## CHAPTER 5

## DEFLECTIONS

# 5.1 Foreword

The necessity for assessing deflections of S-beams and Z-beams may not arise. At any rate expressions for centre-span deflections have been incorporated into this investigative endeavour. The development of these formulae, although burdensome, renders materialisation of a comparision between theoretical and experimental values. The derivation reclining on the strain energy principle necessitates placement of a fictitious concentrated load P at centre-span in conjuction with the authentic uniformly distributed load w on the beam. In this manner symmetry remains valid and the system thus identifies with second-degree indeterminacy. The application of Castigliano's second theorem leads to establishment of expressions for M and T for any spot between centre-span and support ensues. A re-application of the theorem succeeded by allocation of zero to the load P finalises the ordeal.

## 5.2 The S-beam

Referring to Figures 5.1 the bending moment M and the torsional moment T at any point between the centre-span and the support are written in terms of R,  $\emptyset$ , w, P, and redundants M and T as follows:



(a) Plan



# (b) Elevation

# FIGURE 5.1 Half-beam under Action of Uniform Load, Fictitious Load, and Redundants

$$M = M_{o} \cos \theta + T_{o} \sin \theta - \frac{1}{2} PR \sin \theta - wR^{2} (1-\cos \theta)$$
 (5.1)

$$T = M_{o} \sin \theta - T_{o} \cos \theta - \frac{1}{2} PR(1-\cos \theta) - wR^{2}(\theta-\sin \theta)$$
 (5.2)

Employment of the strain energy approach yields the following expressions for the redundants:

$$M_{O} = B_{1}^{PR} + B_{2}^{WR}^{2}$$
 (5.3)

$$T_{O} = B_{3}PR + B_{4}WR^{2}$$
 (5.4)

wherein

$$B_1 = \frac{f_1 f_2 - f_3 f_4}{4f_5} \tag{5.5}$$

$$B_2 = \frac{2f_1f_6 - f_3f_7}{f_5} \tag{5.6}$$

$$B_3 = \frac{2f_4f_8 - f_2f_3}{8f_5} \tag{5.7}$$

$$B_4 = \frac{f_7 f_8 - f_3 f_6}{f_5} \tag{5.8}$$

$$f_1 = (1+m) \emptyset - \frac{1}{2}(1-m) \sin 2\emptyset$$
 (5.9)

$$f_2 = (1+3m) - (1-m) \cos 2\emptyset - 4m \cos \emptyset$$
 (5.10)

$$f_3 = (1-m)(1-\cos 2\emptyset)$$
 (5.11)

$$f_4 = (1+m) \emptyset - \frac{1}{2}(1-m) \sin 2\emptyset - 2m \sin \emptyset$$
 (5.12)

$$f_5 = (1+m)^2 g^2 - \frac{1}{2} (1-m)^2 (1-\cos 2g)$$
 (5.13)

$$f_6 = (1+m) (\sin \emptyset - \frac{1}{2} \emptyset) - \frac{1}{4} (1-m) \sin 2\emptyset - m\emptyset \cos \emptyset$$
 (5.14)

$$f_7 = \frac{1}{4}(3+5m) + \frac{1}{4}(1-m) \cos 2\emptyset - (1+m) \cos \emptyset - m\emptyset \sin \emptyset$$
 (5.15)

$$f_8 = 2(1+m) \emptyset + (1-m) \sin 2\emptyset$$
 (5.16)

The bending and torsional moments M and T now become explicit. Presentation of the explicit expressions for M and T is omitted owing to presence of a very large number of terms.

The centre-span deflection is given by

$$\Delta_{O} = \frac{2R}{EI} \int_{O}^{A} M \frac{\partial M}{\partial P} d\theta + \frac{2mR}{EI} \int_{O}^{A} T \frac{\partial T}{\partial P} d\theta$$

This mathematical operation leads finally to:

$$\Delta_{o} = (D_{1} + D_{2} - D_{3} - D_{4} + D_{5} + D_{6}) \cdot \frac{wR^{4}}{EI}$$
 (5.17)

in which

$$D_{1} = \frac{1}{2}(1+m)\emptyset \{2B_{1}(B_{2}+1) + B_{4}(2B_{3}-1)\}$$
 (5.18)

$$D_{3} = \{2(1+m)B_{1} - mB_{4}\} \sin \emptyset$$
 (5.20)

$$D_4 = \{m(B_2+1) + (1+m)(2B_3-1)\}(1-\cos \emptyset)$$
 (5.21)

$$D_5 = \frac{1}{4}(1-m) \{2B_1(B_2+1) - B_4(2B_3-1)\} \sin 2\emptyset$$
 (5.22)

$$D_{6} = \frac{1}{4}(1-m) (1-\cos 2\emptyset) \{2B_{1}B_{4} + (B_{2}+1) (2B_{3}-1)\}$$
 (5.23)

# 5.3 The Z-beam

The imposition of a fictitious concentrated load P at centre-span of the uniformly loaded Z-beam refers to Figure 5.2. The bending and torsional moments at any location between centre-span and support can be written in terms of the redundants as follows:



FIGURE 5.2 Half-beam under Action of Uniform Load, Fictitious load, and Redundants

for the transverse part,

$$M = M_0 - \frac{1}{2} Py - \frac{1}{2} wy^2$$
 (5.24)

$$T = T \tag{5.25}$$

and for the longitudinal part,

$$M = T_0 - \frac{1}{2} Px - \frac{1}{2} wL_2 x - \frac{1}{2} wx^2$$
 (5.26)

$$T = \frac{1}{4} PL_2 + \frac{1}{8} wL_2^2 - M_0$$
 (5.27)

The use of the strain energy principle gives

$$M_{O} = \frac{1}{8} \frac{(1+4km)}{(1+2km)} PL_{2} + \frac{1}{24} \cdot \frac{(1+6km)}{(1+2km)} wL_{2}^{2}$$
 (5.28)

$$T_{O} = \frac{1}{2} \frac{k^{2}}{(2k+m)} PL_{2} + \frac{k^{2}}{6} \frac{(2k+3)}{(2k+m)} wL_{2}^{2}$$
 (5.29)

and eventually leads to formulation of the centre-span deflection:

$$\Delta_{O} = \left[ \frac{1}{384} + \frac{1}{48} \frac{\text{km}}{(1+2\text{km})} \right]$$

$$+\frac{k^{3}}{24}\frac{(2k^{2}+2k+3km+4m)}{(2k+m)}\left[\frac{wL_{2}^{2}}{EI}\right]$$
 (5.30)

which pursues a far simpler form than that governing the S-beam.

# PART // EXPERIMENTAL ENQUIRY