Chapter IV

EXPERIMENTAL RESULTS

4.1 Determination of Fluidizing Air Velocities

The minimum fluidizing velocitiy for each particle size is calibrated as described in 3.3.1 and data is shown in table 4.1. For each particle size, we can find a curve related the pressure drop across the bed and air velocity for one height of fixed bed, so, for the advantage of reliability, three curves of such relation are found and it observed. that each maximum pressure drop of a height of fixed bed gives the value of minimum fluidizing velocity quite close to each other. For convenient keeping up, table 4.1 consists of three parts of data, each part is data for one particle size and will be followed by the figure showing curves plotted from the data in that part. Therefore, fig 4.1 shows how U_{mf} for $d_p = 0.33$ cm is determined and so do fig 4.2,4.3 for $d_p = 0.51$ 0.64. cm. respectively. All U obtained will be compared to those calculated by different equations from theory and the fitness is clarified in the next chapter. The minimum fluidizing velocities for $d_p = 0.33, 0.51$ and 0.64 cm. from calibration are 4.9, 5.1 and 5.7 m./min correspondingly.

The superficial air velocity for each particle size is measured at the enlarged part of fluidizing column by anaemometer. The air velocity observed is strong enough to fluidize the fixed bed of 2.5 cm. height to the fluidized bed of 5.0 cm. height approximately. Data recorded is shown in table 4.2 which consists of 3 parts, each part for one particle size. For $d_p = 0.33$ cm the first or prior average of air velocities are 13.1,13.0,13.2 m/min. so gives the final average 13.1m/min. which is to be reimbursted to the actual velocity at the pervious bed as 31.4 m/min or 52.4 cm/sec. Similarly, the superficial air velocity for $d_p = 0.51$ and 0.64 cm are found to be 66.8 and 105.7 cm/sec. respectively, besides that, in order to observe the uniformity of fluidizing air, the degree of uniformity is expressed in term of deviation percentage which shows how much different is between the average value and the nearest,

<u>Table 4.1</u> Determination of Minimum Fluidizing Velocity (U_{mf}) Fluidizing Column of 3.75 in diameter or 0.0767ft²cross sectional area.

dp	Height	Pressure	
	of bed	drop	$(10^{-1} \text{ ft}^3/\text{min})$
(cm)	(cm)	(mm 1H20)	$1^{\text{Bt}} 2^{\text{nd}} 3^{\text{rd}}$ av (ft/min)
0.33	28	1.0	6.0 5.0 5.0 5.0 7.8
		2:0	8.0 8.9 8.0 8.3 10.8
		2.5	11.0 11.0 11.0 11.0 14.3
		3.2	12.0 12.0 12.0 12.0 15.6
		4.0	12.3 12.5 12.3 12.4 16.2
		4.0	13.0 13.0 13.0 13.0 16.9
		4.0	21.5 21.5 21.5 21.5 28.0
		4.0	26.5 26.5 26.5 26.5 34.5
	47.5	1.5	7.7 7.7 7.7 7.7 10.0
		3.0	10.5 10.5 10.5 10.5 13.7
	1-1-1-1	3.5	10.8 10.8 10.8 10.8 14.1
		5.0	11.7 11.7 11.7 11.7 15.3
181.91		5.0	12.0 12.0 12.0 12.0 15.7
		6.0	13.2 13.2 13.1 13.2 17.2
		6.0	19.6 19.8 19.8 19.6 25.5
		6.0	25.9 26.0 25.8 25.9 33.7
	61	1.0	4.3 3.8 3.8 4 5.2
		2.0	6.6 5.6 6.7 6.6 8.6
		4.0	10.8 10.9 10.6 10.8 14.1
		6.5	11.4 11.6 11.2 11.4 14.8
		8.0	12.0 12.0 12.2 12.1 15.8
		9.0	13.0 13.0 13.0 13.0 16.9
		9.0	18.1 18.0 18.0 18.0 23.7
	Common de la		

Table 4.1 (Continued)

ďp	Height of bed	Pressure drop	Volume of Air Flow (10 ⁻¹ ft ³ /min)				Air Velocity
(cm)	(cm)	(mm.)	150			IN CRITIN CONTRACTOR	(ft/min)
0.51	28	1.5	8.7	8.8	8.8	8.8	11.5
		2.5	10.5	10.5	10.5	10.5	13.7
		3.5	12.8	12.8	13.0	12.9	16.8
		4.0	13.0	13.0	13.0	13.0	16.9
		4.0	14.0	13.7	14.0	13.9	18.1
			22.6	22.4	22.7	22.6	29.5
	47.5	2.5	7.5	8.0	8.0	7.9	10.3
		4.0	10.5	11.5	10.5	10.8	14.1
		6.0	11.5	12.5	12.2	12.1	15.7
		7.0	13.1	13.0	12.6	12.9	16.8
		7.0	13.0	13.0	13.0	13.0	16.9
		7.0	13.4	13.4	13.4	13.4	17.5
			19.4	19.8	19.7	19.6	25.6
	65	2.0	6.0	5.0	5.0	6.0	7.8
	1.200	4.0	12.0	11.0	11.5	11.5	14.9
		5.0	12.0	12.0	12.0	12.0	15.7
		6.5	12.0	12.0	12.0	12.0	15.7
		7.5	12.4	12.7	12.1	12.4	16.2
		9.0	12.9	12.7	12.1	12.9	16.8
		1.0	18.0	17.9	18.0	17.9	23:4
		1.0	21.5	21.4	21.0	21.3	27.8

Table 4.1 (Continued)

ďp	Height of bed	Pressure drop		ume o 10 ⁻¹			Air Velocity
(cm)	(cm)	(mm.H ₂ 0)	1	2 <u>nd</u>	3 rd	av	(ît/min)
0.64	28	0.5	5.5	5.6	5.5	5.5	7.2
		1.0	8.4	8.0	8.5	8.3	10.3
		2.0	10.7	10.5	10.6	10.5	13.7
	Sale of Sale	2.2	12.7	12.2	12.5	12.5	15.2
		2.2	15.0	15.0	15.0	15.0	19.6
		2.2	23.9	24.2	23.4	23.8	31.0
	. 54	0.5	6.7	6.9	6,8	6.8	8.9
		2.0	12.2	12.3	12.3	12.3	16.0
		4.0	12.6	12.9	12.8	12.8	16.6
		6.0	13.5	13.5	13.5	1355	17.6
		8.0	14.4	14.2	14.3	14.3	18.6
		9.0	.14.4	14.4	14.4	14.4	18.8
		9.0	16.0	16.0	16.0	16.0	20.9
		9.0	23.3	23.3	23.3	23.3	30.4
	65	0.5	6.9	6.9	6.9	6.9	9.0
		2.0	12.0	12.0	12.0	12.0	15.6
		1.5.	12.7	12.6	12.6	12.6	16.4
		2.5	13.0	13.0	13.0	13.0	16.9
	a martine	4.5	13.9	14.0	13.8	13.9	18.1
		7.5	14.6	15.0	15.0	15.0	12.0
		9.0	14.7	14.7	14.7	14.7	19.1
		9.0	19.5	19.5	19.5	19.5	25.4

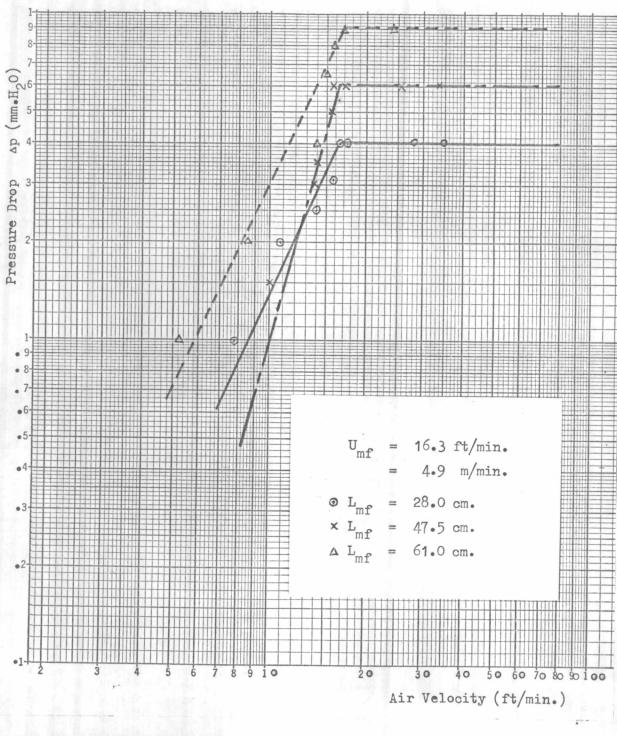
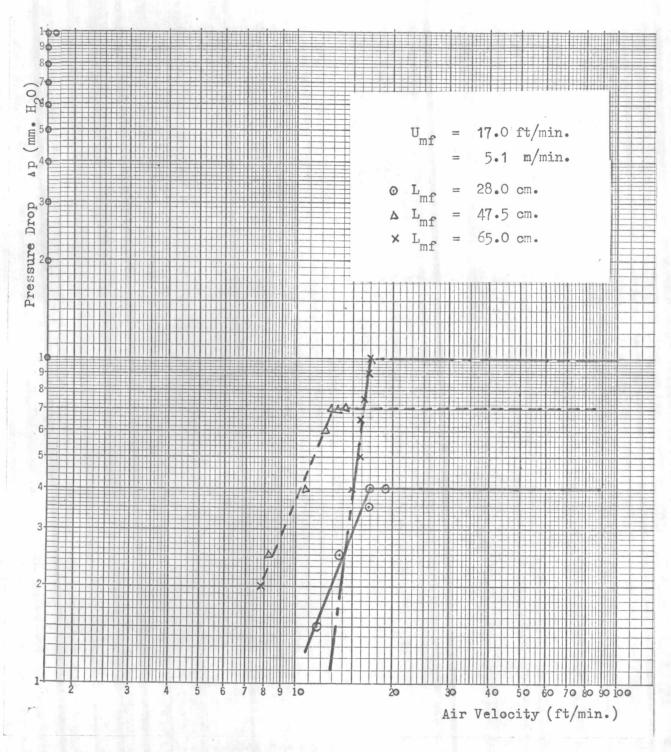
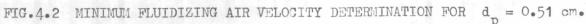




FIG.4.1 MINIMUM FLUIDIZING AIR VELOCITY DETERMINATION FOR $d_p = 0.33$ cm.

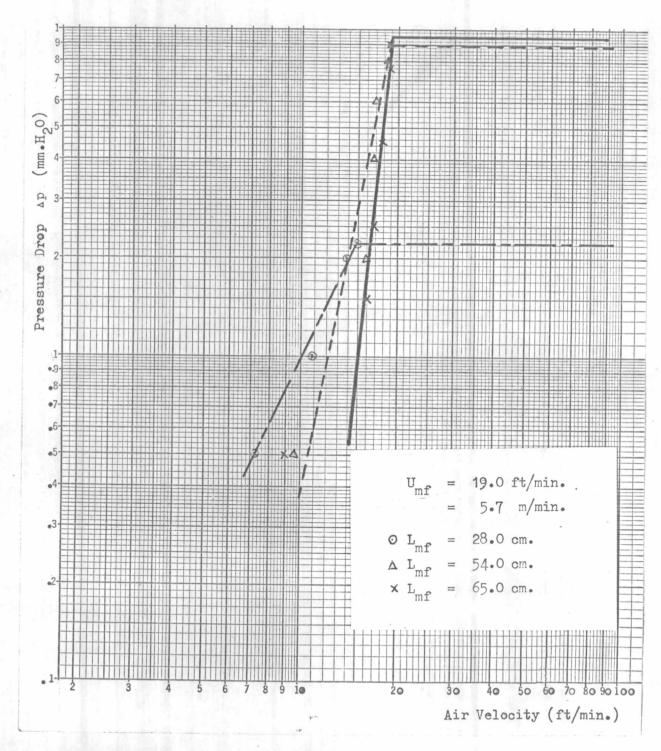


FIG.4.3 MINIMUM FLUIDIZING AIR VELOCITY DETERMINATION FOR $d_p = 0.64$ cm.

. Table 4.2 Superficial Air Velocity Calibration (U_0)

dp	Scale		Inaemo	meter	Reading					
	on bed		Devia	tion		Devia	tion		Devia	tion
(cm)		(m/min)	abso lute	%	ḿ∕2min	abso lute	%	m/3min	abso lute	%
5.33	10	11.9	1.2		24.1	1.8		36.3	3.4	8.6
	20	13.1	0.0	0.0	25.3	0.6	2.3	39.5	0.2	0.5
	30	12.1	1.0		24.4	1.5		37.2	2.5	1.12
	40	13.3	0.2		27.5	1.6		42.4	2.7	
	50	14.5	1.4		28.2	2.3		42.8	3.1	
	60	14.8	1.7	12.9	28.4	2.5	9.7	42.3	2.6	
	70	13.4	0.3		26.8	0.9		39.4	0.3	
	80	12.4	0.7		24.5	1.4		40.5	0.8	
	90	11.6	1.5		23.4	2.5	9.7	36.8	0.9	
Read	ing Av.	13.1			25.9		•	39.7		
Prio	r Av.								1	
(m/m:	in)	13.1			13.0			13.2		
Fina	l Av.									•
(m/m:	in)				13.1					
Av.S1	uper.									
Vel.(r	n/min)				31.4					
((óm/sec)				52.4					

 $L_{mf} = 2.5 \text{ cm}$ $L_{p} = 5.0 \text{ cm}$

Table 4.2	(Continued)
-----------	-------------

d _p	Scale			Ana	emometer	Read	ing			
P	on bed	There are	Devi	ation		Devia	ation		Devia	tion
(cm)	((m/min)	abso lute		m/2min	abso lute	%	m/3min	abso lute	0%
0.51	10	15.4	1.5		31.5	1.3		46.2	4.5	
	20	16.8	0.1	0.5	32.2	0.6		49.5	1.2	12.4
	30	15.8	1.1		29.7	3.1		46.7	4.0	
	40	17.1	0.2		33.2	0.4	1122	5825	1.8	
	50	18.9	2.0		37.0	4.2	12.8	55.8	5.1	10.1
	60	19.4	2.5	14.8	36.3	3.5		55.6	4.9	
	70	17.7	0.8		34.6	1.8		54.3	3.6	
	80	15.7	1.2		31.1	1.7		49.4	1.3	
	90	15.4	1.5		29.8	3.0	•	46.4	4.3	
Readi	ng Av.	16.9			32.8			50.7		
Prior (m/mi		16.9			16.4			16.9		
Final (m/mi					16.7					
Av.Su Vel.(nper. m/min)				40.1			- Aliman - Aliman - Aliman		
(cm/sec)				66.8	0.00			1.	

dp	Scale			.Ana	emomete	r Read	ling			
P	on bed		Devia	tion		Devis	ation		Devia	tion
(cm)		(m/min)	abso lute	%	m/2min	abso lute	%	m/3min	abso lute	%
0.64	10	23.8	2.7		46.8	6.4		68.3	10.3	
	20	24.3	2.2		48.3	4.9		78.8	0.2	0.3
	30	23.7	2.8	10.6	47.4	5.8	10.9	75.3	3.3	
	40	28.5	2.0		57.1	3.9		89.0	10.4	1.3
	50	28.9	2.4		58.9	5.7		90.4	11.8	15.0
	60	29.1	2.6		59.0	5.8	10.9	85.6	7.0	
	70	26.4	0.1	0.4	58.7	5.5		80.2	1.6	
	80	25.2	1.3		53.2	0.0	0.0	75.1	1.5	
	90	24.4	2.1		48.3	4.9		74.8	3.8	
Readin	g Av.	26.5			53.2			78.6		
Prior										
(m/min)	26.5			26.6			78.6		
Final (m/min					26.4					
Av. ^S up	er									
Vel.(m					63.4					
(cm/sec)				105.7					

Table 4.2 (Continued)

or the average and the farthest. For $d_p = 0.33$, the nearest to average deviates 0.0% and the farthest 12.9% which means the uniformity of the superficial air velocity for $d_p = 0.33$ cm. deviates at most 12.9%. Meanwhile for $d_p = 0.51$ and 0.64 cm the air velocity deviates at most 14.8% and 15.0% respectively. Hence the maximum deviation of the superficial air velocity in this experiment might not exceed 15.0% from average.

4.2 Determination of PFD Feed Rate (F), Voidage and Bulk Density

The measurement was described in 3.3.2. Table 4.3 showed all the measuring data. In details, feed rates for each speed are averaged from the amount of unagglomerate shown in table 4.6 to 4.11 The feed rate F_1 was averaged from table 4.6 to 4.8 and F_2 from table 4.9 to 4.11. For the first rate F_1 , it is averaged 6.9 gm/min and the second rate $F_2 = 10.8$ gm/min.

4.3 Determination of Surface Tension.

The determined surface tension of PFD solution used in this experiment is observed from data relating the surface tension of PFD in gasoline of various PFD concentration as illustrated by fig 4.4 from which shows that higher concentration of PFD in gasoline increases the surface tension in a decreasing rate with an asymtote at the scale reading 16.5 on the meter. The scale reading on the surface tensiometer is then calibrated by relating the scale reading and the known values of surface tension as shown in table 4.5 and fig. 4.5. The scale reading of the asymtote presented the surface tension at 28 dyne/om and this value would be used in this experiment. It should be remarked that the surface tension characteristic of polystyrene shown has a sharp deviation or bending point at the PFD weight = 900 mg/34 gm gasoline which corresponds to = 23 dyne/om. Therefore, it is reasonable to anticipate that an individual sticky foam drop will attach to the other when its surface tension is at least 23 dyne/om.

. This will be in the second second second second				
Particle size	Weight of PFD	Bulk Density	Water filled	Voidag
(om)	1500ml (gm)	(gm/ml)	(ml)	
0.33	16.55		583	ando amonte tra martes de conserva a referencia conse
	18.40		617	
	18.20		605	
	15.85		599	
	17.10		603	
	18.50		608	
	17.65	. 3 <u>.</u>	595	
	16.45		605	
	19.00		59 1	
n an fair an	16.65	1. 	603	
maticia Mice	17.44	0.0116	601.4	0•401 Modelater
(51)	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$		· (6))	Minde Road Statements genoags w

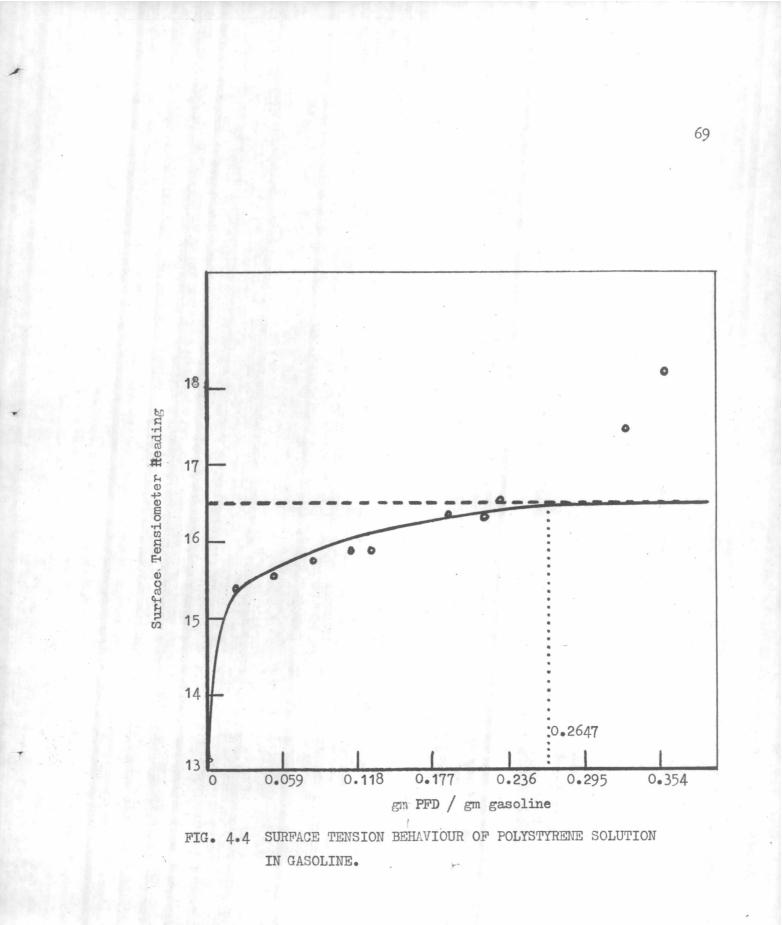
Table 4.3 PFD Characteristics and Feed Rate Determination.

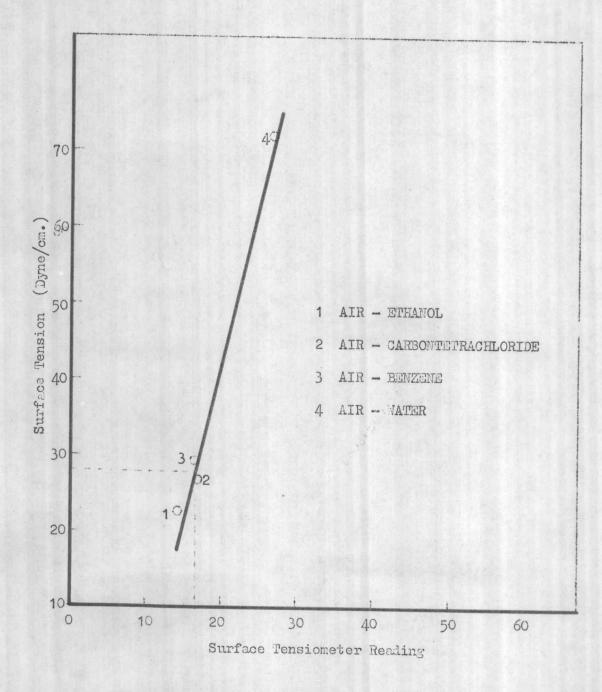
Table 4	-3 (Con	tinued)
---------	---------	---------

1.1	1			
Particle size	Weight of PFD 1500ml	Bulk Density	Water filled	Voidage
(cm)	(gm)	(gm/ml)	(ml)	
0.54		and an random standy with difficulties do not be the		teachter michaelsen fernd sondere die zelfen gebenne
0.51	20,50		576	
	18.75		588	
	18.15		597	
	16.65		586	
	17.75		563	
	19.35		587	
	17.40		564	
	18.35	s	562	
	18.10		570	
endiscidente enveluigente (indisci en orden	19.50	Nord K-10 Par Barton Landson Angel	582	
	18•45	0.0123	576.9	0.385

Table 4.3 (Continued)

Particle size	Weight of PFD 1500ml	Bulk Density	Water filled	Voidag
(cm)	(gm)	(gm/ml)	(ml)	
0.64	19.80	SERVER BEREINSTRUCTURE UN VERSION AND AND AND AND AND AND AND AND AND AN	566	nder den den den konden dien die seiten
	21:45		569	
	17.35		581	
	17.55		576	
	18.70		5'0	
	17.95		5'18	
	16.55		580	
	20.30		5 4	
	17.25		567	
	18.80	and a fair of the second second	584	e No March March March March
		and and an	nantina an a china kao 'n a c' constant ann an	terri Accilanti fakilansi kastater avat eran
	18.57	0.0124	573.5	0.382
			diff Read fabries 6-17 Re - Karta (Kradevil) viet weise and fried	integrice to be closed and a second state of the strategy


Table 4.4 Surface Tension Determination of Polystyrene Solution in gasoline.


Basis : Gasoline high octane 50 ml. = 34 gm

PFD added (mg)	Reading	Ratio (gmPFD/gm.gasoline)
0	13.1	0.000
,800	15.3	0.024
1,800	15.5	0.053
2,800	15.7	0.082
3,800	15.8	0.112
4,800	15.8	0.141
5,300	15.6	0.156
6,300	16.3	0.185
7', 300	16.5	0.215
7,800	16.5	0.229
9,000	17.5	0.265
10,500	17-4	0.309
11,500	18.1	0.338

Table 4.5 Surface Tensiometer Calibration

System	Tensiometer	Actual		
	Reading	Surface Tension		
		dyne/cm.		
1. Air Ethanol	14.4	22.6		
2. Air CCL ₄	16.7	26.8		
3. Air Benzene	17.0	28.9		
4. Air Water	21.1	71.9		

FIG. 4.5 SURFACE TENSIONETER CALIBRATION

4.4 The Relationships of the Feed of Agglomerating Agent(C), the Number of Agglomerates(N), PFD Feed Rate(F) and PFD Sizes(d_p)

The experiments were conducted at the fixed two PFD feed rates so there should be two different feed rates of PFD for a group of different PFD sizes. For each PFD size, various amount of gasoline fed was sprayed through the inlet duct of the distributor. The number of agglomerates (N) occured during travelling along the bed length was counted as details shown in table 4.6 to 4.11 and the relationships between gasoline fed (C) and number of agglomerates occured (N) are presented in fig 4.6 to 4.11. The overall result is also shown in fig 4.12 which brought the curves from the forecoming fig 4.6 to 4.11. so that the effect of the two feed rate on different PFD size could be inspected. Fig 4.12 informed that the lower PFD feed rate (F) more agglomerates (N) was obtained. The slope and intersection of the straight line that related N versus C in fig 4.6 to fig 4.11 were evaluated by computer by means of Least Square Method, The result run by computer was shown in table 4.12 it showed two evaluations, the exponential and linear regression and by considering the sum of square error, the linear's is smaller and determined to satisfy the data.

Table 4.6 Effect of gasoline on number of agglomerates

PFD diameter = 3.3 m.m.

PFD feed rate = 7.8 gm/min

	Lawrence in survey of the	Agglo	merat	·C:				Unaggl	omerate
Gasoline m1/5 min	Num an a	ber of agglou	drop erate	s in clus	ter		Total Cluster	Weight (gm)	Volume (ml)
	2 (3-4)	(5-6)	(7-9)((10-20)>20			
150	4	3					7	39	3500
160	5	8	2				15	39	3500
150	7	2					9	39	3500
150	5	1	2				8	39	3500
155	3	4	-	2			9	39	3500
165	7	1				194	8	39	3500
150	5	3	3	2			13	38	3400
150	8	1	1	2			12	38	3400
150	7	1	-	1			9	38	3400
150	5				n		5	39	3500
150	8	3	-	2	1		14	39	3500
160	3	6	3	1	1		14	40	3500
155	4	9	.2				15	42	3600
160	17	2	-	-	1		20	39	3500
250	7	5	3				15	38	3400
245	10	10	-	4	-	1	25	38	3400
245	2	9	3				14	39	3500
245	8	5	3				16	40	3500
250	2	9	4	2			17	41	3500
250	6	4	3	5			18	39	3500
254	9	6	-	2		1	17	38	3400
260	8	5	-	3	2		18	40	3500

		A	gglom	erate				Unaggl	omerate
Gasoline ml/5 min	Num an	ber o agglo	f dro merat	ps in e clus	ster		Total Cluster	Weight (gm)	Volume (ml)
	2	(3-4) (5-6)(7-9)(10-20))>20			
250	3	2	1				6	38	3400
260	2	5					7	39	3500
250	11	4					15	42	3600
250	9	3	4				16	42	3600
250	9	1					10	42	3600
250	5	3	7	2	-	1	19	42	3100
260	3						3	38	3400
245	10	2	-	2			14	39	3500
245	. 3	1	2			1	6	39	3500
245	4	. 8	2	4			18	39	3500
250	10	7		3			17	40	3500
420	8	6	: 3	2	3		22	40	3500
420	31	22	18	1			62	40	3500
420	12	4	8				24	42	3600
420	15	8	7	14	3		33	39	3400
420	11	5	5	7			.28	38	3400
420	13	9	3	-	1		26	42	3600
425	14	9	21	· ····	9 - 1930 - 1949 - 3 - 5 - 5 - 5		44	42	3600
430	18	6	-	3			27	41	3500
430	17	10	1	4	3	1	35	43	3700
425	12	13	-	4	i.	an a	29	39	3400
420	9	7	3	1	1		20	38	3400
435	13	9	4	-			. 26	36	3300
435	9	7	-	2			18	38	3400
435	5	4	-	8			17	39	3500

Table 4.6 (Continued)

		A	gglom	erate				Unagglom	ierate
Gasoline ml/5 min	Num	ber o agglo	f 'drom merato	os in e clus	ster		Total Cluster	Weight (gm)	Volume (ml)
	2	2 (3-4) 5-6)(7-9),(10) > 20			
425	7	2					9	40	3600
425	11	3	6	5			25	40	3700
425	10	11	3	4			28	39	
525	29	17	5		1		42	39	3500 3500
540	25	11	13	8	2	6	65	39	
540	16	12	4	8	1		31	45	3500
540	23	17	7	4			51	40	3900 3600
530	-	-	-	_	-	-	00		3000
520	20	22	3	1			46	38	3400
520	12	7	5	-	_	2	26	42	3600
520	-	-	_	-	-	2	00;	72	3000
520	18	5	3	2	-	1	29	40	-
520	14	8	5	2	6		35	39	3500 3400
620	27	24	18	_	-	3	72	38	3400
520	15	8	7	3		-	33	39	
520			_	-	-	_	00	57	3500
520	8	6	4				18	41	3600
520	14	9	7	2	_	2	34	42	3600
530	-	-	-	-	-	-		-	3000
520	-	-	-	_	-	_	00		-

Table 4.6 (Continued)

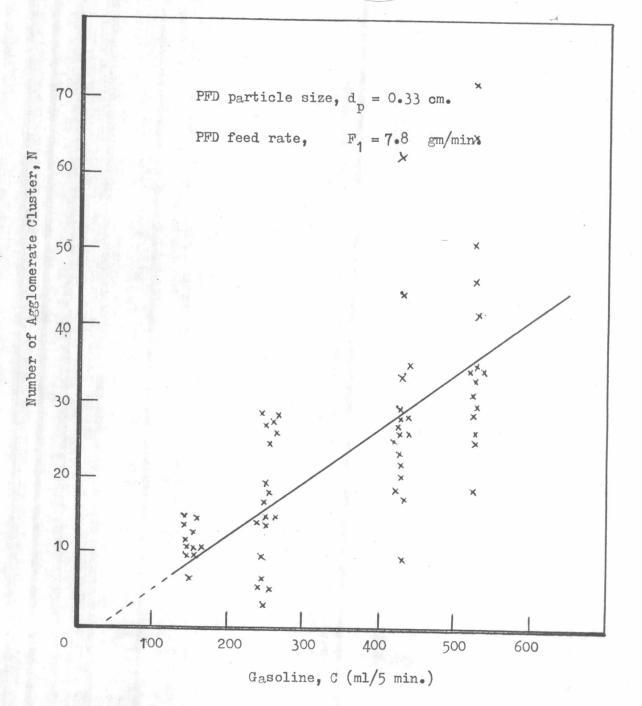


FIG. 4.6 EFFECT OF GASOLINE ON THE PFD AGGLOMERATION FOR $d_p = 0.33$ cm. AT F

Table 4.7 Effect of gasoline on number of agglomerates

PFD diameter = 5.1 m.m.

PFD feed rate = 6.6 gm/min

		A	gglor	nerate				Unagglomerate		
Gasoline ml/5 min	Nun an	ber o agglo	f dro merai	ops in te clu	ster		Total	Weight (gm)	Volume (ml)	
	2	(3-4) (5-6)(7-9)	(10-2	0) <u>></u> 20		10	(mil)	
150	7	4	1				10			
155	6	2	1				12 8	30	3300	
140	7	-	2					32	3400	
150	4	5	2				9	31	3400	
150	3	3					9	33	3500	
155	. 8	1						32	3400	
155	6						9	33	3500	
		3	1				10	35	3600	
165	4	2	3				9	32	3400	
165	7	1	2				10	30	3300	
165	3	4					7	34	3600	
165	5	3	4	2			14	33	3600	
170	-	-	-	-	-	-	0	35	3700	
155	3	5					8	32	3500	
155	7	-	1				8	33	3600	
155	5						5	30	3500	
155	6	4					10	32	3400	
155	7	4	1				12	34	3600	
250	8	5					17	32	3500	
250	7	8	2	2			19	30	3400	
250	9	9	2				20	29	3300	
250	5	6	-	2			13	32	3600	
250	6	10	1	-			17	34	3700	

	-		Agglo	omerat	e			Unaggl	omerate
Gasoline ml/5 min	Nu ar	umber n agg	of dr Lomera	cops i ate cl	n uster		Total Cluster	Weight (gm)	Volume (ml)
	2	(3-	4 (5-)	(7-9)((10-20) > 20		10/	(m±)
250	15	2	1	-	1		19	30	3300
250	6	3	-	1	2		12	33	3600
245	8	-	4	1			13	30	3400
255	-= 4	5	1				10	34	3700
250	4	11	1				16	32	3600
255	3	1	-	1			5	33	3600
255	10	3	2				15	33	3600
255	13	17	-	2			32	34	
250	9	-	2				11	35	3700 3700
250	7	4	-	1			12	32	3500
255	8	3	1	3			18	33	3600
255	11	9	3	-	1		24	34	3600
250	8	-	2	1			11	32	3500
420	5	3	1				9	34	3300
420	13	14	1	3			31	34	3300
420	8	4	3	1	2		18	34	3300
420	12	10	1	2	-	1	26	34	3300
435	7	3	8				18	34	3300
440	9	13	1	1			24	34	3300
435	7	8	3	2			20	34	3300
435	26	15	12	4	3	2	62	34	3300
435	8	6	2	1			17	34	3300
435	7	3	-	1	3		14	34	3300
420	9	5	-	2			16	34	3300
425	11	12	4				27	34	3300

Table 4.7 (Continued)

			Agglo	nerat	е			Unaggl	omerate
Gasoline m1/5 min	Nu an	mber aggl	of dr omera	ops in te clu	n 1ster		Total Cluster	Weight (gm)	Volume (ml)
	2	(3-	4) (5-6)	(7-9)(10-20)	>20		(0)	(11.2)
425	5	7	3	3			18	34	3300
420	10	7	2				19	34	3300
420	8	4	1	2			15	34	3300
420	6	6	3	1			16	34	3300
420	10	13	11	5	1	2	42	34	3300
420	14	5	-	1			20	34	3300
420	6	6	3	1	1		17	34	3300
525			-	-	-	_	0		-
525	8	9	4	-	2	1	24	34	3300
545	7	8	1	4	-	3	23	34	3300
540	10	5	3	4	1	1	24	35	3400
540	-	-	-	-	-	-	œ	-	-
525	11	5	3	4		50	23	35	3400
525	35	16	7	1	5	4	68	35	3400
540	6	5	4	-	5		20	34	3300
530	29	17	19	3	4		72	34	3300
530	20	13	4	2	1	2	42	34	3300
525	9	7	3	2			21	34	3300
530	-	-		-	-	-	O		-
525	11	5	-	-	2	1	19	34	3300
540	8	6	4	-	3		22	35	3400
545	-	-	-	-	-	-	œ	-	-
525	8	5	4	3	1	1	22	34	3300
525	6	3	6	1	2	2	20	34	3300

Table 4.7 (Continued)

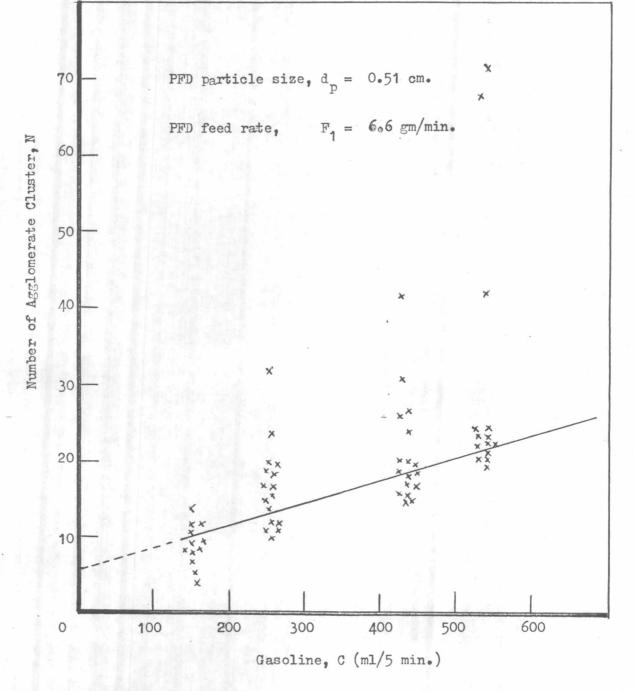


FIG. 4.7 EFFECT OF GASOLINE ON THE PFD AGGLOMERATION FOR $d_p = 0.51$ cm. AT F_1

Table 4.8 Effect of gasoline on number of agglomerates

PFD diameter = 6.4 m.m.

PFD feed rate = 6.3 gm/min

		A	gglome	erate				Unaggl	omerate
Gasoline		iber of agglor			ter		Total	Weight	Volume
	2	(3-4)(5-6)(7-	-9) (10	-20) ;	20	- Cluster	(gm)	(m1)
150	-	-	-		-		0	33	3500
160	-	-	-	-	-	-	0	30	3300
160	4	2	-	-	-	-	6	32	3400
160	-	-	-	-	-	-	0	32	3400
160	3						3	33	3500
160	-	-	-	-	-	-	0	34	3600
160	2						2	33	3600
160	5						5	33	3500
150	-	-	-	-	-	-	0	32	3500
150	3						3	34	3600
160	3						3	33	3500
150	-	-	-	-	-	-	0	34	3600
255	8	6	4	-	1		19	33	3500
2.65	3	3	2				7	32	3400
255	6	3	4	2	2		18	34	3600
265	9	3	1				13	30	3200
265	4	3	2				9	32	3400
255	7	4	3	-	1		15	32	3400
255	5	1	-	1			7	35	3700
255	7	4	-	2			13	34	3600
255	4						4	33	3500
255	5	3	2				10	33	3500
265	4	-	2				6	32	3400

			Agglo	merat	е		Unaggl	omerate	
Gasoline ml/5 min	Nu	mber aggl	of dr omera	ops in te clu	n 1ster	Total	Weight	Volume	
	2	(3-4) (5-6) (7-9)	(10-20)>20	Cluster	(gm)	(ml)	
255	2					2	33	3500	
255	6	1	-	1	1	9	34	3600	
, 255	3	4	-	1		8	32	3400	
270	3	3				6	34	3600	
270	2					2	33	3500	
265	4	3	1			8	32	3400	
255	5	2				7	32	3400	
420	7	4	1			12	30	3300	
425	6	6	-	3	3	18	30	3300	
420	5	7	3			15	30	3300	
420	8	3	1	1		13	30	3300	
420	4	5				9	30	3400	
435	6	3	1			10	30	3400	
435	4	5	-	1		10	30	3300	
440	3	2				5	30	3300	
435	9	3	2			14	32	3400	
435	6	7				13	32	3400	
420	4	11	1			16	32	3400	
420	8	2	1			11	32	3400	
425	7	4	1			12	30	3300	
435	9	7	3	2		21	30	3300	
425	10	1				11	30	3300	
420	5	6	2			13	30	3300	
420	8	4	2	2		19	30	3300	
420	5	2				7	32	3400	

Table 4.8 (Continued)

			Aggl	omerate			Unaggl	omerate
Gasoline m1/5 min -	Nu	mber o agglo	of dro omerat	ops in te cluste	r	Total	Weight	Volume
	2	(3-4) (5-6))(7-9)(10-	-20)>20	Cluster	(gm)	(ml)
510	7	6	1			14	30	3400
510	6	9	-	1		16	30	3400
515	7	3				10	30	3400
515	4.	8	3			15	30	3400
525	8	10	2	2		22	32	3600
525	8	6	1			15	32	3600
525	9	-	3			12	30	3400
525	4	5				9	30	3400
525	5	4	4.			13	30	3400
530	5	2	-	1		8	30	3300
540	6	5	2			13	30	3300
540	3	2			en an	5	30	3300
540	2	4				6	32	3600
540	10	3	1	2		1.6	31	3500
540	9	5		1	5.81	15	30	3400
515	7	4	1			12	30	3400
515	5	8	1			14	31	3500
515	11	5	2	3		20	30	3400
515	12	3	-	1		16	30	3400
630	6	7	-	1	1. Che	14	32	3600
630	5	3	1		有福州	9	32	3600
630	7	4	2			13	32	3600
635	4	5	8		TRA	17	32	3600
640	-		-			00	-	-

Table 4.8 (Continued)

			Agg]	Lomera	rte			Unagglomerate		
Gasoline ml/5 min			of dro omerat				Total Cluster	Weight (gm)	Volume (ml)	
	2	(-3-4)(5-6)	(7-9)(10-20)	>20				
630	-	-	-	-	-	-	0)	-	-	
600	-	-	-	-	-	-	00	-	_	
630	8	5	-	-	1	2	16	30	3400	
630	-	-	-	-	-	-	00	-	-	
630	11	4					15	31	3500	
630	7	6	1	-	-	1	15	30	3500	
635	3	5	3	1			12	31	3500	
630	8	5	3	4			20	31	3500	
672	-	-	-	-	-	-	00	-	-	
630	-	-	-	-	-	-	00	-	-	
630	15	13	9	3	2		42	30	3300	
630	21	17	8	5			51	30	3300	
630	4	7	4				15	30	3300	
630	19	23	12	7	1	3	65	30	3300	
650	-	-	-	-	-	-	00	-	-	

Table 4.8 (Continued)

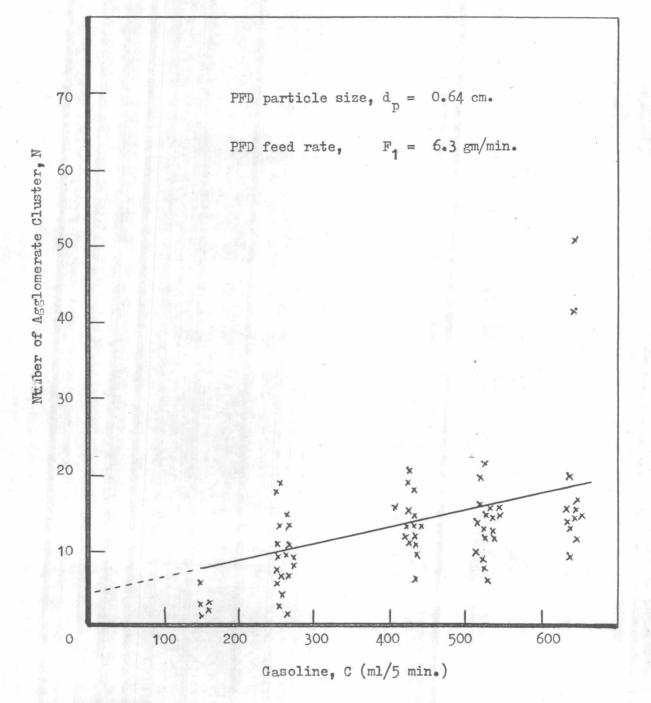


FIG. 4.8 EFFECT OF GASOLINE ON THE PFD AGGLOMERATION FOR $d_p = 0.64$ cm. AT F

Table 4.9 Effect of gasoline on number of agglomerates PFD diameter = 3.3 m.m.

PFD	feed	rate	=	11.	3	gm/min
-----	------	------	---	-----	---	--------

			Agg	lomer	ate		Unagglomerate		
Gasoline ml/5 min	Nui an	mber o agglo	f dr mera	ops i te cl	n uster	Total Cluster	Weight (gm)	Volume (ml)	
	2	(3-4)	(5-6	5)(7-9)	(10-20				
150	2	4	2				10	60	5100
150	-	4	3				7	60	
155	-	-	5	2			7	60	5100
165	-	-	-	1	-	_	0	60	5100
150	-	-	1				1	62	5100 5400
150	-	2					2	64	5500
150	1	-	4	1			6	64	
155	1	2	4				7	62	5500 5400
165	-	-	5	1			6	60	
140	-	4	1				5	57	5100
155	3	12	2	1			7	57	4900 4900
150	2	5	1	2			10	64	
150	6	2	-	1			9		5500
150	-	3	1	4			4	56 62	4800
150	4	6	1				11		5400
150	1	3	2				6	57	4900
254	1	-	4	1		考 选	6	54	4700
255	2	4	5	1	2			60	5100
260	2 1	4	2	4	2		15	57	4900
255	-	2	3	5			10	54	4700
260	3	2	54	,			10	61	5300
254	-	4	2	6			8	57	4900
~),		7	2	0			12	63	5400

Gasoline ml/5 min		Ag	gglom	orate		Unagglomerate			
		nber o agglo				Total	Weight	Volume	
	2	(3-4)	(5-6)	(7-9)	(10-2)	0)>20	Cluster	• (gm)	(ml)
260	7	4	1				12	62	5300
260	5	.3	-	1			9	60	5100
260	2	4	3				9	61	5300
270	-	4	1	1			6	62	5300
270	3	4	1	2		1	11	57	4900
260	4	4	-	1			9	60	5100
254	8	4	1	2			15	60	5100
260	1	3	2	1			7	62	5300
260	6	6	1				13	61	-5300
270	3	4	2	-	1		10	57	4900
260	5	3	1	2			11	57	4900
254	8	3	2				13	57	4900
270	3	2	4				9	57	5100
260	6	5	1				12	54	4700
420	7	4	1	3	1		16	54	4900
420	4	5	1	2			12	54	4800
433	3	4	2	1			10	57	5100
420	4	5	1	1	-	1	12	54	4900
418	6	3	4	2			15	57	5200
425	-	7	4	1	1		13	54	4800
420	8	3	2				16	54	4900
420	15	4	1	3	1	1	20	55	5000
420	6	8	3	1			18	54	4900
420	9	6	2	3	2		22	.54	4900
420	8	5	3	-	2	1	19	54	4900

Table 4.9 (Continued)

Gasoline -		Age	glomei	ate		Unagglomerate			
		mber o agglo				Total Cluster	Weight	Volum (ml).	
	2	(3-4	.)(5-6)(7-9)	10-20		(gm)		
425	12	1	5	4			23	56	5000
433	9	4	2	3	1		19	57	5100
418	8	4	6	3			21	57	5100
420	15	3	6	1	2	1	28	54	4900
420	8	3	4	1	1	1	18	52	4600
425	4	8	4	2	1		19	54	4900
420	11	7	1	3	-	1	23	54	4800
420	7	5	3	1			16	54	4900
420	8	6	1	2			17	57	5100
420	6	6	3	2	1		18	57	5100
523	16	2	4				22	55	4800
520	9	6	-	2			17	57	5100
530	11	5	5				20	56	4900
520	18	5	2	1			26	56	4900
515	14	8	1	1		-	24	56	4900
520	7	11	2	6	-	2	28	57	5100
520	19	8	2	1	1		31	57	5100
520	14	8	-	2	1	1	26	57	5100
515	7	5	1	3	1		17	54	4800
530	10	8	4	1			28	57	5100
515	8	7	2	4			21	54	4900
520	8	12	2	1	-	1	24	54	4900
520	17	-	2	1			20	54	4900
520	10	4	6	5	2	1	28	54	4900
520	16	2	3	1	2		24	54	4900

Table 4.9 (Continued)

Gasoline ml/5 min		Ag	glome	rate		Unagglomerate			
	N ar	umber agg1	of d: .omera	rops f	ln uster	Total Cluster	Weight	Volume	
	2	(3-4)(5-6)	(7-9)((10-20	Cluster	(gm)	(ml)	
520	7	8	4	8	1		28	57	5100
520	11	6	3	2	-	1	23	57	5100
520	8	9	8	5			30	55	4900
628	8	6	8	4			26	53	4800
630	35	18	6	5	2	2	68	57	5100
605	9	9	7	6	1		32	53	4900
610	12	7	8	2	1		30	53	4800
630	8	19	9	7	-	2	45	52	4600
630	-		-	-	-	2	0	54	4000
650	25	17	-	8	3	1	54	52	4600
630	19	5	-	3	4	2	32	54	4900
630	17	13	6	5	3	2	46	54	4900
630	8	11	8	-	4	1	32	54	4900
630	6	5	9	8	-	2	30	55	4900
650	8	12	6	7			33	54	4900
630	-	-	-	-	-	_	00	54	4900
620	-	-	-	_	-	_	0		
630	27	32	10	1	4	8	82	53	4800
630	-	-	-	-	_	-	02	-	
630	11	6	8	4	2	1	32	54	4900
630	7	12	5	3	1		28	54	4900
635	-	-	839	-		-	00	-	

Table 4.9 (Continued)

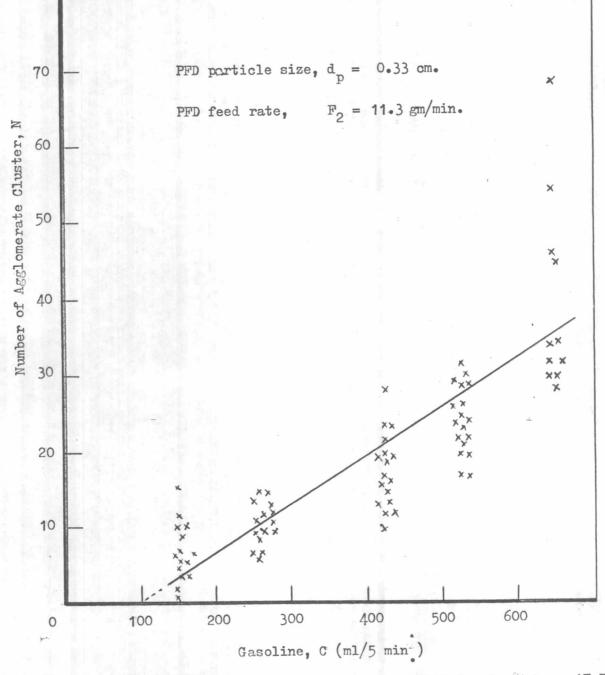


FIG. 4.9 EFFECT OF GASOLINE ON THE PFD AGGLOMERATION FOR d =0.3.3 cm. AT F2

Table 4.10 Effect of gasoline on number of agglomerates

PFD diameter = 5.1 m.m

PFD feed rave = 10.7 gm nin

		Aggl	omera	te				Unaggl	omerate
Gasoline ml/5 min	1			ps in e clu		3	Total	Weight (gm)	Volume (ml)
The Addition of the Print Print Print, State	2	(3-4)	(5-6	(7-9)	(10-20	> 20	Cluster		1
150	2	2				And An of an Address of an Address of the	4	55	5500
155		2					2	55	5500
140	-						0	55	5500
150	4	2	1				7	54	. 5400
150	3	5	1	1			10	54	5400
140	3	3					6	54	5400
165	2	4					6	53	5300
150	5	2					7	53	5300
150	5						5	54	5500
150	4	.1					5	53	5300
150	2	3					4	51	5100
140	6	1	1				8	52	5200
140	3	1	2				6	55	5500
150	3						3	54	5400
165	6	1	1	1	1		9	53	5300
150	-						0	55	5400
150	3						3	54	5400
260	3	2	1				6	55	5500
255	5	2					7	54	5400
255	5	3	1				9	53	5300
260	3	4	1				8	52	5200
260	2	3	2				7	52	5200

Table 4.10 (Continued)

			Agglo	merat	es				Unagg	lomerate
Gasoline ml/5 min			of dr omera			c		Total	Weight (gm)	Volume (ml)
	2	(3-	4) (5-6)(7-9)	(10-2	20);	20	Cluster		
260	4	1	2			Calory ra	NAT ALLENGE	7	54	5400
255	1	4	-	1				6	54	5400
270	2	1						3	54	5400
260	4	6	3	1	1			15	55	5400
260	7	1	1					9	52	5200
255	5							5	52	5200
255	2	4	2	2				10	54	5400
260	1	2	1					4	54	5400
260	3	4	1					8	53	5300
260	5							5	54	5600
255	3	2	1					6	58	5700
260	4	2	2					8	54	5400
420	4	2	3					9	54	5300
420	8	2						10	53	5300
430	3	3	1	2				9	53	5300
440	4	7						10	53	5300
420	5	2	1					8	53	5300
420	10	3	4	1				18	53	5300
440	7	2						9	52	5100
420	6	-		5		1		12	52	5200
420	3	6	-	1	1			11	51	5100
420	4	1	1					6	53	5300
4 2 0	•3	2	2					7	51	5100

Table	4.10 ((Continued)	1
-------	--------	-------------	---

		Aggl	omerat	e				Unaggl	omerate
Gasoline ml/5 min		umber 1 aggl					Total	Weight	Volume
	2	(3-4) (5-6)	(7-9)	(10-2	0)>20	Cluster	(gm)	(ml)
440	6	2					8	51	5100
440	8	-	3	1			12	53	5300
410	-	3	-	2	5	1	11-	53	5300
420	4	3	1				8	53	5300
440	2	7	-	1			10	54	5400
420	8	5	2	1	1		17	55	5500
520	4	7	8	-	-	_	19	52	5100
520	6	14	-	1			21	53	5300
520	8	6	3	-	2		19	53	5300
520	7	2	7				16	53	5300
450	11	2	2	1	1		17	54	5400
450	8	5	1 .	-	1		15	51	5100
450	6	3	-	1			10	53	5400
520	7	7	-	2	1		18	54	5400
520	3	5	3	3			14	53	5300
520	9	2	-	2			14	53	5300
520	9	3	2	1	1	1 .	17	53	5300
570	11	2					13	52	5200
520	8	6	1				15	51	5100
520	7	5	3	1			16	51	5200
520	13	8	3	-	-	1	25	51	5200
520	6	4	3	5			18	50	5100
520	8	2	1	-	-	1	17	50	5100
450	5	11	4				20	53	5300
450	5	7	7				19	51	5100

		Agglo	omera	te.		•		Unaggl	omerate
Gasoline ml/5 min		mber o agglo					Total	Weight	Volume
	2	(3-4)(5-6	5)(7-9)) (10-2	20)>20	Cluster	(gm)	(ml)
630	-	-	-	-	-	-	00	-	-
630	7	4	3	2			16	53	5300
605	11	2	3	3			19	52	5100
605	-	-	-	-	-	-	00	14 C	-
640	31	9	3	-	-	2	45	52	5300
640	7	5	4	3	1		20	52	5100
640	3	8	5	1			17	54	5500
630	9	3					12	51	5100
630	4	7	3	-	1		15	53	5300
630	6	3	1	-	3	1	14	53	5300
605	-	-	-	-	-	-	00	-	-
605	9	3	1	-	5	1	18	60	5400
605	4	2	3	- 1	1	Sec.	10	53	5300
630	8	7	-	5			20	55	5500
630	6	3	4	1	3		17	53	5300
630	-		-	-	-		00	-	-
605	6	7	2	-	4	2	25	55	5600
630	21	11	8	18	6	3	67	54	5600
640	8	5	2	3	1		19	55	5600
630	9	7	3	-	-	1	20	53	5300
640	18	8	4	2	1		33	53	5300

Table 4.10 (Continued)

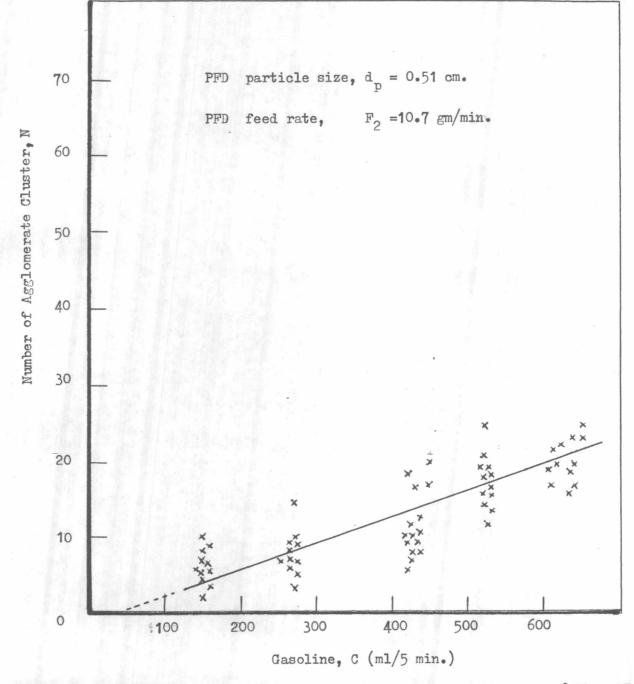


FIG. 4.10 EFFECT OF GASOLINE ON THE PFD AGGLOMERATION FOR $d_p = 0.51 \text{ cm} \cdot \text{AT } F_2$

94

Table 4.11 Effect of gasoline on number of agglomerates

PFD diameter = 6.4 mm.

PFD feed rate= 10.5 gm/min.

		Α,	gglome	rate	0 0			Ula	gglomerat
Gasoline	IJu	mber o	f drop	os in			Total	Weight	Volume
ml/5 min	an	agglo	merate	clus	ter			(gm)	(ml)
	2	(3-4) (5-6)	(7-9)	(10-20)	> 20	Cluster		
150		-				nut and a state of the state of	0	52	5300
150	1000		-	-	-		0	52	5300
160	1	2					3	52	5400
165	-	o c	-	decres .	-		0	52	5400
150	2						2	52	5400
150	Rora	-	-	***	-	_	0	54	5500
150	-	-	-		-	-	0	54	5500
155					-	-	0	54	5500
150		-		-		-	0	54	5500
150			tong.	-			0	52	5400
255	5	2					7	52	5400
255	-	-		-		600	0	54	5400
255	2						2	52	5400
255	4	1					5	53	5400
255	4						4	52	54.00
265	1	2					3	52	5400
265	5	1					6	.52	5400
265	2	5	3				12	52	5400
265	1	3					4	54	5500
270	6	2	1				9	52	5300
255	4	2					6	52	5400
255	3	2					5	52	5400

-			Aggl	omerat	;e			Unag	glomerate
Gasoline ml/5 min			f drop merate		ter		Total	Weight (gm)	Volume (ml)
	2	(3-4)	(5-6) (7	-9) (1	0-20)	> 20	Cluster		
255	3	2			16 U. 18 19 19 19		5	52	5400
255	1	2	1				4	52	5400
265							0	52	5400
270	3						3	52	5400
265	5	2	Red.	1			8	52	5400
255							0	52	5400
270	-						0	52	5400
265	-						0	52	5400
255	*54						0	52	5400
255							0	52	5400
420	5	3					8	52	5400
425	7	6		1			14	52	5400
420	5	1					6	52	5400
420	4	3	279	2			9	55	5600
420	2						2	52	5300
420	5	2	1				8	52	5500
420	3	4	1	1			9	52	5400
420	4	6	1	-	1		12	52	5400
425	3	5		2	1		11	52	5400
425	6	1					7	52	5400
435	3	2	-	2			7	52	5400
420	4	3	1				8	52	5400
425	8	2					10	52	5400

Table 4.11 (Continued)

-

	- <u>E.Sec. e. gr</u> a	*****	Aggl	omerat	te			Una	gglomerate
Gasoline ml/5 min			of dro omerat		ster		Total	Weight (gm)	Volume (ml)
	2	(3-4	(5-6)	(7-9)(-1)	0-20)	> 20	Cluster	1.1.2	
425	5	R. F. B. B. B. B.		and the base	and the drokes	nakozan en en aveza.	5	52	5400
420	4	8					12	55	5600
420	6						6	53	5500
420	5						5	54	5600
420	6	-	1				7	52	5400
420	4	5	3	1			13	52	5400
525	5	2					7	53	54.00
525	3	4	1	1			9	54	5400
508	2						2	58	5700
508	8	1	tens	1			10	52	5300
525	6	5	3				14	52	5400
525	3						3	52	5300
540	9	5	3	-	4		21	52	5300
508	7	8	1	2		1.	18	52	5300
530	6	6					12	52	5300
525	8						8	52	5300
525	4	5	-	1			10	52	5300
525	3	7	1			Sec. 1	. 11	52	5300
25	8	3					11	52	5400
25	5	6	2				13	52	5400
25	4	7	1				12	52	5400
25	8	4	3	2		3.00	17	52	5300
25	3	6	-		1		10	55	5600

×

Table 4.11 (Continued)

Table 4.11 (Continued)

			Agglom	erate				Ung	gglomerat
Gasoline ml/5 min			f drop merate		er		Total	Weight (gm)	Volume (ml)
Toole & Martin Lands . Lands .	2	(3-4)	(5=6)((7-9)(10-50)	> .20	Cluster		
540	7	-	2			**************************************	9	53	5400
525	5						5	52	5300
525	7	2	3	3	-	1	16	52	5300
628	2						2	52	5300
600	-						00		-
615	4	5	2				11	53	5500
600	ang						00		-
630	6	4	2	6.24	2		14	52	5300
600	7	3		1	1	1	13	52	5300
630	5	5	1	1			12	52	5300
635	7	3					10	54	5500
642	8	4	-	2			14	53	5500
630	6	1	2				9	52	5300
640	18	6	-	1			25	52	5300
630	6						6	52	5300
630	21	27	12	3	2		65	52	5300
630	5	-	3				8	52	5300
630	12	3	4				19	53	5400
630	6	5					12	52	5400
630	3						3	52	5400
630	7	-	1	2			10	52	5300
642	11	2					13	52	5300
718	5	3	-	2			10	52	5300

Table 4.11 (Continued)

		113 - 110-au	Agglo	omera:	te	-	and a contract of the	TRATES THE WOLFS WITH APPENDING CONTRACTOR	Unag	glomerate
Gasoline ml/5 min			of dro Lomerat			c		Total	Weight (gm)	Volume (ml)
6.77 61.01 197 131 10 1 1 2 L	2	(3-	4) (5-6)	(7-9)	(10-	-20)	> 20	Cluster		
720	-				Carls one		na anna an siar an sin an annana	00	n na Andri Li Liking na nagrag	
732	23	19	18	****		2	3	65	52	5300
735	5	5	5	3				18	52	5300
760	14	8						22	52	5300
718	-							00		-
777	-							00	_	_
730	-							00	-	_
730	7	6	5					18	52	5300
748	29	22	13	4	1		1	70	58	5800
730	31	12	6	3				52	52	5300
730								òo	-	-
740	8	3						11	52	5300
730	9	3	5		1		1	20	52	5300
724	14	2		3				10	52	5300
755	8	-	3					11	54	5400
730	19	18	2	2				41	53	5300
718	18	5	1					24	52	5300
740	6	6	3					15	52	4500
730								00		

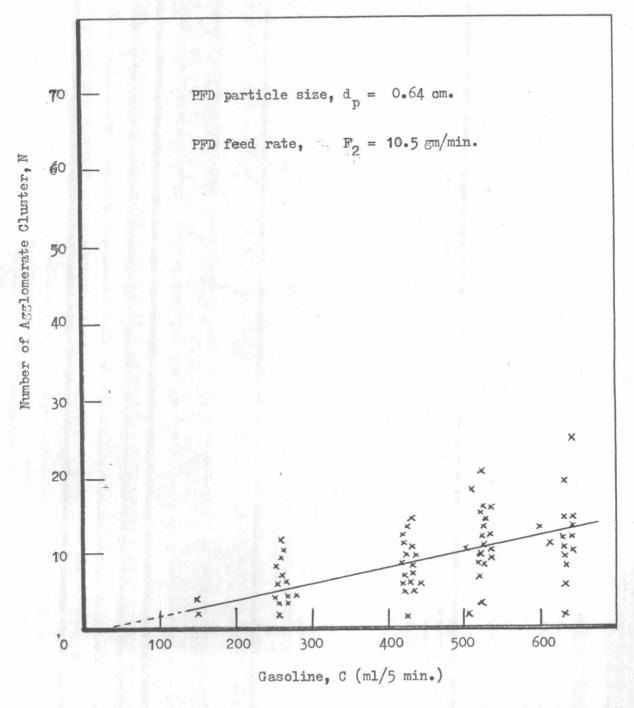


FIG. 4.11 EFFECT OF GASOLINE ON THE PFD AGGLOMERATION FOR $d_p = 0.64$ cm. AT F_2

100

Table 4.12 Least Square Method determines the curves related between number of agglomerates and gasoline amount

x = gasoline amount

y = number of agglomerates

Data from	Exponen	tial Evaluatio	on $y = ax^b$
Table	à	Ъ	Sum Square of Error
4.6	.0902792	•9992660	6988.8870000
4.7	•1359477	.8975495	7676.5100000
4.8	.0936514	.8562108	9152.8460000
4.9	.0158632	1.2568840	5767.8240000
4.10	.0548151	•9593638	4306.5690000
4.11	.0031731	1.3953610	18032-4300000

Data from Table	Linear Evaluation $y = a+bx$		
	a	Ъ	Sum Square of Error
4.6	-2.1759240	•1082384	6527.1840000
4.7	5.0715720	.0464540	20016.9500000
4.8	4.1822870	.0343760	8746.6670000
4.9	-6.3432640	.(967683	5657.8770000
4.10	-1.5557520	.0533321	4058.5350000
4.11		.0315607	8808.5250000
4.11	• 5595392	.0315607	8808.5250000

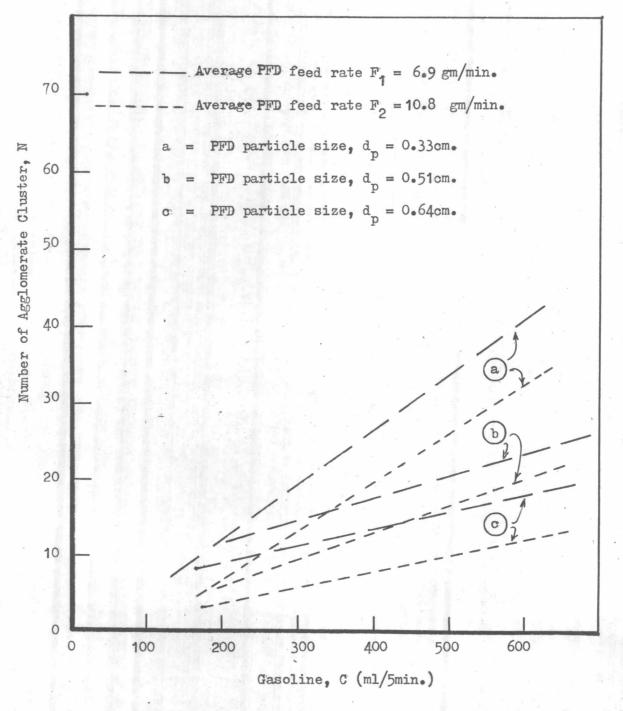


FIG. 4.12 EFFECT OF GASOLINE ON THE AGGLOMERATION OF PFD DIFFERENT SIZE AND FEED RATE

-102