CHAPTER III

FIELD PATTERN ANALYSIS

A. FIELD PATTERN OF THE CYLINDRICAL ANTENNA

It is known that the current distribution and terminal conditions have a larger effect on the input impedance than on the field pattern. If we had assumed sinusoidal current distribution for the computation of input impedance, the result would have had relatively large error especially for the thick cylindrical antenna.

From the thesis authored by Mr. Pakorn Borimasporn(6) there is a very small variation of the field pattern with the antenna thickness, when the current distribution is assumed to be sinusoidal (the value of $\frac{h}{a}$ in his experiment is 12.5) and from the experiment of Dorne (7) the result is nearly the same with some pattern nulls are filled in when the antenna thickness is increased(the lowest value of $\frac{h}{a}$ in his experiment is 8.7). Besides, the current distribution given in eq.(53) is too complicated to be used in the evaluation of electromagnetic field.

In this thesis, the sinusoidal current distribution is assumed and the solutions of the field patterns are based on the thesis titled "The Field Pattern and Gain Analysis of a Hollow Cylindrical Antenna" which is written by Mr. Pakorn Borimasporn. His derival began with

$$A_{z} = \frac{\lambda \ell}{4 \Pi} \int_{0}^{2 \Pi} \int_{0}^{t} \frac{I(z)}{L} dz d\phi_{1}$$
(69)

Where L =
$$\mathcal{O}$$
 - a cosec $\Theta \cos(\phi_1 - \phi)$ - z cos Θ (69a)

$$I(z) = I_{o} \sin\left[\frac{2\pi}{\lambda} (h-z)\right] e^{j(wt-\beta L)}; \text{ for } z > 0 \quad (69b)$$

$$I(z) = I_{o} \sin\left[\frac{2\Pi}{\lambda} (h+z)\right] e^{j(wt-\beta L)}; \text{ for } z < 0 \quad (69c)$$

Eq.(69) and eq.(69c) are the conditions for center-fed cylindrical antenna. In this thesis, the field patterns of the end-fed cylindrical antenna are required.

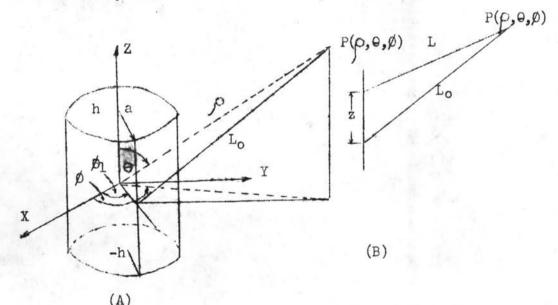


Fig. 2.1 The cylindrical antenna and its orientation,

Mence, for end-fed cylindrical antenna eq.(69) becomes,

$$A_{z} = \frac{\mathcal{U}}{4\Pi} \int_{0}^{2\Pi} \int_{0}^{1} \frac{\mathbf{I}(z)}{\mathbf{L}} dz d\emptyset$$
(70)

From eq.(11) $\overline{E} = -j\frac{c}{w} \nabla (\nabla,\overline{A}) - jwA$ (71 In his thesis, it is noted that for $O \gg 1, E_{O} \gg E_{r}$ and $-j\frac{c^{2}}{w} \nabla (\nabla,\overline{A})$ can be neglected, therefore, when $E_{O} = 0$, eq.(71) becomes,

$$E_{\Theta} = -jwA_{\Theta}$$
(71a)

For cylindrical co-ordinate $A_{e} = -A \sin \theta$, hence eq.(71a) becomes,

$$E_{\Theta} = j_{wA} \sin \Theta$$
 (71b)

Substituting eq.(69a), eq.(69b) into eq.(70) and rearranging the

terms, we have

$$A_{z} = \frac{\mathcal{M}_{T_{0}}}{4\pi} \int_{0}^{2\pi} e^{j(wt - \beta \beta + a\beta cosec\theta cos(\beta - \beta_{1}))} d\beta_{1} \int_{0}^{h} \sin\left[\frac{2\pi}{\lambda}(h-z)\right] e^{j\beta z \cos\theta} dz$$
(72)

The final result of eq.(72) becomes,

$$A_{z} = \frac{Io \mathcal{M}}{8\beta P \sin^{2}\theta} e^{-j(wt-\beta P)} \left[4 - \beta^{2}a^{2}cosec^{2}\theta} \right] \left[\left\{ cos(\beta h cos\theta) - cos\theta \right\} - cos\theta \right\} - j \left\{ sin(\beta h cos\theta) - cos\theta singh \right\} \right]$$
(73)

From eq.(71b) and eq.(73), it is seen that

$$E_{\Theta} = \frac{j w \mu I_{O}}{8 \beta \rho \sin \Theta} e^{-j(wt - \beta \rho)} \left[4 - \beta^2 a^2 \csc^2 \Theta \right] \left[\left\{ \cos(\beta h \cos \Theta) - \cos \beta h \right\}^{+} (74) \right]$$

$$j \left[\sin(\beta h \cos \Theta) - \cos \Theta \sin \beta h \right]$$

When the phase patterm is disregarded, the field pattern becomes

$$E_{\theta} = \frac{w \mathcal{M} Io}{8\beta \rho \sin \theta} \qquad (4 - \beta^2 a^2 \csc^2 \theta).$$

$$E_{\theta} = \frac{w \mathcal{M} Io}{\sqrt{\left[\cos(\beta h \cos \theta) \cdot \cos \beta h\right]^2 + \left[\sin(\beta h \cos \theta) - \cos \theta \sin \beta h\right]^2}} (74a)$$
Let $\left(\frac{w \mathcal{M} Io}{8\beta \rho}\right) = 1$, therefore, eq.(74a) becomes,
$$E_{\theta} = \frac{(4 - \beta^2 a^2 \csc^2 \theta)}{\sin \theta} \sqrt{\left[\cos(\beta h \cos \theta) - \cos \beta h\right]^2 + \left[\sin(\beta h \cos \theta) - \cos \theta \sin \beta h\right]^2} (74b)$$

B. FIELD PATTERN OF STACKED CYLINDRICAL ANTENNAS

The consideration is aimed at the inphase, two element stacked cylindrical antennas, with and without ground plane and the distance between elements equal to 0.5λ and 0.6λ as shown in Fig. 3.2

The computation followed the well-known "Law of Multiplication" (8) which states that :

$$\mathbb{E} (\Theta, \phi) = f(\Theta, \phi) F(\Theta, \phi) / \frac{f_p(\Theta, \phi) + F_p(\Theta, \phi)}{p}$$
(75)

Where

 $E(\Theta, \emptyset)$ = field pattern of the arrays with

distance of array = d

 $f(\Theta, \phi) = fided$ pattern of the individual source

 $f_p(\Theta, \phi) = phase pattern of the individual source$

 $F(\mathbf{0}, \mathbf{0}) = \text{field pattern of the array}$

of isotropis sources with distance

of array = d

 $F_{p}(\theta, \phi)$ = phase pattern of the array of isotropic

sources with distance of array = d

The field pattern of two inphase isotropic point sources A,B in **Eig.3.3** can be verified as follows.

 $F_{1}(\Theta, \phi) = E_{2} + F_{3} + \frac{-\psi/2}{2}$ (76)

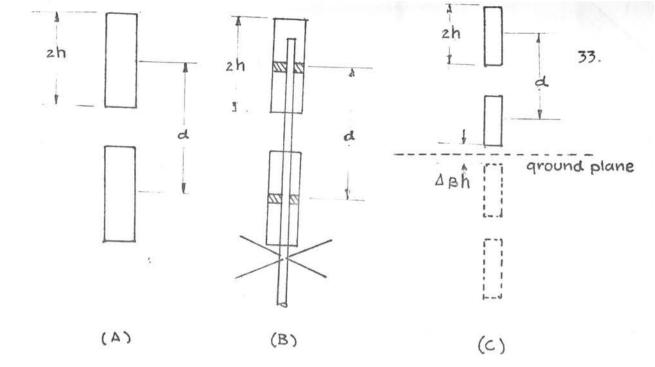


Fig 3.2 Stack cylindrical antenna, (A) without ground plane, (B) with four radial ground rods, (C) equivalent diagram of (B)

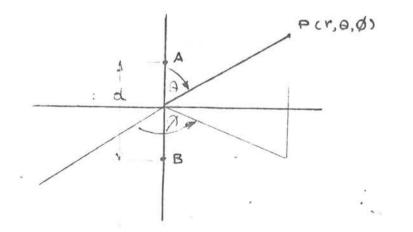


Fig 3.3 Array of two isotropic point sources

 E_{a} = amplitude of the field strength of A,B at

distance r, where r \gg d

$$= d_{r} \cos \Theta$$
(77)
$$d_{r} = \frac{2\Pi}{\lambda} \cdot d$$
(78)

Hence eq.(76) becomes:

$$F_{1}(\theta, \phi) = 2E_{0} \cos\left(\frac{d_{r} \cos\theta}{2}\right)$$
(79)

Eq.(79) is independent of β , therefore, eq.(79) can be written as $d_r \cos\theta$

$$F_1(\theta) = 2E_0 \cos(\frac{1}{2})$$
(80)

Let $2E_{0} = 1$, then the normalized value of eq. (80) becomes, $F(\theta) = \cos(\frac{d_{r} \cos \theta}{2})$ (80a)

Let $E_{\eta}(\theta)$ = field pattern of the inphase, two-element stacked

cylindrical antennas without ground plane.

From eq.(74a) and eq.(75) and eq. (80), the field pattern becomes

$$E_{1}(\theta) = \left[\frac{w\mu Io\ 2Eo}{8\beta r}\right] \left[\frac{(4-\beta^{2}a^{2}\ cosec^{2}\theta)}{\sin\theta}\right] \left[\sqrt{\left[\cos(\beta h\cos\theta)-\cos\beta h\right]^{2} + \left[\sin(\beta h\cos\theta)-\cos\theta\ sin\beta h\right]^{2}\left[\cos(\frac{d_{r}\cos\theta}{2})\right]}}$$
(81)

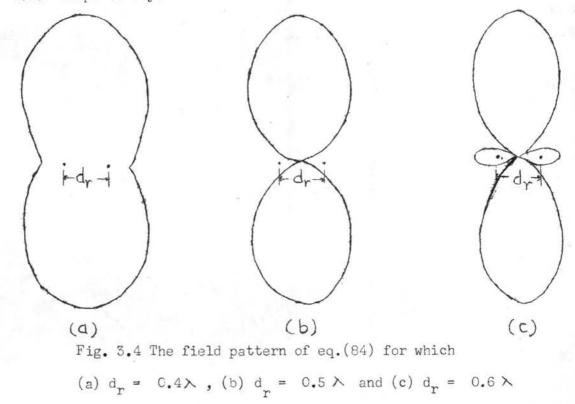
Let
$$(\frac{\psi \mu lo\ 2Eo-}{8\beta r}) = 1$$
; hence eq.(81) becomes,
 $E(\Theta) = \left[\frac{(4-\beta^2 a^2 \cos e^2\Theta)}{\sin\Theta}\right] \left[\sqrt{\left[\cos(\beta h \cos\Theta) - \cos\beta h\right]^2 + \left[\sin(\beta h \cos\Theta) - \cos\Theta \sin\beta h\right]^2} + \left[\cos\left(\frac{d_r}{2}\cos\Theta\right)\right]$

Eq.(82) is the field pattern of the in-phase, two-element stacked cylindrical antennas as shown in Fig.3.2(a), with length = h, redius = a, and distance between the elements = d From Fig. 3.2(b), inserting the ground plane causes images on the opposite side of the ground plane [Fig. 3.2(c)]. By assuming that the ground plane is perfect. The computation is performed by following eq.(76) to eq.(82) with the field pattern of individual source $f(\Theta, \emptyset)$ being expressed by eq.(82) and the distance between elements, $d = (d_r + \beta h + \Delta \beta h.)$ As $\Delta \beta h \ll (d_r + \beta h)$, the distance between elements becomes

$$d_1 = \begin{pmatrix} d_r + \beta h \end{pmatrix}$$

Hence, the field pattern becomes,

Eq.(83) is the expression of the field pattern of the inphase. two-element, stacked cylindrical antennas [as in Fig. 3.2(b)], with length = h, radius = a, and the distance between elements = (d_r+ph)

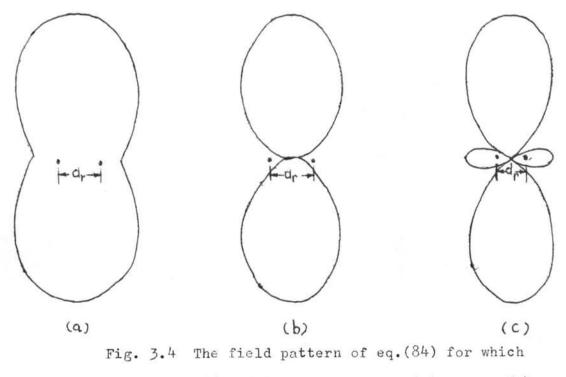

Due to the complication of the functions involved in the field pattern analysis, it is advisable to use a computer programmed for these computations.

C. DATA PRECALCULATED FOR NUMERICAL ANALYSIS

The purpose of this analysis is to compute the field pattern of cylindrical stub antenna and stacked cylindrical antennas of which the length to radius ratio = 13.1 Consider eq. (80a)

$$F(\theta) = \frac{\cos(d_r \cos\theta)}{2}$$
(84)

The field pattern of eq.(84) depends upon d_r , Fig. 3.4 shows the field patterns of eq.(84) for $d_r = 0.4\lambda$, 0.5 λ and 0.6 λ respectively.



C. DATA PRECALCULATED FOR NUMERICAL ANALYSIS

The following analysis is to compute the field pattern of cylindrical stub antenna and stacked cylindrical antennas in which the length to radius ratio = 13.1 Consider eq.(80a)

$$F(\theta) = \frac{\cos(d_r \cos\theta)}{2}$$
(84)

The field pattern of eq.(84) depends upon d_r , Fig. 3.4 will show field pattern of eq.(84) for $d_r = 0.4\lambda$, 0.5 λ and 0.6 λ respectively.

(a) $d_r = 0.4\lambda$, (b) $d_r = 0.5 \lambda$ and (c) $d_r = 0.6 \lambda$

From eq.(84), it is clear that

When $d_r < 0.5 \lambda$, the null positions are filled in and increase when d_r is decreased. For stacked antennas the null position is required, so the value of d_r less than 0.5λ is not practically used.

When d = 0.5 λ , the null positions are existed and when r^{2} d_r > 0.5 λ , the directivity is increased, so as the minor loops

In this thesis the value of $d_r = 0.5 \lambda$ and 0.6λ are used. The value of **h**is the near second resonant length, 0.4λ and h/a = 13.1.

Let
$$A = \frac{h}{a}$$

 $B = \left[4 - \left(2\pi \frac{h}{A}\right)^2 \operatorname{cosec}^2 \Theta \right]$
 $BR = \sqrt{\left[\cos(\beta \operatorname{hcos}\Theta) - \cos\beta \right]^2 + \left[\sin(\beta \operatorname{hcos}\Theta) - \cos\Theta \sin\beta \right]^2}$
Hence eq.(74b) becomes,

$$E_{\Theta} = \frac{B \cdot BR}{\sin\Theta}$$
(85)

Eq. (82) becomes, $E_{\theta} = \frac{B \cdot BR}{\sin\theta} \left\{ \cos \left(\Pi d_{r} \cos \theta \right) \right\}$ (86)

And eq.(83) becomes,

$$E_{\varphi} = \frac{B \cdot BR}{\sin \theta} \left[\cos(\Pi d_{r} \cos \theta) \right] \left[\cos \left\{ \Pi \cdot (d_{r} + h) \cos \theta \right\} \right]$$
(87)

D. COMPUTER PROGRAM FOR THEORETICAL ANALYSIS

This theoretical analysis is run by the computer NEAC-SERIES 2200 which is installed at the Computer Science Center, Chulalongkorn University.

	FORTRAN	200	SOURCE LISTING AND DIAGNOSTICS	PRO	39. IGRAM: 1
	C C 001	E(I) = DIMENSI	SOLVING THE FIELD STRENGTH OF TIELD STRENGTH OF THE ANTENNA IN THETA (38),E (37), EN (37)	STACK CYLINDRICAL R	ADIATO
*	002 003 004		= 1,2)A,AK,AKK		
	005 006	5 FORMAT(DO 100J	F10.3)		
	007 010	7 WRITE(3			T 0 0 11
	011 012	WRITE (3	10) A 0X,28HRATIO OF LENGTH TO RADIO		TOR 97)
	013	WRITF(3	17) AKK	JS = 2FIDe3)	
	015	WRITE(3		2.	
	016	25 WRITE(3			
	020 021	THETA(1		HNORMALIZE ,/)	
	022	DO 35 I Theta(I	2,38 =THETA(I-1)+5.	8	
	024 025	THE S = SIN	= THETA(I-1)*PI/180. THE)		
	026	C = COS()	HE) (THE)*PI		
	030 031	AL=2.*P SL=SIN()	*AK		
	032 033	CLL=COS			
	034		1.+CLL**2+(C**2)*(SL**2)-2.*(CL	_L*COS(AL*C)+C*SI*S	IN(AL*C
	035		1,42,43), JJ		
	037	GO TO 35			
	041	GO TO 35	*BR*(COS(AKK*CL))/S		
	043	GOTO 35	*BR*(COS(AK<*CL))*(COS((AKK+AK)	*CL))/S	
	045	35 CONTINUE DO 40 I=			
	047	40 EN(I)=E WRITE(3:	45) (THETA(I), E(I), EN(I), I=1	,37)	
	051 1	45 FORMAT 00 CONTINUE	10X,F6.1,7X,F8.4,10X,F8.5)		
	052	50 CONTINUE STOP			
	054	END			
	(a):			,	- 3

ю

•

RATIO OF LENGTH	TO	RADIOUS =	13,100
LENGTH OF ARRAY	=	.500	
ANTENNA LENGTH	:::	. 40	

VALUE

DEGREE

NORMALIZE,

0.0	* •9E+99	* .1E+99
5.0	1110	01549
10.0	.7301	.10184
15.0	1.3606	.18977
20.0	1.9386	.27040
25.0	2.4947	.34797
30.0	3.0377	.42370
35.0	3.5689	.49779
40.0	4.0863	.56996
45.0	4.5860	.63966
50.0	5.0622	.70608
55.0.	5.5082	.76829
60.0	5.9165	.82523
65.0	6.2792	.87582
70.0	6.5886	.91899
75.0	6.8377	.95373
80.0	7.0204	.97921
85.0	7.1320	.99477
90.0	7.1695	1.00000
95.0	7.1320	.99477
100.0	7:0204	.97921
105.0	6.8378	.95373
110.0	6.5887	.91899
115.0	6.2792	.87582
120.0	5,9165	.82523
125.0	5.5082	.76829
130.0	5.0622	.70608
135.0	4.5360	.63966
140.0	4.0864	56997
145.0	. 3.5689	.49779
150.0	3.0377	.42370
155.0	2.4948	· 34797
160.0	1.9386	.27040
165.0	1.3607	.18979
170.0	•7303	.10186
175.0	1114	01554
180.0	*7E+12	*1E+12

RATIO OF LENGTH	TO RA	PIQUS =	13.100
LENGTH OF ARFAY	=	.500	
ANTENNA LENGTH	=	a 4()	

DEGREE	V	ALUE	NORMALIZE,
0.0	* • 9	E+99	* .1E+99
5.0		0007	00009
10.0	:	0174	.00243
15.0	•	0728	.01015
20.0		1834	02558
25.0		3458	.05103
30.0		6346	.08851
35.0	1.	0003	.13952
40.0	1 .	4681	.20478
45.0	2.	0363	.28402
50.0	2.	6937	.37572
55.0	3.	4198	.47699
60.0	4 e	1836	.58353
65.0	4 .	9456	.68982
70.0	5.	6604	.78952
75.0	6.	2804	.87599
80.0	6.	7609	.943.01
85.0	7.	0652	.98546
90.0	7.	1695	1.00000
95.0	7.	0452	98546
100.0	6.	7609	.94301
105.0	6.	2804	. 87599
110.0	5.	6605	.78952
115.0	4 .	9457	.68983
120.0	1. C. B. C. I	1836	,58353
125.0		4198	.47699
130.0		693R	.37573
135.0	, 2.	0363	.28402
140.0		4482	- "2047R
145.0		0003	.13952
150.0		6346	.08851
155.0		3659	· 05103
160.0		1834	,02558
165.0		0728	•01015
170.0		0174	00243
175.0		0007	00009
180.0	*3	E+07	*4E+06

RATIO OF LENGTH	ТО	RAUIDUS =	13.100
LENGTH OF ARRAY	Ξ	• 500	
ANTENNA LENGTH	Ę	- 40	

DEGREE

1

VALUE NORMALIZE.

0.0	* •9E+99	* e1E+99
5.0	• 0006	.00009
10.0	0163	00228
15.0	0667	00931
20.0	1623	02263
25.0	3062	04271
30.0	4892	06809
35.0	6784	0946?
40.0	8231	11480
45.0	8461	11801
50.0	6577	09173
55.0	1742	02429 -
60.0	•6545	.09128
65.0	1.8155	.25322
70.0	3.2136	•44824
75.0	4.6724	.65171
80.0	5.9622	.83161
.95.0	6.8518	.95569
90.0	7.1695	1.00000
95.0	6.8518	.95569
100.0	5.9622	.83162
105.0	4.6725	•65172
110.0	3.2137	•44825
115.0	L.8155	.25323
120.0	•6545	.09129
125.0	1741	02429
130.0	6577	09173
135.0		11801
140.0	8231	11480
145.0	6784	09462
150.0	4882	06810
155.0	3052	04271
160.0	1623	02263
165.0	0668	00931
170.0	0163	00228
175.0	• 0006	.00009
180.0	* • 2E+07	* .3E+06

RATIO OF LENGTH	TO RAD	JOUS =	13.100
LENGTH OF ARRAY			
ANTENNA LENGTH		- 4r:	

DEGREE		VALUE	NORMALIZE,	
0.0	*	•9E+99	* e1E+99	
5.0		.7336	00469	
10.0	1	2056	02868	
15.0		3365	04694	
20.0		3361	05385	
25.0		3421	04771	
30.0		1871	02609	
35.0		.0954	.01331	
40.0		.5169	.07210	
45.0		1.0809	•15076	
50.0		1.7794	24319	
55.0		2.5905		
50.0		3.4776	.36133	
65.0		4.3899	.48506	
70.0		5.2662	.61231	
75.0		6.0400	.73453	
80.0	1	6.6477	.84246	
85.0	7	7.0359	.92722	
90.0		7.1695	.98137	
95.0		7.0359	1.00000	
100.0		6:5477	.98137	
105.0		6.0401	.92722	
110.0		5.2662	.84247	
115.0		4.3900	.73454	
120.0		3.4777	.61232	
125.0		2,5905	•48506	
130.0		1.7794	• 36133	
135.0		1.0809	.24819	
140.0	4	.5169	.15077	
145.0			- 07210	
150.0		•0954 -•1371	.01331	
155.0		스럽 사망 사람이 있는 것이 같아.	02609	
		342L		
160.0		3961	05385	
		3365	04694	
170.0		2057	02869	
175.0	101	.0337	.00470	
180.0	×	•2E+12	* •3E+11	

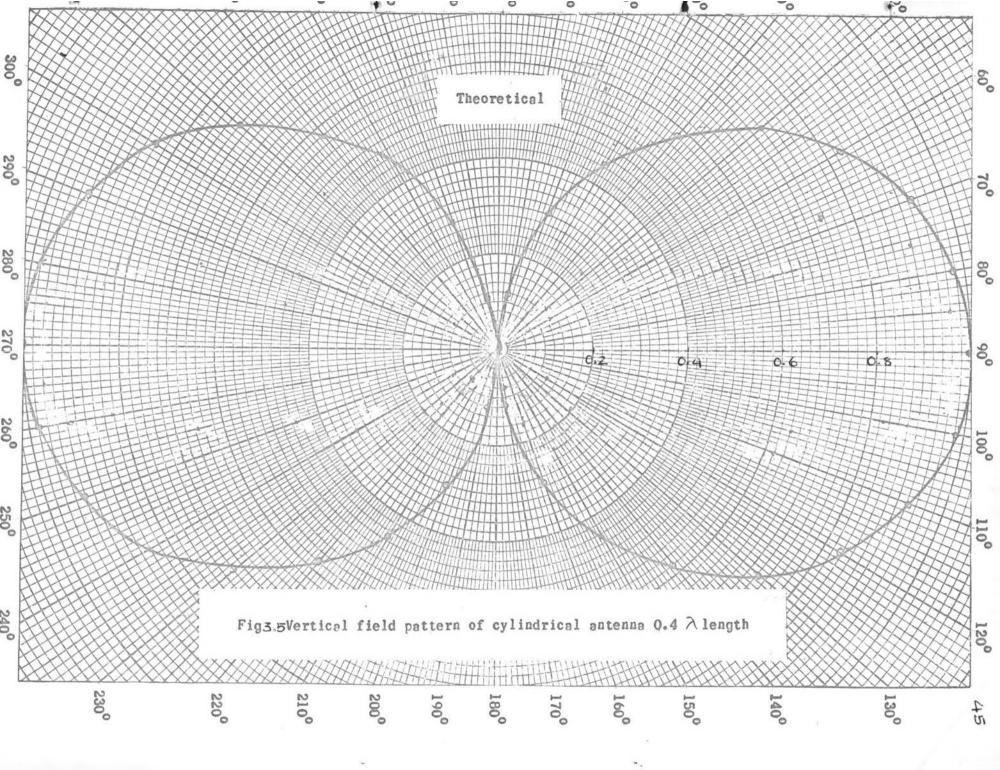
RATIO OF LENGTH	ΤĴ	RADIOUS =	13.100
LENGTH OF ARRAY	=	.600	
ANTENNA LENGTH	-	· 40	

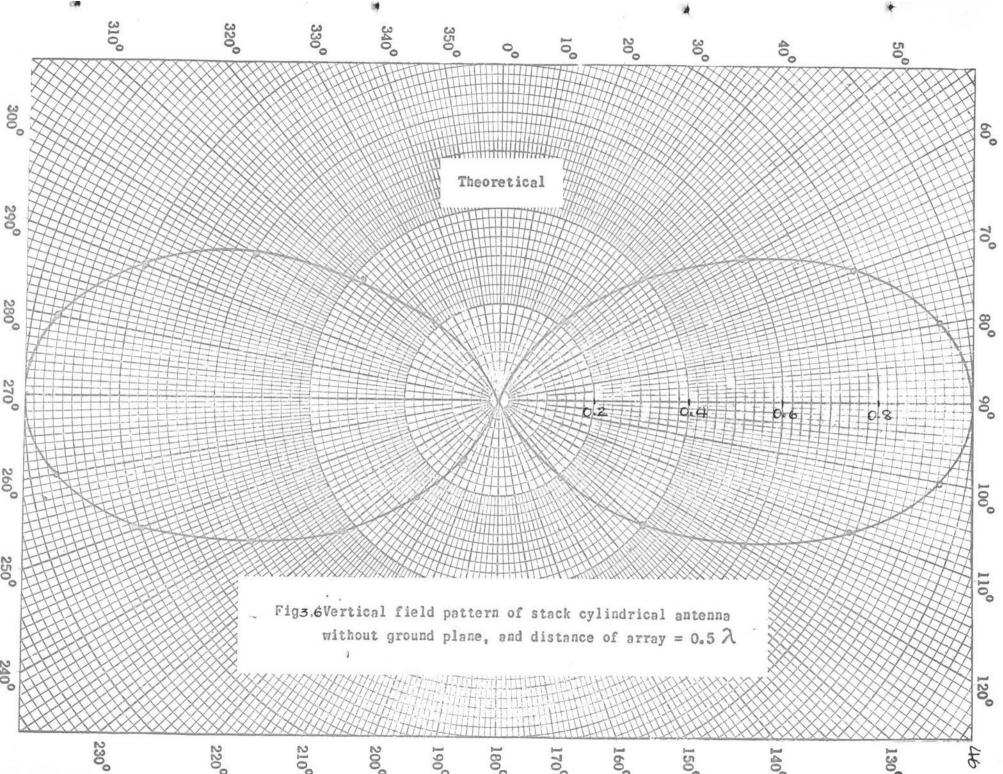
VALUE

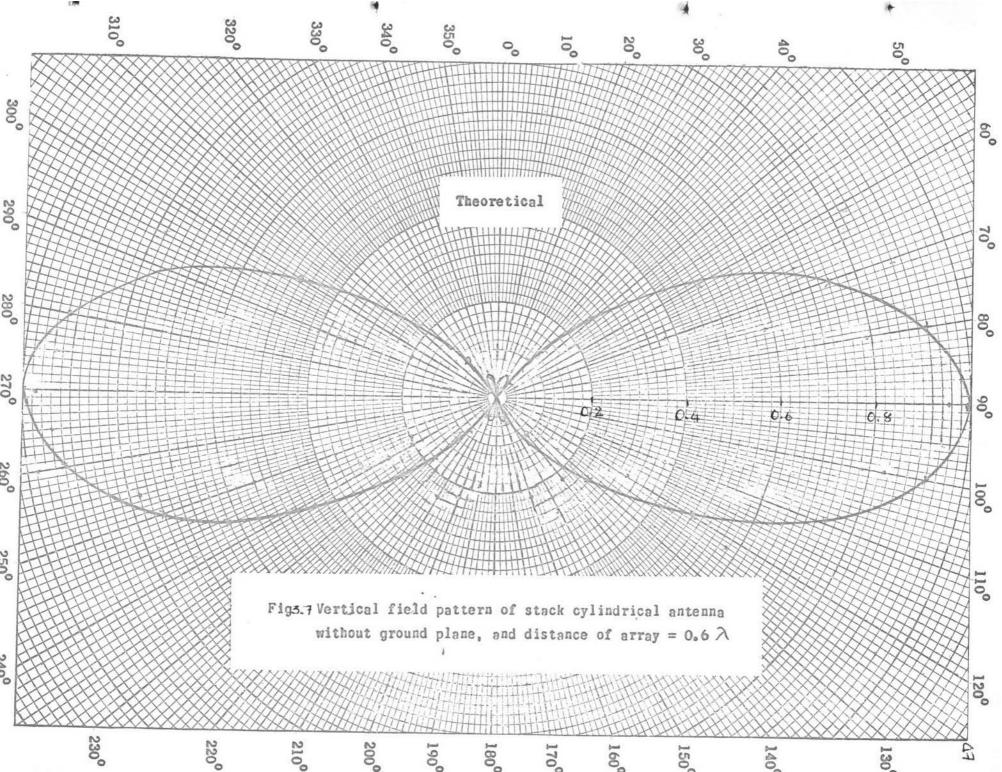
DEGREE

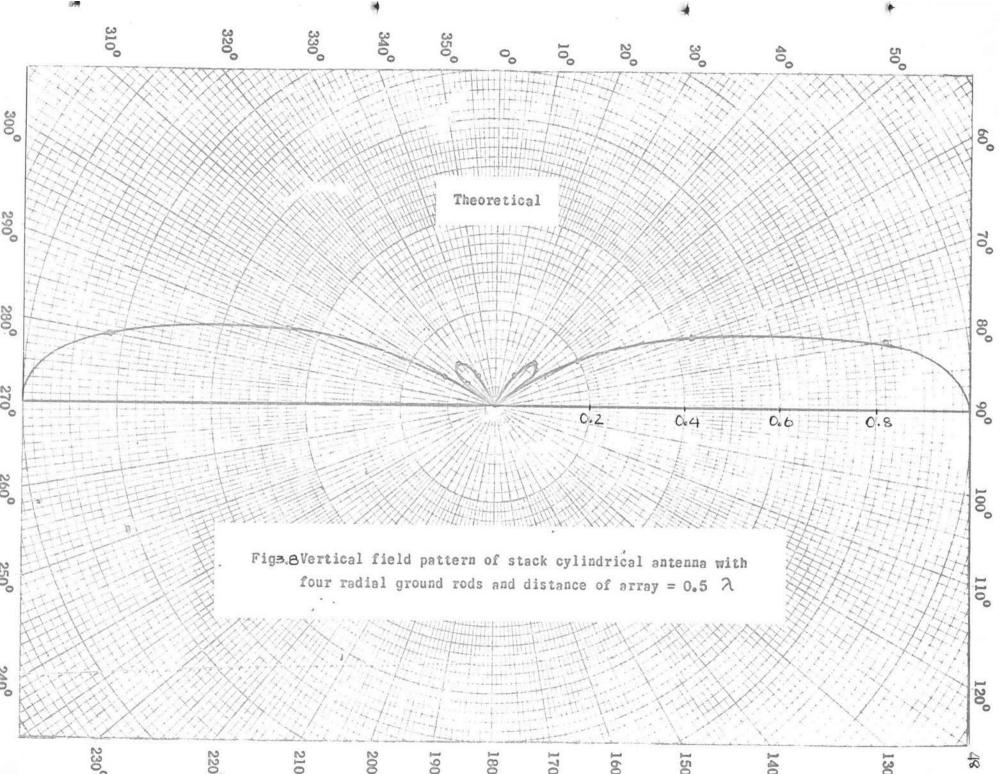
0

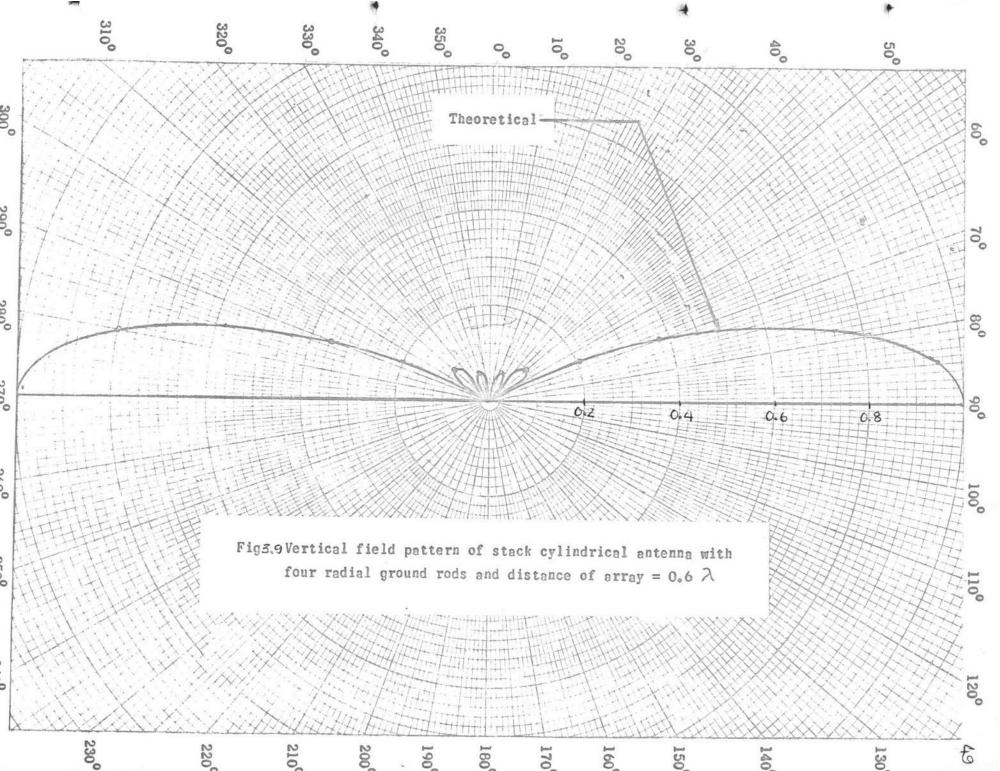
+


12


r


.


NORMALIZE .


0.0	* •9=+99	* .1E+99
5.0	0336	00468
10.0	. 02054	02865
15.0	• 3346	04667
20.0	• 3791	.05288
25.0	.3274	.04566
30.0	.1707	.02381
35.0	7804	01122
40.0	3835	05349
45.0	6547	09132
50.0	7717	10763
55.0	5935	08278
60.0.	0000	00000
65.0	1.0567	.14739
70.0	2.5077	.34977
75.0	4.1510	.57898
80.0	5.6323	.79263
85.0	6.7738	•94481
90.0	7.1695	1.00000
95.0	6.7738	.94482
100.0	5.6828	.79264
105.0	4.1511	.57899
110.0	2.5077	.34978
115.0	1.0568	.14740
120.0	•0000	.00000
125.0	-:5935	08277
130.0	7717	10763
135.0	6547	09132
140.0	«=•3835	05349
145.0	0804	01122
150.0	- e1707	e02381
155.0	•3274	• 04566
160.0	.3791	. 05288
165.0	•3346	04667
170.0	•2055	.02866
175.0	0337	00469
180.0	*-•2E+12	*-•3E+11

