CHAPTER V

EXPERIMENTAL INVESTIGATION

5.1 Nature of Apparatus The Blaine air permeability apparatus consists essentially of a means of drawing a definite quantity of air through a prepared bed of soil of definite porosity. The number and size of the pores in a prepared bed of definite porosity is a function of the size of the particles and determines the rate of air flow through the bed. The apparatus, illustrated in Fig. 1,2,3 consist specifically of the parts described in the following

Permeability Cell The permeability cell consists of a 1.27±0.10 c.m. rigid cylinder inside diamter, constructed of glass (or non-corroding metal). The top of the cell is at right angles to the principal axis of the cell. The bottom of the cell forms an airtight connection with the top of the manometer. A ledge 1/2 to 1 m.m. in width is an integral part of the cell or firmly fixed in the cell of 6.0 c.m., 6.5 c.m., 7.5 c.m. for clay size, silt size and sand size respectively, from the top of the cell to support the perforated metal disk.

<u>Disk</u> The disk is constructed of brass and is 0.9±0.1 m.m. in thickness, perforated with 30 to 40 holes 1 m.m. in diameter equally distributed over its area. The disk is to fit the inside of the cell snugly.

Plunger The plunger fits into the cell with a clearance of not more than 0.1 m.m. The bottom of the plunger is at right angles to the principal axis. An air vent is provided either in the center or on one side of plunger. The top of the plunger is provided with a collar in such a way that when the plunger is placed in the cell and the collar brought in contact with the top of the cell, the distance between the bottom of the plunger and the top of the perforated disk will be 1.0±0.1 c.m. for clay size, 1.5±0.1 c.m. for sizt size, 2.5±0.1 c.m. for sand size.

Filter Paper The filter paper is medium retentive, corresponding to type 1, grade B, as prescribed in Federal Specification for
Paper; Filtering (U.U. P-236). The filter paper disks are circular,
with smooth edges, and have the same diameter as the inside of the
cell.

Manometer Three U-tube manometers are constructed according to the design indicated in Fig.1, 2, 3, with the use of nominal 0.4, 0.8, 2.0 c.m. inside diameter for clay size, silt size and sand size respectively, standard wall and galss tubing. The top of one arm of the manometer forms an airtight connection with the permeability cell. The manometer arm connected to the permeability cell has a line etched around the tube at 12.5 to 14.5 c.m. below the top of the side outlet and at distances of 1.5 c.m., 7.0 c.m., and 11.0 c.m. above that line. A side outlet is \$\overline{7}\$\tilde

or clamp is provided on the side outlet not more than 5 c.m. from the manometer arm. The manometer is mounted firmly and in such a manner that the arms are horizontal.

Manometer Liquid The manometer is filled to the mid point with a nonvolatile, nonhygroscopic liquid of low viscosity and density, such as dibutylphtalate.

Timer The timer is accurate to 0.5 second for time intervals up to 60 seconds, and to 1 percent for time intervals over 60 seconds.

5.2 Calibration of Apparatus

The calibration of the air permeability apparatus was made with the use of the current lot of National Bureau of Standard cement sample No.114. The standard sample was at room temperature when tested. The bulk volume of the compacted bed was determined by the mercury displacement method as follows:

Placed two filter paper disks in the permeability cell, pressing down the edges with a rod slightly smaller than the cell diameter until the filter disks were flat on the perforated brass disk; then filled the cell with mercury, removing any air bubbles adhering to the wall of the cell. Levelling the mercury with the top of the cell by means of a small glass plate. Removed the mercury from the cell, weighed, and recorded the weight of the mercury. Removed one of the filter disks from the cell. Using a trial quantity of sample, compressed the sample with one filter disk above and one below the sample. Filled the space remaining in the top of the cell with mercury, removing entrapped air, and levelling off the top as before. Removed the murcury from the cell, weighed and recorded the weight of mercury. The bulk volume occupied by the

cement was calculated to the nearest 0.005 cu.cm. as follows:

$$\mathbf{v} = \frac{\mathbf{W}_{\mathbf{A}} - \mathbf{W}_{\mathbf{B}}}{\mathbf{D}} \tag{10}$$

Where

V = bulk volume of sample in cubic centimeters

Wn = grams of mercury required to fill cell, no sample being in cell

W_B = grams of mercury required to fill the portion of the cell not occupied by the prepared bed of sample in the cell, and

D = density of mercury at temperature of test in grams per cubic centimeters (See Table I)

The weight of the standard sample used for the calibration test was that required to produce a bed of cement having a porosity of 0.500±0.005, and was calculated as follows:

where

- w = grams of sample required
- f = specific gravity of sample (=3.15 for standard sample)
- v = bulk volume of bed of sample in cubic centimeters
- E = desired porosity of bed of sample (0.500±0.005 for standard cement sample)

5.3 Préparation of Standard Sample

The contents of a vial of the standard cement sample were enclosed in a 4-0z. jar and shaken vigorously for 2 minute to fluff the cement and break up lumps or agglomerates.

5.4 Preparation of Bed of Sample

The perforated disk was seated on the ledge in the permeability cell. A filter paper disk was placed on the brass disk and the edges pressed down with a rod slightly smaller than the cell diameter. A quantity of sample determined in section 5.2 and weighed to the nearest 0.01 gm. was to be placed in the cell. The side of the cell was tapped lightly in order to level the bed of sample. A filter paper disk was placed on top of the sample and the sample compressed with the plunger until the plunger collar was in contact with the top of the cell. The plunger was removed slowly and the permeability test was started.

5.5 Permeability Test

The permeability cell was attached to the manometer tube, making certain that an airtight connection was obtained.

The air in one arm of the manometer u-tube was slowly evacuated until the liquid reaches the top mark, and the valve was closed tightly. The timer was started as the bottom of the meniscus of the manometer liquid reached the second (next to the top) mark and was stopped as the bottom of the meniscus of liquid reached the third (next to the bottom) mark. The time interval measured was noted and recorded in seconds. The temperature of test was noted and recorded in degrees Centigrade.

5.6 Permeability Test for Soil Sample

The permeability test for soil sample was made in accordance with the method described in 5.5, except that the definite porosity is not known and the trial values were used to find the minimum possible porosity. Each sample was tested many times to meet this requirement and the time of flow determinations were recorded for calculating the specific surface. Calculation of specific surface value was made according to the following formulas:

$$S = \frac{S_s f_s (1-E_s) \sqrt{E_s^3} \sqrt{t}}{f(1-E) \sqrt{E_s^3} \sqrt{t}_s}$$
(7)

when the temperature of the test of the test sample was within ±3°c of the temperature of calibration test of the standard finess sample, and if the temperature of tests was outside of this range the following equation was used

$$s = \frac{s_s f_s (1-E_s) \sqrt{q_s} \sqrt{E^3} \sqrt{t}}{f_{(1-E)} \sqrt{E_s^3} \sqrt{t_s} \sqrt{q}}$$
(6)

The apparatus shall be recalibrated in the following cases.

- At periodic intervals to correct for possible wear on plunger or permeability cell.
 - 2) If any loss in manometer fluid occurs, and
- 3) If a change was made in the type or quality of the filter paper used for the tests.

Symbols

- S = specific surface in sq.com. per gram of the test sample,
- s = specific surface in sq.c.m. per gram of the standard sample used in calibration of the apparatus,
- measured time interval, in seconds, of manometer
 drop for test sample
- ts = measured time interval in seconds of manometer

 drop for standard sample used in calibration of
 the apparatus
- viscosity of air in poises at the temperature of test of the test sample
- n viscosity of air in poises at the temperature of test of the standard sample used in calibration of the apparatus
- E = porosity of prepared bed of test sample
- E porosity of prepared bed of standard sample
 used in calibration of apparatus
- ? = specific gravity of test sample, and
- \$\mathcal{P}_s\$ = specific gravity of standard sample used in
 calibration of apparatus (=3.15)

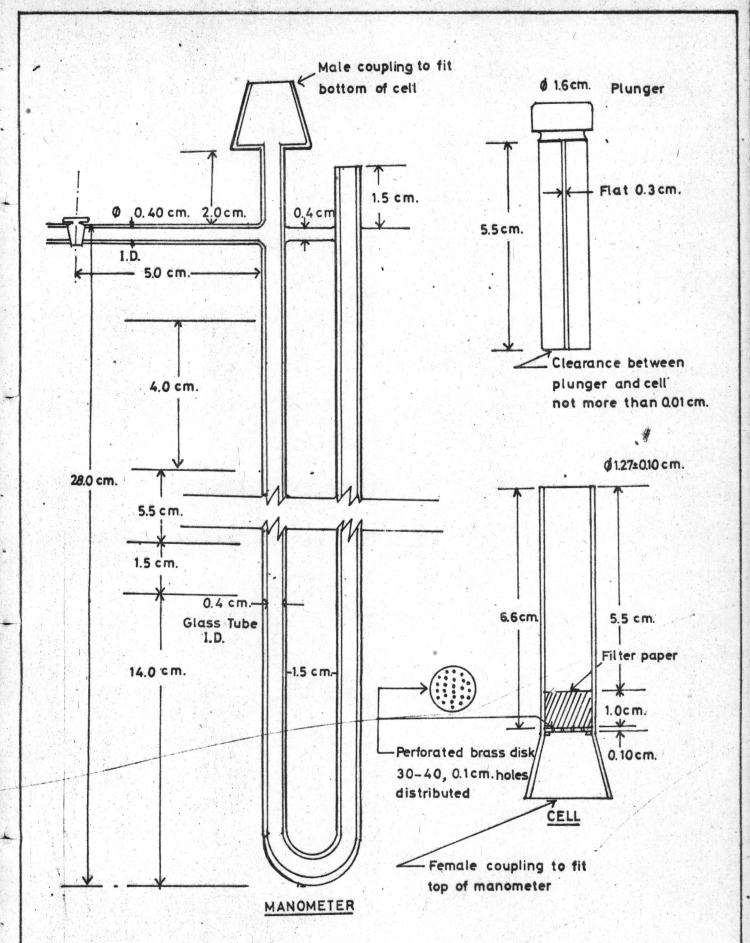
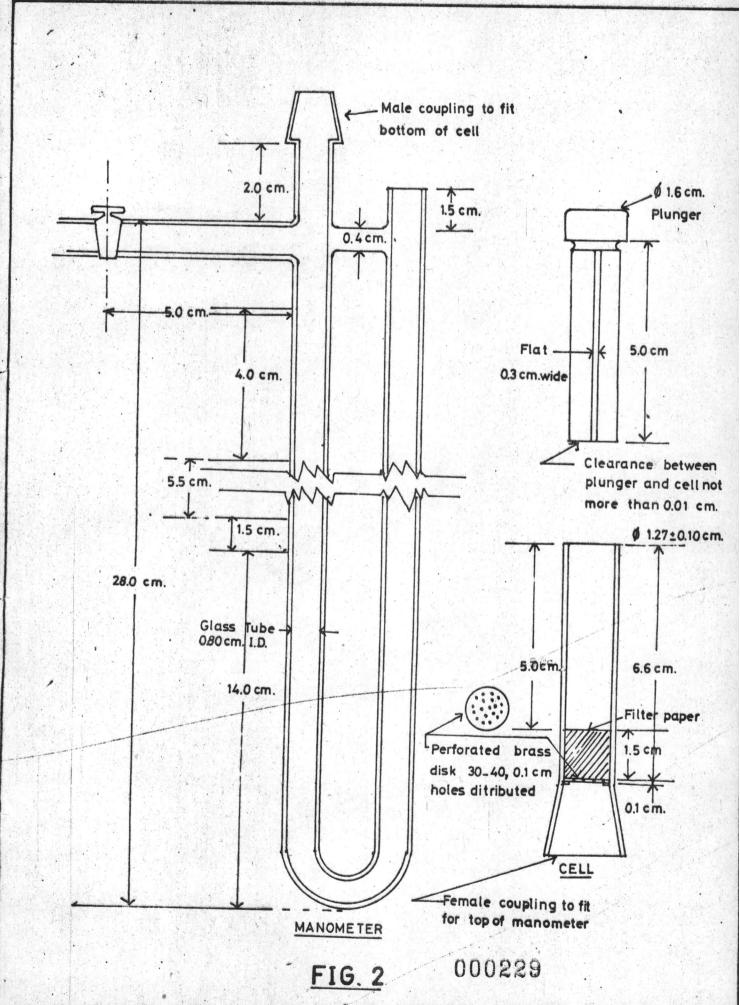



FIG. 1

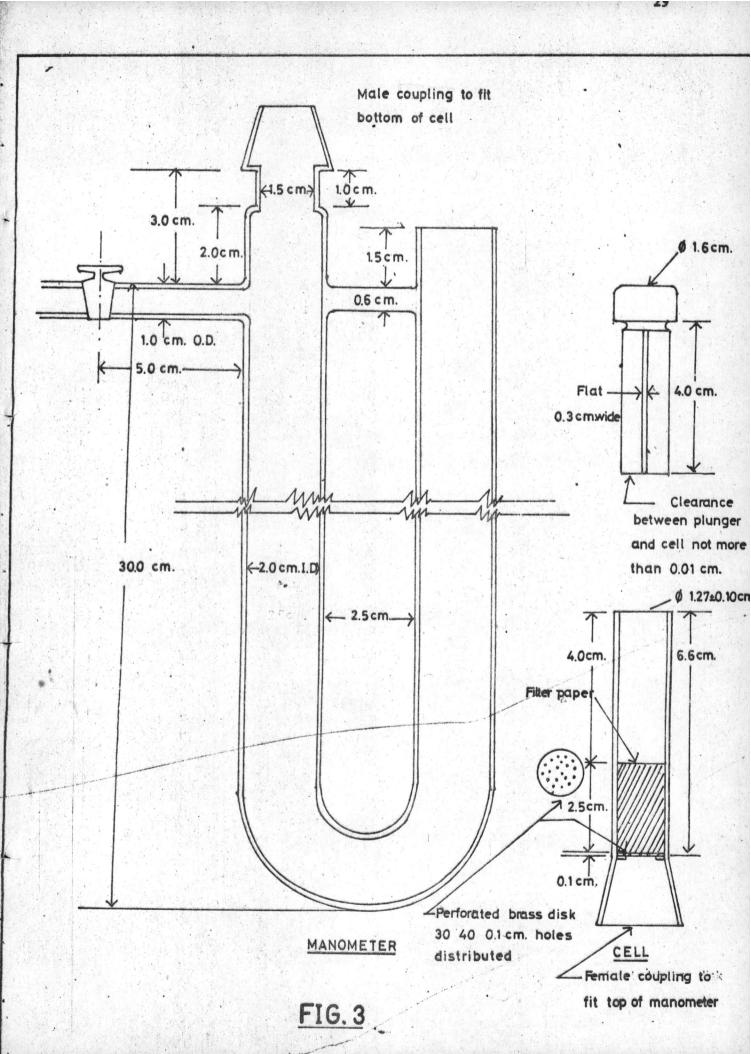


Table I Density of Mercury, Viscosity of Air (n), and

Room Temperature degree Centigrade	Density of Mercury gram per Cubic Centi	Viscosity of Air, n, Poises	√n
- 16	13.56	0.0001788	0.01337
18	13.55	0.0001798	0.01341
20	13.55	0.0001808	0.01344
22	13.54	0.0001818	0.01348
24	13.54	0.0001828	0.01352
26	13.53	0.0001837	0.01355
28	13.53	0.0001847	0.01359
30	13.52	0.0001857	0.01362
32	13,52	0.0001867	0.01366
34	13.51	0.0001876	0.01369

Blaine's Air Permeability Apparatus Calibration with Standard Cement Sample (S_s=3,380-cm²)

Calibrating with 00.40 c.m. Glass Tube

			No. of Concession and Concession of the Concessi			A
Test No.	(1)	(2)	(3)	(4)	(5)	Average
Weight of Cement (gm.) 1.860	1.860	1.860	1.860	1.860	1.860
Volume of 3 Cement (cm)	1.180	1.180	1.180	1.180	1.180	1.180
Porosity Es	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996
Temperatur T _s (°c)	e _{28.5}	28.5	28.5	28.5	28.5	28.5
Timet t _s (sec)	16.7	16.3	16.1	16.1	16.3	16.3

Calibrating with 00.80 c.m. Glass Tube

Test No.	(1)	(2)	(3)	(4)	(5)	Average
Weight of Cement(gm)	2.980	2.980	2.980	2.980	2.980	2.980
Volume of Cement (cm ³)	1.891	1.891	1.891	1.891	1.891	1.891
Porosity E _S	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997
Temperatur T (°c)	e 27.8	27.8	27.50	27.80	27.80	27.74
Time t (Sec.)	100.0	100.3	99.1	98.6	97.8	99.16

Calibrating with \$2.0 c.m.Glass Tube

Test No.	(1)	(2)	(3)	(4)	(5)	Average
Weight of Cement (gm)	4.585	4.585	4.585	4.585	4.585	4.585
Volume of Cement (cm ³)	2.911	2.911	2.911	2.911	2.911	2.911
Porosity E _s	0.500	0.500	0.500	0.500	0.500	0.500
Tempera- ture T	28.0,	28.0	28.3	28.2	28.3	28.26
Time t _s	991.3	1053.1	1011.4	1014.6	1022.3	1018.54

Result from Testing 00.40 c.m. Glass Tube

Sample P.354 (G = 2.739)

	SUNCES OF STREET STREET, STREE	-		
Test No.	1	2	3	4 .
Moist Wt.	1.10	1.20	1.40	1.50
Wn x100 Wmoist	3.85	3.85	3.85	3.85
Dry Wt. (gm.)	1.05765	1.1538	1.3461	1.4425
Volume (cm).	1.198	1.167	1.176	1.236
Porosity E	0.6777	0.6390	0.5821	0.5740
Temperatu T (c)	ge 30.0	31.8	31.7	31.0
Time t (Sec.)	40.27	134.10	437.57	1296.20

Sample 5992 (2.671)

Test No.	1	2	3	4	. 5
Moist Wt.	1.10	1.40	1.60	1.70	1.80
Ww x 100 W moist	6.10	6.10	6.10	6.10	6.10
Dry Wt. (gm.)	1.0329	1.3146	1.5024	1.5963	1.6902
Volume (cm3)	1.199	1.199	1.205	1.207	1.213
Porosity E	0.6775	0.5895	0.5332	0.5049	0.4783
Temperatu T(°c)	re 30.2	30.2	30.7	30.9	31.4
Time t (Sec.)	7.0	46.0	82.74	261.82	417.9

Result from Testing 00.40 c.m. Glass Tube (Continued)

Sample No. 2 (G=2.615)

Test No.	1	2
Moist Wt.	2.15	2.25
Ww x 100 W moist	0.85	0.85
Dry Wt. (gm.)	2 . 13 1725	2.230875
Volume (c.m. 3)	1.206	1.251
Porosity E	0.3241	0.3181
Tempera- ture T(E)	31.3	32.0
Time t (Sec.)	8:90	9.37

Sample No. 3 (G=2.595)

Test No.	1	2
Moist Wt. (gm.)	1.95	2.05
Wwx100 W moist	1.32	1.32
Dry Wt. (gm.)	1.92426	2.02294
Volume (c.m.)	1.213	1.226
Porosity E	0.3887	0.3641
Tempera- ture T(c) 31.0	32.0
Time t (Sec.)	15.63	23.33

Result from Testing 00.40 c.m. Glass Tube (Continued)

Sample No. 5 (G=2.645)

Test No.	1,	2
Moist Wt.	2.10	2.20
Wwx100 W moist	1.17	1.17
Dry Wt. (gm.)	2.07543	2.17426
Volume (c.m.)	1.206	1.226
Porosity E	0.3494	0.3295
Tempera- ture T(°c	31.5	31.8
Time t (Sec.)	23.47	34.37

Computating the Result

Sample P_e354

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = {(4) \times (5) \atop \times (6) \times (7)}$
Test No.	Porosity E	Time t		K S (1-E _s)S _s	$f(E) = \frac{E^3}{(1-E)^2}$	√E'	Specific Surface S c.m.2/gm.
1	0.6777	40.27	1	1361.6232	1.731	6.346	14957.329
2	0.6390	134.10	1.004	1361.6232	1.415	11.580	22410.432
3	0.5821	437.57	1.004 315	1361.6232	1.063	20.918	30407.471
4	0.5740	517.20	i	1361.6232	1.021	22.742	31616.319

Sample 5992

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = (4) \times (5)$ $\times (6) \times (7)$
lest No.	Porosity E	Time t	$\frac{\overline{\eta_s}}{\eta}$	KE3Vts	$f(E) = \sqrt{\frac{E^3}{(1-1)^3}}$	s) ² /c √€	Specific Surface S c.m. 2/gm.
1	0.6775	7.0	1	1396.2882	1.729	2.646	6387.926
. 2	0.5895	46.0	1	1396.2882	1.103	6.782	10444.997
3	0.5332	82.74	1	1396.2882	0.834	9.096	10592.331
4	0.5049	261.82	1	1396.2882	0.725	16.181	16380.170
5	0.4783	417.9	1	1396.2882	0.634	20.443	18097.098

Computating the Result (Consinued)

Sample 674

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = \frac{(4) \times (5)}{\times (6) \times (7)}$
		Time t	$\sqrt{\frac{\eta_s}{\eta}}$	K= PNESVts	$f(E) \sqrt{\frac{E^3}{(1-E)^2}}$	√ €	Specific Sur- face S c.m. 2 w
1	0.6295	24.37	1	1387.9739	1.348	4.937	9237.072
2	0.5704	66.40	1	1387.9739	1.006	8.149	11378.462
3	0.5183	216.08	1	1387.9739	0.775	14.700	15812.491
4	0.4995	398.53	1	1387.9739	0.705	19.963	19534.226

Sample P_f886

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = \frac{(4) \times (5)}{\times (6) \times (7)}$
	Porosity	Time t	$\sqrt{\frac{n_g}{n}}$	K S (1-E S)S S	$f(E) = \sqrt{\frac{E^3}{(1-E)^2}}$	Æ	Specific Surface S face S c.m. 3W c.m.
1	0.6715	72.22	1.00-	1375.1792	1.675	8.498	19656.347
2	0.6416	111.23	1	1375.1792	1.434	10.547	20798.756
3	0.5909	597.47	1	1375.1792	1.110	24.443	37310.990
4	0.5678	762.93	1.004 181	1375.1792	0.990	27.621	37603.986

Computating the Result (Continued)

Sample No. 2

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = {(4) \times (5) \atop \times (6) \times (7)}$
	Porosit	Time t	$\sqrt{\frac{\eta_s}{\eta}}$	S (1-E _s)S _s	f(E) = E3 (1-E	2 √ t	Specific Surface S cm / gm.
1	0.3241	8.90	1	1426.1897	0.273	2.983	1161.430
2 '	0.3181	9.37	1.00- 4719	1426.1897	0.263	3.061	1153.562

Sample No. 3

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)=(4)x(5)x(6) x(7)
Test No.	Porosity E	Time t (Sec.)	$\sqrt{\frac{\eta}{\eta^{5}}}$	$K = \frac{\int_{s}^{s} (1 - E_{s}) S_{s}}{\int_{s}^{s} \sqrt{E_{s}^{3} / E_{s}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)}}$	√t	Specific Sur- face S. c.m. ² /gm.
1 2	0.3887	15.63 23.33		1437.1815 1437.1815	0.396	3.954 4.830	2250.316 2413.123

Sample No. 5

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8)=(4)\times(5)\times(6)$ $\times(7)$
Test No.	Porosity E	Time t	$\sqrt{\frac{n_s}{n_l}}$	$f_s(1-E_s)S_s$ $f_s(1-E_s)S_s$	$f(E) = \frac{E^3}{\sqrt{(1-E)^2}}$	√E,	Specific Sur- face S _w c.m. ² /gm.
1	0.3494	23.47	1	1410.0136	0.317	4.845	2165.591
2	0.3295	34.47	1.00- 445	1410.0136	0.282	5.863	2341.643

Result from Testing 00.80 c.m. Glass Tube

Sample No. 2 Reddish Brown Silty Sand (G=2.615)

Test No.	1	2	3	4	5	6	7
Moist Wt. (gm.)	3.0	3.10	3.15	3.20	3.25	3.30	3.40
Wwx100 Wmoist	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Dry Wt. (gm.)	2.9745	3.07365	3.123225	3.1728	3.222375	3.27195	3.3711
Volume (c.m)	1.890	1.890	, 1.890	1.890	1.890	1.890	1.890
Porosity E	0.3982	0.3781	0.3681	0.3580	0.3480	0.3380	0.3179
Tempera- ture T(°	33.0	33.0	32.8	32.8	32.50	32.80	33.0
Time t (Sec.)	20.75	21.40	25.75	34.94	40118	44.18	58.76

Sample No. 3

Test No.	1	2	3	.4
Moist Wt.	3.,0	3.10	3.15	3.20
Wwx100 W moist	1.32	1.32	1.32	1.32
Dry Wt. (gm.)	2.9604	3.05908	3.10842	3.15776
Volume (c.m)	1.930	1.930	1.930	1.930
Porosity E	0.4089	0.3892	0.3794	0.3695
Tempera- ture T(°	30.0	30.0	29.0	29.0
Time t (Sec.)	65.74	85.70	105.02	125.15

Result from Testing 00.80 c.m. Glass Tube (Continued)

Sample No. 5 Light Reddish Brown Silty Sand (G=2.615)

Test No.	1,	2	3	4	5
Moist Wt.	3.0	3.10	3.20	3. 25	3.30
Wwx100 W moist	1.17	1.17	1.17	1.17	1.17
Dry Wt. (gm.)	2.9649	3.06373	3.16256	3.211975	3.26139
Volume ₃ (c.m. 3)	1.950	1.950	1.950	1.950	1.950
Porosity E	0.4252	0.4060	0.3868	0.3773	0.3677
Tempera- ture T(°	27.0	27.8	28.5	29.0	29.0
Time t (Sec.)	44.54	74.40	86.12	106.40	115.32

Sample No. 1 StReddish Brown Very Fine Sand (G = 2.662)

TestNo.	1	2	3
Moist Wt.	3.0	3.10	3.20
Wwx100 W moist	0.14	0.14	0.14
DyyWt. (gm.) Volume (c.m.3)	2.9958 1.870	3.09566 1.870	3.19552 1.870
Porosity E	0.3982	0,3781	0.3581
Temperatu T (°c)	re 29.5	29.5	29.5
Time t (Sec.)	5.20	6.66	8.50

Result from Testing 00.80 c.m. Glass Tube (Continued)

Sample No. 4

Test No.	1	2	3
Moist Wt.	3.10	3.20	3.30
Wwx100 W moist	1.63	1.63	1.63
Dry Wt. (g:m:)	3.04947	3.14784	3.24621
Volume 3 (c.m. 3)	1.9038	1.9401	1.9778
Porosity E	0.3965	0.3887	0.3816
Tempera- ture T(°c	29.0	29.0	29.0
Time t (Sec.)	10.3	13.8	15.1

Sample No. 2

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = {(4) \times (5) \atop \times (5) \times (7)}$
Test No.	Porosi-	Time (Sec)	\(\frac{\hat{\eta_s}}{\eta}\)	$\frac{\int_{s} (1-E_{s}) S_{s}}{\int \sqrt{E_{s}^{3}} \sqrt{t_{s}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)^2}}$	Æ	Specific Surface face Sw (c.m. 2/gm.)
1	0.3982	20.75	0.9931	578.2329	0.418	4.555	1093.353
2	0.3781	21.40	0.9931	578.2329	0.374	4.626	993.512
3	0.3681	25.75	0.9933	578.2329	0.374	5.074	1028.747
4	0.3580	34.94	0.9933	578.2329	0.334	5.911	1133.941
5	0.3480	40.18	0.9937	578.2329	0.315	*6.339	1147.333
6	0.3380	44.18	0.9933	578.2329	0.297	6.647	1133.875
7	0.3179	58.76	0.9931	578.2329	0.263	7.666	1157.765

Sample No. 3

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = \frac{(4) \times (5)}{\times (6) \times (7)}$
Test N	o Porosi-	Time t	$\sqrt{\frac{\eta_s}{n_l}}$	$\frac{\int_{\mathbf{S}} (1-\mathbf{E}_{\mathbf{S}}) \mathbf{S}_{\mathbf{S}}}{\int \sqrt{\mathbf{E}_{\mathbf{S}}^{3}} \sqrt{\mathbf{t}_{\mathbf{S}}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)}} 2$	√Ē	Specific Sur- face Sw (c.m. 2/gm.)
1	0.4089	65.74	1	582.6894	0.442	8.108	2088.205
2	0.3892	85.70	1	582.6894	0.398	90257	2146.794
3	0.3794	105.02	1	582.6894	0.377	10.248	2251.218
4	0.3695	125,15	1	582.6894	0.356	11.187	2320.602

Sample No. 5

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = \frac{(4) \times (5)}{\times (6) \times (7)}$
Test No	Porosity E	Time t	$\sqrt{\frac{\eta_s}{\eta}}$	$\frac{K = \int_{S}^{S} (1 - E_{S}) S_{S}}{\int \sqrt{E_{S}^{3}} \sqrt{t_{S}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)^2}}$	Æ	Specific Sur- face S _w (c.m. ² gm.)
1	0.4252	44.54	1	578.233	0.482	6.674	1860.099
2	0.4060	74.40	,1	578.233	0.436	8.626	2174.697
3	0.3868	86.12	.1	578.233	0.392	9.280	2103.473
4	0.3773	106.40	1	578.233	0.372	10.315	2218.784
. 5 °	0.3677	115.32	1	578.233	0.353	10,739	2192.004

Sample No. 1

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(4)x(5) (8) = x(6)x(3)
Test No.	Porosity	Time t (Sec.)	$\sqrt{\frac{\eta_s}{\eta}}$	$K = \frac{f_s(1 - E_s)S_s}{\int \sqrt{E_s^3} \sqrt{t_s}}$	$f(E) = \sqrt{\frac{E^3}{1-E^3}}$	√t	Specific Sur- face S 2 w (c.m. /Sec.)
1	0.3982	5.20	1	568.024	0.418	2.280	541.350
¥ 2	0.3781	6.66	1	568.024	0.374	2.581	548.310
3	0.3581	8.50	1	568.024	0.334	2.915	553.033

Computating the Result

Sample No. 4

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = \frac{(4) \times (5)}{x(5) \times (7)}$
Test No.	Porosi- ty	Time t (Sec.)	√12 _S 17	$ \frac{f_{\mathbf{S}}(1-E_{\mathbf{S}}) S_{\mathbf{S}}}{f\sqrt{E_{\mathbf{S}}^{3}}\sqrt{t_{\mathbf{S}}}} $	$f(E) \sqrt{\frac{E^3}{(1-E)}}$	2 √t	Specific Surface (c.m./gm.)
1 .	0.3965	10.3	1	569.736	0.4137	3. 2094	756.455
2	0.3887	13.8	1	569.736	0.3964	3.7148	838.9629
3	0.3816	15.1	1	569.736	0.3812	3.8859	843.9528

Result from Testing 02.0 c.m. Glass Tube

Sample No. 2

Test No.	1	2
Moist Wt.	5.04	5.15
Wwx100 W moist	0.85	0.85
Dry Wt. (gm.)	4.99716	5.106225
Volume ₃ (c.m. 3)	2.911	2.911
Porosity E	0.3435	0.3292
Temperatu T (°c)	re 29.0	29.0
Time t (Sec.)	530.13	608.32

Sample No. 3

Test No.	1	2
Moist Wt.	4.70	4.80
Wwx100 W moist	1.32	1.32
Dry Wt. (gm.)	4.63796	4.73664
Volume 3 (c.m. 3)	2.911	2.911
Porosity E	0.3860	0.3730
Tempera- ture T(°c)	30.3	30.5
Time t (Sec.)	996.13	1156.0

Result from Testing \$2.0 c.m. Glass Tube (Continued)

Sample No. 5

Test No.	1	2
Moist Wt. (gm.)	4.80	4.90
Wwx100 W moist	1.17	1.17
Dry Wt. (gm.)	4.74384	4.84267
Volume (c.m.)	2.8809	2.911
Porosity E	0.3775	0.3711
Temperat ture T(°	30.3	28.9
Time t (Sec.)	996.24	1106.2

Sample No. 1

Test No.	1	2	3	4	5
Moist Wt.	4.70	4.80	4.90	5.00	5.10
Ww x100 W moist	0.14	0.14	0.14	0.14	0.14
(gm.)	4.69342	4.79328	4.89314	4.993	5.09286
Volume ₃	2.8299	2.8728	2.8728	2.8787	2.8839
Porosity E	0.3770	0.3732	0.3602	0.3484	0.3366
Temperat	30.4	30.4	30.4	30.4	30.9
Time t (Sec.)	76.80	86.02	98.02	115.20	135.60

Result from Testing #2.0 c.m. Glass Tube (Continued)

Sample No. 4 Light Grey Very Fine Sand

Test No.	1	2	. 3	4
Moist Wt.	4.70	4.80	4.90	5.0
Ww x100 W moist	1.63	1.63	1.63	1.63
Dry Wt. (gm.)	4.62339	4.72176	4.82013	4.9185
Volume 3 (c.m. 3)	2.9512	2.9593	2.9519	2.9623
Porosity E	0.4097	0.3988	0.3847	0.3744
Tempera- ture T(°c)	31.0	31.0	31.0	31.0
Time t (Sec.)	78.48	95.18	127.30	161.18

Sample No. 7 Very Fine Sand Passing No. 80 Sieve - No. 400 Sieve

					11 14 4 15 1	
Test No.	1-	2	3	4	5	6
Moist Wt.	4.50	4.70	4.80	4.90	5.0	5.10
Ww x100 W moist	1.63	1.63	1.63	1.63	1.63	1.63
Dry Wt. (gm.)	4.42665	4.62339	4.72176	4.82013	4.9185	5.01687
Volume (c.m. 3)	2.911	2.911	2.911	2.911	2.911	2.911
Porosity E	0.4270	0.4016	0.3888	0.3761	0.3634	0.3506
Tempera- ture (°c)	28.9	28.9	27.0	26.0	26.2	26.5
Cime t (Sec.)	29.3	36.6	50.23	55.82	58.74	64.86

Computating the Result

Sample No. 2

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(4)x(5) (8)= $x(6)x(7)$
lest No.	Porosit;	Time t	$\sqrt{\frac{\eta_s}{\eta}}$	$\frac{\int_{s} (1-E_{s})S_{s}}{\int \sqrt{E_{s}^{3}}\sqrt{t_{s}}}$	f(E)====================================	2 √t	Specific Sur- face Sw cm. 2/gm.
1	0.3435	530.13	1	180.4189	0.307	23.025	1275.323
2	0.3292	608.32	1	180.4189	0.282	24.664	1254.858

Sample No. 3

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(4) \times (5) \\ (8) = \times (6) \times (7)$
Test No.	Porosi- ty	Time t		K= (1-E _s)S _s K= \(\lambda \(\text{E}_s^3 \rangle \text{t}_s \)	$f(E) = \sqrt{\frac{E^3}{(1-E)}}$	2 √t	Specific Sur- face Sw c.m. 2/gm.
1 2	0.3860 03730	996.13 1156.0	1 1	181.8094 181.8094	0.391	31.562 34.0	2243.663 2243.892

Sample No.

(1)m	(2)	(3)	(4)	(5)	(6)m	(7)	$(8) = \begin{array}{c} (4) x(5) \\ x(6) x(7) \end{array}$
Test No.	Porosity	Time t	$\sqrt{\frac{\eta_s}{\eta}}$	$K = \int_{S} (1 - E_{S}) S_{S}$ $\int_{S} \sqrt{E_{S}^{3}} \sqrt{t_{S}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)^2}}$	F	Specific Sur- face S c.m. /gm.
1	0.3775	996.24	1	178.3725	02373	31.563	2099.979
2	0.3711	1106.20	1	178.3725	0.359	33.260	2129.828

Sample No. 1

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = \frac{(4) \times (5)}{\times (6) \times (7)}$
Cest No.	Porosi-	Time t	Teg Te	$K = \frac{f_{s}(1-E_{s})S_{s}}{f\sqrt{E_{s}^{3}}\sqrt{t_{s}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)^2}}$	√ŧ	Specific Surface S _w c.m. ² /gm.
, i	0.3770	76.80	1	177.2334	0.372	8.764	577.818
2	0.3732	86.02	1	177.2334	0.364	9.275	598.358
3	0.3602	98.02	1	177.2334	0.338	9.901	593.118
4	0.3484	115.20	1	177.2334	0.316	10.733	601.110
5	0.3366	135.60	1	177.2334	0.294	11.645	606.782

Sample No. 4

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = {(4) \times (5) \atop \times (6) \times (7)}$
Test No.	Porosi- ty	Time t	ng ng	$K = \frac{\int_{\mathbf{S}}^{3} (1 - E_{\mathbf{S}}) S_{\mathbf{S}}}{\int \sqrt{E_{\mathbf{S}}^{3} \sqrt{t_{\mathbf{S}}^{3}}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)}}$	2 √.t	Specific Sur- face S c.m. 2/gm.
. 1	0.4097	78.48	1	177.768	0.4442	8.859	699.547
2	0.3988	95.18	1	177.768	0.4189	9.756	726.500
3	0.3847	127.30	1	177.768	0.3878	11.283	777.832
4	0.3744	161.18	1	177.768	0.3662	12.696	826.492

Computating the Result (Continued)

Sample No. 7

(1)	(2)	(3)	(4)	(5)	(6)	(7)	$(8) = {(4) \times (5) \times (6) \atop \times (7)}$
est No.	Porosi- ty E	Time t	$\sqrt{\frac{\eta_s}{\eta}}$	$K = \frac{\int_{s} (1 - E_{s}) S_{s}}{\int \sqrt{E_{s}^{3}} \sqrt{t_{s}}}$	$f(E) = \sqrt{\frac{E^3}{(1-E)^2}}$	√€	Specific Surface Swc.m. 2/gm.
.1	0.4270	29.3	1,	177.768	0.4869	5.413	468.523
2	0.4016	36.6	1	177.768	0.4253	6.050	457.409
3	0.3888	50.23	1	177.768	0.3966	7.087	499.653
4	0.3761	55.82	1	177.768	0.3697	7.471	491.000
5	0.3634	58.74	1	177.768	0.3441	7.664	468.807
6	0.3506	64.86	1	177.768	0.3197	8.054	457.728

1	_	1- 100 1	-		(t 2)
No.	2	(Reddish	Brown	SILTY	Sand)

(1) Particle Average Dia. in m.m. (d)	Percent by Weight (%)	Volume of one parti-3 cle in m.m.	Wt. of Solid (Wg) in gm. (2) x Wt	r = 10 W(5) Volume of Soild in m.m. (4)/ Grw	Number of SoilParti- cle of Each Dia. (5)/(3)	Surface Area of One Particle in m.m. ² (¶ d ²)	Total Area of Soi in m.m. (6) x (7)
0.070	10	1.796x10 ⁴	10	3.8241x10 ³	2.129x10	0.01540	3278.66×10 ²
0.066	′ 10	1.505×104	10 .	3.8241x10	2.541x10	0.01369	3478.63x10 ²
0.061	10	1.188x104	10	3.8241x18	3.219x10	0.01169	3763.01×10 ²
0.056	10	0.919x10 ⁴	10	3.8241x18	4.161x10	0.00986	4102.75×10 ²
0.050	10	0.654x104	10	3.8241x18	5.847x10	0.00786	4595.74x10 ²
0.042	10	0.388x104	10	3.8241x10	9.856x10	0.00554	5460.22x10 ²
0.034	10	0.205x10	10	3.8241x10	18.654x10	0.00363	6771.40x10 ²
0.025	10	0.081x104	10	3.8241x10	47.211x10	0.00196	9253.35x10 ²
0.015	10	0.017x10 ⁴	10	3.8241x10	224.947x10	0.00071	15,971.23x10 ²
0.0075	5	0.0022x10 ⁴	5	1.912x18	869.091x10	0.00018	15,643.63x10 ²
0.0025	5	0.000082x10	5	1.912x18	23317.073x10	0.00002	46,634.14x10 ²
			S(4)=100			∑(8)	= 118,952.76x10 ²

Specific Surface of Soil = $\Sigma(8)$ = 118,952.76 m.m. 2 /gm. Average Dia = $\frac{6}{S_{v}}$ = 0.0193 m.m. or = 1189.53 c.m. 2 /gm. $= 19.3 \mu$

1

rw	=	10-3	gm./m.m. ³	;	Av.	Dia.	6/S _v	-	0.00964 m.m.

Particle Av. Dia. in m.m. (d)	Percent by Wt.	Volume of One Particle in m.m. ³ T/6 x d ³	Wt. of Solid in gm. (2)x W _t	Volume of Solid in m.m. ³ (4)/Gr _w	Number of Soil Particle of Each Dia. (5)/(3)	Surface Area of One Particle in m.m. ² (Td ²)	Total Area Of Soil in m.m. ² (6)x(7)
0.0695 0.061 0.054 0.045 0.035 0.027 0.019 0.013 0.0095	10 10 10 10 10 10 5 5	1.7584x10 ⁻⁴ 1.1889x10 ⁻⁴ 0.8248x10 ⁻⁴ 0.4773x10 0.2246x10 ⁻⁴ 0.1031x10 ⁻⁴ 0.0359x10 0.0115x10 ⁻⁴ 0.0045x10 0.0014x10 ⁻⁴	1 1 1 1 1 0.5 0.5 0.5	0.38536x10 ³ 0.19268x10 ³ 0.19268x10 ³ 0.19268x10 ³ 0.19268x10 ³	0.2192x10 ⁷ 7 0.3241x10 0.4672x10 ⁷ 0.8074x10 ⁷ 1.7158x10 3.7377x10 ⁷ 10.7343x10 ⁷ 16.7548x10 42.8178x10 ⁷ 137.6286x10 ⁷ 533.7396x10 ⁷	0.01518 0.01169 0.009165 0.006364 0.003850 0.002291 0.001135 0.000531 0.000284 0.000133 0.0000528	33.27456x10 ³ 37.88729x10 ³ 42.81888x10 ³ 51.38294x10 ³ 66.0583x10 ³ 85.6307x10 ³ 121.8343x10 ³ 88.9680x10 ³ 121.60255x10 ³ 183.04603x10 ³ 281.8145x10 ³
0.0041	T5 5	0.000361x10 0.0000829x10	/	0.19268x10 ³	2349.756x10 ⁷	0.0000196 ∑(8) =	460.5521x10 ³ 2397.9178x10 ³

Specific Surface of Soil =
$$(8)/\sum (4)$$
 = $\frac{2397.9178 \times 10^3}{10}$ = $\frac{2397.9178 \times 10^3}{gm}$.

or = 2397.9178

c.m.²

	i e e e e e e e e e e e e e e e e e e e	r _w = 10	-3 gm.	/mm. ³ ; Av. Dia	or =	0.010198 mm 10.198 μ.	(8)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Particle	Percent	Volume of One		Volume of Solid in m.m. ³	Nos. of Soil Particle of Each	Surface Area of . One Particle	Total Area of Soil in m.m. ²
v. Dia.	by Wt.	Particle in	Solid	(4)/Gr	Dia.	2	
in m.m. (d)	% .	m.m. 3 Tr/6xd ³	in gm. (2)xWt-	W	(5)/(3)	in m.m. (Td ²)	(6)x (7)
0.0695	10	1.7584x10 ⁻⁴	1	0.37807x10 ³	0.2150x10 ⁷	0.015181	32.639x10
0.0625	10	1.2788x10	1	0.37807x10 ³	0.29564x10 ⁷	0.01227	36.296x10 ³
0.0575	10	0.9958x10 ⁻⁴	1	0.37807x10 ³	0.37966x10 ⁷	0.010391	39.4505x10 ³
0.0525	10	0.7580x10	1	0.37807x10	0.49877x10_	0.008662	43.20346x10
	10	0.5267x10 ⁻⁴	1.	0.37807x10 ³	0.71781x10	0.006796	48.78237x10
0.0465	10	0.3228x10	1	0.37807x10 ³	1.17122x10 ⁷	0.004904	57.43663x10 ³
0.0395		0.1637x10 ⁻⁴	1	0.37807x10	2.3095x10 ⁷	0.003118	72.01021x10
0.0315	10	0.0521x10	1	0.37807x10 ³	7.25662x10 ⁷	0.001453	105.4387x10 ³
0.0215	10	-/1	0.5	0.189035x10 ³	16.4378x10 ⁷	0.0005311	87.30116x10
0.0130	5	0.0115x10	- L 1 42 12 12 12 12 12 12 12 12 12 12 12 12 12	0.189035x10 ³	85,5362x10 ⁷	0.0001767	151.14246x10 ³
0.0075	5	0.00221x10 ⁻⁴	LU		7	0.0000331	347.61434x10 ³
0.00325	5	0.000180x10	0.5	0.189035x10 ³	1050.1944x10 7		1202.9500x10 ³
0.00095	5	0.0000044x10	0.5	0.189035x10 ³	42,962.500x10	0.0000028 ∑(8)	= 2224.2645x10 ³

Specific Surface = $\frac{2224.2645 \times 10^3}{10}$ = $\frac{2224.2645 \times 10^2}{\text{gm}}$. or = $\frac{2224.2645 \times 10^2}{\text{gm}}$.

54

G = 2.654 ; (Spherical Assumption)

(1)	(2)	(3)	(4)	• (5)	(6)	(7)	(8)
Average Particle	Percent by Wt.	Particle in	Wt. of Solid	Volume of Solid in m.m.	Nos. of Soil Particle of Each	Surface Area of One Particle	Total Area of Soil in m.m.
Dia. (mm.)	%	m.m. T/6xd ³	in gm. (2) x W ₊ .	(4)/Gr _w	Dia. (5)/(3)	in m.m. ²	(6) x (7)
0.1685	10	25.0595×10 ⁻⁴	Annual Contract of the Contrac	0.3767897x10 ³	0.0150358x10 ⁷	0.0892327	13.417x10 ³
0.1525	10	18.5773x10 ⁻⁴	1	0.3767897x10 ³	0.0202822x10 ⁷	0.073091	14.824x10 ³
0.1400	10	14.3733x10 ⁻⁴	1	0.3767897x10 ³	0.0262145x10 ⁷	0.0615999	16.148x10 ³
0.1250	10	10.2307x10 ⁻⁴	1	0.3767897x10 ³	0.0368293x10 ⁷	0.0491071	18.086x10 ³
0.1075	10	6.5073×10 ⁻⁴	1	0.3767897x10 ³	0.0579026x10 ⁷	0.0363196	21.030x10 ³
0.0950	10	4.4910×10 ⁻⁴	1	0.3767897x10 ³	0.0838988x10 ⁷	0.0283642	23.797x10 ³
0.0750	10	2.2098x10 ⁻⁴	1	0.3767897x10 ³	0.1705085x10 ⁷	0.0176785	30.143x10 ³
0.0535	10	0.8021x10 ⁻⁴	1	0.3767897x10 ³	0.469754x10 ⁷	0.0089956	42.257x10 ³
0.0360	5	0.2444x10 ⁻⁴	0.5	0.1883948x10 ³	0.7708461x10 ⁷	0.0040731	31.397x10 ³
0.0240	5.	0.0724x10 ⁻⁴		0.1883948x10 ³	2.6021381x10 ⁷	0.0018102	47.104x10 ³
0.0125	5	0.0102x10 ⁻⁴		0.1883948x10 ³	18.470078x10 ⁷	0.0004910	90.688x10 ³
0.0035	5	0.0002245xI	.1	0.1883948x10 ³	839.17505x10 ⁷	0.0000384	322.243x10 ³
2	(2) = 100		W = 10gm			∑(8)=	671.134x10 ³

Specific Surface = $\frac{\sum(8)}{W_t}$ = $\frac{6}{8}$ = 671.134x10² $\frac{\text{m.m.}^2}{\text{gm.}}$ or 671.134 $\frac{\text{c.m.}^2}{\text{gm.}}$ Av.Dia. = $\frac{6}{8}$ = 33.7 μ

No. 4. Light Grey Very Fine Sand Passing No. 80 Sieve

G = 2.654 (Cubical Assumption)

(1)	(2).	(3)	(4)	(5)	(6)	(7)	(8)
quivalent ubical Side	Percent by Wt.	Volume of One Particle S ³	Wt. of Solid in gm.	Volume of Solid in m.m. ³	Nos. of Soil Particle of Each Cube.	Surface Area of One Particle in m.m. 3 (68)	Total Area of Soil in m.m. ²
S (m.m.)	% _	(m.m. ³)	W _s (2)xW	(4)/Gr _w	(5)/(3)		(6)x(7)
0.1358	10	25.0437x10 ⁻⁴	1	0.3767897x10 ³	0.0150452x10	0.1106496	16.647×10
0.1229	10	18.5633x10 ⁻⁴	1	0.3767897x10 ³	0.0202975x10 ⁷	0.0906264	18.395x10
0.1129	10	14.3907x10 ⁻⁴	1	0.3767897x10 ³	0.0261828x10 ⁷	0.0764784	20.024×103
0.1008	10	10.2419x10	1	0.3767897x10 ³	0.036789x10	0.0609636	22.428x10
0.0867	10	6.5171x10 ⁻⁴	1	0.3767897x10 ³	0.0578155x10	0.0451008	26.075×10
0.0766	10	4.4946x10	3 1	0.3767897x10 ³	0.0838316x10 ⁷	0.0352053	29.513×10
0.0605	10	2.2145x10 ⁻⁴	1	0.3767897x10 ³	0.1701466x10	0.0219615	37.367x10 ³
0.0431	10	0.8006x10	1	0.3767897x10 ³	0.4706341x10 ⁷	0.0111456	52.455x10 ³
0.0290	5	0.2439x10 ⁻⁴	0.5	0.1883948x10 ³	0.7724264x10 ⁷	0.005046	38.977x10
0.0193	5	0.0719x10 ⁻⁴	0.5	0.1883948x10 ³	2.6202336x10 ⁷	0.0022349	58.560x10
0.0101	5	0.0103x10 ⁻⁴	0.5	0.1883948x10 ³	18.290757x10 ⁷	0.000612	111.939x10
0.0028	5	0.0002195×10	0.5	0.1883948x10 ³	858.29066x10 ⁷	0.0000470	403.397x10
			W _t =10 gn			∑(8) =	835.777x10 ³

Specific Surface = $\frac{(8)}{w}$ = $835.777 \times 10^2 \frac{m.m.^2}{gm.}$ or $835.777 \frac{cm.^2}{gm.}$

No. 1 Reddish Brown Very Fine Sand (Spherical Assumption)

Passing No. 80 Sieve (G = 2.662)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
verage	Percent	Volume of One	Wt. of	Volume of Solid	Nos. of Soil	Surface Area of	Total Area of
article	by Wt.	Particle in	Solid	in m.m.	Particle of Eac	h One Particle	Soil in m.m.
ia.	%	m.m.	in gm.	(4)/Gr _W	Dia.	in m.m. ²	(6) x (7)
(mm.)		TI/6xd ³	(2)x W		(5)/(3)	$(T d^2)$	
0.155	10	19.50x10 ⁻⁴	1	0.375657x10 ³	0.01926x10	0.07551	14.543x10 ³
0.141	10	14.684x10 ⁻⁴	1	0.375657x10 ³	0.2558x10	0.06248	15.982x10
0.128	10	10.985x10	1	0.375657x10 ³	0.03420x10	0.051493	17.611x10
0.110	10	6.972x10 ⁻⁴	1	0.375657x10 ³	0.05388x10 ⁷	0.038029	20.490x10 ³
0.0875	10	3.509x10 ⁻⁴	1 .	0.375657x10 ³	0.10706x10	0.024062	25.761x10
0.075	10	2.210x10	31	0.375657x10	0.16998x10	0.0176785	30.050x10 ³
0.0625	10	_1.279x10	1	0.375657x10 ³	0.29371x10	0.0122767	36.058x10 ³
0.0475	10	0.561x10 ⁻⁴	1	0.375657x10 ³	0.669620x10	0,007091	47.483x10 ³
0.0355	5	0.234x10 ⁻⁴	0.5	0.187829x10 ³	0.802688x10	0.0039607	31.792x10 ³
0.0280	5	0.115x10 ⁻⁴	0.5	0.187829x10 ³	1.63330x10 ⁷	0.0024639	40.249x10 ³
0.0215	5	0.052x10	0.5	0.187829x10 ³	3.612096x107	0.0014527	52.473x10
0.009	- 5	0.00382x10	10.5	0.187829x10 ³	49.169895x10	0.0002545	_125.137x10

Specific Surface =
$$\sum (8)$$
 = 457.629×10^2 m.m.² or $457.629 \times \frac{\text{c.m.}^2}{\text{gm.}}$
Av. Dia. = $\frac{6}{5}$ = 49.3 u.

Reddish Brown Very Fine Sand Passing No. 80 Sieve

by Wt. Particle S ³ Solid in in m.m. Particle of Each One Particle Area of Solid in m.m. Cube. (5) 6S ² m.m. (6) x (7) Side S (m.m.) 7 (2)xW _t (2)xW _t (3) (m.m. ²) (6) x (7) 0.1250 10 19.531x10 ⁻⁴ 1 0.375657x10 ³ 0.019234x10 ⁷ 0.09375 18.032x10 ³	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		by Wt.	Particle S ³	Solid in gm.(Ws	in m.m. ³	Particle of Eacl	one Particle	Area of Soil in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1250	10	19.531x10 ⁻⁴	1	0.375657x10 ³	0.019234x10 ⁷	0.09375	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1137	10	14.699x10 ⁻⁴	1	0.375657x10 ³		0.07757	19,825x10 ³
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10		1		0.034179x10 ⁷	0.06390	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	6.972x10 ⁻⁴	1			0.04717	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	3.509x10 ⁻⁴	1	0.375657x10 ³	0.107055x10 ⁷	0.02985	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.06046	10	2.210x10 ⁻⁴	1	0.375657x10 ³	0.16998x10 ⁷	0.02193	37.277x10 ³
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.05038	10	11.279x10 ⁻⁴	1	0.375657x10 ³	0.29371x10 ⁷	0.01523	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.03829	10	0.561x10 ⁻⁴	1			0.00880	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.02862	5.	0.234x10 ⁻⁴	0.5	0.187829x10 ³	0.802688x10 ⁷	0.00492	[19] [10] [10] [10] [10] [10] [10] [10] [10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.02257	5	0.115x10 ⁻⁴	0.5	0.187829x10 ³	1.63330x10 ⁷	0.00306	49.979x10 ³
0.00726 5 0.0038×10^{-4} 0.5 0.187829×10^{3} 49.169895×10^{7} 0.00032 157.344×10^{3}		5		0.5	선생님은 점심하다 하다면 되었다. 그 이상 없어 보고 있다.	3.612096x10 ⁷	0.00180	
		5	0.0038x10-4	0.5	0.187829×10^3		0.00032	NAME AND ADDRESS OF THE OWNER, WHEN PERSON ADDRESS OF THE OWNER, WHEN PERSON AND ADDRESS OF THE OWNER, WHEN

∑(8) W_t

No. 7 Very Fine Sand

(Passing No. 80 - Retaining No

Sieve)

G = 2.654

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(m.m.)	(m.m.) Equivalent	Percent by Wt.	Volume of One Particle	Wt.of Solid (W,) in gm.	Volume of Solid in m.m. ³	Nos.of Soil Particle of	Surface Area of One	Soil in m.m. ²
Dia. (d)	Cubical Side	e %	in m.m. (S)	(3) xW _E	(5) Grw	Each Dia. (6)/(4)	Particle (m.m. ²) 6S ²	(7) x (8)
0.163	0.1314	10.68	22.687x10 ⁻⁴	1.068	0.4012021x10 ³	0.0177x10 ⁷		18.336x10 ³
0.127	0.1024	20.49	10.737x10 ⁻⁴	2.049	0.769722x10 ³	0.0717x10 ⁷	0.0629142	45.109x10 ³
0.0895	0.0721	28.13	3.748x10 ⁻⁴	2.813	1.0567242x10 ³	0.2819x10 ⁷	0.0311904	87.926x10 ³
0.0635	0.0512	13.94	1.342=10-4	1.394	0.523664x10 ³	0.3902x10 ⁷	0.0157284	61.372x10 ³
0.0450	0.0363	26.76	0.478x10 ⁻⁴	2.676	1.0052592x10 ³	2.1031x10 ⁷	0.0079056	166.263x10 ³
		∑(3) =100		Wt = 10 gm.			∑(9)=	379.006x10 ³

Specific Surface =
$$\sum_{w_{+}}^{(9)}$$
 = 379.006 x 10² $\frac{\text{m.m.}^{2}}{\text{gm.}}$ or 379.006 $\frac{\text{c.m.}^{2}}{\text{gm.}}$

Note Based on cubical assumption

No.7 Very Fine Sand (Passing No. 80 - Retaining No. 400 Sieve)

G = 2.654

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Passing Sieve	Av. Dia.	Percent by Wt.	Volume of One Particle in m.m. \T/6xd ³		Volume of Solid in m.m. ³ (5)/Grw	Nos. of Soil Particle of Each Dia. (6)/(4)	Surface Area of One Particle (IT d ²)	Total Area of Soil in m.m. ² (7) x (8)
No.80-No.100	0.163	10.68	22.685x10 ⁻⁴	1.068	0.4012021x10 ³	0.018x10 ⁷	0.0835025	15.030x10 ³
No.100-No.140	0.127	20.49	10.730x10 ⁻⁴	2.049	0.769722x10 ³	0.072×10 ⁷	0.0506911	36.498x10 ³
No.140-No.200	0.0895	28.13	3.755x10 ⁻⁴	2.813	1.0567242x10 ³	0.281x10 ⁷	0.025175	70.742x10 ³
No.200-No.270	0.0635	13.94	1.341x10 ⁻⁴	1.394	0.523664x10 ³	0.391x10 ⁷	0.0126727	49.550x10 ³
No.270-No.400	0.0450	26.76	0.477x10 ⁻⁴	2.676	1.0052592x10 ³	2.107x10 ⁷	0.0063642	134.094x10 ³
		(3)=100		W _t = 10.0			∑(9) =	305.914x10 ³

Specific Surface =
$$\frac{\Sigma(9)}{W_t}$$
 = .305.914x10² $\frac{m.m.^2}{gm}$ or 305.914 $\frac{c.m.^2}{gm}$.
Av. Dia = $\frac{6}{S_v}$ = 0.0739 m.m. or 73.9 p

Note Based on Spherical assumption

Comparision of Air-Permeability Method and Sedimentation for Determination of Specific Surface of

Soils

Testing with 00.40 c.m. Glass Tube

		The same of the sa	The same of the sa	and the same the same the same to the same		the same and the s	
	Description of Soil		Air-Permeabil	ity Metho	Calculated Specific		
	ample	Porosity	Specific 2 Surface m	Mean Value .m gm.	Surface (Based on 2 Reference No.18) mgm	Scal.	Remark
P _e 354	(Kaolinite)	0.5821	3.04 3.16	3.16*	10-20	3.16-6.33	The mark * showed specific
	Montmorillonite 75	z					surface value
No.5992	Kaolinite 20	0.5049	1.64	1.81*	0.75x800+0.20x10	≈ 335	taken from max. density of sam-
	Illite 55	0.4783	1.81		+0.05x80 = 606		ple.
No.674	Kaolinite 50%	0.5183	1.58	1.95*	0.50x10+0.50x80	≈ 23	
	Illite 500	0.4995	1.95		= 45		
			\				

Testing with \$0.40 c.m. Glass Tube

			lity m ² /gm.	· Calculated Specific		
Description of Soil Sample	Porosity	Specific Surface	Mean	Surface (Based on Reference No.18)	Scal Sa	Remark
P _f 886 (Kaolinite with	0.5909	3.73	3.75	10 - 20	2.67-5.33	The mark**
some quartz)	0.5678	3.76)			showed the
			*			specific Surface
Reddish Brown Silty	0.3241	1161	1158**	1190**	1.03	value in unit
sand (Passing No. 200 Sieve)	0.3181	1154				of c.m.
						gm.
Light Reddish Grey	0.3887	2250	2332**	2398**	1.03	
Silty Sand (Passing	0.3641	2413				
No. 200 Sieve)						
	0.2606	2166				
Light Reddish Brown	0.3494		2254**	2224**	0.99	
Silty Sand (Passing No. 200 Sieve)	0.3295	2342				

Comparision of Air-Permeability Method and Sedimentation Method for Determination of Specific Surface of Soils

Testing with 00.80 c.m. Glass Tube

Description of Soil	Porosity	/Air-Permeabi	lity Method	Sedimentation Specific Sur	n Method face c.m. ² /gm.	S S	s _c
Sample		Specific Sur- face c.m. g.m.	Mean Value Sad.m. gm.	Spherical Assumption S	Cubical Assumption S	Sa	S C S a
Reddish Brown Silty Sand	0.3580	, 1134	1				
(Passing No. 200 Sieve)	0.3480	1147	1143	1190		1.04	-
	0.3380	1134					
	0.3179	1157					
Light Reditth Grey Silty	0.4089	2088)				
Sand West 7	0.3892	2147	*				
(Passing No. 200 Sieve)	0.3794	2251	2321	2398	-	1.03	÷
	0.3695	2321 -			r		
						, y	

Description of Soil		Air-Permeabil	lity Meth.	Specific Sur Sedimentation	face by (c.m. 2) n Meth. (gm.	s	S
Sample	Porosity	Specific Surface c.m.	Mean Value(SS)	Spherical Assumption (S _s)	Cubical Assumption (S _c)	S _S S _a	S _c S _a
	· · · · · · · · · · · · · · · · · · ·						
Light Reddish Brown	0.4060	2175	1				
Silty Sand	0.3868	2103	The second			1.02	
(Passing No. 200 Sieve)	0.3773	2219	2172	2224		1.02	
	0.3677	2192					
		7					
Reddish Brown Very Fine	0.3982	541					
Sand	0.3781	548	547	458	570	0.84	1.04
(Passing No. 80 Sieve)	0.3581	553					1.
					17		
Light Grey Very Fine	0.3965	756					
Sand	0.3887	839	813	671	836	0.83	1.0
(Passing No. 80 Sieve)	0.3816	- 844					
(racoling no. on prese)	V.33.1						

Comparision of Air-Permeability Method and Sedimentation Method for Determination of Specific Surface of

Testing with \$2.0 c.m. Glass Tube

Boils

Description of Soil		Air-Permeabil	Lity Meth.	Specific Su Sedimentati		S S S	S _c
Sample	Porosity	Specific Sur- face c.m.	Mean Value S _a c.m. ² /gm.	Spherical Assumption S s	Cubical Assumption S	Sa	a
Reddish Brown Silty Sand (Passing NO. 200 Sieve)	0.3435 0.3292	1275 1255	1265	1190		1.06	
Light Reddish Screy Silty Sand No. 1	0.3860 0.3730	2244 2244	2244	2398	-	0.94	-;
(Passing No. 200 Sieve) Light Reddish Brown Silty Sand	0.3775 0.3711 >	2100 2130	2115	2224	·	0.95	
(Passing No. 200 Sieve)							

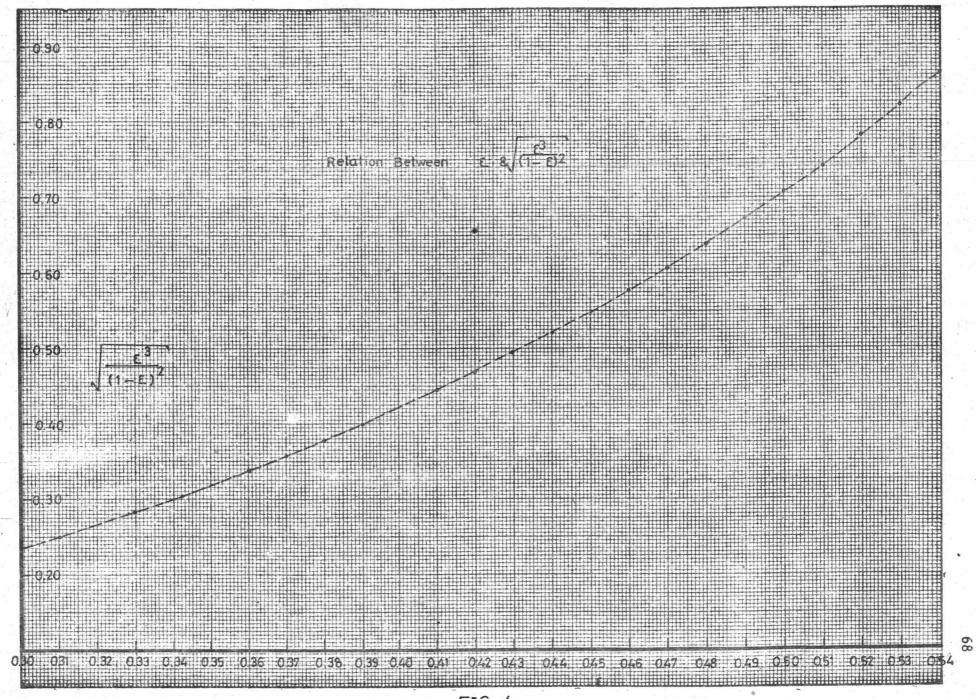
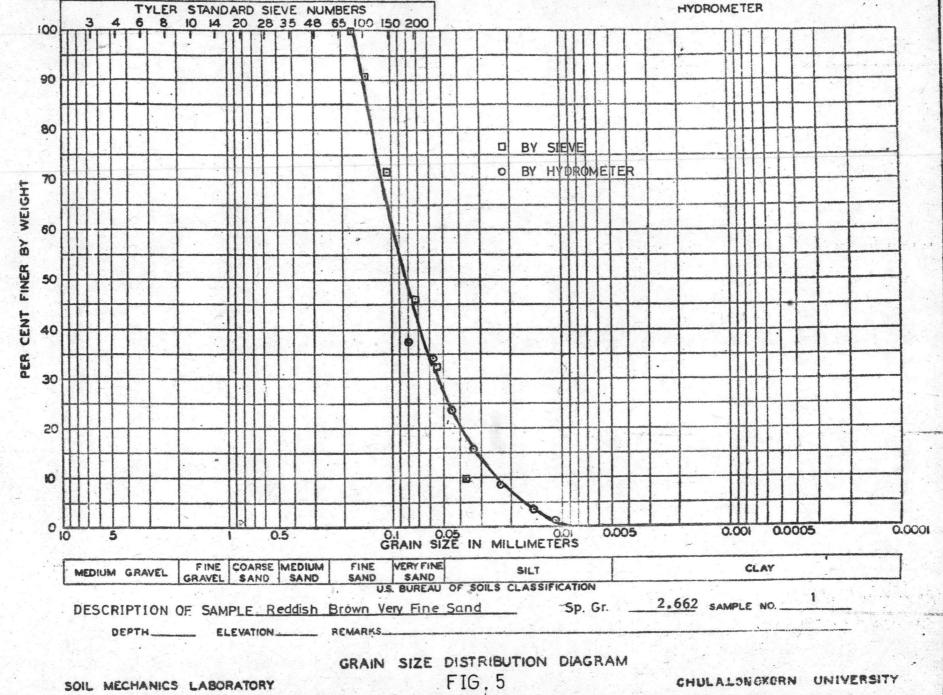
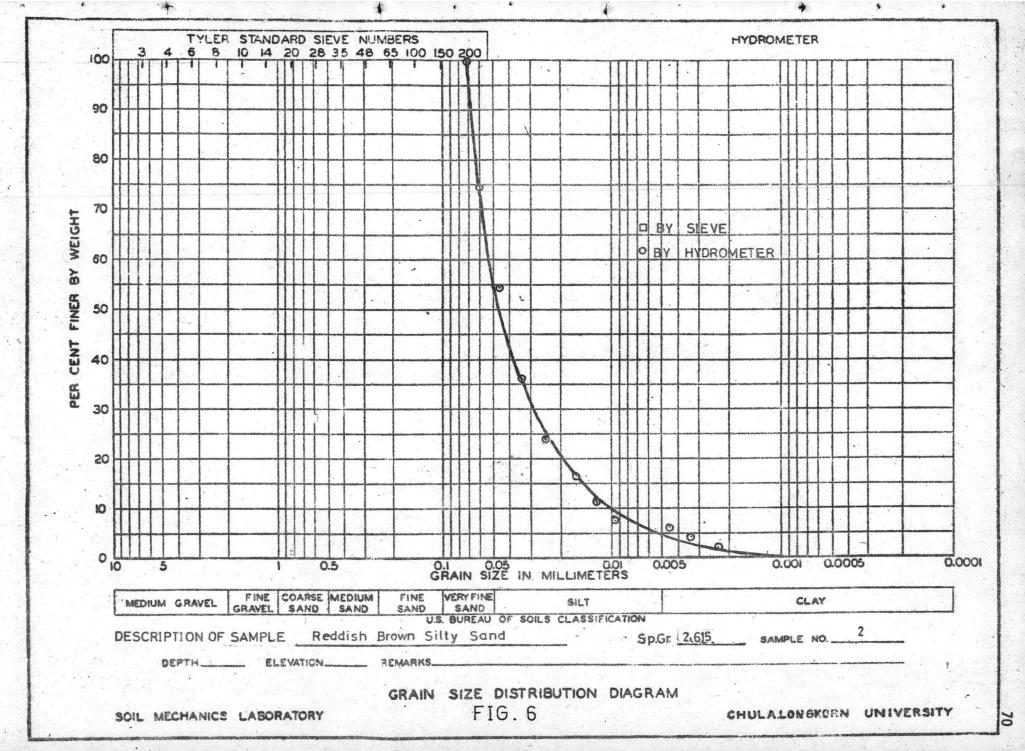
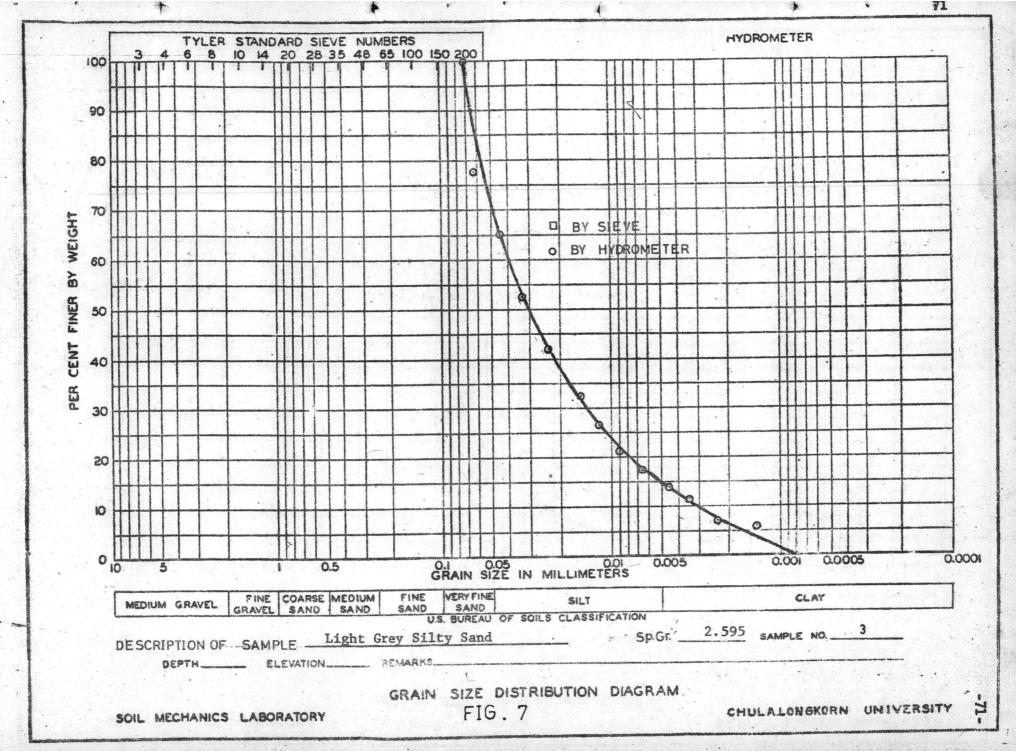
Testing with \$2.0 c.m. Glass Tube (Continued)

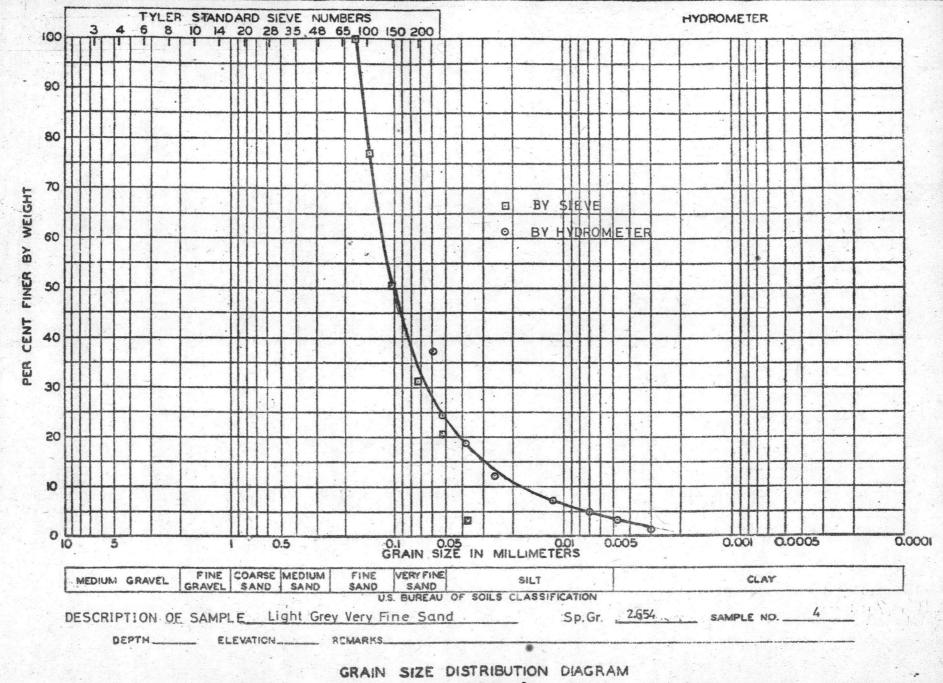
Description of Soil		Air-Permeabil	Lity Meth.	Specific Su Sedimentati		S	Sc
Sample	Porosity	Specific Surface c.m.	Mean Value 2 Sa c.m. 2 gm.	Spherical Assumption	Cubical Assumption S	S _s S _a	S _c S _a
		gm.	J Game	Ss	S _c		
10 July 20							
Reddish Brown Very Fine	0.3770	578					
Sand	0.3732	598	2.00	* * * * * * * * * * * * * * * * * * * *			i i
(Passing No. 200 Sieve)	0.3602	593	594	458	570	0.77	0.96
	0.3484	601				+ ·	
	0.3366	607					
	. 4						
	0.4070	4.60					
Light Grey Very Fine Sand	0.4270	468					
(Passing No. 80 Sieve - Retains	0.4016	457	1	•			
ing No. 400 Sieve)	0.3634	469	463	306	379	0.66	0.82
	0.3506	458				,	
						-	
						Ŷ	

Testing with \$2.0 c.m. Glass Tube (Continued)

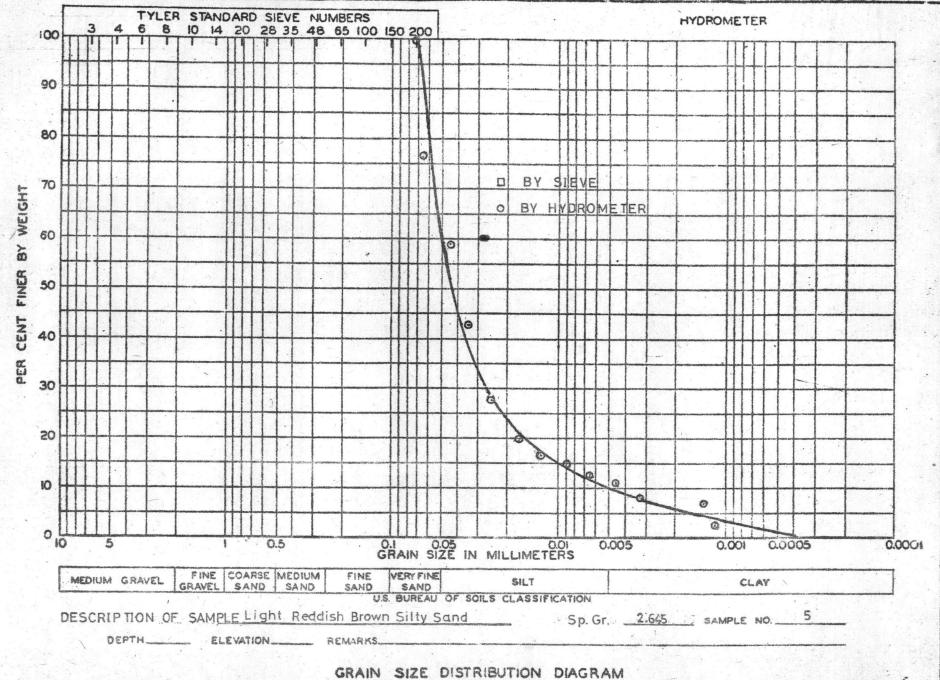
Description of Soil	Porosity	Air-Permeabil	Lity Meth.	Specific Su Sedimentati	Ss	Sc	
Sample		Specific Surface c.m.	Mean Value S _a	Spherical Assumption S	Cubical Assumption S _c	Sa	Sa
Light Grey Very Fine Sand	0.4097	700	*				
(Passing No. 80 Sieve)	0.3988	727	826	671	836	0.81	1.01
	0.3847	778					
	0.374/	826					
		,			· · · · · · · · · · · · · · · · · · ·		
			\				

Note * = Specific Surface value from the minimum porosity.


FIG.4

SOIL MECHANICS LABORATORY



SOIL MECHANICS LABORATORY

FIG. 8

CHULALONGKORN UNIVERSITY

Discussion

In the first series of experiments, the very fine soil samples were tested with the developed apparatus 0.4 c.m. in diameter and the space in cell 1.0 c.m. for sample length. The results from the experiment in term of the specific surface are very different from the typical value (1969) of the clay minerals. The main reason may be the compacted bed of clay minerals have the very small pores diameter and the flow of gas pass through these pores do not follow the Poiseulle's law. Because it has been realized that, with compacted beds of very fine particle and gases near atmospheric pressure or with coarse particles and gases at reduced pressures, the size of the pore or void spaces becomes small in comparison with the mean free path of the molecules of the gas which may be caused to flow through the bed. When this condition previals in capillary tubes the rate of gas flow is greater than that given by Poiseuille's law. This is attributed to 'slippage' at the capillary walls. If the mean free path is much greater than the capillary diameter, viscosity plays no part in flow, since molecules collide only with capillary wails, and not with one another. Such 'free molecule' or Knudsen flow is a process of diffusion. The comparison of air-permeability results and the typical value for determination of specific surface is shown in Table 2. this Table the sample P 354 (Kaolinite) and P 886 (Kaolinite with some quartz) give the ratio $\frac{S}{C}$ about three for the closest agreement with the typical value but sample No. 5992 and sample No. 674 give much larger ratio of c . This may be caused by the constituent

of a mixture which were more different in size and also the percentages of the very small particle was much more than the bigger one. The arrangement of the structure of the mixture should be looser than the arrangement of each size of particle by itself alone. Therefore, the permeability of the mixture should be higher and the specific surface values obtained, should be lower. In the second series of experiments, the fine soil samples in range of silt size were tested with the developed apparatus 0.80 c.m. inside diameter glass tubing and the sample length in permeability cell of 1.50 c.m.. In this range, it was found that the ratio oc did not vary in wide range and the average value of this ratio was about 1.03. The corresponding result in this range was due to the similarity of the soil sample shape. The range of pore shapes of this type of soil was such that the shape factor (C) was reasonably constant, and that the tortuosity was also not very susceptible to variations in pore geometry. Another effective factor was that the uniformity of pore size was implied, if a pore space was represented by a bundle of capillaries of widely varying radius, the mean hydraulic radius was not the correct mean value for permeability calculation; and the Kozeny equation was then no longer valid. The difference of the calculated value and the experimental value should be very large. In the last series of experiments, the coarse grained soil samples in ranges of sand size were tested with the developed apparatus 2.0 c.m. inside diamter glass tubing and the space in permeability cell of 2.50 c.m. was provided for the sample. The results of the sedimentation and sieve analyses in the present

work had been calculated, using both Andreasen cube and the spherical dimensions. In the Andreasen method the particle was expressed as the length of the side of the cube of the same volume as the Stoke's law sphere. The Andreasen dimension was 0.8061 times the spherical dimension . The assumption of the calculating result was that the mean particle diameter of 'd/2' was assigned to the small proportion of particles below 'd'. From an examination of the results. there was a close agreement of the value obtained by the airpermeability and the sedimentation methods when the latter were calculated by the cubical dimension. The mean ratio a was about 1.24 and this value showed the surface factor of sand which was different from silt. For light grey very fine sand passing No. 80 sieve and retaining No. 400 sieve the result from the experiment was less close agreement with the result from sieve analysis because of the uncertainty of percentage retained of the soil fraction on the sieve having the smaller aperture than the sieve No. 200. results of the testing by three size of apparatus, with the same soil samples, the surface area values obtained were shown to be independent of the dimensions of the u-tube manometer. The time of flow rate should be considered to prevent the prevailing of the turbulent flow. Carman Pf. 6 (1938) had shown that for values of greater than 2.0 the Kozeny-Carman equation did not hold owing to turbulent flow and that for extremely low values of this ratio the permeability-porosity relation was not true. The flow rates used in all the tests should be within the limits 1-3x10 for

the ratio V

A 7 (1-E) s where 7 is the kinematic viscosity of fluid in stokes. The advantages of varied size of the u-tube manometer is as follows: when the coarse grained soil is tested, the bigger size would give enough time for the operator to measured the time of the falling of manometer liquid with more accuracy and the time is saved when the fine grained soil is tested with the smaller size of apparatus. The plotting of specific surface value versus porosity in Fig. 10, 11, 12, 13, shows a distinct scatter about a mean value of S, at each porosity. The value over a limited porosity range gives the impression that S is independent of porosity. This range may reasonably regard as the normal range of porosities. It might also be expected that as the porosity approaches the normal range the pore texture becomes more uniform, and therefore the values of the calculated specific surface tend to close to constant. Some soil samples No. 3,674 and 5992 show no tendency for specific surface to become constant at low porosities. This may be due to the soil particles. Carman and Malherbe (1950) has explained that harder particles either show a slower rate of change of specific surface throughout, or approach a slower rate of change in the 'normal' range, but softer particles show the change much more rapidly with porosity over the whole porosity range. The reason for the rapid increase in S at low porosities is not self-evident. It was thought at first that the soil particles were crushed into smaller fragments, thus producing a real increase in S. In any case it seems reasonable to assume that porosities below the normal rangecan only be produced by an abnormal porous texture, so that values of Sw below the normal range as well as above it, are suspect. For uniform equi-dimensional particles the 'normal' porosity range is

= 0.4-0.5 and for non-uniform particles, it can be less and for acicular, platy or skeletal particles it can be considerably higher than this range.

Care should be exercised during the experimental stage on the followings:

- 1) Weighing the sample when use the manometer of 0.40 c.m. and 0.80 c.m. diameter since the difference of weight ±0.10 gram may cause the considerable difference of specific surface.
- 2) The accuracy in determining the bulk volume which will be varied with the weight of the sample. The precision of the volume ±0.01 cu.c.m. may cause the difference of specific surface about ±0.5 %.
- 3) The mode of compaction may give the variation of the testing time. The segregation of the fine particle from the coarse particle introduces the possibility of causing uneven compression.

 This would give a lower permeability than an evenly compressed sample.
- 4) The proposity of the sample may have significant effect on the specific surface. Hence, the prosity of the sample should be calculated not only from the accurate value of weight and volume but also it is necessary to use an accurate value of the specific gravity of the particles.

Determination of the surface area of a particle requires the study of processes of different kinds; in choosing a particular method of measurement. Consideration should be given to the nature of the process being studied and it relation to the various methods of measurement available. For example, where the process is essen-

tially one of surface behavior as in wetting or adsorption, then an adsorption method of measuring the surface area of the solid bears the closest relation to the practical conditions under investigation. Where purely physical interaction of the solid particles are being considered, as in the case of rheological studies of mixtures of highly viscous liquid and mineral particles, then the air-permeability method is probably of more value than most other methods. It is assumed in the air-permeability method that the bed of particle behaves as a bundle of capillaries. Consequently, only the surface of the continuous paths through the material will contribute to the measured specific surface area. This area is not the same as that measured by adsorbing a gas on to the surface of the particles where all the surface accessible to gas molecules of the type used will contribute. There will therefore be a general trend for results obtained from the adsorption of nitrogen to be larger than those obtained by a permeability method. This differences may be accentuated if the particle has an appreciable 'internal' surface due to cracks, internal pores and other irregularities. addition, the permeability methods may not measure the full 'external' surface of the particle because of the formation of blind pores during compaction of the bed. In very fine particles a further complication arises since, as has been shown by Carman P.C. 19 (1950), it is very difficult to compact a fine particles to give a bed of low void-fraction; with the more porous type of bed, there may be serious lack of uniformity in the compacted bed. And in all cases the area measured by the gas adsorption method was larger than the air-permeability method.