A flavonoid and a sterylglucoside were isolated from the stembark of Albizzia julibrissin. Their structures were elucidated as 7, $3^{\prime}, 4^{\prime}$-trihydroxyflavone and α-spinastery1-Dglucoside respectively. Both compounds were found to be inactive in antifertility. However, a triterpenoid saponin composed of acacic acid and 3 sugars, namely glucose, rhamnose and fucose, isolated from the butanolic fraction exhibits a strong uterotonic activity.

Fig. I IR spectrum of Compound I

Fig. II Gas chromatograph of Compound II
CONDITION : column OV-1 (60-80 mesh), temperature; injector 190',
detector (FID) 200°, column 170°, Ghart speed $1 \mathrm{~cm} / \mathrm{min}$, carrier gas $\left(\mathrm{N}_{2}\right) 45 \mathrm{~cm}^{3} / \mathrm{min}$

Fig. III Mass spectrum of Compound II

$A=$ glucose standard
$B=$ Liquid II $\left(R_{f} 0.23\right)$
Solvent system

$$
\begin{aligned}
& \mathrm{MeOH}-\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{NH}_{4} \mathrm{OH} \quad 5: 2: 2: 3 \mathrm{v} . / \mathrm{v} \\
& \text { (lower layer) } \\
& \text { The spots turned into dark brown } \\
& \text { when heated with } 50 \% \mathrm{H}_{2} \mathrm{SO}_{4^{\circ}}
\end{aligned}
$$

Chulalongiorn University

Fig. IV TLC of Liquid II and glucose standard

$A=$ raffinose
$B=\beta$-methyl-D-xylose
$C=$ rhamnose
$D=$ fucose
$E=$ arabinose
$F=x y 1 o s e$
$G=$ mannose
H = ribose
$I=$ glucose
$J=$ Liquid $I I\left(R_{f} 0.15\right)$
Solvent system :
$\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 52: 25: 8 \mathrm{v} . / \mathrm{v}$. (lower layer). The spots appeared after spraying $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
and heating.

Fig. V TLC of Liquid II and suger standards

Fig. VI GLC of Liquid II and glucose standard.
CONDITION : column OV-2 (60-80 mesh), temperature; injector 190°
detector (FID) 200°, column 170°, chart speed $1 \mathrm{~cm} / \mathrm{min}$, carrier gas $\left(\mathrm{N}_{2}\right) 45 \mathrm{~cm}^{3} / \mathrm{min}$

Fig. VII UV spectra of Compound IV in MeOH

Fig. VIII UV spectra of Compound IV in EtOH

Fix. $X \quad{ }^{1}$ H-NMR splitting pattern of Compound IV

Fig. XI ${ }^{13} \mathrm{C}$-NMR spectrum of Compound IV

176.6	C-4	122.2	C-1'	42.5
163	C-2	118.2	C-6'	41.5
162.8	C-7	116.2	C-5'	40.6
157.6	C-9	116.	C-10	39.6
149.1	C-4'	114.6	C-6	38.5
145.8	C-3'	113.2	C-2'	37.2
126.2	C-5	104.8	C-3	36.2
		102.5	C-8	

Fig. XII Mass spectrum of Compound IV

Fig. XIII Mass spectrum of Compound V

