CHAPTER 2

MATHEMATICAL ANALYSIS

2.1 Introduction

For a certain class of nonlinear systems, a single loc,
servomechanism which has only a single nonlinearity is one of
the most interesting type used in practical problems. The com-
ponents of the loop may usually be seperated into two parts, as
shown in Fig. 2.1 the linear portion has transfer function G(jw)
It is a frequency-sensitive function and does not depend on
amplitude. The nonlinear transfer function N, on the other
hand depends only on amplitude and is frequency insensitive

functions.
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Fig. 2.1 A typical single loop nonlinear system,



In general the nonlinear transfer function N can be repre-
sented by an expression of the transfer functional relationship

between e. and m. in the form 3

F (e) (2.1a)

=]
n

It is more convenient in this development to represent
the relationship with an expression consisting of two parts
a quasilinear gain and a distortion term3

m = ,f (e) + £. (e) (2.1b)

d
where e is a sinusoidal input signal3

e = E sin (wt + ¢) = E sin® (2,2)
From Fig. 2.1; we have

m(jig=  Keq (E),e(JW) (2,3)

In which Keq (E) is the equivalent gain and known as the des-
cribing function which is a function of the input signal ampli-

tude or the fundamental component of the output m,

The describing function Keq (E) may be written in the

complex form asa-

Keq (E) = g (E) + ib (E) | (2.4)
where g(E) e %E‘ I 2 f (EsinO) sinOad
(0]
A o (2.5)
b(E) = 1 [ f (Esin0O) CosBdo
WE'_ (o]



The various types of the describing functions of common
: i . 1,2,3
nonlinearities have been given by many authors. However,

some particular types have been listed in appendix A. for easy

references.

2.2 Frequency Response

In 1953, Levinson suggested a graphical method for fhe
determination of the frequency response of a certain class of
nonlinear systems. This method can be applied to the nonlinear
system shown in Fig. 2.1. However, his method has some practical
limitations because of time consumption during the construction

of the family of ellipses for various frequency w.4'5

A new graphical method is proposed in the thesis to over-
come those limitationg. In this method, the family of circles
for various values of the amplitude of the error signal are

obtained instead of ellipse.

2.3 Mathematical Analysis

It is assumed that the input signal r (t) is a sinusoi-
.dal and the linear transfer function portion G(jw) shown in Fig.
2.1 is a low-pass filter so that the output signal may be approxi-
mated as a sinusoidal and when the input signal is removed the non-'

linear system remains stable,

From Fig. 2.1 and the above assumption, we may write



r = R sinwt (2.6)
or r(jw) = R eth (2,6a)
e = E sin (wt + ¢) (2.7)
ke clinim  § JIwe + 0) (2.7a)
c = C sin (wt + Q) (2.8)
or c(jw) = C ej twe. - 0) (2.8a)
which G(jw) = 9, (w) + jg2 (w) (2.9)
e (Vo /4 (5 =eetiw) (2.10)
and c(iw) =  Keq(E),G (Jw). e (3w) (2.11)
From egqns. (2.10) and (2.11) we obtain:-
e(Gw) _ k. (2,12)
r (jw) 1 + Keg(E) G(jw)
Substituting egn. (2.11) into eqn, (2.12) we have
. _ _Keq (E) G(jw) . r(jw) (2.13)
W)= TF keq &) GGw)
Square of the magnitude of the ratioi%:_} of egqn. (2.12)
B - )
R 1 + {g(B) + jb(E)} {gl(w} + jgz(w}}
or R2 2
E = [+em g -pE g,0]
. (2.14)

+ [o®) g, + b@) gl(w)]2



Dividing both sides by [g2(F) + b2 ()] , the eqn. (2.14) becomes

2
s g2 w) + g2 () e
E [g (E) + b (Eﬂ g% (B)4+b2 (E)
" 2g (E) gl(w} £ i
g2 (E) + b2(E)  g2(E) + b2(E)
(2.15)
[ g(E)
Adding both sides of eqn. (2.15) by gz(E) + b2(E) and
2 A .
b(E) ] and simplified to obtain
G2 (®) +bi(E) |
2
gl(w) " 5 g (E) . - g2(wJ " . b (E) .
g (E) + b (E) g (w) + b (E)
Ez(gzﬁE) + bz(E)) . (2.16)

It can be seen that the above equation is an eguation

of the circle which has the center at

7 g (E) ' b
F® +p7E g +bE)

with the radius R

EAN g°(E) + b>(E)
This equation describes the relations between the linear
transfer function G(jw) and the various values of the amplitude

of the error signal E and the input signal R.
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A family of theée circles can be constructed in the G(jw)
plane by varying the valueé of the error signal amplitude E
when the amplitude of the input signal is kept at any constant
value R. Typical examples of family of normalized circles de-
rived for various types of nonlinearities are presented in
Appendix C.

2.4 Determination of Frequency Response

The frequency response of the nonlinear system given in

Fig. 2.1 can be obtained by the following procedures:-

(a) Plotting the frequency response of the linear transfer
function G(jw) into the same complex plane in which the family

circle curves have already been constructed,

(b) The intersections between the lincar frequency res-
ponse curve and the family of circle curves will yield the values
of the error amplitudes E corresponding to the input signal

frequencies w.

(c) The magnitude of the frequency response of the non-

linear system is directly determined by

c

E Keq (E) G (5w) (2.17)

In addition, the phase angle of the frequency response

of the nonlinear system may be calculated by eqn. (2.13)

This method can be extended to cover various special
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parameteré in the nonlinearity and a typical example is

given in section 2.5

A useful tables for the construction of the family
of circle curves for various types of nonlinearties has
been given in Appendix C. And the complete procedures for
the determination of the frequency response of différence
types of nonlinear system have been demonstrated in the

- next chapter.

2.5 A Typical Example

To obtain the family of circle curves, the similar
technique described in the previous sections can be used.

But it requires some modifications.

(a) The circle curves are plotted in the cau
plane as the valuesof new variables (E/b) instead of E,
where b is a constant.

(b) The new transfer function E%}%Elj is also plotted
in the same complex plane, where n is a constant.

(c) The intersections between the new transfer function

and the circle curves will yield the relations of new variables



(E/b) and the frequencies w. Therefore the output frequency
response can be determined by egns. (2.13) and(2.17). Now
consider a typical nonlinearity as shown in Fig. 2.2. The

w3 : ! . 1 2
describing function is written in the form

"
=]

Keq (E) for E<Db

- and Keq (E) %5_ sin-l(ﬁ%g)+ E%E“ f 1 —(é7iaf

for E > b

{ In this case, the value of n is

n = M/b
-
where M is a constant value shown in Fig. 2.2
Therefore g(E) = 1 for E/b <1 (2.18a)
n
gE) _ ,= Si“-%——l )+ 1 f Y | e
n 5 E/b/J - E/b /b y )
for E/b > 1
.-
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and b (E) = 0 for all E/b (2.19)

It can be seen that a modified method for the construc
tion of the family of circle curves is required in oxder to

determine the frequency response.

Dividing both sides of egn. (2.16) by [l/n}z, we obtain.

2
g (E)
g, (W) =
1/n 2 2
g (=) b(E)
(22) . (22
. i b (E) 1 . 5
= + L = R/b (2.20)

2
S wre | e
n n

It can be secen that the above equation is a circle with

the center at

g (E) b(E)
n

(ﬂ)z g (g(m ) oo )
n n

and the radius

/b
] 2 2
(E/b) /(g(E)) 2 (b(E))
n n
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Thé graph of the family of circle curves of this exanple
is given in Fig. 2.3. The frequency response of the nonlinearity
. s : 0.7(1+jv)
Keq(E) followed by the linear transfer function G(jw) =

i 2
(3w)
corresponding to the values of E/b for various frequency w

“is listed in Table 2.1.

output
m
M= 2.5
-b =-0.§
J 1 =
b2, b = 0.5 input ¢
— 2.5

Fig. 2.2 A typical saturation nonlinearity
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curves for saturation and the curve

0.7 (l+jw)
(jw)

of G (jw)

2.3 Family of circle

Fig.
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Table 2.1 Calculated

results of example in section 2.5.

16

E/b W G (jw) Keq (E) 4G (jw)Keq(E) | |c/rR|| |c/R] ]
db

0.6 | 1.18 | 3.87 [229.8" | 3.32 [ggng‘ 1.17 | “3.36 | 346.7°
0.8 | 1.45 | 2.92 _235.3' 2.4 Ppsa.e | a7 | 1aas Ulesdo.or
1.0 ] e | 2.me Egg;i‘ 2.00 Egg;z' 1.16 | 2.2 | 33a.4"
1.2 | 1.91 | 1.87 Egg;g' 1.67 Lﬁi;é' 1.12 | 0.98 | 327.8°
1.4 | 2.06 | 1.s3 hgg;;j 1.42  }76.6 1.08 | 0.67 | 320.7°
1.8 | 2.52 | 0.98 p4s.4" | 1.11 ngLg' 0.88 | -1.11 | 303.3°
2.0 | 8.75 | 0.21 P64.6° | 1.00 F12.1 0.21 [-13.56 | 276.7°
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Output frequency.

response of the typical example
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