we get

a = 1+i(p+w),
b = 1+i(p—),
c = 2.

Then, the solution at infinity (y — 0) can be written as [39]

o= y(1=y)°F+i(p+), 1 +i(p—0),2;y). (4.46)

Again, we use the following ig /m the solution in the near horizon

-bc—a—b+1;1—1y)

e b,a-l—b—c-l—l;l—y)‘

(4.47)

Then, the above equat
b,2 F
(a 7ay) )T(l—z(w—p)
w)

—F 4.48

(0 +p)T'(1+i(w—p) ( )

For quasinormal mggs = o7/ es exist at the horizon.

)

Then, the ond-ter fdd

quasinormal frequen .E 5

ﬂﬂﬂ‘?ﬂﬂﬂﬁﬂﬂﬁﬂ‘i -
“ﬁWTLﬁﬁﬂ’?ﬁﬂmﬂmﬂﬁﬂ

Quasmormal frequencies of massless scalar field in three-dimensional AdS Schwarz-

an analytical formula of

schild black hole are investigated. As shown by (4.49), these frequencies also have
negative imaginary part and depend only on black hole intrinsic parameter (hidden
in p). From the result, one sees that as the black hole radius (r;) decrease the
real part of quasinormal frequencies increase while the imaginary part depends on
integer n only. However, Schwarzschild metric was originally discovered in four
dimensional spacetime but the study of quasinormal modes in three dimensions

shows the possibility to transform the wave equation into hypergeometric function



44

and obtain an analytical formula for the quasinormal frequencies. This means
that the lowest modes (n = 0) indicate the smallest damping rate. As we already
mentioned in the previous section, the gravitational signals that reaches us are in

these fundamental modes.

In the next chapter, we will continue the study on quasinormal modes of
black hole in four dimensions by attempting to use another approach to determine

the quasinormal frequencies.

AULINENINYINT
IR TN ININY



Chapter V

QUASINORMAL MODES OF
FOUR DIMENSIONAL BLACK

-W. Heisenberg

In the previous 0 e L, qeasinormal modes of three di-

mensional black holes whi#h) (

the hypergeometric differentZZibsis 24 btain the quasinormal frequencies

birfvave equation can be reduced to

analytically. Howe/z
ically by the meth 48

Leaver in 1985 [9] an _i DECOILICT — ot ho ' n calculating the quasinor-

;A | hose frequencies numer-

) ¢ was first pioneered by

o

mal frequencies. Hence‘in this section, ngwill study the massive scalar field in
=+

f01‘1r dimgnsiﬁ (E.ﬂz%hw ﬂlvrﬁdwmﬂﬁuasinormal modes by

using this te

-, AMANIU YA LAY

%Quasinormal Modes of Schwarzschild Black
Hole

The study of quasinormal modes of Schwarzschild black hole was firstly investi-
gated by Chandrasekhar in 1975 [32]. He has succeeded in finding some of the
Schwarzschild quasinormal frequencies. His work had open widely many calcula-
tion techniques since then. Schwarzschild black hole is the most often used in the

study of quasinormal modes because it is the simplest solution of Einstein field
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equations. Another interesting work has been suggested by A. Starobinskii and I.
Novikov; they studied a massive scalar field in Schwarzschild background. As a
result they found that the massive modes will decay more slowly than the massless
cases. So, it is very interesting to investigate how the scalar field’s mass will affect
the damping rate of the quasinormal frequencies. This question was answered by
Konoplya and Zhidenko [40] in 2005. In this section, we shall therefore review

their work in detail.

Now, let’s recall the Schwarzschild metric

? (d6? + sin® 0de?) (5.1)

where,

and its inverse

ﬂyﬂ %ﬂﬂﬁwﬂﬂfs
AR AN T HRINBINY

Finally, 1he determinant of metric tensor is determined to be

—

V—g = r’sinf.

Here, all the prescription we need is calculated. Next, we are going to formulate the
Schrodinger-like equation for a massive scalar field evolve in the four dimensional

Schwarzschild background.
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5.1.1 Scalar Perturbation Near Schwarzschild Black Hole

The dynamical of a massive scalar field in the curved spacetime is described by

the Klein-Gordon equation (4.20)
1
——0,(¢"' /=90, ®(x)) + M*®P(z) = 0 5.3
N (9" (z)) () (5.3)
According to the Schwarzschild metric (5.1), all the non-vanishing components of

Klein-Gordon in curved background can be expressed

o™y =s00) + oo g v 0.0 + 040 0,0
+m?*®(z) = 0.

al-

Here, we denote the <o — (t,7,0,¢). Using the

following ansatz
(5.4)

where Y (0, ¢) is sph: inponent can be calculated

as follows

ancg. Y (0, ‘Z’

memﬂu&%ﬂﬂmﬁ

the Klem—Gordﬂn equation becomgs

_ARNBINIUINIM gp i,

¥ Y

—coth=e oY — —5 e‘“"taggY] +m2ﬂ6_“"tY = 0.
73 r3sin” 0 r

Then divide above equation with common factor ¢

== = g 2o = 2L (ay cor0ay + oy ) 4wty < o

Now let’s define a tortoise coordinate as

dr, = f(r) tdr.
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Thus we use an ordinary chain rule to transform radial coordinate r to a new one

d*y d (dip dr\ dr

dr? dr \ dr dr, ) dr,’
= Y

Therefore, we get

d*y
dr?

’

1

sin?

1
+w2w+f(—m2— L+2—[822Y+C0t982Y+
r rly

eaggY})z/; = 0.

Note that in the bracket [...] is art of Laplacian operator in spherical

ﬁ) must be satisfied the following

coordinates. Also the sphg=

|

eigenvalue equation [41

Finally, we obtain th

(5.5)
where the effective pot(»; ppendix C.2 for the plotting
of the effective potential. )

(5.6)

5.1.2 Continu : L

Sy

After we get (5.5), we i@ thus determi@lé# quasinormal frequencies by the con-
tinued fracti _

4 INHNI WY ART o tewer 1. B
substituting 1 appropriate powgr series sohgion into wave equation, one can
manageyt 1 i f1aQtiQ currence rela-
tion. aﬁﬂmmﬁ.mmmﬂm ﬂnued fraction
numerically. We now first introduce a proper solution for (5.5) which is defined
by [40]

A2 —2iMw
o) = e (e (120 T (57)

where,

f=ViE—nE, N =Y a (1_%)7{

r
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In addition, before we substitute this solution into the wave equation, we must re-
transform the tortoise coordinate r, to the former radial coordinate r first. Note
that, in this section, we will describe the step of calculation roughly. Anyone
who interested in the detail would be recommended to see Appendix B.1 for a
mathematica’s code which is developed by Alexander Zhidenko. This code helped
us to simplify many tedious works that we have to face if we choose the traditional
way instead (by hand). However, we attempt to illustrate each step of calculation

as much as possible. Hence, after we insert (5.7) into (5.5) and divide by the
21‘M§+%) . L\ —2iMw

common factor ei’"57“< , we get

where A(r), B(r) and C'L__ ctigh - grdinate . Then we introduce

a new variable z
(5.8)

After we change all radial

coordinate r to a new Tt A N0y takes the form
M) = 0,

e e i
W Frr o
Now, we can rearrange t1h€ al

‘ e . ‘ »
—r/:' . e

toa form

E ©

Then, multip ﬁall the Mments by par@aheter z

ammnmumwma E,E

A( 2tz 2% n(n = Dagz" + B (.2 Znan

+C (...22 + ...zl) Zanz” =0,
Let us define
A (Aaz2 +0,2' + vazo) Z n(n —1)a,z" + B (Abz2 + Ozt + vbzo) Z na,z"

n

+C (Acz2 + Dczl) Z a,z" =0,
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Then, we need to expand all the term which takes the following

A(Va) D n(n—1)anz"" + A(D,) Y n(n — Daz"" + A(A,) Z n(n —1)a,z"+>

n n

B(vs) Z na,z"° 4+ B(O Z na, 2"t + B(A Z na,z"
+C(O,) Z anz"tt + C(A Z a2 =

n

Moreover, we can rearrange the above equation into the final form

)+ nB(71)) a,2"

+§n:((n—2)(» L A,)) ap 02" =0
where on the second — 1) while the third term
(n — n — 2). Then, o L :
We can shift all the mdlces " he above equation by n — n + 1
E - " (5.9)
then, if one follows t ‘ . get the following results

2 .' H A ﬁ»2nn—|— 1) —1-1(1+1),
& ww%’a%fﬁum'mmaﬂ

Thus, fram (5.9) one can prove that

An+1 In+1 _ _& + In Qn—1
- . Qnt1Vn+2 - _ Vn—1C0n—2 :
Qn /6”+1 Brnt+2—0n+2Yn+2/ - Qn Qn /Bn_l Bn—2—Yn—20n—3/...

Hence, the final equation can be expressed as

Up—1n o A Yn+1 5.10
/Bn - /8 _ On—2Yn—1 - /8 _ Un41Yn+2 ( : )
n—1 :Bn72_04n73'7’n72/~~~ n+l ﬁn+2_an+2’Yn+3/~-~

So in principle, the above equation can be solved numerically.
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5.1.3 Results and Discussion

As mentioned above, one can numerically solve the above equation, by calculat-
ing for w and then increase the depth of continued fraction, then see if w does
not change significantly. Hence, we obtain the correct answer for the quasinormal
frequencies. Some of the results are shown in Table 5.1. They have been deter-
mined by using the code appears in Appendix B.2. It appears that the real part of

LC 7

quasinormal frequencies decrease as the mode increase. However, during the

numerical calculation, one can fouig g kat the depth of continued fraction must

# 0 order to obtain the quasinormal
&ﬂ(e the convergence of the con-
‘ w25 done in [10, 40]. This will
nsumed calculating time. The

win Fig(b.1). As illustrated,

creasing while the scalar

be increased as the mode n
frequencies correctly. For
tinued fraction by followms
also improve the accurac

results in which usin@or.
the imaginary parts
field’s mass increases ome particular mass value,
imaginary part vanis ot long living modes namely,

quasi-resonances, in W y [40].

..:
Table 5.1: First three fundamental modes for M =

" ﬂuEJ’J‘V]EWI?WEI’]ﬂ‘i
ammnmum'mmaﬂ

= (0 in massless case
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_ W'l DINIUNMANEIAL........

of the scalar field mass (at fixed M = 1) by using the Nollert’s improvement. This
figure is provided by A. Zhidenko et al, [40].



Chapter VI

QUASINORMAL MODES OF
FIVE DIMENSIONAL BLACK

-S. Hawking

At present, the bt fhdi ,é’& - [itntum gravity is string theory.

In the string theory’s paadi

more than four. So, it is vereZkaiiZ

re Tequired to have dimensionality
wtudy quasinormal modes of black

holes in higher dinj i Asjart with five dimensional

el

W) from an ordinary four

cases since its corsdi

- 1nves‘ ate quasinormal modes of

g

. . H |
dimensions. Hence, ‘j this™ s

black holes in five dim@r}g?nal spacetim&, First, we further study a large AdS
Schwarzschil a I ﬂ uencies by using first
order perturlﬂﬂnﬁgﬁﬂ ?j jﬁfmﬂiﬁe a néw black hole solution
from the Einpstein-Maxwell thegry™nam rot luza-K&# black hole with
A WA SEISAS R

approxh%ation technique.

6.1 Quasinormal Modes of 5d AdS-Schwarzschild
Black Hole

Asin the Chapter 4, we have already discussed three dimensional AdS Schwarzschild

black hole and also compute its quasinormal frequencies. Then for now, we shall



o4

further investigate the quasinormal modes of a scalar field in five dimensional AdS
Schwarzschild background. By following the work which has been done in Siopsis’s
work [13], one can manage to transform the Klein-Gordon equation into known
differential equation namely, the Heun equation. Afterward, the Heun differential
equation can be reduced to hypergeometric equation under some proper coordi-
nate transformation. In addition, an obtained equation can be divided into two
parts, (i) an ordinary hypergeometric equation, (ii) this part can be regarded as
a perturbation term of the main equation. According to this method, we obtain
the quasinormal frequencies analvg
AdS black holes would be

of the thermal system wie

The study of quasinormal modes for 5d
_ ret the thermalization timescales

énsional conformal field theory.
her [13].

From (4.32), we derive 2 7/ L Ssa.black hole in five dimensions

dr? + r?ds*(E),

where R is AdS radiu' K 7, AOWxant. Then, from (4.34), an

event horizon can be de!

Hence, the metric can be arra gllowing form

ﬁ!' 1 h."‘

de? AL A5 + r2d. (6.1)
| y: "\, d

We now determine t E C ld its inverse

~ 'f‘ —’l"+

000

Aysameninenns|
AU NI TININ Y

- ({f?i) 0 0 0 0
ré—ri
0 ()
R2:2
g = 0 0 2 0
0 0 0 r2
0 0 0 0 r2

The last one is determinant of metric tensor /—g = 3. We shall denote spacetime
indices with (0,1,2,3,4) — (¢t,r, 2,9, 2).
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6.1.1 The Wave Equation

The Klein-Gordon equation in the curved background is defined by

1
\/—__gau [\/—gg’“’@q)] —m*® = 0,

here m represents mass of scalar field. Thus, non-vanishing components of the

above equation may take the form

Hence, we get

y / Ay (7,4_7,4>
O (+ - ES R I G A I X
i ( | ' \ e + ( Ji2 + Ji2 1

V=G (2080 + o2 "

where, V2 is Laplacian #H: li“n.\ W ates. Then, we have derived
the wave equation

R4 AT : 4 R2 o
—— 0D A ik 0, -+—2V2<I> = m’R%*®.
PYEARE Y £)" -
i l" d

We may introduce tI 1 fo 10 Cpaijiion of variable method.

l" i¥

3 JWBINT

We thus chang"tyrﬂlal coordlna te rt

QWWMﬂ?EUM%Q’WIEﬂﬂEJ 69

So as we approach an event horizon that means y — 1 while at infinity y goes

to zero. Now let’s consider the following chain rule

2r2 s
I —i(wt+p.T)
81@ o 7-3 w € b 3
4rt =
8?(1) = r_6+ " emiwtpE) r:¢ e—z(wt+p,z)’
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here, we denote the prime sign as derivative with respect to y. Therefore each

components of the wave equation can be calculated

m2R2¢ — m2R2we—i(wt+ﬁ.f)7
R? =2 |251232 —i(wt+p.T)
r—2V o = —T@DG P s
4 2 R4
_ R 83@ _ wR we—i(wt-i-ﬁ.a'c')’

(1 —y?)

2 4 [6(1— )y + 27 = 10y] ') e D),

r3 [ ]
The exponential factor can_ / en we obtain the radial equation
. .
(1225 (1 - Tra-|e = o
(6.4)
where we define a n
Now we determine the solutizeu#: izon regime y — 1. Let us define
a new variable ¢
Hence, the radial equatops(6.4) in the ngye horizon limit becomes
dzﬂ Uﬂ}‘!l&lﬂﬁﬂ El'lﬁ‘i e o
a F R . TYIR Y
pe d P )
Az df+4xd£+ w——lb—ﬁxlﬁ — 0. (6.5)

We introduce power series solution

o0
Y = Zanxn—l—a’
n=0
= 2%ap+ a1z + agx + ...),

~ z%ay.
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After substituting the above solution into the reduced wave equation, we thus

obtain
o2

da(a — 1)z® + 4ax® —I—Zm = 0,

where we ignore the higher order term of power of x. Then, we obtain a constraint

equation for «

Finally, we approximately obtai n in the near horizon region

(6.6)
We use the above argy; - N h R n at infinity y — 0. Then,
we get ~

(6.7)

For massless case (m However, there is another

singularity occurs at N[ %es at y = —1. We therefore
need to investigate the H‘I sgion too. By defining a new

parameter z as

Hence as y approack ™ AY Js zero. We can determine

this solution in the "I ilar e C1or ik e others region. Then, we
¥

W

ﬂummm)‘:w el
] ARSI NR AT R A

obtain

down
—o/4
—io (1Y

vy) = -y <T) F(y). (6.9)
After substituting this solution into the radial wave equation (for massless case),
one obtain

" 1—iw/2 1—iw/2 / 2—(1+i)w/4)%y —
P2 U0 (o) [e (0P d)
y o y—1 y+1 y(y* = 1)
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where ¢ = 3(11“) ‘ p —i— . This equation is so-called Heun differential equation.
Any second order hnear dlfferentlal equation with four singularities can be trans-
formed into this equation. We now again change the variable by z = y2. Let’s

consider the following relation

dF dF

R Sl

dy Ve dz’
PP, #F L dF
dy: dyx? dr

d*F dF

@F | dF (1—io/2)] dF
dx? dx

VZ+1 | dx

- 2
- LV q} P o— o
— 1)
Moreover, we can rearr, /8 s the following form
d*F dF
l—2)—+|2— 1— -
TR L § V-0 %
q q g _
4\/5-1-4 1 F =0
Then Heun equation can
(6.11)
where,
2 4 14 [t NN
Hy = (1—x)d 5 2—(1—2)——(3—(1—1—2)— il b 2—(1—1—2)1 -q|,

- a- w’a%lﬂ%hwmm
R %14 STAP T RN 1L TS

F = Fhb+F+.. (6.12)
Now, let’s discuss the zeroth-order equation
HoFy = 0. (6.13)
The standard hypergeometric equation may take the form [39]
d*F

dF
(1—x)W+[c—(a+b+1) ]%—abF = 0.
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Thus, from (6.13), we determine the following parameters

~

¢ = 2-(1-0%

(e, )

Then the solution of zeroth-order equation at infinity = = 0 is defined by [39]

Fy, = Fl(a,b,c;x),

5 Va o
—7> 2 — (l—z)z ).

Using the linear transfes—— | W function, we can transform

R = —— F
I'(1
—iw/2)
/D))
Consequently, wave solu
(6.14)
Boundary condition of quasi=ZZ8aiis/ es us to choose By = 0 because at
horizon there mus| i ' Jo satisfy this condition,
we require that G 48 Y
m
- = w:l:\/_ ned 1,2, . (6.15)

ol ?iiﬁﬁﬂﬁijﬁ W?ﬁﬂﬂﬂ?
6.1.2 Pl BINIRHNI NN

To improve the accuracy of our result, we must include the contribution from the

“perturbed” term H;. We need to expand By for small w. Now let’s recall

B, - re-1-99)r (—iw/2) (6.16)

L1 = (Fo+va)/Ar (1 - (5o - /9)/2)

For simplicity we may set p = 0. Hence, parameter ¢ is shown as

Vi =~ 3( 14 i)oV2, (6.17)
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Now we consider the Taylor’s expansion (for small ¢)

dl’(z d*T'(z
F(Z+6) = F(Z)‘z=1+6%| 52 dz( )|Z:1+...,
dar
(&) _ . ~osm,
dz
d’T'(z) * 2
= “Hnt)idt = 4+ —.
e /0 e "(Int) 7t
Therefore, let’s consider
1(1 141
F(l——( R L §(—1+z)d)1/2>7
2 4
2
—(—1+4)w (72+7T—) ,
6
1w 2
- —)=-—
1-2)=-—,
2y
So, By can be comp:
By R (6.18)

Since, any second order ¢ ¥ have two linearly independent

solutions. We now thus cqp_ T od solution Gy of the zeroth-order

equation. We use

(6.19)

L)

where Wy(z) is Wronskgap,which can be gglculated via [41]

ﬂﬂﬂ’mﬂnﬁﬂﬂﬂﬂ‘i
) a“"fW’TQNfT‘ﬁU BIANYINY

= exp —/ P(zy)dz |,
0

Here, P(z) is the coefficient of the first derivative term. In our case, Wronskian

is determined by
(1—4) « .
Wy = o 2F558(1 — g) 12, (6.20)
Moreover, the first-order equation is considered

HoFL = —H\Fp. (6.21)
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One can construct the solution for the inhomogeneous differential equation via

Fi(z) = Go(z) /Oz Fo(z );{/;f;()x )dr Fo(x) /Om Go(x );/‘fol(i(?g:v )dx '

(6.22)

To expand both solutions Fy, Gg, we first transform Fy by using hypergeometric
function identity and then expand by keeping only lowest order in @. Thus, Fj

may take the form

(6.23)
L )t
— (6.24)
‘~ _Folo) 1+(1 D1 4 1n 2—”—2)w
Recall that frﬂ Mﬂ ANY t%ﬁ Wen '5
ama%ﬂ%ﬁigmﬁﬁ“@a“?au y
oe |

Applying the boundary condition at the horizon, so we have to set By = 0
2(1 4+
Lo _21+d)

" In2
— 2.89(1 +1). (6.26)

We obtain analytical formula of quasinormal frequencies of 5d AdS Schwarzschild
black hole in first-order perturbation. It is worthy to note that a positive real part

can be derived by replacing the exponent of 12ﬂ from —iw/4 to +iw/4.
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6.1.3 Results and Discussion

So far, we have investigated quasinormal modes of five dimensional AdS Schwarzschild
black hole. It appears that one can possibly transform the wave equation (6.4)
into the hypergeometric differential equation and its perturbation part. First, we
purely determine the zeroth-order part which is standard hypergeometric equa-
tion. Hence, one gets the quasinormal frequencies. However, if one needs to
improve the results, the first-order perturbation must be included. Then, the first

Jknately improved quasinormal frequencies

order solution can be constructed:

are obtained.

Wh.ce and time must be com-
bined together as a fo #fd 3101450 "\bservations confirm the cor-

four dimensional spacetime is

o

considered. This may ifip gFrhaslas =5

ever, in attempt to formu te
dimensionality of the spacetiz—ik .

m gravity, one must further extend

isions. One of the quantum gravity
candidates is the b4 Jheory, extra dimensions

are required to ful Y g Acy of the theory. Some

string scenario sugge _l 5 thatl Ui ——rs colli ” rs might be able to create
mini black holes if the l@%er dimensions e;ist. Therefore, it is of particular inter-

est to study tﬁ ﬂﬂﬂaﬂﬂm ﬁ%ﬂﬁﬂﬁ)lmk holes. However,

the extra dimeq‘ions are expecte compactified since we have never observed

such ap, e rom them, e Iy Wi tifie ra dimension is
called&_(» 1za !ﬁﬁ aﬁ :ﬁ ¥ )ie ﬁgm pigh)the black hole
was just'extended to standard five dimensional spacetime, in this section we will

consider a black hole in Kaluza-Klein geometry instead. Higher dimensional black

hole equipped with this asymptotic structure is called a Kaluza-Klein black hole.

To construct such a Kaluza-Klein black hole, we equip the asymptotic struc-
ture with twisted S! bundle over four dimensional flat spacetime. This leads us
to the existence of Kaluza-Klein black hole with squashed horizons. Such a black
hole look like five dimensional squashed black hole near the horizon and explicitly

shows the Kaluza-Klein geometry at spatial infinity which is locally (M* x S1).
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The Kaluza-Klein charged black hole with the squashed horizons was successfully
constructed by Ishiara and Matsuno [43], and for the rotating case by Wang [44].
Thus, it is very interesting to study how the size of the compactified dimension

affects the quasinormal modes of the Kaluza-Klein black hole.

In this section, we first begin with a brief introduction of rotating squashed
Kaluza-Klein metric. Then, we will investigate the scalar perturbation around
rotating squashed Kaluza-Klein black hole and try to determine its quasinormal

frequencies.

6.2.1 Kaluza-Klei® 't Lﬁ ﬁ Squashed Horizons

To construct the KaluZar 77 L d horizons, we first consider

), (6:27)

here R is the curvatu g Wi, field strength tensor. The

solution that satisfiesan g€ 8 V. \ accion is described by a static

Where the gauge (s
| yl

(6.28)

while the othﬂ Tfﬂ“’l nﬂ"ﬂ?‘w 4 ’] ﬂr‘g

_r+

qmﬂwﬁmwmm ﬁ*ﬂ

= cosydf + siny sin 0dg,
o3 = diy + cosOdo,

and0<f<m, 0<¢<2r, 0<1 <d4nr. The function k(r) is squash function
which characterizes the shape of our horizons. The rest undefined parameters will
be termed when considering rotating black hole. This solution is a non-rotating

Kaluza-Klein black hole with squashed horizons which derived by Ishihara et.al
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[43]. To formulate a rotating version, Wang has suggested “squashing transforma-

tion” as follows [44]

dr — k(r)dr,
o — k(r)oq,
oy — k(r)oq,

Thus by following the above argument, one can transform an ordinary five di-

mensional Kerr black hole with eq ngular momentum [45, 46] into rotating

by W a
2 2 2 2
dS = —dt +Zl€ ]—‘r 2+a2(dt—50'3),
(6.29)
The parameters are de,
Where p,a are black hao L Ol "\ Y parameter respectively. The
metric (6.29) has three cg, ‘_r_, — s Wlhich are denoted by r = ro,r =
T'e- These will restrict the rad ———— within the range 0 < r < 7. Note

that one can obtairgthed setting A =0

P

,.: ‘t .

Moreover, one an eas ove that ri = = a

o @SS BN SWEAN S,
€2 — 1) (1

YR ﬁﬂﬁ“ﬁmﬂW‘FWImﬂ g
Now cotbider three dimensional surface in which metric takes the form (for t,r =
constant)
r? + a?

ds* = 1 [k(r) (o} + 03) + 73] (6.31)

This surface can be regarded as S* fiber over base space S. Note that, o} + o3
represents S? metric. Hence, the ratio between S' and base space is characterized

by squash function (6.30). As k(r) — 1 our metric reduces to five dimensional
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Kerr black hole. One can investigate the shape of horizon by considering function
k(ry) [43]

k(ry) = T~ T2 (6.32)

2 _
TS rL

-+H N

()

Since k(ry) > 1 > k(r_), at the outer horizon S? is larger than S*, while at
the inner horizon S? is smaller than S! [43]. These describe the shape of both
horizons which is characterized by k(ry). Note that in the case, r;. = r_, the

shape of horizons become perfectly S3.

Hence, near the horiz five-dimensional black hole with
squashed horizons. To ss

[44]. First let’s introduce

e, we follow Wang’s argument

(6.33)

where

p range from 0 to oo while ‘. - M0 T'oo. We thus now transform our

ay take the form [44]

ds* = &4 A V(dt—gog)Q, (6.34)

metric (6.29) to a new coa

18

=5 i¥

where

AUEIRENINYINT
RIaINIUININYAY

AK?
R - (p+ po)?
=
2\’ 0
U:(?+2>X 2oy
r2 +a W2 — %

4(p+po)

Then take limit p — oo, ultimately the metric approaches [44]

2 2
¢ 4+a
o0 O_; ,LL
4 r? 4+ q?

(dt — 203)%(6.35)

ds® = —dt* +dp* + p*(o7 +03) + 5
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The cross term between dt and o3 can be eliminated by introducing new coordi-

nates

2ua
(% + a2 4 ja?

(2 + @)=t

(L F @+
and define new parameter 3 = di) 4 cos fd¢. Hence, we obtain rotating Kaluza-
Klein black hole with squashed hori

b= u-

|
|

n in asymptotic (p — o0) limit

e
—4 -
This metric shows the. o 2 [ tulundle over four dimensional
- terms describe Minkowski

spacetime while the re- : the size of compactified di-

(6.37)
We see that there are tigh flafa rs /i "l the size of an extra dimen-
sion. In addition, if we j¥e == & lius of compactified dimension

ipas

purely depends on 7. Thus 10 Sting to see that how this parameter

may contribute to the d

r and A = Cta” 11y

2p073,

We may defilJ

ihhts of metric tensor and its

¥

Before we end this sqfjfion & 1pO1
! IV

mverse

ﬁ%@%ﬂﬂﬂiﬂﬂ?ﬂ% e
%~awy@mTﬁWﬁhxmm%¥maLmwuﬁﬂ

A

q 7’2+(12)
(r +a2)2+ua (r 2+a )% +pa’
2(;,-2_;’_&2) T2+a2 4(7“2—1—(12)
and
2, .2\2, 2
e g o
0 & 0 0 0
o 4
g = 0 | 0 0 :
4csc? 0 4 cot O csch
0 0 0 @Dk N
_ 2ap 0 0 __4cotfcscl 4(a?+r2—p) + 4cot? 0
AA (a?+r2)k A (a2+12)k

]
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Finally, the determinant of metric tensor is calculated

Ak?sin 6

V=g = SEEE ),

We are now ready to formulate an equation of scalar perturbation around rotating

Kaluza-Klein black hole with squashed horizons.

6.2.2 Scalar Field Near Rotating Squashed Kaluza-Klein
Black Hole

Again, we consider the m ” urved spacetime

(v —99"' 0, ®) +
Y —99*°0,®) +
Nov + v=99"09;2)] = 0.

J83,4) — (7,7,0,0,1). We now

“rdon equation

s»ﬁ‘,i
s

We shall denote the spac g

substitute the following ansat ;_

: (6.38)

17— Y )

where |m| < [ and : -~ W mew radial coordinate p as

defined by (6.33). TI¥ , let’s consider each compondfis of field equation

ﬁuﬂqwﬂwswaﬂnﬁ |

gaO Ooaom vV — 90383¢ + \/_90484 = rr‘ +a ) + a /L) w o 2a’luw}\:| .

CARIRNTUNIINGINY

\/1__g@1(\/—_gg '0,9) = [(%) R'(p) + (% + (%)2 {%’ - 2P_r - 2%]) R/(p)]

AS(Q) —i(wT—mp—AY)
k2% ’

— compone

1

where prime denotes derivative with respect to p, and T’ = (r* + a?).

0 — component

0V =90708) = |5(6) + cot 85 (8)| R(p)eem o),

1
V=g 'k
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¢ — component

4
I'ksin? 6
X R(p)S(h)ewr—mé=xv),

03(vV—=9g9*05® + /=gg*0,® + /=99 0y®) =

[m)\ cosf — m2]

1
N

1) — component

4 (mAcosd
\/_84(\/ g4484(13 + vV — 94080(I> + v 94383 |:P—k < 9 — )\2 COt2 9) —
1 2a 4w\
— (4T = )N P
), NG )]
In addition, an eigenval /; Fharmonics [41]

1

sinf do |

E] S@) = 0,  (6.39)

where E = (1 + 1 | harmonics. Hence, our

angular part yields

O+o+v¢) = {4 pl” _ 4a,1;1w)\ —4(F—M))\2)} ®
(6.40)
Now our Klein Gordon equat ‘ : .
1\ O L 60 0\
Alr) (%) i v, Y 10(r) 22(7“)) h

|| AT M)A)]R = 0.

r A

Transformmgﬂeﬁlﬂ ‘a %W?Wmﬂ 9
q W'] ﬁﬁ@f%ﬂﬂfn NYINY

i [% (11 +1) +4 f’) A\ Az

(p+ o)
2
proo pToo 2
X(r) — X(p) = +a”l,
") (v) P+ pPo {P‘FPO }
2 4
4 PoT o 2 2 PPOT
S (p) = =2 [k + a®(p + po)] +
(v) (p+po)? [p (v po)} (p+ po)?
2 2 2 2
(p+ po) (p+ po)
: r2 [2(pr% + (p + po)a®
(p+ po) (p+ po)
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Let’s determine these chain rule formula

dp 2rpor

dr — (rz, —r2)?’

Pp 2porZ (rZ + 3r?)
ar?2 (r2, —r2)3

After a bit of tedious work, we ultimately obtain an equation of motion for a

massless scalar field in rotating squashed Kaluza-Klein background

d*R dO dR
o dg")+—ﬂ+ [(1+ 1)+ A\2| R(p) =0, (6.41)
0
where
Op) = — 11p(p + po)rl.)
= 2
o )
A =
N? =
[/
(See appendix C.3 for tlie ect \\ tential in non-rotating case.)
Our next task is to solve The ’-‘:;ﬁ nd determine the quasinormal fre-
quencies under some properade it 24 oS

L7 A )
6.2.3 An App : > =1 Quasinormal Fre-

ol o

quenaes

In order to oﬂ um NEUNTHHADT 1 v it e

approximation ethod and separgge radial equat tion into two mptotlc regions:

for th@ W’T@ ﬂ?% % ’@sﬂhe solution of
both regons will be matched in the intermediate region based on Chen [14] and

Creek’s work [15].

To follow the above argument, we now investigate the solution in the near
horizon region (p ~ py). In order to formulate a known 2nd-order differential
equation namely, hypergeometric equation, we first introduce a new coordinate as
defined

, (6.42)
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where B=1— M%Thus, for the near horizon limit, the radial equation
(6.41) can be expressed in the new variable as
d’*R(z) dR(z) N2
1-— 1—H, -
A(1-2) dz? + ?) dz N B(p1)*(1 —2)z
1) )~ Al
B(p+)*(1 = z)

} R(z) =0, (6.43)

where,
N (1+& B aAN<p+>2<rzo+a2>r
i P+ Pords 7
1
Ho = 2——— lo=p+

d z — 1 as r closes to the
2%(1 — 2)°P(z). Then, we

obtain the canonical form

Notice that, z — 0 ag
infinity. We redefine
substitute a new rads
of the hypergeometri
N abP(z) = 0, (6.44)
with

w=at o WY A NN c=1420
While deriving (6.44), it ap ’%

there exist two following cqudie-4
NGl ’

to'obtain hypergeometric equation

R TP P
By = 1 (2— L) £/ (H, —2)? — ‘ijj) P+ 1)3(22)) Ap+)
The near horﬁnuﬂ ?M}%}%}%ﬂ %’aﬂoﬂ %ﬁned by

PNH = A_z° i)ﬂF ay, b, c

YR ‘s'N ﬂ?ﬁH %ﬂf‘lﬁT}'ﬂ PIRY s o

Recall tﬁat near horizon z — 0, then the above equation can be approximated

as
Pyp(z) ~ A_2%4+ A 279
Let’s define
a? 2 a\N 2(r2 4+ q?
§ e [ ] [ NS ]
P+ +a PoT50
N*(ps)Inz
y P —_—_—

B(py + po)’
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S0,

N,
Ny = Elnz.

Hence, we obtain another form of the near horizon solution
Pyp(z) ~ A_e®™ 4 A TN,

The only ingoing modes are allowed at the horizon. This restrict us to o = a_
and we also choose A, = 0. Moreover, the convergence of the hypergeometric

function is also required. Hence, we must choose § = (_ Finally, we obtain the

radial wave solution in the neag

é b,¢; 2). (6.46)

To match the SOlutiO Tles — gtretch the solution at near
horizon into the inter: #h SSrocess as done in [15], first

wsction in the above equation

byay +b—c+1;1—2)

O —bc—a —b+1;1—2)
(6.47)

To stretch this solution into 2= gsider limit p — o0, then function

1 — 2z can be writtl:=4

A £ (6.48)

11
Sy o0 ¥

Then, the near horizon ‘solutlon (6.47) is a prox1mately expressed in a form

ﬂum Mﬂ%ﬁ%&ﬂﬂ"ﬁ 649
q W'l ﬁﬁﬂ@ﬁﬂ%ﬁﬂ@i@% A

A= ﬂ T&MH e

On the other hand, we now determine (6.41) in the far field limit (p — o0)

4p07"2

0 ~ p
A~ Apgrss 4N 2
- (r2, + a?)* r2 + a? £

2
N2~ M5 W aA(r, + a®) ot
) POT 3o ’
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hence, we approximately obtain an equation in the far field region

2R dR
P dFZ(p)Jrzp £r0) 4 020 — 10+ 1)~ A)] Ree(p) = O,
p dp
where
R S P 0] O o s
CERTRE pors, (e +a)t (% +a)

Obviously, the above equation is a Bessel equation. Thus, far field solution of the

field equation (6.41) can be displ: he following

(6.50)
2
. A - A\
Now, we ready to matc > % 3 h) 10%6.50). However, the different
power of p prevent us to | glorsm—— ochilue. We thus follow the method

et
which has been done in [15].
- ‘ E" : ad s ) :v

cch both solutions, we first need to
e 7 = [(1 + 1) — A2, From [47],
E can be exXpresso s m———— < 71 shall determined up to
fifth order : '

know an analytic expressis

-
..:
’ i¥

A2 — 20(1+1) + 1]
(21— 1

waathsalaadngsas)
N 3 R IN G- ]
q 2AY[48 4 5(21 — 1)(21 + 3)]
20— 3)(20 1+ 5)(2 — 1920 + 3)3] -

(6.51)

This form will be used everywhere E appears in our equation. But for E in the

power of coefficient, we neglect (aw)? and higher order. Hence,

12

_ﬂ l7
(B+Ne—2) = —(I+1),

1

12
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This will restrict the validity of our results to the low black hole’s angular momen-
tum. By using the above approximation, we will obtain a constraint on coefficient

B; and B, as follows

i - _ﬁ M 2+1 2 (V)T (c—ay —b)T (a) T (b) (6.52)
By T | pQ(rd — a?) F'(ap+b—c)T(c—a)T(c—b) "
In the far region , the far field solution can be written as
67iﬂp eiQp
RFF([)) + Aout P) ) (653)

with A,;, and A,,; are defi

condition, the solution i

espectively. From the boundary
ins only the outgoing modes.
Thus, we must set A; - [ wes S0 quasinormal frequencies by

solving the following ey

(6.54)

6.2.4 Results ¢

¥ R\
To solve (6.54), we us A '4 cou \ liCh is provided in Appendix

=
B.3. Quasinormal frequelwle J.E_Lﬂ

Kaluza-Klein background axzi-—ik and Fig 6.2. In the first figure,

opegating in the rotating squashed

we found that as l:-4 4o the real part of w also

increase while thesdt W but decreases later on.

The right-most line E rese ——C5 1N t] case a = 0 while the left-

e

113 77

most represents the cagp 4= =0.3 Hence see that as is getting larger, the

NN 1 ?J‘i?mﬂfm ﬁ p rlgmﬁofliiedli o
ammnﬁmum'mma d



74

{1=0, A=0, u=1}
Re(w)
18}
16
1.4 "0.:.'33.
L e L) 1)
i e, e,
1.2 r e, N ®e :.°’....
i | .. oo
10+ i
0.8}
06— ' _Im(w)
0.45 0.65
Figure 6.1: Quasino: 4% . ‘ . %1 in the rotating squashed
Kaluza-Klein black ho'gfs: Lol = %%\ = 0,u = 1. The angular
momentum, a, ranges irc AV d ey \ 1 2 to 100. w corresponds to
modes v = ‘

3-

In Fig 6.3 and Fig 6.4, Y7

frequencies agains{

wary and real part of the quasinormal
aofls, we fixed a = 0.1,] =
,?'J in both figures. As A

is getting larger, the | U . | frequencies both real and

2,0 = 1 and var}

imaginary part get blg er While in Fig 6.5 and Flg 6.6, we fixed a = 0.1, \ =
O, = 1 an .Jﬁ sinormal frequencies
against 7. rd@e EJ qﬂmi m\hﬁsmall Teo the lowest
modes (I = 0) seems to dominate @ver the othggs however as g is getting larger
QRN URAITIEI T B v
For Fig®.6, the real part increases as angular index [ increasing. At last, Flg
6.7 and Fig 6.8, we plot the imaginary part and the real part of the quasinormal

frequencies against r., for fixed a = 0.2, A = 0.5, . = 1. Each lines represent each

values of the angular index [.
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451

401

30}

250

- : Y —IM(w)
0.1 2 e L) o7 0.8

Figure 6.2: QuasinCfmal frequen(:ls of scalar fiel& in the rotating squashed

Kaluza-Klein ﬁaﬁﬁm mﬁw ;]ﬁn ﬁa = 0.1. For A =0
is the right-m Ej ﬂ rafs 7, of each line runs
from 2-50. For = 0, w correspogds to modegyl = 3 whlle = 0.5 relates with

””QWM\‘Iﬂ‘iWNWl?WBWﬂB
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{a=0.1, 1=2, u=1}

0.6 I ..0.°0.....Oo.

04/
02|
00" — 1
60
Figure 6.3: Plottin F 4t TRE Y\ W\ v fixed a = 0.1,l =2, 4 =

1. Each lines show 4
0.5(green), A = 1(red
5 (blue), 2.45(green),

N where \ = 0(blue), A =

Mponds to modes v as follow

hi
o d ......00000‘
e00000!

T ssssaiaaissssi
4

U'I

L 1 L L L L 1 L L L L 1 L L L L 1 L L L L | r
20 30 40 50 60

Figure 6.4: Plotting the real part against r,, for fixed a = 0.1,] =2, u = 1. Each
lines show the differences in parameter A, where A = 0(blue), A = 0.5(green), A\ =
1(red), A = 1.5(black). w corresponds to modes v as follow 2(blue), 2.45(green),
2.29(red) and 2(black).
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{a=0.1, =0, u=1}

—-Im(w)
0.8r
0.6+ .....'..:::.Ollooooooooo
L .°o. . ......"0000000.000000001
o.::..
.3‘0.
04+ ...:....’o
0.2F e,
0.0 a0 0™
0 40 50

Figure 6.5: Plotting . \ or fixeda =01, A=0,u=1.
Each lines show the##if D ? N\ cM4/ = 0(blue), I = 1(green),
[ =2(red). w correspcgis » 44 I' y ), %(green) and 2 (red).

HUH'NIHVI?NH’IHT""'
q WW ﬁﬂfliﬂlmﬂﬂ’m HIRY

00

Figure 6.6: Plotting the real part against 7., for fixed a = 0.1,\ = 0,u = 1.
Each lines show the differences in parameter [, where [ = 0(blue), [ = 1(green),

| = 2(red). w corresponds to modes v as follow 1(blue), 2(green) and 2(red).
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{a=0.2, 1=0.5, u=1}

—Im(w)

10

08; . ...o

06; :.....'oo:. 0:..0
7 ooo::'::.

0.4 ."":. ®eo,

0.2 e,

00" LT
0 50

Figure 6.7: Plotting# Whfixed a = 0.2,) = 0.5, 4 =
1. Each lines show t} N3¢ | = 1(blue), I = 2(green),

[ = 3(red). whereas 7, Lr.o T\ U corresponds to modes v as

-
X
A
-

¥ ........0001

: ﬂﬂﬂ’&ﬂﬂﬂiﬂﬂ'm‘i......

QWWﬁﬂﬂ‘imﬁJﬂﬂ’JVlmﬂB

O L L L L L L L L L L L L L L L L L L L L L L L L | r o
0 10 20 30 40 50

Figure 6.8: Plotting the real part against r.,, for fixed a = 0.2, A = 0.5,y = 1.
Each lines show the differences in parameter [, where [ = 1(blue), [ = 2(green),
[ = 3(red). whereas 7+, of each line runs from 2-50. w corresponds to modes v as
follow 1.41(blue), 2.45(green) and 3.46(red).



Chapter VII

SUMMARY

dorre, and diverting myself now

‘ / ettier shell than ordinary,
ﬁﬁg

wred before me.”

“I was like a boy playir
and then finding a s
whilst the great oo

-I. Newton

From the begiiini: 1cily reviewed various black

hole solutions (Chary, ch of their properties and
their role as a solutic ity. Then, we discussed the
definition of quasinorma 1 % to certain elementary physics
: 'uusmormal frequencies of black

ecu studied in Chapter 4, 5 and 6

area (Chapter 3). The 1y gfnou ";‘
holes in three, four and e *-%

respectively. F b

rll—

In Chapter § - : ‘:‘ modes of a BTZ black
hole by an analytiCces v _ ' vo reduce the Schrodinger-
like equation to a hyforgeometric ditterential equat®®. Hence, by choosing ap-

propriate boundary coﬂ'chons the quaSisformal frequencies of BTZ black hole
are obtained ﬂ]l

FM&QMH ﬁwﬂqﬂﬁm1mmmm

depends on the%mgular quantum laumber of the field while the i 1mag1nary part de-

) TNDIMANRYINENGY

method to obtain its frequencies. As expect, these frequencies are determined
by black hole’s mass and angular momentum. If one turns off its spinning, the
results will perfectly coincide with the non-rotating case [12]. Lastly, a large AdS
three dimensional Schwarzschild black hole has been considered. It turns out that,
one can compute its quasinormal frequencies by following the same argument as
done in two previous cases [13]. In summary, three dimensional black holes have
been used as testing models because their quasinormal frequencies can be eas-

ily determined analytically. On the other hand, AdS term must be included to
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construct black hole solutions in three dimensions. Therefore, investigating their
quasinormal modes may reveal the interpretation of the conformal field theory in

two dimensions.

In Chapter 5, quasinormal modes of Schwarzschild black hole have been
reviewed. Unlike chapter 4, for four dimensions it turns out that we cannot reduce
the wave equation into the standard hypergeometric differential equation. So,
we need to use another approach to investigate quasinormal frequencies of the
Schwarzschild black hole. Fortunately. by substitution an appropriate power series
I nne obtains the recurrence relation in

v éxl frequencies can be determined
llyy So . 1S are shown by Table 5.1.

solution into the Schrodinger-li
a continued fraction form.
by solving these relations™=
Zhidenko et.al[40], one sees

Moreover, from Figur g
~ sinary part occurs.

that at particular val:

Lastly, in Cha
five dimensional blac’
Schwarzschild in five d;

he quasinormal modes of
westigation of a large AdS

Wpne can obtain an analytical

y bl el \
formula for w by per ; W Maprove the accuracy of the
result, first order pertur m PP el W inally, the quasinormal modes
of rotating squashed Kali #- he® been studied. By matching an

asymptotic solution of both. T izon and infinity) [14, 15], we can

determine quasinoy™yald S e f,the results are shown in
Figure 6.1 and Fi f ; - ‘l parameter “a” increases
the numerical value ] ! - alT observe that as \ is getting
larger, the numerica values of the quasinormal frequenmes get bigger. However,
this matching ﬁ‘ % —angular momenta.
So, in the futﬂu]ﬂ ﬁﬁﬂ( ﬂﬂg:h ther by applying the
perturbation method

qmmnimum'mmau
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Appendix A

Useful Calculation

A.1 Einstein-Hilbe

By the principle of least™ . = ac ®.stein-Hilbert action yields the
Einstein field equations. : | meaction for GR*, we must define

a Lagrangian L whicil 1€ ansformation and depends on

the metric tensor g, , [ ' N e metric tensor. From our
knowledge, gravity rc #Fs 4 J - ﬁ Wctime curvature. Then, we
may expect that our I g 4 fév A Afrom the Riemann curvature
tensor. The only sca¥ 7 ‘ \ \ tom the curvature tensor is
Ricci scalar R. So the s st ¢ ;W 1048 I'- -avitation is given by

r.i".?"

J!F'

where \/—¢ is detqgas——— e o2/ Einstein field equations,
we need to study t ¥ )

metric tensor g"V. B Jsing K = ¢

—gd'z. (A.1)

ariation of the inverse of

Loy get,

158878 wm'm's

5Spn = /
wglw Ruu\/ d x # g gd4$ + wRuu(s( \% —g)d4CU,

'.}- NIt WTJVIEJ N o

Let’s examine 0.9 first, The Riemann curvature tensor is given by

RZ)\V = 5)\F£M — a,,r’;\u + Fiargu F’;GFK#. (A.3)
Hence,
5RZ)\V = 8)\(5F1€;4) - 8V(6F§u) + 6(1—”[))\0)].—‘5# + Fﬁa(él—g‘u) - (5F1€0)F§p - Flea(ériu)‘

*This appendix was covered by [5]
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The variation of the curvature tensor can be obtained by first varying the connec-

tion with respect to the metric. Consider the variation of the Christoffel connection

VA(OT%,) = Oa(oT%,) + 15,01y, — I5,0T5, — T 075, (A.4)
V,(0T%,) = 0,(6T%,) + T040T5, — 0,675, — 7,61, (A.5)

By using (A.4)—(A.5), we obtain the variation of the curvature tensor

SRY,, = VA(6TS,) — V,(6T%,), (A.6)

AV

and let p = A

)= V.61,

— g ()] (A)

Then we consider thé v Weolnection. The connection is
given by
yg;w - a)\g;w] . (Ag)
So, S »
\ V. I.' d
5T, = 5g ug + O + 009 — 8>\5glw]
= Fﬁygmég (9:7097 gt Vo (9u009°) + 97 Va8 g, + 210, g5 6690>\}

: __@uﬁﬁhwmwmﬂ‘i
wgﬁmﬂﬁmﬂ TNy

= - [QVAV (697) + 9a Vi (697) = Guagus V7 (5% )] (A.10)
Substitute (A.10) back into 655, we finally get
58, = / V=gd*zV, [g,“,va(agW) = VA((Sg"’\)]. (A.11)

By Stokes’s theorem, this is equivalent to the surface term at infinity so it does

not contribute anything to the total variation. Then, 652 = 0. In order to deal
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with .53, let’s consider the following identity first

ln(detglw) = TT(lﬂgw/)

1
-9 = 9"0guwm

g
6g = —9g(gu69")
LO(V7E) = (o)t
- _%\/__g(g,uuéglw)' (A12)

(A.13)
By the principle of leasv c 0g" is arbitrary. We finally
get Einstein field eq@® :

(A.14)
To obtain the Einstein gl oo .‘ S ce, we begin with the action

(A.15)

87TG

where K = anq ‘E | this action with respect

-
X
A

,‘ ) — F H L',;,‘

to inverse of the ni§ 4

sgv | “2r sgm +5g,uu)d4x:0
A u&m&ﬁ%ﬁ WYINT
_ ¢ o (A.16)

Let,“aW’lﬁﬁ‘ﬂﬁ M1INYAY

nes energy-momentum tensor

2 0Ly
V=g g

and put them back to (A.16). Then we recover the Einstein field equations

= T, (A.17)

G,ul/ = K;T,ul/- (A18)
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A.2 An equivalent formulation of vacuum-space field
equations

In empty space the Einstein field equations become

Gu = 0
1
R éguyR 0
1
Rp,u = _g,u,z/R- (Alg)

contract (A.19) with g"”

Note that ¢"g,,= nux 2% (in this case is equal to 4).

Substitute this result 1v KRat10ns in vacuum-space

(A.20)

L\ osmological constant, it reads
\

For an empty-space fiel¢

_/guu

— = (A.21)

Then, we obtain ﬁel(. UATIO T —— Wlt} 1e cosmological constant.

A U ININIHYINT o

A.3 Kleln—Gordon Equation in (rved Spaggtime

We beglq QI@C&QOT a real s;uakn;! in ‘I@] cur\;! @ckgronnd

s = / BgW(vu@)(v,,@—V(@)] J=gd's. (A.23)

The first term may be interpreted as a kinetic energy of the field while the second
as its potential energy. Since ® is scalar field, we therefore can replace covariant

derivative with ordinary derivative.

S = / Bg””(a#@)(a@)—v@)] V—gd'z. (A.24)
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By plugging the above action into the Euler-Lagrange equation

oL oL

we thus obtain an equation of motion for a real scalar field

S0,
0. (A.26)
It is convenient to chooszg ‘ v \"' field equation becomes
0. (A.27)

This equation is kn ,onein the curved background

which describes dyna, urved spacetime.

AULINENINYINT
IR TN ININY



Appendix B

Mathematica Codes

B.1 The Determin: - # acients

ClearAll ["Global® *"71;
(xCopyleft by Alexander Zhida:

2M
Alr_1=1-—;
r

o[r_] = Exp[ir

Eql = Simplify [

Expand [[(A[r 1% 8y

Coefficient [e[rl,y

2M
r[z_1=- ;
(z1=-—
Eq2 =
. 2M
Simplify [Expand (5} Lo 121 — /.y [r] sy izl /.
g —————————————————— - r
ro>rizl /. 878 AY |

Eq3 = Numerator [Simply = Kar s
i1
i
S = Simplify  [Coefficient ™ [Eq3, y"

¥

[z111

T = Simplify  [Coefficient q3 y' [z111;
U = Simplify [C ff|C|ent z111;
Series [S, {
Series [T, {

Series [U, {z, w }]v

AR ﬁﬁmum MY

WhI [Abs [Limit [z"2 /S,z -»0]] =
While [t (Abs [Limit [T,z -0]] ===O S S*z T _T*z U _U*z ],
While [t (Abs[Limit [Uxz,z -0]] ===o)‘s Sxz;T =T*xz;U =Uxz 1;

(* After "while" step S »Sxz T-Txz U-sUxz )

(*Simplifying *)

(+This step we divide each term with order of z which come from the derivative of y [z]%)
SE = Expand [S/z"2];

TE = Expand [T/ z];

UE = Expand [U];

91
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Print ["Cal cul ating coefficients..."];
st =0;
Wiilel[! ((c[st, n_]=Sinplify[(n-st) (n-st -1) Coefficient [SE, z, st] +
(n-st) Coefficient [TE, z, st] +Coefficient [UE, z, st]]) ===0), Print [st ++]];
(xAfter the coefficient is zero we expect the all other are zero which usually happens. x)
Print ["It seens the other are zeroes, so we have "
st, " terms in the reccurence relation."];

Cal cul ating coefficients...
0
1

2

It seens the other are zeroes, so w I >gterns in the reccurence rel ation.

c[0, nI;
c[l, nJ;
c[2, nl;

(_uz +w2)3/2 ( w+\l:u2 + W? )) _
I\/F(8w4(a)+ v !"‘I 2\/—u2+w2)))

¥

VT Th(2 HTh A
AN TUNM NN Y
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B.2 Continued Fraction

ClearAll
al[n_]:

BIN_1:

["Global® %"1;

(L+n) (L+n-41iMw);

1

A -p? + w?

(-(1+| +12+2n (1+n))'\/—u2+w2 -iM(1+2n) (3u2—4w(w+'\/—u2+w2))—

008 (40 (oo ) e 300yt )

y[n_1:

n=0;
M=1;
| =0;
u=0;
For [ =0,] =<100,] ++, /
FromGeneralContinuedFiact i) ¥ \ N y[n-i +11, BIn-i1}, {i,] }1}] =

(-FromGeneralContinu

M+ -11y[n+il, BIn+il}, {i,j }11) /.

X_[y_] = Subscript [x A ; a l"n. ations -»200111

Eq4 = FromGeneralContinuedFraction 7
X_[y_] = Subscript  [X, y ] e

[{-aln-i]y[n-i+1], BIn-i1}, {i,] }1}1/.

EQ5 = -FromGeneralCo[ e i i) y[n+i ], BIN+i 1), {i] ¥1317/.

X_[y_] = Subscrip

&
=
@
?
gJ\'
1))
o
]
o,
)
o
e
.
=D
@
iy
]
=
]
—
-+
=
)
o
]
=
[
=
=
o)
a.
=
o
a
g
o
B
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B.3 Solving Omega for Rotating Squashed Kaluza Klein
Black Hole

vl (I +1) + (aw)? [212_2' g +1)+1)

(21 -1) (21 +3)

2 (-3+171 (1 +1) +12 (1 +1)® (21 -3) (21 +5)) 422
(aw)* N
(21 -3) (21 +5) (21 +3)% (21 -1)° 21 -1)2 (21 +3)?
[ 1 31 (I +1) ] 224 (48 +5 (21 -1) (21 +3)) 1
- + + —;
(21 -1) (21 +3) (21 -3) (21 +5) (21 =3) (21 +5) (21 -1)® (21 +3)%) 4

al =a[p] +B[p] +d[p] - 1;
b=alp] +BI[el;
c=1+2alp];

g 2
4x21nf®w? 42 , o
Q= - ,
(Inf2+a2)4 Inf? : » =
X r h?
oh=s ——;
Inf2-rh?

(x-22%) + /o

rh =

(1nf?+a2) ((1

ik[p]
alp_]:=- ;
Alp]
1 fies Alp])
Blp_1:= > (2-d[p]) - (d[p
X n
Alp] :=1- -
o) (I nf 4 y’
p+X "ll‘
Kipl : —j I}

Inf2sa?

W%ﬁws §IN3

axK[p]? I nf

ﬂﬁq'awaﬂ

9 Ker2 (1nf24a2)” I'nf?
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ClearAll  ["Global® *"7;

| = 0;
A=0;
u=1
a=01 ap
2
L C " 8 xInf 2 (21+1) (Gamm%\/v ]) Gammgc - al - b] Gammgal] Gammdb] ) )
= . p~ph;
d Pi uo (|nf 2 _ a2) Gammgdal + b - c] Gammdc - al] Gammdc - b]

Eg2 = FindRoot [EQl == -1, {w, 1. -0.5 |}, Maxlterations - 10000 000, PrecisionGoal -107;
For [ap =0, ap <3, ap ++,
{Print [For [Inf =2, Inf <100, Inf ++, {Print [t[Inf,a ] =Last [Last [Eq2]1]," ",
Inf," ", a," ", rh 1, Print " “4/.Eq2),Bold 11}11}1;

Figure B.3: This code is™ m—inormal frequencies of rotat-

ing squashed Kaluza = 0 and suppose the black

hole mass equal to 1wk Qb 1.

]

L -
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Appendix C

Effective Potential

_gol

_100"

Figure C.1: The effectn?e potential of the BTZ(AdS) black hole, for fixed M =1,

gt 21 mmiwmmm o
ARIAINTAUNMINGAY
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C.2 Effective Potential of the Schwarzschild Black Hole

{(M=1}
V(r)

-0.2}
—04f

-06

Figure C.2: The effedv g ot 88 1o S ochild black hole, for fixed
M = 1 an angular qu, ‘,1,_; 3 .Hlx [ = 1(Green), I = 2(Red),

:
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C.3 Effective Potential of the Squashed Kaluza-Klein Black
Hole

{u=1, ro=2, 1=0, a=0}

N Prrin;
Figure C.3: The effec #fe oter

=1 ro=2 A=0and :;’_.r.,' i

. . ed KK black hole, for fixed
oM 1-4. The depth of the potential

—

increases with parameter . ==z

= .*.‘» /s

-

Vi ) eh' J
: et
']

AUEINLNINYING
PAATUAMINYAE
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{u=1, ro=2, A=15, a=0)

-15

-20

-25

-30

Figure C.4: The effe, o . L R black hole, for fixed p = 1,
Teo = 2, A = 1.5 and A \ % '\ " The depth of the potential

10

@ |-

118 ININTWYINS
9 |

e ANTUNMININY

-12-

Figure C.5: The effective potential of the Squashed KK black hole, for fixed p =1,
Too = 2, | = 2 and parameter \ between 0-2 (0.5 for each step). The depth of the

potential increases with parameter A. The overall potential also increases with A.
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