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Chapter I

INTRODUCTION

“Space-time does not claim existence in its own right, but only as a

structural quality of the (gravitational) field”

-A. Einstein

One of the most mysterious objects in the universe is black holes. Black holes

were firstly explored as a solution of the Einstein field equations [1, 2, 3, 4, 5]. So,

they are purely gravitational objects. Their essential singularities hidden inside

the black holes are very bizarre. It is the place where gravity becomes infinite and

all the physics law are broken down. Additionally, this puzzling end of physics is

expected to be resolved by the presence of quantum gravity effects. On the other

hand, black holes could be regarded as a final stage of exhausted massive stars

which make them exist as real astrophysical objects. The first attempt to evaluate

whether black holes are physical objects was initiated by Regge and Wheeler in

1957 [6]. They perturbed black hole solution and observed its respond. Surpris-

ingly, the results show that after black holes were disturbed they will be under

a small oscillation before returning to a static state and producing gravitational

waves which radiate energy away to infinity. Based on this work, Viveshwara

1970 has proved that oscillation frequencies of external field outside black hole

must be decaying [7, 8]. These frequencies have been termed as “quasinormal

frequencies” and corresponding modes are so-called “quasinormal modes“. More

precisely, quasinormal modes are the modes of oscillation which have their own

characteristics. They are not truly stationary but damped quite rapidly, some

parts of wave are absorbed into the black holes during decay process. Also, its

frequencies depend on black hole intrinsic parameters which are mass, charge and

angular momentum.

Nowadays, quasinormal modes have been studied widely for various black

hole types and also different kinds of external field, i.e., scalar and, vector fields.
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Most of these studies have been done by numerical calculation. The most pop-

ular technique would be a continued fraction which is developed by Leaver [9]

and was improved further by Nollert [10]. However, one found that for three di-

mensional black holes (BTZ for example), it turns out there is a possibility to

obtain quasinormal frequencies analytically [11, 12] by transforming the Regge-

Wheeler equation into hypergeometric differential equation. This fact motivated

us to apply the same technique for others black hole system and try to calculate

quasinormal frequencies. Hence, in this thesis, we aim to investigate many black

hole models which are able to calculate quasinormal modes analytically.

This thesis is organized as follows. In Chapter 2, we introduce briefly some

idea about relativity theory both for special and general version. Then, four well-

known black hole solutions are reviewed in the following order, (i) Schwarzschild

black hole, (ii) Reissner-Nordström black hole, (iii) Kerr black hole and finally (iv)

BTZ black hole. In Chapter 3, the definition of quasinormal modes is stated and

Regge-Wheeler equation is derived. We also discuss the application of quasinor-

mal modes in this chapter. In Chapter 4, we reviewed quasinormal modes of three

dimensional black holes. First, we consider the massless scalar field perturbation

around BTZ black hole and calculate its quasinormal frequencies analytically fol-

lowing the work done by Vitor Cardoso [11]. Then, a massive scalar field evolves

in the rotating BTZ background has been investigated which had been done by

Danny Birmingham [12]. Also, an analytical formula of quasinormal frequencies

is obtained. In the end of this chapter, we determine quasinormal modes of mass-

less scalar field in a large AdS three dimensional Schwarzschild black hole [13].

Then in Chapter 5, we evaluate the quasinormal frequencies of four dimensional

Schwarzschild black holes by using a continued fraction method which has been

done by Zhidenko et.al [40]. In Chapter 6, quasinormal frequencies of five dimen-

sional black holes are reviewed. We first begin with a large AdS five dimensional

Schwarzschild black hole and determine its quasinormal frequencies by using first

order perturbation method which had been proposed by Siopsis et.al [13]. Fi-

nally, we follow the matching solution technique [14, 15] to calculate quasinormal

frequencies of a rotating Kaluza-Klein black hole with squashed horizons and ob-

serve the effect of compactified extra dimensions to those frequencies. Lastly, we

summarize all the results of our study in Chapter 7.

For the sake of simplicity throughout this thesis, we shall assume geometrized

unit G = c = 1 unless otherwise stated.



Chapter II

RELATIVITY AND BLACK

HOLES

“It is always pleasant to have exact solutions in simple form at your

disposal”

-K. Schwarzschild

It is well known that, the advanced theory of gravity is general theory of rel-

ativity (GR) proposed by Albert Einstein in 1915 [3]. GR has revolutionized our

idea about space and time. It suggests that time itself is not an absolute quantity

but relative; time flowing could be affected by the presence of the gravitational

field. Moreover, in the GR paradigm, gravity should no longer be considered as

a force but only a curvature of the spacetime caused by matter. There are many

situations which confirm the correction of the GR, i.e., the perihelion precession

of Mercury’s orbit, the deflection of light near a massive object. One of the most

astonishing about GR is, it predicts the existence of compact objects which even

light cannot escape from, later-called black holes. More specifically, black holes

occur as solutions of the Einstein field equations. Nowadays, there are many black

hole solutions emerged from GR. In this chapter, we will briefly review both the

special and general relativity theory. Later, the most four well-known exact so-

lutions are discussed mathematically in the following order. First, Schwarzschild

solution: the first non-trivial exact solution. Second, Reissner-Nordström solu-

tion: charged black hole. Third, Kerr solution: spinning black hole. Finally, BTZ

solution: (2+1) dimensional black hole.

2.1 Special Relativity

1905, the Annus Mirabillis (miracle year) of Albert Einstein. He wrote four funda-

mental papers in that year. These four articles contributed widely to the modern
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physics and also revolutionized our concept about space, time and matter. His

third paper in that year was about the reconcilement between Maxwell’s Equations

and the law of classical mechanics; by re-considering the Newtonian mechanics in

the speed of light regime. This theory became known later as special theory of

relativity (SR) [16]. SR is based on two important postulates. 1) All inertial ob-

servers are equivalent. 2) The speed of light c in vacuum is the same in all inertial

systems. By applying these two postulates, one can obtain Lorentz transformation

which connecting two different inertial frames with relative velocity v,

ct′ = γ(ct− βx),

x′ = γ(x− βct),

y′ = y,

z′ = z.

where β = v/c and γ = (1 − β2)−1/2. This Lorentz transformation is also known

as a boost in x-direction. From this transformation, we see that time and spaces

coordinates are mixed. In addition, the interval (squared) between two events in

an inertial frame S can be written as

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2. (2.1)

Clearly, (2.1) is invariant under Lorentz transformation. By observing the above

equation, we are lead to consider space and time as a four-dimensional object

called spacetime. Moreover, as a consequence of those postulates, there are two

strange phenomenon occur when speed of the object approaches to the speed of

light— Time-dilation and Length-contraction.

By using the four vector notation inspired by the Lorentz transformation,

Einstein published his fourth paper [17] in 1905. He proposed equivalence between

mass and energy. This became the most well-known physics formula—i.e. E =

mc2. Then, one can say that this equivalence is a consequence of special relativity.

After publishing SR, Einstein continued his work to a more “general” theory of

relativity which will be discussed in the next section.

2.2 General Relativity

In SR, Einstein considered only an inertial frame of reference where acceleration

was neglected. Then, in order to extent his SR to a more general theory, he needs
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to consider a general frame of reference including the effect of acceleration. He

tried to accomplish his new theory with a thought experiment about the free-falling

elevator∗. Finally, Einstein proposed the equivalence principle,

In a freely falling (non-rotating) laboratory occupying a small region of

spacetime, the laws of physics are those of special relativity. [2]

The principle of equivalence explains that if we are in the free-falling frame un-

der a gravitational field, locally gravity seems to disappear so we recover special

relativity. From this argument, Einstein can imply that gravity may not act as a

force but pseudo force. Afterwards, he came up with an important concept about

gravitation,

gravity should no longer be regarded as a force but a manifestation of

the spacetime curvature which curved by the presence of matter. [2]

This statement is the most essential point of a new theory of gravity which later

called general theory of relativity (GR) [3]. To describe the curvature of space-

time quantitatively, Einstein needs a mathematical tool that has coordinate in-

dependence property. After many years of trial and error, Einstein successfully

formulated a tensorial equation for his new theory (GR) in 1915. Einstein field

equations takes the form†

Gµν =
8πG

c4
Tµν . (2.2)

where G and c is Newton constant and the speed of light in vacuum respectively.

Gµν is an Einstein tensor which contains all the information about spacetime

geometry. Tµν is called energy-momentum tensor which can be considered as

a source for gravitational field. The divergence-less of Einstein tensor suggests

the conservation of energy—i.e.∇µT
µν = 0. Einstein tensor can be expressed

mathematically as

Gµν = Rµν − 1

2
gµνR. (2.3)

where Rµν is Ricci tensor which is a contraction of Riemann tensor—i.e. Rα
µαν =

Rµν . R is Ricci scalar or a curvature scalar. gµν is metric tensor which defines

concept of distance on a manifold.

∗For more detail, see [1].
†See Appendix A.1 for the derivation of Einstein field equation.
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In fact, (2.2) is not the full form of Einstein field equations yet. The complete

form is given by

Rµν − 1

2
gµνR + gµνΛ =

8πG

c4
Tµν . (2.4)

where Λ is a cosmological constant. It was originally introduced by Einstein to

produce static universe. But the observation tells us that our universe is ex-

panding not static as Einstein would assume. So Λ was removed†. But recently,

physicists have discovered the cosmic acceleration. This has renewed an interest

of cosmological constant as a source of the acceleration.

Solution of Einstein field equation normally written in a form called line-

element or metric. They describe an invariant interval in any spacetime. Let’s

consider (2.1) as an infinitesimal quantities. It reads

ds2 = −c2dt2 + dx2 + dy2 + dz2. (2.5)

This line-element shows the geometry of 4 dimensional flat spacetime which ex-

pressed by Cartesian coordinates∗. It can be rewritten in a tensorial form

ds2 = ηµνdxµdxν , (2.6)

and

ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (2.7)

where ηµν is Minkowski metric tensor or Minkowski metric. This solution is a

special case of GR since it explains geometry of a flat spacetime. In general, we

obtain the general solution by replacing ηµν with gµν .Then (2.6) becomes

ds2 = gµνdxµdxν . (2.8)

There are three possible values for ds2 as follows:

ds2 > 0 is spacelike interval,

ds2 = 0 is lightlike or null interval,

ds2 < 0 is timelike interval.

†Einstein calling this as “the biggest blunder he ever made of my life”.
∗Due to the coordinate-independent, the flat metric can be described by the other coordinate

system, e.g., in spherical coordinates it reads ds2 = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2.
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Note that, these definition will interchange between spacelike and timelike if

the metric signature becomes (+,−,−,−). Spacelike interval represents non-

physically related region. Null interval express light trajectory in spacetime, it

forms the light cone structure in the spacetime diagram. For timelike interval,

non-zero massive particle must be contained within the light cone and shows a

massive particle path in the spacetime. To describes the motion of particle in

curved spacetime, we define equation of motion in GR as,

d2xµ

dλ2
+ Γµ

νσ

dxν

dλ

dxσ

dλ
= 0. (2.9)

This is geodesic equation. It explains “free falling” motions of a particle that

means there is no external force acts on the object. Therefore, RHS of (2.9) is

zero. λ is an affine parameter practically chosen to be the proper time “τ”. The

effect of curved spacetime to equation of motion comes from Christoffel connection

Γµ
νσ given by

Γµ
νσ =

1

2
gµα(∂νgσα + ∂σgνα − ∂αgνσ). (2.10)

In flat space the metric tensor in (2.10) is replaced by ηµν . So, geodesic equation

reduces to d2xµ

dλ2 = 0, it represents particle’s motion with constant velocity in flat

spacetime.

2.3 Black Holes

∗The concept of black holes was originally proposed by John Michell in 1784.

He discussed classical objects which their escape velocities exceed the speed of

light. Later in 1795, Pierre-Simon Laplace also pointed out that there could be

massive stars whose gravity is so strong that not even light can escape from it†.

In 1916, Karl Schwarzschild was able to solves the Einstein field equations and

obtained the simplest well known exact solution [18], the Schwarzschild solution.

By investigating the solution’s structure, its mathematical singularity is emerged

which implies the existence of black holes geometry called Schwarzschild black

hole. Hence, the ideas about black holes were theoretically supported for the first

time from the Schwarzschild solution. Einstein was surprised by this result. Since,

he did not expect the exact solution will be found so soon. However, Einstein had

never accepted the ideas about black holes until his death in 1955.

∗See [23] for more detail about timeline in black holes research.
†See [4] for the detail of his calculation.
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Schwarzschild’s work had widely opened the study of black holes physics.

In 1918, Hans Reissner and Gunnar Nordström successfully solved the Einstein-

Maxwell equations for charged spherical-symmetric object [19, 20] called Reissner-

Nordstöm black hole. Five years later, George D. Birkhoff proved the uniqueness

of the Schwarzschild solution. It stated that the spacetime outside a spherical

symmetric object always governed by the Schwarzschild metric. At that time,

physicists believe that black holes were originated from the exhausted stars via

gravitational collapse process. Thus in 1939, J. Robert Oppenheimer and Hart-

land Snyder calculated the pressure-free homogeneous fluid sphere that collapses

under the influence of gravity [21]. The result shows that the object will cut itself

from the outside universe. This was the first evidence which confirms the existence

of the black holes as an astrophysical object. For uncharged axial-symmetric ro-

tating system, Roy Kerr was able to solve Einstein equations in vacuum for such

a system in 1963 [22]. This solution is referred as a Kerr black hole. Nowadays,

there are many branches of black holes physics research both theoretical and ob-

servational. For example, thermodynamic properties of black holes originated by

Stephen Hawking, the perturbation of black holes which later leads to the study of

quasinormal modes, the search for gravitational waves that occur due to a massive

astrophysical object including black holes. Black holes are also used for testing

many theories about the modified gravity and quantum gravity.

Theoretically, black holes are considered to be the solution of Einstein field

equations. Many black hole metrics come from solving the Einstein equations

under particular assumptions. In the following subsection, we will discuss some of

the well-known black hole metrics.

2.3.1 Schwarzschild Black Hole

Karl Schwarzschild was the first one who was able to solve the Einstein field equa-

tions analytically. He reduces the complexity of the equations by assuming the

spherical symmetry and solved for the vacuum solutions. His solution represents

spacetime geometry outside a spherically symmetric matter distribution. To ob-

tain such a solution, Schwarzschild needs to seek out for the most general form of

the static spatially isotropic metric.

The word static imposes two properties for the metric: (i) all the metric

component gµν must be independent of time coordinate (say x0); (ii) line-element

ds2 are invariant under x0 −→ −x0 transformation. A spacetime that satisfies only
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(i) condition is called stationary [2]. We will encounter such a spacetime again

when consider the spinning black hole. Spatially isotropic means that the metric

looks the same from all directions. This condition implies spherical symmetric

property to the Schwarzschild metric. Starting from the most general form of

spatially isotropic metric [2],

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2(dθ2 + sin2 θdφ2). (2.11)

It is trivial to obtain the static property. By requiring that the metric components

are independent of x0. Thus, the above metric reduces to

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdφ2). (2.12)

This is the most general form of the metric with static spatially isotropic prop-

erties. We can find the exact form of the function A(r), B(r) by solving this

line-element in vacuum-space field equations.

Gµν = 0. (2.13)

or in equivalent form (see Appendix A.2)

Rµν = 0. (2.14)

From the metric (2.12), we can calculate all the non-vanishing Christoffel connec-

tion via (2.10). Thus, the Ricci curvature tensor can be constructed by

Rµν ≡ Rρ
µρν = ∂ρΓ

ρ
νµ − ∂νΓ

ρ
ρµ + Γρ

ρσΓσ
νµ − Γρ

νσΓσ
ρµ. (2.15)

Finally, the Schwarzschild solution is obtained [2]

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (2.16)

This metric describes the spacetime geometry outside the spherically symmet-

ric matter. The Schwarzschild spacetime has asymptotically flat property which

means as r−→ ∞ the metric becomes flat gµν −→ ηµν . At first glance, the

Schwarzschild metric seems to have two gravitational singularity at the surface

r = 2M and r = 0. The first one is called Schwarzschild radius which defines the

radius of the Schwarzschild black hole. It also acts as a boundary of the black

hole called an event horizon, once anything come inside this boundary then it is

impossible to be seen from the outside observer. The other singularity lies at the

black hole’s center. It is the place where the curvature (gravity) becomes infi-

nite. In fact, the surface r = 2M is only coordinates singularity which can be
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removed out by choosing new coordinates properly. For example, if we introduce

new coordinate as

t
′

= t + 2M ln
∣∣∣ r

2M
− 1

∣∣∣. (2.17)

Using the above relation, thus we can transform (2.16) to

ds2 = −
(
1− 2M

r

)
dt
′2 +

4M

r
dt
′
dr +

(
1 +

2M

r

)
dr2 − r2(dθ2 + sin2 θdφ2).

(2.18)

This is Schwarzschild metric but written in Eddington-Finkelstein coordinates

(t
′
, r, θ, φ) instead of the Schwarzschild coordinates (t, r, θ, φ). We see that r = 2M

is no longer problem, our metric (2.18) is still finite at this surface. The metric

(2.16) explains geometry of the spacetime outside the spherically symmetric object

which being seen by the distant observers. From their perspective, every particle

which tries to approach an event horizon will never get inside the black hole

since our metric becomes divergent there. Instead, the Eddington-Finkelstein

coordinates represent the view point of an approaching particle. Thus from the

particle’s frame of reference, they can safely move through an event horizon. Inside

the event horizon, coordinate t and coordinate r which is timelike and spacelike

respectively at the outside will swap their role, coordinate t will be spacelike while

coordinate r becomes timelike. So inside the Schwarzschild black hole, every

motion will be forced to move in the reducing r coordinate direction and hitting

the singularity unavoidably.

So far, we have shown the properties of a static spherically symmetric metric.

In the next subsection, we will further investigate about the metric which describe

the spacetime outside a static spherically symmetric charged object.

2.3.2 Reissner-Nordström Black Hole

In the last section, we discuss about the static spherically symmetric object and

obtain the Schwarzschild solution. We will now further investigate more about a

metric outside static spherically symmetric charged matter. The exterior of such

an object is filled with a static electric field. Therefore, we need to solve Einstein

field equations for a static spherically symmetric with the existence of energy-

momentum tensor for a pure electromagnetic field [2]. The Einstein-Maxwell field

equations take the form

Gµν = 8πTµν . (2.19)
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Tµν is the Maxwell energy-momentum tensor. It is defined as [1]

Tµν =
1

4π
(−gσρFµσFνρ +

1

4
gµνFσρF

σρ). (2.20)

where Fµν ≡ ∂νAµ−∂µAν . Fµν and Aµ is Maxwell strength tensor and 4-vector po-

tential respectively. Thus, it is obvious that the Maxwell tensor is anti-symmetric

which implies the trace-free of the Maxwell energy momentum tensor. Then, the

Einstein-Maxwell field equations become

Rµν = 8πTµν . (2.21)

Moreover, the Maxwell tensor must satisfy the source-free Maxwell’s equations [1]

∇νF
µν = 0,

∂[µFνσ] = 0.

We make an assumption that our point charged particle settles at the origin of

the coordinates system. As a consequence of spherically symmetric, the 4-vector

potential takes the simple form

[Aµ] =
(
φ(r), a(r), 0, 0

)
,

where φ(r) and a(r) may be interpreted as electrostatic potential and the radial

component of the 3-vector potential[2]. Hence, the field(Maxwell)-strength tensor

has the form

[F µν ] = E(r)




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




. (2.22)

In this case, we may interprets E(r) as the radial component of electric field as

r −→ ∞. Now our task is to write down the static spherically symmetric metric

and insert them into field equations (2.21) together with the Maxwell’s equations.

Then determine the unknown function of the metric. Besides the metric defined

in (2.12), we can use another form of such a metric which is defined as [1]

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (2.23)

Finally, we obtain the Reissner-Nordström metric

ds2 = −
(
1− 2M

r
+

k2

r2

)
dt2 +

(
1− 2M

r
+

k2

r2

)−1

dr2 + r2dΩ2, (2.24)
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where dΩ2 ≡ dθ2 + sin2 θdφ2. As k −→ 0, we recover the Schwarzschild metric

therefore we may interpret k as a total charge of the particle. This solution shows

the spacetime geometry around the non-rotating point charged particle. One can

obtain the coordinate singularity of the metric (2.24) by setting g11 = 0. This

gives us a result

r± = M ±
√

M2 − k2. (2.25)

The Reissner-Nortström has double event horizon, i.e., inner and outer horizon.

Clearly, there exist three different cases to determine the values of the Reissner-

Nordström’s radius.

Case I M2 > k2: In this case, there exist both singularities at r = r±. These

surfaces represent the event horizon of the Reissener-Nordström black hole. In the

region r− < r < r+, the situation is identically with the Schwarzschild. Once inside

this region, the t and r will change their characters from timelike to spacelike and

vice versa respectively. Hence the particles are forced to move in the direction

of decreasing r until they reach the next surface r = r−. Afterward, when they

approach the r− surface, the coordinate t and coordinate r will return to their

usual timelike and spacelike properties. Consequently, inside the inner horizon

r < r−, particles can manage themselves to avoid the black hole’s singularity which

is different from the Schwarzschild case. Moreover, if we do maximally analytic

extension of the Reissner-Nordström geometry, one finds that there exist such a

hypothetical solution in which looks like a time reversal black hole namely, white

hole. In the white hole, a particle inside the inner horizon will be ejected from

the hole and nothing can across back inside the hole. In fact, the Schwarzschild

solution can give such a white hole solution by extending the Eddinton-Finkelstein

coordinates further. However, we will not discuss more about the white hole since

it is beyond our scope here.

Case II M2 < k2: In this case, it appears that both r± become imaginary.

As a result, g11 is regular everywhere except r = 0 thus there are no coordinate

singularities anymore. Both event horizons now disappear, only the intrinsic sin-

gularity is left nakedly; the absence of the event horizons lead to the fact that

coordinate t and r remain their own properties which are timelike and spacelike.

Thus, the naked singularity can also be avoided by the particles. However the

physical situation that comes after the existence of the naked singularity is; for

an example, there exist the closed timelike curves which allow the possible of the

time traveling. Since such an extreme unphysical scenario emerges, Roger Penrose

has proposed cosmic censorship conjecture in 1969. This conjecture stated that
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the singularities must be covered by an event horizon to prevent the formation

of a naked singularity. However, nowadays there are many theoretical evidences

which give a contradiction to this conjecture. Thus, the naked singularities may

not be necessarily covered and could possibly exist in the real universe.

Case III M2 = k2: This one is called extreme Reissner-Nordström black hole.

In this case, the outer hoizon r+ and inner horizon r− will coincide at r = M .

The coordinate r is always spacelike except at r = M it becomes null. Hence,

the singularity r = 0 is a timelike as in the other cases. Thus for this black hole,

it is again possible to avoid the singularity. Moreover, an extremal black hole is

practically used as a toy model; they are usually investigated the role of black

hole in quantum gravity. Also in supersymmetric theories, extremal black hole

can leave the symmetries unbroken, which is considerable aid in calculations. [5]

Charged black hole would hardly be observed in nature since it is rapidly

discharged by the surrounding opposite charges in the accretion disk. However,

it is worth to study this solution because its mathematical structure is similar to

that of the more complicated solution; Kerr solution which describe the rotating

black hole which we will discuss in the next section [1]. On the other hand it also

helps us to understand better about the spacetime geometry.

2.3.3 Kerr Black Hole

In the last two sections, we discuss charged and un-charged spherical black hole.

But, most astrophysical objects are indeed rotating. So, we need to construct the

metric that describes such an object. It appears that we cannot apply a static

isotropic metric in this case because the rotation axis needs a special direction.

Hence, the isotropic property is destroyed. In order to represent steadily rotating

matter, we must introduce a stationary axisymmetric metric [2]

ds2 = −A(r, θ)dt2 + B(r, θ) (dφ− ω(r, θ)dt)2 + C(r, θ)dr2 + D(r, θ)dθ2.

(2.26)

By considering 4-momentum of the particle approaching this metric (2.26), one

can prove that the function ω(r, θ) = dφ
dt

. The rate of change of coordinate φ with

respect to the coordinate time shows that the spacetime itself is rotating. Any

particle reach at this neighborhood will has been dragged by the effect of pure

gravitational field. This effect is called frame dragging effect.
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In order to obtain the Kerr metric, we must insert the stationary metric

(2.26) into (2.14) and then solve for the unknown function A(r, θ) and B(r, theta).

Hence, we get the Kerr metric (written in Boyer-Lindquist coordinates)[2]

ds2 = −
(

∆− a2 sin2 θ

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ +

ρ2

∆
dr2 + ρ2dθ2 +

Σ2 sin2 θ

ρ2
dφ2.

(2.27)

where

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2,

Σ = (r2 + a2)2 − a2∆ sin2 θ.

In the limit a −→ 0, the Kerr solution tends to the Schwarzschild case so it makes

sense to interpret parameter a as spin parameter. In fact, a relates to total angular

momentum via J = Ma. To find the event horizons, we must solve ∆ = 0. Then,

the event horizons of Kerr solution take the form

r± = M ±
√

M2 − a2. (2.28)

The Kerr solution (2.27) describes the spacetime around a massive rotating body.

It has stationary and axisymmetric properties. Like Reissner-Norström, the Kerr

metric has two event horizons, i.e., inner and outer horizon which cause from the

quadratic factor in ∆. There is another special surface for Kerr solution, if we set

gtt = 0

rs± = M ±
√

M2 − a2 cos2 θ. (2.29)

These surfaces show another interesting character for a stationary axisymmetric

metric except from the frame-dragging. Inside these surfaces nothing can remain

stationary it will be forced to move in the same direction with the black hole’s

rotation. These surfaces are called stationary limit surfaces. The region between

the outer static surface and the outer horizon is called the Ergosphere. It is possible

to extract the black hole’s energy from this region of the rotating black hole

which was proposed by Roger Penrose. Although (2.28) expresses the coordinate

singularity of the Kerr solution but we could obtain the intrinsic singularity by

setting ρ2 = r2 + a2 cos2 θ = 0. These yields

r = 0, θ =
π

2
.

By using a proper coordinate transformation, one can transform the above con-

dition to x2 + y2 = a2. Hence, surprisingly, Kerr’s singularity has ring-shaped
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with the radius “a”. Let us investigate more on the event horizon of Kerr solution

(2.28), it is clear that there exist three possible cases relevant to the relative val-

ues of M2 and a2. This is in many way similar to that of the Reissner-Nordström

black hole.

Case I M2 > a2: In this case, both outer and inner horizon is real so

two coordinate singularities exist. But they can be removed by changing the

coordinates as the Schwarzschild metric. We can divide radial coordinate into

three regions. r+ < r this region lies at the outermost of the Kerr solution.

In this region, t is timelike while r is spacelike. r− < r < r+ is the region

where space and time interchange their role. This is similar to region inside the

Schwarzschild’s radius. More specifically, particle must move in the decreasing

direction of coordinate r. The last one is the region r < r−, again time and radial

coordinate regain their properties at the outside of the outer horizon. Therefore

once again, the intrinsic singularity of Kerr black hole can be avoided since it

has the timelike singularity which is similar to that of the Reissner-Nordström

solution. We expect this situation would occur in the real gravitational collapse

since this case seems to be the most physical than the other cases.

Case II M2 < a2 There is nothing different from the Charged black hole.

Both coordinate singularities are now disappeared then naked singularity is ap-

pearing.

Case III M2 = a2 An extreme Kerr black hole is also the same as Reissner-

Nordström. Two event horizons coincide at the surface r = M which is a null

hypersurface. However, it may be possible that near-extremal Kerr black hole

could emerge in the real astrophysical situation. As the matters forming in the

accretion disk around Kerr black hole fall inside, they also increase mass and

angular momentum to the hole. While the matters are falling in, they create a

radiation in which carries away the angular momentum. In addition, a detailed

calculation shows that the limiting value is a ≈ 0.998M [2].

In conclusion, we see that the stationary axisymmetric metric leads to

two fascinating phenomena, i.e., frame-dragging effect and stationary limit sur-

faces. These are the special characters of such a metric which differ from the

Schwarzschild and Reissner-Nordström black hole. On the other hand, while

the intrinsic singularity of the Schwarzschild solution are spacelike, Reissner-

Nordström and Kerr singularity is timelike. It is worthy to note that, although

Einstein equation itself has non-linearity property but all of the exaction solutions

can be derived by choosing appropriate assumptions and symmetries. In the next
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section, we will introduce another interesting vacuum solution with the presence of

cosmological constant in (2+1) dimensional spacetime namely, a BTZ black hole.

2.3.4 BTZ Black Hole

From the definition of Riemann tensor, a vacuum solution of (2+1) dimensional

spacetime is essentially flat. Thus in the past, there was no anticipation for the

existence of the black hole solutions in (2+1) dimensional gravity. However, strik-

ingly, in 1992 Bañados, Teitelboim, and Zanelli discovered [24] the vacuum solution

in (2+1) dimensions with negative cosmological constant; it is called BTZ solution.

This solution is used as a toy model for the study of (2+1) dimensional quantum

gravity and also supergravity theories. To derive this solution, we begin with the

most general form of the static isotropic metric in “Schwarzschild coordinates”,

ds2 = −A(r)dt2 + B(r)dr2 + r2dφ2, (2.30)

where −∞ < t < ∞, 0 < r < ∞, 0 ≤ φ ≤ 2π. In fact, since this solution

lives in three dimensions the topology of angular part becomes a disk instead of

2-sphere as in four dimensional case. Now go back to the Einstein field equations

with negative cosmological constant Λ = −1/l2 (2.4). We shall consider only the

vacuum solution, thus field equations become (See Appendix A.2)

Rµν = − 1

l2
gµν . (2.31)

Then, plug in (2.30) into the above equation we get

ds2 = −
(
−M +

r2

l2

)
dt2 +

(
−M +

r2

l2

)−1

dr2 + r2dφ2. (2.32)

This solution asymptotically becomes (r −→ ∞) anti de sitter spacetime. Note

that, if r2

l2
is vanished the solution reduces to flat metric. The event horizon is

given by

r± = ±l
√

M. (2.33)

Moreover, we can construct spinning BTZ black hole solution as we have done in

Kerr black hole. The rotating BTZ black hole takes the form

ds2 = −
(
−M +

r2

l2
+

J2

4r2

)
dt2 +

(
−M +

r2

l2
+

J2

4r2

)−1

dr2 + r2

(
dφ− J

2r2
dt

)2

,
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where J = Ma is total angular momentum. One easily sees that this metric

reduces to spinless BTZ when J −→ 0. The hole’s radius is given by

r± = l


M

2


1±

√
1−

(
J

Ml

)2






1/2

. (2.34)

As we expect, event horizons split into two surfaces, i.e., outer and inner horizon.

If l grows very large the black hole exterior is pushed away to infinity and one is left

just with the inside [24]. Moreover, if we set M = −1 and J −→ 0 the BTZ metric

becomes ordinary anti-de sitter space. So far, we have shown the basic knowledge

of the well-known black hole solution. Hence, the concept of quasinormal modes

of black holes will be introduced in the next chapter.



Chapter III

BLACK HOLE

PERTURBATIONS

“Black hole shows only three characteristics to the outside world (mass,

charge, spin) and comparing the situation to a room full of bald-pated

people who had one characteristic in common, but no differences in

hair length, style or color for individual variations.”(no hair theorem)

-J. A. Wheeler

After a brief review on GR and black holes in the previous chapter, we now

ready to make a discussion on black hole perturbation which later leads to the

study of quasinormal modes. In this chapter, we begin with a brief introduction

about the beginning of the study on black hole perturbation. Then, the equation of

perturbation around black hole metric is derived. This leads us to the Schrödinger-

like equation which is the major equation throughout our study. After that, we

introduce the definition of quasinormal modes and quasinormal frequencies both

mathematically and physically. Some noteworthy literature reviews are discussed.

Finally, we denote the contribution of quasinormal modes to other fundamental

problem in physics.

3.1 Literature Review

In the mid 1950’s, physicists wondered whether the black hole could be regarded

as an astronomical object. In order to answer this question, they started to study

the perturbation of black holes. More specifically, they studied the evolution of the

physical fields outside black holes which has been proved later by Vishveshwara

[7] that the fields can be treated as a perturbation in the black hole spacetime.



19

The physical fields are always assumed to be weak thus there is no effect of their

energy-momentum tensor on the black hole metric [26]. Even though Einstein

theory itself is a nonlinear theory, it turns out that the only linear perturbation

is well suited. In fact, the study of perturbed black holes were first pioneered

by Regge and Wheeler in 1957. Their question was whether the Schwarzschild

black holes become unstable under small perturbations on black holes which are

assumed in the linearized Einstein’s equations. If black holes cannot stand against

a small perturbation and turn into an unbounded state, then, black holes could

not be determined as an astrophysical object. In their original paper [6], they

studied the perturbations of the metric directly

gµν = gbackground
µν + hµν , (3.1)

where hµν is sufficiently small. Hence, the remaining terms in the calculation are

linear terms in hµν . They obtained the wave equation with an effective potential.

This equation is now known as the Regge-Wheeler equation

[
d2

dr2∗
+ ω2 − V (r)

]
Ψ(r) = 0, (3.2)

where effective potential can be written as

V (r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3

]
. (3.3)

In (3.2), we have used the tortoise coordinate r∗ that was first introduced by

Wheeler in 1995. For example, it is related to the standard Schwarzschild radial

coordinate by dr∗ =
(
1− 2M

r

)−1
dr. Their results suggest that when disturbed,

black hole will experience a small oscillation and later regain its stable state once

again.

Thereafter, their work was extended to a Reissner-Nordström by Zerilli 1974,

but one found that for a rotating black hole the problem was far more complicated.

However, Teukolsky (1972) was successfully able to reduce the wave equation into a

single equation by using Newman-Penrose formalism. Hence, the stability of Kerr

black hole is explored by following Teukolsky’s work. The detail on black hole per-

turbations both mathematically and physically can be found in Chandrasekhar’s

book (1973) [25] and Frolov,Novikov [26].
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3.2 Wave Equations Near Black Holes

To describe dynamical system in general relativity, let’s first consider the Einstein-

Hillbert action

S =

∫ √−g
(
R + LM

)
d4x. (3.4)

Where g is the determinant of the metric tensor gµν and LM is the matter La-

grangian which describes the matter field φ. By varying the above action with

respect to the metric tensor, one obtains the Einstein field equations (For more

detail see Appendix A.1)

Gµν = 8πTµν . (3.5)

Where we have set G = c = 1. The energy-momentum tensor is defined as

Tµν = − 2√−g

δLM

δgµν
. (3.6)

The field equations in curved spacetime

δLM

δφa

= 0. (3.7)

Then, let’s consider the metric and fields perturbation as

gµν −→ g0
µν + δgµν , (3.8)

φ −→ φ0
a + δφa. (3.9)

We shall assume the perturbations are weak, therefore O(δgµν)
2 , O(δφa)

, O(δφa)
2 and higher are negligible. After inserting perturbed metric and fields

into (3.5) and (3.7), one found that the unperturbed metric and fields satisfy

(3.5),(3.7) as usual. Moreover, we also obtain linear equation for perturbation

of δgµν and δφa. In our scope of study, matter fields are assumed to contribute

negligibly to the curvature of the black hole spacetime. Now, let’s consider the

Schwarzschild-like metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (3.10)

For the sake of simplicity, we describe massless scalar field in such a background

by using Klein-Gordon equation in curved background which takes the form (See

Appendix A.3)

1√−g
∂µ(gµν

√−g∂νΦ(x)) = 0. (3.11)
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We now using separation of variable method by the following ansatz

Φ(t, r, θ, φ) =
∞∑

l=0

l∑

m=−l

Ψ(t, r)

r
Yl,m(θ, φ), (3.12)

where Yl,m(θ, φ) is the spherical harmonics, the integer l ≥ 0 and |m| ≤ l are

called the multipole number and the azimuthal number respectively. Spherical

harmonics are also satisfied the following eigenvalue equation

∆θ,φYl,m(θ, φ) = −l(l + 1)Yl,m(θ, φ), (3.13)

where the angular part of Laplasian ∆θ,φ is defined as

∆θ,φ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (3.14)

Then, substitute the ansatz into the Klein-Gordon equation (3.11), we get the

wave-like equation with the effective potential
(
− ∂2

∂t2
+

∂2

∂r2∗
− Vl(r)

)
Ψ(t, r) = 0, (3.15)

where

Vl(r) = f(r)

(
f ′(r)

r
+

l(l + 1)

r2

)
. (3.16)

Note that if we choose Ψ(t, r) = e−iωtψ(r) this wave-like equation becomes Regge-

Wheeler equation
[

d2

dr2∗
+ ω2 − Vl(r)

]
ψ(r) = 0. (3.17)

This equation will play as an important role when dealing with quasinormal modes

of black holes. It describes the scalar field in curved background which can be

treated as a perturbation in the black hole metric. Beside scalar particle, we can

also consider other fields in the black hole metric. Practically, in most cases, the

equation of motion of the fields can be reduced to the wave-like equation (3.15).

One could possibly find that for the massless Dirac field, the effective po-

tential takes the form [28]

VD± = f(r)
κ2
±

r2
± d

dr∗

κ±
√

f(r)

r
, κ± = 1, 2, 3, ... (3.18)

and for the electromagnetic field, the effective potential is defined as [29]

VEM = f(r)
l(l + 1)

r2
, l = 1, 2, 3, .... (3.19)

Note that, these potential are only valid for the spacetime metric which is de-

fined by (3.10). If we replace the Schwarzschild-like by other metrics, such as the

axisymmetric metric, then we must re-derive the corresponding effective potential.
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3.3 Quasinormal Modes

Everyone should be familiar with the concept of “normal modes”. When we first

studied about wave theory, we usually assume that there is no energy loss in

the oscillating system, for an example, violin’s strings vibration. By perturbing

such a system, it will respond by choosing a discrete set of real frequencies which

produces a “characteristic sound” [30]. The corresponding modes which are the

superposition of stationary modes are so-called normal modes. Surprisingly, black

holes can provide such an individual sound too. By perturbing the fields near the

black holes, one finds that black holes will respond by producing a characteristic

oscillation. Vishveshwara [7] was the first one who discovered this fact by inves-

tigation of a gaussian gravitational wavepacket developed in the Schwarzschild

geometry. He found that the signal exists in a finite time interval and later dis-

appears by the damped oscillating frequencies. These damped frequencies also

depend on the parameters which describe the black holes, i.e., mass, charge and

angular momentum. More specifically, these frequencies are not dependent of any

initial configuration. This shows a unique character of the vibrating system in-

volving black holes. These oscillations are called as quasinormal modes and the

corresponding damped frequencies quasinormal frequencies. The word “quasi-”

shows the deviation from the “normal modes”: quasinormal modes are in fact

not stationary modes because they are governed by the exponentially damped

frequencies.

As we mentioned earlier, when we discuss about the resonant system such

as a violin, we usually make an ideally well-suited study assumption, that there is

no decaying modes exists. This fact leads to the normal modes and corresponding

normal frequencies. These stationary modes also indicate that there is no energy

loss from our system. However, if we turn to the more realistic case, no such

idealized situation would occur in the real physical situation. Nevertheless, it is

impossible to prohibit the dissipative process in the black hole schematic. There

always exist “non-stationary” modes in the perturbed black hole metric. Since,

black holes are just only the pure gravitational object; any spacetime perturbation

generates the gravitational waves which radiate energy away to infinity. The

deeper mathematical detail on quasinormal modes can be found in a very neat

review by Kokkotas and Schmidt [31].
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3.3.1 Mathematical Definition of Quasinormal Modes

In the previous discussion, we investigate the concept of quasinormal modes phys-

ically. Now, we shall further discuss about its mathematical structure. As previ-

ously mentioned, we can formulate the partial differential equation that describes

the physical field’s evolution in curved spacetime by using a background metric

ds2 = gµν(x)dxµdxν , (3.20)

Then, substitute into the Klein-Gordon equation (3.11) (for a scalar field). Finally,

we obtain the wave-like equation

(
− ∂2

∂t2
+

∂2

∂x2
− Vl(r)

)
Ψ(t, x) = 0. (3.21)

Where x is spatial coordinate which normally varies from −∞ to ∞. It is usually

to place an event horizon at −∞ and for the rest of this note we shall assume so

unless otherwise stated. We shall decompose the field into time dependence and

spatial dependence,

Ψ(t, x) = e−iωtψ(x). (3.22)

Yet again, we have derived the Regge-Wheeler equation

[
d2

dx2
+ ω2 − Vl(x)

]
ψ(x) = 0. (3.23)

In this section, we will restrict ourselves to asymptotically flat spacetime. Thus,

the effective potential satisfies

x −→ ±∞, V (x) −→ 0.

Hence, at the horizon and infinity the solution of (3.21) is just an ordinary plane

wave solution

Ψ(t, r) ∼ e−iωte±iωx : x −→ −∞,

Ψ(t, r) ∼ e−iωte±iωx : x −→∞.

The boundary conditions for the quasinormal modes are the purely ingoing modes

at an event horizon and outgoing at infinity. This means that the physical field

can radiate away to both asymptotic regions and disappear from the study region.

Ingoing : ψ(x) ∼ e−iωx, x −→ −∞,

Outgoing : ψ(x) ∼ eiωx , x −→∞.
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These boundary conditions imply an allowance of energy loss assumption. In

addition, there is only a discrete set of complex frequencies which satisfy these

boundary conditions [30]. These frequencies are the quasinormal frequencies and

the wave function φ(x) are defined to be the quasinormal modes.

It has been proved by Vishveshwara [8] that for the Schwarzschild black

hole, quasinormal frequencies must be negative imaginary. This reflects the fact

that quasinormal frequencies are exponentially decay in time, more physically, that

means the black hole geometry is losing its energy via the gravitational waves. For

other geometry such as Schwarzschild de-Sitter/anti-de-Sitter or Kerr, one finds

that the quasinormal frequencies has also been verified as a negative imaginary. It

is very difficult to solve the Regge-Wheeler equation (3.21) and obtain numerical

values for the quasinormal frequencies since they have imaginary parts. However,

Chandrasekhar and Detweiler [32] successfully solved some of the quasinormal

modes for Schwarzschild geometry in 1975. Their work had inspired many numer-

ical techniques which had been developed since then. One of the most popular

techniques was first done by Leaver [9] in 1985. He calculated quasinormal modes

for Schwarzschild and Kerr black hole by using the Frobenius or continued frac-

tion method (this will be discussed again in chapter5). Based on Leaver’s method,

Nollert [10] was able to improve the convergence of an infinite continued fraction

which made the higher modes more accurate. In 2000, Horowitz and Hubeny [33]

were the first who calculate quasinormal modes for Schwarzschild anti-de sitter

spacetime. This work becomes very important since it can be used for testing the

AdS/CFT correspondence qualitatively. Despite that, it is a non-trivial task to

calculate quasinormal modes but for a less complicated system like non-rotating

BTZ black hole, it turns out that one can arrange the field equation (3.21) into

a known differential equation and analytical solution can be obtained. This was

first proved by Vitor et.al [11] in 2001. After that, Siopsis et.al [13] was able to

derive an analytic approximate formula for quasinormal frequencies of a large AdS

Schwarzschild in five dimensions. For more detail on various numerical techniques

see [27, 31] and references therein.

In this note, we will only focus on the two following computational methods.

First, the continued fraction will be used in chapter 4 when we deal with quasi-

normal modes of four dimensional Schwarzschild black holes. For the rest, we will

apply an analytical method to obtain quasinormal frequencies of black holes in

three and five dimensions.
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3.4 Application of Quasinormal Modes

Black holes are nontrivial solutions of the general relativity. They let us investigate

many rich physics in a strong gravitational regime. They have also been called

a “hydrogen atom” in general relativity [30]. Like hydrogen atom in quantum

mechanics, black holes are governed by a few parameters (mass, charge, angular

momentum) which made them easy to study. All of the general relativistic prop-

erties are embedded in black holes. These give some notably importance of black

holes in fundamental physics theory. Now, we shall investigate further about the

application of their unique vibration.

There are three main reasons for studying the physics of quasinormal modes

which are discussed as follows.

3.4.1 AdS/CFT Correspondence

At present, standard model is the best theory in describing the microscopic world.

It has made many important predictions of the existence of the fundamental

particles/anti-particles. Some of its predictions were experimentally confirmed

at the high level of accuracy. The standard model based on prior theory called

quantum field theory (QFT). In QFT’s paradigm, particles were represented as a

quantization of a particular field. Thus, in QFT, fundamental particles were re-

placed by fields. However, up until now, we have not ever been able to incorporate

QFT with gravity. Since, they are contradictory both in philosophical level and

mathematic structure.

So far, there are two candidates for the theory which combines QFT and

gravity together, they are string theory and loop quantum gravity theory. In this

context, we shall only discuss the string theory. In string theory, we always as-

sume that all the fundamental particles can be represented as strings. Since string

theory attempts to describe gravity at small scale, we might say that string theory

contains gravity. On the other hand, quantum chromodynamics (QCD) is a the-

ory which describes matters in the nuclear level namely, quarks and gluons. QCD

is based on gauge group SU(3). This may be interpreted by saying that quarks

have three colors [30]. Surprisingly, t’ Hooft suggested that QCD has asymptotic

freedom. That means as energy decreases the effective coupling constant increases

and vice versa. This is a crucial point, at low energies; QCD becomes nonpertur-

bative theory since the coupling constant is becomes strong. Hence, perturbative
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calculation of QCD at low energies cannot be performed. Additionally, as we

expand to higher order of perturbation, the higher order contributions cannot be

neglected. This causes a major problem for the development of QCD. Fortunately,

there exists a gauge-gravity duality suggested by Maldacena namely, AdS/CFT

correspondence. It states that physics in a bulk d-dimensional anti-de sitter (AdS)

space is dual to physics at the AdS (d-1)-dimensional boundary.

AdS/CFT was originally motivated by the duality between type IIB string

theory in AdS5 × S5 (gravity side) and four dimensional N = 4 supersymmetric

Yang-Mills theory (non-gravity side). This duality allows us to perform a calcu-

lation for a thermalization timescale in CFT by investigating the physics in AdS

space. According to AdS/CFT conjecture, large static black holes in AdS can be

approximately compared to the thermal equilibrium in dual CFT, perturbing the

black holes means perturbing that thermal state. The decay of oscillation (quasi-

normal frequencies) is equivalently to the relaxation of the system back to thermal

equilibrium [36]. Thus, we can obtain the thermalization timescale in CFT by cal-

culating the quasinormal frequencies of black holes in the anti-de sitter space.

Consequently, quasinormal modes were used as a mathematical tool which allows

us to avoid many difficulties of the calculation in the CFT. The relation between

quasinormal modes of black holes in the bulk and the conformal field theory in

the boundary was first suggested by Horowitz and Hubeny [33].

3.4.2 Black Hole Area Quantization

In order to reconcile gravity and quantum mechanics, besides the string theory

which we have already discussed, there is another attempt to develop such a theory

namely, the loop quantum gravity (LQG). LQG proposes the quantum mechanics

of spacetime or quantum geometry that means in LQG gravitational field (space-

time) can be quantized. The strong point over string theory is that LQG needs

no existence of the higher dimensions since it has never been observed before. On

the other hand, black holes play an ideal model of gravity, thus the quantization

of black holes might gives us an initial footstep to the theory of quantum gravity.

The first attempt of quantized black hole was pioneered by Bekenstein [37]. His

concept was originally based on the idea about the (horizon) area of non-extremal

black hole act as a classical adiabatic invariant which correlates with the discrete

quantum spectrum. Therefore, Bekenstein proposed that the area of non-extremal

quantum black hole should have a discrete spectrum. Inspired by Christodoulou’s

reversible processes and Heisenberg uncertainty principle, Bekenstein conjectured
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the area quantization formula [37] of quantum black hole

An = γl2pn, n = 1, 2, ..., (3.24)

where γ is a dimensionless parameter and lp =
√
~G
c3

is the Planck length. This

formula can be implied that horizon area is consisted of small pieces of equal

area γl2p. Each piece can be considered as degrees of freedom in which quantum

mechanically being referred as distinct quantum states. By assumption that each

patch is properly equivalent, thus the total number of quantum states is

Ω = kn = k
A

γl2p , (3.25)

where k is represented a number of quantum states. As a result of statistical

physics, the entropy will relate with the black hole area horizon by ln Ω (Boltzmann

constant sets to be unity)

SBH =
A

γl2p
ln k. (3.26)

But we know the Hawking’s entropy formula

SBH =
A

4
. (3.27)

By comparing these two formulas, we get

γ = 4 ln k. (3.28)

Hence, in order to complete an equation of area quantization, we need to deter-

mined the constant k. The proposal to evaluate this parameter was provided by

Hod [38] in 1998. Hod’s idea is based on the Bohr’s correspondence principle:

transition frequencies at large quantum numbers should equal classical oscillation

frequencies [30]. The word large quantum numbers can be inferred to the asymp-

totic region of the classical oscillating quasinormal frequencies. This statement are

consistent with the phrase quantum transition does not take time which implicitly

associated these oscillations with the highly damped quasinormal frequencies [30].

As we already mentioned, Nollert’s technique allows us to compute the highly

damped quasinormal frequencies of Schwarzschild black hole that take the form

[30]

Mωn = 0.0437123− i

4

(
n +

1

2

)
+O [

(n + 1)−1/2
]
. (3.29)

Thus, Hod made further observed that the numerical value of 0.0437123 agrees

with ln 3
8π

. Thus Hod found the asymptotic structure (n −→ ∞) of the above

equation

Mωn =
ln 3

8π
− i

4

(
n +

1

2

)
. (3.30)
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In addition, let’s consider the area of the Schwarzschild black hole

A = 4πr2
s ,

= 16πM2, (3.31)

where rs = 2M is Schwarzschild radius. Using relation dM = E = ~ω and from

(3.30) Re(Mωn) = ln 3
8π

. Therefore we conclude that

γ = 4 ln 3. (3.32)

Finally, the black hole area quantization formula is obtained

An = 4 n l2p ln 3, n = 1, 2, 3, .... . (3.33)

We see that with the help of the highly damped quasinormal frequencies of Schwarzschild

black hole, the complete equation for area quantization was obtained. However,

there is no a physical insight to relate those two subjects consistently, quasinor-

mal modes and LQG. It is just a numerical curiosity of Hod which resulted in this

prediction. There are still a lot of works to do in order to confirm the deep connec-

tion between those two theories. Nevertheless, motivated by Hod’s idea, Dreyer

followed the same argument to fix a Barbero-Immirzi parameter which emerged

in loop quantum gravity [30].

3.4.3 Black Hole Parameters Estimation

In astronomy, it is very important to observe many astrophysical objects and their

phenomena. Besides, astronomers must look for information from those objects

as well. Practically, they can gather several data by observing stellar or solar

oscillations. Such data can tell us information about the internal structure of a

star. One would expect that, in the similar way, it is possible to extract individual

information from black holes. As an astronomical object, black holes are believed

to be a supernova remnant. After supernova explosion, a left-out compact object

will violently oscillate for a short period of time. Then gravitational radiation

will carry away the energy to infinity and the initial oscillation will exponentially

damp out. These gravitational waves also carry out information about the com-

pact object too. According to quasinormal modes theory, this information could

be referred as black hole parameters. However, gravitational waves have not been

detected yet, but the indirect effect has been accurately investigated by Hulse

and Taylor for a binary pulsar system [30]. Nowadays, many gravitational waves
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detectors are now operating and starting to collect the data, for instance, LIGO

and LISA. However, the weakness of the gravitational signal makes it hard to

detect. In order to increase the chance, we have to extend the sensitivity of our

detector and look for a very strong source of gravitational waves such as, black

holes collision and massive binary stellar system. The quasinormal modes process

take place in the final stage of the gravitational signal. On the other hand, since

quasinormal modes are decaying with time thus only the fundamental modes (low-

est imaginary part) can reach us. As we already mentioned earlier, quasinormal

frequencies depend on the black hole intrinsic parameters. To illustrate this point,

for Kerr black holes, the quasinormal frequencies depend only on black hole mass

and its angular momentum. Therefore, one can approximately extract the black

hole parameters solely from the observation of frequencies and damping time. For

a rotating black hole, one can approximate an analytic formula which relates the

frequencies and damping time with black hole parameters. These may take the

form [34, 35]

Mω ≈
[
1− 63

100
(1− a)3/10

]
≈ (0.37 + 0.19a),

τ ≈ 4M

(1− a)9/10

[
1− 63

100
(1− a)3/10

]−1

≈ M(1.48 + 2.09a).

From these two equations, if we are able to measure the ringing frequencies and

damping time, thus, we could in principle obtain the black hole parameters by

inverting both formulae.

So far, we have discussed the definition of quasinormal modes and investi-

gated the major equation governing the perturbations in the black hole geometry.

At the end, we have investigated some applications of the quasinormal modes of

black holes. In the following chapter, we will begin to investigate the quasinor-

mal modes and quasinormal frequencies of the black holes in three dimensional

spacetime.



Chapter IV

QUASINORMAL MODES OF

THREE DIMENSIONAL

BLACK HOLES

“God used beautiful mathematics in creating the world.”

-P. Dirac

In the previous section, we discussed the definition of quasinormal modes

and the application of quasinormal modes to other fundamental physics. Now,

we are in a good position to investigate the calculation of quasinormal modes in

detail. We review the study of quasinormal modes of three dimensional black hole

solutions. Despite that, there is no black hole solution exists in three dimensional

spacetime with asymptotical flatness. It turns out that one could construct the

black hole metric by introducing the cosmological constant to the Einstein field

equations. Hence, it is very interesting to study the quasinormal modes of the three

dimensional black holes. We shall first investigate the scalar perturbation in BTZ

black hole and compute its quasinormal frequencies. Subsequently, quasinormal

modes of a massive scalar field in rotating BTZ metric are calculated. Finally, we

determine quasinormal modes of three dimensional AdS-Schwarzschild black hole.

It appears that all of three cases provide us some possibility to obtain quasinormal

frequencies analytically. This is a crucial point of the study of quasinormal modes

of black hole in three dimensional spacetime.

4.1 Quasinormal Modes of BTZ Black Hole

So far, we have only discussed the quasinormal modes of asymptotically flat black

holes. Now, the quasinormal modes of BTZ black hole will be investigated. As al-

ready mentioned in Chapter 2, BTZ black hole is an exact solution incorporative
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with negative cosmological constant that emerges in (2+1) dimensional space-

time. The BTZ solution has asymptotically anti-de sitter spacetime. According

to AdS/CFT conjecture, BTZ black hole allows us to compute thermalization

timescale in the dual 2d conformal field theory which was verified by Birmingham

[36]. Quasinormal modes of AdS black holes were first discussed by Horowitz and

Hubeny [33] but they concerned only black holes which live in four, five and seven

dimensions. However, quasinormal modes of BTZ black hole were successfully

computed by Cardoso and Lemos [11]. Surprisingly, they could manage to reduce

the wave equation (3.2) to the known differential equation and finally obtained

an analytical formula for BTZ quasinormal frequencies. This made BTZ an im-

portant example because it shows us the possibility to study quasinormal modes

analytically.

In this section, we review the study of quasinormal modes of BTZ black hole

as follows. First, we reconsider the BTZ solution and determine its metric tensor.

Second, we construct the wave equation by using the Klein-Gordon equation in

curved background (3.11). Then, the wave equation will be transformed to the

known equation called hypergeometric equation. Finally, quasinormal frequencies

are obtained. Most of this section is based on Vitor Cardoso’s work [11].

Let us recall the BTZ metric as defined in Chapter2 (opposite in signature)

ds2 =

(
−M +

r2

l2

)
dt2 −

(
−M +

r2

l2

)−1

dr2 − r2dφ2, (4.1)

where we choose the cosmological constant to be Λ = −1/l2 and −∞ < t <

∞, 0 < r < ∞, 0 ≤ φ ≤ 2π. Then both event horizons are determined

r± = ±l
√

M. (4.2)

In our study, we normally regard the horizon as the outer horizon r+. From the

metric above, we can compute the metric tensor and its inverse as

gµν =



−M + r2

l2
0 0

0 −
(
−M + r2

l2

)−1

0

0 0 −r2


 ,

gµν =




(
−M + r2

l2

)−1

0 0

0 −
(
−M + r2

l2

)
0

0 0 − 1
r2


 .

The determinant of metric tensor is
√−g = r. Now, all the prescription we need to

construct the wave equation is obtained. We therefore formulate the Schrödinger-

like equation in the next section.
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4.1.1 Scalar Perturbation Around The BTZ Black Hole

The dynamics of a real massless scalar field in curved background is described by

1√−g
∂µ(gµν

√−g∂νΦ(x)) = 0. (4.3)

Then, we can write down all of non-vanishing components as

1√−g

[
∂0(g

00
√−g∂0Φ) + ∂1(g

11
√−g∂1Φ) + ∂2(g

22
√−g∂2Φ)

]
= 0, (4.4)

where we choose (0, 1, 2) = (t, r, φ). To separate each variable, we use the following

ansatz

Φ(x) =
Ψ(r)√

r
e−iωteimφ, (4.5)

where m is angular quantum number. Substitute all of the results into the (4.4),

we get

g00∂2
0Φ =

−ω2Φ

A(r)
,

g22∂2
2Φ =

m2Φ

r2
,

∂1(
√−gg11∂1Φ) = −

(
A(r)Ψ

′′

√
r

+
2
√

rΨ
′

l2
+

3A(r)Ψ

4r5/2
− A(r)Ψ

2r5/2
− Ψ√

rl2

)
,

where we have used A(r) ≡ −M + r2

l2
and “prime” denotes derivative with respect

to the radial coordinate r. Thus, we obtain the wave equation which takes the

following form

A(r)2Ψ
′′
(r) +

2rA(r)

l2
Ψ
′
(r)−

(
−ω2 +

m2A(r)

r2
− A(r)2

4r2
+

A(r)

l2

)
Ψ(r) = 0.

(4.6)

Note that, from the three variables equation, it reduces to only a radial equation

since other variables can be factored out. Additionally, lets introduce the tortoise

coordinate r∗ which is defined by

dr∗ =

(
−M +

r2

l2

)−1

dr,

or,

r = −
√

Ml coth

(√
Mr∗
l

)
.
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Here, we see that as r −→ r+ corresponds to r∗ −→∞ and r −→∞ corresponds

to r∗ −→ 0. Under the tortoise coordinate, we use the following chain rules

d

dr

(
dΨ

dr

dr

dr∗

)
dr

dr∗
= A2Ψ

′′
+

2rA

l2
Ψ
′
,

then using the above relation to transform (4.6) into the Regge-Wheeler equation.

d2Ψ

dr2∗
+

(
ω2 − V (r)

)
Ψ = 0, (4.7)

where (See appendix C.1 for the plotting of the effective potential.)

V (r) =
3r2

4
− Mm2

r2
− M2

4r2
− M

2
+ m2, (4.8)

and we have set l = 1. Thus, we need to solve the above equation with the

appropriate boundary condition to obtain the quasinormal frequencies.

4.1.2 The Exact Solution

In order to obtain an analytical formula for quasinormal frequencies, we first

rewrite the effective potential in the tortoise coordinate

d2Ψ

dr2∗
+

[
ω2 − 3M

4 sinh2(
√

Mr∗)
− M

4 cosh2(
√

Mr∗)
− m2

cosh2(
√

Mr∗)

]
Ψ = 0.

(4.9)

We introduce a new variable x = 1
cosh2(

√
Mr∗)

. Hence, x has a range from [0, 1]

these correspond to horizon and infinity respectively. Let’s consider,

dx

dr∗
= −2

√
Msech 2(

√
Mr∗) tanh(

√
Mr∗),

d2x

dr2∗
= −2Msech 4(

√
Mr∗) + 4Msech 2(

√
Mr∗) tanh2(

√
Mr∗).

Hence,

d

dx

(
dΨ

dx

dx

dr∗

)
dx

dr∗
= 4Mx2(1− x)

d2Ψ

dx2
+ 2M(2x− 3x2)

dΨ

dx
.

Thus, we substitute this result back to (4.9) and obtain the canonical form of

2nd-order differential equation with variable x

4x2(1− x)
d2Ψ

dx2
+ (4x− 6x2)

dΨ

dx
+ Ṽ (x)Ψ = 0, (4.10)

where effective potential is defined as

Ṽ (x) =
1

4x(1− x)

[
4ω2(1− x)

M
− 3M − x(1− x)− 4m2x(1− x)

M

]
. (4.11)
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In the final step, we replace the wave function Ψ with

Ψ =
(x− 1)3/4

x
iω

2M1/2

y. (4.12)

Finally, we obtain

x(1− x)y
′′

+ [c− (a + b + 1)x]y
′ − aby = 0, (4.13)

and,

a = 1 +
im

2
√

M
− iω

2
√

M
,

b = 1− im

2
√

M
− iω

2
√

M
,

c = 1− iω√
M

.

This is the canonical form of hypergeometric differential equation whose solution

is a hypergeometric function. Now, we need to solve (4.13) with the appropriate

boundary conditions. Normally, boundary conditions of quasinormal modes are

defined as follows, (i) ingoing modes are only allowed at the black hole’s horizon

eiωr∗ , (ii) near infinity, only outgoing modes exists e−iωr∗ . However, from the

effective potential (4.8), one can see that as r −→∞ then V (r) becomes divergent.

Therefore, the field at infinity must be vanished. One of the solutions of (4.13)

takes a following form [39]

y = (1− x)c−a−b
2F1(c− a, c− b, c; x), (4.14)

here 2F1 is the standard hypergeometric function of the second kind. This solution

must satisfy the boundary condition x = 1,y = 0. Since, c−a−b = −1 we therefore

find that F must be zero at x = 1. Let’s consider the following identity

2F1(a, b, c, 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Hence,

2F1(c− a, c− b, c; 1) =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
.

Note that, from now on we shall denote the standard form of hypergeometric

function of the second kind with F (x). To satisfy the boundary conditions, we

finally get

a = −n or b = −n, (4.15)

where n = 0, 1, 2, ..., these also yield

ω = ±m− 2i
√

M(n + 1). (4.16)
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4.1.3 Results and Discussion

So far, the scalar perturbation of non-rotating BTZ black hole has been reviewed.

Using an analytical method, one obtains the exact solution for the quasinormal

frequencies of such a black hole. These frequencies are obtained as shown in (4.16).

As promised, they depend on black hole intrinsic parameter (mass) and also have

negative imaginary part. Some of the result is demonstrated by Table 4.1 . One

sees that the real part depends only on the angular quantum number m whereas

the imaginary part scale with the horizon or black hole’s radius (recall r+ =
√

Ml).

This result also agrees well with the numerical calculation which had been done by

m=0,n=0√
M ωR −ωI

1 0 2

2 0 4

3 0 6

4 0 8

5 0 10

Table 4.1: Fundamental modes (n=0) of quasinormal frequencies of a BTZ black

hole

Vitor’s work [11]. One can use this result to further investigate on AdS/CFT as

a toy model. Also, this calculation technique has opened many later works which

attempt to determine quasinormal frequencies analytically.

4.2 Quasinormal Modes of Rotating BTZ Black

Hole

In the previous section, we have discussed the quasinormal modes of non-rotating

BTZ black hole. Now, we will move to a little bit more complicated system. Ro-

tating BTZ black hole, it is also an exact solution in three dimensional stationary

spacetime with the presence of a negative cosmological constant. The first study

on quasinormal modes of rotating BTZ black hole was investigated by Birming-

ham [12]. He suggested the relation between quasinormal modes and Choptuik

scaling parameter. Via AdS/CFT, he found that one can interpret Choptuik pa-

rameter as timescale for the returning to thermal equilibrium in dual conformal
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field theory. Moreover, Birmingham also found the analytical way to compute the

quasinormal frequencies of this black hole. We shall therefore follow the argument

in [12] for this section. Let’s recall rotating BTZ metric in the following form

ds2 = −
(
−M +

r2

l2
+

J2

4r2

)
dt2 +

(
−M +

r2

l2
+

J2

4r2

)−1

dr2 + r2

(
dφ− J

2r2
dt

)2

,

(4.17)

again J = Ma is black hole total angular momentum. From the metric above, one

can calculate event horizons by g00 = 0

r± = l


M

2


1±

√
1−

(
J

Ml

)2






1/2

, (4.18)

where r± denote outer/inner horizon and we choose Λ = −1/l2. Moreover, one

can easily prove

M =
r2
+ + r2

−
l2

, J =
2r+r−

l
. (4.19)

The components of metric tensor are calculated to be

gµν =




−
(
−M + r2

l2

)
0 −J

2

0
(
−M + r2

l2
+ J2

4r2

)−1

0

−J
2

0 r2


 .

It is non-trivial to compute the inverse metric. We use the following relation;

gµνg
µλ = δλ

ν to determine the inverse metric

gµν =




r2(
Mr2−J2

4
− r4

l2

) 0 J

2
(
Mr2−J2

4
− r4

l2

)

0
(
−M + r2

l2
+ J2

4r2

)
0

J

2
(
Mr2−J2

4
− r4

l2

) 0

(
M− r2

l2

)
(
Mr2−J2

4
− r4

l2

)




.

Finally, the determinant of the metric tensor is
√−g = r.

4.2.1 Wave Equation of Massive Scalar Field

The equation of motion for a real massive scalar field in curved spacetime is

described by

1√−g
∂µ(gµν

√−g∂νΦ(x))− µ

l2
Φ(x) = 0, (4.20)
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where mass of scalar field is denoted by µ. As before, we use (t, r, φ) −→ (0, 1, 2).

We can write down all the non-vanishing components of (4.20)

1√−g
[∂0(g

00
√−g∂0Φ + g20

√−g∂2Φ) + ∂1(g
11
√−g∂1Φ)

+∂2(g
02
√−g∂0Φ + g22

√−g∂2Φ)]− µ

l2
Φ = 0 (4.21)

Using the following ansatz

Φ = R(r)e−iωteimφ, (4.22)

where again m is angular quantum number. Then substitute the ansatz into (4.21),

∂1(g
11
√−g∂1Φ) =

[(
Ar +

J2

4r

)
R
′′

+

(
A +

2r2

l2
− J2

4r2

)
R
′
]

e−iωteimφ,

∂0(g
00
√−g∂0Φ + g20

√−g∂2Φ) =

[
ω2r(

J2

4r2 + A
) − Jmω

2r
(

J2

4r2 + A
)
]

R(r)e−iωteimφ,

∂2(g
02
√−g∂0Φ + g22

√−g∂2Φ) = −
[

Jmω

2r
(

J2

4r2 + A
) +

Am2

r
(

J2

4r2 + A
)
]

R(r)e−iωteimφ,

where A ≡
(
−M + r2

l2

)
and prime denotes derivative with respect to the radial

coordinate r. Eventually, here comes the Schrödinger-like equation in rotating

BTZ background
(

A +
J2

4r2

)
R
′′

+

(
A

r
+

2r

l2
− J2

4r3

)
R
′
+

(
ω2

(A + J2

4r2 )
− Jmω

r2(A + J2

4r2 )
− Am2

r2(A + J2

4r2 )
− µ

l2

)
R = 0.

Then, we introduce a new variable

z =
r2 − r2

+

r2 − r2−
, (4.23)

r = ±
√

zr2− − r2
+√

z − 1
.

Note that r = r+ corresponds with z = 0 and r = ∞ corresponds with z = 1.

Now consider,

dr

dz
=

1

2

[
r2
+ − r2

−
(z − 1)3/2(zr2− − r2

+)1/2

]
,

d2r

dz2
=

r2
+ − r2

−
4

[
3r2

+ + r2
−(1− 4z)

(z − 1)5/2(zr2− − r2
+)3/2

]
.

Hence,

dR

dz
=

R
′

2

[
r2
+ − r2

−
(z − 1)3/2(zr2− − r2

+)1/2

]
,

d2R

dz2
=

R
′′

4

[
r2
+ − r2

−
(z − 1)3/2(zr2− − r2

+)1/2

]2

+
R
′
(r2

+ − r2
−)

4

[
3r2

+ + r2
−(1− 4z)

(z − 1)5/2(zr2− − r2
+)3/2

]
.
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Now, we transform the following term into z variable
(

A +
J2

4r2

)
−→ z(r2

+ − r2
−)2

l2(z − 1)(zr2− − r2
+)

,

(
A

r
+

2r

l2
− J2

4r3

)
−→

(
r2
+ − r2

−
) [

r2
+(2 + z)− r2

−z(1 + 2z)
]

l2(z − 1)1/2(zr2− − r2
+)3/2

,

(
ω2

(A + J2

4r2 )
− Jmω

r2(A + J2

4r2 )
− Am2

r2(A + J2

4r2 )

)
−→ (z − 1)

z (r2
+)− r2−)

2

[
z(r2

− − r2
+)l2ω2 −

2mωr−r+(z − 1)l −m2(r2
− − zr2

+)
]
,

Ultimately, we obtain the radial equation

z(1− z)
d2R

dz2
+ (1− z)

dR

dz
+

(
Ã

z
+ B +

C

1− z

)
R = 0. (4.24)

where,

Ã =
l4

4(r2
+ − r2−)2

(ωr+ − m

l
r−)2,

B = − l4

4(r2
+ − r2−)2

(ωr− − m

l
r+)2,

C = −µ

4
.

Let’s define a new radial variable

R(z) = zα(1− z)βF (z). (4.25)

Then, the radial equation turns into the hypergeometric differential equation [39]

z(1− z)F
′′

+ [c− (a + b + 1)z]F
′ − abF = 0, (4.26)

where prime represents derivative with respect to the variable z. Here,

c = 2α + 1,

a + b = 2α + 2β,

ab = (α + β)2 −B,

α2 = −Ã,

β =
1

2
(1±

√
1 + µ). (4.27)

We choose α = −i
√

Ã and β = 1
2
(1 − √

1 + µ). At horizon z = 0, there are

two linearly independent solutions of (4.26) which take the form F (a, b, c, z) and

z1−cF (a−c+1, b−c+1, 2−c, z) [39]. According to the definition of the quasinormal

modes, the purely ingoing modes at horizon are given by

R(z) = zα(1− z)βF (a, b, c, z). (4.28)
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Then, using the linear transformation which is given by [39]. Therefore, the above

solution can be transformed to solution at infinity z = 1

R(z) = zα(1− z)β(1− z)c−a−b Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b + 1, 1− z)

+zα(1− z)β Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a + b− c + 1, 1− z).

(4.29)

Obviously, the first term vanishes when z = 1 since β +c−a−b is always positive.

But we need the boundary condition that the field must completely vanish at

infinity. So, this gives us a constraint on the second term

c− a = −n, c− b = −n, (4.30)

where (n = 0, 1, 2, ...). Consequently, we obtain the quasinormal frequencies of

rotating BTZ black hole

ωL =
m

l
− 2i(r+ + r−)

l2

[
n +

1

2
+

√
1 + µ

2

]
,

ωR = −m

l
− 2i(r+ + r−)

l2

[
n +

1

2
+

√
1 + µ

2

]
. (4.31)

4.2.2 Results and Discussion

These two results have negative imaginary part and also depend on the black hole

parameters which are mass and spin parameter (hidden in r+, r−). These results

also agree with the previous case (non-rotating) by setting l = 1, J = 0, µ = 0,

The above relations will reduce to (4.16). In the original paper [12], they further

investigate the relation of quasinormal modes and Choptuik parameter but we will

not discuss it since it is beyond our scope here. However, this example also shows

us an important property of the quasinormal modes of three dimensional black

holes in which one could possibly obtain an analytical formula of quasinormal

frequencies.

4.3 Quasinormal Modes of 3d AdS-Schwarzschild

Black Hole

So far, we have seen two examples of the computation about the quasinormal

modes of three dimensional black holes. In those cases, one can manage to reduce
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the wave equation to the hypergeometric differential equation and determine the

quasinormal frequencies. Similarly, in this section, we shall further study on three

dimensional black hole namely, three dimensional AdS-Schwarzschild black hole.

This work was pioneered by Siopsis and Musiri [13]. They proposed the perturba-

tive calculation to obtain the quasinormal frequencies of AdS-Schwarzschild black

hole in three and five dimensions. Hence, this section is covered by their work.

Let’s begin by introducing d-dimensional AdS Schwarzschild metric

ds2 = −
(

r2

R2
+ 1− ωd−1M

rd−3

)
dt2 +

dr2

(
r2

R2 + 1− ωd−1M

rd−3

) + r2dΩ2
d−2, (4.32)

where R is AdS radius and ωd−1 is gravitational constant. We consider in a large

black hole, then, the metric takes the form

ds2 = −
(

r2

R2
− ωd−1M

rd−3

)
dt2 +

dr2

(
r2

R2 − ωd−1M

rd−3

) + r2ds2(Ed−2). (4.33)

So, we can derived black hole’s horizon by setting g00 = 0

r+ = R

[
ωd−1M

Rd−3

]1/(d−1)

. (4.34)

For now we consider in three dimensional (d = 3) case, hence, the metric becomes

ds2 = − 1

R2

(
r2 − ω2MR2

)
dt2 +

1

R2

(
r2 − ω2MR2

)−1
dr2 + r2dx2. (4.35)

The event horizon takes the form r2
+ = ω2MR2. Therefore, we can rearrange the

above metric into

ds2 = − 1

R2

(
r2 − r2

+

)
dt2 +

R2dr2

(r2 − r2
+)

dr2 + r2dx2. (4.36)

Then, the metric tensor and its inverse are

gµν =




−(r2−r2
+)

R2 0 0

0 R2

(r2−r2
+)

0

0 0 r2


 ,

gµν =




− R2

(r2−r2
+)

0 0

0
(r2−r2

+)
R2 0

0 0 r−2


 .

The determinant of metric tensor is defined by
√−g = r.
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4.3.1 The Wave Equation

We now consider massive Klein-Gordon equation in curved spacetime

1√−g
∂µ(gµν

√−g∂νΦ(x))−m2Φ(x) = 0. (4.37)

Then, the spacetime indices are denoted by (t, r, x) −→ (0, 1, 2). Let us write

down all the non-zero components of the above equation

1√−g

[
∂0(g

00
√−g∂0Φ) + ∂1(g

11
√−g∂1Φ) + ∂2(g

22
√−g∂2Φ)

]−m2Φ(x) = 0.

The wave equation becomes

− R2

(r2 − r2
+)

∂2
0Φ +

1

R2

[
2r +

(
r2 − r2

+

R2

)]
∂1Φ +

(
r2 − r2

+

r2

)
∂2

1Φ +
1

r2
∂2

2Φ−m2Φ = 0.

(4.38)

The solution may be written as

Φ = ψ(y)e−iωte−ipx, (4.39)

where we introduce new variable y =
r2
+

r2 . Hence, one can see that y is restricted

within the range 0 < y < 1. y = 0 corresponds with r −→ ∞ and y = 1

corresponds to r −→ r+. Now using the following chain rule

∂Φ

∂r
= −

(
2r2

+

r3

)
ψ
′
e−i(ωt+px),

∂2Φ

∂r2
=

(
4r4

+

r6

)
ψ
′′
e−i(ωt+px) +

(
6r2

+

r4

)
ψ
′
e−i(ωt+px).

Each component is calculated as follow

1

r2
∂2

2Φ = −p2

r2
ψe−i(ωt+px),

− R2

(r2 − r2
+)

∂2
0Φ =

ω2R2

(r2 − r2
+)

ψe−i(ωt+px),

(
r2 − r2

+

r2

)
∂2

1Φ =

(
r2 − r2

+

R2

)
e−i(ωt+px)

[(
4r4

+

r6

)
ψ
′′

+

(
6r2

+

r4

)
ψ
′
]

,

1

R2

[
2r +

(
r2 − r2

+

R2

)]
∂1Φ = −

(
2r2

+

R2r3

) [
2r +

(
r2 − r2

+

)

r

]
ψ
′
e−i(ωt+px).

Finally, we obtain the radial equation

(y − 1)y2
[
(y − 1)ψ

′
]′

+ ω̂2yψ + p̂2y(y − 1)ψ +
m̂2

4
(y − 1)ψ = 0, (4.40)
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where,

ω̂ =
ωR2

2r+

, p̂ =
pR

2r+

, m̂ = mR. (4.41)

Now, we shall investigate the solution on the near-horizon region. Let’s consider

x ≡ (1− y) ' 0, (y −→ 1).

Then our equation takes the form

(1− x)2x2d2ψ

dx2
+ (1− x)2x

dψ

dx
+ ω̂2(1− x)ψ − p̂2(1− x)xψ − m̂2

4
xψ = 0,

as x −→ 0,

x2d2ψ

dx2
+ x

dψ

dx
+ ω̂2ψ − p̂2xψ − m̂2

4
xψ = 0,

The solution may be written in the power series form

ψ =
∞∑

n=0

anxn+α,

= xα(a0 + a1x + a2x + ...),

' xαa0.

Substitute this result into the above equation and keep only lowest order in x, it

yields

α2 = −ω̂2,

∴ α = ±iω̂.

Hence, we obtain the solution of (4.40) in the near horizon limit (y −→ 1)

ψ ∼ (1− y)±iω̂. (4.42)

The asymptotic behavior at infinity (y −→ 0) can be determined in the similar

way. Then, the solution at infinity is defined as

ψ ∼ yβ± , β± =
1

2

(
1±

√
1 + m̂2

)
. (4.43)

Note for a massless case (m = 0), β+ = 1, β− = 0. We now write the solution of

(4.40)

ψ = y(1− y)iω̂F (y). (4.44)

Finally, the radial equation become the standard hypergeometric equation (for a

massless case) [39]

y(1− y)F
′′

+ [2− (3 + 2iω̂)y]F
′ − [p̂2 − 2iω̂ − ω̂2 + 1]F = 0, (4.45)
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comparing with (4.26), we get

a = 1 + i(p̂ + ω̂),

b = 1 + i(p̂− ω̂),

c = 2.

Then, the solution at infinity (y −→ 0) can be written as [39]

ψ = y(1− y)iω̂F (1 + i(p̂ + ω̂), 1 + i(p̂− ω̂), 2; y). (4.46)

Again, we use the following identity to transform the solution in the near horizon

limit

F (a, b, c; y) = (1− y)c−a−b Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b + 1; 1− y)

+
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a + b− c + 1; 1− y).

(4.47)

Then, the above equation becomes

F (a, b, 2, y) = y(1− y)iω̂ Γ(−2iω̂)

Γ(1− i(ω̂ + p̂))Γ(1− i(ω̂ − p̂)
F

+y(1− y)−iω̂ Γ(2iω̂)

Γ(1 + i(ω̂ + p̂)Γ(1 + i(ω̂ − p̂)
F (4.48)

For quasinormal modes, we need that only ingoing modes exist at the horizon.

Then, the 2nd-term must vanish. We therefore obtain an analytical formula of

quasinormal frequencies

ω̂ = ±p̂− in, n = 1, 2, ... (4.49)

4.3.2 Results and Discussion

Quasinormal frequencies of massless scalar field in three-dimensional AdS Schwarz-

schild black hole are investigated. As shown by (4.49), these frequencies also have

negative imaginary part and depend only on black hole intrinsic parameter (hidden

in p̂). From the result, one sees that as the black hole radius (r+) decrease the

real part of quasinormal frequencies increase while the imaginary part depends on

integer n only. However, Schwarzschild metric was originally discovered in four

dimensional spacetime but the study of quasinormal modes in three dimensions

shows the possibility to transform the wave equation into hypergeometric function
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and obtain an analytical formula for the quasinormal frequencies. This means

that the lowest modes (n = 0) indicate the smallest damping rate. As we already

mentioned in the previous section, the gravitational signals that reaches us are in

these fundamental modes.

In the next chapter, we will continue the study on quasinormal modes of

black hole in four dimensions by attempting to use another approach to determine

the quasinormal frequencies.



Chapter V

QUASINORMAL MODES OF

FOUR DIMENSIONAL BLACK

HOLES

“What we observe is not nature itself, but nature exposed to our method

of questioning.”

-W. Heisenberg

In the previous section, we investigate the quasinormal modes of three di-

mensional black holes which one found that their wave equation can be reduced to

the hypergeometric differential equation and obtain the quasinormal frequencies

analytically. However, there is another way to determine those frequencies numer-

ically by the method of continued fraction. This technique was first pioneered by

Leaver in 1985 [9] and becomes very popular method in calculating the quasinor-

mal frequencies. Hence in this section, we will study the massive scalar field in

four dimensional Schwarzschild background and obtain its quasinormal modes by

using this technique.

5.1 Quasinormal Modes of Schwarzschild Black

Hole

The study of quasinormal modes of Schwarzschild black hole was firstly investi-

gated by Chandrasekhar in 1975 [32]. He has succeeded in finding some of the

Schwarzschild quasinormal frequencies. His work had open widely many calcula-

tion techniques since then. Schwarzschild black hole is the most often used in the

study of quasinormal modes because it is the simplest solution of Einstein field
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equations. Another interesting work has been suggested by A. Starobinskii and I.

Novikov; they studied a massive scalar field in Schwarzschild background. As a

result they found that the massive modes will decay more slowly than the massless

cases. So, it is very interesting to investigate how the scalar field’s mass will affect

the damping rate of the quasinormal frequencies. This question was answered by

Konoplya and Zhidenko [40] in 2005. In this section, we shall therefore review

their work in detail.

Now, let’s recall the Schwarzschild metric

ds2 = f(r)dt2 − f(r)−1dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (5.1)

where,

f(r) ≡
(

1− 2M

r

)
. (5.2)

One can see that the coordinate singularity lies at the surface

r = 2M.

Then, we calculate the components of the metric tensor

gµν =




f(r) 0 0 0

0 −f(r)−1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ




,

and its inverse

gµν =




f(r)−1 0 0 0

0 −f(r) 0 0

0 0 −r−2 0

0 0 0 −r−2 sin−2 θ




.

Finally, the determinant of metric tensor is determined to be

√−g = r2 sin θ.

Here, all the prescription we need is calculated. Next, we are going to formulate the

Schrödinger-like equation for a massive scalar field evolve in the four dimensional

Schwarzschild background.
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5.1.1 Scalar Perturbation Near Schwarzschild Black Hole

The dynamical of a massive scalar field in the curved spacetime is described by

the Klein-Gordon equation (4.20)

1√−g
∂µ(gµν

√−g∂νΦ(x)) + m2Φ(x) = 0 (5.3)

According to the Schwarzschild metric (5.1), all the non-vanishing components of

Klein-Gordon in curved background can be expressed

1√−g

[
∂0(g

00
√−g∂0Φ) + ∂1(g

11
√−g∂1Φ) + ∂2(g

22
√−g∂2Φ) + ∂3(g

33
√−g∂3Φ)

]

+m2Φ(x) = 0.

Here, we denote the spacetime indices by (0, 1, 2, 3) −→ (t, r, θ, φ). Using the

following ansatz

Φ =
ψ(r)

r
e−iωtY (θ, φ), (5.4)

where Y (θ, φ) is spherical harmonics [41]. Then each component can be calculated

as follows

∂00Φ = −ω2Φ,

∂22Φ = ∂22Y (θ, φ)
ψ(r)

r
e−iωt,

∂33Φ = ∂33Y (θ, φ)
ψ(r)

r
e−iωt,

∂1Φ = e−iωtY (θ, φ)

(
ψ
′

r
− ψ

r2

)
,

∂11Φ = e−iωtY (θ, φ)

(
ψ
′′

r
− 2ψ

′

r2
+

2ψ

r3

)
,

where “prime” represents derivative with respect to the radial coordinate r. So,

the Klein-Gordon equation becomes

[− ω2f−1ψ

r
e−iωtY − ψ

′′

r
e−iωtY f − Y e−iωtf

′
(

ψ
′

r
− ψ

r2

)
− ψ

r
e−iωt∂22Y

− cot θ
ψ

r3
e−iωt∂2Y − ψ

r3 sin2 θ
e−iωt∂33Y

]
+ m2ψ

r
e−iωtY = 0.

Then divide above equation with common factor f−1e−iωtY
r

[− ω2ψ − ψ
′′
f 2 − ff

′
ψ
′
+

ψ

r
ff

′ − ψf

Y r2

(
∂22Y + cot θ∂2Y +

1

sin2 θ
∂33Y

) ]
+ m2fY = 0.

Now let’s define a tortoise coordinate as

dr∗ = f(r)−1dr.
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Thus we use an ordinary chain rule to transform radial coordinate r to a new one

d2ψ

dr2∗
=

d

dr

(
dψ

dr
.
dr

dr∗

)
dr

dr∗
,

= f 2ψ
′′

+ ff
′
ψ
′
.

Therefore, we get

d2ψ

dr2∗
+ ω2ψ + f

(−m2 − f
′

r
+

1

r2Y

[
∂22Y + cot θ∂2Y +

1

sin2 θ
∂33Y

])
ψ = 0.

Note that in the bracket [...] is the angular part of Laplacian operator in spherical

coordinates. Also the spherical harmonics Y (θ, φ) must be satisfied the following

eigenvalue equation [41]

∇2Y (θ, φ) = − l(l + 1)

r2
Y (θ, φ).

Finally, we obtain the Schrödinger-like equation

(
d2

dr2∗
+ ω2 − V (r)

)
ψ(r) = 0, (5.5)

where the effective potential can be displayed (See appendix C.2 for the plotting

of the effective potential.)

V (r) = f(r)

(
l(l + 1)

r2
+

f
′
(r)

r
+ m2

)
. (5.6)

5.1.2 Continued Fraction

After we get (5.5), we now thus determine quasinormal frequencies by the con-

tinued fraction method. This technique was first developed by Leaver [9]. By

substituting the appropriate power series solution into wave equation, one can

manage to obtain the continued fraction of the coefficient of the recurrence rela-

tion. Then, one can determine quasinormal frequencies from continued fraction

numerically. We now first introduce a proper solution for (5.5) which is defined

by [40]

ψ(r) = eirξr

(
2iMξ+ iMm2

ξ

) (
1− 2M

r

)−2iMω

N(r), (5.7)

where,

ξ ≡
√

ω2 −m2, N(r) ≡
∑

n

an

(
1− 2M

r

)n

.
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In addition, before we substitute this solution into the wave equation, we must re-

transform the tortoise coordinate r∗ to the former radial coordinate r first. Note

that, in this section, we will describe the step of calculation roughly. Anyone

who interested in the detail would be recommended to see Appendix B.1 for a

mathematica’s code which is developed by Alexander Zhidenko. This code helped

us to simplify many tedious works that we have to face if we choose the traditional

way instead (by hand). However, we attempt to illustrate each step of calculation

as much as possible. Hence, after we insert (5.7) into (5.5) and divide by the

common factor eirξr

(
2iMξ+ iMm2

ξ

) (
1− 2M

r

)−2iMω
, we get

A(r)N
′′
(r) + B(r)N

′
(r) + C(r)N(r) = 0,

where A(r), B(r) and C(r) are function of radial coordinate r. Then we introduce

a new variable z

r = − 2M

z − 1
. (5.8)

Hence, the function N(r) becomes N(z) =
∑

n anzn. After we change all radial

coordinate r to a new one, the previous equation may takes the form

A(z)N
′′
(z) + B(z)N

′
(z) + C(z)N(z) = 0,

Now, we can rearrange the above coefficient into a form

A(z) ∼ A
(
...z3 + ...z2 + ...z1

)
,

B(z) ∼ B
(
...z2 + ...z1 + ...z0

)
,

C(z) ∼ C
(
...z1 + ...z0

)
,

Then, multiply all the coefficients by parameter z

A
(
...z4 + ...z3 + ...z2

) ∑
n

n(n− 1)anz
n−2 + B

(
...z3 + ...z2 + ...z1

) ∑
n

nanzn−1

+C
(
...z2 + ...z1

) ∑
n

anzn = 0,

A
(
...z2 + ...z1 + ...z0

) ∑
n

n(n− 1)anzn + B
(
...z2 + ...z1 + ...z0

) ∑
n

nanz
n

+C
(
...z2 + ...z1

) ∑
n

anz
n = 0,

Let us define

A
(
∆az

2 + ¤az
1 +5az

0
) ∑

n

n(n− 1)anz
n + B

(
∆bz

2 + ¤bz
1 +5bz

0
) ∑

n

nanz
n

+C
(
∆cz

2 + ¤cz
1
) ∑

n

anzn = 0,
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Then, we need to expand all the term which takes the following

A(5a)
∑

n

n(n− 1)anz
n+0 + A(¤a)

∑
n

n(n− 1)anz
n+1 + A(∆a)

∑
n

n(n− 1)anzn+2

+B(5b)
∑

n

nanz
n+0 + B(¤b)

∑
n

nanz
n+1 + B(∆b)

∑
n

nanzn+2

+C(¤c)
∑

n

anz
n+1 + C(∆c)

∑
n

anz
n+2 = 0.

Moreover, we can rearrange the above equation into the final form

∑
n

(n(n− 1)A(5a) + nB(5b))︸ ︷︷ ︸
α̃

anz
n

+
∑

n

((n− 1)(n− 2)A(¤a + (n− 1)B(¤b) + C(¤c)))︸ ︷︷ ︸
β̃

an−1z
n

+
∑

n

((n− 2)(n− 3)A(∆a) + (n− 2)B(∆b) + C(∆c))︸ ︷︷ ︸
γ̃

an−2z
n = 0,

where on the second term we shift index (n −→ n − 1) while the third term

(n −→ n− 2). Then, our equation becomes

∑
n

α̃anzn +
∑

n

β̃an−1z
n +

∑
n

γ̃an−2z
n.

We can shift all the indices n that appear in the above equation by n −→ n + 1

αnan+1 + βnan + γnan−1 = 0, (5.9)

then, if one follows the code in appendix B, one would get the following results

α̃ −→ αn = (n + 1)(n + 1− 4Miω),

β̃ −→ βn =
M(ω + ξ)(4M(ω + ξ)2 + i(2n + 1)(ω + 3ξ))

ξ
− 2n(n + 1)− 1− l(l + 1),

γ̃ −→ γn =

(
n− Mi(ω + ξ)2

ξ

)2

.

Thus, from (5.9) one can prove that

an+1

an

= − γn+1

βn+1 − αn+1γn+2

βn+2−αn+2γn+2/...

= −βn

αn

+
γn

αn

[
αn−1

βn−1 − γn−1αn−2

βn−2−γn−2αn−3/...

]
.

Hence, the final equation can be expressed as

βn − αn−1γn

βn−1 − αn−2γn−1

βn−2−αn−3γn−2/...

=
αnγn+1

βn+1 − αn+1γn+2

βn+2−αn+2γn+3/...

. (5.10)

So in principle, the above equation can be solved numerically.
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5.1.3 Results and Discussion

As mentioned above, one can numerically solve the above equation, by calculat-

ing for ω and then increase the depth of continued fraction, then see if ω does

not change significantly. Hence, we obtain the correct answer for the quasinormal

frequencies. Some of the results are shown in Table 5.1. They have been deter-

mined by using the code appears in Appendix B.2. It appears that the real part of

quasinormal frequencies decrease as the mode “n” increase. However, during the

numerical calculation, one can found that the depth of continued fraction must

be increased as the mode n becomes larger in order to obtain the quasinormal

frequencies correctly. Fortunately, one can improve the convergence of the con-

tinued fraction by following the Nollert’s technique as done in [10, 40]. This will

also improve the accuracy of the results and less-consumed calculating time. The

results in which using the Nollert’s method are shown in Fig(5.1). As illustrated,

the imaginary parts of quasinormal frequencies are decreasing while the scalar

field’s mass increases. It is worthy to note that at some particular mass value,

imaginary part vanishes. This lead to the existence of long living modes namely,

quasi-resonances, in which has been discussed firstly by [40].

M=1,m=0,l=0

n ωR −ωI

0 0.1104 0.1048

1 0.0861 0.3480

2 0.0756 0.6009

Table 5.1: First three fundamental modes for M = 1, l = 0 in massless case

(m = 0)
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Figure 5.1: This shows the first three fundamental modes at each particular value

of the scalar field mass (at fixed M = 1) by using the Nollert’s improvement. This

figure is provided by A. Zhidenko et al, [40].



Chapter VI

QUASINORMAL MODES OF

FIVE DIMENSIONAL BLACK

HOLES

“God not only plays dice, He also sometimes throws the dice where

they cannot be seen.”

-S. Hawking

At present, the best candidate for theory of quantum gravity is string theory.

In the string theory’s paradigm, spacetime are required to have dimensionality

more than four. So, it is very interesting to study quasinormal modes of black

holes in higher dimensions. Obviously, it makes sense to start with five dimensional

cases since its complexity should not be much different from an ordinary four

dimensions. Hence, in this chapter, we will investigate quasinormal modes of

black holes in five dimensional spacetime. First, we further study a large AdS

Schwarzschild black hole and calculate its quasinormal frequencies by using first

order perturbation method. Then, we shall introduce a new black hole solution

from the Einstein-Maxwell theory namely, rotating Kaluza-Klein black hole with

squashed horizons. Finally, its quasinormal frequencies will be determined via an

approximation technique.

6.1 Quasinormal Modes of 5d AdS-Schwarzschild

Black Hole

As in the Chapter 4, we have already discussed three dimensional AdS Schwarzschild

black hole and also compute its quasinormal frequencies. Then for now, we shall
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further investigate the quasinormal modes of a scalar field in five dimensional AdS

Schwarzschild background. By following the work which has been done in Siopsis’s

work [13], one can manage to transform the Klein-Gordon equation into known

differential equation namely, the Heun equation. Afterward, the Heun differential

equation can be reduced to hypergeometric equation under some proper coordi-

nate transformation. In addition, an obtained equation can be divided into two

parts, (i) an ordinary hypergeometric equation, (ii) this part can be regarded as

a perturbation term of the main equation. According to this method, we obtain

the quasinormal frequencies analytically. The study of quasinormal modes for 5d

AdS black holes would be very useful to interpret the thermalization timescales

of the thermal system which emerges in four dimensional conformal field theory.

Note that, this section was covered by Siopsis’s paper [13].

From (4.32), we derive a large AdS Schwarzschild black hole in five dimensions

(d = 5)

ds2 = −
(

r2

R2
− ω4M

r2

)
dt2 +

(
r2

R2
− ω4M

r2

)−1

dr2 + r2ds2(E3),

where R is AdS radius and ω4 is gravitational constant. Then, from (4.34), an

event horizon can be determined

r4
+ = ω4MR2.

Hence, the metric can be arranged into the following form

ds2 = − 1

R2

(
r4 − r4

+

r2

)
dt2 +

R2r2

(r4 − r4
+)

dr2 + r2d~x2. (6.1)

We now determine the components of metric tensor and its inverse

gµν =




−(r4−r4
+)

R2r2 0 0 0 0

0 R2r2

(r4−r4
+)

0 0 0

0 0 r2 0 0

0 0 0 r2 0

0 0 0 0 r2




,

gµν =




− R2r2

(r4−r4
+)

0 0 0 0

0
(r4−r4

+)
R2r2 0 0 0

0 0 r−2 0 0

0 0 0 r−2 0

0 0 0 0 r−2




.

The last one is determinant of metric tensor
√−g = r3. We shall denote spacetime

indices with (0, 1, 2, 3, 4) −→ (t, r, x, y, z).
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6.1.1 The Wave Equation

The Klein-Gordon equation in the curved background is defined by

1√−g
∂µ

[√−ggµν∂νΦ
]−m2Φ = 0,

here m represents mass of scalar field. Thus, non-vanishing components of the

above equation may take the form

1√−g

[
∂0(g

00
√−g∂0Φ) + ∂1(g

11
√−g∂1Φ) + ∂2(g

22
√−g∂2Φ)

+∂3(g
33
√−g∂3Φ) + ∂4(g

44
√−g∂4Φ)

]
+ m2Φ(x) = 0.

Hence, we get

√−gg00∂2
0Φ = − r5R2

(r4 − r4
+)

∂2
0Φ,

∂1(
√−gg11∂1Φ) =

r
(
r4 − r4

+

)

R2
∂2

1Φ +

(
4r4

R2
+

(
r4 − r4

+

)

R2

)
∂1Φ,

√−g
[
g22∂2

2Φ + g33∂2
3Φ + g44∂2

4Φ
]

= r~∇2Φ,

where, ~∇2 is Laplacian operator in Cartesian coordinates. Then, we have derived

the wave equation

− R4

r2
(
1− r4

+

r4

)∂2
0Φ + r2

(
1− r4

+

r4

)
∂2

1Φ +

(
5r − r4

+

r3

)
∂1Φ +

R2

r2
~∇2Φ = m2R2Φ.

We may introduce the following ansatz for the separation of variable method.

Φ = ψ(y)e−i(ωt+~p.~x). (6.2)

We thus change the radial coordinate r to y

y =
r2
+

r2
. (6.3)

So as we approach an event horizon that means y −→ 1 while at infinity y goes

to zero. Now let’s consider the following chain rule

∂1Φ = −2r2
+

r3
ψ
′
e−i(ωt+~p.~x),

∂2
1Φ =

4r4
+

r6
ψ
′′
e−i(ωt+~p.~x) +

6r2
+

r4
ψ
′
e−i(ωt+~p.~x),
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here, we denote the prime sign as derivative with respect to y. Therefore each

components of the wave equation can be calculated

m2R2Φ = m2R2ψe−i(ωt+~p.~x),

R2

r2
~∇2Φ = −|~p|

2R2

r2
ψe−i(ωt+~p.~x),

− R4

r2
(
1− r4

+

r4

)∂2
0Φ =

ω2R4

r2(1− y2)
ψe−i(ωt+~p.~x),

1

r3
∂1

[
(r5 − r4

+r)∂1Φ
]

=
(
4(1− y2)y2ψ

′′
+

[
6(1− y2)y + 2y3 − 10y

]
ψ
′
)

e−i(ωt+~p.~x).

The exponential factor can be eliminated out then we obtain the radial equation

(1− y2)2y2ψ
′′ − y(1− y4)ψ

′
+

[
ω̂2

4
y − p̂2

4
y(1− y2)− m̂2

4
(1− y2)

]
ψ = 0,

(6.4)

where we define a new parameter as

ω̂ =
ωR2

r+

,

p̂ =
|~p|R
r+

,

m̂ = mR.

Now we determine the solution in the near horizon regime y −→ 1. Let us define

a new variable

1− y2 ≡ x ' 0.

Hence, the radial equation (6.4) in the near horizon limit becomes

4x2(1− x)2d2ψ

dx2
+ 2x(1− x)(2− x)

dψ

dx
+

ω̂2

4
(1− x)1/2ψ − p̂2

4
x(1− x)1/2ψ − m̂2

4
xψ = 0.

however, x = 0 as we approach the horizon then the above equation can be reduced

to

4x2d2ψ

dx2
+ 4x

dψ

dx
+

ω̂2

4
ψ − p̂2

4
xψ − m̂2

4
xψ = 0. (6.5)

We introduce power series solution

ψ =
∞∑

n=0

anxn+α,

= xα(a0 + a1x + a2x + ...),

' xαa0.
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After substituting the above solution into the reduced wave equation, we thus

obtain

4α(α− 1)xα + 4αxα +
ω̂2

4
xα = 0,

where we ignore the higher order term of power of x. Then, we obtain a constraint

equation for α

α = ±iω̂

4
.

Finally, we approximately obtain the solution in the near horizon region

ψ± ∼ (1− y)±iω̂/4. (6.6)

We use the above argument to obtain the wave solution at infinity y −→ 0. Then,

we get

ψ± ∼ yβ± , β± = 1±
√

1 +
m̂2

2
. (6.7)

For massless case (m̂ = 0), then β+ = 2, β− = 0. However, there is another

singularity occurs at the horizon except y = 1 which lies at y = −1. We therefore

need to investigate the solution’s behavior in this region too. By defining a new

parameter z as

y = z − 1.

Hence as y approach to another horizon y = −1, z becomes zero. We can determine

this solution in the similar way as we had done for the others region. Then, we

obtain

ψ± ∼
(

1 + y

2

)γ±

, γ± = ± ω̂

4
. (6.8)

Here, factor 1/2 is put by hand to prevent any contribution from this term when

y −→ 1. Ultimately, the general solution of the radial equation (6.4) is written

down

ψ(y) = y2(1− y)−iω̂/4

(
1 + y

2

)−ω̂/4

F (y). (6.9)

After substituting this solution into the radial wave equation (for massless case),

one obtain

F
′′

+

[
3

y
+

(1− iω̂/2)

y − 1
+

(1− iω̂/2)

y + 1

]
F
′
+

[
(2− (1 + i)ω̂/4)2y − q

y(y2 − 1)

]
F = 0,

(6.10)
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where q = 3(−1+i)
4

ω̂− p̂2

4
+ ω̂2

4
. This equation is so-called Heun differential equation.

Any second order linear differential equation with four singularities can be trans-

formed into this equation. We now again change the variable by x = y2. Let’s

consider the following relation

dF

dy
= 2

√
x
dF

dx
,

d2F

dy2
= 4x

d2F

dyx2
+ 2

dF

dx
.

So, Heun equation will take the form

4x
d2F

dx2
+ 2

dF

dx
+ 2

√
x

[
3√
x

+
(1− iω̂/2)√

x− 1
+

(1− iω̂/2)√
x + 1

]
dF

dx

+

[
(2− (1 + i)ω̂/4)2

√
x− q√

x(x− 1)

]
F = 0.

Moreover, we can rearrange the above equation into the following form

x(1− x)
d2F

dx2
+

[
2− (1− i)

ω̂

4
− (3− (1 + i)

ω̂

4
)x + (1−√x)(1− i)

ω̂

4

]
dF

dx

+

[
−1

4

(
2− (1 + i)

ω̂

4

)2

+
q

4
√

x
+

q

4
− q

4

]
F = 0.

Then Heun equation can be regarded as

(H0 +H1)F = 0, (6.11)

where,

H0 = x(1− x)
d2

dx2
+

[
2− (1− i)

ω̂

4
− (3− (1 + i)

ω̂

4
)x

]
d

dx
−

[
1

4

(
2− (1 + i)

ω̂

4

)2

− q

]
,

H1 = (1−√x)

[
(1− i)

ω̂

4

d

dx
+

q

4
√

x

]
.

One sees that H0 is canonical form of hypergeometric differential equation while

H1 can be treated as a perturbation term. We can expand the wave function,

F = F0 + F1 + ... (6.12)

Now, let’s discuss the zeroth-order equation

H0F0 = 0. (6.13)

The standard hypergeometric equation may take the form [39]

x(1− x)
d2F

dx2
+ [c− (a + b + 1)x]

dF

dx
− abF = 0.
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Thus, from (6.13), we determine the following parameters

c = 2− (1− i)
ω̂

4
,

a = 1 +

(
−(1 + i)ω̂

8
+

√
q

2

)
,

b = 1 +

(
−(1 + i)ω̂

8
−
√

q

2

)
.

Then the solution of zeroth-order equation at infinity x = 0 is defined by [39]

F0 = F (a, b, c; x),

= F (1 +

(
−(1 + i)ω̂

8
+

√
q

2

)
, 1 +

(
−(1 + i)ω̂

8
−
√

q

2

)
, 2− (1− i)

ω̂

4
, x).

Using the linear transformation of hypergeometric function, we can transform

above relation to the solution at near horizon limit x = 1

F0 =
Γ(2− (1− i) ω̂

4
)Γ(iω̂/2)

Γ(1− ω̂
8

+ 3iω̂
8
−

√
q

2
)Γ(1− ω̂

8
+ 3iω̂

8
+

√
q

2
)
F

+(1− x)iω̂/2 Γ(2− (1− i) ω̂
4
)Γ(−iω̂/2)

Γ(1− (1+i
4

ω̂ +
√

q)/2)Γ(1− (1+i
4

ω̂ −√q)/2)
F.

Consequently, wave solution near horizon is expressed

F0 = A0 + B0(1− x)iω̂/2. (6.14)

Boundary condition of quasinormal modes forces us to choose B0 = 0 because at

horizon there must no outgoing modes exists. In order to satisfy this condition,

we require that

2n =
(1 + i)

4
ω̂ ±√q, n = 1, 2, ... (6.15)

This relation represents the quasinormal frequencies of 5d AdS Schwarzschild black

hole but only one that comes from the “non-perturbative” term.

6.1.2 First Order Perturbation

To improve the accuracy of our result, we must include the contribution from the

“perturbed” term H1. We need to expand B0 for small ω. Now let’s recall

B0 =
Γ(2− (1− i) ω̂

4
)Γ(−iω̂/2)

Γ(1− (1+i
4

ω̂ +
√

q)/2)Γ(1− (1+i
4

ω̂ −√q)/2)
(6.16)

For simplicity we may set p̂ = 0. Hence, parameter q is shown as

√
q '

√
3

4
(−1 + i)ω̂1/2. (6.17)
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Now we consider the Taylor’s expansion (for small δ)

Γ(z + δ) = Γ(z)|z=1 + δ
dΓ(z)

dz
|z=1 + δ2d2Γ(z)

dz2
|z=1 + ...,

dΓ(z)

dz
= −γ ' 0.577,

d2Γ(z)

dz2
=

∫ ∞

0

e−t(ln t)2dt = γ2 +
π2

6
.

Therefore, let’s consider

Γ

(
1− 1

2

(
1 + i

4
ω̂ −

√
3

4
(−1 + i)ω̂1/2

))
' 1 +

1

2

(
1 + i

4
ω̂ +

√
3

4
(−1 + i)ω̂1/2

)
γ

+
3

16
(−1 + i)ω̂

(
γ2 +

π2

6

)
,

Γ

(
−iω̂

2

)
' 1

−iω̂/2
Γ(1− iω̂

2
) = − 2

iω̂
,

Γ

(
2− (1− i)

4
ω̂

)
' 1− (1− i)

4
ω̂.

So, B0 can be completely expanded as

B0 ' − 1

iω̂/2

[
1 +

(
−1 +

π2

8

)
(1− i)

4
ω̂ + ...

]
. (6.18)

Since, any second order differential equation must have two linearly independent

solutions. We now thus construct the second solution G0 of the zeroth-order

equation. We use

G0(x) = F0(x)

∫ x W0(x
′
)dx

′

F0(x
′)2

, (6.19)

where W0(x) is Wronskian which can be calculated via [41]

W0 = F0G
′
0 −G0F

′
0,

or an alternate form, it reads

W0 = exp

[
−

∫ x

0

P (x1)dx1

]
,

Here, P (x1) is the coefficient of the first derivative term. In our case, Wronskian

is determined by

W0 = x−2+
(1−i)

4
ω̂(1− x)−1+iω̂/2. (6.20)

Moreover, the first-order equation is considered

H0F1 = −H1F0. (6.21)
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One can construct the solution for the inhomogeneous differential equation via

F1(x) = G0(x)

∫ x

0

F0(x
′
)H1F0(x

′
)dx

′

W0(x
′)

− F0(x)

∫ x

0

G0(x
′
)H1F0(x

′
)dx

′

W0(x
′)

.

(6.22)

To expand both solutions F0, G0, we first transform F0 by using hypergeometric

function identity and then expand by keeping only lowest order in ω̂. Thus, F0

may take the form

F0(x) =
1− (1− x)iω̂/2

iω̂x/2
+ ...,

whereas for G0, we may express the second solution as [39]

G0(x) = x1−cF (a− c + 1, b− c + 1, 2− c; x),

' 1

x
.

Consequently, one can construct F1(x) by using (6.22)

F1(x) = C
(1− i)

4
ω̂F0x + ..., (6.23)

where,

C ≡
∫ x

0

[
− 1

x(1 +
√

x)
− 1−√x

x2

(
1 +

3
√

x

4

)
ln(1− x)

]
dx,

= 1 + ln 2− π2

8
(6.24)

Then to the first order, the solution at the horizon is obtained

F (x) ≈ F0(x) + F1(x),

≈ F0(x)

(
1 +

(1− i)

4
(1 + ln 2− π2

8
)ω̂

)
.

Recall that from (6.14) and (6.18), then we have

B1 ≡ B0

(
1 +

(1− i)

4
(1 + ln 2− π2

8
)ω̂

)
,

' 1

−iω̂/2

(
1 + ln 2

1− i

4
ω̂

)
. (6.25)

Applying the boundary condition at the horizon, so we have to set B1 = 0

ω̂ = −2(1 + i)

ln 2
,

= −2.89(1 + i). (6.26)

We obtain analytical formula of quasinormal frequencies of 5d AdS Schwarzschild

black hole in first-order perturbation. It is worthy to note that a positive real part

can be derived by replacing the exponent of 1+y
2

from −iω̂/4 to +iω̂/4.
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6.1.3 Results and Discussion

So far, we have investigated quasinormal modes of five dimensional AdS Schwarzschild

black hole. It appears that one can possibly transform the wave equation (6.4)

into the hypergeometric differential equation and its perturbation part. First, we

purely determine the zeroth-order part which is standard hypergeometric equa-

tion. Hence, one gets the quasinormal frequencies. However, if one needs to

improve the results, the first-order perturbation must be included. Then, the first

order solution can be constructed; ultimately improved quasinormal frequencies

are obtained.

6.2 Quasinormal Modes of Rotating Squashed

Kaluza-Klein Black Hole

Einstein’s theory of relativity has suggested us that space and time must be com-

bined together as a four dimensional object. Many observations confirm the cor-

rectness of events which purely appear only when four dimensional spacetime is

considered. This may imply that we might live in four dimensions universe. How-

ever, in attempt to formulate theory of quantum gravity, one must further extend

dimensionality of the spacetime to higher dimensions. One of the quantum gravity

candidates is the string theory. As suggested by string theory, extra dimensions

are required to fulfill the completeness and self-consistency of the theory. Some

string scenario suggests that the large hardron colliders might be able to create

mini black holes if the higher dimensions exist. Therefore, it is of particular inter-

est to study the quasinormal modes of higher dimensional black holes. However,

the extra dimensions are expected to be compactified since we have never observed

such an effect from them. Such geometry with compactified extra dimension is

called a Kaluza-Klein geometry. Unlike the previous section which the black hole

was just extended to standard five dimensional spacetime, in this section we will

consider a black hole in Kaluza-Klein geometry instead. Higher dimensional black

hole equipped with this asymptotic structure is called a Kaluza-Klein black hole.

To construct such a Kaluza-Klein black hole, we equip the asymptotic struc-

ture with twisted S1 bundle over four dimensional flat spacetime. This leads us

to the existence of Kaluza-Klein black hole with squashed horizons. Such a black

hole look like five dimensional squashed black hole near the horizon and explicitly

shows the Kaluza-Klein geometry at spatial infinity which is locally (M4 × S1).
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The Kaluza-Klein charged black hole with the squashed horizons was successfully

constructed by Ishiara and Matsuno [43], and for the rotating case by Wang [44].

Thus, it is very interesting to study how the size of the compactified dimension

affects the quasinormal modes of the Kaluza-Klein black hole.

In this section, we first begin with a brief introduction of rotating squashed

Kaluza-Klein metric. Then, we will investigate the scalar perturbation around

rotating squashed Kaluza-Klein black hole and try to determine its quasinormal

frequencies.

6.2.1 Kaluza-Klein Black Hole with Squashed Horizons

To construct the Kaluza-Klein black hole with squashed horizons, we first consider

the five dimensional Einstein-Maxwell theory

S =
1

16π

∫
d5x

√−g(R− FµνF
µν), (6.27)

here R is the curvature scalar and Fµν is Maxwell field strength tensor. The

solution that satisfies an equation of motion of this action is described by a static

electrically charged metric [43]

ds2 = −f(r)dt2 +
k(r)2

r
dr2 +

r2

4

[
k(r)(σ2

1 + σ2
2) + σ2

3

]
.

Where the gauge potential is chosen to be

A = ±
√

3

2

r+r−
r2

dt. (6.28)

while the others parameters are defined by

f(r) =
(r2 − r2

+)(r2 − r2
−)

r4
, k(r) =

(r2
∞ − r2

+)(r2
∞ − r2

−)

(r2∞ − r2)2
,

σ1 = − sin ψdθ + cos ψ sin θdφ,

σ2 = cos ψdθ + sin ψ sin θdφ,

σ3 = dψ + cos θdφ,

and 0 < θ < π, 0 < φ < 2π, 0 < ψ < 4π. The function k(r) is squash function

which characterizes the shape of our horizons. The rest undefined parameters will

be termed when considering rotating black hole. This solution is a non-rotating

Kaluza-Klein black hole with squashed horizons which derived by Ishihara et.al
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[43]. To formulate a rotating version, Wang has suggested “squashing transforma-

tion” as follows [44]

dr −→ k(r)dr,

σ1 −→
√

k(r)σ1,

σ2 −→
√

k(r)σ2,

Thus by following the above argument, one can transform an ordinary five di-

mensional Kerr black hole with equal angular momentum [45, 46] into rotating

Kaluza-Klein black hole with squashed horizons

ds2 = −dt2 +
Σ

∆
k(r)2dr2 +

r2 + a2

4
[k(r)(σ2

1 + σ2
2) + σ2

3] +
µ

r2 + a2
(dt− a

2
σ3)

2,

(6.29)

The parameters are defined by

Σ = r2(r2 + a2),

∆ = (r2 + a2)2 − µr2.

Where µ,a are black hole mass and black hole’s spin parameter respectively. The

metric (6.29) has three coordinate singularities which are denoted by r = r±, r =

r∞. These will restrict the radial coordinate r within the range 0 < r < r∞. Note

that one can obtain the inner and outer horizon by setting ∆ = 0

r± =

√
(µ− 2a2)±

√
−4a2µ + µ2

2
.

Moreover, one can easily prove that r2
+ + r2

− = µ − 2a2 and (r+r−)2 = a4. To

determine the shape of horizon, let us recall the function k(r)

k(r) =
(r2
∞ − r2

+)(r2
∞ − r2

−)

(r2∞ − r2)2
. (6.30)

Now consider three dimensional surface in which metric takes the form (for t, r =

constant)

ds2 =
r2 + a2

4
[k(r)(σ2

1 + σ2
2) + σ2

3]. (6.31)

This surface can be regarded as S1 fiber over base space S2. Note that, σ2
1 + σ2

2

represents S2 metric. Hence, the ratio between S1 and base space is characterized

by squash function (6.30). As k(r) −→ 1 our metric reduces to five dimensional
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Kerr black hole. One can investigate the shape of horizon by considering function

k(r±) [43]

k(r±) =
r2
∞ − r2

∓
r2∞ − r2±

. (6.32)

Since k(r+) ≥ 1 ≥ k(r−), at the outer horizon S2 is larger than S1, while at

the inner horizon S2 is smaller than S1 [43]. These describe the shape of both

horizons which is characterized by k(r±). Note that in the case, r+ = r−, the

shape of horizons become perfectly S3.

Hence, near the horizon (6.29) looks like a five-dimensional black hole with

squashed horizons. To see the asymptotic structure, we follow Wang’s argument

[44]. First let’s introduce new radial coordinate

ρ = ρ0
r2

r2∞ − r2
, (6.33)

where

ρ2
0 =

k0

4
(r2
∞ + a2),

k0 =
(r2
∞ + a2)2 − µr2

∞
r4∞

.

ρ range from 0 to ∞ while r range from 0 to r∞. We thus now transform our

metric (6.29) to a new coordinate, the new metric may take the form [44]

ds2 = −dt2 + Udρ2 + R2(σ2
1 + σ2

2) + W 2σ2
3 + V (dt− a

2
σ3)

2, (6.34)

where

K2 =
ρ + ρ0

ρ + a2

r2∞+a2

ρ0,

V =
µ

r2∞ + a2
K2,

W 2 =
r2
∞ + a2

4K2
,

R2 =
(ρ + ρ0)

2

K2
,

U =

(
r2
∞

r2∞ + a2

)2

× ρ2
0

W 2 − ρr2∞
4(ρ+ρ0)

V
.

Then take limit ρ −→∞, ultimately the metric approaches [44]

ds2 = −dt2 + dρ2 + ρ2(σ2
1 + σ2

2) +
r2
∞ + a2

4
σ2

3 +
µ

r2 + a2
(dt− a

2
σ3)

2 (6.35)



66

The cross term between dt and σ3 can be eliminated by introducing new coordi-

nates

ψ̄ = ψ − 2µa

(r2∞ + a2)2 + µa2
t,

t̄ =

√
(r2∞ + a2)2 − µr2∞
(r2∞ + a2)2 + µa2

t,

and define new parameter σ̄3 ≡ dψ̄ + cos θdφ. Hence, we obtain rotating Kaluza-

Klein black hole with squashed horizon in asymptotic (ρ −→∞) limit

ds2 = −dt̄2 + dρ2 + ρ2(σ2
1 + σ2

2) +
(r2
∞ + a2)2 + µa2

4(r2∞ + a2)
σ̄2

3 (6.36)

This metric shows the topology of a twisted S1 bundle over four dimensional

Minkowski spacetime. It obvious that the first four terms describe Minkowski

spacetime while the rest is a twisted S1. Moreover, the size of compactified di-

mension at infinity is given by

r̄2
∞ =

(r2
∞ + a2)2 + µa2

r2∞ + a2
. (6.37)

We see that there are three parameters which control the size of an extra dimen-

sion. In addition, if we take r∞ −→ ∞ the radius of compactified dimension

purely depends on r∞. Thus it is very interesting to see that how this parameter

may contribute to the quasinormal frequencies.

We may define a new coordinate time as dt = Adτ and A ≡ (r2∞+a2)2

2ρ0r3∞
[14].

Before we end this section let’s calculate the components of metric tensor and its

inverse

gµν =




− (
1− µ

r2+a2

)
A2 0 0 − aµ cos θ

2(r2+a2)
A − aµ

2(r2+a2)
A

0 Σk2

∆
0 0 0

0 0 k(r2+a2)
4

0 0

− aµ cos θ
2(r2+a2)

A 0 0 ((r2+a2)2(k sin2 θ+cos2 θ)+µa2 cos2 θ)
4(r2+a2)

cos θ
4

[
(r2+a2)2+µa2

4(r2+a2)

]

− aµ
2(r2+a2)

A 0 0 cos θ
4

[
(r2+a2)2+µa2

r2+a2

]
(r2+a2)2+µa2

4(r2+a2)




,

and

gµν =




− (a2+r2)2+a2µ
∆A2 0 0 0 −2aµ

A∆

0 ∆
k2Σ

0 0 0

0 0 4
k(a2+r2)

0 0

0 0 0 4 csc2 θ
(a2+r2)k

−4 cot θ csc θ
(a2+r2)k

−2aµ
A∆

0 0 −4 cot θ csc θ
(a2+r2)k

4(a2+r2−µ)
∆

+ 4 cot2 θ
(a2+r2)k




,
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Finally, the determinant of metric tensor is calculated

√−g =
Ak2 sin θ

8

√
Σ(r2 + a2).

We are now ready to formulate an equation of scalar perturbation around rotating

Kaluza-Klein black hole with squashed horizons.

6.2.2 Scalar Field Near Rotating Squashed Kaluza-Klein

Black Hole

Again, we consider the massless Klein-Gordon in curved spacetime

1√−g
∂µ(
√−ggµν∂νΦ) = 0.

Hence, all the non-vanishing terms are expressed

1√−g
[∂0(g

00∂0Φ +
√−gg03∂3Φ +

√−gg04∂4Φ) + ∂1(
√−gg11∂1Φ) +

∂2(
√−gg22∂2Φ) + ∂3(

√−gg33∂3Φ +
√−gg34∂4Φ +

√−gg30∂0Φ) +

∂4(
√−gg44∂4Φ +

√−gg40∂0Φ +
√−gg43∂3Φ)] = 0.

We shall denote the spacetime indices by (0, 1, 2, 3, 4) −→ (τ, r, θ, φ, ψ). We now

substitute the following ansatz into Klein-Gordon equation

Φ = R(ρ)S(θ)e−i(ωτ−mφ−λψ), (6.38)

where |m| ≤ l and |2λ| ≤ 2l. We also introduce a new radial coordinate ρ as

defined by (6.33). Then, let’s consider each components of field equation

τ − component

1√−g
∂0(g

00∂0Φ +
√−gg03∂3Φ +

√−gg04∂4Φ) =

[
((r2 + a2)2 + a2µ)

ω2

∆A2
− 2aµωλ

∆A

]
Φ.

r − component

1√−g
∂1(
√−gg11∂1Φ) =

[(
dρ

dr

)2

R
′′
(ρ) +

(
d2ρ

dr2
+

(
dρ

dr

)2 [
∆
′

∆
+

Γ
′

2Γ
− Σ

′

2Σ

])
R
′
(ρ)

]

×∆S(θ)e−i(ωτ−mφ−λψ)

k2Σ
,

where prime denotes derivative with respect to ρ, and Γ ≡ (r2 + a2).

θ − component

1√−g
∂2(
√−gg22∂2Φ) =

4

Γk

[
S
′′
(θ) + cot θS

′
(θ)

]
R(ρ)e−i(ωτ−mφ−λψ).
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φ− component

1√−g
∂3(
√−gg33∂3Φ +

√−gg34∂4Φ +
√−gg30∂0Φ) =

4

Γk sin2 θ

[
mλ cos θ −m2

]

×R(ρ)S(θ)e−i(ωτ−mφ−λψ).

ψ − component

1√−g
∂4(
√−gg44∂4Φ +

√−gg40∂0Φ +
√−gg43∂3Φ) =

[
4

Γk

(
mλ cos θ

sin2 θ
− λ2 cot2 θ

)
−

1

∆

(
4(Γ− µ)λ2 +

2aµωλ

A

)]
Φ.

In addition, an eigenvalue equation for spheroidal harmonics [41]

1

sin θ

d

dθ

[
sin θ

d

dθ

]
S(θ)−

[
(m− λ cos θ)2

sin2 θ
− E

]
S(θ) = 0, (6.39)

where E = l(l + 1) − λ2 is an eigenvalue of spheroidal harmonics. Hence, our

angular part yields

(θ + φ + ψ) =

[
4

Γk

(−l(l + 1) + λ2
)

+
1

∆

(
(Γ2 + a2µ)ω2

A2
− 4aµωλ

A
− 4(Γ− µ)λ2

)]
Φ

(6.40)

Now our Klein Gordon equation is in the form

∆(r)

(
dρ

dr

)2

R
′′

+ ∆(r)

[(
d2ρ

dr2

)
+

(
dρ

dr

)2 (
∆
′
(ρ)

∆(r)
+

Γ
′
(ρ)

2Γ(r)
− Σ

′
(ρ)

2Σ(r)

)]
R
′

+

[
4Σk

Γ

(−l(l + 1) + λ2
)

+
k2Σ

∆

(
(Γ2 + a2µ)ω2

A2
− 4aµωλ

A
− 4(Γ− µ)λ2

)]
R = 0.

Transforming the following parameter to coordinate ρ

Γ(r) −→ Γ(ρ) =
ρr2
∞

ρ + ρ0

+ a2,

Γ
′
(ρ) =

ρ0r
2
∞

(ρ + ρ0)2
,

Σ(r) −→ Σ(ρ) =
ρr2
∞

ρ + ρ0

[
ρr2
∞

ρ + ρ0

+ a2

]
,

Σ
′
(ρ) =

ρ0r
2
∞

(ρ + ρ0)3

[
ρr2
∞ + a2(ρ + ρ0)

]
+

ρρ0r
4
∞

(ρ + ρ0)3
,

∆(r) −→ ∆(ρ) =
(ρr2

∞ + a2(ρ + ρ0))
2

(ρ + ρ0)2
− µρr2

∞
(ρ + ρ0)

.

∆
′
(ρ) =

ρ0r
2
∞

(ρ + ρ0)2

[
2(ρr2

∞ + (ρ + ρ0)a
2)

(ρ + ρ0)
− µ

]
.



69

Let’s determine these chain rule formula

dρ

dr
=

2rρ0r
2
∞

(r2∞ − r2)2
,

d2ρ

dr2
=

2ρ0r
2
∞(r2

∞ + 3r2)

(r2∞ − r2)3
.

After a bit of tedious work, we ultimately obtain an equation of motion for a

massless scalar field in rotating squashed Kaluza-Klein background

Θ
d2R(ρ)

dρ2
+

dΘ

dρ

dR(ρ)

dρ
+

[
Ñ2

Θ
+ Λ− l(l + 1) + λ2

]
R(ρ) = 0, (6.41)

where

Θ(ρ) =
(r2
∞ + a2)

4r4∞ρ2
0

[
(ρr2

∞ + a2(ρ + ρ0))
2 − µρ(ρ + ρ0)r

2
∞

]
,

Ñ2 =
µr2

∞(ρ + ρ0)
4

N4(r2∞ + a2)2

[
ω − λaN2(r2

∞ + a2)

ρ0r3∞

]2

,

Λ =
4ρ2

0r
6
∞(ρ + ρ0)

2ω2

N2(r2∞ + a2)4
− 4λ2(ρ + ρ0)

2

r2∞ + a2
,

N2 =
ρ + ρ0

ρ + a2

r2∞+a2 ρ0

.

(See appendix C.3 for the plotting of the effective potential in non-rotating case.)

Our next task is to solve the above equation and determine the quasinormal fre-

quencies under some proper boundary conditions.

6.2.3 An Approximative Calculation of Quasinormal Fre-

quencies

In order to obtain the solution of the scalar field equation (6.41) , we will use an

approximation method and separate radial equation into two asymptotic regions:

for the near horizon ρ ∼ ρ+ and far field region ρ −→ ∞. Then, the solution of

both regions will be matched in the intermediate region based on Chen [14] and

Creek’s work [15].

To follow the above argument, we now investigate the solution in the near

horizon region (ρ ∼ ρ+). In order to formulate a known 2nd-order differential

equation namely, hypergeometric equation, we first introduce a new coordinate as

defined

z =
Θ(

ρ + a2

r2∞+a2 ρ0

)2 ⇒
dz

dρ
= (1− z)

B(
ρ + a2

r2∞+a2 ρ0

) , (6.42)
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where B ≡ 1− ρ0r2∞a2

ρ(r4∞−a4)−a4ρ0
.Thus, for the near horizon limit, the radial equation

(6.41) can be expressed in the new variable as

z(1− z)
d2R(z)

dz2
+ (1−H∗z)

dR(z)

dz
+

[
N2
∗

B(ρ+)2(1− z)z

−(l(l + 1)− λ2)− Λ(ρ+)

B(ρ+)2(1− z)

]
R(z) = 0, (6.43)

where,

N2
∗ =

(
1 +

ρ0

ρ+

)[
ρ+ +

a2

r2∞ + a2
ρ0

]2 [
ω − aλN(ρ+)2(r2

∞ + a2)

ρ0r3∞

]2

,

H∗ = 2− 1

B(ρ+)
− (ρ0 + ρ+)

N(ρ+)2B(ρ+)2

dB(ρ)

dρ
|ρ=ρ+ .

Notice that, z −→ 0 as r approaches the horizon and z −→ 1 as r closes to the

infinity. We redefine the radial solution as R(z) = zα(1 − z)βP (z). Then, we

substitute a new radial solution into (6.43). Hence, we obtain the canonical form

of the hypergeometric differential equation

z(1− z)
d2P (z)

dz2
+ [c− (1 + a1 + b)z]

dP (z)

dz
− a1bP (z) = 0, (6.44)

with

a1 = α + β + H∗ − 1, b = α + β, c = 1 + 2α.

While deriving (6.44), it appears that in order to obtain hypergeometric equation

there exist two following constraints

α± = ± iN∗
B(ρ+)

,

β± =
1

2

[
(2−H∗)±

√
(H∗ − 2)2 − 4N2∗

B(ρ+)2
+

4(l(l + 1)− λ2)− Λ(ρ+)

B(ρ+)2

]
.

The near horizon limit for the hypergeometric equation is defined by

PNH(z) = A−zα(1− z)βF (a1, b, c; z)

+ A+z−α(1− z)βF (a1 − c + 1, b− c + 1, 2− c; z), (6.45)

Recall that near horizon z −→ 0, then the above equation can be approximated

as

PNH(z) ∼ A−zα + A+z−α,

Let’s define

ℵ =

√
1 +

ρ0

ρ+

[
ρ+ +

a2

r2∞ + a2
ρ0

]2 [
ω − aλN(ρ+)2(r2

∞ + a2)

ρ0r3∞

]
,

y =
N2(ρ+) ln z

B(ρ+ + ρ0)
,
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so,

ℵy =
N∗
B

ln z.

Hence, we obtain another form of the near horizon solution

PNH(z) ∼ A−e±iℵy + A+e∓iℵy,

The only ingoing modes are allowed at the horizon. This restrict us to α = α−

and we also choose A+ = 0. Moreover, the convergence of the hypergeometric

function is also required. Hence, we must choose β = β− Finally, we obtain the

radial wave solution in the near horizon region

PNH(z) = A−zα−(1− z)β−F (a1, b, c; z). (6.46)

To match the solution from both sides, we must stretch the solution at near

horizon into the intermediate region. Following the process as done in [15], first

we transform the argument of the hypergeometric function in the above equation

as z −→ (1− z). It reads

P (z)NH = A−zα−(1− z)β−

[
Γ(c)Γ(c− a1 − b)

Γ(c− a1)Γ(c− b)
F (a1, b, a1 + b− c + 1; 1− z)

+(1− z)c−a1−b Γ(c)Γ(a1 + b− c)

Γ(a1)Γ(b)
F (c− a1, c− b, c− a1 − b + 1; 1− z)

]
.

(6.47)

To stretch this solution into a far regime let’s consider limit ρ −→∞, then function

1− z can be written as

1− z ' µ(r2
∞ − a2)

4ρ0r2∞ρ
, (6.48)

Then, the near horizon solution (6.47) is approximately expressed in a form

PNH(z) = A1ρ
−β− + A2ρ

−β−+N∗−2, (6.49)

where

A1 = A−

[
µ(r2

∞ − a2)

4ρ0r2∞

]β− Γ(c)Γ(c− a1 − b)

Γ(c− a1)Γ(a− b)
,

A2 = A−

[
µ(r2

∞ − a2)

4ρ0r2∞

]−β−−N∗+2
Γ(c)Γ(a1 + b− c)

Γ(a1)Γ(b)
.

On the other hand, we now determine (6.41) in the far field limit (ρ −→∞)

Θ ≈ ρ2,

Λ ≈
[

4ρ2
0r

6
∞

(r2∞ + a2)4
ω2 − 4λ2

r2∞ + a2

]
ρ2,

Ñ2 ≈ µr2
∞

(r2∞ + a2)2

[
ω − aλ(r2

∞ + a2)

ρ0r3∞

]2

ρ4,
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hence, we approximately obtain an equation in the far field region

ρ2d2RFF (ρ)

dρ2
+ 2ρ

dRFF (ρ)

dρ
+

[
Ω2ρ2 − (l(l + 1)− λ2)

]
RFF (ρ) = 0,

where

Ω2 =
µr2

∞
(r2∞ + a2)2

[
ω − aλ(r2

∞ + a2)

ρ0r3∞

]2

+

[
4ρ2

0r
6
∞ω2

(r2∞ + a2)4
− 4λ2

(r2∞ + a2)

]
.

Obviously, the above equation is a Bessel equation. Thus, far field solution of the

field equation (6.41) can be displayed as the following

RFF (ρ) =
1√
ρ

[B1Jν(Ωρ) + B2Yν(Ωρ)] ,

where ν ≡
√

(l(l + 1)− λ2) + 1
4
, Jν(Ωρ) and Yν(Ωρ) is Bessel of the first and

second kind respectively. B1 and B2 are the arbitrary constants. If we take limit

ρ −→ 0, the above solution can be simplified to

RFF (ρ) ∼ B1

(
Ωρ
2

)ν

√
ρΓ(ν + 1)

− B2Γ(ν)

π
√

ρ
(

Ωρ
2

)ν . (6.50)

Now, we ready to match both solution (6.49) and (6.50). However, the different

power of ρ prevent us to perform matching technique. We thus follow the method

which has been done in [15]. In order to match both solutions, we first need to

know an analytic expression of angular eigenvalue E = l(l + 1) − λ2. From [47],

E can be expressed as a power series of (aω). Hence, we shall determined up to

fifth order

E = l(l + 1) + (aω)2 [2λ2 − 2l(l + 1) + 1]

(2l − 1)(2l + 3)

+ (aω)4

[
2[−3 + 17l(l + 1) + l2(l + 1)2(2l − 3)(2l + 5)]

(2l − 3)(2l + 5)(2l + 3)3(2l − 1)3

+
4λ2

(2l − 1)2(2l + 3)2

(
1

(2l − 1)(2l + 3)
− 3l(l + 1)

(2l − 3)(2l + 5)

)

+
2λ4[48 + 5(2l − 1)(2l + 3)]

(2l − 3)(2l + 5)(2l − 1)3(2l + 3)3

]
+ ... (6.51)

This form will be used everywhere E appears in our equation. But for E in the

power of coefficient, we neglect (aω)2 and higher order. Hence,

−β ' l,

(β + N∗ − 2) ' −(l + 1),

ν ' 1

2
(2l + 1).
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This will restrict the validity of our results to the low black hole’s angular momen-

tum. By using the above approximation, we will obtain a constraint on coefficient

B1 and B2 as follows

B1

B2

= −
√

ν

π

[
8ρ0r

2
∞

µΩ(r2∞ − a2)

]2l+1
Γ2 (

√
ν) Γ (c− a1 − b) Γ (a1) Γ (b)

Γ (a1 + b− c) Γ (c− a1) Γ (c− b)
. (6.52)

In the far region , the far field solution can be written as

RFF (ρ) = Ain
e−iΩρ

ρ
+ Aout

eiΩρ

ρ
, (6.53)

with Ain and Aout are defined to be B1±iB2

2
√

2πΩ
respectively. From the boundary

condition, the solution in asymptotic region contains only the outgoing modes.

Thus, we must set Ain = 0. Finally, we obtain the quasinormal frequencies by

solving the following equation

B1 + iB2 = 0. (6.54)

6.2.4 Results and Discussion

To solve (6.54), we use the mathematica’s code which is provided in Appendix

B.3. Quasinormal frequencies of scalar field propagating in the rotating squashed

Kaluza-Klein background are shown in Fig 6.1 and Fig 6.2. In the first figure,

we found that as r∞ increasing the numerical values of the real part of ω also

increase while the imaginary part is grows at the first but decreases later on.

The right-most line represents the frequencies in the case a = 0 while the left-

most represents the case a = 0.3 Hence, we see that as “a” is getting larger, the

numerical values of the quasinormal frequencies get smaller. While in Fig 6.2, we

fixed l = 2, µ = 1, a = 0.1 and plot from left to right as λ = 0.5 and λ = 0.
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Figure 6.1: Quasinormal frequencies of the scalar field in the rotating squashed

Kaluza-Klein black hole spacetime, for fixed l = 0, λ = 0, µ = 1. The angular

momentum, a, ranges from 0 to 0.3 and r∞ runs, from 2 to 100. ω corresponds to

modes ν = 1
2
.

In Fig 6.3 and Fig 6.4, we plot the imaginary and real part of the quasinormal

frequencies against r∞ respectively. In these two graphs, we fixed a = 0.1, l =

2, µ = 1 and vary parameter λ from 0 to 1.5 as shown in both figures. As λ

is getting larger, the numerical values of quasinormal frequencies both real and

imaginary part get bigger. While in Fig 6.5 and Fig 6.6, we fixed a = 0.1, λ =

0, µ = 1 and plot the imaginary and real part of the quasinormal frequencies

against r∞ respectively. For Fig 6.5, we observe that at small r∞ the lowest

modes (l = 0) seems to dominate over the others however as r∞ is getting larger

the first (l = 1) and the second (l = 2) fundamental modes dramatically decrease.

For Fig 6.6, the real part increases as angular index l increasing. At last, Fig

6.7 and Fig 6.8, we plot the imaginary part and the real part of the quasinormal

frequencies against r∞ for fixed a = 0.2, λ = 0.5, µ = 1. Each lines represent each

values of the angular index l.
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Figure 6.2: Quasinormal frequencies of scalar field in the rotating squashed

Kaluza-Klein black hole spacetime, for fixed l = 2, µ = 1, a = 0.1. For λ = 0

is the right-most line and λ = 0.5 is on the left-most, whereas r∞ of each line runs

from 2-50. For λ = 0, ω corresponds to modes ν = 5
2

while λ = 0.5 relates with

ν = 2.45
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Figure 6.3: Plotting the imaginary part against r∞, for fixed a = 0.1, l = 2, µ =

1. Each lines show the differences in parameter λ, where λ = 0(blue), λ =

0.5(green), λ = 1(red), λ = 1.5(black). ω corresponds to modes ν as follow
5
2
(blue), 2.45(green), 2.29(red) and 2(black).
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Figure 6.4: Plotting the real part against r∞, for fixed a = 0.1, l = 2, µ = 1. Each

lines show the differences in parameter λ, where λ = 0(blue), λ = 0.5(green), λ =

1(red), λ = 1.5(black). ω corresponds to modes ν as follow 5
2
(blue), 2.45(green),

2.29(red) and 2(black).
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Figure 6.5: Plotting the imaginary part against r∞, for fixed a = 0.1, λ = 0, µ = 1.

Each lines show the differences in parameter l, where l = 0(blue), l = 1(green),

l = 2(red). ω corresponds to modes ν as follow 1
2
(blue), 3

2
(green) and 5

2
(red).
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Figure 6.6: Plotting the real part against r∞, for fixed a = 0.1, λ = 0, µ = 1.

Each lines show the differences in parameter l, where l = 0(blue), l = 1(green),

l = 2(red). ω corresponds to modes ν as follow 1
2
(blue), 3

2
(green) and 5

2
(red).
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Figure 6.7: Plotting the imagianary part against r∞, for fixed a = 0.2, λ = 0.5, µ =

1. Each lines show the differences in parameter l, where l = 1(blue), l = 2(green),

l = 3(red). whereas r∞ of each line runs from 2-50. ω corresponds to modes ν as

follow 1.41(blue), 2.45(green) and 3.46(red).
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Figure 6.8: Plotting the real part against r∞, for fixed a = 0.2, λ = 0.5, µ = 1.

Each lines show the differences in parameter l, where l = 1(blue), l = 2(green),

l = 3(red). whereas r∞ of each line runs from 2-50. ω corresponds to modes ν as

follow 1.41(blue), 2.45(green) and 3.46(red).



Chapter VII

SUMMARY

“I was like a boy playing on the sea-shore, and diverting myself now

and then finding a smoother pebble or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.”

-I. Newton

From the beginning of this work, we have briefly reviewed various black

hole solutions (Chapter2) to give key concept about each of their properties and

their role as a solution of Einstein’s theory of gravity. Then, we discussed the

definition of quasinormal modes and its application to certain elementary physics

area (Chapter 3). The quasinormal modes and quasinormal frequencies of black

holes in three, four and five dimensions have been studied in Chapter 4, 5 and 6

respectively.

In Chapter 4, we have considered the quasinormal modes of a BTZ black

hole by an analytical method. This method allows us to reduce the Schrödinger-

like equation to a hypergeometric differential equation. Hence, by choosing ap-

propriate boundary conditions, the quasinormal frequencies of BTZ black hole

are obtained analytically [11]. Its results are shown in Table 4.1. Its real part

depends on the angular quantum number of the field while the imaginary part de-

pends on the black hole’s mass. Then, the quasinormal frequencies of “rotating”

BTZ black hole are investigated. Like the previous case, one can use the same

method to obtain its frequencies. As expect, these frequencies are determined

by black hole’s mass and angular momentum. If one turns off its spinning, the

results will perfectly coincide with the non-rotating case [12]. Lastly, a large AdS

three dimensional Schwarzschild black hole has been considered. It turns out that,

one can compute its quasinormal frequencies by following the same argument as

done in two previous cases [13]. In summary, three dimensional black holes have

been used as testing models because their quasinormal frequencies can be eas-

ily determined analytically. On the other hand, AdS term must be included to
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construct black hole solutions in three dimensions. Therefore, investigating their

quasinormal modes may reveal the interpretation of the conformal field theory in

two dimensions.

In Chapter 5, quasinormal modes of Schwarzschild black hole have been

reviewed. Unlike chapter 4, for four dimensions it turns out that we cannot reduce

the wave equation into the standard hypergeometric differential equation. So,

we need to use another approach to investigate quasinormal frequencies of the

Schwarzschild black hole. Fortunately, by substitution an appropriate power series

solution into the Schrödinger-like equation, one obtains the recurrence relation in

a continued fraction form. Hence, the quasinormal frequencies can be determined

by solving these relations numerically. Some of the results are shown by Table 5.1.

Moreover, from Figure 5.1 which has been done by A. Zhidenko et.al[40], one sees

that at particular value of the field’s mass a zero imaginary part occurs.

Lastly, in Chapter 6, we have discussed about the quasinormal modes of

five dimensional black holes. We begin with the investigation of a large AdS

Schwarzschild in five dimensions. It appears that one can obtain an analytical

formula for ω by perturbative calculation [13]. To improve the accuracy of the

result, first order perturbation must be considered. Finally, the quasinormal modes

of rotating squashed Kaluza-Klein black hole have been studied. By matching an

asymptotic solution of both sides (near horizon and infinity) [14, 15], we can

determine quasinormal frequencies numerically. Some of the results are shown in

Figure 6.1 and Figure 6.2. In brief, as black hole’s spin parameter “a” increases

the numerical value of ω decreases. In addition, we also observe that as λ is getting

larger, the numerical values of the quasinormal frequencies get bigger. However,

this matching technique restricts the validity of our result to low-angular momenta.

So, in the future work we may try to extend this validity further by applying the

perturbation method.
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Appendix A

Useful Calculation

A.1 Einstein-Hilbert action

By the principle of least action, Hilbert action or Einstein-Hilbert action yields the

Einstein field equations. In order to construct the action for GR∗, we must define

a Lagrangian L which is a scalar under coordinate transformation and depends on

the metric tensor gµν . Our dynamical variable is now the metric tensor. From our

knowledge, gravity represents as a manifestation of spacetime curvature. Then, we

may expect that our Lagrangian should be derived from the Riemann curvature

tensor. The only scalar object that can be derived from the curvature tensor is

Ricci scalar R. So the simplest plausible action of gravitation is given by

SEH =

∫
R
√−gd4x. (A.1)

where
√−g is determinant of metric tensor. To construct Einstein field equations,

we need to study the behavior of SEH under the small variation of the inverse of

metric tensor gµν . By Using R = gµνRµν we get,

δSEH =

∫
δ(gµνRµν

√−g)d4x,

=

∫
δ(gµν)Rµν

√−gd4x +

∫
gµνδ(Rµν)

√−gd4x +

∫
gµνRµνδ(

√−g)d4x,

≡ δS1 + δS2 + δS3. (A.2)

Let’s examine δS2 first, The Riemann curvature tensor is given by

Rρ
µλν = ∂λΓ

ρ
νµ − ∂νΓ

ρ
λµ + Γρ

λσΓσ
νµ − Γρ

νσΓσ
λµ. (A.3)

Hence,

δRρ
µλν = ∂λ(δΓ

ρ
νµ)− ∂ν(δΓ

ρ
λµ) + δ(Γρ

λσ)Γσ
νµ + Γρ

λσ(δΓσ
νµ)− (δΓρ

νσ)Γσ
λµ − Γρ

νσ(δΓσ
λµ).

∗This appendix was covered by [5]
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The variation of the curvature tensor can be obtained by first varying the connec-

tion with respect to the metric. Consider the variation of the Christoffel connection

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γρ

λβδΓβ
νµ − Γβ

λνδΓ
ρ
βµ − Γβ

λµδΓ
ρ
βν , (A.4)

∇ν(δΓ
ρ
λµ) = ∂ν(δΓ

ρ
λµ) + Γρ

νβδΓβ
λµ − Γβ

νλδΓ
ρ
βµ − Γβ

νµδΓ
ρ
βλ. (A.5)

By using (A.4)−(A.5), we obtain the variation of the curvature tensor

δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ), (A.6)

and let ρ = λ

δRλ
µλν = δRµν = ∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ). (A.7)

Then, substitute (A.7) into δS2

∫ √−gd4xgµν(δRµν) =

∫ √−gd4xgµν
[
∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ)

]
,

=

∫ √−gd4x∇σ

[
gµν(δΓσ

µν)− gµσ(δΓλ
λµ)

]
. (A.8)

Then we consider the variation of the Christoffel connection. The connection is

given by

Γσ
µν =

1

2
gσλ

[
∂µgνσ + ∂νgµσ − ∂λgµν

]
. (A.9)

So,

δΓσ
µν =

1

2
δgσλ

[
∂µgνσ + ∂νgµσ − ∂λgµν

]
+

1

2
gσλ

[
∂µδgνσ + ∂νδgµσ − ∂λδgµν

]

=
[
Γβ

µνgλβδgσλ
]
− 1

2

[
∇µ(gνλδg

σλ) +∇ν(gµλδg
σλ) + gσλ∇λδgµν + 2Γβ

µνgλβδgσλ
]

= −1

2

[
gνλ∇µ(δgσλ) + gµλ∇ν(δg

σλ) +∇σ(δgµν)
]
.

Now using ∇σδgσν = −gµνgασ∇σδgµα then the above relation become

δΓσ
µν = −1

2

[
gνλ∇µ(δgσλ) + gµλ∇ν(δg

σλ)− gµαgνβ∇σ(δgαβ)
]
. (A.10)

Substitute (A.10) back into δS2, we finally get

δS2 =

∫ √−gd4x∇σ

[
gµν∇σ(δgµν)−∇λ(δg

σλ)
]
. (A.11)

By Stokes’s theorem, this is equivalent to the surface term at infinity so it does

not contribute anything to the total variation. Then, δS2 = 0. In order to deal
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with δS3, let’s consider the following identity first

ln(det gµν) = Tr(ln gµν)

1

g
δg = gµνδgµν

δg = −g(gµνδg
µν)

∴ δ(
√−g) = −1

2
(−g)−

1
2 δg

= −1

2

√−g(gµνδg
µν). (A.12)

Finally, putting all results into (A.2) we get

δSEH =

∫
d4x

√−g(Rµν − 1

2
gµνR)δgµν . (A.13)

By the principle of least action δSEH = 0 and since δgµν is arbitrary. We finally

get Einstein field equations in vacuum

Gµν = Rµν − 1

2
gµνR = 0. (A.14)

To obtain the Einstein field equations with matter source, we begin with the action

S =
1

2κ
SEH + SM

=

∫
(

1

2κ
LEH + LM)d4x. (A.15)

where κ = 8πG
c4

and LM is matter Lagrangian. By varying this action with respect

to inverse of the metric tensor

δS

δgµν
=

∫
(

1

2κ

δLEH

δgµν
+

δLM

δgµν
)d4x = 0

∴ 1

2κ

δLEH

δgµν
= −δLM

δgµν

√−g

2κ
Gµν = −δLM

δgµν
. (A.16)

Let’s defines energy-momentum tensor

2√−g

δLM

δgµν
= −Tµν . (A.17)

and put them back to (A.16). Then we recover the Einstein field equations

Gµν = κTµν . (A.18)
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A.2 An equivalent formulation of vacuum-space field

equations

In empty space the Einstein field equations become

Gµν = 0

Rµν − 1

2
gµνR = 0

Rµν =
1

2
gµνR. (A.19)

contract (A.19) with gµν

R = 2R

∴ R = 0.

Note that gµνgµν= number of the spacetime dimension (in this case is equal to 4).

Substitute this result into (A.19); we’ll get field equations in vacuum-space

Rµν = 0. (A.20)

For an empty-space field equations equips with the cosmological constant, it reads

Rµν =
1

2
gµνR− Λgµν

R = 2R− 4Λ

R = 4Λ. (A.21)

Then, we obtain field equations in empty-space with the cosmological constant.

Rµν = Λgµν . (A.22)

A.3 Klein-Gordon Equation in Curved Spacetime

We begin with an action for a real scalar field in the curved background

S =

∫ [
1

2
gµν(∇µΦ)(∇νΦ)− V (Φ)

]√−gd4x. (A.23)

The first term may be interpreted as a kinetic energy of the field while the second

as its potential energy. Since Φ is scalar field, we therefore can replace covariant

derivative with ordinary derivative.

S =

∫ [
1

2
gµν(∂µΦ)(∂νΦ)− V (Φ)

]√−gd4x. (A.24)
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By plugging the above action into the Euler-Lagrange equation

∂µ

(
∂L

∂(∂µΦ)

)
− ∂L

∂Φ
= 0, (A.25)

we thus obtain an equation of motion for a real scalar field

∂L

∂Φ
= −dV (Φ)

dΦ

√−g,

∂µ

(
∂L

∂(∂µΦ)

)
= ∂µ

[
gµν
√−g(∂νΦ)

]
,

so,

1√−g
∂µ

[
gµν
√−g(∂νΦ)

]
+

dV (Φ)

dΦ
= 0. (A.26)

It is convenient to choose V (Φ) = 1
2
m2Φ2. Thus, the field equation becomes

1√−g
∂µ

[
gµν
√−g(∂νΦ)

]
+ m2Φ = 0. (A.27)

This equation is known as the Klein-Gordon equation in the curved background

which describes dynamics of a massive scalar field in curved spacetime.
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Appendix B

Mathematica Codes

B.1 The Determination of Coefficients

ClearAll @"Global` *" D;

H*Copyleft by Alexander Zhidenko H2005 L. All wrongs reserved !*L

A@r _D = 1 -
2 M

r
;

Y@r _D = ExpBä r Ω2 - Μ2 F r
2 ä M Ω2-Μ2 +

ä MΜ2

Ω2-Μ2  1 -
2 M

r

-2 ä MΩ

 y@r D;

Eq1 = Simplify B

Expand B IA@r D2 ¶r,r Y@r D + ¶r A@r D A@r D ¶r Y@r DM + Ω2 - A@r D 
l  Hl + 1L

r 2
+

¶r A@r D
r

+ Μ2  Y@r D �

Coefficient @Y@r D, y @r DDFF;

r @z_D = -
2 M

z - 1
;

Eq2 =

Simplify BExpand BEq1 �. y '' @r D ® y '' @zD 
4 M2

r 4
- y ' @zD 

4 M

r 3
�. y ' @r D ® y ' @zD 

2 M

r 2
�. y @r D ® y@zD �.

r -> r @zD �. HHx_L^a _L^b _ ® x^ Ha bLFF;

Eq3 = Numerator @Simplify @Expand @Eq2 �Coefficient @Eq2, y '' @zDDDDD;

S = Simplify @Coefficient @Eq3, y '' @zDDD;

T = Simplify @Coefficient @Eq3, y ' @zDDD;

U = Simplify @Coefficient @Eq3, y @zDDD;

Series @S, 8z, 0, 6 <D;

Series @T, 8z, 0, 6 <D;

Series @U, 8z, 0, 6 <D;

H*S must be of order z^2, T and U *L
H*z ® 0 correspond wiht r ® horizon *L
While @Abs@Limit @S� z^2, z ® 0DD � 0, S = S� z; T = T� z; U = U� z; D;

While @Abs@Limit @z^2 �S, z ® 0DD � 0, S = S* z; T = T * z; U = U* z; D;

While @! HAbs@Limit @T, z ® 0DD === 0L, S = S* z; T = T * z; U = U* z; D;

While @! HAbs@Limit @U* z, z ® 0DD === 0L, S = S* z; T = T * z; U = U* z; D;

H* After "while" step S ®S*z T®T*z U®U*z *L
H*Simplifying *L
H*This step we divide each term with order of z which come from the derivative of y @zD*L
SE = Expand @S� z^2 D;

TE = Expand @T� zD;

UE= Expand @UD;
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Print@"Calculating coefficients..."D;
st = 0;

While@! HHc@st, n_D = Simplify@Hn - stL Hn - st - 1L Coefficient@SE, z, stD +

Hn - stL Coefficient@TE, z, stD + Coefficient@UE, z, stDDL === 0L, Print@st++DD;
H*After the coefficient is zero we expect the all other are zero which usually happens.*L
Print@"It seems the other are zeroes, so we have ",

st, " terms in the reccurence relation."D;
Calculating coefficients...

0

1

2

It seems the other are zeroes, so we have 3 terms in the reccurence relation.

c@0, nD;
c@1, nD;
c@2, nD;

Α@n_D = Hc@0, nD �. n ® n + 1L � Ω2 - Μ2
3

Β@n_D = FullSimplifyBExpandBHc@1, nD �. n ® n + 1L � Ω2 - Μ2
3

FF

Γ@n_D = FullSimplifyBExpandBHc@2, nD �. n ® n + 1L � Ω2 - Μ2
3

FF
H1 + nL H1 + n - 4 ä M ΩL

1

-Μ2 + Ω2

K-I1 + l + l2 + 2 n H1 + nLM -Μ2 + Ω2 -

ä M H1 + 2 nL K3 Μ2 - 4 Ω KΩ + -Μ2 + Ω2 OO - 4 M2 K-4 Ω2 KΩ + -Μ2 + Ω2 O + Μ2 K3 Ω + -Μ2 + Ω2 OOO

1

I-Μ2 + Ω2M3�2
Kn2 I-Μ2 + Ω2M3�2 - 2 ä M n IΜ2 - Ω2M KΜ2 - 2 Ω KΩ + -Μ2 + Ω2 OO -

M2 K8 Ω4 KΩ + -Μ2 + Ω2 O + Μ4 K4 Ω + -Μ2 + Ω2 O - 4 Μ2 Ω2 K3 Ω + 2 -Μ2 + Ω2 OOO

Figure B.1: This figure shows a method to determine the recurrence relation and

its coefficients. This code is provided by Alexander Zhidenko.
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B.2 Continued Fraction

ClearAll @"Global` *" D;

Α@n_D : = H1 + nL H1 + n - 4 ä MΩL;

Β@n_D : =
1

-Μ2 + Ω2

 -I1 + l + l 2 + 2 n H1 + nLM -Μ2 + Ω2 - ä MH1 + 2 nL 3 Μ2 - 4 Ω Ω + -Μ2 + Ω2 -

4 M2 -4 Ω2 Ω + -Μ2 + Ω2 + Μ2 3 Ω + -Μ2 + Ω2 ;

Γ@n_D : =
1

I-Μ2 + Ω2M3�2  n2 I-Μ2 + Ω2M3�2
- 2 ä M nIΜ2 - Ω2M Μ2 - 2 Ω Ω + -Μ2 + Ω2 -

M2 8 Ω4 Ω + -Μ2 + Ω2 + Μ4 4 Ω + -Μ2 + Ω2 - 4 Μ2 Ω2 3 Ω + 2 -Μ2 + Ω2 ;

FromGeneralContinuedFraction @8a0_, l _List? MatrixQ <D : =

a0 + Fold @ð2@@1DD � Hð1 + ð2@@2DDL &, 0, Reverse @l DD
FromGeneralContinuedFraction @8a0_, 8<<D : = a0

n = 0;

M= 1;

l = 0;

Μ = 0;

For @j = 0, j £ 100, j ++, Print @j, FindRoot @
FromGeneralContinuedFraction @8Β@nD, Table @8-Α@n - i D Γ@n - i + 1D, Β@n - i D<, 8i, j <D<D �

H-FromGeneralContinuedFraction @80, Table @8-Α@n + i - 1D Γ@n + i D, Β@n + i D<, 8i, j <D<DL �.

x_@y_D ¦ Subscript @x, y D, 8Ω, 0.1 - 0.1  I <, MaxIterations ® 200DDD

Eq4 = FromGeneralContinuedFraction @8Β@nD, Table @8-Α@n - i D Γ@n - i + 1D, Β@n - i D<, 8i, j <D<D �.

x_@y_D ¦ Subscript @x, y D;

Eq5 = -FromGeneralContinuedFraction @80, Table @8-Α@n + i - 1D Γ@n + i D, Β@n + i D<, 8i, j <D<D �.

x_@y_D ¦ Subscript @x, y D;

Figure B.2: Mathematica’s code for calculation of the continued fraction.
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B.3 Solving Omega for Rotating Squashed Kaluza Klein

Black Hole

Ν = l Hl + 1L + Ha ΩL2 
2 Λ2 - 2 l Hl + 1L + 1

H2 l - 1L H2 l + 3L +

Ha ΩL4 
2 I-3 + 17 l Hl + 1L + l2 Hl + 1L2 H2 l - 3L H2 l + 5LM

H2 l - 3L H2 l + 5L H2 l + 3L3 H2 l - 1L3
+

4 Λ2

H2 l - 1L2 H2 l + 3L2
 

1

H2 l - 1L H2 l + 3L -
3 l Hl + 1L

H2 l - 3L H2 l + 5L +
2 Λ4 H48 + 5 H2 l - 1L H2 l + 3LL

H2 l - 3L H2 l + 5L H2 l - 1L3 H2 l + 3L3
+
1

4
;

a1 = Α@ΡD + Β@ΡD + d@ΡD - 1;

b = Α@ΡD + Β@ΡD;
c = 1 + 2 Α@ΡD;

W =
4 x2 Inf6 Ω2

IInf2 + a2M4
-

4 Λ2

Inf2 + a2
+

Μ Inf2

IInf2 + a2M2
 Ω -

a Λ IInf2 + a2M
x Inf3

2

;

Ρh =
x rh2

Inf2 - rh2
;

rh =
IΜ - 2 a2M + -4 a2 Μ + Μ2

2
;

x =

IInf2 + a2M JIInf2 + a2M2 - Μ Inf2N
4 Inf4

;

Α@Ρ_D := -
ä k@ΡD
A@ΡD ;

Β@Ρ_D :=
1

2
 H2 - d@ΡDL - Hd@ΡD - 2L2 -

4 k@ΡD2
A@ΡD2

+
4 IIΝ -

1

4
M - L@ΡDM

A@ΡD2
;

A@ΡD := 1 -
x Inf2 a2

Ρ IInf4 - a4M - a4 x
;

K@ΡD :=
Ρ + x

Ρ +
a2

Inf2+a2
 x

;

d@Ρ_D := 2 -
1

A@ΡD -
HΡ + xL D@A@ΡD, ΡD

K@ΡD2 A@ΡD2
;

k@Ρ_D := 1 +
x

Ρ
 Ρ +

a2

Inf2 + a2
 x  Ω -

a Λ K@ΡD2 IInf2 + a2M
x Inf3

;

L@Ρ_D :=
4 x2 Inf6 HΡ + xL2

K@ΡD2 IInf2 + a2M4
 Ω2 -

4 Λ2 HΡ + xL2
Inf2 + a2

;
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ClearAll @"Global` *" D;

l = 0;

Λ = 0;

Μ = 1;

a = 0.1  ap;

Eq1 =
- Ν

Pi
 

8 x Inf 2

Μ W IInf 2
- a2M

H2 l +1L
 

JGammaB Ν FN2
 Gamma@c - a1 - bD Gamma@a1D Gamma@bD

Gamma@a1 + b - cD Gamma@c - a1D Gamma@c - bD �. Ρ ® Ρh;

Eq2 = FindRoot @Eq1 � -ä, 8Ω, 1. - 0.5  I <, MaxIterations ® 10 000 000, PrecisionGoal ® 10D;

For @ap = 0, ap £ 3, ap ++,

8Print @For @Inf = 2, Inf £ 100, Inf ++, 8Print @t @Inf, a D = Last @Last @Eq2DD, " ",

Inf, " ", a, " ", rh D, Print @Style @HEq1 �. Eq2 L, Bold DD<DD<D;

Figure B.3: This code is used for calculating the quasinormal frequencies of rotat-

ing squashed Kaluza Klein black hole at fixed l = 0, λ = 0 and suppose the black

hole mass equal to 1 whereas an outer horizon lies at 1.
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Appendix C

Effective Potential

C.1 Effective Potential of the BTZ Black Hole

2 4 6 8 10
r

-100

-80

-60

-40

-20
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Figure C.1: The effective potential of the BTZ(AdS) black hole, for fixed M = 1,

the curvature radius l = 1 and m = 0(Blue), m = 1(Green), m = 2(Red),

m = 3(Black), m = 4(Orange), m = 5(Purple).
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C.2 Effective Potential of the Schwarzschild Black Hole
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Figure C.2: The effective potential of the 4-d Schwarzschild black hole, for fixed

M = 1 an angular quantum number l = 0(Blue), l = 1(Green), l = 2(Red),

l = 3(Black), l = 4(Orange), l = 5(Purple).
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C.3 Effective Potential of the Squashed Kaluza-Klein Black

Hole
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Figure C.3: The effective potential of the Squashed KK black hole, for fixed

µ = 1, r∞ = 2, λ = 0 and parameter l ranges from 1-4. The depth of the potential

increases with parameter l.
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Figure C.4: The effective potential of the Squashed KK black hole, for fixed µ = 1,

r∞ = 2, λ = 1.5 and parameter l ranges from 1-4. The depth of the potential

increases with parameter l.
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Figure C.5: The effective potential of the Squashed KK black hole, for fixed µ = 1,

r∞ = 2, l = 2 and parameter λ between 0-2 (0.5 for each step). The depth of the

potential increases with parameter λ. The overall potential also increases with λ.
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