การพัฒนาระบบการจัดการสีสำหรับการผลิตภาพปรู๊ฟจาก เครื่องถ่ายเอกสารชนิดสอดสีแทนภาพปรู๊ฟออฟเซต

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทค โนโลยีทางภาพ ภาควิชาวิทยาศาสตร์ทางภาพถ่ายและเทค โนโลยีทางการพิมพ์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2542 ISBN 974-333-964-7 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF COLOUR MANAGEMENT SYSTEM FOR PRODUCING A PROOF FROM COLOUR COPIER AS AN OFFSET PROOF

Mrs. Kunnatee Kreprasertkul

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Imaging Technology Department of Photographic Science and Printing Technology

> Faculty of Science Chulalongkorn University

Academic Year 1999

ISBN 974-333-964-7

Thesis Title	Development of Colour Management System for Producing a Proof
	from Colour Copier as an Offset Proof
By Department	Mrs. Kunnatee Kreprasertkul
	Photographic Science and Printing Technology
Thesis Advisors	Associate Prof. Pontawee Pungrassamee, M.S.
Thesis Co-advisors	Associate Prof. Aran Hansuebsai, Ph.D.
	- SERVENTE
Accepted by	the Faculty of Science, Chulalongkorn University in Partial Fulfillment of
the Requrement for th	e Master's Degree of Science
	Dean of Faculty of Science
	(Associate Professor Wanchai Phothiphichitr, M.D.)
Thesis Committee	
	Suda Keatkamjo J Chairman
	(Professor Suda Kiatkamjornwong, Ph.D.)
	Thesis Advisor
	(Associate Professor Pontawee Pungrassamee, M.S.)
	Ann Hans L. Thesis Co-advisor
	(Associate Professor Aran Hansuebsai, Ph.D.)
	星野 坦 2 Member
	(Professor Yasushi Hoshino, Ph.D.) 2 Au

(Mr. Yujiro Ando, M.S.)

กุนที่ กรีประเสริฐกุล : การพัฒนาระบบการจัดการสีสำหรับการผลิตภาพปรู๊ฟจากเครื่องถ่าย เอกสารชนิดสอดสีแทนภาพปรู๊ฟออฟเซต , อ.ที่ปรึกษา : รศ. พรทวี พึ่งรัศมี และ : รศ.คร. อรัญ หาญสืบสาย , 147 หน้า , ISBN 974-333-964-7

การผลิตภาพสีด้วยเครื่องถ่ายเอกสารชนิดสอดสีเพื่อให้ได้สีใกล้เคียงกับภาพปรู๊ฟออฟเซต จำเป็นต้องมีระบบการจัดการสี การวิจัยนี้ได้สร้างระบบการจัดการสีสำหรับเครื่องถ่ายเอกสารชนิด สอดสีเพื่อควบคุมการผลิตภาพสีที่ใช้แทนภาพปรู๊ฟออฟเซต โดยสร้างโพรไฟล์ 2 แบบ แบบที่ 1 เป็นระบบการจัดการสีแบบแบ่งพื้นที่สีเป็น 2 กลุ่ม ต้นฉบับที่ใช้เป็นภาพมาตรฐาน ISO12640 (Standard Colour Image Data : SCID) มีข้อมูล เป็น R, G, B ซึ่งนำไปพิมพ์ภาพปรู๊ฟออฟเซต และ ภาพปรู๊ฟจากเครื่องถ่ายเอกสารชนิดสอดสี และหาค่าความสัมพันธ์ของค่าสีไตรสติมูลัส X, Y, Z ของภาพทั้งสองกับค่าสี R, G, B ในรูปของ Multiple linear regression จากการเปรียบเทียบภาพสีจากระบบการจัดการสีทั้งสองแบบพบว่า ค่า ความแตกต่างสี (Colour different : Δ E)โดยเฉลี่ยของภาพพิมพ์ที่ใช้โพรไฟล์แบบที่ 1 ลดลง 35 % และ Δ E ของภาพพิมพ์ที่ใช้โพรไฟล์แบบที่ 2 ลดลง 58 % และ การผลิตน้ำหนักสีของภาพจาก ระบบการจัดการสีแบบที่ 2 คีกว่าของภาพจากระบบการจัดการสีแบบที่ 1

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา วิทยาศาสตร์ทางภาพถ่ายและเทคโนโลยีทางการพิมพ์ ลายมือชื่อนิสิต....

สาขาวิชา เทคโนโลยีทางภาพ

ปีการศึกษา 2542

ลายมือชื่ออาจารย์ที่ปรึกษา

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🤼 🎢

3970121423 : MAJOR IMAGING TECHNOLOGY

KEY WORD: colour copier / offset proof / CMS.

KUNNATEE KREPRASERTKUL: DEVELOPMENT OF COLOUR

MANAGEMENT SYSTEM FOR PRODUCING A PROOF FROM COLOUR

COPIER AS AN OFFSET PROOF. THESIS ADVISOR: ASSOCIATE

PROFESSOR PONTAWEE PUNGRASSAMEE, M.S. THESIS CO--ADVISOR:

ASSOCIATE ARAN HANSUEBSAI, Ph.D., 147 PP. ISBN 974-333-964-7

To match the colour print of the colour copier and the offset proof, a colour management system is needed. The purpose of this research is to develop the colour management system (CMS) for producing a proof from colour copier as an offset proof. In the study, the 2 profiles were developed; the first profile was calculated from 614 colorimetric values and the second profile was calculated from the 2 divided groups of colorimetric values. The Standard Colour Image Data: SCID (ISO12640) with the RGB data were used to produce both the offset proofs from proof press and colour prints from the colour copier. Then colorimetric values of the two processes were measured. The relationship between XYZ of the proofs and RGB of the original of the two systems were obtained by using the Multiple Linear Regression. The average colour different (Δ E) of the print-out with the first profile is decreased 35 % and the average Δ E of print-out with the modified profile is decreased 58 %. And the tone reproduction of the image from the second profile is better than that from the first profile.

ภาควิชา วิทยาศาสตร์ทางภาพถ่ายและเทคโนโลยีทางการพิมพ์ ลายมือชื่อนิสิต

สาขาวิชา เทคโนโลยีทางภาพ

ปีการศึกษา 2542

ลายมือชื่ออาจารย์ที่ปรึกษา 🛵 นั้น

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🐠 🎉

ACKNOWLEDGMENTS

The author would like to thank all the professors; especially Associate Professor Pontawee Pungrassmee. Professor Suda Kiatkamjornwong, Ph.D., Associate Professor Aran Hansuebsai. Ph.D. and all of the invited lecturers from Canon Inc., Japan for all their academically help. She would like to express her deep gratitude to the Department of Photographic Science and Printing Technology, Chulalongkorn University. The knowledge gained from the Department is invaluable.

Her great indebtedness is Associate Professor Pontawee Pungrassmee, Associate Professor Aran Hansuebsai, Ph.D., Professor Yasushi Hoshino, Ph.D. from Nippon Institute of technology and Mr. Yujiro Ando from Canon INC., Japan for their kindly advice. She would like to thank to Amarin Printing Group for providing the all materials to produce the offset proofs.

Finally she would like to thank her family; her husband, her daugter, her mother and father whose love, understanding and encouragement has been a constant source of inspiration.

CONTENTS

	PAGE
ABS	RACT (IN THAI)iv
ABS	RACT (IN ENGLISH)v
ACK	NOWLEDGEMENTSvi
CON	TENTSvii
LIST	OF TABLEix
LIST	OF FIGUREx
CHA	PTER
1.	NTRODUCTION
	1.1 Scientific background and rational
	1.2 Objectives3
	1.3 Expected benefits obtained from development of the research
	1.4 Scope of the research
	1.5 Content of the thesis
2.	HEORETICAL CONSIDERATION AND LITERATURE REVIEW
	2.1 Proofing System4
	2.2 Electrophotography printing6
	2.3 Colorimetry8
	2.4 Colour Management System11
	2.5 File format
	2.6 Literature Review16
3.	EXPERIMENTAL
	3.1 Materials20
	3.2 Equipment
	3.3 Preparation Scheme
	3.4 Procedure
4.	RESULTS AND DISCUSSION
	4.1 The quality of offset proof24
	4.2 Calarimetry

CONTENTS (CONTINUED)

	PAGE
	4.3 The system model 1 (SM1) profile
	4.4 Implementation of the system model 229
	4.5 Evaluation and analyse of the colour copier prints with using the system
	model 2 profile29
	4.6 The modified system model 2(mSM2) profile
	4.6.1The calculation of the mSM2 profile of colour space area
	group 1
	4.6.1 The calculation of the mSM2 profile of colour space area
	group 2
	4.7 Evaluation and analyse of the colour copier prints with using the modified
	system model 2 profile35
5. CONCLUS	ION AND SUGGESTION4
REFERENCES	4
APPENDICES	
A	The definition of the standard colour images data and the printed-out4
В	The colorimetry data and ΔE
С	The profile program.
D	The repeatability of the spectrophotometer14
Е	The consistency of the print out from colour copier14
VITA	14

LIST OF TABLES

TABLE	PAGE
4-1	The solid density and % dot gain of the offset proof20
4-2	The Δ E of the print-out from the experimental model
4-3	The 8 colour areas30
4-4	The Δ E of 8 colour areas by calculating
4-5	The Δ E of group 1 and group 2 by calculating
4-6	The Δ E of the print out with using difference profiles
A-1	The definition of the Standard Colour Images Data
B-1	The R, G, B of the Standard Colour Images Data and the X, Y, Z, L*, a*, b* of
	the offset proof and of the colour copier prints
B-2	The X, Y, Z, L*, a*, b* of the colour copier prints with using the system model
	1, the system model 2 and the modified system model 2 profile97
B-3	The Δ E of the print-out with using the system model 1, the system model 2 and
	the modified system model 2 profile
D-1	The colorimetric value X of colour patches no.1-30141
D-1	The colorimetric value Y of colour patches no.1-30
D-1	The colorimetric value Z of colour patches no.1-30143
E-1	The colorimetric value X and average X of print-out at the difference warming-
	up time144
E-2	The colorimetric value Y and average Y of print-out at the difference warming-
	up time145
E-3	The colorimetric value Z and average Z of print-out at the difference warming-
	up time146

LIST OF FIGURES

FIGURE	PAGE
2-1	Stages in colour copier processes
2-2	CIE chromaticity diagram, or CIE xyY colour space
2-3	CIELAB colour space : red-green(a*) and blue-yellow(b*)
2-4	A colour management workflow14
2-5	System model of colour matching
3-1	Lay-out of pagination
3-2	Kodak Control Scale T-14
3-3	Gretag Colour Control Stripe CMS-2
3-4	System model 1 for producing colour print from colour copier and offset
	proof
4-1	System model 2 for producing colour print from colour copier and offset
	proof
4-2	The procedure workflow of the system model 2 profile29
4-3	The procedure workflow of the modified system model 2 profile35
4-4	The Δ E (L*a*b*) of the print-out with using difference profiles
4-5	The number of colour patches distributed in the each rang Δ E
4-6	CIE chromaticity diagram of the offset proof and the print-out without profile37
4-7	CIE chromaticity diagram of the offset proof (OP), the print-out without profile
	(CLC), the print-out with using system model 2 (SM2), the print-out with using
	modified system model 2 (mSM2) (red, green, blue, yellow, magenta and cyan)38
4-8	CIE colour space of the offset proof (OP), the print-out without profile(CLC),
	the print-out with using system model 2 (SM2), the print-out with using modified
	system model 2 (mSM2) (red, green, blue, yellow, magenta and cyan)39
A-1	Image 1 : offset proof
A-2	Image 1 : colour copier without profile48
A-3	Image 1 : colour copier with system model 249
A-4	Image 1 : colour copier with modified system model 250
A-5	Image 1 :colour copier with embedded profile
	: 700-800 colour copier Standard

LIST OF FIGURES (CONTINUED)

FIGURE	PAG	ЭE
A-6	Image 1: colour copier with embedded profile: DIC Standard	.52
A-7	Image 1 colour copier with embedded profile: Euroscale Standard	53
A-8	Image 1 : colour copier with embedded profile : SWOP	.54
A-9	Image 2 : offset proof	.55
A-10	Image 2 : colour copier without profile	.55
A-11	Image 2 : colour copier with system model 2	.56
A-12	Image 2 : colour copier with modified system model 2	.56
A-13	Image 2 : colour copier with embedded profile : 700-800 colour copier	
	Standard	.57
A-14	Image 2 : colour copier with embedded profile : DIC Standard	.57
A-15	Image 2 : colour copier with embedded profile : Euroscale Standard	.58
A-16	Image 2 : colour copier with embedded profile : SWOP	.58
A-17	Image 3 : offset proof	59
A-18	Image 3 : colour copier without profile	.59
A-19	Image 3 : colour copier with system model 2	.59
A-20	Image 3: colour copier with modified system model 2	.59
A-21	Image 3: colour copier with embedded profile: 700-800 colour copier	
	Standard	60
A-22	Image 3: colour copier with embedded profile: DIC Standard	60
A-23	Image 3: colour copier with embedded profile: Euroscale Standard	60
A-24	Image 3: colour copier with embedded profile: SWOP	60
A-25	Image 4 : offset proof	61
A-26	Image 4 : colour copier without profile	61
A-27	Image 4: colour copier with system model 2	61
A-28	Image 4: colour copier with modified system model 2	61
A-29	Image 4: colour copier with embedded profile: 700-800 colour copier	
	Standard	62
A-30	Image 4: colour copier with embedded profile: DIC Standard	62
A-31	Image 4: colour copier with embedded profile: Euroscale Standard	62

LIST OF FIGURES (CONTINUED)

FIGURE	1	AGE
A-32	Image 4 : colour copier with embedded profile : SWOP	62
A-33	Image 5 : offset proof	63
A-34	Image 5 : colour copier without profile	63
A-35	Image 5': colour copier with system model 2	63
A-36	Image 5 : colour copier with modified system model 2	63
A-37	Image 5 : colour copier with embedded profile : 700-800 colour copier	
	Standard	64
A-38	Image 5 : colour copier with embedded profile : DIC Standard	64
A-39	Image 5 : colour copier with embedded profile : Euroscale Standard	64
A-40	Image 5: colour copier with embedded profile: SWOP	64
A-41	Image 6: offset proof	65
A-42	Image 6: colour copier without profile	65
A-43	Image 6: colour copier with system model 2	65
A-44	Image 6: colour copier with modified system model 2	65
A-45	Image 6: colour copier with embedded profile: 700-800 colour copier	
	Standard	66
A-46	Image 6: colour copier with embedded profile: DIC Standard	66
A-47	Image 6: colour copier with embedded profile: Euroscale Standard	66
A-48	Image 6 : colour copier with embedded profile : SWOP	66
A-49	Image 7: offset proof	67
A-50	Image 7 : colour copier without profile	67
A-51	Image 7 : colour copier with system model 2	67
A-52	Image 7: colour copier with modified system model 2	67
A-53	Image 7: colour copier with embedded profile: 700-800 colour copier	
	Standard	68
A-54	Image 7: colour copier with embedded profile: DIC Standard	68
A-55	Image 7 : colour copier with embedded profile : Euroscale Standard	68
A-56	Image 7 : colour copier with embedded profile : SWOP	68
A-57	Image 8 : offset proof	69

LIST OF FIGURES (CONTINUED)

PAGE	FIGURE
Image 8 : colour copier without profile70	A-58
Image 8 : colour copier with system model 271	A-59
Image 8 : colour copier with modified system model 272	A-60
Image 8 : colour copier with embedded profile : 700-800 colour copier	A-61
Standard73	
Image 8 : colour copier with embedded profile : DIC Standard	A-62
Image 8 : colour copier with embedded profile : Euroscale Standard	A-63
Image 8 : colour copier with embedded profile : SWOP	A-64
The colorimetric values X of colour patches number 1-30	D-1
The colorimetric values Y of colour patches number 1-30	D-2
The colorimetric values Z of colour patches number 1-30	D-3
The colorimetric values X of print-out at the difference warming-up time144	E-1
The colorimetric values Y of print-out at the difference warming-up time145	E-2
The colorimetric values Z of print-out at the difference warming-up time146	E-3

CHAPTER 1

1.1 Scientific background and rational

In offset colour printing process, colour proofing is one of the important steps. It provides all information of the design before the actual printing takes place on the production press. It is the aim of every reproduction house and/or printing house to produce colour proof sheet to be as close to the final print, as possible. There are many ways to obtain the colour proof sheets. They can be printed from the proof press, produced from the special colour proof equipment; off-press proof or even soft proof on the monitors. In the former years colour proof from proof press has been accepted as the best colour proof because both printing press and proof press can use the same material such as film, plate, paper, and ink. Colour proof from proof press has been used as an approved for the customers.

In fact, the cost of colour proof is very expensive. They require both materials and experienced operators. During the last 10 years, prepress of offset printing technology have been changed dramatically to be digital. All information both in the form of texts and images are handled in the digital files for all stages of the prepress process. Nowadays the digital output devices are widely used in the printing industry including repro house and advertising company. It is obvious that the role of digital proof become more and more importance. At this moment digital proofs still in developing process because of some limitations. Most of the digital output equipment need different materials from that are used in printing production. Furthermore the hard copy output process is different from printing process. Any way digital proof system has some advantages to the conventional proof-press and off-press system. The operation is fast, low cost, and does not require the experienced operator. Adjusting digital proof to match proof press print as much as possible is desirable. Colour Management System is the important clue for the successful matching.

There are three main technologies used in the digital output machine; electrophotography, ink jet, and thermography. In this research electrophotography technology

was chosen because of its advantages over the others in long-life machine, controllable exposure range, high-speed production, and no requirement of special paper.

Electrophotography is a fully digital printer, it receives RGB data from the original and then converts the colour value to CMYK⁵ data before print-out. Both RGB and CMYK are device-dependent colour spaces. (colour change from machine to machine) The device independent colour space are CIELAB, CIELUV, and XYZ. This thesis concerns in the transformation of RGB and XYZ colour spaces.

There are various methods of the transformation RGB data to CMYK data. Dr. Eli Baron⁶ found that the relation between colour value was not one by one relation, known as Linear or Matrix transformation. Mr. Jack Keith⁷ presented the relationship between RGB and CMY in term of "masking equations", as follows

Another method of transformation of RGB to CMYK by mean of XYZ tristimulus value, which is the device-independent colour space as the following equation;

$$RGB = f(XYZ).....1-2$$

And the colour transformation are as follow.

The colour managements is required to correct the colour that varies and be limited because of the device. An available commercial CMS is normally designed to use in any output devices which is not designed to use as colour proof for printing process. The propose of this thesis is to develop the CMS for the colour copier to print the proof as the offset proof.

1.2 Objectives

The objective of this research is to develop the Colour Management Systems to control the colour reproduction of colour copier to produce a print that can be used as an offset proof.

1.3 Expected benefits obtained from development of the research

The benefits of the development is the technique to create the CMS for other digital output devices to produce an acceptable offset proofs.

1.4 Scope of the investigation

The procedures are as follows:

- 1.4.1 Preparation of the standard colour images data.
- 1.4.2 Preparation of the films and the offset plates.
- 1.4.3 Proofing with the offset proof press.
- 1.4.4 Printing-out the standard colour images by colour copier (Canon CLC 700).
- 1.4.5 Colorimetric measurement of the offset proofs and the colour copier printed.
- 1.4.6 Calculation of the colour copier profile.
- 1.4.7 Printing-out the standard colour images by the colour copier with the developed profile and with the embedded profile in the colour copier system.
- 1.4.8 Comparing the colour difference (ΔE) of the prints from the two processes.

1.5 Content of the thesis

This thesis consists of 5 chapters including (1) introduction, (2) Theoretical considerations and literature review, (3) experimental, (4) results and discussion, and (5) conclusion and suggestions. Chapter 2 presents a proofing system, electrophotography printing, Colorimetry, Colour Management Systems and overview of related studies. Chapter 3 discusses the details about the materials and equipment, the preparation scheme and the procedure of this research. Chapter 4 reports the colour measurement, the profile was calculated and applied to the colour copier system. In the last chapter the conclusion and further study are discussed.

CHAPTER 2

THEORETICAL CONSIDERATIONS AND LITERATURE REVIEW

2.1 Proofing Systems

Proofing is a key element of the colour printing production process. Without it, any correction cannot be done before the production run and costly reworking may be necessary. The main purposes for making a proof are 8:

- To predict the appearance of the final reproduction.
- To monitor and control many steps of the reproduction process.
- · For the customer approval.

The proof for the customer approval must look and preferably like the printed job. For this reason most proofs in the past have been made on printing presses, either special proof press or production press, with the same paper and ink to be used on the printed job. Because such press proofs are very expensive, take a long time to make and need an experienced operator, may efforts have been made to substitute photomechanical prepress or off-press proof.

The first off-press proofing systems were introduced in the mid-1960s. They were considered to be inferior to press proofs. Eventually, the printing industry found that off-press proofs had a role: as quick, inexpensive internal proofs, as medium-quality proofs, and as high-quality contract proofs. ⁹

Colour proofing methods have developed over the years to meet the demands of time, materials, production and evolving printing technologies. Using hard copy proofs has been the primary reference of content and quality for many years. There are many colour proofing methods in the present.

· Press proofs

They are made on the proof press using the same plates, paper, and ink for the job. Obviously the process is expensive and time consuming. Press proofs have provided optimum examples for colour approval and contract purposes.

Off-press proofs

Off-press proofs were introduced in the early 1970s. They are less expensive than press proofs but in practical application yield a limited number of proofs. Most of them require special materials which are different from those used in the printing production. The colour match is considered close enough to be a useful guide for the average quality printing jobs.

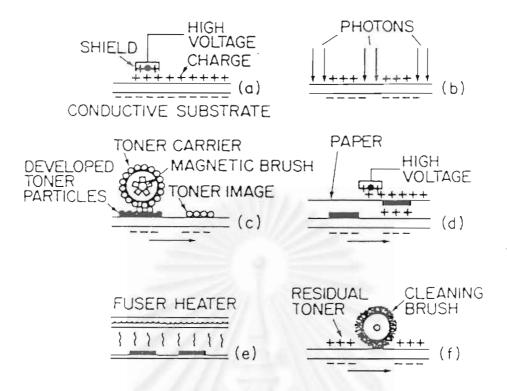
Digital proofs¹⁰

Digital proofs are proofs made directly from digital files, usually before films are made and, more compatible with direct-to technologies such as computer-to-plate (CTP) processes and direct to press processes. However, the digital proofing systems are difficult to calibrate and the print-out are inconsistent. Digital proofs such as laser prints have been used by designers for many years as the out put of their designs.

Digital proofs enable clients to approve all page makeup, colours and edit them before films are made. Digital proofs are made directly from digital and image data, at a relatively early stage in production in comparison with other proofing methods. Most digital systems do not use a conventional halftone dot, relying instead on dithering or continuous-tone printing to reproduce tonal values.

Another digital proof is soft proof or monitor-based, a customer would need remote colour monitors for simultaneous viewing. Viewing conditions on both ends would have to be controlled or standardized. The demand of soft proofs continue to increase, pushed by computer-to-press technologies, and by digital data transmission to remote printing sites. The transmission of digital files among publishers, trade shops, and printers do not allow for the physical transfer of hard copy proofs. Data can now arrive at a printing plant before overnight couriers can deliver the contract proof hard copy. A soft proofs on a spectrally matched monitor could display colour and text as the data arrives.

2.2 Electrophotography printing


Chester Carlson¹¹ invented the Xerography in 1938 that used as the copier and in 1978, the Xerography was adopted for computer output printer. Xerox introduced the 9700 Laser Printer, which was the first laser printer commercially available in the U.S. and in the world. It could print out 120 pages/minute. It is still the fastest commercial laser printer. However the 9700 was physically too large and very expensive.

At first, Carlson had used sulfur as the photo active material, after that selenium metal was found to be much more practical. This was the basic for Xerox's technology in 1960. The first commercial dry toners used with selenium were based on stryene-methacrylate polymers and had a negative electrical charge. During the 1970s IBM and Kodak developed and introduced its own organic photoreceptor and positive charging toner. In the meantime continuing to introduce products based on improved selenium photoreceptors and negative toner.

During the 1980s Japanese manufacturers such as Canon and Minolta started introducing low speed copiers based on selenium and cadmium sulfide photoreceptor and again using negative toner. They also introduced dry toner copier using single-component development, eliminating the use of carrier beads.

There are six basic stages to the electrophotography process; charging, exposure, development, transfer, fusing and cleaning. All the stages are repeated for each additional copy.

- Charging: After the drum has been cleaned. The Primary Corotron (corona wire or PCR) applies a uniform negative charge (-600V to -720V DC) on the surface of the drum.
- Exposure: The laser beam is used to discharge the charged on the drum surface. This
 creates a latent image on the drum. This latent image area will attract toner in a later
 stage.
- Developing: The latent image becomes a visible image. Toner is attracted to the developer roller either by an internal magnet or by an electrostatic charge.
- Transfer: The toner image on the drum is transferred onto a paper. As the paper is passing under the drum, it is passing over a transfer corotron assembly. This assembly places a positive charge on the back of paper, thus attracting the toner off the drum. A poor charge will result in light print and poor transfer of toner creating more wasted toner.
- Fixing: Fixing or fusing, this is the stage where toner is permanently affixed to the paper. The fusing assembly consists of a head roller, a pressure, heating element, thermostat and thermal fuse. The roller is heated to approximately 180 ° C. The second roller applies pressure to the heated roller. The paper passes between the two rollers, the heated roller melts the toner particles while the pressure roller presses the toner into fiber of paper.
- Cleaning: In this stage the drum is prepared to receive a new latent image through a physical and electrical cleaning process. The physical process consists of a drum cleaning blade (wiper blade) and a recovery blade. The wiper blade scrapes any excess toner off the drum and the recovery blade catches the toner and sweeps it into the waste hopper.

The basic steps in the xerographic process: (a) charging the photoconductor, (b) exposing to form the latent electrostatic image, (c) developing the latest image into a real image, (d) transferring the image to paper, (e) fusing the image to paper, and (f) cleaning residual toner from the photoconductor.

Figure 2-1 Stages in a colour copier processes 11

2.3 Colorimetry

The colorimetric value are commonly used in colour management developed by the Austria-base International Commission on Illumination (Commission International de I'Eclairage, CIE)¹². All are base on the premise that a colour stimulus is a product of a light source, object, an observer. The measured object is the variable. The CIE 1931 Standard Observer was defined using a viewing aperture of 2° Standard Observer. In 1964 the CIE conducted another experiment in which a 10 field of view was used to provide a sample representing a wider view. The 1964 Standard Observer is also known as the 10° Standard Observer.

CIE XYZ tristimulus values of a measured colour are calculated by multiplying, for each wavelength interval used, the spectral power distribution of the light source (P), the

measured sample (R). The tristimulus value X corresponds to the red response; Y, green; and Z, blue. The primary colour of green light (546 nm.) chosen by the CIE to define the standard Observer, corresponds with overall human visual response (photopic response) to all colour, or lightness; therefore, the Y value indicates not only a samples green response but also its luminance, or lightness value.

CIEXYZ values provide "raw" colour measurement data that many colour management systems use to make device profile. The numbers cannot easily be interpreted or used to specify colours, foe example, for quality control or colour different measurement.

CIExyz chromaticity values provide a method of graphically plotting the colorimetric values of a sample in a three-dimensional colour space known as the CIE chromaticity diagram, or "horseshoe". The chromaticity coordinates x, y, and z are calculated by dividing each of the tristimulus values, X, Y, and Z, by their sum (X+Y+Z). The CIE chromaticity diagram plots x on the horizontal axis and y on the vertical axis. The tristimulus value Y, providing a measure of luminance, is used for the third axis. CIE xyY colour values are straight calculations from XYZ tristimulus values. They are used in some colour mangement applications, such as the custom "Printing Inks Setup" dialog box in Adobe Photoshop. Colour gamut plots, e.g., monitor vs. print or HiFi colour vs. CMYK colour, are sometimes compared and contrasted in the CIE chromaticity diagram. A practical limitation of the CIE chromaticity diagram is that it does not provide a perceptually uniform colour space; that is, the distance between two or more colours in xyY space does not necessarily correspond with the colour visual similarity or difference. There, CIE chromaticity values do not provide a useful tool for communicating colour difference. CIELAB was developed to meet this need.

CIELAB, or CIEL*a*b*, is a three-dimensional plot calculated from CIE XYZ tristimulus values, in which L* is luminance, a* is the red-green axis, and b* is the blue-yellow axis. Whereas the CIE chromaticity diagram is plotted from ratios of XYZ values, the formulas for L*, a*, and b* contain cube roots($x^{1/3}$) and are thus known as nonlinear transformations. This was done in an effort to get a perceptually uniform colour space that could be correlated with

visual colour appearance. In other words, distances between colour correspond more closely to differences in appearance in CIELAB space than in CIExyY space. CIELAB colour values are often used in quality control, such as for comparing the differences in printed colours or the difference between a printed reproduction and original item. ΔE , a measure of colour difference in CIELAB space, is calculated using the distance formula to determine the distance in colour space from one colour to another.

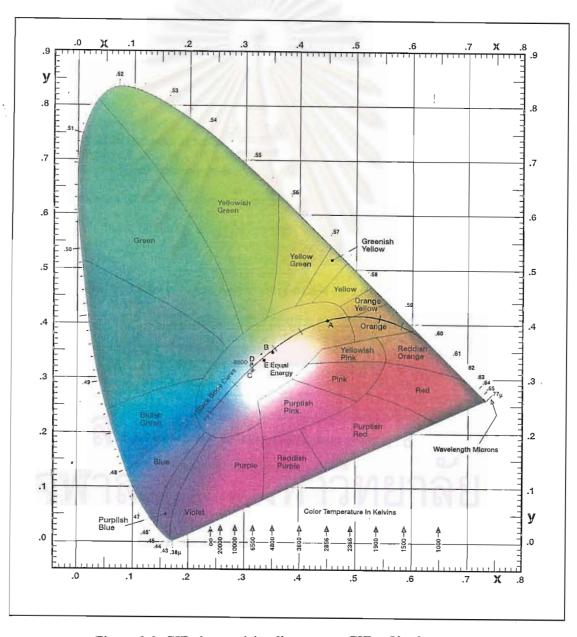


Figure 2-2 CIE chromaticity diagram, or CIE xyY colour space

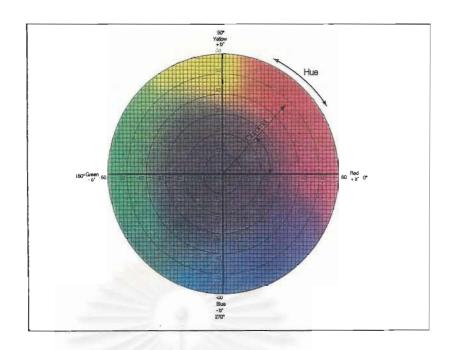


Figure 2-3 CIELAB colour space: red-green(a*) and blue-yellow(b*)

2.4 Colour Management System (CMS)

Each component in the prepress system, working with its own colour space and gamut, produces colour that is device specific ¹³. That is, if one scans a photograph of magenta colour patch, the scanner represents the magenta with a certain set of data. When it displays that image on monitor the magenta is represented by another set of different data. When print the magenta patch on a colour copier, a third set of data is used to represent the magenta, and a third hue appears. So the Colour Management System is needed to translate the device specific colour can be used at all stages of prepress production, with the insurance of predictable colour reproduction.

A CMS attempts to make colour more predictable within the limitations of the devices in use. It's a set of tools, which allow an image to move from process to process or output device to output device and in the ideal world, match. It corrects for difference in device-specific colour so that the image on the output device or monitor can be trusted to match it sources, such as colour transparency, the final colour proofs, and the colour prints.

A CMS is a software package¹⁵, which can characterise as so called "profile". The profile can be linked with image data or with each other. These device profiles are then stored for processing in the data flow as required. To create a profile, it is necessary to apply a

palette of colour to the device to be characterized in order to obtain a connection between the device specific data and then associated colorimetic values. Although the user of a device is free to define his own palette of colour being necessary for the device calibrating attempt has been made to define universally applicable tools whose application is also encouraged by the vendors of colour management systems. The two most prominent tools are specified as international standards, i.e. ¹⁵ a target for the calibration of input devices and a set of natural and synthetic test images designed for measuring and assessing the output of printing devices.

The target to be used for the calibration of scanners or digital cameras is specified in ISO 12641¹⁶. The target is material-specific and defined for positive colour transparency film and colour photographic paper. All manufacturers of photographic materials have been invited to produce such targets with their own colour dye set. Therefore the target exists in a number of versions all specific with respect to the substrate (film or paper) and to the dye set.

A target may be calibrated or uncalibrated. Calibrated means that measured values for each patch are provided together with a certificate attesting the conformance to an accredited measurement program. The goal is that all measurements are accurate within two units ΔE . The colorimetric values are available as XYZ tristimulus values and as CIELAB values base on D50/2. To communicate colorimetric data affiliating to this target, a file format was chosen which allows the use of spread-sheet programs.

The second tool defined as international standard is a set of natural and synthetic images. These images are delivered as digital data available on a CD-ROM formatted in accordance with ISO 9660. File format is TIFF/IT as defined in ISO 12639. The image set is specified in ISO 12640 and consists of eight natural images, five resolution charts and five colour charts. The image are designed for the visual assessment of the output results, the colour charts permit an instrumental assessment. In particular, they allow to create a colour profile.

A very basic criterion of a CMS is that colour profiles can be created by the user. Although creating a profile requires a certain competence of the user, the advantage is a better reproduction quality compares with the application added vendor-made profiles. Profiles provided by a vendor represent an average device description, which fails to give an optimum result in case of a particular device or process. As to creating colour profiles, three cases are to be distinguished:

- Creating input profiles: This is now a standardized procedure for all commercial CMSs. The tool is the IT8.7/1 colour target (according to ISO 12641) for which the calibration values are incorporated in the CMS software. After the target has been scanned with the device to be profiled, the automatic calculation of the colour profile takes only one minute. The target has to be provided by the CMS vendor as both a transparency film and a reflection copy on photographic paper. Although the device profile depends on the colour dye set used to manufacture the target, input profile are usually made only for one dye set.
- Creating output profiles: This procedure includes the following steps:
 - printing a colour chart on the device to be profiled
 - measuring the colour chart
 - entering the values into the CMS software
 - calculation of the profiles

A CMS must provide a data set for printing the colour chart, and an algorithm to calculate the profile. The most important criterion, however, is that the procedure of measuring and entering the colour values is fast and simple. The minimum solution to fulfil this requirement is that the CMS offers an interface to automatically enter the colour data, which is compatible with the most widely used colourimeters in the graphic arts industry. Another characteristic of a CMS for creating output profiles is the number of colour values necessary to calculate the profile. The current number varies between 200 to 800 values. Clearly, the higher the number of input values is, the measuring procedure should be fast and simple. The accuracy of the profile,

however, is not strongly dependent on the number of input values as long as this number is at least 200.

• Creating display profiles: The number of colour necessary for calculating a display profile is significantly smaller than for making a CMYK profile. Theoretically, only the three primaries RGB used for the display device have to be measured.

Independent of the number of colour being measured, a special colorimeter designed for a self-luminous surface has to be used. Recently, only few instruments were available for this purpose meaning that profiling display devices was very uncommon. Therefore most CMSs were limited to the possibility of creating input and output profiles. Nowadays, however, typical colorimeters offer the measurement of both self-luminous and surface colours. As a consequence, a modern CMS should also support the profiling of display devices.

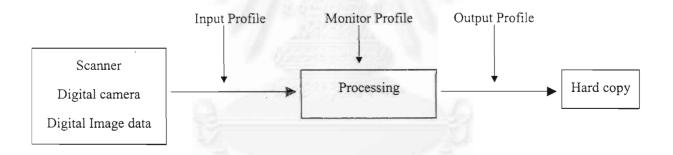


Figure 2-4 A colour managment workflow

It's possible to expect CMS to reproduce colourful reality 100 % accurately 17, since it is obviously restricted by the physically limited colour space of the various media. The technology imbedded in CMS equipment represents a further limitation. Profiles age with their devices and so must be regenerated at regular intervals, at least for scanners, monitor and proof printers. Furthermore the colour measuring instruments are subject to fluctuations in accuracy, which can influence profile quality.

In addition to the above mentioned problems, CMS can also be problem matched in printing processes where the ink properties and standardization conditions differ from those of offset printing.

Any colour measuring equipment is suitable for profile creation, provided its measuring geometry is taken into account. Both spectrophotometers and colorimeters cover the entire visible spectrum in their measurements from 380 nm. to 720 nm. ¹⁸

The available colour measuring equipment on the market is supported by CMS manufacturing. It means that during measurements the system is controlled automatically and directly by the CMS software, or, at the very least that the measurement data are on-line for profile calculation. Alternatively, the measured values can be entered via a spreadsheet, e.g. Microsoft Excel, or as text files. The manual measurements can be quite time consuming. It can also give rise to measuring errors. It is therefor advisable to invest in a measuring in a spectrophotometer with automatic x,y-coordinate measuring facilities or in an automatic chart feed, e.g. GretagMacBeth Spectrolino/SpectroScan, Techkon SP 810 Lambda with TCR or X-Rite DTP41. Monitor profile are best obtained using colorimeters specifically designed for monitor calibration, e.g. Sequel System Calibrator, Techkon SCR or X-Rite DTP92. Both GretagMacBeth Spectrolino and Light Source Colourtron are suitable for both monitor and output profiles.

2.5 File format

Depending on the types of graphics images, there will have difference requirements for the file formats²⁰ storing those images. Files formats are referred to the manner in which the graphic image is stored on the disk. How it's stored determines what programs can open or read the image data, and what can do with it once it's opened. The Tagged Image File Format (TIFF) is a bitmap file and the most widely used. It can be of any dimensions and any resolution. It can have bit depths of 1, 4, 8, 24 or 32 bits per pixel, using gray scale, RGB or CMYK colour models, and can be saved in compressed and uncompressed formats. Almost every program that works with bitmap can handle TIFF files either placing, printing, correcting, or

editing the bitmap. When a TIFF file is opened in an intermediary program, and then is saved from that program in order to read it in another program, it's still times consuming. TIFF file is suitable to use a page-layout program to control the tone of a scanned image. TIFF images can include up to 60 tags, each define different properties. Tags are divided into Baseline tags and Extensions. Baseline tags include basic image data such as image size and resolution²¹. Extensions define aspects such as the photometric details needed for the display of colour images that are not stored in RGB mode.

2.6 Literature Review

The GATF began its initial survey of digital proofing devices in 1995²². For this survey, a two-page test files from which digital proofs would be made was supplied on CD-ROM. The digital proofing vendors tried to make the output with the most accurate gray balance. The digital proofs didn't include the color laser copier. The digital proofs devices were thermal dye transfer and ink jet printing. Gray balance is the key aspects affecting customer satisfaction, but this characteristic was most likely to vary from installation to installation and throughout the life of the proofing device. The important benefit of digital proofing is ease with which calibration can correct gray balance reproduction but calibration must be performed consistency and often to achieve optimal results. Dot gain of the ink jet printer was lesser than press sheet. The solid ink density of ink jet proof was slightly lower than press sheet. However they didn't declare what was the best digital proofing device. Because the products and technologies of digital proofing device have evolved and changed so rapidly that the specific models, dyes, and substrates evaluated may in many cases no longer be in use.

There are several important characteristic for colour copier quality²³; image noise, tone reproduction, colour reproduction, find line reproduction and OHP projection performance. The two important characteristics are low image noise and highlight reproduction. By using the 7 micron toner, the image noise has been greatly reduced and is slightly worse than offset print quality.

Ideally, it's necessary to use the right system for the type of work that are printed and each system is calibrated to ensure consistency. For examples; Kodak Approved, Screen TruRite or Optronics Intelliproof²⁴ are suitable to print-out halftone dots. Dye sublimation proof, such as an Imation Rainbow, Kodak DCP9000, or Tektronix Phaser 480X for colour proofing, the calibration of proofing systems has been made easier by manufacturers who supply preset characterizations to printing processes and built-in calibration utilities.

The first digital proofs were introduced by Hell and Crosfield²⁵. The proofs on colour photographic paper made on its CPR 403 Color Proof Recorder from data in its Chromacom system. Because of the eliminated of register problems colour photographic material type with three emulsion layer that. Resolution capability is 1200 lines/inch (472 lines/cm.) The colour gamut of the colour proof is larger than that of offset press. (Eurostandard ink) Crosfield Magnaproof System is capable of producing fast and inexpensive print out in the Crosfield Studio 860 Image Processing System. It's automatically controled the colour correction and colour gradation.

REMAK Colour proofing system²⁶ was the first colour proofing system to use electrostatic principles. As the sensitive to conductivity of the air contact of the photoconductor, the process demanded very stringent control of the relative humidity in the working area which required a dedicated space for the proof press with elaborate and expensive air conditioning. Also, due to the high surface voltage on the photoconductor surface, exposure did not completely discharge the non-image areas and left a variable residual charge on them resulting in inconsistent random toning on the proofs. In addition, any variations in the electrical properties of the photoconductor or toner between lots caused variations in the processing that affected the consistency and reproducibility of the proofs.

KC-Colour proofing system²⁷ is the development of electrostatic proofing processes. With a new photoconductor and new liquid toner, it has been able to eliminate all of REMAK's limitations while retaining all of its superior qualities and providing additional

benefits. Proofs made by the KC-Proofing system was not only match the printing ink in spectral and optical characteristics but also match the halftone gravure.

Robert Rolleston presented the "Visualization of colorimetric calibration"²⁸. By using a system model which consists of an initial monotonic mapping of an input colour vector, the transformation of the colour vector by mean of a matrix operation, and finally another monotonic mapping of the colour vector.

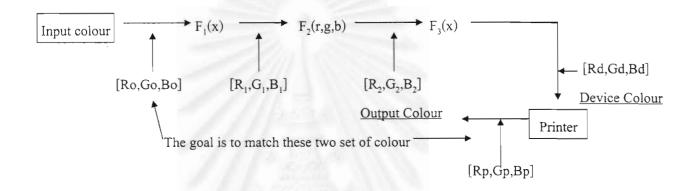


Figure 2-5 System model of colour matching.

The desired colour will be referred to as [Ro, Go, Bo]. This input colour vector is first mapped through a monotonic function $F_1(x)$ (where x is Ro, Go, Bo) to produce the modified colour [R_1 , G_1 , B_1]. That is [R_1 = F_1 (Ro), G_1 = F_1 (Go), B_1 = F_1 (Bo)]. This first intermediate colour vector is mapped through the function F_2 (r,g,b) takes the form of a matrix multiplication. The first intermediate colour vector is cast into a vector of the form:[1, R_1 , G_1 , B_1 , R_1 , G_1 , $G_$

The commercial Colour Management System sometime get an output²⁹, which is apparently the unmatched in colour. The colour copier's gamma is unstable even over a day. To archive higher quality of colour reproduction, some kind of gamma control technique is needed.

And the profiles using are will make in most cases. These profiles can actually be put to use even if there local glitches in colour conversion tables.

The ICC Profile Format Specification describes the basic elements of a Colour Management System, which meets the requirements³⁰. The ICC specification deals with the colour transformation between devices and is the description of data format, which contains the data required for conversion between devices. Conversion of colour between devices is generally performed using a mathematical table. The transforming data from the source to the target, the first step is to convert the source colour to a colour space, which is independent on any device, and to transform them to the target colour.

The research of converting the colorimetric values of hard copies³¹ taken under a reference illuminant to the colorimetric values taken under a viewing illuminant by using a 3-by-3 matrix. They match the colour appearances of soft copies with those of the corresponding hard copies. It has proposed calculating the colorimetric values Xvi, Yvi, Zvi converting to the colorimetric values Xca, Yca, Zca for a state adapted to visual perception by performing chromatic adaptation correction, calculating the R'm, G'm, B'm value of a monitor-dependent signal. They calculated the colorimetric values of each pixel of the hard copies placed under the viewing illuminant. The results of this study suggest that the optimum method is one that used a linear combination matrix between two illuminants conversion matrix and this method would be able to ensure colour matching at a practical level.

CHAPTER 3

EXPERIMENTAL

3.1 Materials

The list of materials were following;

3.1.1 Original Images in digital data file (CD-ROM) : Standard Colour Image Data

(SCID: ISO12640)

- 3.1.2 Film Control Strip: Kodak type Control Scale T-14
- 3.1.3 Plate Control Strip: Fuji type Fuji Control Strip
- 3.1.4 Print Control Strip: Gretag Control Strip CMS-2
- 3.1.5 Negative Film: Kodak type SLD SP989
- 3.1.6 Film Developer: Kodak type RA 2000
- 3.1.7 Presensitized offset Plate: Fuji type VPS (Multi Grain 4)
- 3.1.8 Plate Developer: Fuji type DP-4
- 3.1.9 Gum Arabic: PSCDS Chempost: Gummin PP1006
- 3.1.10 Protective ink: Fuji type PS Plate Protection Ink
- 3.1.11 Process offset ink: Toyoking
- 3.1.12 Paper: Matted-coated and special paper for colour copier

3.2 Equipment

The list of equipment were following;

- 3.2.1 Computer: Macintosh (PowerMac 7100)
- 3.2.2 Imagesetter: Linotype-Hell type Herkules PRO
- 3.2.3 Film Processor : Glung & Jensen
- 3.2.4 Plate Exposure : Screen type P-814-G
- 3.2.5 Plate Processor: Tung Shung Machinery type P88-F
- 3.2.6 Offset proof : Screen : KF-124GL
- 3.2.7 Spectrophotometer : Gretag : Spectroscan and Spectrolino
- 3.2.8 Colour copier: Canon type CLC 700 with ColorPASS

3,3 Preparation Scheme

3.3.1 Offset proof

- Preparation of pagination the 8 images of the Standard Colour Image Data
 (SCID: ISO12640) by Adobe PageMaker program (Figure 3-1)
- Preparation of colour separation film by the imagesetter and developing by film processor
- Preparation of plates by plate exposure and then developing plates by plate processor
- Proofing by offset proof press; Screen type KF-124GL with 4-colour process ink on the matted-coated papers

The offset proofs were printed by the offset proof-press; at Amarin Printing Group. The quality control of proofs were referred to Gretag Standard. The offset proof was choosed 10 samples from 30 sheets.

Figure 3-1 Lay-out of pagination

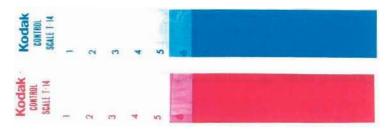


Figure 3-2 Kodak Control Scale T-14

Figure 3-3 Gretag Color Control Strip CMS-2

3.3.2 Colour copier proof

Print-out the Standard Colour Image Data by the colour copier; Canon CLC
 700

3.4 Procedure

- 3.4.1 Preparation of pagination the 8 images of the Standard Colour Image Data
 (the definition see Table A-1 in Appendix A)
- 3.4.2 Proofing the Standard Colour Image by offset proof press
- 3.4.3 Printout the standard colour images by colour copier
- 3.4.4 Colorimetric measurement the XYZ tristimulus values and L*a*b* values of the offset proof and the colour copier printout by the spectrophotometer; Gretag Spectroscan and Spectrolino. The average X, Y, Z, L*, a*, b* were calculated from the 3-time measurement of the colour copier printout.
- 3.4.5 The RGB values of the Standard Colour Image Data from CD-ROM would be measured by the function in PhotoShop program.
- 3.4.6 The colour copier profile would be calculated in Excel program. The model of calculation profile was as follow;

System model 1

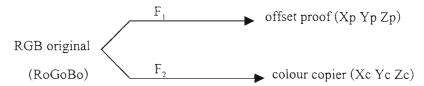


Figure 3-4 System model 1 for producing colour prints from colour copier and offset proof

System model 1 was used the colorimetric red, green, blue signals as inputs to describe the desired colour. These input colours referred as Ro, Go, Bo were mapped through a function F₁ to produce the offset proof (XpYpZp).

$$XpYpZp = F_1(RoGoBo)......3-1$$

$$XcYcZc = F_2(RoGoBo).....3-2$$

The "least squares" method was used to obtain the best fit line. The following formulas in Excel program were used.

- 3.4.7 The standard colour images data were printed by the colour copier under three conditions;
 - without the profile
 - with the developed profile
 - with the embedded profile in the colour copier system.
- 3.4.8 The X, Y, Z, L*, a*, b* of the printout were measured.
- 3.4.9 The print-outs were evaluated and analysed.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 The quality of offset proof

The solid density of cyan, magenta, yellow and black and % dot gain at 40% dot area of the offset proofs were shown in Table 4-1.

Sample		Solid I	Density		11	% dot	gain	
no.	Cyan	Magenta	Yellow	Black	Cyan	Magenta	Yellow	Black
1	1.51	1.35	1.40	1.86	14	10.5	10.50	12.00
2	1.45	1.35	1.40	1.81	11.5	9.50	11.00	12.33
3	1.38	1.34	1.38	1.87	12.75	10.00	10.25	10.67
4	1.38	1.27	1.26	1.88	12.50	9.75	8.00	11.00
5	1.21	1.36	1.08	1.95	8.75	9.00	8.75	11.33
6	1.31	1.26	1.12	1.90	10.25	9.00	9.25	11.00
7	1.26	1.29	1.16	1.84	11.00	9.25	9.25	10.67
8	1.18	1.25	1.24	1.79	7.50	8.25	8.50	10.67
9	1.24	1.23	1.25	1.63	11.75	10.50	8.50	10.00
10	1.53	1.56	1.34	1.55	14	13.50	11.00	10.00
Average	1.34	1.33	1.26	1.81	11.4	9.92	9.50	10.97
Gretag	1.30-	1.35-	0.90-	1.70-	15	15	17	17
Standard	1.35	1.40	0.95	1.80				

Table 4-1 The solid density and % dot gain of the offset proof

The result showed that the solid density and % dot gain of the samplings were in the Gretag Standard tolerance.

4.2 Colorimetry

The RGB of the Standard Colour Image Data and the X, Y, Z, L*, a*, b* of the offset proofs and of the colour copier prints were presented in Table B-1.

4.3 The system model 1 (SM1) profile

The colour copier profile was calculated by using the "least squares" method. The result of the calculation were as follows:

The sum of the squared difference (r^2) were as follows:

$$rsq Xc = 0.97$$

rsq Yc = 0.97

rsq Zc = 0.96

The rsq Xc,Yc,Zc were nearly equal to 1.00, which means that the relationship among the data were very strong.

By the equation 4.1, 4.2, and 4.3, the new Xc',Yc',Zc' were given. The "least squares" method was used to obtain the best fit line between the Xc'Yc'Zc' and XpYpZp. The following formulas in Excel program were used.

$$Xp = Index(Lineat(Xp,Xc'))$$

Yp = Index(Lineat(Yp,Yc'))

Zp = Index(Lineat (Zp,Zc'))

The result of the calculation were as follows:

Using the equation 4.4, 4.5, 4.6 as simulation condition, the tristimulus values (XYZ) of the colour copier prints with the system model 1 profile were obtained. Using equation 4.7, Δ E and average Δ E were obtained as shown in Table B-2.

$$\Delta E = [(\Delta X)^2 + (\Delta Y)^2 + (\Delta Z)^2]^{1/2}$$
 4-7

average ΔE with the SM1 profile = 3.81 standard deviation ΔE = 3.50 average ΔE without profile = 13.28 standard deviation ΔE = 7.72

Even through the average ΔE of the colour copier prints with the system model 1 profile was low, the implementation of this profile can not be done or modified. Due to the software of the colour copier system has been protected by licence. Therefore, the researcher desided to introduce the system model 2 (SM2) as follows:

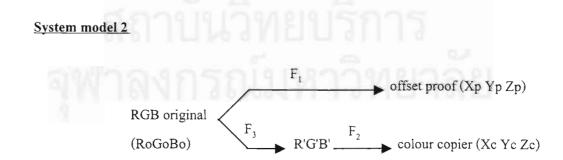


Figure 4-1 System model 2 for producing colour print from colour copier and offset proof

The Tristimulus value (XcYcZc) were converted to R'G'B'. The "least squares" method was used to obtain the best fit line.

$$R'G'B' = F_2(XcYcZc) .4-8$$

When

R' = Index(Linest(R,Xc))

G' = Index(Linest(G,Yc))

B' = Index (Linest(B,Zc))

The results of calculation were as follows:

The sum of the squared difference (r^2) were as follows:

$$rsq R' = 0.98$$

$$rsq G' = 0.96$$

$$rsq B' = 0.96$$

The rsq R', G', B' were nearly equal to 1.00, which means that the relationship among the data were very strong.

The expectation colour copier print-out was to match the offset proof. Which means that the Xc, Yc, Zc would be equal to Xp, Yp, Zp. Then Xp, Yp, Zp values were used in the equation

4-9, 4-10, 4-11. The new R'G'B' were obtained. The function F_3 the "least squares" method was used to obtain the best fit line.

$$R'G'B' = F_3 (RoGoBo).....4-12$$

when

R' = Index(Linest(R',Ro))

G' = Index(Linest(G',Go))

B' = Index (Linest(B',Bo))

The results of calculation were as follows;

Using equation 4-13, 4-14, 4.15, the new R', G', B' were obtained.

The equation was to calculate the estimate Xc, Yc, Zc. The "least squares" method ws used to obtain the best fit line as the function F.

$$XcYcZc = F(RoGoBo)$$
.....4-16

The results of calculation were as follows;

Using the equation 4-17, 4-18, 4-19 as simulation condition, the tristimulus values XYZ of the colour copier prints with using the system model 2 profile were obtained as shown in Table B-2. The ΔE and average ΔE were obtained as shown in Table B-3.

average
$$\Delta E$$
 with the SM2 profile = 8.78 standard deviation ΔE = 12.64

Therefore the system model 2 profile was the equation 4-13, 4-14, 4-15.

4.4 Implementation of the system model 2 profile

The system model 2, equation 4.13, 4.14, and 4.15, were written in the C++ program. The workflow of the procedure was as follow:

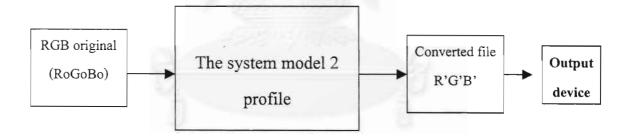


Figure 4-2 The procedure workflow of the system model 2 profile

4.5 Evaluation and analysis of the colour copier prints with using the system model 2 profile

The $\Delta E(XYZ)$ and $\Delta E(L^*a^*b^*)$ were shown in Table B-3. The $\Delta E(L^*a^*b^*)$ was calculated by the following equation.

The comparison of ΔE were in Table 4-2 .

	Δ E (average)	STD	Δ E (average)	STD
	(XYZ)		(L*a*b*)	
Without profile	13.28	7.72	22.69	11.18
Created profile :	3.81	3.50	-	-
System model 1 (by calculated)				
Created profile:	8.78	12.64		-
System model 2 (by calculated)				
Created profile:	16.82	7.97	14.73	5.95
System model 2 (by measurement)				

Table 4-2 The ΔE of the print-out from the experimental models

The average of measurement ΔE was larger than the average of calculation ΔE . In Table B-2 show that the average of measurement ΔE of some colour patchs was not conformed with the calculation ΔE . Due to the large numbers of colour patchs in used, it was not practical to analyse the ΔE , patch by patch. Therefore, the colour area was divided into 8 groups as the Table 4-3. Then the profile was calculated by using the "least squares" method to obtain the best fit line of each group again.

Area no.	R	G	В
1	0 - 128	0 – 128	0 - 128
2	129 - 255	0 – 128	0 - 128
3	0 - 128	129 – 255	0 - 128
4	0 - 128	0-128	129 - 255
5	0 - 128	129 – 255	129 - 255
6	129 - 255	0 – 128	129 - 255
7	129 - 255	129 – 255	0 - 128
8	129 - 255	129 – 255	129 - 255

Table 4-3 The 8 colour areas

Area no.	Δ E (average)	Δ E (average)	<u>+</u> ΔE
	(without profile)	(with profile)	
1	5.87	5.81	-0.06
2	9.11	4.01	-5.09
3	10.07	36.14	+26.07
4	19.15	18.44	-0.71
5	22.36	15.37	-6.99
6	15.36	6.79	-8.57
7	17.12	6.06	-11.06
8	18.37	5.63	-12.74

Table 4-4 The ΔE of 8 colour areas by calculating

The result of the ΔE calculation shows that the ΔE of area no. 2, 5, 6, 7 and 8 were decreasing in the range 30-70 %, the ΔE of area no.3 increase 260 % and the ΔE of area no.1, 4 were not changed. As the result, it was found that the R value of area no 1, 2, 6 and 7 were below 128 and the R value of area no. 3, 4, 5 were over 128. So, the next step was to divide the colour space area into 2 groups of 3 fixed R, G, and B as follow:

the first was fixed R; R = 0 - 128 and R=129-255the second was fixed G; G = 0 - 255 and G = 129-255the third was fixed B; B=0-128 and B=129-255

The result showed that the ΔE of the second and the third were not improved. The ΔE of the first type was decreased significantly. So the modified system model 2 was chosen to divide the colour area by R fixed.

4.6 The modifiled system model 2 (mSM2) profile

The modifiled system model 2 (mSM2) profile was calculated by the same method as system model 2.

4.6.1 The calculation of the modifiled system model 2 (mSM2) profile of the colour copier of group no. 1. (R = 0 - 128, G = 0 - 255, B = 0-255) The "least squares" method was used to obtain the best fit line.

R'G'E	$S' = F_2(XcYcZc)4-21$
R' =	6.16936+14.4694Xc-10.17Yc-2.1006Zc+0.38264Xc^2
	+0.6505Yc^2+0.05462Zc^2-1.0015XcYc+0.0605XcZc
	-0.1068YcZc4-22
G' =	-13.17-20.413Xc+22.1925Yc+3.7522Zc+1.7996Xc^2
	+1.10317Yc^2+0.17628Zc^2-2.7309XcYc-0.3065XcZc
	-0.0662YcZc4-23
B ₁ =	6.45877+5.96997R-10.664G+11.3482B÷0.44608R^2
	+0.95577G^2+0.07182B^2-1.2496RG+0.20354RB-
	0.4818GB4-24

The sum of the squared difference (r²) were as follows:

$$rsq R' = 0.96411$$

rsq G' = 0.90203

rsq B' = 0.95708

The rsq R'G'B' were nearly equal to 1.00, which means that the relationships among the data were very strong.

Using the XpYpZp to calculate the new R'G'B' by the equation 4-22, 4-23, 4-24. The "least squares" method was used to obtain the best fit line between the new R'G'B' and RoGoBo.

R' = -8.330742794+0.72434745Ro-0.523295557Go-0.235150001Bo +0.003820047Ro^2+0.006147514Go^2+0.002874591Bo^2 -0.00110254RoGo-0.000431718RoBo-0.00299267GoBo.....4-25 G' = -4.726550413-1.298319086Ro+2.279861387Go+0.508588187Bo +0.0092598Ro^2+0.004687395Go^2+0.006179986Bo^2 -0.007822712RoGo-0.002191577RoBo-0.011797862GoBo....4-26 B' = -1.144134028-0.500883003Ro-0.73532706Go+2.314806632Bo +0.003472021Ro^2+0.007697529Go^2+0.004209249Bo^2 +0.005342377RoGo-0.005714404RoBo-0.013121975GoBo...4-27 The sum of the squared difference (r²) were follows:

$$rsq R' = 0.9671$$

 $rsq G' = 0.9481$
 $rsq B' = 0.9584$

The rsq R'G'B' were nearly equal to 1.00, which mean that the relationships among the data were very strong.

Finally the profile of colour space group 1 were the equation 4-25, 4-26, 4-27.

4.6.2 The calculation of the modifiled system model 2 (mSM2) profile of the colour copier of group no. 2. (R = 129-255, G = 0-255, B = 0-255) The "least squares" method was used to obtain the best fit line.

The sum of the squared difference (r²) were as follow:

$$rsq R' = 0.92$$

 $rsq G' = 0.98$
 $rsq B' = 0.98$

The rsq R'G'B' were nearly equal to 1.00, which mean that the relationships among the data were very strong.

Using the XpYpZp to calculate the new R'G'B' by the equation 4-29, 4-30, 4-31. The "least squares" method was used to obtain the best fit line between the new R'G'B' and RoGoBo.

The sum of the squared difference (r²) were as follow:

$$rsq R' = 0.91$$

 $rsq G' = 0.99$
 $rsq B' = 0.98$

The rsq R'G'B' were nearly equal to 1.00, which means that the relationships among the data were very strong.

Finally the profile of colour space group 2 were the equation 4-33, 4-34, 4-35.

The calculation ΔE of group 1 and group 2 were shown in Table 4-5. The ΔE of the print-out with using the modified system model 2 profile was decreased significantly.

39	ΔE (average) without profile	STD	ΔE (average) with profile	STD
Group 1	15.26	6.79	5.26	4.47
Group 2	10.78	8.11	7.43	7.82

Table 4-5 The ΔE of group 1 and group 2 by calculating

So the the modified system model 2 profile was written in the C++ program. (see Appendix C) The procedure of converting the original file was the same as the system model 2. The workflow of the procedure was as follow;

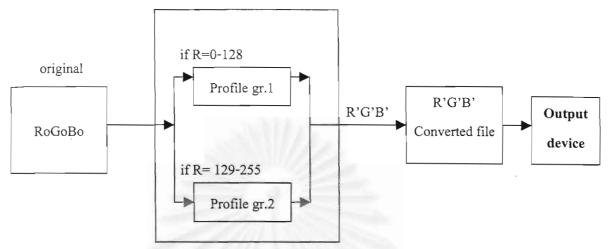


Figure 4-3 The workflow of the modified system model 2 profile

4.7 Evaluation and analysis of the colour copier prints with using difference profile

After printing-out the converted file to colour copier, measured the colour values were by spectrophotometer. Then the ΔE were calculated (see Table B-3). The results showed that the colour of the converted files was improved significantly. The ΔE of the print-out with modified system model 2 was slightly lower than the embedded profile in the colour copier system.

No.	Profile	Δ E(XYZ)	STD	Δ E(L*a*b*)	STD
1.	Without profile	13.28	7.72	22.69	11.18
2.	System model 1(by calculating)	3.81	3.50	-	-
3.	System model 2(by calculating)	8.78	12.64	-	-
4.	System model 2(by practical)	16.82	7.97	14.73	5.95
5.	Modified system model 2 (by calculate)	6.20	6.23	ยาลย	-
6.	Modified system model 2 (by pracdtical)	5.73	3.46	9.48	6.50
7.	700 – 800	8.94	5.35	9.95	4.25
8.	DIC	10.43	6.10	10.77	7.41

No.	Profile	Δ e(xyz)	STD	Δ E(L*a*b*)	STD
9.	Euroscule	17.92	10.18	12.58	8.89
10.	SWOP	9.10	4.95	10.68	6.74

Table 4-6 The ΔE of the print-out with using difference profiles.

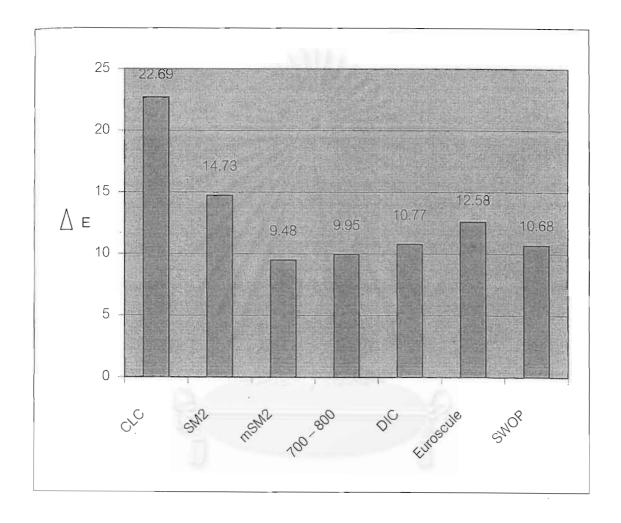


Figure 4-4 The ΔE (L*a*b*) of the print-out with using difference profiles.

The standard deviation ΔE of system model 2 was larger than that of the modified system model 2. The Figure 4-5 showed that the highest frequency of ΔE of system model 2 was in the rang 10-20, but the highest frequency of ΔE of the modified system model 2 was in the range 0-15. The results showed that there were 3 frequency of colour patches that the ΔE was higher than 35. Nevertheless, the ΔE of the modified system model 2 was not found.

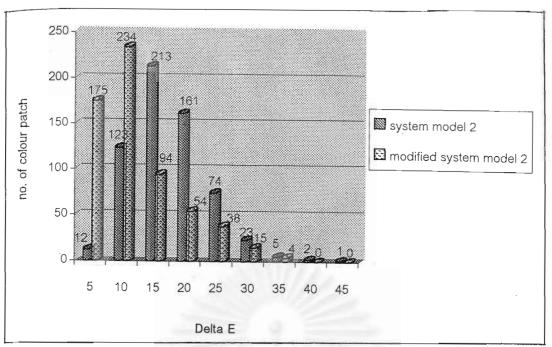


Figure 4-5 The number of colour patch distributed in the each range $\Delta {
m E}$

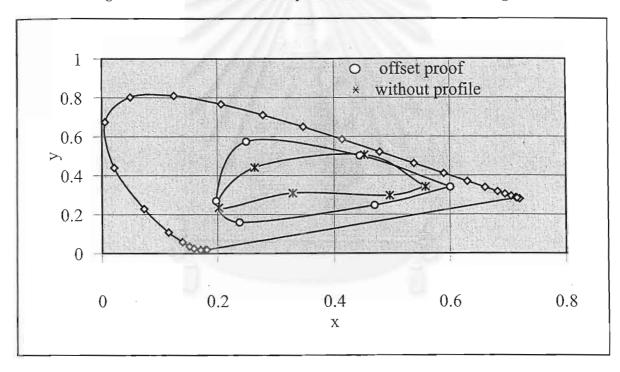


Figure 4-6 CIE chromaticity diagram of the offset proof and the print-out without profile

Figure 4-6, CIEXYZ chromaticity diagram shows that the colour gamut of the offset proof was wider than the print-out without profile. And in Figure 4-7 show the colour gamut of offset proof, the print-out without profile, the print-out with using system model 2, and the print-out with using modified system model 2; the colour gamut of the system model 2 was slightly wider than the offset proof. (Figure 4-7)

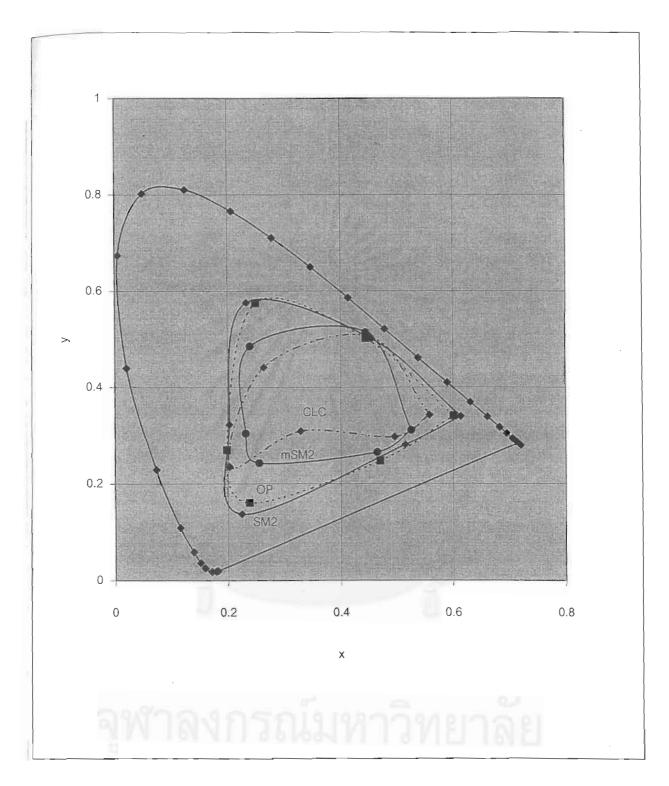


Figure 4-7 CIE chromaticity diagram of the offset proof(OP) ,the print-out without profile(CLC), the print-out with using system model 2(SM2) , and the print-out with using modified system model 2 (mSM2). (red, green, blue, yellow, magenta and cyan)

Figure 4-8 CIE colour space of the offset proof(OP),

the print-out without profile(CLC), the print-out with using system model 2(SM2), and the print-out with using modified system model 2 (mSM2). (red, green, blue, yellow, magenta and cyan)

The comparability CIE colour space between the offset proof(OP), the print-out without profile(CLC), the print-out with using system model 2(SM2), and the print-out with using modified system model 2 (mSM2); the offset proof was the widest, the print-out with using system model 2 was wider than the print-out with using modified system model 2 (mSM2), and the print-out without profile was the narrowest.

The colour reproduction of the mSM2 prints has an advantage over to the print-out with using other profile. For example, the human skin tone of Image 1(portrait) of the mSM2 prints was not only brighter than the SM2 prints and the print-out without profile but also brighter the 4-embedded profile prints in the colour copier system. However, the human skin tone of the mSM2 prints was reddish. The print-out without profile was redden and blacken.

In Image 4 (orchid), the highlight of the mSM2 print was lighter than the print-out with other profiles, but the shadow of the SM2 print was darker than the mSM2 prints. However the purple orchid of the mSM2 prints was similarity to the offset proof.

In Image 5 (candle), the dark colour, the mSM2 print was similarity to the SM2 print but the mSM2 print was able to recognize the difference between the blue and cyan of the knitting wool. Nevertheless, the other profiles prints can not.

Basic colour patchs(S7) and (S8), the colur reproduction of cyan, magenta, yellow, and black of the mSM2 print at the highlight steps were lighter than the other profiles. And at the 100 % dot of cyan, magenta, yellow, and black were similarity to the offset proof.

In the study, the influencing factors affecting the quality of print-out were investigated. The first factor was the colorimetric measurement. The study showed that the colorimetric values from 3-time measurement were very consistent.(APPENDIX D) And the second was a surrounding humidity, the first used of colour copier for proofing²⁶ the print-out quality were affected by the surrounding humidity. After developed the photoconducter in colour copier, the surrounding humidity slightly affected the colorimetric values. The study showed that in the morning the surrounding humidity was slightly higher than in the afternoon and the evening, the colorimetric values of print-out in the morning were slightly lower than in the afternoon and the evening. (APPENDIX E) And other factor is the warm-up time. The stability of the colour copier to produce the print-out would be solved, if the warm-up time is sufficient. So the average colorimetric values were used to calculate the profile.

CHAPTER 5

CONCLUSION AND SUGGESTION

The study had developed the profiles for the colour copier and the profiles had been imlemented. However the influencing factors affecting the quality of the colour copier prints were considered.

CONCLUSION

The first profile; the 614 colorimetric values were used to calculate the profile, system model 2(SM2). The result show that the ΔE (calculated by L*a*b*) of the print-out with using the SM2 profile were 35 % lower than the print-out without profile but 40 % higher than the print-out with the embedded profile in colour copier system.

The second profile; the 614 colorimetric values were divided 2 areas to calculate the profile, modified system model 2 (mSM2). The result show that the ΔE of the print-out with using the mSM2 profile were 58 % lower than the print-out without profile and 35 % lower than the print-out with the first created profile. And these were slightly lower than the print-out with the embedded profile in colour copier system. Additionally the tone reproduction of the print-out with using the mSM2 profile is also better than the print-out with the first created profile.

SUGGESTION

Due to the colour space area were divided into 2 groups for calculating the profile, the Δ E of the print-out with this profile was significantly improved and nearly equal to the print-out with the embedded profile in the colour copier system. So the new divided colour space area method would be considered in the further experimental.

The procedure of the mSM2 profile has still taken time more than the commercial profile and/or the embedded profiles, because the different platforms of the computer were used. The mSM2 had been written in the C++ program and processed the profile on PC computer,

MACINTOSH computer was used to print. However the mSM2 profile in the C++ program could be directly processed on Macintosh, if there is a compiler software. And the automatic process of using the mSM2 would be able to develop.

By the model of calculating the mSM2 profile, the user in the printing house or the prepress house could be able not only to modify and apply to their digital output devices very easily but also to save the production cost.

REFERENCES

- 1. Williamson, K. C. Digital proofing. GATFWorld Vol.8 No.2 (March/April 1996): 3.
- 2. Hinderliter, H.; and Adams, R. M. Evaluating digital proofs: Second-Round Results.

 GATFWorld Vol.8No.6 (November/December 1996): 17-23.
- Bruno, M. H. Principle of color proofing. Salem: GAMA Communications, 1995.
 pp.219-228.
- Takiguchi, K. High quality digital color xerography. Color Hard Copy and Graphic Arts
 (February 1993): pp.38-46.
- Judy, M.; Tony, F.; Michael, K.; and Rob, D. Advanced color imaging on the Mac OS.
 Reading: Addison-Wesley Publishing Company (1995): pp.3.14-3.17.
- Baron, E. RGB to CMY colour transformation. J. Profressional printer 38 (January/February 1994): 229-235.
- Keith, J. The CMYK colour scheme.
 Http://www.research.microsoft.com/~hollasch/cgnotes/color/cmyk.htm, 1997.
- 8. Green, P. Understanding digital color. Pittsburgh: Graphic Arts Technical Foundation, 1995: pp.250-271.
- 9. Prince, R. J. Proofing. GATFWorld Vol.8 No.6 (November/December 1996): 8-9.
- Bruno, M. H. Principle of color proofing. Salem: GAMA Communications, 1995.
 pp.219-228.
- Gruber, R. J., and Julien, P. C. Dry Toner Technology in Handbook of Imaging Materials.
 Marcel Dekker, New York, 1991: pp.159-162.
- Adams M.R.; Weisberg B. J. The GATF Practical Guide to Color Management. 2nd ed.
 Sewickley: Graphic Arts Technical Foundation, 1998: pp.42-48.
- Dister, K. A User's Guide to Color Management. KBA Report No. 11-12/1998.
 (Mimeographed)
- 14. Schlapfer, K. The principles of Color management. 1997. (Mimeographed)
- 15. International Organization for Standardization[ISO] ISO 12647-2:1996.
- Fenton, H.M., and Leyda, G. Digital proofing update. GATEWorld Vol.9No.2 (March/April 1997): 14.
- 17. Leyda, G. W. GATF Digital proofing study: Round three. GATFWorld Vol. 9No. 2

- (March/April 1997): 17-32.
- 18. Edge, C. J. 3M Color matching technology for digital Matchprint TM. Color and Graphic Arts 2 (February 1993): pp.333-341.
- Ifra Special Report 2.18: Farbmanagement Systeme(Colour management system),
 Darmstadt, 1996.
- 20. Adams, R. M.; and Ollagnier L. M. Scanner proofing software for color management.

 GATFWorld Vol.9 No.4 (July/August 1997): 15-23.
- 21. ICC Profile Format Specification, Version 3.3 number, 1996, International Color Consortium, http://www.color.org.
- 22. Water, L. Proofing in a Digital World. **GATFWorld** Vol.10 No.1 (January/February 1998): 36-38.
- 23. Curry, D. N. Hyperacuity Laser image. Color Hard Copy and Graphic Arts 2 (February 1993): pp.428-439.
- 24. Bruno, M. H. Principle of color proofing. Salem: GAMA Communications, 1995. pp.181-191.
- 25. Bruno, M. H. Principle of color proofing. Salem: GAMA Communications, 1995. pp.130-137.
- 26. Bruno, M. H. Principle of color proofing. Salem: GAMA Communications, 1995. pp.255-272.
- 27. Bruno, M. H. Principle of color proofing. Salem: GAMA Communications, 1995. pp.192-205.
- 28. Rolleston, R. **Visualization of colorimetric calibration**. Color Hard Copy and Graphic Arts II (1993): pp.299-309.
- 29. Adams, R. M. Color management makes progress. **GATFWorld** Vol.10 No.1 (January/February 1998): 38-41.
- 30. **ICC Profile Format Specification**, Version 3.3 number, 1996, International Color Consortium, http://www.color.org.
- 31. Shiraiwa, Y. et al., Matching of the appearance of colours in hard-copy and soft-copy images in different office environments in **Electronic Imaging** (1998): 10-19.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX A

Table A-1 The definition of the Standard Colour Image Data

no.	name	description
1	Portrait	Close-up image of model used to evaluate the reproduction of human skin tones.
2	Cafeteria	Image with complicated geometric shapes. Suitable for evaluating the result of image processing.
3	Wine and tableware	Image of glassware and silverware used to evaluate the reproduction of brown colours and fine texture.
4	Orchid	Image of an orchid with background vignettes used to evaluate reproduction of highlight and shadow vignettes.
5	Candle	"Low-key" image of a room scene containing miscellaneous objects used to evaluate dark colours, particularly browns and greens.
6	Basic colour patchs (S7)	The basic colour patchs (S7) consist of 78 basic colour patchs Cyan, Magenta, Yellow, Black, Red, Green, and Blue.
7	Basic colour patchs (S8)	The basic colour patchs (S7) compose of 104 basic colour patchs Cyan, Magenta, Yellow, Black, Red, Green, and Blue. (colour with black printer)
8	Colour patchs(S9)	The colour patchs (S9) compose of 432 colour patchs Cyan Magenta, Yellow, Black, Red, Green, and Blue. (with different % dot area)

Figure A-1 image 1 : offset proof

Figure A-2 image 1 : colour copier without profile

Figure A-3 image 1 : colour copier with system model 2

Figure A-4 image 1 : colour copier with modified system model 2

Figure A-5 image 1 :colour copier with embedded profile : 700-800 colour copier Standard

 $Figure\ A-6\ image\ 1: colour\ copier\ with\ embedded\ profile: DIC\ Standard$

Figure A-7 image 1 colour copier with embedded profile : Euroscale Standard



Figure A-8 image 1 : colour copier with embedded profile : SWOP

Figure A-9 Image 2 : offset proof

Figure A-10 Image 2 : colour copier without profile

Figure A-11 Image 2 : colour copier with system model 2

Figure A-12 Image 2 : colour copier with modified system model 2

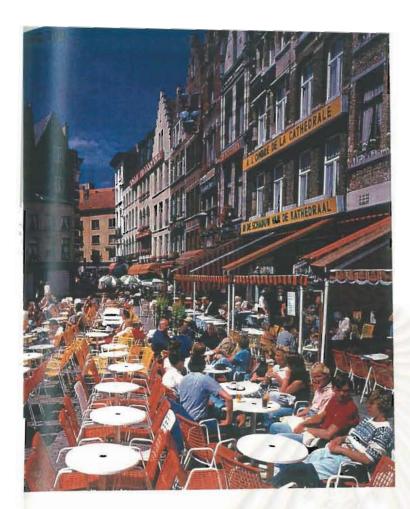
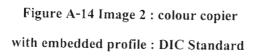
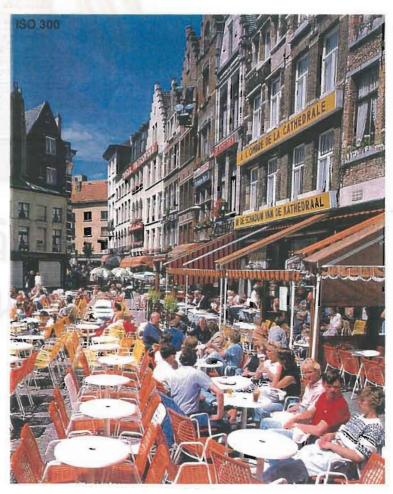




Figure A-13 Image 2 : colour copier
with embedded profile : 700-800
colour copier Standard

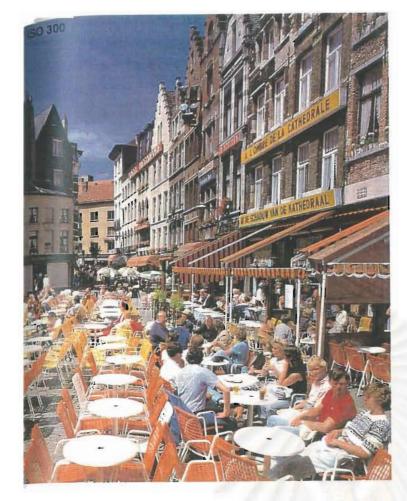
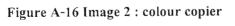



Figure A-15 Image 2 : colour copier
with embedded profile :

Euroscale Standard

 $with \ embedded \ profile: SWOP$

Figure A-17 Image 3: offset proof

Figure A-18 Image 3 : colour copier without profile

Figure A-19 Image 3 : colour copier with system model 2

Figure A-20 Image 3 : colour copier with modified system model 2

Figure A-21 Image 3 : colour copier with embedded profile

: 700-800 colour copier Standard

Figure A-22 Image 3 : colour copier
with embedded profile
: DIC Standard

Figure A-23 Image 3 : colour copier with embedded profile

: Euroscale Standard

Figure A-24 Image 3 : colour copier with embedded profile

: SWOP

Figure A-25 Image 4: offset proof

Figure A-26 Image 4 : colour copier without profile

Figure A-27 Image 4 : colour copier with system model 2

Figure A-28 Image 4 : colour copier with modified system model 2

Figure A-29 Image 4 : colour copier
with embedded profile
: 700-800 colour copier Standard

Figure A-30 Image 4 : colour copier
with embedded profile
: DIC Standard

Figure A-31 Image 4 : colour copier
with embedded profile
: Euroscale Standard

Figure A-32 Image 4 : colour copier with embedded profile : SWOP

Figure A-33 Image 5: offset proof

Figure A-34 image 5 : colour copier without profile

Figure A-35 Image 5 : colour copier with system model 2

Figure A-36 Image 5 : colour copier with modified system model 2

Figure A-37 Image 5 : colour copier with embedded profile : 700-800 colour copier Standard

Figure A-38 Image 5 : colour copier
with embedded profile
: DIC Standard

Figure A-39 Image 5 : colour copier with embedded profile

: Euroscale Standard

Figure A-40 Image 5 : colour copier with embedded profile : SWOP

Figure A-41 Image 6: offset proof

Figure A-42 Image 6: colour copier without profile

Figure A-43 Image 6: colour copier with system model 2

Figure A-44 Image 6 : colour copier with modified system model 2

Figure A-45 Image 6 : colour copier with embedded profile : 700-800 colour copier Standard

Figure A-46 Image 6: colour copier with embedded profile: DIC Standard

Figure A-47 Image 6: colour copier with embedded profile: Euroscale Standard

Figure A-48 Image 6: colour copier with embedded profile: SWOP



Figure A-57 Image 8: offset proof

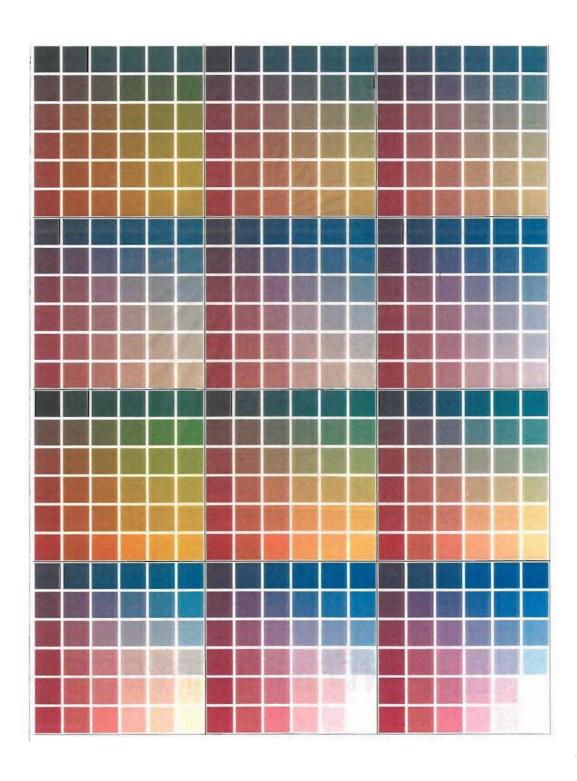


Figure A-58 Image 8: colour copier without profile

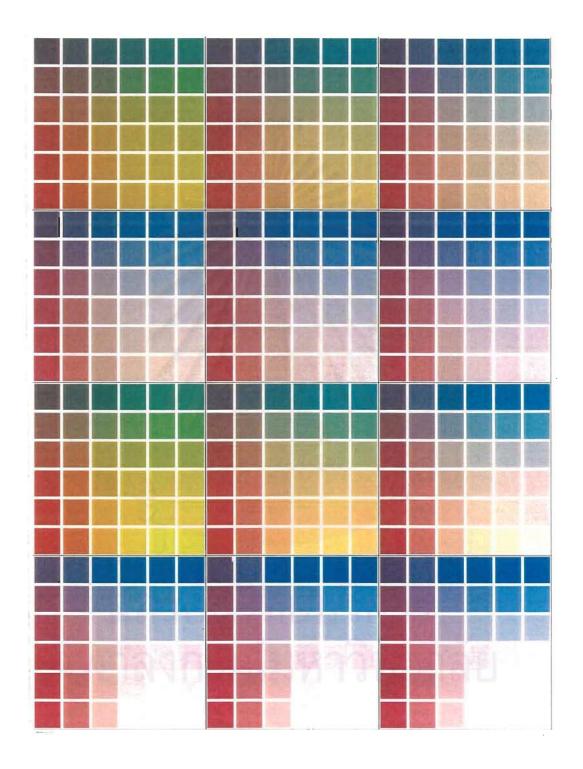


Figure A-59 Image 8: colour copier with system model 2

Figure A-60 Image 8 : colour copier with modified system model 2

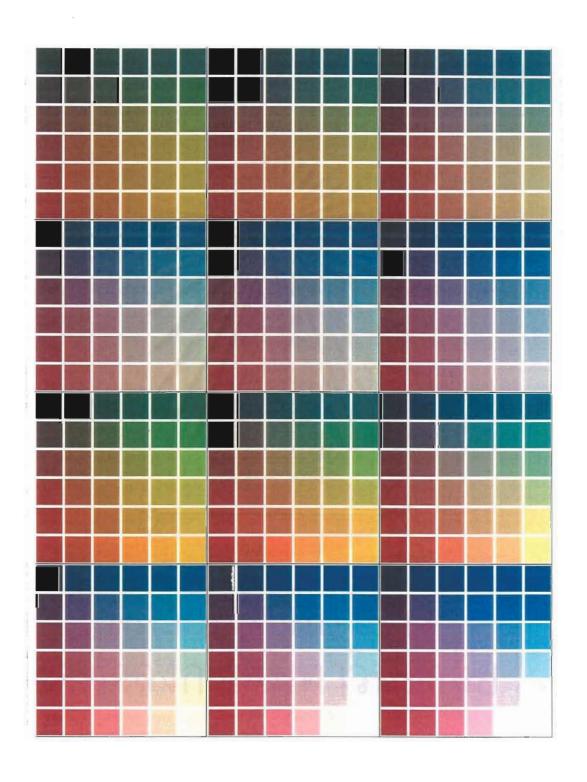


Figure A-61 Image 8 : colour copier with embedded profile : 700-800 colour copier Standard

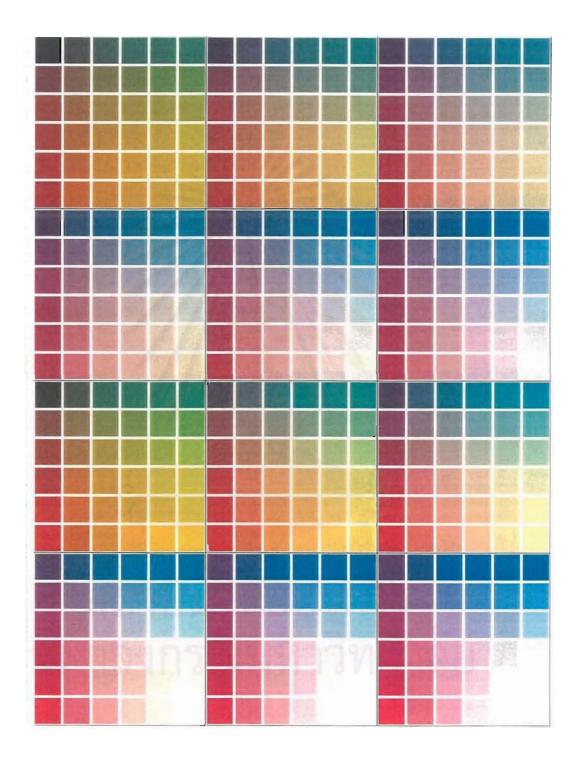


Figure A-62 Image 8: colour copier with embedded profile: DIC Standard

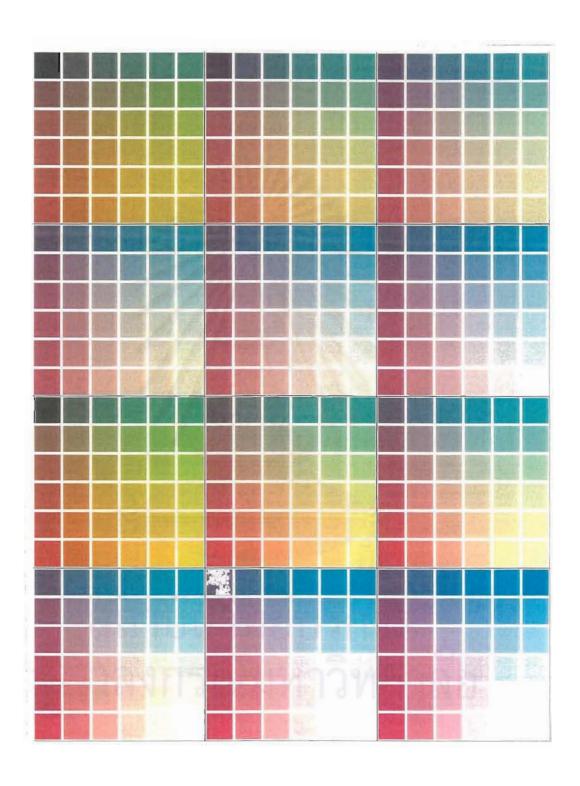


Figure A-63 Image 8 : colour copier with embedded profile : Euroscale Standard

Figure A-64 Image 8 : colour copier with embedded profile : SWOP

APPENDIX B

Table B-1 The R,G,B of SCID and the X,Y Z,L*a*b* of the offset proof and of the colour copier print.

No.	R	G	В	Хp	Yp	Zp	L*p	a*p	b*p	Xc	Ye	Zc	L*c	a*c	b*c
l	149	133	123	35.282	36.392	28.584	66.81	0.658	2.314	37.253	37.453	25.563	67.530	4.128	8.675
2	234	159	120	51.784	49.416	30.512	75.708	11.122	14.564	42.090	39.533	17.897	68.902	13.333	26.208
3	151	134	189	40.254	39.696	44.97	69.248	6.222	-16.398	34.538	32.613	32.992	63.853	10.898	-9.677
4	210	88	53	35.392	28.89	11.202	60.682	27.46	29.464	29.393	24.580	9.395	56.400	24.430	27.893
5	74	170	93	25.522	35.028	19.4	65.748	-31.466	17.54	24.828	30.743	17.632	62.068	-18.405	15.022
6	88	65	144	19.382	17.844	28.828	49.29	11.392	-28.294	21.387	19.117	21.667	50.802	14.733	-12.910
7	39	29	39	2.93	3.148	2.364	20.538	-2.32	1.994	5.433	5.653	3.972	27.937	2.243	3.020
8	197	0	42	23.712	13.452	2.292	43.432	57.068	42.226	18.027	11.057	3.200	39.515	46.612	28.035
9	0	145	57	8.352	19.214	5.866	50.85	-67.824	32.746	7.953	13.307	8.853	42.568	-34.902	5.963
10	44	9	108	5.696	3.838	14.406	23.078	26.072	-44.396	9.067	8.530	9.973	34.138	11.133	-12.412
11	245	242	0	57.71	64.99	6.886	84.478	-11.73	86.032	46.753	52.190	4.318	77.243	-9.107	85.957
12 .	201	0	115	26.588	13.978	15.97	44.196	65.974	-11.898	19.287	11.563	8.018	40.100	50.580	4.802
13	0	158	237	18.456	25.174	49.61	57.202	-27.562	-42.594	8.685	10.097	24.097	37.237	-5.355	-40.917
14	255	255	255	75.904	78.234	67.234	90.886	0.964	-2.534	75.240	78.047	65.562	90.728	0.288	-1.245
15	0	0	0	2.162	2.25	1.84	16.744	-0.232	0.188	1.445	2.083	1.227	12.097	-0.067	0.370
16	0	0	0	0.664	0.706	0.59	6.384	-0.698	-0.144	1.395	2.010	1.178	11.752	-0.057	0.398
17	0	0	0	1.65	1.126	0.428	10.002	16.752	9.168	1.398	2.023	1.185	11.780	-0.072	0.390
18	0	0	0	0.992	1.818	0.796	14.492	-22.752	10.048	1.392	1.990	1.175	11.783	-0.063	0.405
19	0	0	0	0.674	0.582	1.266	5.264	4.514	-12.974	1.380	1.977	1.168	11.700	-0.063	0.417
20	0	0	0	2.63	3.002	0.67	20.03	-4.862	21.91	1.382	1.967	1.175	11.730	-0.042	0.303
21	0	0	0	1.704	1.11	1.266	9.872	18.642	-5.076	1.352	1.927	1.150	11.532	-0.065	0.327
22	0	0	0	1.124	1.518	2.288	12.688	-10.384	-11.006	1.363	1.957	1.158	11.577	-0.105	0.353
23	245	208	181	63.348	63.35	47.136	83.626	5.248	5.808	55.142	54.933	33.238	78.398	8.105	15.057
24	208	229	205	61.862	66.508	52.918	85.254	-5.2	2.084	51.025	56.013	39.238	79.000	-5.105	7.688
25	201	190	226	56.81	57.244	55.66	80.316	4.002	-9.358	45.998	45.647	42.097	72.668	8.467	-6.937
26	155	204	156	46.31	53.172	37.686	77.974	-13.51	7.992	37.258	43.070	28.787	71.077	-11.160	9.337
27	248	252	253	74.978	77.468	67.204	90.538	0.582	-3.112	72.442	74.567	64.057	89.038	1.795	-2.728
28	239	247	253	72.982	75.73	66.698	89.732	-0.076	-4.026	68.143	69.493	62.645	86.778	2.357	-5.263
29	233	243	254	71.576	74.486	66.37	89.148	-0.512	-4.726	64.988	66.320	61.357	85.263	1.908	-6.618

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
30	218	235	253	68.486	71.684	65.498	87.812	-1.366	-6.21	59.148	60.217	58.690	81.832	3.155	-9.872
31	206	231	251	65.758	69.202	64.736	86.598	-2.144	-7.584	55.968	57.307	57.662	80.102	2.848	-11.802
32	195	225	251	62.742	66.472	63.876	85.234	-3.09	-9.114	50.697	51.187	55.228	76.890	3.178	-14.810
33	185	220	249	59.522	63.526	62.938	83.716	-4.082	-10.83	47.302	47.790	53.722	74.778	3.038	-16.838
34	157	208	249	53.026	57.596	61.002	80.506	-6.348	-14.47	42.123	42.977	50.363	71.145	3.760	-19.418
35	135	195	244	47.442	52.554	59.528	77.6	-8.772	-18.006	36.405	37.463	45.975	67.068	3.290	-21.358
36	111	187	242	41.278	46.902	57.724	74.114	-11.634	-22.188	31.505	32.933	43.510	63.512	1.595	-24.497
37	83	178	240	35.17	41.238	55.798	70.324	-14.924	-26.72	26.112	27.720	38.888	58.755	1.177	-26.753
38	56	169	240	29.854	36.294	54.11	66.724	-18.414	-31.144	20.453	21.850	34.432	52.878	1.220	-30.698
39	21	161	238	24.318	30.894	51.906	62.392	-22.106	-36.218	15.668	16.703	30.583	47.210	0.347	-34.685
40	253	247	249	75.068	76.964	66.444	90.304	1.766	-2.802	71.740	73.117	62.408	88.433	2.930	-2.180
41	250	239	243	73.138	74.326	64.582	89.078	3.08	-3.164	68.077	68.377	56.945	86.143	4.967	-0.652
42	250	233	239	71.858	72.572	63.318	88.242	4.002	-3.396	65.322	65.143	52.885	84.357	6.562	0.580
43	247	222	231	69.222	69.03	60.68	86.516	5.814	-3.784	61.990	60.777	48.245	82.257	8.023	2.152
44	247	210	223	66.682	65.666	58.144	84.826	7.566	-4.154	58.285	56.540	43.922	79.628	10.573	2.778
45	242	198	216	63.944	62.016	55.362	82.922	9.646	-4.55	54.867	51.530	39.852	76.868	14.023	3.197
46	239	187	208	61.622	58.928	53.046	81.252	11.498	-4.956	53.012	49.163	37.322	75.445	15.450	4.128
47	235	163	192	56.79	52.476	48.146	77.566	15.82	-5.82	45.595	41.823	31.143	70.360	17.295	4.352
48	230	139	177	51.428	45.388	42.692	73.146	21.238	-6.87	41.490	37.280	27.305	66.383	22.310	3.740
49	225	113	160	46.49	38.958	37.552	68.722	26.892	-7.784	37.127	31.920	23.078	62.308	26.160	4.258
50	217	88	147	41.042	31.956	31.836	63.306	34.276	-8.876	32.447	27.263	18.323	58.163	28.032	6.803
51	221	55	131	36.424	26.144	26.904	58.174	41.726	-9.78	28.907	23.430	14.520	54.555	30.477	9.605
52	205	0	118	31.764	20.316	21.908	52.188	51.4	-10.978	26.200	19.903	12.065	51.182	34.270	10.487
53	255	253	246	75.78	78.224	66.428	90.884	0.724	-1.792	74.263	76.890	63.825	90.263	0.273	-0.392
54	255	254	237	75.246	77.932	64.178	90.75	0.212	0.104	72.235	75.710	57.783	89.625	-1.163	4.490
55	255	252	231	74.662	77.504	62.498	90.554	-0.14	1.384	71.127	75.637	52.150	89.685	-3.757	10.563
56	255	252	219	73.554	76.724	58.946	90.192	-0.878	4.29	69.570	74.323	47.175	89.143	-4.743	15.270
57	255	252	206	72.61	76.106	55.414	89.908	-1.602	7.442	66.610	70.967	41.563	87.497	-4.102	19.297
58	254	252	194	71.4	75.238	51.526	89.504	-2.406	10.942	66.422	72.403	37.923	88.000	-6.695	24.953
59	255	249	180	70.604	74.7	48.576	89.254	-3.012	13.836	66.088	72.890	36.590	88.185	-8.235	27.112
60	255	250	155	68.458	73.22	41.084	88.552	-4.604	21.738	64.138	71.203	29.515	87.380	-9.133	36.255
61	252	248	126	66.406	71.758	34.27	87.854	-6.084	29.83	60.007	66.907	22.970	84.978	-8.373	43.537

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	а*р	b*p	Xc	Yc	Zc	L*c	a*c	b*c
62	252	247	98	64.218	70.106	27.562	87.048	-7.53	38.904	59.098	66.473	19.597	84.692	-9.318	49.780
63	251	245	66	62.252	68.624	21.168	86.318	-8.88	49.348	57.605	64.833	16.402	83.985	-9.867	55.692
64	247	244	0	60.726	67.392	16.496	85.7	-9.778	58.426	55.880	63.253	13.158	83.005	-9.883	62.262
65	247	243	0	59.202	66.26	11.592	85.13	-10.93	70.444	52.175	58.200	5.535	80.643	-9.135	85.392
66	248	248	248	73.908	76.172	65.566	89.938	0.958	-2.61	71.942	74.260	62.685	88.893	1.363	-1.657
67	238	238	238	70.706	72.89	62.822	88.394	0.912	-2.65	65.773	67.590	56.247	85.697	1.798	-0.690
68	231	231	231	68.5	70.628	60.962	87.304	0.876	-2.716	62.355	63.463	51.585	83.622	2.977	0.732
69	219	219	219	64.18	66.188	57.296	85.092	0.816	-2.824	55.348	56.483	45.527	79.895	2.202	1.282
70	205	205	205	60.042	61.948	53.706	82.884	0.748	-2.852	51.302	52.657	42.385	77.460	2.318	0.948
71	192	192	192	56.092	57.892	50.3	80.676	0.68	-2.912	50.352	51.463	41.488	76.893	2.243	1.112
72	181	181	181	52.468	54.168	47.18	78.558	0.626	-2.982	48.682	49.467	39.260	75.690	2.928	1.937
73	155	155	155	44.412	45.88	40.112	73.47	0.5	-3.016	42.292	43.253	34.133	71.463	2.895	1.768
74	132	132	132	36.308	37.534	32.918	67.674	0.382	-2.974	36.865	39.037	29.785	67.868	1.330	2.213
75	105	105	105	28.474	29.47	25.958	61.194	0.232	-2.942	32.152	33.757	25.225	63.792	2.707	2.858
76	80	80	80	20.386	21.12	18.644	53.078	0.108	-2.722	25.468	26.350	19.035	57.483	3.995	4.065
77	54	54	54	14.228	14.76	13.048	45.296	-0.022	-2.466	18.493	19.260	13.290	50.187	3.015	5.328
78	28	28	28	8.48	8.812	7.746	35.614	-0.132	-1.906	12.163	12.797	8.647	41.663	2.167	5.133
79	42	20	7,9	4.778	3.656	10.568	22.43	17.644	-34.492	9.603	8.847	8.985	35.942	7.873	-5.958
80	23	100	182	15.122	19.17	38.808	50.852	-18.702	-40.276	9.692	10.523	20.943	38.705	-3.342	-32.318
81	21	100	124	12.462	17.872	26.782	49.294	-28.944	-24.856	9.822	11.540	18.070	40.500	-10.038	-23.142
82	0	152	158	15.762	24.44	34.198	56.484	-39.314	-24.134	10.875	13.510	22.050	43.468	-14.757	-26.302
83	0	98	39	7.248	14.844	5.436	45.362	-54.102	25.336	7.878	11.180	7.763	39.990	-24.362	5.570
84	141	199	0	37.698	47.244	7.564	74.33	-23.822	65.84	28.675	34.137	3.883	65.423	-17.238	68.183
85	82	69	67	14.526	15.332	10.94	46.066	-1.62	5.094	20.940	20.040	12.493	52.258	6.300	11.095
86	140	131	0	28.9	32.396	5.686	63.652	-8.802	55.628	27.197	28.847	3.398	60.970	-3.877	63.655
87	227	161	0	44.224	44.25	5.936	72.39	4.586	69.506	33.270	32.607	3.473	63.695	7.175	67.847
88	128	13	31	15.176	9.308	2.546	36.55	43.364	28.25	15.475	10.763	4.335	39.145	34.015	20.182
89	199	0	85	25.988	14.21	12.09	44.524	62.088	-1.046	19.605	12.227	7.043	41.283	47.108	10.722
90	132	0	80	16.972	9.688	11.248	37.262	50.596	-11.07	16.565	11.220	8.255	39.748	37.653	3.282
91	134	0	112	18.23	10.152	16.022	38.096	53.754	-22.532	16.778	11.147	9.152	39.628	39.357	-0.180
92	87	66	121	17.828	16.934	24.714	48.154	8.242	-23.194	23.045	20.600	20.505	52.648	14.390	-7.387
93	38	60	122	9.888	11.312	23.7	40.068	-7.822	-35.274	10.507	10.960	16.613	39.497	-0.398	-21.543

No.	R	G	В	Хp	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
94	87	145	176	29.216	34.398	42.128	65.26	-14.508	-19.752	26.038	27.300	30.022	59.330	-1.525	-12.910
95	0	124	93	11.062	19.726	16.734	51.474	-48.272	-1.104	10.578	13.773	15.632	43.895	-18.805	-11.610
96	79	142	85	22.786	30.302	17.952	61.894	-26.75	14.05	23.758	28.190	16.037	60.053	-14.362	15.268
97	72	141	19	19.646	28.19	6.46	60.028	-33.662	45.85	18.415	23.217	3.712	55.707	-21.162	52.513
98	195	184	70	47.046	51.218	19.414	76.804	-6.414	36.558	38.303	40.467	14.263	69.882	-2.627	36.658
99	172	83	8	28	24.298	4.22	56.374	19.098	50.868	24.535	21.630	2.803	53.732	16.285	55.468
100	175	83	58	30.41	25.964	11.892	57.992	21.376	22.772	27.350	23.813	10.085	55.743	19.272	24.460
101	164	0	57	21.07	12.218	6.918	41.536	53.102	11.774	17.898	11.960	7.097	40.845	40.165	9.765
102	178	81	97	32.904	27.318	21.228	59.26	24.968	2.568	28.380	24.337	13.262	56.248	21.173	15.837
103	179	82	122	34.198	27.876	26.636	59.77	27.312	-6.556	29.830	25.127	17.000	56.998	23.500	7.747
104	84	0	94	11.15	6.84	13.804	31.41	39.122	-28.434	14.375	10.570	9.433	38.722	29.247	-2.725
105	35	62	69	6.076	9.1	9.764	36.126	-26.088	-8.236	9.648	11.060	11.190	39.820	-8.505	-6.513
106	153	169	140	41.628	45.806	34.224	73.412	-7.536	4.998	38.715	40.963	27.387	70.158	-2.512	10.060
107	81	113	78	19.856	24.824	15.072	56.884	-18.994	12.23	24.058	26.050	15.155	58.367	-5.787	14.520
108	30	63	39	5.042	8.868	3.904	35.68	-36.31	17.048	8.008	10.137	6.928	38.165	-15.308	5.805
109	200	188	179	55.048	56.594	46.734	79.946	1.21	-0.062	45.202	46.013	32.837	73.417	2.993	7.043
110	199	186	138	51.608	54.202	35.478	78.572	-1.706	12.098	42.543	43.613	24.917	72.152	0.672	17.798
111	144	132	72	32.028	34.508	15.852	65.354	-4.45	24.894	31.948	32.920	14.712	64.417	-0.642	26.078
112	79	71	33	12.592	14.092	3.984	44.342	-6.57	31.524	16.860	17.020	5.305	48.718	0.632	31.460
113	190	146	120	44.644	44.006	30.246	72.228	6.506	8.982	36.585	35.787	19.142	66.097	8.088	18.668
114	78	26	3.5	8.55	6.044	2.492	29.488	26.742	16.484	13.648	11.317	6.407	39.992	19.147	11.242
115	193	146	156	46.952	45.34	39.13	73.112	9.248	-2.334	38.685	36.587	26.650	66.748	12.073	5.452
116	141	76	98	25.868	22.362	19.87	54.398	18.99	-3.042	26.055	23.117	15.038	54.918	17.537	8.887
117	81	21	57	9.21	6.108	6.068	29.652	31.662	-4.956	13.892	10.807	7.793	39.017	24.973	3.770
118	22	23	24	6.48	7.128	6.322	32.084	-3.98	-2.014	11.055	10.987	7.678	40.002	1.490	5.932
119	0	0	0	1.18	1.306	1.09	11.306	-2.572	-0.164	1.540	1.973	1.315	12.970	-0.060	0.142
120	40	45	46	9.384	10.896	9.372	39.39	-8.838	-1.308	14.047	14.120	10.237	44.695	1.452	4.898
121	27	30	32	6.704	7.772	6.778	33.492	-7.774	-1.562	11.303	11.503	7.942	40.343	1.838	5.483
122	14	15	16	3.804	4.408	3.92	24.968	-6.434	-1.766	6.902	7.043	5.017	31.945	0.925	4.015
123	0	0	0	0.946	1.104	0.908	9.798	-4.272	0.066	1.525	1.920	1.302	12.877	-0.003	0.118
124	15	18	21	2.768	3.714	3.402	22.65	-13.838	-2.358	5.383	5.533	4.232	28.457	-0.542	2.348
125	7	10	11	1.696	2.252	2.02	16.73	-11.376	-1.558	3.165	3.423	2.467	21.273	-0.605	2.203

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	а*р	b*p	Xc	Yc	Zc	L*c	a*c	b*c
126	0	0	0	0.696	0.88	0.748	7.956	-6.25	-0.402	1.455	1.957	1.243	12.345	-0.013	0.150
127	86	114	124	23.096	26.728	28.166	58.71	-11.578	-10.96	26.093	26.707	23.555	58.768	1.068	-2.767
128	155	170	180	44.718	47.784	45.234	74.68	-3.874	-7.344	39.283	40.003	35.122	69.397	2.557	-3.222
129	40	25	58	3.736	3.336	5.962	21.28	8.074	-18.932	8.637	8.367	7.560	34.647	5.348	-2.817
130	150	133	155	37.778	37.992	37.466	68.008	3.73	-8.89	37.008	36.440	29.750	66.757	6.660	0.325
131	124	125	127	35.276	36.822	32.882	67.14	-0.77	-3.838	35.517	36.413	28.277	66.918	1.017	2.993
132	83	84	86	23.222	24.296	21.812	56.382	-0.914	-3.57	26.137	25.743	19.565	58.137	4.017	4.038
133	43	43	43	12.04	12.624	11.424	42.192	-0.924	-3.132	16.128	16.140	11.215	47.288	2.678	6.292
134	0	0	0	1.736	1.832	1.556	14.568	-0.74	-0.522	1.410	1.883	1.203	12.102	-0.033	0.183
135	138	141	142	37.356	39.73	35.724	69.27	-3.072	-4.286	37.373	37.807	30.350	67.993	2.512	1.507
136	123	126	127	33.728	35.862	32.262	66.412	-2.958	-4.162	34.983	34.963	28.062	66.088	2.765	1.927
137	93	96	97	25.86	27.542	24.95	59.468	-2.868	-4.118	27.765	27.083	21.778	59.553	4.492	1.985
138	63	65	66	17.224	18.358	16.766	49.924	-2.57	-3.926	20.375	19.920	14.843	52.152	4.030	4.615
139	33	33	33	9.15	9.762	8.954	37.408	-2.158	-3.304	13.642	13.810	9.777	43.858	2.428	5.015
140	0	0	0	1.384	1.492	1.296	12.536	-1.624	-0.82	1.517	1.890	1.302	12.837	-0.012	0.022
141	83	89	89	21.658	23.674	21.08	55.752	-5.382	-3.182	24.750	24.550	18.427	56.698	4.370	4.003
142	64	68	69	16.734	18.31	16.304	49.862	-5.026	-2.934	20.065	20.063	14.622	51.932	3.457	4.797
143	43	46	46	11.51	12.626	11.328	42.18	-4.646	-2.852	15.937	15.997	11.410	47.127	2.273	5.415
144	203	204	207	58.48	60.878	53.658	82.308	-0.526	-3.786	50.347	51.083	41.333	76.882	2.255	1.295
145	153	156	158	40.992	43.54	38.794	71.914	-3.006	-3.942	40.683	41.180	32.675	70.278	3.112	1.878
146	104	I 1 1	111	25.498	27.912	24.838	59.8	-5.846	-3.34	30.698	30.933	23.773	62.613	2.543	3.438
147	65	74	76	13.026	15.144	13.116	45.814	-10.014	-1.708	18.565	18.927	13.863	50.560	1.803	4.400
148	37	44	49	5.004	6.758	6.138	31.202	-17.356	-2.614	9.238	10.070	8.277	37.998	-3.992	0.173
149	208	208	208	62.1	64.302	56.128	84.12	0.236	-3.284	49.817	50.163	41.250	76.450	2.700	0.657
150	185	185	185	54.698	56.644	49.666	79.976	0.206	-3.402	48.203	48.457	38.947	75.517	2.343	2.060
151	140	140	140	40.62	42.134	37.306	70.964	-0.018	-3.578	37.757	38.470	29.893	68.285	2.495	2.735
152	95	95	95	26.502	27.526	24.542	59.456	-0.16	-3.418	27.203	27.583	20.355	59.172	3.815	4.212
153	49	49	49	13.6	14.154	12.68	44.452	-0.32	-2.9	16.990	16.867	11.777	48.137	3.750	6.100
154	0	0	0	2.032	2.126	1.786	16.09	-0.422	-0.342	1.502	1.903	1.290	12.715	0.002	0.040
155	184	185	187	53.132	55.322	48.862	79.226	-0.542	-3.784	47.962	49.123	38.952	75.332	2.493	1.727
156	164	165	167	46.37	48.322	42.88	75.026	-0.622	-3.868	44.222	45.150	35.597	72.727	3.140	1.845
157	0	89	35	6.312	14.13	4.628	44.37	-59.142	27.834	7.738	10.693	7.403	39.240	-22.473	5.707

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xe	Yc	Zc	L*c		
158	26	4	66	4.788	3.33	11.648	21.26	23	-39.856	8.605				a*c	b*c
159	188	129	96	42.222	40.378	25.068	69.738	10.126	13.37		8.033	7.818	34.275	6.713	-4.498
160	125	164	127	38.002	43.772	31.73	72.072	-13.05	6.406	33.597	31.137	15.222	62.690	12.660	21.812
				_						34.147	37.627	26.213	67.532	-6.308	7.547
161	123	108	152	32.738	32.346	37.028	63.624	5.592	-15.848	29.712	27.717	26.742	59.523	12.173	-7.168
162	159	0	34	20.766	11.972	2.476	41.156	53.3	36.776	16.188	10.670	3.717	39.023	38.657	23.703
163	0	117	45	8.442	18.342	6.158	49.852	-62.41	29.682	7.433	11.080	7.960	40.192	-29.423	5.162
164	34	7	87	5.688	3.964	13.924	23.482	24.19	-42.42	8.693	8.007	8.843	33.912	9.063	-8.945
165	198	195	0	49.614	56.074	7.194	79.654	-11.634	76.448	34.825	38.557	3.792	68.092	-6.392	73.363
166	162	0	93	23.784	12.912	15.176	42.622	60.878	-12.656	18.405	12.103	8.520	41.078	41.823	4.600
167	0	127	191	17.562	23.682	43.528	55.74	-25.968	-37.922	9.808	10.827	21.990	38.877	-3.203	-34.092
168	241	241	241	72.346	74.698	64.758	89.25	0.674	-3.036	65.807	66.830	56.043	85.490	2.762	-0.833
169	230	230	230	68.154	70.506	61.056	87.242	0.372	-2.908	58.105	59.153	48.440	81.342	2.752	0.350
170	74	50	38	16.014	15.4	9,596	46.17	6.828	9.576	19.918	18.597	10.885	50.340	9.615	12.562
171	49	65	50	14.902	17.182	12.586	48.48	-9.652	4.318	17.247	17.837	12.228	49.720	-1.588	7.465
172	49	42	59	12.254	12.1	14.12	41.372	4.082	-12.128	16.703	16.010	13.258	47.212	6.248	0.253
173	62	0	13	8.864	5.292	1.31	27.532	37.998	25.084	12.547	10.320	5.585	38.337	19.148	12.165
174	0	46	18	4.084	8.466	3.056	34.894	-45.51	21.356	6.955	8.673	6.082	35.360	-13.272	4.695
175	14	0	34	2.858	2.078	6.79	15.83	17.376	-32.08	6.803	6.517	5.698	30.982	4.058	-1.047
176	78	77	0	20.31	23.216	3.408	55.288	-9.806	53.906	18.703	19.190	4.157	51.443	-1.303	42.405
177	63	0	36	10.232	5.712	7.042	28.666	44.178	-11.034	12.610	9.747	7.003	37.610	22.700	4.537
178	0	49	75	7.686	10.382	18.722	38.508	-19.836	-28.002	8.620	9.833	12.103	37.370	-6.555	-13.445
179	142	97	73	32.796	31.446	19.762	62.88	9.006	11.794	28.125	26.487	14.017	58.453	10.652	17.603
180	96	125	95	29.772	34.2	25.206	65.118	-11.71	5.154	27.565	30.360	19.695	61.982	-6.793	10.400
181	93	82	117	24.662	24.32	28.064	56.402	5.286	-14.782	25.247	23.317	21.698	55.462	11.843	-4.935
182	121	0	26	16.326	9.26	1.744	36.47	50.432	35.502	15.222	10.533	4.828	38.687	34.517	16.648
183	201	0	101	27.77	15.44	16.04	46.23	61.97	-8.57	19.655	11.557	8.013	40.497	32.251	5.478
184	217	86	120	40.77	32.39	28.33	63.66	31.9	-2.7	30.897	24.313	14.773	56.732	26.945	12.670
185	243	160	156	55.44	52.28	41.54	77.45	12.99	2.01	43.802	39.170	25.200	69.093	27.512	12.023
186	248	208	181	64.5	64.86	49.15	84.41	4.49	4.82	54.508	52.083	33.282	77.663	28.985	13.705
187	250	230	193	69.03	71.04	52.95									
188	255	252					87.5	1.15	5.93	60.445	61.103	38.145	82.573	28.942	15.300
			206	72.48	75.94	55.57	89.83	-1.55	7.15	66.020	69.497	41.910	86.947	28.828	17.907
189	201	0	108	27.65	15.05	16.89	45.71	63.74	-11.48	19.733	11.553	8.422	40.505	32.512	3.957

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
190	218	86	134	41.32	32.41	31	63.68	33.52	-6.94	31.333	24.410	16.177	56.823	27.715	9.372
191	234	161	173	56.53	52.81	45.69	77.76	14.35	-2.59	44.928	39.497	29.117	69.538	29.297	6.148
192	246	207	202	66.18	65.82	54.74	84.9	6.11	-0.47	55.797	52.713	38.073	78.015	31.031	7.533
193	251	232	219	70.75	72.17	58.84	88.05	2.48	0.7	62.482	62.087	45.128	83.137	31.834	7.353
194	255	252	231	74.39	77.23	62.12	90.43	-0.15	1.53	70.623	74.877	51.727	89.388	31.817	10.522
195	201	0	115	28.01	15.42	17.59	46.2	63.04	-12.24	19.207	11.067	8.177	39.757	32.701	3.578
196	217	88	147	42.41	33.57	33.36	64.62	-32.73	-8.9	30.928	23.900	17.813	56.385	28.283	4.815
197	235	163	192	58.28	54.39	49.78	78.69	14.6	-5.76	44.003	38.860	30.955	68.802	29.559	1.957
198	247	210	223	67.47	66.75	58.93	85.38	6.93	-4	56.527	53.377	42.958	78.073	32.616	1.290
199	250	233	239	71.75	72.62	63.25	88.26	3.69	-3.29	63.623	61.720	52.017	82.947	34.893	-0.903
200	255	255	255	75.52	77.84	66.9	90.71	0.94	-2.53	74.338	76.780	64.747	90.307	36.963	-1.198
201	183	0	97	25.98	14.5	15.86	44.94	60.26	-10.37	18.968	11.507	8.447	40.607	30.566	4.035
202	199	83	121	38.29	30.82	27.95	62.35	29.78	-4.34	30.042	24.683	16.010	57.015	25.127	10.100
203	213	154	156	52.22	49.85	40.99	75.98	11.11	0.18	39.198	35.740	25.352	66.617	25.072	7.483
204.	223	197	180	60.3	61.35	48.28	82.56	2.73	2.65	48.643	47.640	32.650	74.930	25.812	9.933
205	227	219	193	64.35	67.05	52.26	85.53	-0.68	3.28	53.065	54.023	36.293	78.845	25.693	11.417
206	232	141	208	67.5	71.56	54.62	87.76	-3.27	4.57	60.475	64.063	42.020	84.295	26.744	13.197
207	183	0	105	25.62	14.1	16.83	44.37	61.22	-13.65	18.913	11.460	8.715	40.450	30.668	2.783
208	. 199	84	134	38.34	30.49	30.47	62.08	31.13	-8.88	30.733	24.750	18.362	57.177	26.537	4.963
209	212	154	173	52.52	49.78	45.07	75.94	12.07	-4.99	39.527	35.310	27.973	66.438	26.521	2.670
210	223	200	203	61.37	61.82	53.77	82.82	4.17	-3.04	50.013	48.267	38.328	75.353	28.021	2.602
211	229	221	215	65.68	67.86	57.9	85.93	0.56	-1.99	54.917	55.097	43.135	79.412	28.445	3.378
212	232	241	230	68.93	72.46	61.2	88.19	-2	-1.42	62.630	64.733	51.075	84.585	30.730	2.958
213	184	0	113	25.7	14.24	17.41	44.57	60.71	-14.64	18.370	11.150	8.622	39.828	30.400	2.050
214	200	84	146	39.4	31.68	33.07	63.08	30.18	-11.14	30.183	23.880	19.545	56.277	27.371	0.865
215	215	155	190	54.06	51.12	48.99	76.75	12.52	-8.19	40.153	35.803	31.293	66.737	27.581	-2.127
216	224	200	221	62.84	62.94	58.04	83.41	5	-6.48	49.792	47.300	42.798	74.625	29.944	-4.457
217	229	221	237	67.08	68.67	62.34	86.34	1.92	-5.73	56.740	55.250	51.790	79.553	32.295	-6.507
218	233	243	254	70.62	73.58	65.9	88.72	-0.69	-5.02	63.438	64.267	60.728	84.363	34.068	-7.550
219	167	0	98	23.43	13.16	15.41	43	57.71	-12.61	18.235	11.390	8.740	40.387	29.111	2.588
220	179	82	122	35.11	28.74	27.69	60.55	27.1	-7.02	30.472	25.230	17.880	57.530	25.413	6.645
221	193	146	156	48.03	46.63	40.56	73.95	8.62	-2.77	38.795	36.197	27.223	66.915	24.326	4.750

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	а*р	b*p	Xc	Yc	Zc	L*c	a*c	b*c
222	200	188	179	55.35	57.14	47.62	80.26	0.64	-0.56	44.587	44.577	33.345	73.045	23.511	5.657
223	204	209	194	58.9	62.26	51.13	83.05	-2.7	0.26	46.540	48.203	35.507	75.212	22.858	6.255
224	208	229	205	61.98	66.61	53.64	85.31	-5.16	1.4	49.658	52.580	39.280	78.002	23.169	5.898
225	167	0	104	23.34	12.91	16.71	42.63	58.91	-16.38	18.135	11.283	8.888	40.132	29.271	1.620
226	180	80	134	35.41	28.61	30.18	60.43	28.59	-11.26	30.707	25.060	20.307	57.370	26.499	1.158
227	193	147	173	48.53	46.65	44.36	73.96	9.96	-7.53	39.323	36.063	30.422	66.963	25.789	-0.383
228	200	188	200	56.5	57.74	52.76	80.59	2.04	-5.77	46.027	45.103	39.170	73.427	26.119	-1.847
229	203	210	213	60.49	63.3	56.71	83.6	-1.29	-4.79	47.763	48.130	41.653	75.317	25.792	-1.823
230	207	229	227	63.43	67.49	59.75	85.75	-3.73	-4.18	51.318	53.677	46.480	78.485	26.175	-2.282
231	167	0	112	23.55	13.06	17.11	42.86	58.87	-16.92	17.260	10.580	8.853	39.207	28.609	0.160
232	180	80	145	36.57	29.8	32.68	61.48	27.98	-13.3	30.277	24.463	21.360	56.775	26.974	-1.998
233	194	147	188	50.23	48.09	48.17	74.88	10.6	-10.48	39.635	35.913	33.392	66.735	27.196	-5.297
234	201	190	220	58.01	58.85	56.91	81.21	3.07	-9.11	43.728	41.853	41.102	71.065	27.434	-8.438
235	204	211	236	61.98	64.24	61.11	84.09	0.09	-8.4	48.067	47.350	48.650	74.785	28.612	-11.197
236	206	231	251	65.08	68.59	64.35	86.3	-2.35	-7.73	53.487	53.793	56.395	78.623	30.884	-13.045
237	132	0	94	19.2	11.25	15.58	39.99	50.66	-18.22	17.085	11.257	9.363	40.262	26.404	0.182
238	142	76	122	29	24.8	27.25	56.88	20.87	-12.59	27.742	23.740	20.052	55.977	23.410	-0.717
239	150	133	155	39.42	39.81	39.11	69.33	3.28	-8.82	37.125	36.020	30.530	66.880	22.527	-0.703
240	155	170	180	45.5	48.79	45.93	75.32	-4.35	-7.09	40.015	40.097	36.405	70.062	22.754	-3.890
241	156	188	191	48.99	53.57	49.76	78.21	-7.1	-6.56	40.660	42.347	38.320	71.510	21.510	-4.017
242	159	206	204	51.17	56.91	51.59	80.13	-9.55	-5.29	39.723	42.623	38.727	71.600	19.913	-4.403
243	132	0	102	19.27	11.04	16.66	39.65	52.49	-21.4	16.967	11.163	9.335	40.043	26.506	-0.120
244	142	74	134	29.59	24.93	29.75	57.01	22.55	-16.48	28.340	23.820	22.602	56.102	24.945	-5.577
245	151	134	173	39.78	39.65	42.68	69.22	4.9	-13.63	34.945	33.023	32.483	64.647	23.468	-7.543
246	155	171	201	46.8	49.49	51.1	75.76	-2.58	-12.29	35.518	35.080	36.062	66.272	22.015	-9.947
247	156	190	212	50.21	54.24	54.65	78.6	-5.5	-11.24	36.612	36.683	38.067	67.590	21.962	-10.430
248	159	208	227	52.54	57.6	57.38	80.51	-7.61	-10.8	39.118	40.490	42.295	70.105	22.339	-11.612
249	134	0	112	19.47	11.31	17.17	40.09	51.56	-21.81	16.462	10.750	9.477	39.383	26.402	-1.725
250	144	73	145	30.32	25.63	31.74	57.68	22.41	-18.43	27.675	23.023	22.837	55.323	25.120	-7.372
251	151	134	189	41.88	41.59	46.62	70.59	5.43	-16.06	32.025	29.497	31.742	61.610	23.551	-11.650
252	157	172	218	47.94	50.27	54.54	76.24	-1.45	-15.21	34.657	33.857	37.408	65.087	23.160	-13.848
253	158	191	233	51.02	54.61	58.35	78.82	-4.28	-14.72	36.518	35.957	42.003	66.922	23.853	-16.737

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	а*р	b*p	Xc	Yc	Zc	L*c	a*c	b*c
254	157	208	249	53.39	58.08	61.23	80.78	-6.59	-14.22	40.503	40.197	49.592	69.867	26.557	-20.752
255	84	0	94	12.03	7.54	14.95	33.01	38.62	-28.69	14.822	10.747	9.945	39.618	21.320	-2.898
256	87	66	121	18.89	17.98	25.94	49.47	8.17	-23.13	22.950	20.377	21.123	52.658	19.725	-8.627
257	89	114	156	26.31	29.4	37.41	61.13	-8.16	-20.67	24.408	23.943	26.077	56.237	17.285	-11.690
258	87	145	176	30.18	35.51	43.43	66.15	-14.6	-19.86	25.973	26.770	30.692	59.280	15.947	-14.047
259	84	160	189	32.54	38.87	46.52	68.66	-16.8	-19.27	26.300	27.673	32.268	60.247	15.177	-14.800
260	85	175	199	33.9	40.99	48.25	70.17	-18.54	-18.69	26.617	28.390	33.730	60.695	15.367	-16.212
261	85	0	100	12.59	7.79	16.3	33.54	40.15	-31.08	14.725	10.687	9.965	39.335	21.572	-3.465
262	88	66	133	19.73	18.29	28.45	49.84	10.84	-26.74	21.763	19.063	21.635	51.190	19.910	-12.170
263	88	114	169	27.19	29.6	40.35	61.31	-5.33	-24.3	23.338	22.087	27.365	54.730	18.073	-16.497
264	88	164	194	31.83	36.62	48.07	66.99	-12.15	-23.96	23.832	23.527	30.712	56.180	17.230	-19.428
265	86	162	209	33.92	39.72	51.09	69.27	-14.57	-23.46	23.752	23.780	31.953	56.562	16.514	-20.685
266	88	176	220	35.24	41.75	53.06	70.7	-16.22	-23.16	25.213	26.163	35.125	58.638	16.498	-21.773
267	85	0	108	12.58	7.79	16.44	33.54	40.05	-31.42	14.312	10.230	10.223	38.600	21.900	-5.572
268	88	65	144	20.56	19.16	30.16	50.87	10.49	-27.72	20.220	17.510	21.163	49.228	19.949	-14.612
269	89	115	185	28.27	30.6	43.36	62.17	-4.77	-26.64	22.168	20.577	27.712	52.817	19.027	-20.380
270	88	147	213	32.53	37.02	50.73	67.29	-10.96	-26.47	21.747	20.950	29.840	53.287	17.665	-23.040
271	88	162	227	34.08	39.5	53.56	69.11	-13.33	-26.45	23.173	22.703	33.735	55.343	18.013	-25.437
272	83	178	240	35.98	42.15	56.11	70.97	-14.91	-25.93	25.050	25.370	38.242	57.670	18.608	-27.768
273	44	15	95	6.08	4.54	14.45	25.38	20.66	-40.56	9.140	8.197	9.903	34.795	10.911	-11.075
274	38	60	122	10.42	12.07	24.89	41.33	-8.92	-35.3	10.553	10.693	17.052	39.418	9.044	-22.698
275	22	100	153	14.73	19.63	35.26	51.42	-23.28	-34.41	8.978	10.083	19.152	38.175	5.639	-29.510
276	0	127	175	16.85	23.41	40.63	55.49	-28.58	-34.69	9.500	10.633	21.575	39.470	5.982	-32.265
277	0	142	185	18.32	25.63	43.43	57.68	-30.16	-34.46	9.455	10.717	22.252	39.583	5.743	-33.383
278	0	155	197	18.9	26.61	44.77	58.62	-31.17	-34.49	9.465	10.873	22.960	39.657	5.871	-34.618
279	44	13	102	6.66	4.81	15.86	26.18	23.37	-42.72	9.297	8.217	10.292	34.632	11.990	-12.638
280	38	59	132	11.06	12.18	26.84	41.5	-4.95	-38.42	10.100	10.237	17.413	38.530	9.147	-25.065
281	23	101	168	15.44	19.77	37.84	51.58	-19.75	-37.74	8.747	9.593	19.875	37.323	6.699	-32.510
282	0	128	193	18.06	24.24	44.6	56.33	-25.67	-38.23	8.842	9.693	21.718	37.637	6.923	-35.707
283	0	143	206	19.01	25.88	47.13	57.93	-27.65	-38.5	8.643	9.663	22.310	37.442	6.469	-37.192
284	0	156	218	19.92	27.2	48.7	59.16	-28.38	-38.19	8.537	9.720	22.577	37.313	6.406	-37.930
285	44	9	108	6.77	4.9	15.85	26.45	23.36	-42.22	8.957	7.723	10.222	33.673	12.580	-14.053

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	а*р	b*p	Xc	Yc	Zc	L*c	a*c	b*c
286	40	58	143	11.87	13.1	28.43	42.91	-5.25	-38.65	10.095	9.927	17.805	37.878	10.473	-27.065
287	23	100	182	16.64	21.01	40.53	52.96	-18.86	-38.93	8.563	9.150	20.233	36.407	7.799	-34.825
288	0	128	209	18.87	24.83	46.75	56.91	-23.97	-39.8	8.392	9.130	21.648	36.343	7.334	-37.800
289	0	143	223	19.78	26.37	49.23	58.39	-25.76	-40.13	8.343	9.073	22.202	36.238	7.511	-39.062
290	0	158	237	20.59	27.63	50.9	59.55	-26.81	-40.01	8.700	9.540	23.928	37.003	8.054	-40.998
291	197	0	42	24.25	13.95	3.02	44.16	56.33	37.31	17.880	10.913	3.217	39.453	28.692	27.793
292	211	91	0	33.89	28.34	4.83	60.19	24.45	53.69	25.578	21.490	2.697	53.732	19.427	56.287
293	227	161	0	45.41	45.84	6.6	73.44	3.5	68.01	32.720	31.047	3.295	62.842	16.450	67.578
294	238	203	0	52.05	56.13	7.62	79.69	-5.32	74.58	39.257	39.483	3.667	69.345	15.648	76.312
295	241	223	0	55.48	61.4	8.06	82.59	-9.11	77.86	42.348	44.803	3.978	73.082	13.817	80.798
296	245	242	0	58.27	65.7	8.51	84.84	-11.92	80.05	45.392	49.777	4.260	76.187	12.945	84.477
297	198	0	62	25.26	14.37	7.22	44.75	58.06	15.96	18.477	11.040	6.485	39.690	30.557	10.348
298	214	88	53	36	29.5	12	61.22	27.19	27.97	28.112	22.717	9.255	55.047	23.593	26.043
291	230	158	58	47.77	46.86	16.75	74.1	7.28	37.78	37.082	33.830	11.410	65.297	21.223	36.748
292	241	202	60	55.84	58.8	19.92	81.18	-2.1	43	45.330	44.207	12.967	72.615	21.147	44.848
293	245	225	61	59.77	64.64	21.23	84.3	-5.99	45.72	49.725	51.833	14.087	77.310	19.093	49.930
294	251	245	66	62.69	69.06	22.37	86.53	-8.78	47.33	56.592	62.193	15.958	83.120	18.496	55.242
295	199	0	85	26.29	14.47	12.38	44.9	61.7	-1.28	18.473	10.843	6.778	39.508	30.969	8.773
296	245	242	0	58.27	65.7	8.51	84.84	-11.92	80.05	45.392	49.777	4.260	76.187	12.945	84.477
297	198	0	62	25.26	14.37	7.22	44.75	58.06	15.96	18.477	11.040	6.485	39.690	30.557	10.348
298	214	88	53	36	29.5	12	61.22	27.19	27.97	28.112	22.717	9.255	55.047	23.593	26.043
299	230	158	58	47.77	46.86	16.75	74.1	7.28	37.78	37.082	33.830	11.410	65.297	21.223	36.748
300	241	202	60	55.84	58.8	19.92	81.18	-2. i	43	45.330	44.207	12.967	72.615	21.147	44.848
301	245	225	61	59.77	64.64	21.23	84.3	-5.99	45.72	49.725	51.833	14.087	77.310	19.093	49.930
302	251	245	66	62.69	69.06	22.37	86.53	-8.78	47.33	56.592	62.193	15.958	83.120	18.496	55.242
303	199	0	8.5	26.29	14.47	12.38	44.9	61.7	-1.28	18.473	10.843	6.778	39.508	30.969	8.773
304	217	87	94	39.62	32.2	22.81	63.5	29.02	6.78	28.883	23.243	12.257	55.507	24.875	17.375
305	234	159	120	53.28	51.23	32.36	76.82	10.23	13.62	39.807	36.143	17.132	66.880	23.820	24.478
306	243	206	136	61.25	62.56	37.79	83.21	2.19	16.87	49.638	48.617	21.852	75.223	24.302	28.848
307	250	227	147	65.47	68.54	40.58	86.28	-1.38	18.46	55.378	56.673	25.885	80.103	24.253	29.805
308	255	250	155	68.63	73.26	42.36	88.57	-4.31	20.14	63.260	69.720	28.967	86.792	23.008	36.148
309	179	0	37	22.67	13.31	3.06	43.22	53.36	35.37	17.062	10.770	3.602	39.285	26.912	24.910

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
310	193	87	0	31.66	27	4.82	58.97	21.78	51.65	25.568	21.863	2.742	54.058	18.805	56.505
311	206	154	0	41.77	42.85	6.5	71.45	1.37	65.04	30.585	30.110	3.263	62.078	13.913	66.477
312	214	193	0	47.9	52.71	7.61	77.7	-7.9	71.18	33.505	35.190	3.602	66.230	11.739	71.357
313	218	212	0	51.03	57.66	8.04	80.55	-11.73	74.43	37.025	40.357	3.885	70.087	10.659	76.222
314	223	231	0	53.76	61.78	8.56	82.8	-14.33	76.34	39.172	44.490	4.123	72.903	9.323	79.608
315	181	0	60	23.17	13.21	7.13	43.08	56.2	13.41	18.275	11.253	6.680	40.053	29.358	10.133
316	196	85	55	33.15	27.61	11.75	59.53	24.69	25.76	27.573	23.143	9.650	55.458	21.826	25.393
317	210	152	61	43.51	43.53	16.48	71.91	4.57	34.65	32.722	30.767	11.433	62.825	18.198	32.405
318	219	193	65	51.35	55.14	19.7	79.12	-4.73	39.91	39.312	40.110	13.522	70.075	16.515	38.952
319	224	214	68	54.74	60.29	21.04	82	-8.38	42.13	43.250	46.190	14.747	73.990	15.896	42.488
320	226	233	71	57.39	64.35	22.23	84.15	-11.08	43.48	47.387	52.710	15.437	77.907	15.235	47.518
321	182	0	83	24.43	13.79	12.6	43.92	58.08	-3.6	17.983	10.950	7.238	39.523	29.735	6.877
322	197	85	97	36.4	29.95	22.36	61.61	26.83	4.38	27.952	23.073	12.508	55.173	23.644	16.080
323	213	153	121	49.23	48.05	31.89	74.85	8.01	10.95	35.233	32.873	16.965	64.292	20.999	20.412
324	221	195	138	56.96	59.15	37.31	81.37	-0.16	14.35	43.273	43.353	22.743	72.083	20.917	21.707
325	226	217	147	60.83	64.62	39.91	84.29	-3.46	15.91	48.685	50.747	25.588	76.937	20.715	24.865
326	231	237	154	64	69.2	42.12	86.6	-6.11	17.05	54.380	59.623	28.225	81.877	20.328	28.877
327	161	0	33	20.26	11.99	2.99	41.21	50.66	32.48	16.512	10.753	3.812	39.273	25.362	23.545
328	172	83	8	28.63	25.04	4.84	57.11	18.44	48.35	24.498	21.293	2.735	53.632	17.260	55.823
329	182	146	0	37.69	39.68	6.44	69.24	-1.84	61.48	30.520	30.740	3.405	62.710	12.675	66.607
330	188	183	0	43.1	48.64	7.45	75.23	-10.92	67.54	33.512	35.780	3.730	66.802	10.778	71.528
331	193	201	0	45.96	53.21	7.97	78	-14.58	70.28	34.563	38.400	3.877	68.810	8.826	74.050
332	198	219	.0	48.51	57.07	8.47	80.22	-17.07	72.24	33.182	38.120	3.923	68.503	7.036	73.233
333	164	0	57	20.83	12.03	6.93	41.26	53.22	11.12	17.277	10.930	6.850	39.550	27.762	8.522
334	175	83	58	29.96	25.49	11.58	57.55	21.64	22.87	27.282	23.393	10.308	55.627	21.031	23.515
335	187	145	65	39.59	40.53	16.07	69.84	1.61	32.06	34.307	33.300	13.240	65.030	17.344	31.052
336	195	184	70	46.68	51.16	19.44	76.78	-7.29	36.44	37.415	38.817	14.520	69.172	15.334	34.770
337	198	203	75	49.83	55.98	20.76	79.6	-10.81	38.57	39.928	43.510	15.345	72.423	13.663	38.298
338	200	222	76	51.94	59.42	21.51	81.52	-13.52	40.37	40.362	45.660	15.700	73.540	12.412	39.352
339	164	0	81	22.38	12.77	12.45	42.42	55.47	-5.77	17.213	10.773	7.558	39.228	28.252	5.083
340	178	81	97	33.45	28	22.03	59.89	24.23	2.04	27.732	23.487	13.220	55.645	22.435	14.907
341	190	146	120	45.4	45.09	31.52	72.95	5.57	8.23	35.373	33.837	19.102	65.080	20.240	16.998

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Хc	Ye	Zc	L*c	a*c	b*c
342	199	186	133	52.16	5 5	36.59	79.04	-2.25	11.33	40.828	41.647	24.615	70.905	19.604	16.202
343	202	207	149	55.56	59.96	39.41	81.81	-5.53	12.3	43.387	46.093	26.078	73.903	18.604	18.775
344	205	225	155	58.29	64	41.23	83.97	-8.11	13.63	45.893	50.583	28.243	76.630	18.033	19.793
345	128	13	31	15.93	9.92	2.91	37.7	42.88	27.02	15.257	10.383	4.438	38.835	22.781	19.048
346	134	79	24	22.78	21.26	4.73	53.24	10.67	42.23	21.103	19.723	2.770	51.728	13.108	52.263
347	140	131	0	30.06	33.82	6.28	64.82	-9.34	54.58	26.420	28.160	3.308	60.547	8.508	63.522
348	144	165	0	34.48	41.42	7.42	70.47	-17.81	59.46	26.985	30.683	3.597	62.717	5.828	65.332
349	146	182	0	36.63	45.1	7.88	72.96	-21.31	61.96	27.847	32.697	3.728	64.317	4.503	67.232
350	149	199	Ò	38.11	47.67	8.29	74.62	-23.64	63.26	27.085	32.593	3.765	64.377	3.057	67.110
351	130	0	54	16.96	10.41	7.04	38.56	45	6.01	16.012	10.760	7.113	39.228	24.789	6.875
352	138	78	62	23.98	21.6	11.32	53.6	14.46	16.84	24.808	21.890	11.690	54.233	18.852	16.817
353	144	132	72	31.99	34.63	15.82	65.46	-4.98	25.11	31.192	31.793	14.595	63.807	14.261	25.322
354	149	167	78	37.45	43.27	18.98	71.74	-13.37	28.73	33.940	36.697	15.813	67.738	12.295	29.063
355	151	184	79	39.93	47.2	20.08	74.31	-16.6	30.84	32.543	37.003	15.708	67.795	9.700	29.425
356	153	201	84	41.78	50.16	20.81	76.17	-18.9	32.52	31.720	37.873	15.777	67.933	7.909	29.507
357	132	0	80	18.07	10.63	12.1	38.95	49.27	-10.73	16.148	10.703	8.210	39.152	25.431	2.423
358	141	76	98	27.23	23.81	21.49	55.89	18.14	-3.78	25.153	21.883	14.662	54.115	20.531	8.453
359	149	133	123	37.04	38.44	30.48	68.35	-0.08	1.91	34.215	34.133	23.685	65.078	19.238	7.868
360	153	169	140	42.58	46.87	35.51	74.11	-7.64	4.35	37.083	38.700	27.153	68.928	17.815	8.343
361	154	187	149	45.22	50.82	38.21	76.57	-10.53	4.86	36.853	40.057	27.775	69.817	16.137	8.828
362	155	204	156	47.37	54.04	39.9	78.48	-12.74	5.91	35.680	39.990	27.813	69.843	14.131	8.807
363	78	26	35	8.93	6.43	2.83	30.48	25.87	15.13	13.627	11.067	6.358	40.163	15.691	11.710
364	79	71	33	13.27	14.91	4.48	45.51	-7	30.32	16.547	17.050	5.310	48.482	8.092	31.030
365	75	113	27	17.96	24.22	6.11	56.3	-26.1	40.68	18.090	21.163	3.400	53.548	2.533	50.840
366	72	141	19	20.44	29.31	7.07	61.05	-34	44.67	17.513	22.203	3.327	54.722	-1.315	53.363
367	69	155	1,1	21.71	31.78	7.46	63.16	-37.03	46.69	17.997	23.140	3.368	55.717	-1.923	54.782
368	65	169	1	23.07	33.9	7.96	64.88	-38.24	47.72	17.788	23.177	3.433	55.892	-2.758	54.655
369	81	21	57	10.24	7.05	7	31.91	30.27	-5.3	13.343	10.010	7.512	37.977	19.275	3.097
370	82	69	67	14.88	15.6	10.96	46.44	-0.94	5.58	20.085	19.067	12.210	51.268	13.597	10.193
371	81	113	78	19.86	24.88	15.03	56.96	-19.19	12.41	23.418	25.183	15.083	57.763	9.731	13.668
372	79	142	85	23.79	31.49	18.39	62.92	-26.54	14.8	22.655	26.280	15.787	59.042	5.739	14.140
373	76	156	89	25	33.89	19.05	64.88	-29.77	16.73	22.093	26.553	15.558	59.022	4.440	14.660

Nic	R	G	ъ	V-	N/w	7-				v		1000			
No.			В	Хр	Yp	Zp	L*p	a*p	b*p	Xe	Yc	Zc	L*c	a*c	b*c
374	74	170	93	26.02	35.7	19.74	66.29	-31.61	17.72	22.532	27.973	16.548	59.957	3.906	13.918
375	82	13	77	11.29	7.2	11.81	32.26	36.56	-21.42	13.277	9.667	8.112	37.568	20.060	0.067
376	86	68	100	17.92	17.62	20.97	49.03	5.03	-14.58	20.893	18.977	16.848	51.017	17.095	-2.213
377	86	114	124	24.51	28.39	29.48	60.24	-11.88	-10.48	24.543	24.767	22.622	57.118	14.890	-3.862
378	85	144	142	27.81	33.99	34.14	64.96	-18.58	-9.47	26.877	29.247	26.880	61.315	12.886	-4.322
379	85	159	149	29.37	36.55	36.16	66.94	-21.06	-8.93	27.110	29.873	28.290	61.975	12.675	-5.542
380	80	174	1,57	30.93	38.87	37.72	68.65	-22.63	-8.13	26.562	30.340	28.735	62.155	11.350	-5.963
381	39	29	39	3.15	3.49	2.8	21.91	-3.62	0.62	5.282	5.280	3.918	27.737	4.645	2.993
382	30	63	39	5.4	9.56	4.41	37.05	-37.41	16.11	7.665	9.603	6.808	37.465	-1.590	5.115
383	0	98	39	7.49	15.44	5.83	46.23	-54.9	24.58	6.963	10.103	7.493	38.350	-6.524	3.807
384	0	121	45	8.44	18.48	6.57	50.07	-62.76	27.87	7.443	11.310	8.340	40.527	-8.163	4.297
385	0	134	52	8.9	19.75	6.92	51.56	-65.24	28.94	7.657	11.957	8.705	41.488	-8.757	4.613
386	0	145	57	9.66	21.06	7.31	53.01	-65.25	29.82	7.470	11.977	8.745	41.577	-9.821	4.612
387	40	25	58	4.[8	3.78	6.6	22.92	7.91	-19.06	8.355	7.950	7.385	34.163	7.987	-2.968
388	35	62	69	6.95	10.04	10.78	37.92	-24.29	-8.53	9.152	10.300	11.065	38.830	3.246	-7.835
389	15	100	82	9.7	16.38	15	47.47	-41.08	-3.88	8.515	10.867	12.983	39.870	-1.121	-11.648
390	0	124	93	11.47	20.33	17.81	52.21	-48.1	-2.38	8.987	11.790	14.997	41.535	-1.853	-14.072
391	0	136	99	12.16	21.83	18.6	53.85	-50.32	-1.31	9.160	12.560	15.733	42.460	-2.663	-14.323
392	0	147	104	12.49	22.65	19.17	54.71	-51.78	-1.06	9.650	13.580	17.128	43.772	-2.971	-15.342
393	42	20	79	5.35	4.15	11.18	24.17	17.54	-33.47	8.445	7.930	8.460	33.988	9.140	-7.405
394	37	61	101	9.6	11.86	20.54	40.99	-13.89	-27.56	9.573	10.067	14.208	38.282	6.595	-17.668
395	21	100	124	13.33	19.02	28.61	50.71	-29.01	-25.5	8.742	10.337	17.358	38.592	3.084	-24.817
396	0	125	141	15.34	22.69	32.91	54.75	-34.02	-25.25	9.255	11.310	19.255	40.188	2.788	-26.267
397	0	139	150	15.95	23.95	34.73	56.04	-36.03	-25.7	9.413	11.560	19.915	40.738	2.504	-26.705
398	0	152	158	16.64	25.09	35.63	57.17	-36.97	-25.04	9.787	12.237	21.297	41.788	2.311	-27.715
399	161	0	81	25	13.62	14.52	43.68	61.62	-9.19	17.772	11.230	7.928	40.133	28.042	5.175
400	175	69	96	35.51	28.16	24.67	60.04	30.65	-2.65	27.967	23.070	13.900	55.353	23.645	12.567
401	189	130	127	47.2	44.61	35.39	72.63	12.03	1.98	34.830	31.527	20.752	63.295	22.980	10.467
402	197	167	146	53.77	54.17	40.95	78.56	3.98	4.67	40.762	39.970	26.123	69.797	22.041	11.607
403	202	185	156	56.89	58.75	43.66	81.15	0.61	5.72	42.530	42.853	28.082	71.685	21.788	11.540
404	206	204	166	58.87	61.84	45.07	82.83	-1.81	6.89	44.685	45.617	29.890	73.815	21.695	12.273
405	162	0	87	24.61	13.41	15.16	43.37	61.27	-11.34	18.023	11.360	8.338	40.303	28.702	3.913
						_	L			I					

No.	R	G	В	Хp	Yp	Zp	L*p	а*р	b*p	Xc	Ye	Zc	L*c	a*c	b*c
406	176	69	107	34.76	27.18	26.14	59.14	31.99	-6.81	28.658	23.177	14.738	55.592	24.763	10.792
407	188	129	140	45.97	42.84	37.45	71.45	13.69	-2.94	35.732	31.687	23.285	63.700	24.329	6.223
408	197	167	163	53.3	53.09	44.54	77.93	5.5	-0.91	41.087	39.437	28.890	69.653	23.346	6.708
409	202	187	177	56.92	58.15	47.76	80.82	2.1	0.25	43.090	43.060	31.038	71.775	23.039	6.958
410	205	203	186	59.73	62.08	50.4	82.96	-0.31	0.9	46.952	48.930	34.363	75.462	22.880	8.337
411	162	0	93	24.46	13.34	15.51	43.28	61.01	-12.39	17.597	11.157	8.252	39.737	28.465	3.273
412	175	70	119	35.65	28.18	28.31	60.05	31.05	-8.89	28.772	23.480	16.493	55.388	25.547	6.158
413	189	131	155	47.76	44.51	41.05	72.57	13.85	-5.79	36.630	33.247	26.623	64.325	25.012	1.330
414	198	169	179	54.85	54.34	48.3	78.66	6.28	-4.12	42.030	40.857	31.870	70.057	24.404	2.708
415	202	188	193	57.94	58.74	51.44	81.15	3.19	-3.37	44.432	43.657	34.812	72.135	25.131	1.948
416	205	205	205	60.31	62.24	53.82	83.04	0.7	-2.7	48.988	49.793	40.942	76.063	26.039	0.382
417	147	0	78	23.4	12.96	14.51	42.7	58.88	-10.85	17.133	11.017	7.957	39.825	26.965	4.530
418	159	67	98	33.18	26.51	24.42	58.51	29.19	-4.82	27.097	22.553	14.192	55.007	22.602	11.195
419	173	124	126	44.33	42.37	35.09	71.13	10.35	-0.2	34.912	32.290	22.350	63.860	22.380	8.280
420	180	160	145	50.43	51.44	40.73	76.95	2.21	2.17	41.353	40.720	27.665	70.340	22.328	9.920
421	183	177	154	53.55	55.95	43.8	79.58	-1	2.85	43.745	44.353	30.517	72.753	22.175	9.450
422	188	195	167	55.64	59.14	45.36	81.37	-3.42	4.02	44.542	46.450	31.410	74.198	21.003	10.552
423	147	0	85	22.91	12.63	15.27	42.19	58.84	-13.64	17.447	11.160	8.403	40.005	27.662	3.153
424	160	67	108	32.31	25.66	26.04	57.71	29.54	-9.09	28.435	23.520	16.238	55.817	24.198	7.477
425	171	125	140	42.57	40.21	36.96	69.62	11.67	-5.42	36.097	32.693	25.293	64.545	23.875	4.010
426	180	160	162	49.51	49.99	44.1	76.06	3.57	-3.59	42.332	40.480	31.432	70.513	24.215	4.173
427	185	175	173	52.76	54.67	47.31	78.85	0.12	-2.64	44.873	45.240	34.055	73.310	23.506	5.068
428	189	195	185	55.62	58.6	49.92	81.07	-2.19	-1.8	45.407	47.533	36.387	74.417	22.778	3.672
429	147	0	91	22.81	12.75	15.81	42.38	57.61	-14.66	17.183	11.083	8.500	39.700	27.535	2.295
430	161	67	117	33.08	26.54	28.16	58.54	28.72	-11.25	28.263	23.303	17.715	55.270	25.143	3.127
431	173	125	152	44.42	41.99	40.73	70.87	11.74	-8.3	36.297	32.913	27.767	64.218	25.001	-0.808
432	181	160	177	50.95	51.08	47.71	76.73	4.53	-6.76	42.570	41.273	35.217	70.313	25.521	-1.772
433	186	178	191	54.31	55.71	51.01	79.45	1.51	-5.83	43.623	42.883	37.760	71.637	25.361	-3.037
434	187	196	203	56.39	58.87	53.23	81.22	-0.92	-5.2	44.180	44.703	39.305	72.685	24.778	-3.303
435	137	0	78	21.25	11.83	14.4	40.94	56.58	-13.6	16.063	10.513	8.065	38.965	25.688	2.637
436	144	69	98	30.45	24.8	24.3	56.88	26.37	-7.44	25.402	21.360	14.398	53.742	21.458	8.483
437	157	118	126	40.38	39.23	34.52	68.92	8.05	-3.18	32.960	30.600	22.335	62.553	21.335	6.060

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
438	162	152	146	46.29	47.92	40.23	74.78	0.23	-0.92	38.922	38.307	28.942	68.770	21.460	5.105
439	163	168	157	49.17	52.13	43.27	77.36	-2.95	-0.34	41.740	42.757	30.807	71.733	20.889	7.247
440	167	184	166	50.95	54.97	44.51	79.02	-5.36	1.02	40.200	42.297	30.812	71.400	19,177	6.655
441	134	0	84	20.89	11.62	15.14	40.6	56.34	-16.07	16.475	10.767	8.285	39.270	26.415	2.322
442	145	64	107	29.51	23.72	25.53	55.8	27.44	-11.48	25.738	21.377	15.937	53.703	22.757	4.567
443	155	119	141	39.07	37.42	36.34	67.59	9.68	-8.06	34.095	30.730	25.608	63.060	23.169	0.903
444	160	153	162	45.55	46.63	43.3	73.95	1.7	-6.24	40.283	38.923	32.972	69.447	23.335	0.003
445	163	169	172	48.82	51.2	46.62	76.8	-1.47	-5.36	41.273	41.400	34.957	70.998	22.607	-0.210
446	167	184	184	51.35	54.76	49.06	78.9	-3.78	-4.56	42.007	43.717	36.315	71.990	22.140	-0.410
447	134	0	90	20.74	11.54	15.4	40.48	56.14	-16.92	16.097	10.557	8.278	38.812	26.133	1.585
448	146	64	117	30.39	24.67	27.63	56.75	26.67	-13.46	26.402	21.860	17.830	53.847	24.016	0.413
449	156	119	153	40.59	38.84	39.71	68.64	9.92	-10.83	34.557	31.443	28.708	63.000	24.480	-4.455
450	161	153	177	46.9	47.59	46.66	74.56	2.86	-9.26	38.497	37.553	33.772	67.747	23.674	-4.105
451	164	170	191	49.81	51.73	49.89	77.12	-0.17	-8.59	37.523	37.297	35.277	67.777	22.419	-6.242
452	167	187	203	52.1	55.04	52.28	79.07	-2.52	-7.89	38.363	38.923	37.283	68.800	22.399	-7.273
453	107	0	76	17.53	10.11	14.47	38.05	50.3	-18.77	15.565	10.670	8.445	39.388	23.580	1.943
454	114	61	98	24.95	21.15	23.88	53.11	20.73	-13.15	23.500	20.187	16.822	52.432	20.420	0.275
455	121	107	125	33.15	33.49	33.49	64.56	3.05	-9.19	29.720	28.180	24.445	60.510	19.573	-1.422
456	124	137	144	38.28	41.16	39.24	70.29	-4.43	-7.35	32.922	33.040	28.777	64.813	18.682	-1.452
457	126	152	153	40.43	44.45	41.99	72.53	-7.34	-7.05	33.707	34.447	30.082	65.958	18.127	-1.568
458	129	167	164	42.52	47.5	43.69	74.51	-9.55	-5.77	34.842	36.657	31.985	67.403	17.809	-2.035
459	106	0	83	16.93	9.56	14.87	37.05	51.35	-21.53	15.413	10.560	8.518	39.062	23.699	1.107
460	115	59	107	24.19	20.17	24.96	52.03	22.11	-16.98	24.115	20.607	18.172	52.807	21.392	-2.145
461	123	108	139	31.93	31.7	35.05	63.1	5	-13.98	29.697	27.213	25.932	59.955	20.959	-5.013
462	125	138	161	37.82	40.06	42.17	69.51	-2.57	-12.49	32.158	31.017	30.363	63.568	19.960	-6.137
463	126	154	171	40.54	43.96	45.13	72.2	-5.58	-11.51	32.945	33.357	31.940	65.017	18.956	-6.083
464	120	167	182	42.41	46.75	47.14	74.03	-7.81	-10.75	34.322	35.673	33.997	66.318	19.419	-6.897
465	108	0	90	16.83	9.58	14.96	37.07	50.68	-21.7	15.452	10.557	8.733	38.977	24.034	0.192
466	116	58	116	24.75	20.73	26.55	52.65	21.85	-18.69	24.197	20.413	19.308	52.533	22.193	-5.092
467	123	108	152	33.77	33.48	38.49	64.55	5.28	-16.25	28.277	26.070	25.990	58.207	21.308	-8.142
468	126	139	177	39.14	41.02	45.2	70.19	-1.28	-15.05	31.745	30.853	31.875	62.740	20.737	-9.907
469	127	153	188	41.16	44.15	47.95	72.33	-4.23	-14.62	32.230	32.053	33.695	63.762	20.183	-10.868

No.	R	G	В	Хр	Yp	Zp	L*p	а*р	b*p	Xc	Yc	Zc	L*c	a*c	b*c
470	126	169	199	43.38	47.28	50.35	74.37	-6.39	-13.84	32.078	32.873	34.265	64.148	19.596	-11.038
471	69	0	75	10.75	6.62	13.76	30.93	38.35	-29.19	12.533	9.437	8.002	37.317	18.092	0.043
472	71	54	125	16.3	15.33	23.01	46.09	8.83	-23.63	17.768	15.927	16.138	47.463	15.878	-6.672
473	71	117	141	22.75	25,38	32.88	57.44	-7.61	-20.56	19.737	19.007	21.090	51.222	14.779	-11.028
474	69	129	152	26.07	30.8	38.29	62.34	-14.37	-19.78	21.160	21.380	23.602	54.028	13.454	-11.047
475	66	141	161	27.75	33.44	40.94	64.51	-16.92	-19.53	21.808	22.593	25.355	55.452	12.669	-11.760
476	68	0	81	28.5	34.77	41.72	65.57	-18.52	-18.71	22.330	23.880	27.213	56.560	12.034	-13.085
477	71	52	107	11.14	6.78	14.79	31.29	39.66	-31.24	12.397	9.330	8.445	36.942	18.582	-2.282
478	70	92	135	16.21	14.97	24.35	45.6	10.44	-26.96	17.902	15.720	17.167	47.328	16.658	-9.322
479	70	117	157	21.83	23.84	33.88	55.93	-5.29	-24.66	19.460	18.270	22.065	50.473	15.760	-14.238
480	68	131	169	25.79	29.8	40.24	61.48	-11.84	-23.85	20.357	19.737	24.810	52.595	14.465	-15.713
481	67	142	179	27.9	32.84	43.15	64.03	-14.25	-23.17	21.275	21.380	26.793	54.160	14.169	-16.500
482	69	0	87	29.23	34.84	45.02	65.62	-15.94	-22.71	22.107	23.070	28.933	55.527	14.120	-17,710
483	70	53	116	11.05	6.78	14.62	31.31	38.92	-30.78	12.180	9.290	8.485	36.653	18.422	-2.898
484	72	92	150	16.78	15.54	25.75	46.36	10.35	-28.15	17.333	15.260	17.427	46.373	16.955	-11.560
485	70	118	172	23.24	25.22	36.86	57.29	-4.73	-26.55	19.040	17.813	22.615	49.585	16.412	-16.823
486	70	118	172	26.7	30.54	43.06	62.12	-10.79	-26.35	20.142	19.513	26.148	51.672	16.003	-19.695
487	68	131	183	28.07	32.75	45.45	63.96	-13.26	-26.1	20.527	20.440	27.638	52.707	15.390	-20.445
488	68	143	1.94	29.72	35.02	47.44	65.76	-14.69	-25.35	20.202	20.780	28.657	52.747	14.642	-22.067
489	33	15	77	5.34	3.93	13.21	23.45	20.53	-40.59	8.035	7.347	8.058	32.958	9.289	-7.692
490	32	48	98	9.27	10.76	22.82	39.18	-8.81	-35.17	8.895	9.140	13.170	36.893	6.345	-17.293
491	17	81	142	13.26	17.76	32.51	49.21	-22.96	-34.21	8.047	9.170	16.030	36.527	4.271	-25.275
492	0	103	142	15.28	21.38	37.41	53.36	-28.38	-34.08	8.380	9.677	17.722	37.518	4.111	-27.500
493	0	114	149	15.96	22.63	39.42	54.69	-30.15	-34.49	8.420	9.803	18.278	37.978	3.405	-27.950
494	0	125	158	16.36	23.36	40.34	55.44	-31.12	-34.39	8.477	10.000	18.867	38.095	3.513	-29.033
495	34	10	18	5.76	4.07	14.35	23.89	23.55	-42.87	8.110	7.330	8.362	32.802	9.885	-9.112
496	30	48	107	9.53	10.62	23.89	38.94	-5.63	-37.61	8.692	8.937	14.158	36.302	6.980	-20.963
497	20	18	136	13.19	17.04	33.29	48.31	-19.55	-36.92	7.967	8.703	16.788	35.950	5.149	-28.060
498	0	103	155	15.39	20.85	39.09	52.79	-25.25	-37.32	8.120	9.113	18.163	36.608	4.763	-30.058
499	0	115	166	16.53	22.61	41.59	54.67	-26.88	-37.33	8.312	9.280	19.250	37.020	5.132	-31.707
500	0	126	176	16.95	23.43	42.9	55.51	-28.14	-37.53	8.432	9.637	20.238	37.272	5.386	-33.350
501	37	7	87	5.61	3.94	13.75	23.46	23.71	-42.04	8.077	7.273	8.472	32.610	10.257	-9.832

								OIVIII							
No.	R	G	В	Хp	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
502	33	47	115	10.03	11.21	25.2	39.93	-5.93	-38.27	8.970	9.053	15.102	36.413	8.111	-23.190
503	19	81	147	14.17	18.1	35.84	49.62	-19.01	-38.35	7.842	8.580	17.078	35.235	5.893	-29.955
504	0	103	168	16.1	21.39	41.08	53.37	-23.69	-38.93	8.133	9.017	18.873	36.108	6.108	-32.480
505	0	116	179	16.89	22.76	43.24	54.83	-25.54	-39.14	8.425	9.270	20.170	36.607	6.647	-34.350
506	0	127	191	17.5	23.72	44.63	55.81	-26.44	-39.17	8.355	9.353	20.877	36.663	6.321	-35.703
507	159	0	34	21.81	12.36	2.49	41.78	55.62	37.34	16.215	10.330	3.673	38.682	25.785	23.400
508	171	73	0	30.67	25.61	4.12	57.67	23.79	53.36	23.560	20.000	2.673	52.210	17.833	53.852
509	184	130	0	41.33	41.74	5.81	70.69	3.32	66.86	28.805	27.200	3.165	59.577	15.028	62.855
510	192	164	0	47.44	51.25	6.72	76.83	-5.39	73.36	31.705	32.193	3.498	64.152	12.115	68.465
511	194	179	0	50.59	56.14	7.08	79.69	-9.18	76.75	32.825	34.690	3.682	65.735	11.303	69.992
512	198	195	0	52.68	59.51	7.26	81.57	-11.82	79.28	34.532	37.747	3.857	68.153	9.903	73.037
513	159	0	50	22.36	12.36	6.26	41.79	58.11	14.96	16.977	10.640	6.592	39.175	27.709	9.002
514	172	72	42	30.79	25.11	9.86	57.18	26.31	27.65	26.310	21.513	9.380	53.877	21.966	23.578
515	186	127	46	40.7	40.02	13.8	69.48	6.61	37.2	31.658	29.237	10.845	61.587	18.466	32.070
516	195	162	47	46.98	49.56	16.38	75.8	-2.25	41.6	35.235	35.387	11.628	66.675	15.566	38.465
517	197	182	51	50.59	54.87	17.75	78.97	-6.06	43.88	36.822	38.393	12.372	68.815	14.532	39.983
518	201	197	53	52.88	58.47	18.08	81	-8.82	46.65	38.638	42.153	12.882	71.190	13.219	42.642
519	161	0	69	22.91	12.47	10.89	41.95	59.94	-1.91	16.825	10.490	6.863	38.960	27.715	7.462
520	174	70	76	33.29	26.8	18.96	58.79	28.39	6.45	26.638	21.690	11.882	53.925	23.193	15.727
521	188	129	96	44.2	42.45	26.51	71.18	9.74	13.33	32.467	29.637	14.975	61.662	20.593	20.668
522	196	166	110	50.6	51.84	30.64	77.18	1.63	16.9	36.810	37.003	17.258	67.393	17.990	25.062
523	201	182	118	53.61	56.34	32.84	79.81	-1.82	18.06	38.908	39.953	19.477	69.685	17.737	24.130
524	206	201	124	55.82	59.78	34.17	81.72	-4.47	19.39	42.798	46.170	21.928	73.638	17.271	25.955
525	145	0	30	20.36	11.7	2.45	40.73	53.19	35.85	15.690	10.097	3.850	38.452	24.774	21.877
526	155	70	0	28.66	24.37	4.1	56.46	21.39	51.41	21.878	18.877	2.583	51.025	16.162	52.530
527	167	124	0	38.13	39.25	5.76	68.93	0.94	64.06	27.205	26.467	3.080	58.792	13.308	62.122
528	172	156	0	43.87	48.31	6.81	75.02	-7.77	69.85	30.793	32.013	3.437	63.810	11.043	68.288
529	176	172	0	46.52	52.67	7.29	77.68	-11.65	72.45	32.333	34.617	3.642	65.977	9.997	70.667
530	180	186	0	48.65	56.03	7.27	79.63	-14.15	75.87	32.962	36.343	3.740	67.340	8.678	72.380
531	145	0	48	20.62	11.66	6.23	40.67	54.73	13.16	16.637	10.430	6.425	39.005	26.886	9.425
532	159	69	45	28.15	23.31	9.67	55.39	23.98	25.22	25.082	20.873	9.075	53.287	20.500	23.635
533	169	122	49	37.16	37.28	13.74	67.48	4.01	33.89	30.695	28.827	11.468	61.270	17.491	29.623
		<u> </u>													

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Ye	Zc	L*c	a*c	b*c
534	175	155	53	43.15	46.44	16.33	73.83	-4.74	38.32	35.767	36.493	13.235	67.535	15.168	35.367
535	181	172	55	46.11	51.05	17.13	76.71	-8.6	41.41	37.172	39.393	13.707	69.427	14.156	37.338
536	183	188	57	48.73	54.92	18.06	79	-11.19	43.25	38.805	42.523	13.965	71.575	13.072	40.360
537	147	0	66	21.06	11.69	10.88	40.72	56.62	-4.01	16.252	10.137	6.640	38.502	26.818	7.628
538	160	69	78	30.67	25.18	18.87	57.25	25.58	3.97	25.598	21.087	11.907	53.442	22.003	14.833
539	172	123	98	40.98	40.03	26.5	69.49	7.44	10.43	32.088	29.983	15.657	61.963	19.418	19.497
540	178	158	111	47.01	48.91	30.69	75.4	-0.43	13.74	37.073	37.293	19.413	67.732	18.367	20.887
541	182	176	118	49.84	53.12	32.44	77.95	-3.67	15.44	39.910	41.317	21.318	70.770	17.883	22.225
542	186	191	125	52.39	56.85	34.36	80.1	-6.19	16.31	40.505	43.767	22.080	72.223	16.355	23.225
543	129	0	27	18.24	10.7	2.46	39.06	49.66	32.92	14.952	9.900	4.082	38.007	23.583	19.708
544	197	67	2	25.81	22.54	4.08	54.59	17.95	48.3	20.632	18.297	2.583	50.193	14.860	51.085
545	147	118	0	34.35	36.34	5.71	66.78	-2.34	60.62	25.355	25.027	3.052	57.588	11.798	60.243
546	151	147	0	39.45	44.55	6.67	72.59	-10.69	66.26	28.505	30.070	3.390	62.410	9.292	66.172
547	155	163	0	41.87	48.58	7.07	75.19	-14.42	69.05	29.277	32.030	3.477	63.725	8.260	67.857
548	160	177	ó	44.11	51.98	7.36	77.27	-16.75	71.45	28.810	33.033	3.615	64.513	6.219	68.312
549	132	0	46	18.79	10.79	6.29	39.22	51.86	10.38	15.753	10.287	6.440	38.602	25.305	8.667
550	142	67	47	26.03	22.16	9.82	54.2	20.54	22.66	23.367	19.867	9.280	52.188	19.017	21.017
551	151	116	52	33.87	34.72	13.56	65.53	1.39	31	28.732	27.323	11.433	59.997	15.949	27.528
552	158	149	57	39.75	43.66	16.4	72	-7.2	34.99	33.663	34.580	13.745	66.125	14.130	31.555
553	158	164	60	42.57	48.03	17.33	74.84	-10.82	37.74	35.718	37.770	14.358	68.348	13.890	33.767
554	160	179	60	44.37	50.98	17.79	76.67	-13.4	39.84	35.595	39.477	14.485	69.435	11.722	35.318
555	133	0	66	19.37	10.94	10.9	39.49	53.7	-6.21	15.563	10.067	7.073	38.205	25.543	5.273
556	144	66	78	28.08	23.45	18.79	55.53	23.12	1.18	23.610	19.797	11.945	52.142	20.300	12.463
557	152	118	96	37.4	37.14	26	67.38	5.24	7.66	30.503	28.843	16.350	60.968	18.451	16.112
558	160	150	112	43.08	45.5	30.27	73.22	-2.3	10.63	36.472	36.990	21.827	67.590	18.058	15.735
559	164	167	121	45.88	49.65	32.3	75.86	-5.58	12.05	38.087	39.677	23.263	69.625	17.346	16.480
560	167	182	126	47.53	52.4	33.37	77.52	-8.11	13.33	39.085	42.417	24.600	71.175	16.503	16.692
561	103	10	25	14.44	9.01	2.54	36.01	41.36	26.95	13.662	9.413	4.420	37.218	21.088	16.368
562	107	64	19	20.6	19.26	4.12	50.99	10.19	41.83	18.490	16.803	2.803	48.590	12.580	46.588
563	114	105	0	27.21	30.69	5.58	62.24	-9.3	53.41	21.830	22.527	3.157	55.062	8.790	55.140
564	117	133	0	31.13	37.52	6.55	67.66	-17.62	58.3	23.452	26.173	3.287	58.857	5.193	60.748
565	117	146	0	33.05	40.85	6.95	70.07	-21.07	60.73	24.018	26.970	3.373	59.808	4.767	61.815

Table B-1 (CONTINUED)

No.	R	G	В	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Ye	Zc	L*c	a*c	b*c
566	119	160	0	35.1	43.94	7.29	72.19	-23.13	62.98	23.735	27.677	3.403	60.033	3.930	61.990
567	104	0	43	14.88	8.89	6.17	35.77	45.07	5	14.737	10.003	6.540	38.197	23.009	7.523
568	111	63	51	20.51	18.42	9.54	50	13.98	16.36	21.280	18.580	10.147	50.615	17.295	15.397
569	116	107	59	27.18	29.42	13.23	61.15	-4.73	24.35	25.658	25.130	12.847	58.060	13.797	20.110
570	121	134	62	31.83	36.9	15.73	67.2	-13.06	28.34	28.023	29.917	13.905	62.298	10.663	24.530
571	122	148	65	34.21	40.59	16.67	69.89	-16.25	30.72	28.273	31.483	14.135	63.358	9.315	25.753
572	123	162	68	35.7	43.16	17.17	71.66	-18.83	32.6	27.957	32.023	14.118	63.777	7.877	26.517
573	106	0	64	15.7	9.2	10.7	36.37	47.31	-10.96	14.637	9.783	7.505	37.847	23.532	2.890
574	113	62	7,9	22.81	19.87	18.19	51.69	17.44	-4.12	21.482	18.410	12.792	50.570	18.434	7.335
575	119	107	99	30.77	31.92	25.55	63.28	-0.01	1.36	27.845	26.817	18.977	59.155	17.405	7.040
576	123	136	113	35.55	39.15	29.73	68.86	-7.23	3.98	30.840	32.317	22.598	63.900	15.154	7.882
577	124	150	119	37.33	42.12	31.26	70.95	-10.39	5.19	32.095	33.827	24.732	65.263	15.519	6.262
578	125	164	127	38.98	44.8	32.53	72.76	-12.87	6.37	32.690	35.893	25.522	66.535	14.274	7.042
579	62	21	28	8.04	5.74	2.41	28.74	25.62	15.54	11.248	9.170	5.790	36.792	14.307	8.523
580	63	57	27	11.94	13.43	3.91	43.41	-6.84	30.08	14.115	14.003	4.925	44.797	7.948	26.662
581	60	91	21	16.26	22.02	5.39	54.05	-25.71	40.24	14.847	16.603	3.490	48.472	2.793	41.478
582	58	114	14	18.67	26.83	6.36	58.81	-33.21	43.87	15.313	18.753	3.272	51.023	-0.715	47.362
583	55	125	9	19.76	29.04	6.7	60.82	-36.33	45.83	15.848	19.897	3.297	52.230	-1.447	49.265
584	53	136	0	21.05	31.06	6.97	62.56	-37.55	47.68	15.578	19.883	3.177	52.353	-2.435	50.293
585	65	16	45	9.1	6.13	6.16	29.75	30.49	-5.36	11.540	8.713	6.912	35.760	17.437	1.732
586	66	56	55	12.73	13.38	9.44	43.33	-1.13	5,2	16.618	15.293	10.388	46.598	13.070	7.693
587	65	91	63	17.01	21.44	12.93	53.42	-18.83	11.86	18.665	19.093	12.573	51.748	9.109	9.997
588	64	115	69	20.24	27.01	15.52	58.99	-26.05	14.67	19.278	21.490	13.898	54.465	5.846	11.047
589	62	126	72	21.79	29.71	16.32	61.41	-29.1	16.92	19.315	22.507	14.100	55.353	4.244	12.045
590	61	138	76	22.75	31.45	16.81	62.88	-31.03	18.32	19.447	23.473	14.478	56.135	3.158	12.415
591	66	10	63	9.94	6.32	10.44	30.2	35.34	-20.76	11.552	8.633	7.513	35.555	18.009	-1.085
592	69	56	80	15.1	14.81	17.95	45.37	4.95	-14.47	16.768	15.173	13.322	46.223	14.834	-1.632
593	70	92	100	20.45	23.8	25.09	55.89	-11.66	-10.56	19.525	19.503	18.375	51.718	12.604	-4.478
594	69	116	114	23.71	29.07	28.92	60.84	-17.96	-8.54	22.128	23.720	22.752	56.068	11.478	-5.927
595	70	128	120	24.83	31.11	30.54	62.6	-20.72	-8.08	22.223	24.277	23.492	56.863	10.402	-5.938
596	63	140	128	25.88	32.82	31.6	64.01	-22.34	-7.29	22.863	25.783	24.175	58.105	9.785	-5.067
597	32	23	31	2.75	3.02	2.43	20.12	-2.93	0.54	3.877	3.720	3.053	23.310	3.967	1.143

Table B-1 (CONTINUED)

No.	R	G	B	Хр	Yp	Zp	L*p	a*p	b*p	Xc	Yc	Zc	L*c	a*c	b*c
140.			. Б	Др	1р	Zþ	гр	а-р	рр	Λ.			L^C	a-c	БС
598	25	51	31	4.69	8.58	3.72	35.16	-37.97	17	6.425	7.577	5.793	33.663	-0.650	3.120
599	0	79	32	6.8	14.35	5.18	44.72	-55.16	25.21	6.090	8.237	6.495	35.048	-4.993	2.300
600	0	97	37	7.79	17.16	6.08	48.46	-61.72	27.29	6.282	8.977	7.077	36.587	-6.772	2.462
601	0	108	42	8.21	18.31	6.35	49.87	-63.9	28.48	6.360	9.257	7.322	37.130	-7.417	2.413
602	0	117	45	8.61	19.14	6.56	50.85	-64.67	29.25	6.537	9.760	7.635	38.002	-8.007	2.642
603	33	20	48	3.65	3.29	5.77	21.18	7.65	-18.28	6.622	6.113	6.113	30.130	7.609	-4.463
604	28	50	56	6.07	8.98	9.38	35.94	-25.02	-7.33	7.417	8.317	9.100	34.903	2.593	-8.143
605	13	80	66	8.32	14.4	12.8	44.8	-41.14	-2.65	7.065	8.467	10.768	35.938	-0.689	-11.865
606	0	100	74	9.91	17.86	15.32	49.33	-47.38	-1.48	7.360	9.453	11.875	37.468	-1.889	-12.625
607	0	110	81	10.24	18.93	15.9	50.6	-50.3	-0.69	7.668	10.213	12.465	38.657	-2.613	-12.270
608	0	119	84	10.89	20.09	16.46	51.94	-51.13	0.27	7.858	10.700	13.165	39.403	-3.159	-12.930
609	34	16	63	4.81	3.7	9.94	22.64	17.53	-32.16	6.960	6.433	7.015	30.688	8.397	-7.442
610	29	49	81	8.38	10.43	18.07	38.6	-13.84	-26.43	7.820	8.237	11.487	34.685	5.510	-16.262
611	16	80	99	11.8	16.92	25.15	48.16	-28.3	-23.99	7.182	8.383	13.985	34.967	2.565	-22.797
612	0	10]	114	13.31	19.94	28.64	51.76	-33.71	-23.74	7.788	9.433	16.113	36.948	2.107	-24.745
613	0	113	122	14	21.19	30.07	53.16	-35.29	-23.62	8.110	9.860	16.855	37.713	2.146	-25.175
614	0	123	128	14.36	21.98	30.95	54	-36.71	-23.56	8.528	10.430	18.137	38.855	1.980	-26.132

Table B-2 The X,Y,Z,L*,a*,b*, of the colour copier prints with using the system model 1, system model 2 and modified system model 2

	SM	I I (calcula	te)	SN	12 (calcula	te)			SM2 (pr	ractical)		T			mSM2 (p	ractical)		
No.	Xc1	Yel	Zel	Xc2	Yc2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Yc	Zc	L*c	a*c	b*c
1	37.913	38.889	30.926	38.352	39.214	31.104	21.63	21.955	16.57	53.98	2.165	3.525	39.2	39.51	32.575	69.105	3.525	0.025
2	55.629	53.978	33.884	54.467	53.264	34.587	38.115	39.225	16.94	68.915	0.94	28.41	46.56	43.345	27.875	71.775	13.885	12.06
3	41.352	40.256	47.022	41.220	44.238	48.597	26.955	25.815	31.685	57.86	8.565	-18.045	34.995	33.715	39.175	64.72	8.67	-16.855
4	39.777	33.686	13.486	42.421	36.997	14.666	28.835	21.335	6.15	53.315	35.585	35.335	38.14	30.645	14.425	62.195	29.96	23.01
5	29.195	40.195	22.818	38.434	50.520	27.376	11.395	22.34	11.685	54.385	-57.995	17.1	25.4	34.155	22.385	65.07	-28.995	10.32
- 6	21.751	19.416	30.839	22.935	20.936	33.385	12.235	9.775	25.525	37.44	20.94	-43.145	17.755	17.71	26.605	49.125	3.69	-24.85
7	9.092	9.568	8.630	9.227	9.524	8.299	2.775	3.47	2.195	21.83	-9.785	5.515	4.665	4.92	4.17	26.475	-0.995	-0.69
8	23.738	11.484	2.308	25.784	10.958	-1.593	21.425	11.865	1.62	41.005	57.15	44.295	26.7	15.805	8.28	46.715	55.56	15.195
9	12.257	25.159	11.176	27.726	47.730	19.113	7.045	17.4	5.775	48.765	-70.12	29.235	10,495	21.275	12.07	53.25	-59.775	14
10	9.402	7.302	18.371	7.896	5.009	19.378	5.29	3.235	15.09	20.955	30.75	-49.835	10.445	9.955	20.565	37.73	6.655	-33.215
11	61.050	69.492	8.518	67.811	80.689	15.345	46.125	50.665	4.415	76.475	-7.56	84.07	56.475	65.25	5.185	84.615	-15.34	93.96
12	26.693	13.325	17.035	32.756	17.214	21.438	21.445	11.69	8.495	40.725	58.435	4.045	29.03	16.575	16.85	47.72	60.44	-7.92
13	18.480	25.440	58.175	69.016	102.782	101.293	12.715	20.255	29.74	52.125	-39.16	-24.885	23.66	31.11	47.385	62.595	-25.765	-30.75
14	75.780	77.642	65.685	71.963	72.994	59.213	66.39	66.725	59.105	85.365	4.6	-4.2	74.575	77.265	64.65	90.445	0.165	-0.88
15	1.553	3.110	2.371	1.483	2.558	2.031	1.685	2.04	1.425	15.685	-6.82	2.95	1.995	2.075	1.745	15.89	-0.12	-0.31
16	1.553	3.110	2.371	1.483	2.558	2.031	1.715	2.065	1.4	15.825	-6.72	3.48	1.975	2.055	1.72	15.775	-0.12	-0.265
17	1.553	3.110	2.371	1.483	2.558	2.031	1.7	2.035	1.395	15.68	-6.45	3.235	1.935	2.015	1.68	15.56	-0.14	-0.21
18	1.553	3.110	2.371	1.483	2.558	2.031	1.72	2.04	1.45	15.71	-6.025	2,65	1.935	2.015	1.675	15.56	-0.105	-0.165
19	1.553	3.110	2.371	1.483	2.558	2.031	1.775	2.075	1.48	15.885	-5.435	2.605	1.975	2.055	1.725	15.765	-0.055	-0.34
20	1.553	3.110	2.371	1.483	2.558	2.031	1.75	2.05	1.44	15.755	-5.44	2.91	1.915	1.99	1.66	15.42	-0.1	-0.195
21	1.553	3.110	2.371	1.483	2.558	2.031	1.77	2.12	1.435	16.115	-6.49	3.495	1.915	1.985	1.66	15.425	-0.09	-0.22
22	1.553	3.110	2.371	1.483	2.558	2.031	1.745	2.065	1.415	15.81	-5.835	3.305	1.89	1.965	1.64	15.29	-0.065	-0.265
23	65.034	65.566	49.800	61.264	61.395	47.102	56.26	60.51	41.055	82.115	-5.1	10.66	58.55	57.615	45.73	80.52	7.36	2.125
24	62.505	67.254	53.476	62.011	65.212	50.746	50.135	49.795	48.675	75.94	5.76	-9,225	66.79	71.205	51.76	87.5 85	-4.08	7.37
25	58.286	58.771	58.911	59.995	61.259	57.476	46.48	48.755	43.35	75.3	-1.49	-3.98	58.35	57.695	57.92	80.57	6.675	-11.265
26	48.848	56.503	40.350	52.179	58.444	41.050	30.375	35.165	28.655	65.88	-12.715	0.585	46.425	53.02	35.525	77.88	-12.79	10.845
27	74.321	76.608	65.151	71.315	72.716	59.153	63.585	63.155	58.375	83.525	6.215	-6.63	74.145	76.805	64.2	90.23	0.19	-0.815
28	72.544	75.200	65.142	70.814	72.696	59.785	59,13	58.89	55.995	81.235	5.695	-8.125	74.265	76.89	64.53	90.27	0.255	-1.055
29	71.368	74.165	65.433	70.599	72.799	60.541	62.645	62.575	56.225	83.22	5.395	-4.95	74.64	77.26	64.955	90.44	0.31	-1.165
30	68.315	71.671	65.278	69.694	72.756	61.605	57.615	57.915	52.685	80.695	4.37	-5.53	74.595	77.26	64.73	90.44	0.21	-0.955
31	66.037	70.085	64.794	69.082	72.980	62,130	51.965	52.745	50.785	77.72	2.93	-8.545	74.03	76.75	64.52	90.205	0.045	-1.155
32	63.797	68.132	64.938	68.591	73.205	63.347	47.4	48.775	46.16	75.31	1.04	-7.375	72.095	75.19	64.18	89.485	-0.85	-2.085
33	61.607	66.268	64.517	67.824	73.092	63.934	44,37	46.315	44.375	73.75	-0.835	-7.91	67.89	71.835	63.565	87.885	-2.99	-4.24
34	56.097	61.584	64.867	67.203	74.807	67.652	38.02	41.18	46.585	70.305	-5.345	-16.515	59.065	64.375	61.365	84.155	-7.095	-8.535
35	50.574	56.167	63.570	64.715	73.775	69.225	28.79	34.1	39.41	65.04	-15.115	-16.625	49.8	56.225	59.065	79.735	-11.525	-13.865
36	45.529	51.784	63.029	64.230	75.942	72.618	22.675	28.955	37.265	60.74	-22.13	-21.15	50.815	57.185	59.705	80.275	-11.17	-13.575
37	39.319	46.101	62.240	63.994	79.414	77.499	18.175	26.4	34.14	58.415	-34.065	-20.745	39.18	46.49	55.59	73.855	-17.01	-20.42
38	32.872	39.671	61.689	64.284	84.061	84.010	13.58	22.01	28.345	54.04	-41.76	-19.325	29.14	36.64	50.51	67	-22.275	-26.725
39	24.057	30.993	59.701	66.207	93.700	93.727		20.375	29.895	52.255	-39.09	-24.915	24.035		 	_		-30.32
40	74.200	75.687	64.700	70.635	71.516	58.737	67.775	69.38	60.07	86.69	1.92	-2.88	74.215	76.855	64.47	90.255	0.23	-1.02
41	72.489	73.667	63.582	69.253	70.013	58.162	69.51	72	60.075	87.97	0.19	-0.68	74.205	76.845	64.465	90.245	0.23	-1.03
42	71.604	72.341	62.903	68.431	68.945	57.809	68.345	71.15	58.27	87.555	-0.565	0.43	72.705	74.365	63.66	89.09	2.09	-2.25
43	69.484	69.658	61.253	66.658	66.857	56.870	66.8	70.045	56.04	87.02	-1.63	1.805	68.285	67.41	61.04	85.705	7.295	-5.55
44	67.802	67.072	59.620	65.204	64.822	55.969	61.395	65.545	50.17	84.765	-4.18	4.285	65.175	62.925	59.07	83.395	10.355	-7.55
45	65.318	63.990	57.817	63.307	62.544	54.962	58.94	62.63	45.06	83.25	-3.45	7.625	61.85	58.705	57.655	81.12	12.565	-10.035
46	63.216	61.258	55.728	61.596	60.358	53.602	54.335	58.745	41.98	81.15	-5.765	7.825	59.145	55.06	55.85	79.065	15.035	-11.705
47	59.145	55.560	51.227	58.509	55.955	50.715	45.63	46.91	35.025	74.13	1.145	5.07	54.14	48.69	51.635	75.24	19.18	-13.76
48	54.830	49.629	46.405	55.421	51.402	47.465	38.725	35.87	28.825	66.42	13.65	1.235	51.565	44.45	47.275	72.52	24.295	-13.51
49	50.019	43.095	40.497	52.064	46.270	43.111	33.14	26.475	24.735	58.485	29.195	-5.445	46.055	37.29	39.035	67.48	30.99	-11.91
50	44.718	36.296	35.164	48.051	40.498	38.830	30.315	22.055	22.285	54.085	37.885	-8.45	42.33	32.54	31.655	63.78	36.125	-7.775
51	39.846	28.657	27.791	45.750	34.697	33.164	27.69	17.415	18.405	48.785	50.63	-9.61	39.735	29.135	27.665	60.895	40.62	-6.37

Table B-2 (CONTINUED)

	S.\	Al(calcul	ate)	Si	M2 (calcula	ate)		7.5	-	ractical)	,				mSM2 (p	oractical)		_
No.	Xc1	Yel	Zc1	Xc2	Yc2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Yc	Zc	L*c	a*c	b*c
52	27.243	13.472	17.471	33.898	17.836	22.437	22.67	12.355	11.61	41.775	59.595	-4.43	36.225	25.31	22.895	57.36	44.55	-3.945
53	74.847	76.733	63.809	70.628	71.551	57.584	66.73	67.16	59.51	85.585	4.405	-4.23	74.6	77.295	64.66	90.46	0.145	-0.855
54	74.272	76.436	61.808	69.563	70.503	55.732	65.3	66.215	59.26	85.11	3.28	-4.8	74.825	77.65	64.39	90.62	-0.09	-0.32
55	73.659	75.800	60.611	68.776	69.671	54.744	62.52	63.85	59.365	83.89	2.205	-7.005	73.98	77.025	62.49	90.33	-0.585	1.015
56	72.893	75.317	58.072	67.558	68.530	52.506	60.85	60.97	57.74	82.36	4.895	-7.99	70.175	72.45	56.005	88.185	0.69	3.845
57	72.159	74.902	55.368	66.451	67.578	50.178	60.96	61.05	57.665	82.405	4.985	-7.835	66.585	67.565	50.715	85.78	3.22	5.425
58	71.392	74.525	52.836	65.529	66.912	48.065	60.22	59.735	56.045	81.695	6.295	-7.38	65.47	66.57	47.46	85.275	2.915	8.285
59	70.649	73.861	50.083	64.680	66.230	45.909	62.075	61.91	53.68	82.865	5.595	-2.855	62.89	64.035	43.225	83.975	2.665	11.15
60	69.806	73.799	44.969	63.927	66.266	41.878	57.4	60.025	37.34	81.85	-1.165	15.155	59.715	60.825	36.93	82.275	2.56	16.46
61	68.120	73.050	38.706	63.197	66.739	37.213	52.965	55.02	24.375	79.05	-0.23	30.675	56.59	57.47	31.75	80.435	2.935	20.795
62	67.178	72.894	32.694	63.644	68.598	32.959	47.39	52.385	16.94	77.51	-8.46	43.23	54.79	56.225	25.69	79.73	1.465	29.525
63	65.739	72.344	25.372	64.662	71.635	27.851	49.03	56.86	12.975	80.1	-15.14	57.735	53.6	56.19	20.645	79.72	-1.475	39.02
64	61.749	70.280	8.701	68.621	81.718	15.725	42.295	47.15	4.7	74.285	-9.255	78.715	54.51	57.985	18.11	80.73	-3.51	46.14
65	61.636	70.073	8.664	68.497	81.507	15.665	45.485	49.935	4.375	76.03	-7.46	83.515	59.805	69.245	12.02	86.63	-15.935	71.7
66	73.489	75.528	64.224	70.349	71.582	58.449	65.885	66.58	59.92	85.29	3.79	-5.14	74.44	77.12	64.58	90.375	0.165	-0.915
67	70.198	72.432	61.988	67.925	69.404	57.161	61.44	62.505	57.015	83.18	2.755	-5.83	74.445	77.085	64.685	90.365	0.24	-1.05
68	67.883	70.217	60.328	66.151	67.776	56.129	60.125	60.365	55.74	82.03	4.6	-6.475	73.02	75.25	63.43	89.51	0.975	-1.315
69	63.901	66.343	57.326	62.979	64.801	54.125	56.585	58	52.64	80.735	1.64	-5.395	66.44	67.59	57.89	85.79	2.845	-2.22
70	59.249	61.728	53.612	59.092	61.068	51.442	49.77	50.875	46.825	76.6	1.925	-5.94	59.035	60.355	52.53	82.025	2.035	-3.055
71	54.936	57.378	50.005	55.333	57.386	48.654	44.39	45.21	41.07	73.025	2.34	-5.02	53.645	55.135	48.45	79.11	1.24	-3.495
72	51.303	53.671	46.864	52.061	54.134	46.100	38.105	39.79	35.735	69.325	-0.85	-4.22	46.185	47.355	42.685	74.405	1.495	-4.68
73	42.831	44.911	39.265	44.096	46.078	39.492	28.61	30.69	26.67	62.245	-3.775	-2.36	41.52	42.705	39.425	71.34		
74	35.545	37.299	32.527	36.926	38.707	33.187	18.525	19.77	19.285	51.57	-2.755	-6.705	34.81	35.785	32.76	66.35	1.045	-5.02
75	27.353	28.731	24.867	28.579	30.045	25.576	11.265	12.83	11.215	42.505	-7.73	-1.97	25.165	25.88	23.555	57.88		-4.285
76 77	13.383	14.377	18.247 12.069	13.887	22.297	18.680	7.215	8.805	8.275	35.605	-11.76	-3.955	16.645	17.805	15.51	49.235	-2.885	-2.06
78	7.246	8.353	6.808	7.389	14.820 8.249	6.439	4.235	3.05	4.375 1.705	28.475	-15.28	1.52	11.605	12.78	10.865	42.425	-	-0.995
79	9.767	9.038	14.286	8.971	7.910	14,245	4.105	3.345	9.205	20.26	-14.275 13.435	7.62 -31.845	6.485 9.42	7.005	5.835	31.78		-0.27
80	14.867	16.916	39.035	26.019	34.526	53.355	9.845	11.425	27.84	40.285	-8.91	-42.205	17.835	9.61	14.215 42.655	37.095 56.79		-19.71
81	13.673	18.515	25.188	20.120	28.401	31.961	6.84	10.92	15.285	39.45	-32.05	-18.41	11.265	20.2	23.055	52.055	-	-35.03
82	15.908	26.668	34.080	44,424	68.925	56.826	9.825	18.345	19.775	49.915	-50.57	-10.6	17.1	25.905	33.315	57.945	-48.95 -37.815	-13.425
83	7.542	15.189	7.760	12.849	23.485	10.081	4.305	10.46	2.925	100 TT. 10/10	-58.205	28.495	6.45	15.52	5.29	46.34		-20.34 27.445
84	36.461	46.968	4.396	42.209	53.219	6.758	25.28	36.16	4.24	66.64		68.135	42.86	54.165	5.175	78.555		83.565
85	19.012	19.312	15.466	19.672	19.954	15.606	6.97	8.175	7.35	34.355	-8.74	-2.52	17.1	17.53	13.315	48.88	_	3.035
86	29.202	31.844	4.339	31.326	34.284	4.793	19.355	22.51	3.305	54.565	-11.4	53.23	32.885	35.71	5.25	66.29	_	62.04
87	48.428	49.175	5.134	53.703	57.906	8.427	40.53	41.67	3.935	70.64	1.1	76.85	46.02	46.875	4.485	74.105	_	79.605
88	17.516	11.389	5.948	17.895	11.435	4.250	11.43	7.19	1.6	32.24	37.715	29.44	19.835	12.7	5.02	42.29		21.84
89	25.639	13.008	10.798	29.810	14.906	11.715	21.48	11.77	6.015	40.855	58.04	14.465	27.765	16.11	12.575	47.115		2.015
90	18.161	10.814	13.038	19.306	11.645	13.172	11.695	6.98	7.035	31.75	41.65	-5.72	21.04	13.225	10.9	43.09		0.015
16	19.122	10.964	18.911	21.134	12.473	21.179	12.74	7.135	13.495	32.115	47.255	-26.435	21.98	13.53	14.58	43.55	48.765	-9.565
92	21.157	19.741	25.944	21.884	20.640	27.301	8.66	8.23	15.875	34.465	6.41	-28.465	16.71	16.965	21.365	48.19	1.975	-16.755
93	13.011	13.621	23.914	13.603	14.731	26.743	6.725	6.675	17.96	31.05	3.01	-39.19	11.98	17.265	27.875	48.59	-28.91	-27.94
94	31.873	36.577	42.496	40.897	48.143	48.604	14.22	20.3	25.995	52.175	-29.67	-18.565	26.09	31.445	35.905	62.87	-16.63	-15.57
95	11.317	20.744	17.997	23.720	39.556	26.979	6.78	14.99	10.27	45.62	-59.22	6.38	9.55	19.41	15.56	51.155	-58.2	1.1
96	26.331	33.678	20.786	31.283	39.095	23.168	10.325	19.055	10.245	50.75	-50.295	15.305	22.93	28.835	19.83	60.615	-20.525	7.745
97	21.402	29.737	7.212	26.350	35.221	8.646	9.715	20.28	3.8	52.155	-61.095	45.81	23.445	35.27	15.13	65.955	-41.215	27.675
98	48.459	52.764	21.677	48.224	52.098	22.529	35.42	41.12	11.515	70.26	-13.705	44.97	42.595	44.36	18.685	72.45	-0.5	30.605
99	30.025	25.852	4.358	31.745	27.969	3.607	21.62	16.97	2.48	48.225	26.935	48.53	29.135	24.88	3.215	56.95	21.065	57.965
001	33.468	29.105	14.677	34.539	30.431	14.989	22.645	17.83	7.52	49.29	27.06	22.555	30.575	25.71	13.485	57.74	23.055	17.81
101	20.731	11.170	7.507	21.860	11.052	5.718	16.56	9.395	2.785	36.74	50.6	26.32	24.455	13.34	7.505	43.27	61.005	12.265
102	35.448	30.186	22.885	36.556	31.612	23.897	23.33	18.305	11.845	49.86	27.685	8.83	32.03	26.325	18.65	58.34	25.845	6.335
103	36.684	30.880	28.518	38.056	32.694	30.078	26.1	19.69	18.825	51.49	32.55	-5.875	33.27	26.825	23.665	58.805	28.24	-2.915
104	13.337	9.003	16.097	13.575	9.111	16.784	7.275	4.395	12.09	24.93	34.835	-34.875	15.455	12.075	17.075	41.325	24.46	-19.46

No.	5	1(calcula				te)			SM2 (pr	ractical)					mSM2 (p	ractical)		
	XcI	Ycl	Zel	Xc2	12 (calcula Ye2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc T	Yc	Zc Zc	L*c	a*c	b*c
105	11.689	14.050	14.132	12.339	14,938	14.662	3.97	5.895	6.625	29.15	-21.935	-8.42	10.05	14.53	13.54	44.965	-27.54	-4.36
106	43.403	47.577	35.955	44.751	48.296	36.182	24.995	29.375	20.65	61.105	-13.565	6.9	38.475	41.775	30.55	70.705	-5.68	5.885
107	23.381	27.553	18.831	25.756	30.092	19.901	7.965	12.44	8.435	41.9	-31.805	6.29	20.26	24.11	16.775	56.155	-13.98	6.835
108	10.052	13.160	9.089	11.070	14.355	9.212	3.085	5.65	2.195	28.51	-33.115	17.02	8.485	12.68	8.475	42.25	-28.775	6.78
109	55.034	56.830	47.070	54.236	55.563	45.543	42.01	44.12	36.335	72.31	-1.595	0.085	51.035	51.51	42.65	76.975	3.665	-0.215
110	52.629	55.404	37.370	51.066	52.984	36.415	37.195	40.075	23.01	69.525	-4.645	16.775	46.555	47.39	31.02	74.425	2.435	11.565
111	34.560	36.721	19.521	35.090	36.967	19.816	18.5	21.18	9.045	53.145	-9.645	23.505	35.735	37.07	20.02	67.315	-0.025	18.915
112	17.244	18.174	9.477	18.194	18.968	9.494	5.845	7.48	2.305	32.875	-14.265	23.595	15.31	16.25	8.955	47.27	-2.05	13.7
113	45.959	45.678	31.795	45.176	44.831	31.709	30.275	30.16	16.28	61.795	4.53	17.675	41.155	39.4	26.945	69.01	9.925	8.895
114	13.477	11.470	8.361	14.039	12.025	8.022	4.65	4.18	1.805	24.265	8.505	13.5	12.09	10.635	7.065	38.89	13.4	6.595
115	48.063	46.612	40.334	47.672	46.485	40.126	35.005	33.655	26.7	64.69	8.89	1.795	44.415	41.175	37.21	70.295	14.19	-4.6
116	29.293	25.964	22.629	29.902	26.767	23.141	17.28	14.635	12.195	45.135	18.395	-0.34	28.925	25.245	21.385	57.295	18.72	-1.135
117	14.191	11.586	11.529	14.615	12.094	11.305	5.845	4.57	6.025	25.465	17.725	-12.105	13.18	11.115	9.38	39.755	17.185	-0.755
118	6.059	7.269	6.013	6.101	7.023	5.584	1.94	2.76	1.6	19.06	-15.07	6.695	5.24	5.69	4.54	28.585	-2.93	0.83
119	1.553	3.110	2.371	1.483	2.558	2.031	1.6	1.93	1.345	15.105	-6.63	2.905	2.015	2.09	1.75	15.95	·-0.09	-0.29
120	10.522	11.792	10.142	10.827	11.986	9.984	3.155	4.495	3.155	25.245	-17.89	3.75	9.51	10.805	9	39.205	-7.105	-0.325
121	7.359	8.598	7.356	7.425	8.433	6.969	2.22	3.17	1.71	20.72	-15.99	8.375	6.81	7.58	6.205	33.03	-4.89	0.19
122	4.382	5.702	4.662	4.342	5.307	4.197	1.795	2.38	1.52	17.365	-11.29	4.725	3.355	3.625	2.88	22.38	-2.17	0.77
123	1.553	3.110	2.371	1.483	2.558	2.031	1.63	1.965	1.395	15.315	-6.715	2.665	2.02	2.105	1.76	16.015	-0.125	-0.205
124	4.806	6.181	5.330	4.689	5.731	4.817	1.95	2.59	1.59	18.315	-11.685	5.54	4.485	4.97	4.04	26.615	-3.955	0.34
125	3.124	4.634	3.810	2.981	4.079	3.308	1.745	2.18	1.475	16.41	-8.4	3.605	2.665	2.855	2.29	19.44	-1.555	0.53
126	1.553	3.110	2.371	1.483	2.558	2.031	1.665	1.975	1.375	15.37	-6	2.96	1.98	2.06	1.715	15.795	-0.14	-0.2
127	26.095	29.046	28.771	29.074	32.636	30.858	10.305	13.73	15.045	43.845	-20.705	-10.24	23.195	26.525	25.605	58.495	-10.275	-6.93
128	45.900	48.938	45.776	48.780	51.945	46.394	32.205	34.615	35.21	65.45	-4.17	-10.15	40.395	42.43	40.11	71.16	-1.6	-6.985
129	9.470	9.473	11.261	9.169	8.974	10.941	3.71	3.705	6.135	22.655	2.205	-17.45	8.54	8.9	9.975	35.765	-0.415	-9.6
130	39.496	39.525	38.452	40.697	41.029	39.029	25.35	25.335	25.585	57.4	3.905	-8.83	35.65	34.86	35.335	65.63	6.955	-10.01
131	33.310	34.976	30.934	34.771	36.519	31.715	14.79	17.035	15.345	48.305	-9.54	-3.29	33	34.375	30.375	65.25	-0.515	-3.255
132	21.257	22.425	19.632	22.245	23.495	20.172	7.4	9.065	9.19	36.11	-12,115	-6.395	17.875	19.345	16.73	51.065	-4.095	-1.825
133	10.694	11.704	9.721	11.034	11.911	9.535	3.025	4.24	2.61	24.46	-16.715	6.47	9.685	10.755	8.93	39.12	-5.35	-0.195
134	1.553	3.110	2.371	1.483	2.558	2.031	1.64	1.99	1.43	15.435	-6.945	2.4	2.04	2.125	1.78	16.1	-0.08	-0.335
135	37.945	40.001	35.309	39.528	41.601	35.966	19.825	22.3	21.4	54.345	-8.09	-6.28	37.7	39.37	36.535	69	-0.82	-5.88
136	33.266 24.319	35.100 25.749	30.942 22.547	34.811 25.537	36.726 27.079	31.761 23.264	15.545 9.42	17.77	16.445					34.78		_	-0.645	-5.935
138	15.949	17.069	14.704	16.627	17.756	14.915	5.675	7.17	7.255	40.215	-12.02	-5.17	22.775	24.185	21.785	56.235	-2.42	-3.715
139	8.366	9.430	7.740	8.570	9.427	7.422	2.495	3.465	1.785	21.81	-13.235 -15.09	-5.855 9.48	7.87	15.01	7.195	45.61	-7.305	-1.36
140	1.553	3.110	2.371	1,483	2.558	2.031	1.705	2.02	1.763	15.6	-6.045	2.62	2	2.08	1.745	35.51 15.905	-5.545 -0.08	-0.305
141	21.842	23.393	20.404	23.017	24.685	21.071	8.16	10.275	10.08	38.325	-14.66	-5.57	19.89	21.135	18.26		-2.405	-1.845
																		-2.065
143			-													_	-4.87	-0.635
144	58.952	61.423	54.049	59.107												_		-2.805
145	42.780	45.022	39.964	44.326	46.513		26.5										-0.495	-5.705
146	28.066	29.958	26.348	29.633										-	-			-2.15
147			,								_				_		_	-1.65
148	10.133	11.470	10.474	10.329									8.5		_	-	-11.195	
149	60.246	62.724	54.425	59.940				49.88			_	-	60.545		_		2.955	-2.63
150	52.622	55.021	48.014	53.259	55.329	47.048	38.62	40.325	36.015	69.7	-0.84	_	48.44	49.9				-3.22
151	38.052	39.922	34.859	39.423	41.283	35.413	20.505	22.785	20.21	54.85	-6.93		36.365	37.74		 		
152	24.442	25.700	22.152	25.555	26.898	22.780	9.63	11.265	10.325	40.015	-9.49		21.62	23				-
153	12.145	13.141	10.980	12.573	13.476	10.889	3.96	5.315	3.82	27.61	-15.43		10.215			_	-5.11	-0.205
154	1.553	3.110	2.371	1.483	2.558	2.031	1.73	2.05	1.425		-5.94		2.055	_				
		54.993	48.480	53.403	55.534	47.568	40.305	42.625	38.145	71.3	-2.45		48.46	49.42	44.77	-	2.21	-5.015
155	52,579	- 11220								1	1	i .						
155	46.011	48.228	42.667	47.293	49.385	42.639	33.01	35.215	30.805	65.92	-3.32	-2.79	42.545	43.325	39.025	71.765	2.335	-4.51
142 143 144 145 146 147 148 149 150 151	16.449 11.005 58.952 42.780 28.066 17.350 10.133 60.246 52.622 38.052 24.442	17.696 12.173 61.423 45.022 29.958 18.902 11.470 62.724 55.021 39.922 25.700	15.364 10.259 54.049 39.964 26.348 16.865 10.474 54.425 48.014 34.859 22.152	17.194 11.362 59.107 44.326 29.633 18.269 10.329 59.940 53.259 39.423 25.555	18.475 12.421 61.158 46.513 31.661 19.920 11.560 61.890 55.329 41.283	15.649 10.117 51.990 40.305 27.269 17.348 10.314 52.046 47.048 35.413 22.780	6.405 3.665 46.295 26.5 10.885 5.845 3.05 48.005 38.62 20.505 9.63	7.985 5.125 48.155 29.005 13.415 7.665 4.31 49.88 40.325 22.785 11.265	8.085 3.63 43.28 25.07 12.01 7.85 3.51 44.54 36.015 20.21 10.325	33.955 27.09 74.925 60.78 43.385 33.28 24.67 75.995 69.7 54.85 40.015	-12.795 -17.615 -0.385 -5.875 -14.32 -16.01 -17.165 -0.24 -0.84 -6.93 -9.49	-6.09 3.67 -4.545 -2.085 -2.83 -6.35 0.295 -4.255 -3.97 -2.995	13.77 10.26 58.575 40.265 28.405 13.08 8.5 60.545 48.44 36.365 21.62	15.125 11.305 59.51 41.93 28.875 14.775 10.21 61.505 49.9 37.74	13.215 9.515 51.575 38.69 24.99 12.76 9.33 53.12 43.71 34.24 19.965	45.775 40.085 81.55 70.805 60.645 45.26 38.165 82.635 75.99 67.815	-5.08 -4.8 2.9 -0.49 2.2 -7.40 -11.19 2.95 0.9 -0.06 -2.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

	SM	11(calcula	ate)	SN	42 (calcula	ate)			SM2 (n	ractical)								
No.	Xcl	Yel	Zcl	Xc2	Yc2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Yc	mSM2 (ş		T	b*c
158	6.358	6.107	10.977	5.056	4.359	10.381	2.795	2.46	5.955	17.74	8.2		8.52		Zc	L*c	a*c	
159	42.686	41.345	25.574	42.429	41.237	25.953	25.35	23.415	11.565	55.5	12.13	19.38	36.525	8.665 33.76	12.55	35.305	1.45	-18.265
160	37.887	43.804	32.023	41.184	46.701	33.410	17.26	23.88	16.155	55.96	-28.41	7.93	33.4	37.84	20.585	64.75	13.63	13.33
161	32.242	31.491	36.029	34.067	33.886	37.581	15.6	15.115	21.88	45.79	6.095	-21.955	27.095	25.955	27.88 30.8	67.885	-10.475	5.32
162	19.205	10.043	3.701	19.423	8.922	0.231	16.39	9.37	1.57	36.69	49.885	37.455	23.145	12.755	3.85	57,97	8.55	-16.455
163	9.189	18.798	8.814	17.865	31.943	12.956	5.335	13.84	3.845	43.995	-68.075	31.455	7.36	17.63	7.27	42.39	59.05	28.67
164	7.797	6.757	14.487	6.243	4,582	14.495	4.61	3.05	11.99	20.24	25.32	-42.675	9.68	9.47	16.755	36.865	-68.255	23.125
165	45.812	51.953	5.588	50.189	58.329	8.648	37.605	46.195	4.515	73.675	-21.205	78.675	55.41	63.455	5.09	83.68	-13.97	-26.4
166	21.704	11.893	14.384	24.090	13.262	15.513	16.02	9.125	7.595	36.22	49.77	-0.275	24.635	13.265	9.77	43.155	62.265	92.835
167	13.160	18.598	41.569	38.499	58.304	67.181	12.14	17.575	30.29	48.97	-29.465	-31.195	19.455	26.53	44.01	58.53	-28.015	3.815
168	71.187	73.370	62.676	68.666	70.077	57.571	65.09	66.34	58.925	85.17	2.54	-4.355	73.61	76.195	64.11	89.95	0.295	-33.715
169	67.552	69.898	60.085	65.893	67.537	55.973	60.615	61.695	55.61	82.75	2.67	-5.105	71.52	73.645	62.015	88.75	1.095	-1.215 -1.25
170	15.104	14.777	9.706	15.751	15.309	9.575	4.46	5.165	2.17	27.2	-6.73	14.995	12.065	12.065	8.59	41.275	3.085	4.725
171	13.365	15.482	11.559	14.254	16.402	11.709	3.74	5.845	3.465	29.02	-24.825	8.125	10.995	13.095	10.725	42.88	-11.4	0.24
172	11.944	12.374	12.337	12.078	12.400	12.233	3.995	4.585	5.995	25.53	-6.03	-11.875	10.295	11.315	11.005	40.075	-4.61	-5.47
173	8.772	6.659	4.348	9.292	7.246	3.846	3.185	2.82	1.45	19.315	8.165	8.89	10.3	9.33	5.39	36.59	10.535	10.125
174	3.901	7.496	4.620	4.251	8.016	4.204	2.31	4.19	1.965	24.29	-29.535	11.93	7.595	11,235	6.595	39.945	-26.91	10.123
175	4.127	4.835	6.360	3.459	3.874	5.544	1.695	2.085	1.41	15.93	-7.61	3.475	6.935	7.12	7.73	32.05	0.71	-7.97
176	15.651	17.068	4.036	16.910	17.996	4.002	6.2	8.325	2.465	34.65	-18.03	25.24	17.84	20.01	7.67	51.82	-7.52	26.345
177	9.723	7.543	7.324	10.116	8.144	6.793	3.27	2.865	1.58	19.475	8.935	7.705	11.315	9.94	8,175	37.705	13.2	0.07
178	5.315	8.238	12.741	4.850	8.393	13.783	3.9	5.325	7.915	27.645	-16.505	-16,325	10.61	15.845	17.075	46.745	-30.95	-10.095
179	30.665	29.526	18.512	31.051	29.938	18.649	17.155	16.06	8.96	47.06	9.44	13.305	29.635	27.715	17.895	59.595	11.485	10.093
180	27.621	31.802	23.101	30.065	34.306	24.279	12.115	17.295	11.46	48.63	-28.13	7.85	25.285	28.21	22.515	60.065	-7.865	
181	23.594	23.275	26.119	24.604	24.519	27.230	10.375	10.88	15.43	39.38	-0.905	-18.9	19.46	19.81	21.985	51.595		1.435
182	15.055	8.811	4.479	15.031	8.390	2.214	10.42	6.47	1.665	30.57	37,43	25.86	18.76	12.44	4.77	41.905	1.82	-12.125
183	26.341	13.284	14.026	31.554	16.249	16.804	20.255	11.095	7.375	39.74	56.96	6.685	28.49	16.215	15.445	47.255	40.13 60.375	22.52
184	43.526	35.712	28.560	46.420	39.237	31.563	28.03	20.495	16.315	52.39	36.425	1.395	42.05	32.615	28.17	63.835	35.025	-5.35
185	58.900	55.764	42.803	57.721	55.301	43.125	41.165	42.02	27.8	70.885	1.99	10.63	51.785	47.125	40.59	74.26	17.355	-2.125 -2.26
186	65.599	65.930	49.984	61,720	61.721	47.305	56.68	61.13	43	82.45	-5.495	8.775	58.775	57.08	47.405	80.22	9.2	-0.38
187	68.569	70.317	52.698	63.813	64.579	48.766	63.275	65.26	54.385	84.62	0.8	-0.59	64.42	63.945	50.605		6.35	2.375
188	72.159	74.902	55.3681	66.451	67.578	50.178	58.535	58.565	56.225	81.05	5.045	-8.68	67.01	67.61	52.06	85.81	4.06	3.99
189	26.523		15.522		16.737	19.106	20.76	11.34				4.93		_		-	61.12	-8.065
190	44.179	35.913	31.870	47.395	39.861	35.325	27.71	20.18		52.045	36.675	-5.91	42.505	32.835			35.59	-5.76
191	57.893	54.832	46.488	56.804	54.461	46.187	42.905	44,22	31.92	72.375	0.82	6.62	53.545				17.67	-8.705
192	66.139	65.857	54.666	62.897	62.586	51.526	58.66	62 21	48.66	83.025	-3.165	2,995	63.265	60.73	55.585		11.065	-5.975
193	70.338	71.449	58.444	66.197	66.671	53.743	68.095	70.47	60.185	87.23	0.315		68.83	68.54	59.055	_	6.02	-2.58
194	73.659	75.800	116.06	68.776	69.671	54,744	60.97	62.185	58.43	83.015	2.38	-7.57	74.025	77.06	62.61	90.35	-0.575	0.93
195	26.693	13.325	17.035	32.756	17.214	21.438	21.095	11.4	9.325	40.25	58.81	0.295	29.11	16.47	17.425	——	61.35	-9.475
196	44.718	36.296	35.164	48.051	40.498	38.830	29.685	21.765	23.21	53.775	36.87	-10.755	42.905	32.93	32.76		36.46	-8.89
197	59.145	55.560	51.227	58.509	55.955	50.715	45.055	46.695	35.955	73.995	0.1	3.525	53.77	48.22				-13.82
198	67.802	67.072	59.620	65.204	64.822	55.969	59.65	63.895	50.63	83.905	-4.6	2.295	65.545	62.995	59.49	-	11.035	-7.91
199	71.604	72.341	62.903	68.431	68.945	57.809	68.525	71.205	59.23	87.585	-0.285	-0.5	73.11	74.895	63.77		1.87	-1.93
200	75.780	77.642	65.685	71.963	72.994	59.213	66.515	67.215	59.96	85.61	3.815	-4.635	74.51	77.15	-	90.39	0.245	-1.12
201	24.140	12.613	14.200	27.772	14.595	16.019	18.52	10.38	7.76	38.52	53.485	3.04	27.18	14.875	13.85		62.91	-4.335
202	40.034	33.062	28.471	42.103	35.650	30.695	26.095	19.445	17.53	51.21	33.75	-3.48	38.65	30.435			_	
203	52.479	50.568	41.301	51.485	49.900	40.991	39.565	39.3	28.26	68.965	5.31	6.555	48.66	44.81	39.5		32.36	-2.9
204	59.927	60.967	48.334	57.567	58.140	46.134	51.54	54.9	41.83	78.98	-3.62	4.275	56.37	55.29		-		-3.42
205	63.569	66.080	51.535	60.770	62.228	48.378	57.175	59.255	50.065	81.43	0.105	-1.355					7.71	10.01
206	56.842	50.516	54.432	58.738	54.342							_	62.675	62.485	49.855	_	5.68	1.89
207	24.351	12.662	15.841	28.391	15.078	55.755	56.155	56.145	53.545	79.695	5.065	-8.175	67.225	68.46		_	2.7	4.75
208	40.627		-			18.469	18.755	10.36	8.76	38.475	54.88	-0.79	27.255	14.945		_		-5.045
209	53.051	33.387	31.572	42.895	36.274	34.115	26.335	19.43	20.685	51.185	34.82	-10.29	39.255	30.795		_	32.945	-7.215
210	61.475	50.661	45.364	52.486	50.651	44.990	40.375	40.345	32.675	69.715	4.615	0.9	48.725	44.86	44.06		15.49	-9.165
210	01,4/3	62.124	53.804	59.838	60.336	51.210	53.955	57.15	47.155	80.265	-2.905	-0.:01	59.365	57.71	53.425	80.575	9.09	-6.525

	SN	il(calcula	ate)	SN	И2 (calcula	ite)		Die D-2	SM2 (p					_	mSM2 (p	ractical)	-	
No.	Xei	Yel	Zc1	Xc2	Yc2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Yc	Zc	L*c	a*c	b*c
211	65.405	67.349	56.707	63.273	64.541	53.088	60.95	63.585	55.46	83.75	-0.835	-3.225	67.15	67.2	57.575	85.605	5.25	-2.225
212	69.053	72.284	59.812	66.911	68.906	55.284	58.315	57.98	55.39	80.725	5.905	-8.365	73.765	76.84	62.175	90.245	-0.665	1.175
213	24.660	12.707	17.460	29.201	15.613	20.951	18.73	10.24	10.42	38.27	55.66	-6.775	27.65	15.22	15.16	45.935	62.755	-6.915
214	41.207	33.530	34.416	43.857	36.920	37.393	28.74	21,245	24.515	53.22	35.64	-14.13	38.72	30.5	32.28	62.08	32.315	-11.655
215	54.502	51.438	49.703	54.480	52.326	49.368	42.005	41.91	35.09	70.805	4.865	-0.745	49.035	44.61	47.375	72.635	17.06	-13.425
216	62.752	62.769	58.254	61.973	62.336	55.539	58.225	62.12	49.78	82.975	-4.015	1.635	61.675	60.05	58.225	81.865	8.97	-9.335
217	66.945	68.283	62.003	66.069	67.363	58.192	61.245	64.165	54.66	84.05	-1.45	-1.86	72.055	73.94	63.145	88.895	1.595	-2.1
218	71.368	74.165	65.433	70.599	72.799	60.541	65.495	66.31	59.275	85.15	3.53	-4.735	73.915	76.56	64.165	90.115	0.195	-0.97
219	22.383	12.092	15.154	25.192	13.748	16.775	15.745	8.985	7.785	35.96	49.33	-1.47	25.505	13.635	11.555	43.705	63.61	-0.92
220	36.684	30.880	28.518	38.056	32.694	30.078	23.495	17.915	17.64	49.385	30.455	-6.87	35.23	28.445	26.095	60.275	28.64	-4.735
221	48.063	46.612	40.334	47.672	46.485	40.126	33.04	32.19	26.295	63.5	7.23	0.445	46.41	43.11	40.395	71.625	14.13	-6.545
222	55.034	56.830	47.070	54.236	55.563	45.543	42.84	45.075	38.435	72.94	-1.84	-1.7	53.21	53.365	45.295	78.08	4.565	-1.55
223	58.880	62.167	50.894	58.265	60.617	48.736	46,495	49.115	43.84	75.52	-2.4	-4.21	58.505	59.73	49.39	81.685	2.21	-0.14
224	62.505	67.254	53.476	62.011	65.212	50.746	47,965	48.755	47.78	75.3	2.64	-9.305	67.025	71.13	53.045	87.545	-3.41	5.905
225	22.535	12.119	16.348	25.607	14.042	18.508	15.745	8.885	9.2	35.765	50.16	-7.01	25.815	13.785	12.17	43.915	63.985	-2.365
226	37.009	30.630	31.110	38.758	32,907	33.128	23.265	17.525	20,845	48.915	31,455	-14.525	36.19	29.06	29.78	60.825	29.495	-9.925
227	48.956	47.071	44.500	49.064	47.697	44,354	35.9	34.925	31.45	65.69	7.59	-4.17	44.685	42	42.375	70.86	12.5	-10.4
228	56.213	57.381	52.217	56.355	57.521	50.669	45.21	47.395	42.945	74.44	-1.39	-4.95	55.76	55.23	52.725	79.17	6.335	-8.19
229	60.046	63.000	55.495	60.547	62.993	53.312	48.66	50.735	47.27	76.52	-0.7	-6.605	63.095	64.43	57.315	84.185	2.24	-4.405
230	63.914	68.224	58.760	64.874	68.217	55.988	49.805	50.135	50.47	76.155	3.97	-10.9	72.805	75.975	62.925	89.845	-0.93	_
231	22,724	12.121	17.962	26.165	14.409	20.863	16.125	8.95	11.15	35.89	51.81	-13.175	25.645	13.71	12.345	43.81	63.735	-0.245
232	37.390	30.670	33.670	39.451	33.359	36.067	25.3	18.875	25.03	50.545	33.275	-19.655	37.155	29.56	32.33	61.265	30.815	-3.055
233	49.853	47.387	48.276	50.585	48.974	48.320	38.04	36.705	36.355	67.055	8.715	-8.995	45.05	41.64	45.38	70.62		-13.14
234	57.872	58.553	57.341	59.143	60.377	55.834	47.6	50.665	45.185	76.475	-3.425	-4.2	57.345	56.83	56.8	80.08	14.625	-
235	61.991	64.325	61.364	64.012	66.603	59,210	50.645	53.095	48.51	77.93	-1.45	-5.61	68.335	71.49	63.455	87.72	6.325 -1.29	-10.945
236	66.037	70.085	64.794	69.082	72.980	62.130	51.8	53.365	51.855	78.09	0.905	-9.1	74.07	76.77	64.66		0.105	-4.42
237	18.523	10.930	15.569	19.990	12.038	16.559	10.945	6.64	9.01	30.97	39.65	-14.61	22.59	13.9	14.305	44.085	49.23	-1.275 -7.93
238	30.316	26.359	27.774	31.207	27.558	28.841	17.1	13.84	18.415	44	22.31	-17.885	31.25	26.765	28.715	58.75	21.25	
239	39.496	39.525	38.452	40.697	41.029	39.029	23.75	23.895	25	55.98	3.18	-10.235	38.3	37.51	38.49	67.655	6.955	-10.88
240	45.900	48.938	45.776	48.780	51.945	46.394	30.905	33.89	34.925	64.875	-6.42	-10.735	43.915	45.935	43.81	73.495		
241	48.941	53.710	48.867	53.202	57.922	49.711	33.31	36.495	39.775	66.9	-6.49	-13.9	47.695	51.73	47.53	77.11	-1.11 -5.945	-7.65
242	52.599	58.965	52.405	58.407	64.509	53.434	36.76	39.085		68.81	-3.01	-19.88	55.36	62.415				
243	18.704	10.938	17.053	20.371	12.200	18.575	11.395	6.575	11.335	30.83	43.49	-22,475	22.735		53.39	83.13	-11.74	-
244	30.479	26.009	30.296	31.659	27.573	31.808	18.38	14.36					-	13.96	15.24	44.175	49.53	-10.145
245	40.590	40.074	42.938		Constitution of				22.34	44.74	25.925	-24.67	29.97	25.32	29.705	57.38		
246	47.226	49.708	51.233	42.535	42.684	43.935	26.24	25.55			6.755		36.085	35.115	38.19		7.56	
247				51.571	54.855	52.419	33.7	36.535	40.48	66.93	-5.255	-	44.87	46.915	48.97	74.13	-1.045	
247	50.545	54.926 60.524	54.416 58.578		61.676	55.847	36.505	39.64	45.8	69.21	-5.58		51.88	57.825	56.365	80.64	-9.89	
249	19.122	10.964		62.639	69.312	60.263	39.145	41.635	50.04	70.62	-3.145	-19.96	59.48	64.83	62.505	84.395	-7.115	-
250	31.007	25.973	18.911	32.540	12.473	21.179	12.54	7.005	14.09	31.81		-28.545	22.775	14.03	15.63	44.27	49.275	_
251	41.352	40.256	32.745 47.022		27.983	34.752	19.91	15.17	26.715	45.87	28.86		29.905	25.11	30.76		23.005	
252	48.729	50.595		44.220	44.238	48.597	27.44	27.36	33.635	59.305	4.295	-18.47	36.44	35.24	40.47	65.935	8.33	
252	-		55.884	54.334	57.679	57.535	34.79	38.095	40.605	68.09	-6.51	-12.925	47.205	49.33	54.78	-	-0.985	
	52.485	56.154	60.259	60.387	65.744	62.271	38.285	42.395	45.11	71.145		-13.305	54.24	60.19	60.61	81.94	-9.405	
254	56.097	61.584	64.867	67.203	74.807	67.652	39.21	43.025	48.24		-7.055		61.58	66.73	63.08		-6.335	
255	13.337	9.003	16.097	13.575	9.111	16.784	6.815	4.215	11.98	24.37	32.725		17.275	13.37	1,9.465		26.2	-
256	21.157	19.741	25.944	21.884	20.640	27.301	8.985	8.58	17.465	35.16	6.19	-30.99	19.575	19.455	24.84			
257	27.705	29.449	36.297	31.842	34.853	39.797	11.89	14.24	22.485	44.575	-12.205	-25.245	25.335	28.175			_	-
258	31.873	36.577	42.496	40.897	48.143	48.604	14.72	20.89	27.465	52.83	-29.45	-19.96	29.115	34.385	39.05		-14.86	-
259	33.945	40.277	46.428	47.008	57.038	54.803	16.18	23.465	31.005	55.545	-32.6		33.835	41.825	43.55		-	
260	36.759	44.722	49.736	53.440	65.884	59.747	16.65	24.43	32.38	56.515	-34.14	-21.415	38.22	46.35	50.205		-19.655	-14.71
261	13.536	8.990	17.122	13.792	9.033	18.094	7.435	4.405	14.005	24.96	36.27	-40.12	17.205	13.385	20.335	43.32	25.75	-23.13
262	21.604	19:745	28.505	22.540	20.931	30.410	10.745	9.36	22.485	36.675	13.565	-38.865	18.67	18.695	26.3	50.315	3.35	-22.275
263	27.992	29.293	39.465	33.008	36.034	43.936	13.275	15.28	26.72	46:02	-9.12	-30.43	23.785	26.67	34,905	58.66	-8.255	-21,425

Table B-2 (CONTINUED)

	CN	41/oalaula	(41)	C)	12 (calcula		12	ble B-2			(12)		_		-51/2/	0		
No.	Xel	11(calcula	Zcl	Xc2	12 (calcula Ye2	Ze2	Xc2	Yc2	SM2 (pr		a*c2	b*c2	Xc	Yc	mSM2 (p		1	
		_								L*c2					Zc	L*c	a*c	b*c
264	35.409 35.563	41.839	48.029 52.187	48.905	59.060	56.415 62.265	16.485	22.155	31.51	54.19 57.51	-25.025 -30.69	-24.1 -23.6	36.285	37.67 43.625	47.715	67.765	-17.19	-22.205
265	38.596	45.669	55.947	57.836	70.788	67.547	17.82	25.433	35.04	57.495	-31.975	-23.615	39.645	46.845	54.515	71.975	-18.245	-22.525
267	13.636	8.870	18.514	13.889	8.782	19.905	8.215	4.605	16.865	25.575	40.81	-46.14	16.525	13.025	55.94 20.69	74.085	-16.52	-20.39
268	21.751	19.416	30.839	22.935	20.936	33.385	12.415	10.625	26.805	38.94	15.66	-42.77	18.925	18.63	28.1	42.8 50.24	4.975	-24.735
269	28.842	29.517	43.652	35.087	38.122	49.366	14.79	16.645	29.69	47.805	-7.375	-32.255	24.52	27.425	38.875	59.365	-8.065	-25.455 -25.705
270	34.002	37.336	52.821	47.320	55.466	62.313	17.9	23.855	34.36	55.945	-24.87	-25.33	34.395	41.805	53.335	70.73	-19.26	-23.703
271	36.897	41.630	57.594	54.747	65.796	69.289	17.75	25.375	34.385	57.44	-32.115	-22.785	37	44.31	54.38	72.435	-17.865	-21.59
272	39.319	46.101	62.240	63.994	79.414	77.499	17.945	26.125	34.61	58.155	-34.185	-21.87	40.65	47.67	55.785	74.615	-15.66	-19.32
273	9.828	8.371	16.623	8.682	6.702	17.049	6.135	3.87	16.375	23.23	30.56	-49.03	11.13	10.695	19.195	39.06	6.11	-28.075
274	13.011	13.621	23.914	13.603	14.731	26.743	7.01	6.97	18.7	31.735	2.885	-39.64	12.785	17.935	29.9	49.41	-26.98	-29.82
275	14.308	17.901	31.780	22.631	30.882	41.805	8.665	11.48	23.05	40.38	-19.08	-33.55	16.345	23.505	39.38	55.59	-31.855	
276	12.981	19.368	37.194	35.409	54.275	59.268	11.055	17.505	26.82	48.895	-36.805	-25.635	19.985	27.085	44.835	59.055	-27.61	-33.815
277	15.036	22.935	40.832	44.818	68.317	67.495	11.37	18.56	27.005	50.17	-40	-23.755	21.325	28.525	45.66	60.355	-26.76	-32.55
278	17.097	26.259	45.130	54.860	83.045	76.846	12.01	19.605	27.835	51.385	-40.74	-23.05	22.51	29.87	46.95	61.54	-26.375	-32.05
279	9.714	7.967	17.648	8.395	6.009	18.365	6.525	3.875	17.09	23.255	34.565	-50.67	11.025	10.295	20.38	38.365	8.315	-31.76
280	13.031	13.181	25.877	13.727	14.488	29.462	7.935	7.42	22.125	32.735	7.365	-44.95	13.7	18.875	34.475	50.535	-25.91	-34.81
281	14.806	17.731	35.533	24.610	33.070	47.643	9.77	12.095	26.615	41.365	-14.175	-38.265	17.575	24.4	42.635	56.48	-28.935	-35.53
282	13.309	18.757	42,200	39.412	59.622	68.438	12,255	17.695	30.82	49.125	-29.33	-31.76	20.43	27.59	45.155	59.515	-27.43	-33.4
283	15.515	22.271	47.029	50.401	75.901	78.917	12.765	19.62	30.345	51.4	-35.705	-27.1	21.91	29.18	46.295	60.935	-26.52	-32.325
284	17.695	25.683	51.698	61.442	92.113	89.012	13.185	20.595	31.33	52.505	-37.665	-26.725	23.12	30.445	47.165	62.03	-25.74	-31.46
285	9.402	7.302	18.371	7.896	5.009	19.378	6.09	3.655	15.83	22.495	33.24	-48.99	10.945	10.21	21.345	38,215	8.365	-33.955
286	13.374	12.898	28.222	14.261	14.481	32.660	8.935	8.03	24.775	34.04	10.57	-47.655	15.56	21.71	40.235	53.72	-28.305	-37.225
287	14.867	16.916	39.035	26.019	34.526	53.355	10.865	12.785	29.49	42,445	-10.41	-41.18	17.88	24.745	42.82	56.83	-28.79	-35.17
288	13.494	17.878	46.872	43.045	64.465	77.096	12.925	18.43	32.39	50.015	-28.65	-32.64	20.91	28.055	45.275	59.94	-26.925	-32.825
289	15.816	21.395	52.343	55.148	82.384	88.809	13.305	20.03	32.245	51.87	-34.18	-29.22	22.395	29.655	46.395	61.35	-26.07	-31.725
290	18.480	25.440	58.175	69.016	102.782	101.293	13.145	20.705	30.96	52.625	-38.445	-25.95	24.3	31.685	47.77	63.08	-25.05	-30.36
291	23.738	11.484	2.308	25.784	10.958	-1.593	21.02	11.635	1.61	40.63	56.825	43.785	26.76	15.695	8.81	46.565	56.445	13.01
292	37.157	31.173	1.743	41.527	37.160	1.410	28.075	20.69	2.54	52.605	35.685	55.615	35.705	30,22	3.435	61.84	23.54	64.89
293	48.428	49.175	5.134	53.703	57.906	8.427	39.62	40.94	3.935	70.135	0.455	75.97	46.17	46.93	4.45	74.145	2.61	79.85
294	55.254	60.081	6.878	61.301	70.293	12,172	43.175	48.195	4.32	74.945	-9.48	81.975	57.015	65.815	5.24	84.905	-15.255	94.18
295	58.035	64.805	7.666	64.393	75.440	13.723	46.19	50.965	4.4	76.655	-8.15	84.485	56.82	65.615	5.27	84.8	-15.29	93.85
296	61.050		8.518	67.811	80.689	15.345	44.325	49.275	4.46	75.62	-9.025	82.35	56.855	65.63	5.26	_	-15.245	93.915
297	24.713	12.370	6.188	_	12.945	4.545	21.265	11.675	2.645	40.69	57.725	-	27.185	15.77	10.835	46.675	57.725	6.39
298	40.512		13.416		37.831	14.764	27.54	20.6	5.94				38.045	30.365	14.885	61.965	30.67	21.41
299	52.129		19.162	53.176	54.166	21.379	38.815	40.7	10.64	69.965	-1.345	47.165	46.065	43.485	18.675	71.88	12.07	
300	59.020		21.895		63.628	24.467	48.335	57.315	12.625	-	-18.135		51.475	51.815	21.6	_	4.02	_
301	62.206	67.630	23.142	61.850	67.967	25.789	51.94	60.595	13.45	82.16	-		52.8	54.2	21.985		1.41	_
302	65.739		25.372	-	71.635	27.851		55.78		79.49			54.855	-	22.915	1000	-1.5	
303	25.639 42.719	13.008 35.579	10.798	29.810 45.401	17776-63	24.088	21.37	21.635	6.51	40.755	57.965		27.58	15.845 30.535	12.635		58.865	
305	55.629	53.978	33.884	54.467	38.833 53.264	24.988 34.587	28.71 39.75	21.635 42.015	12.13	70.88	-2.355		38.975				33.01	
306	62.670		39.555	-	60.360	38.449	51.27	56.23	29.075		III TIII TAGA		46.685 52.825	43.32 51.72	28.855			
307	66.411	69.256		61.657	63.479		52.53	56.745	33.43			-		57.125	34.165 35.635		7.785	
308	69.806				66.266		57.335	60.065	39.56			_					4,305 3.08	
309	21.470		2.821	22.333	9.572	-1.147	20.1	11.16	1.585	39.85		_		_		-		
310	33,401	28.160	2.195		32.105	_	26.635	19.915	2.525	51.74							_	
311	43.202	44.295		47.097	50.531	6.859	36.24	37.485	3.835	67.635		_					_	-
312	48.849	53.837	5.924		61.336		40.18	48.57	4.45	75.18		_				-	-13.875	_
313	51.702	58.539			66.707	10.846	42.395	50.26		76.23	-17.34	_				 		
314	54.880	63.434	7.123	60.734	72.374	_	42.945				_	-						_
315	22.693	11.757			11.819		20.215	11.185		_		-	25.635	14.34	9.535		_	
316	37.022	31.516		38.894	33.837	14.641	26.335	19.875	6.925	51.7		1	35.905	28.665				
						1										1	25.54	1 20.513

Table B-2 (CONTINUED)

318 53.4 319 56. 320 59.3 321 23.4	KeI 7.533	Yei 47,768	Zel	Xc2	2 (calculat	c)			SM2 (pr	actically					nSM2 (pr	Secure Service		
317 47 318 53 319 56 320 59 321 23		_			Yc2	Zc2	Xc2	Yc2	Zc2	L=c2	a*c2	b*c2	Xc	Ye	Zc	L*c	a*c	b*c
318 53.4 319 56.4 320 59.4 321 23.4		4/-/001	19.086	47.917	48.746	20.389	34.17	35.485	10.115	66.125	-0.15	42.235	41.56	39.79	17.915	69.32	9.94	26.885
319 56. 320 59. 321 23.		57.513	21.719	53.370	57.342	23.226	43.435	50.885	12.7	76.605	-15.885	52.48	47.72	48.17	20.68	74.925	3.565	30.665
320 59. 321 23.	5.988	62.477	23.223	56.320	61.628	24.783	45.95	52.855	13.09	77.79	-13.715	53.425	51.28	53.31	21.635	78.055	-0.305	34.14
	9.545	66.580	24.491	58.631	65.039	25,994	46,73	53.525	14.105	78.185	-13.22	51.385	54,125	56.555	22	79.925	-1.01	36.66
322 39.	3.616	12.392	11.438	26.526	13.622	11.865	20.17	11.18	6.935	39.88	55.95	8.73	26.18	14.525	10.955	44.975	60.915	3.12
	9.063	32.942	23.185	40.706	35.006	24.717	27.06	20.94	13.125	52.885	30.445	10.385	35.445	28.235	19.25	60.1	30.16	8.075
323 50.	0.911	49.877	33.045	49.767	48.875	33.187	39.21	39.765	20.52	69.295	2.77	21.29	43.27	40.255	27.91	69.65	13.62	8.315
324 57.	7.457	59.626	38.541	54.790	56.218	37.373	48.225	52.43	28.57	77.54	-6.29	20.815	50.175	49.565	32.965	75.8	6.475	10.96
325 60.	0.986	64.635	41.143	57.626	59.934	39.270	53.085	56.355	33.945	79.815	-3.205	16.445	53.75	54.185	34.105	78.565	3.885	14.07
326 64.	1.241	69.085	43.084	60.239	63.148	40.578	53.615	55.86	37.45	79.53	-0.615	10.995	59.43	60.725	36.75	82.225	2.11	16.625
327 19.	9.364	10.037	3.393	19.578	8.831	-0.242	16.26	9.275	1.595	36.5	49.955	36.87	23.445	12.895	4.32	42.605	59.47	26.215
328 30.	0.025	25.852	4.358	31.745	27.969	3.607	21.585	17.01	2.495	48.275	26.55	48.495	29.895	25.27	3.2	57.325	22.325	58.71
329 37.	7.758	39.372	4.554	40.628	43.611	5.721	29.265	30.975	3.66	62.49	-2.295	64.54	40.3	40.065	4.19	69.51	5.255	73.38
330 42.	2.634	48.033	5.212	46.515	53.537	7.621	33.595	41.915	4.545	70.81	-22.35	73.585	50.795	55.515	4.885	79.33	-7.1	86.42
331 45.	5.501	52.625	5.556	50.035	58.930	8.652	35,495	45.42	4.685	73.17	-26.005	76.86	56.835	65.645	5.37	84.81	-15.305	93.37
332 48.	8.486	57.303	5.953	53.727	64.441	9.753	37.98	48.16	4.72	74.925	-25.385	79.71	56.585	65.34	5.365	84.66	-15.24	93.11
333 20.	0.731	11.170	7.507	21.860	11.052	5.718	16.4	9.36	3.06	36,665	50.015	24.13	24.56	13.25	8.135	43.14	62.045	9.57
334 33.	3.468	29.105	14.677	34.539	30.431	14.989	22.775	18.01	7.39	49.51	26,715	23.44	31.535	26.43	14.875	58.44	23.61	15.355
335 42.	2.703	43.543	19.223	42.785	43.732	19.878	29.34	30.7	9.815	62.255	-1.015	36.555	38.38	37.335	18.71	67.525	7.785	22.03
336 48.	8.459	52.764	21.677	48.224	52.098	22.529	36.805	43	12.65	71.555	-14.68	43.91	44.2	45.63	20.825	73.305	0.585	27.575
337 51.	1.283	57.249	23.333	50.932	56.033	24.203	39.785	46.64	13.58	73.96	-15.52	45.49	49.04	51.555	21.875	77.01	-1.81	31.88
338 53.	3.823	61.535	24.001	53.642	60.054	25.032	39.515	46.12	13,45	73,625	-14.91	45.245	52.355	55.59	22.865	79.37	-3.19	34.045
339 21.	1.571	11.796	11.988	23.572	12.695	12.137	17.33	9.805	7.06	37.485	51.635	4,07	24.75	13.3	9.39	43,205	62.54	5.17
340 35	5.448	30.186	22.885	36.556	31.612	23.897	24.01	18.985	13.11	50.67	27.21	6.625	32.22	26.375	19.055	58.395	26.305	5.565
	5.959	45.678	31.795	45.176	44.831	31.709	33.135	33.34	19	-	3.52	16.08	41.645	39.54	28.805	69.14	10.96	5.96
	2.397	55.298	36.220	50.816	52.843	35.367	40.53	43.945	26.505	72.19		15.06	47.765	48.04	33.2	74.85	4.035	8.975
	5.944	60.354	40.314	54.254	57.218	38.895	45	48.525	32.03	75.155		11.26	51.925	53.535	35.6	78.19	0.805	11.265
	8.765	64.573	41.925	56.993	60.765	40.192	46.495	48.89	35.705	75.385		6.27	58.565	61.03	38.505	82.385	-0.665	14.505
	7.516	11.389	5.948	17.895	11.435	4.250	11.365	7.255	1.685	32.39		28.76	19.97	12.705	5.43 6.545	42.31	44.51 12.92	19.77
	4.986	23.046	8.083	25.815	23.838	7.790	13.99	12.81	2.615	42.48 54.985		37.565 52.645	26.275 33.91	36.565	5.28		-4.6	38.545 63.005
	9,202	31.844	4.339	31.326	34.284	4:793	19.44	22.915	3.495	63.96		12391005	35.91		4.425	00.7.12	-14.92	
	3.170	39.369	·	36.632 39.646	43.313	6.339	23.51		4.21				38.23		4.423		-20.36	
	5.289	43.360			48.255	6.939			4.41		-		43.22	$\overline{}$	5.2	-	-25.565	83.695
	7.704	47.616 10.183		43.056 17.680	53.553	7.371	10.595		3.265				21.065		9.75		47.005	3.505
-	7.528	25.095		28.091	25.728	15.431	14.655		7.56				28.17		15.815		16.765	10.665
	4.560	36.721	├	35.090	36.967	19.816	- 50						36.46	_	_		0	
	9.368	44.853			45.202	22.371	25.205			-			-		22.24	-	-7.47	
	1.640	48.863				23.216			12.3				-			-		
	14.254	53.173	-		53.985	24.920	-	-			-		41.555	-			-13.16	
	8.161	10.814				13.172	11.95						21.13		-			-
	9.293	25.964	10.13		26.767	23.141	17.76				-							
-	37.913	38.889	-		39.214	31.104			Water IV				Total Control	100000				
-	13.403	47.577			48.296	36.182	29.24			_	_		_			-	-	
	16.164	52.089			53.388	38.862	-	_			_	_					-	
	8.848	56.503				41.050					_		_					
	13.477	11.470			-	8.022		_						_			 	+
	17.244	18.174	 	_		9.494		_		_	+		16.25		_	+		
_	19.834	24.870				9.516			+			_	21.95	5 27.705	13.975	5 59.61	-20.63	19.725
	21.402	29.737	 			8.646					+	_	25.04	36.845	16.39	67.155	-39.44	26.69
	21.777	32.023	_	_		7.306			_		3 -63.73	5 44.76	29.16	5 41.1	19.95	70.245	-36.12	2 24.105
	21.922	34.257		_	-	5.413			_	\$ 51.:	5 -64.69	43.435	32.83	5 44.705	22.24	4 72.695	-33.10	5 23.73
	14.191	11.586	-			11.305		_	5.88	5 24.64	4 15.68	5 -12.87	7 13.5	8 11.61	10.12	5 40.585	17.0	5 -1.825

-	-014	OFFICE AND THE	. 1	m		. 1			0011				_		-CV47 (-	an and an th	_	_
_		1(calcula			12 (calcula		92.0	Yc2	SM2 (pr	L*c2	a*c2	b*c2	Xc	Yc	nSM2 (p	L*c	a*c	b*c
No.	Xcl	Yei	Zcl	Xc2	Ye2	Zc2	Xc2		Zc2			-		_	-			
370	19.012	19.312	15.466	19.672	19.954	15.606	6.77	8.11	7.72	34,21	-10.155	-4.225	17.02	17.42	13.645	48.775	1.23	1.905
371	23.381	27,553	18.831	25.756	30.092	19.901	8.615	13.53	9.39	43.55	-33.115	5.74	21.835	25.68	18.725	57.725	-13.05	5.12
372	26.331	33.678	20.786	31.283	39.095	23,168	11.045	20.245	11.22	52.11	-50.765	14.58	24.645	30.7	21.565	62.25	-19.97	7.035
373	27.618	36.773	21.777	34.561	44.482	25.181	11.115	21.335	11.665	53.32	-55.465	15.31	23.635	30.755	20.925	62.295	-24.59	8.38
374	29.195	40.195	22.818	38.434	50.520	27.376	11.39	22.3	12.015	54.34	-57.88	16.055	25.96	34.72	23.36	65.52	-28.56	9.23
375	14.103	10.776	14.265	14.391	11.107	14.369	6.475	4.55	9.035	25.425	24.66	-24.27	15.26	12.265	14.23	41.62		-11.955
376	20,625	19.992	21.774	21,210	20.665	22,436	8.97	9.595	13.625	37.105	-2.32	-18.185	17.335	17.395	18.755	48,755	3.065	-10.41
377	26.095	29.046	28.771	29.074	32.636	30.858	10.915	14.845	16.245	45.42	-22.855	-10.47	23.9	26.885	26.61	58.87	-8.625	-8.08
378	30.000	35.852	33.891	36.656	43.829	37.989	13.935	21.385	21.7	53.365	-36.59	-8.56	25.5	30.86	28.985	62.385	-16.965	-5.97
379	32.147	39.647	36.032	41.150	50.326	41.297	14.52	23.065	22.73	55.135	-40.615	-7.5	26.59	33.2	29.305	64.32	-20.75	-3.16
380	33.713	43.290	38.317	46.566	58.644	45.695	14.375	23.51	24.025	55.595	-43.48	-9.135	30.3	38.87	32.56	68.65	-24.97	-0.76
381	9.092	9.568	8.630	9.227	9.524	8.299	2.52	3.295	2.205	21.195	-11.905	4.325	9.225	5.15	9.64	27.15	0.655	-1.615
382	10.052	13.160	9.089	11.070	14.355	9.212	3.04	5.73	2.285	28.715	-34.845	16.595		13.315		43.23	-26.655	4.355
383	7.542	15.189	7.760	12.849	23.485	10.081	4.21	10.415	3.005	38.585	-59.215	27.815	6.52	15.415	9.135	46.19	-64.41	24.475
384	9.519	19.589	8.823	18.974	33.830	13.317	5.4	14.31	4.02	44.67	-70.24	31.55	9.55			50.48	-64.78	18.59
385	10.957	22.508	10.149	23.485	41.044	16.439	6.04	15.87	5.015	46.8	-72.12	29.635		20.05	11,26	51.895	-61.285 -58.355	14.08
386	12.257	25.159	11.176	27.726	47.730	19.113	6.535	16.615	5.965	47.775	-71.025	26.64	10.875	21.58		53.58		11.37
387	9.470	9.473	11.261	9.169	8.974	10.941	3.385	3.47	6.185	21.825	0.72	-19.135	ALA.	9.27	10.695	36.485	0.305	-10.725
388	11.689	14.050	14.132	12.339	14.938	14.662	4.245	6.24	7.49	30.01	-21.81	-10.56	10.66	15.065	15.21	45.715	-26.075	-7.42
389	11.676	18.056	16.338	17.006	26.098	20.288	5.655	11.35	9.56	40.17	-47.79	-0.68	9.26	18.725	15.6	50.365	-57.115	-0.365
390	11.317	20.744	17.997	23,720	39.556	26.979	7.36	15.79	11.425	46.695	-58.14	4.62	9.79	19.4	16.81	51.155	-56.2	-1.905
391	12.689	23,450	19.552	28.677	47.223	30.758	7.92	16.76	12.355	47.955	-58.355	4.06	10.815	20.62	17.835	52.53	-54.235	-1.875
392	14.053	26.142	20.939	33.688	54.882	34.307	8.33	17.68	13.2	49.1	-59.565	3.67	11.885	21.765	19.045	53.77	-51.95	-2.38
393	9.767	9.038	14,28,6	8.971	7.910	14.245	4.735	3.775	10.545	22,92	15.295	-33.65	9.835	9.83	15.19	37.52	2.8	-21.475
394	12.625	14.048	19.870	13.108	14,902	21.487	6.005	7,24	13.39	32.345	-10.185	-25.755	12.415	16.965	23.365	48.22	-24.355	-20.615
395	13.673	18.515	25.188	20.120	28.401	31.961	7.51	11.975	16.98	41.18	-32.945	-19.495	11.28	19.84	24.05 27.965	51.655	-47.065	-15.975
396 397	12.324	20.151	28.565	29.288	46.290	44.057 50.540	9.07	16.135	19,345 21,095	47.15	-44.815 -47.74	-14.465	13.605	22.22	30.43	54.26	-42.555 -40.12	-18.315 -19.25
397	15.908	23.359	31.400	36.702 44.424	57.439 68.925	56.826	9.84	17.825 18.73	21.565	50.37	-49.29		17.49	26.005	34.87	58.035	-36.14	-19.23
398					11 12 13		15.93	9.22	6.255	66.60	48.485	5.69	24.57	13.19	9.915	43.045	62.46	3.12
400	33.416	11.705	12.127	23.144	12.588	12.273		16.26		36.4 47.32	31.895	6.53	33.57	26.835	21.525	58.81	29.26	1.195
		27.339	32.724	34.859	29.036 42.220	22.907	21.85	25.83	11.15				- All 24					
401	44.318	42.313				32.964 37.982	28.25		18.365 25.095		13.67 -1.24		42.32 48.165	47.13	31.58 37.245	74.26	7.645	0.465
	50.612	51.360		49.428 52.371	49.875	171 - 111	36.82	38.58		68.45			700	al se			4.85	4.735
403	53.880	55.869			53.696	40.372 42.547	41.52 45.22	43.95 48.04	29.955 34.86	72.2 74.85	-2.575 -3.12		50.575	50.585	38.12 41.505		2.825	5.165
405	50.00				West City		10000				49.165		24.63		9.98		61.86	
406	33.981	11.826				13.859	15.805	9.05	7.485	36.08	33.43	-1.36	33.79	_	23.61	58.94	29.5	-2.6
		27.613	-		29.514	25,627	22.54	16.56	14.17	47.7	11-10		1	10.00				
407	44.581 51.407	42.186			42.400	35.972	31.62	28.65 42.285	23.63	60.475	-0.765	0.005 2.925	42.78 48.675				15.365 8.17	-4.83 -2.785
408	55.146	51.671	42.766 46.652		50.720	41.886	40.525 46.98	49.37	32.88 38.865	71.065 75.68	-1.74		51.745	1 - 10	25/11/19	-		
410	57.896	60.696			58.830	45.111	50.08		44.935	77.71	-2.005		57.065		2.00		_	
411				100		- 101	16.84	9.64					- 5 - 5					250.25
412	34.388	11.893 27.883				15,513			8.3	37.185 49.68	34.95		32.695			1	30.69	
Estima		70073730	26.881	36.111	29.970	28.672	24.82	18.15	19.68	-			113.77		36.99			
413	45.618	42.915	-			39.703			27.08		13.47			_	_	_		1
	52.587	52.507	100	-		45.748	43.24	44.13	36.64		2.065							
415	56.129	57.364				48.924		50.37	43.56		-0.385			-		-		_
416	59.249	61.728			100000000000000000000000000000000000000	51.442			47.3	77.88	-0.94			-	-	1		
417	19.670	11.238				12.114			6.275	_	43.28	-	21.525	-	-	-	-	
418	30.851	25.618		0.00		22.975			11.605	200								-
419	40.905	39.342				32.048			16.99				_	-	_	_	-	_
420	46.934	48.120			47.407	37.261	32.365	35.03	24.015	12.00								
421	49.756	52.302	_	_		39.562	_	38.3	27.035		_	_			-	_		-
422	53.268	57.031	43.848	53.020	55.786	42.681	38.745	41.74	32.44	70.69	-4.705	2.93	51.135	53.16	40.86	77.96	-0.32	3.76

Table B-2 (CONTINUED)

						× 1				HNUE					01.40.4			
		1(calcula			12 (calcula	_	7.5 8	- I	SM2 (pr			_			nSM2 (p			
No.	Xc1	Ycl	Zc1.	Xc2	Yc2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Yc	Zc	L*c	a*c	b*c
423	19.876	11.340	13.451	21.485	12.316	13.887	13.435	7.935	7.465	33.85	44.31	-3.85	21.685	12.18	10.26	41.5	56.215	-0.7
424	31.365	25.856	24.219	32.585	27.352	25.393	19.55	14.62	15.33	45.115	30.32	-8.765	32.925	26.675	24.155	58.665	27.605	-4.065
425	41.287	39.576	35.086	41.454	40.005	35.363	26.53	24.95	22.415	57.025	10.455	-3.64	42.22	39.145	36.67	68.85	13.93	-6.34
426	47.746	48.454	41.797	47.767	48.405	41.322	35.185	36.99	30.615	67.27	-1.625	-0.155	45.825	44.89	40.315	72.81	7.36	-4.42
42.7	50.818	52.473	44.936	50.894	52.286	44.092	39.81	42.08	35.01	70.925	-2.365	-0.43	48.505	49.26	42.54	75.61	2.785	-2.44
428	54.414	57.613	48.212	54.774	57.303	46.941	44.13	46.585	41.085	73.925	-2.265	~3.5	52.275	54.6	45.235	78.795	-0.945	-0.25
429	20.039	11.402	14.570	21.835	12.560	15.434	14.62	8.52	8.48	35.045	46.585	-5.68	21.365	11.83	9.605	40.94	57.095	0.53
430	31.829	26.038	26.173	33.215	27.742	27.640	22.22	16.605	19.135	47.76	31.715	-12.965	32.45	25.78	25.735	57.83	29.55	-8.35
431	42.126	39.931	37.977	42.556	40.785	38.407	28.95	26.76	26.04	58.75	12.585	-7.3	38.16	34.655	36.28	65.48	15.885	-11.615
432	48.656	48.836	45.497	49.190	49.590	45.109	37.28	38.73	34.485	68.555	-0.195	-3.765	44.06	42.67	41.945	71.33	8.68	-9.065
433	52,303	53.671	49.459	53.127	54.545	48.621	40.975	43.355	39.24	71.79	-2.495	-4.76	48.7	49.465	45.8	75.735	2.755	-6.2
434	55.311	58.262	52.631	56.860	59.563	51.523	44,475	46.79	43.6	74.055	-1.84	-6.44	54.66	56.425	51.4	79.85	0.645	-5.565
435	18.625	10.939	12.523	19.815	11,720	12.519	11.19	6.73	6.235	31.19	40.48	-3.19	21.93	13.33	11.51	43.26	49.8	-1.56
436	28.916	24.819	22.205	29.685	25.799	22.846	16.23	12.74	11.605	42.36	24,525	-3.4	30.085	24.78	22.23	56.855	25.07	-3.565
437	37.641	36.505	31,215	37.896	36.903	31.506	21.185	19.985	17.37	51.82	9.375	-2.05	39.93	37.405	33.89	67.575	. 12.44	-4.57
										62.09	-5.23	2.135	45.91	46.185	39.765	73.65	3.96	
438	43.164	44.690	37.224	43.663	45.008	37.175	28.065	30.505	23.985									-2.235
439	45.696	48.601	40.271	46.732	49.252	40.179	29.965	33.035	27.015	64.19	-6.975	0.39	44.515	46.2	38.685	73.67	-0.085	-0.765
440	48.672	52.835	42.837	50.121	53.603	42.619	32.665	36.36	31.295	66.795	-8.285	-2.035	45.9	48.17	39.78	74.92	-1.535	-0.065
441	18.480	10.925	13.695	19.756	11.842	14.064	11.735	7.035	7.225	31.885	41.38	-6.27	21.75	13.36	11.785	43.3	48.76	-2.31
442	28.789	24.035	23.752	29.770	25.255	24.716	17.235	13.055	14.55	42.85	28	-10.7	30.215	24.815	24.39	56.89	25.41	~7.56
443	38.067	36.750	34.682	38.654	37.614	35.162	24.255	22.435	22.97	54.485	11.8	-9.08	36.68	34.69	35.015	65.51	10.965	-9.78
444	43.729	45.041	41.045	44.886	46.260	41.206	31.36	33.25	30.535	64.36	-2.525	-5.05	40.95	41.07	39.36	70.22	4.19	-7.62
445	46.587	49.177	43.953	48.263	50.738	44.007	34.465	37.375	34.555	67.56	-5.315	-5.585	42.605	43.865	40.825	72.135	0.925	-6.245
446	49.672	53.333	47.278	51.999	55.387	47.225	37.345	40.455	39.195	69.795	-5.33	-8.15	47.865	50.89	44.84	76.605	~3.295	-3.555
447	18.637	10.976	14.784	20.057	12.021	15.527	12.37	7.415	8.745	32.725	42.145	-10.65	21.835	13.47	11.855	43.455	48.455	-2.235
448	29.272	24.210	25.886	30.417	25.633	27.165	19.28	14.615	19.215	45.105	29.01	-17.705	29.13	23.315	24.85	55.395	27.755	-10.975
449	38.729	36.983	37.546	39.639	38.342	38.256	25.42	23.685	25.21	55.77	11.24	-10.97	33.855	30.8	33.925	62.34	15.065	-13.665
450	44.633	45.409	44.785	46.405	47.573	45.179	33.15	34.975	34.575	65.735	-2.015	-8.755	39.055	38.745	39.27	68.56	5.445	-10.365
451	47.902	49.949	48.788	50.561	52.969	49,122	35.27	37.72	37.71	67.815	-3.675	-9.56	43.93	45.11	44.505	72.96	1.265	-9.435
452	51.193	54.640	52.169	54.857	58.527	52.440	38.455	41.92	42.335	70.82	-6.175	-10.44	49.8	52.54	49.985	77.6	-2.295	-7.855
453	15.451	9.944	12.927	16.146	10.666	12.947	7.705	4.995	6.615	26.72	31.235	-12.595	21.225	16.025	16.355	47	30.34	-8
454	23.789	20.973	21.488	24.377	21.691	22.032	10.425	9.135	11.385	36.24	13.02	-13.305	25.365	21.775	22.94	53.775	19.57	-10.23
455	30.787	30.876	29.711	31.867	32.151	30.492	13.71	14.53	15.625	44.98	-1.915	-9.72	30.99	30.095	30.395	61.725	7.435	-9.36
456	35.398	37.883	35.289	37.839	40.561	36.544	16.835	20.2	20.48	52.065	-13.92	-8.345	35.905	37.46	36.77	67.615	-0.725	-8.605
457	37.875	41.657	37.945	41.318	45.327	39.530	19.705	24.575	23.975	56.665	-18.675	-7.19	37.545	40.37	38.47	69.725	-4.415	-7.29
458	40.708	45,731	41.097	45.385	50.627	43.069	22.235	27.515	28.235	59.45	-18.605	-9.81	37.17	41.13	37.655	70.255	-7.945	-5.25
459	15.516	9.962				14.443	7.77	4.95	-	100	32.36		21.225	16.085	16.95		29.98	-9.245
460	23.999	20.763				23.992	11.38	9.29			18.82		24.315	20.795			19.655	-12.79
461	31.746	31.410		-	100	34.087	16.34	16.45					28.565	75.0		100	7.06	
462	36.428	38.440		-	-	41.197	20.5	23.58					33.26				0.18	-13.87
				11	1				-									
463	38.987	42.453			-	44.673		26.495	-	10.79		-			-		-5.535	-
464	40.271	45.376				48.970											-8.87	-10.21:
465	15.884	10.058				15.955			-	_		_			_		_	
466	24.298	20.694		_		26.093	13.28			_		 			-	-		
467	32.242	31.491	36.029	34.067	33.886	37.581	18.06	17.815	24.74	49.27	4.755	-21.33	28.025	26.495	32.065	58.5	10.08	
468	37.438	38.955	43.534	41.501	44.043	45.872	22.44	25.21	30.98	57.275	-8.31	-17.955	31.115	32.285	36.7	63.565	-0.07	-15.49
469	39.877	42.579	46.851	45.463	49.441	49.714	24.115	27.845	33.795	59.745	-11.485	-17.945	34.535	37.21	41.37	67.425	-4.525	-15.05
470	42.403	46.767	50.183	50.314	56.282	53.921	25.15	29.885	37.005	61.56	-14.82	-19.38	40.855	44.95	47.98	72.85	-7.455	-13.75
471	11.341	8.343	12.957	11.325	8.342	12.897	4.495	3.215	6.995	20.885	20.965	-24.275	13.315	10.475	14.23	7 38.685	22.74	-17.14
472	17.653	16.088	25.568	18.058	16.554	27.398	6.16	6.31	11.21	30.175	0.84	-23.215	15.325	15.44	19.5	7 46.225	2.64	-16.52
473	24.590	28.197	32.221	29.663	34.816	36.305	7.55	9.505	14.795	36.945	-14.27	-21.5	18.78	21.58	26.30	53.565	-10.08	-16.68
474	25.985	30.678	35.232	33.383	40.374	40.861	9.555	14.39	18.09	44.79	-30.67	-15.795	21.74	27.01	30.45	58.98	-18.875	-14.1
475	27.237	33.224	37.809	37.540	46.750	45.267	10.64	16.71	19.96	47.895	-35.58	-14.465	20.9	26.83	29.19	58.815	-22.145	-12.4

Table B-2 (CONTINUED)

	CM	1(calcula	. (44	CA	12 (calculat	· / /		Die D Z	-	TINUE					nSM2 (pr	actical)		
No.	Xel	Yel	Zc1	Xe2	Ye2	Ze2	Xc2	Yc2	SM2 (pr	L*c2	a*c2	b*c2	Xc	Yc T	Zc Zc	L=c	a*c	b*c
				1,344,5	8.080	13.976		19.54							30.275	60.91		-10.585
476	11.330	8.277	13.882	11.204		-	11.735	_	22.1	51.31	-42.37	-12.88	21.58	29.15		38.875	23.325	-20.38
477	17.093	15.945	21.886	17.316	16.160	22.872	4.89	3.35	8.74	21.4	23.835	-30.14	13.54	10.59	15.68		-	-19.165
478	21.582	22.894	29.738	24.184	26.404	32.665	6.945	6.315	14.36	30.195	8.92	-32.03	15.06	15.31	20.705	46.055	-	
479	24.938	28.020	35.999	31.061	36.271	41.327	8.505	10.09	17.605	38	-10.23	-26.41		21.435	27.7	53.42	1.0100	=19.315
480	26.643	30.982	39.522	35.814	43.327	46.816	11.11	15.16	22.475	45.85	-23.285	-23.015	20.215	25.75	32.61	57.79	-21.065	-19.55
481	28.210	33.563	42.557	40.302	49.812	51.642	11.905	17.4	24.35	48.76	-30.165	-21.515	21.005	28.09	33.63	59.965		-17.325
482	11.533	8.290	14.843	11.359	7.968	15.135	13.61	20.72	27.97	52.64	-35.525	-21.125	23.565	32.69	38.45	63.905	-31.84	-17.295
483	17.233	15.943	23.669	17.512	16.242	25.055	5.85	3.725	11.495	22.745	29.505	-36.88	13.095	10.35	16.32	38.465	22.215	-22.62
484	22.302	22.958	33.222	25.425	27.274	37.030	8.21	7.155	18.64	32.155	12.41	-38.795	14.605	14.66	21.11	45.15	2.885	-21.53
485_	25.530	28.115	39.786	32.913	38.291	46.470	10.39	11.495	22.95	40.4	-5.185	-33.325	18.035	21.04	30.22	52.985	-11.45	-24.165
486	25.530	28.115	39.786	32.913	38.291	46.470	12.425	16.285	27.385	47.345	-20.475	-29,275	20.69	26.155	34.52	58.18	-20.42	-21.69
487	27.136	30.881	43.184	37.683	45.380	51.880	13.26	18.595	29.095	50.215	-27.295	-27.15	23.56	32.28	40.305	63.565	-30.415	-20.325
488	29.105	33.879	46.721	42.977	52.860	57.351	14.195	21.14	30.905	53.1	-33.84	-25.045	25.985	34.01	45.415	64.97	-26.04	-24.315
489	8.157	7.724	13.393	6.984	6.109	13.201	3.9	2.92	9.39	19.705	17.69	-35.36	10.23	9.92	15.855	37.695	5.26	-22.845
490	10.740	11.574	18.469	10.371	11.256	19.679	4.875	5.245	12.09	27.43	-2.335	-30.56	13.395	17.785	26.705	49.235	-22.21	-24.85
491	11.371	13.766	27.927	15.878	21.402	35.631	6.04	7.935	15.605	33.85	-16.32	-28.865	12.105	20.375	26.62	52.26	-43.835	-19.49
492	10.057	15.241	27.763	21.008	33.082	40.433	7.44	11.65	18.37	40.66	-31.39	-23.54	13.39	21.41	30.205	53.4	-40.2	-23.425
493	11.237	17.347	29.939	25.900	40.574	45.196	8.2	13.52	19.52	43.54	-36.765	-21.055	14.7	22.675	32.98	54.735	-37.765	-25.375
494	12.547	19.575	32.698	31.691	49.277	51.127	9.1	15.465	21.535	46.265	-40.765	-20.455	16.905	24.64	37.85	56.72	-33.605	-28.875
495	7.972	7.195	13.756	6.642	5.353	13.615	4.33	3.025	11.145	20.14	21.935	-40.31	10.195	9.77	16.945	37.42	6.175	-25.895
496	10.528	11.173	19.987	10.102	10.854	21.746	5.63	5.54	15.27	28.225	3.365	-37.73	13.165	17.47	28.41	48.845	-22.045	-28.38
497	11.885	14.435	26.830	15.882	21.122	33.466	7.06	8.48	19.08	34.965	-10.535	-34.895	13.315	20.88	32.005	52.815	-38.19	-27,22
498	10.146	14.689	30.790	22.413	34.740	45.610	8.955	12.72	22.975		-25.055	-30.03	16.11	23	39.53	55.075	-30.975	-33.96
499	11.499	16.859	_	28.619	44.073	52.641	9.795	14.775	24.8	45.325		-28.25	17.44	24.155	42,425	56.24	-28.62	
500	12.872	19.070	37.401	35.124	53.783	59.531	10.99	16.76	27.745	47.955		-28.82	18.895	25.885	44.04	57.925		
			14.597		5.018		4.835	3.09	12.53	20.395		-43.96	9.63	9.355		36.65	-	
501	8.196	7.001		6.788		14.629	223				2000	-44.88	12.075	15.995		46.96		\vdash
502	11.004	11.175		10.560	10.802	23.715	6.99	6.14	19.55			110000000	14.07	21.03	_	52.985		\vdash
503	11.791	13.882	29.172	16.458	21.734	37.253	8.385	9.305	23.49	-								\vdash
504	10.211	14.049	33.958	24.025	36.691	51.181	9.9	13.045	26.57	42.83	-	7	16.97	23.655	_	55.74	_	-
505	11.716	16.459	37.587	31.111	47,360	58.859	11.075	15.855	28.665	46.78			18.055	24.875	_		-	_
506	13.160	18.598	41.569	38.499	58.304	67.181	11.79	17.475	30.39	48.85	-31.345	-31.565	19.89	27.03				-
507	19.205	10.043	3.701	19.423	8.922	0.231	16.375	9.29	1.545	36.54	50.405	37.46	23.16	12.65	4.055	42.23	59.82	
508	28.169	23.063	2.277	29.906	25.057	0.834	22.835	16.52	2.415	47.645	35.015	48.1	30.555	24.455	3.075	56.54	28.22	58.27
509	36.504	36.255	4.165	39.217	40.312	4.879	27.28	25.225	3.125	57.29	12.32	59.215	37.045	34.87	3.92	65.64	11.565	68.32
510	41.447	44.463	4.958	44.920	49.714	6.891	35.27	39.655	4.055	69.225	-9.755	73.685	44.995	46.245	4.505	73.1	7 1.18	78.775
511	43.362	47.944	5.252	47.221	53.666	7.698	37.445	44.85	4.345	72.795	-17.945	78.14	49.61	53.38	4.755	78.09	-4.93	84.985
512	45.812	51.953	5.588	50.189	58.329	8.648	38.765	47.505	4.555	74.51	-21.095	79.905	55.715	63.765	5.22	83.84	-13.9	92.465
513	19.921	10.778	6.529	20.690	10.398	4.304	15.77	9	1.995	35.98	49.39	31.78	24.005	12.89	7.64	42.59	61.9	10.53
514	30.852	25.801	10.701	32.161	27.275	10.546	20.44	15.295	4.11	46.035	30.74	33.355	30.005	24.29	12.035	56.3	26.8	3 19.505
515	39.590	38.850	14.303	40.440	40.161	15.047	26.33	24.46	5.795	56.54	11.695	42.565	35.23	32.64:	5 15.51	63.8	7 13.17	5 23.13
516	44.926	47.264	15.857	45.635	48.343	17.115	33.61	37.05	7.415	67.315	-7.225	54.055	40.805	40.8	3 17.93	70.0	3 4.55	5 28.07
517	47.585	51.852	 	-						+	 	5 58.47	43.38	44.82	2 18.655	72.7	7 0.48	5 31.23
518	50.015	55.562	 	+	 	19,904	39.34	_		_	+	+			5 19.385	75.76	5 -0.40	5 34.825
519	20.856		 	+			16.88	_		+	-	+			+	+	+	+
520	32.571	26.961	+			18.209		1			+	+		_	+	+		+
			+	_		_			_	+		+	 			+	+	+
521	42.686		_	 			_			+	+	+		_	-	+	+	+
522	48.698	50.305		47.511	 	 	_		_	+	_	+		_		+	+	+
523	51.632		+	+					 	+	+	+		_	+	+	+	+
524	54.793	58.932	34.743	52.827	55.766	33.945	43.73	48.72	21.94	5 75.27	5 -9.27	5 28.74	+	_	+	+	+	+
525	17.594	9.523	3.883	17.562	8.533	0.740	13.16	7.705	1.49	33.3	6 44.66	5 32.58	21.065	11.65	+	+	+	+
526	25.455	21.170	2.708	26.674	22.411	1.384	18.61	14.13	2.2	3 44.41	5 28.55	5 44.14	27.055	22.4	2 2.9	9 54.4	6 23.61	5 55.335
527	32.916	33.080	4.150	35.066	36.050	4.495	23.34	22.085	2.9	54.1	9.3	7 54.85	32.835	32.0	7 3.7	8 63.38	5 6.93	65.29
528	36.962	40.304	4.680	39.877	44.305	5.980	28.79	33.105	3.70	64.24	5 -11.69	66.92	40.565	42.0	3 4.30	5 70.8	0.14	75.0

	SM	1(calcula	(a) T	N2	2 (calculat	(2)	1.8	oie b 2	SM2 (pr	actical)	.,				mSM2 (pr	actical)	_	
-	Xet	Yet	Zel	Xc2	Ye2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Ye	Zc	L=c	a*c	b*c
No.	39.294	44,193	4.901	42.729	48.849	-	31.605	38.725	3.995	68.55	-19.7	72.87	43.575	47.24	4.52	74.34	-5.71	79.795
529	41,477	47.721	5.104	45.424	53.005	7.429	32.605	41.91	4,455	70.805	-25.83	74.055	48.265	54.145	4.79	78.54	-10.51	85.545
530	18.398	10.351	6.933	18.906	10.114	4,959	12.695	7.495	1.955	32.905	43.575	26,875	21.135	11.625	7.155	40.61	57.46	9.08
531	28.716	24.265	11.363	29.706	25.349	11.164	17.63	13.54	4.22	43.56	27.05	28.445	29.26	24	12.42	56.085	25.295	17.88
533	36.304	36.091	14.637	36.904	36.863	15.071	22.34	21.51	5.705	53.5	7.525	37.735	35.66	33.605	16.395	64.645	11.275	22.325
534	40.963	43.743	16.574	41,496	44.192	17.356	28.14	32.145	7,265	63.46	-10.835	48.01	40.375	40.57	18.475	69.87	3.94	26.605
535	43.885	48.062	17.555	44,432	48.366	18.560	31.385	36.845	8.31	67.16	-14.495	50.315	42.16	43.5	18.87	71.885	0.65	29.22
536	46.046	51,772	18.380	46.734	51.949	19.579	33.765	41.27	9.435	70.365	-19.85	51.825	42.845	45.23	19.02	73.03	-2.27	30.915
537	19.281	10.982	9.994	20.331	11.356	9.141	13.93	8.03	5.6	34.04	46.645	4.7	20.915	11.46	7.925	40.34	57.58	5.56
538	30.437	25.637	18.044	31.381	26.760	18.485	19.16	14.83	9.875	45,405	27.095	7.31	29.89	24.17	16.685	56.24	26.96	7.185
539	39.399	38.429	25.439	39.261	38.337	25.650	23.855	22.72	12.43	54.78	8.795	15.62	37.66	34.64	24.215	65.46	14.33	7.54
540	44,790	46.728	29.755	44.183	45.656	29.600	30.81	34.105	15.56	65.045	-7.5	25.035	43.205	42.885	28.365	71.47	5.535	10.705
541	47.738	51.135	31.927	47.003	49.561	31.589	33.82	38.11	18.09	68.1	-9.905	24.405	45.835	46.89	30.44	74.11	1.755	11.935
542	50.387	54.915	33.960	49.563	52.889	33.435	36.275	41.22	20.635	70.325	-11.155	22.83	47.89	49.375	30.89	75.675	0.78	13.925
543	15.877	9.030	4.258	15.805	8.391	1.678	10.795	6.585	1.485	30.845	39.075	28,395	20.48	12.52	4.73	42.03	48.185	22,935
544	31.717	24.324	1.153	34.805	27.895	-0.691	14.725	11.925	2.26	41.095	100000000000000000000000000000000000000	38.16	25.96	22.385	3.37	54.43	19.28	52.56
545	29.066	29.880	4.182	30.846	32.029	4.325	18.4	18.835	2.89	50.495	1.24	49.2	32.575	32.51	3.77	63.755	4.45	66.005
546	32.506	36.187	4.479	35.099	39.340	5.349	22.535	27.845	3.66	59.745	10.000	59.815	37.455	40.59	4.315	69.875	-5.365	73.24
547	34.758	39.988	4.596	37.934	43.838	5.921	25.265	32.82	3.895	64.01	-24.935	65.665	38.185	42.67	4.52	71.325	-9.24	74.61
548	37.040	43.559	4.717	40,775	48.082	6.487	27.26	36.385	4.095	66.815	-28.8	69.285	40.52	46.78	4.585	74.04	-13.615	78.91
549	17.008	9.956	7.201	17.398	9.923	5.492	10.83	6.62	1.925	30.92	38.965	23.725	21.415	12.905	8,595	42.62	50.125	6.945
550	26.163	22.669	11.877	26.908	23,459	11.680	14.595	11.955	4.245	41.145	20.165	24.14	27.56	23.195	13.355	55.265	22.16	13.885
551	32.932	33.245	14.920	33.489	33.780	15.175	18.585	18.63	5.48	50.25	3.25	33.245	34.15	33.015		64.17	8.19	19.205
552	37.722	40.926	16.960	38.398	41.302	17.547	23.91	28.27	7.72	60.13		40.46	39.33	41.22		70.33	-1.305	26.16
553	39.461	44.244	17.907	40.394	44.640	18.681	25.505	31.575	8.205	62.985		43.51	42.51	45.315	20.06	73.095	-3.51	28.795
554	41:399	47.692	18,198	42.706	48,243	19.237	27.36	34.8	8.655	65.595		46,35	41.43	45.19		73.005		29.085
555	17.839	10.592	10.549	18.689	11.102	9.885	11.67	6.925	5.765	31,64		-0.245		12.725		42.34	49.64	1.63
556	27.775	23.781	17.915	28,508	24,662	18.202	16.675	13.335	9.78	-	A	3.925		23.065		55.125		5.05
557	35.532	35.383	24.414	35.664	35,463	24.567	21.53	21.025	12.42		6.045			34.225		65.13	11,225	4.835
558	41.017	43,295	29.235	41.076	42.914	29.235	26.46	29.46	15.36			2000		44.435		72,5		8.235
559	43,964	47.587	31.827	44.136	47.017	31.744	28.665	33.045	17.725	64.2				45.89		73,465		9.195
560	46.379				50.585	33.258		7.000						46.485	-			
561	14.295	9.810	5.656		10.086	4.450	6.72	4.645	1.5	2.70	2000			12.04		41.28		13.96
			15			Ya Taka	8.52	8.31	2.205						-	52.08		
562	19.583		_		18.754	6.647							Clours.	29.625		15000	-	-
563	22.917		4.188		26.056	4.227	10.66	12.77	2.74						-		-13.725	
564	25.876				32.901	4.813	13.85	20.14		_	-31.185		-		-			
565	27.100			1	36.330	5.076	14.99	23.74	0.00								-16.995 -19.235	
566	28.785	_		-	40.388	5.387	16.5	26.98				-	-	100		42.42		
567	14.115	1112			9.581	6.629	2000	4.535		-								
568	21.715					12.493		100		100		100	1000	W 12		10000		
569	27.091			- 70	29.461	15.920			1							65.945	1	-
570	30.673				35.828	17.572		123		1								
571	32.432				39.399	18.734						1	1		+	67.08	+	-
572	34.255			1	43.205	19.933	-		_	909		-	-					-
573	15.017				10.400	10.534							1		-	-	-	_
574	23.077					17.994						+	-				-	-
575	29.424			30.216		24.383							-	_	+	1	+	+
576	33.742		100				-				7.0	-					1	1
577	35.729								-				1	-	+		-	-
578	37.887	7	+			33.410			1		77.008			-			-	-
579	10.944				77775	77	-	-		1			1	-	-	1	-	-
580	13.708					3275				1								
581	15.528	19.358	7.348	17.514	21.372	7.686	4.5	8.22	2.5	4 34.4	4 -36.66	5 24.28	5 15.70	20.01	5 11.0	7 51.8	5 -19.	1 14.585

Table B-2 (CONTINUED)

	SM	11(calcula	ite)	S.M	12 (calcula	te)			SM2 (pr	actical)		T			mSM2 (p	ractical)		
No.	Xcl	Yel	Zel	Xc2	Ye2	Zc2	Xc2	Yc2	Zc2	L*c2	a*c2	b*c2	Xc	Yc	Zc	L*c	a*c	b*c
582	16.623	22.846	6.062	20.112	26.768	6.827	6.11	13.375	3.22	43.325	-56.395	34.445	17.135	24.72	11.85	56.795	-32.66	20.77
583	16.765	24.368	5.002	21.336	29.731	6.018	6.84	16.225	3.61	47.265	-65.715	38.575	16.535	25.895	11.21	57.935	-40.91	24.645
584	16.787	25.768	3.177	22.572	32.790	4.334	7.365	17.685	3.79	49.105	-68.49	40.64	19.13	31.225	13.945	62.7	-47.58	25.115
585	11.512	9.783	9.381	11.869	10.190	9.039	3.435	3.07	3.375	20.32	7.99	-6.275	10.63	9.075	8.325	36.11	15.06	-3.225
586	15.226	15.657	12.584	15.784	16.151	12.575	4.48	5.545	5.095	28.235	-10.925	-2.785	12.61	12.62	10.445	42.17	3.015	-0.12
587	18.319	21.543	14.935	20.028	23.423	15.582	5.415	8.68	6.25	35.355	-29.93	3.93	14.845	17.835	14.415	49.28	-13.42	0.745
588	20.570	26.120	16.514	23.971	30.045	18.055	7.155	13.695	7.745	43.795	-47.625	12.19	16.79	21.98	16.505	54	-22.555	3.745
589	21.443	28.255	17.215	26.043	33.652	19.389	7.795	15.86	8.34	46.79	-54.44	15.09	16.75	22.915	16.665	54.975	-26.985	5.03
590	22.679	30.860	18.172	28.785	38.077	21.143	8.86	18.745	9.66	50.385	-60.52	16.6	17.27	24.375	17.05	56.435	-30.53	6.68
591	11.635	9.392	11.751	11.748	9.551	11.513	4.35	3.185	6.55	20.765	19.545	-22.55	11.825	9.525	10.925	36.92	20.065	-10.62
592	16.480	16.359	17.009	16.838	16.707	17.285	5.79	6.335	9.375	30.24	-3.485	-17.155	12.94	13.09	14.375	42.875	2.11	-10.175
593	20.545	22.879	22.309	22.340	25.068	23.653	7.005	9.595	11.315	37.105	-20.265	-11.585	16.945	19.425	20.525	51.14	-9.475	-10.005
594	23.241	27.668	26.026	27.258	32.650	28.769	8.74	14.04	13.735	44.295	-35.29	-6.07	18.115	23.235	22.4	55.28	-21.025	-6.575
595	24.892	30.418	27.762	30.294	37.070	31.273	9.62	16.575	14.44	47.72	-42.78	-2.015	18.67	25.005	23.06	57.06	-25.74	-4.775
596	25.388	32.510	29.669	33.559	42.790	34.978	10.255	18.945	16.215	50.615	-50.275	-1.43	18.61	25.41	23.265	57.465	-27.77	-4.475
597	7.565	8.192	7.191	7.670	8.077	6.803	1.84	2.455	1.59	17.71	-11.715	4.5	3.235	3.285	2.88	21.14	1.195	-1.34
598	8.281	10.870	7.530	8.881	11.453	7.380	2.32	4.295	2.07	24.62	-30.74	11.495	8.115	10.93	8.65	39.45	-19.915	1.305
599	6.081	12.028	6.631	8.878	16.555	7.555	2.835	6.495	2.455	30.63	-46.69	18.415	7.575	14.87	6.86	45.45	-50.76	18.665
600	7.399	14.968	7.432	12.530	22.992	9.588	3.78	9.77	2.935	37.425	-60.46	26.33	6.125	14.91	5.475	45.51	-65.645	25.09
601	8.372	17.022	8.277	15.338	27.727	11.489	4.385	11.555	3.355	40.495	-65.075	28.635	6.525	16.34	6.555	47.41	-69.595	23.36
602	9.189	18.798	8.814	17.865	31.943	12.956	4.965	13.585	3.77	43.64	-71.07	31.31	7.055	17.13	7.53	48.425	-68.54	21.025
603	7.981	8.264	9.425	7.674	7.738	8.962	2.515	2.68	4.55	18.705	-1.25	-16.305	7.78	7.795	9.215	33.53	2.455	-10.875
604	9.444	11.539	11.371	9.633	11.768	11.411	3.005	4.595	5.22	25.555	-21.72	-8.06	9.01	11.81	12.625	40.905	-18.415	-8.855
605	9.374	14.308	12.909	11.914	18.349	14.746	3.85	7.085	7.045	32	-35.965	-5.3	8.375	15.49	13.31	46.29	-47.07	-1.49
606	8.762	15.995	13.821	15.143	26.183	18.479	5.255	11.14	8.785	39.82	-51.015	1.43	8.285	17.585	14.255	48.99	-59.53	0.675
607	9.750	17.878	15.319	18.328	31.241	21.537	5.88	12.7	10.02	42.31	-54.505	1.47	8.39	17.77	14.615	49.215	-59.5	0.105
608	10.620	19.694	16.084	21.302	36.012	23.561	6.79	14.835	11.04	45.4	-58.175	3.57	8.67	17.985	15.285	49.47	-58.235	-1.12
609	8.157	7.993	11.412	7.429	6.970	11.002	3.795	3.25	8.375	20.99	10.515	-29.505	8.46	8.335	12.245	34.625	3.705	-18.52
610	10.084	11.578	15.426	9.882	11.444	16.026	4.385	5.44	9.78	27.94	-10.9	-22.48	10.925	14.555	19.44	44.99	-21.08	-18.355
611	10.596	14.571	19.043	13.408	19.263	22.600	4.935	7.645	10.89	33.23	-26.53	-16.96	9.055	16.635	17.86	47.785	-47.71	-10.105
612	9.584	15.720	21.604	17.924	29.278	30.206	6.15	10.925	13.055	39.46	-39.275	-12.56	10.01	18.7	20.81	50.33	-50.92	-12
613	10.811	17.972	23.752	22.574	36.470	34.810	7.1	13.195	14.635	43.055	-44.985	-10.565	10.54	19.145	21.99	50.85	-49.155	-13.45
614	11.914	20.034	25.474	26.895	43.099	38.696	7.735	14.99	15.47	45.625	-49.98	-8.245	11.625	20.385	23.81	52.255	-47.27	-14.455

TABLE : B-3 The A E of the print-out with the system model 1, the system model 2 and modified system model 2 profile

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pr	actical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
1	3.76	7.28	4.32	4.87	4.87	12.97	6.40	4.33
2	18.73	13.67	6.85	6.21	6.21	18.48	8.43	5.42
3	15.04	9.81	2.39	7.04	7.04	11.74	9.85	5.17
4	7.60	5.48	6.89	11.28	11.28	12.44	4.58	7.08
5	4.69	13.80	7.20	21.69	21.69	28.86	3.11	7.66
6	7.54	15.82	3.48	6.55	6.55	21.26	2.76	8.44
7	3.89	8.75	10.88	10.75	10.75	8.35	3.07	6.65
8	6.24	18.06	1.97	5.06	5.06	3.19	7.09	27.27
9	6.63	43.24	8.88	36.93	36.93	4.68	6.88	20.54
10	7.28	36.99	6.44	5.56	5.56	7.48	9.89	26.77
11	17.04	7.70	5.84	20.49	20.49	9.24	2.12	8.71
12	11.06	23.08	1.25	8.86	8.86	17.97	3.67	7.67
13	31.20	29.91	8.57	106.07	106.07	21.77	8.20	13.14
14	1.81	1.46	1.66	10.36	10.36	6.82	3.06	1.89
15	0.96	4.65	1.18	0.77	0.77	7.22	0.26	0.99
16	1.61	5.43	3.12	2.49	2.49	11.77	2.19	9.41
17	1.20	19.06	2.78	2.16	2.16	24.61	1.56	20.10
18	0.58	24.80	2.11	1.52	1.52	18.33	1.30	24.87
19	1.57	15.55	2.90	2.27	2.27	21.32	2.02	17.05
20	1.70	23.64	2.02	1.83	1.83	19.48	1.59	23.08
21	0.90	19.54	2.29	1.65	1.65	27.28	0.98	20.13
22	1.24	15.36	1.65	1.13	1.13	15.34	1.10	15.12
23	18.20	11.00	3.85	2.86	2.86	11.53	7.61	5.26
24	20.36	8.40	1.13	2.53	2.53	18.30	6.91	5.88
25	20.87	9.18	3.88	5.44	5.44	9.18	2.77	3.29
26	16.22	7.41	4.96	8.58	8.58	14.20	2.17	2.94
27	4.98	1.97	2.32	10.04	10.04	9.66	3.19	2.35
28	8.87	4.02	1.70	7.85	7.85	11.06	2.77	3.04
29	11.63	4.95	1.01	6.15	6.15	8.37	4.37	3.88
30	16.28	8.34	0.28	4.21	4.21	9.17	8.31	6.08
31	16.95	9.21	0.93	5.67	5.67	10.27	11.20	7.69
32	21.30	11.89	2.24	8.93	8.93	10.89	12.79	8.51
33	21.95	12.91	3.79	12.70	12.70	10.88	11.81	7.87

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
34	21.11	14.64	6.35	23.27	23.27	10.45	9.09	7.01
35	23.09	16.36	6.26	29.03	29.03	14.14	4.39	5.41
36	22.20	17.11	8.37	39.90	39.90	17.03	14.16	10.60
37	23.47	19.83	9.08	52.53	52.53	23.32	6.61	7.52
38	26.16	24.03	8.83	66.04	66.04	29.08	3.69	5.87
39	27.03	27.15	7.80	86.30	86.30	22.78	4.46	6.84
40	6.49	2.29	2.33	10.43	10.43	3.62	2.15	2.35
41	10.92	4.30	1.36	8.65	8.65	3.97	2.74	3.75
42	14.38	6.12	0.54	7.43	7.43	6.00	2.01	2.38
43	16.58	7.63	0.89	5.08	5.08	9.32	1.91	2.44
44	18.87	9.17	2.33	2.76	2.76	14.46	3.26	4.62
45	20.81	10.76	3.44	0.92	0.92	17.88	4.54	6.47
46	20.41	11.48	3.89	1.53	1.53	21.48	5.38	7.93
47	22.98	12.55	4.96	4.65	4.65	18.59	5.79	8.93
48	20.03	12.63	6.58	8.65	8.65	12.98	4.68	7.34
49	18.62	13.66	6.18	10.74	10.74	10.75	2.27	5.95
50	16.69	17.64	6.59	13.08	13.08	9.91	1.43	2.20
51	14.74	22.70	4.34	14.12	14.12	12.94	4.53	4.50
52	11.31	27.48	9.33	3.31	3.31	14.78	6.77	11.10
53	3.29	1.60	3.16	12.22	12.22	6.90	2.32	1.18
54	7.41	4.73	2.97	12.60	12.60	8.08	0.55	0.54
55	11.09	9.90	2.73	12.50	12.50	10.97	0.83	0.62
56	12.66	11.69	1.78	12.02	12.02	15.67	6.19	2.59
57	15.95	12.35	1.29	11.75	11.75	18.25	11.46	6.66
58	14.76	14.73	1.49	10.76	10.76	21.73	11.26	7.30
59	12.94	14.31	1.73	10.67	10.67	19.84	14.21	8.20
60	12.51	15.25	4.15	8.34	8.34	10.00	15.73	10.89
61	13.86	14.19	4.93	6.64	6.64	10.61	17.52	14.77
62	10.14	11.27	6.55	5.63	5.63	10.51	16.88	14.91
63	7.66	6.83	6.61	7.72	7.72	12.17	15.16	14.32
64	7.19	4.69	8.38	16.38	16.38	23.29	11.39	14.66
65	12.29	15.71	5.39	18.32	18.32	16.30	3.08	5.37
66	3.98	1.47	1.55	9.19	9.19	6.00	1.47	1.92
67	9.78	3.45	1.08	7.21	7.21	6.38	5.92	2.63

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
68	13.30	5.46	0.98	6.08	6.08	7.47	6.92	2.62
69	17.63	6.77	0.32	3.66	3.66	5.13	2.73	2.23
70	17.06	6.81	0.83	2.61	2.61	7.10	2.22	1.56
71	12.33	5.74	1.30	1.88	1.88	8.11	4.12	1.76
72	9.96	6.14	1.31	1.15	1.15	9.43	10.30	4.57
73	6.87	5.71	2.04	0.72	0.72	12.03	4.35	3.52
74	3.52	5.28	0.89	1.35	1.35	16.83	2.31	2.53
75	5.70	6.82	1.73	0.70	0.70	20.34	5.44	3.64
76	7.30	8.98	0.48	1.39	1.39	21.16	5.90	4.92
77	6.20	9.69	1.35	1.04	1.04	23.06	3.95	5.97
78	5.50	9.56	1,62	1.79	1.79	22.95	3.30	4.94
79	7.26	33.05	8.23	7.01	7.01	5.08	8.38	26.47
80	20.58	21.14	2.28	23.79	23.79	14.53	7.27	12.89
81	11.09	20.92	2.10	14.01	14.01	12.17	4.55	23.21
82	17.06	27.88	2.24	57.55	57.55	18.79	2.17	4.33
83	4.39	36.11	2.37	11.30	11.30	8.48	1.06	11.85
84	16.33	11.32	3.41	7.53	7.53	14.75	8.96	18.35
85	8.11	11.71	7.51	8.34	8.34	15.68	4.13	4.42
86	4.55	9.79	1.49	3.20	3.20	9.75	5.20	7.73
87	16.17	9.22	6.52	16.81	16.81	8.32	3.50	10.48
88	2.33	12.62	4.62	3.85	3.85	7.20	6.27	8.62
89	8.38 .	19.32	1.80	3.90	3.90	16.45	2.65	5.64
90	3.39	19.48	2.43	3.60	3.60	11.79	5.40	13.24
91	7.09	26.63	3.13	6.36	6.36	9.66	5.25	14.93
92	7.64	17.55	4.53	6.07	6.07	14.78	3.53	8.99
93	7.12 .	15.62	3.89	5.89	5.89	14.63	7.57	23.90
94	14.39	15.83	3.46	19.17	19.17	20.06	7.56	5.26
95	6.07	32.19	1.64	25.66	25.66	14.50	1.94	10.17
96	3.01	12.58	5.66	13.29	13.29	26.08	2.39	8.95
97	5.81	14.81	2.46	9.96	9.96	28.54	11.82	20.55
98	14.78	7.89	3.08	3.44	3.44	12.91	8.21	9.45
99	4.60	6.00	2.56	5.28	5.28	11.55	1.62	7.39
100	4.15	3.51	5.19	6.83	6.83	10.40	1.62	5.24
101	3.19	13.11	1.25	1.85	1.85	15.52	3.61	8.11

Table B-3 (CONTINUED)

	without	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
102	9.63	14.13	4.18	6.24	6.24	11.62	2.90	3.98
103	10.93	15.06	4.33	7.07	7.07	9.82	3.29	3.88
104	6.59	28.49	3.84	4.46	4.46	10.09	7.53	19.84
105	4.32	18.05	8.66	9.86	9.86	8.12	7.72	9.76
106	8.87	7.84	3.05	4.45	4.45	13.84	6.30	3.40
107	4.38	13.49	5.83	9.27	9.27	20.59	1.89	7.40
108	4.42	23.95	8.39	9.73	9.73	7.85	6.88	14.33
109	20.05	9.81	0.41	1.77	1.77	8.14	7.66	3.86
110	17.49	8.91	2.46	1.63	1.63	10.60	9.58	5.88
111	1.96	4.10	4.98	5.58	5.58	13.34	6.14	7.69
112	5.34	8.43	8.27	9.25	9.25	15.92	6.06	18.62
113	15.99	11.57	2.63	1.76	1.76	13.72	6.65	4.70
114	8.31	13.98	9.39	9.82	9.82	19.20	7.38	19.08
115	17.34	10.44	2.07	1.68	1.68	9.39	5.24	6.12
116	4.89	12.03	5.68	6.81	6.81	9.67	4.47	3.48
117	6.85	14.44	9.20	9.62	9.62	16.21	7.20	18.15
118	6.14	12.48	0.54	0.84	0.84	19.20	2.60	4.63
119	0.79	3.03	2.24	1.60	1.60	6.35	1.32	5.27
120	5.73	13.14	1.64	1.91	1.91	17.54	0.40	2.00
121	6.04	13.75	1.20	1.00	1.00	18.15	0.61	3.41
122	4.21	11.67	1.60	1.08	1.08	11.11	1.38	5.60
123	1.08	5.26	2.56	1.91	1.91	6.57	1.70	7.48
124	3.29	15.25	3.74	3.12	3.12	9.26	2.22	10.99
125	1.93	12.28	3.30	2.58	2.58	5.97	1.17	10.40
126	1.41	7.65	2.89	2.25	2.25	8.14	1.99	9.94
127	5.50	15.07	3.84	8.82	8.82	17.46	2.57	4.24
128	13.87	9.29	1.74	5.93	5.93	9.65	8.58	4.21
129	7.20	21.11	9.93	9.28	9.28	6.21	8.38	19.21
130	7.91	9.75	2.50	4.49	4.49	10.61	4.34	4.16
131	4.63	7.06	3.33	1.31	1.31	20.78	4.18	1.99
132	3.95	9.23	3.48	2.07	2.07	23.33	8.88	6.44
133	5.40	11.30	2.36	2.26	2.26	25.61	3.91	6.14
134	0.48	2.66	1.53	0.90	0.90	6.91	0.48	1.68
135	5.71	8.15	0.77	2.88	2.88	15.87	0.95	2.77

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pi	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
136	4.48	8.36	1.59	1.47	1.47	18.21	1.17	3.04
137	3.73	9.56	3.37	1.78	1.78	21.34	5.55	3.29
138	4.01	11.02	2.75	2.04	2.04	20.78	6.47	6.90
139	6.10	11.48	1.48	1.67	1.67	23.96	2.38	5.24
140	0.42	1.84	1.95	1.30	1.30	6.38	0.96	3.74
141	4.17	12.15	0.75	1.69	1.69	19.89	4.19	4.22
142	4.12	11.66	1.16	0.82	0.82	17.98	5.34	4.18
143	5.56	11.86	1.27	1.24	1.24	20.94	2.57	3.06
144	17.72	7.94	0.82	1.80	1.80	7.42	2.49	3.65
145	6.57	8.60	2.60	4.72	4.72	11.65	1.77	3.26
146	6.11	11.15	3.61	6.09	6.09	18.48	3.07	8.22
147	6.75	14.12	6.85	8.26	8.26	14.65	0.52	2.67
148	5.79	15.25	8.20	8.30	8.30	7.15	5.86	9.32
149	23.92	8.97	2.97	5.21	5.21	8.20	4.39	3.17
150	14.97	7.37	3.11	3.26	3.26	10.34	10.96	4.05
151	8.75	7.30	4.18	2.40	2.40	17.54	6.84	3.33
152	4.25	8.61	3.65	2.10	2.10	21.56	8.08	5.22
153	4.43	10.54	2.46	2.17	2.17	23.48	5.53	7.09
154	0.76	3.42	1.24	0.74	0.74	6.50	0.02	0.41
155	12.78	7.40	0.75	1.34	1.34	8.16	8.57	4.64
156	8.23	7.22	0.43	1.43	1.43	9.56	7.38	4.45
157	4.64	43.13	2.58	8.41	8.41	14.62	1.21	6.15
158	7.17	41.05	3.26	1.65	1.65	21.18	6.57	33.58
159	16.02	11.29	1.19	1.25	1.25	15.58	9.82	6.10
160	9.11	8.21	0.32	4.64	4.64	22.31	8.44	5.03
161	11.68	11.64	1.41	2.11	2.11	18.86	10.56	6.41
162	4.92	19.75	2.77	4.02	4.02	5.66	2.86	10.01
163	7.55	42.22	2.80	17.89	17.89	8.34	1.71	8.82
164	7.15	38.19	3.55	1.01	1.01	3.44	7.37	28.72
165	23.18	13.06	5.83	2.74	2.74	11.50	9.62	17.04
166	8.60	25.75	2.45	0.57	0.57	17.82	5.48	16.54
167	26.25	28.59	7.00	46.87	46.87	10.16	3.45	5.45
168	13.44	4.83	2.73	9.30	9.30	4.68	2.06	1.99
169	19.72	7.15	1.29	6.31	6.31	5.50	4.70	2.35

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pı	actical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
170	5.21	5.84	1.11	0.28	0.28	23.94	5.27	7.84
171	2.46	8.74	2.51	1.34	1.34	24.97	5.95	7.14
172	5.99	13.86	1.83	1.92	1.92	18.80	3.76	11.03
173	7.56	25.28	3.33	3.23	3.23	34.93	5.92	32.56
174	4.18	36.29	1.85	1.24	1.24	21.37	5.70	22.20
175	6.04	37.01	3.07	2.27	2.27	43.46	6.55	33.50
176	4.40	14.81	7.74	6.26	6.26	36.27	5.88	27.87
177	4.68	28.00	1.92	2.45	2.45	40.96	4.51	34.13
178	6.71	19.74	6.78	6.03	6.03	16.29	6.41	22.63
179	8.91	7.49	3.13	2.56	2.56	15.90	5.23	4.41
180	7.07	7.84	3.85	0.98	0.98	23.43	7.95	7.36
181	6.47	11.87	2.45	0.86	0.86	18.58	9.18	6.49
182	3.51	24.77	3.05	1.63	1.63	17.23	5.02	17.44
183	12.06	33.37	3.28	3.94	3.94	17.32	1.21	3.74
184	18.61 .	17.57	4.32	9.45	9.45	12.82	1.31	3.18
185	23.96	19.52	5.07	4.10	4.10	15.44	6.39	6.89
186	22.69	26.92	1.75	4.58	4.58	10.92	9.82	8.17
187	19.79	29.74	0.89	9.30	9.30	7.14	8.78	7.24
188	16.43	32.35	1.10	11.63	11.63	19.27	10.57	7.59
189	12.11	35.22	2.48	5.29	5.29	18.35	1.82	4.64
190	19.58	18.62	4.60	10.54	10.54	12.10	1.31	2.41
191	24.22 .	19.17	2.57	1.75	1.75	17.23	5.32	7.40
192	23.61	27.06	0.09	5.62	5.62	10.08	5.93	7.87
193	18.92	30.50	0.92	8.77	8.77	3.61	4.11	5.14
194	11.30	33.22	2.20	11.96	11.96	12.01	0.63	0.74
195	13.60	34.82	2.54	6.37	6.37	14.51	1.53	3.52
196	21.61	16.60	4.00	10.48	10.48	11.76	1.01	3.77
197	28.27	19.52	2.05	1.84	1.84	17.85	7.78	10.14
198	23.53	27.22	0.83	4.20	4.20	13.22	4.26	5.99
199	17.64	31.74	0.47	7.36	7.36	4.90	2.70	2.52
200	2.68	36.05	1.26	9.76	9.76	6.22	2.42	1.60
201	10.63	33.29	3.12	1.80	1.80	16.34	2.37	6.61
202	15.76	16.08	2.89	6.74	6.74	11.86	1.30	2.97
203	24.76	18.33	0.82	0.74	0.74	11.11	6.35	6.50

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
204	23.84	25.38	0.54	4.73	4.73	7.47	7.70	6.56
205	23.49	28.40	1.44	7.15	7.15	6.24	5.42	6.93
206	16.26	31.42	23.59	19.35	19.35	17.23	4.05	6.16
207	10.85	34.91	2.16	3.36	3.36	15.50	3.23	8.83
208	15.41	15.39	3.85	8.22	8.22	11.59	1.24	2.47
209	25.89	18.91	1.07	0.88	0.88	11.36	6.30	6.24
210	23.48	25.62	0.32	3.33	3.33	8.11	4.59	6.43
211	22.29	29.14	1.33	6.32	6.32	2.87	1.64	4.71
212	14.21	33.22	1.40	7.19	7.19	12.90	6.60	3.57
213	11.85	34.92	1.85	5.17	5.17	11.27	3.13	8.11
214	18.13	14.08	2.92	8.12	8.12	11.66	1.57	2.41
215	27.22	19.08	0.90	1.33	1.33	12.22	8.38	8.06
216	25.44	26.52	0.29	2.71	2.71	12.14	3.12	5.13
217	19.96	31.13	0.53	4.47	4.47	5.62	7.29	4.45
218	12.85	35.12	1.06	5.42	5.42	5.53	4.77	4.37
219	8.64	32.49	1.52	2.31	2.31	15.62	4.40	13.11
220	11.40	14.10	2.78	5.48	5.48	11.66	1.63	2.77
221	19.29	18.78	0.23	0.58	0.58	11.02	3.88	7.07
222	21.85	24.77	0.71	2.84	2.84	7.81	4.92	4.60
223	24.38	27.40	0.25	2.97	2.97	8.76	3.10	5.11
224	23.56	29.60	0.85	3.21	3.21	16.60	6.80	5.32
225	9.54	34.77	1.18	3.11	3.11	14.54	5.24	14.96
226	11.50	12.96	2.74	6.19	6.19	12.31	0.99	1.66
227	19.78	18.72	0.62	1.18	1.18	9.24	6.35	4.93
228	21.31	25.43	0.71	2.11	2.11	7.09	2.62	5.13
229	24.88	28.48	1.33	3.41	3.41	7.33	2.90	3.60
230	22.66	30.83	1.32	4.10	4.10	14.02	13.04	6.33
231	10.67	34.94	1.51	4.77	4.77	10.60	5.25	14.72
232	14.01	12.28	1.55	5.70	5.70	13.71	0.72	2.85
233	21.88	19.20	0.80	0.96	0.96	8.18	8.73	7.13
234	27.25	26.40	0.54	2.18	2.18	9.42	2.13	3.90
235	25.18	30.13	0.27	3.65	3.65	6.94	9.92	5.56
236	20.41	34.52	1.83	6.34	6.34	8.94	12.16	7.94
237	6.57	30.45	0.75	1.48	1.48	14.68	4.49	11.17

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
238	7.38	12.18	2.11	3.87	3.87	14.00	3.33	2.07
239	9.66	21.03	0.72	1.77	1.77	13.43	2.63	4.53
240	14.01	27.79	0.45	4.57	4.57	11.25	3.89	3.76
241	18.06	29.49	0.91	6.06	6.06	13.50	3.17	1.74
242	22.37	30.69	2.63	10.65	10.65	19.59	7.15	4.91
243	7.68	33.59	0.70	2.49	2.49	12.65	4.75	12.49
244	7.34	11.20	1.50	3.94	3.94	15.13	0.55	0.82
245	13.09	20.07	0.95	4.29	4.29	12.48	7.37	4.31
246	23.69	26.47	0.50	7.30	7.30	9.56	3.86	2.27
247	27.72	29.60	0.80	9.87	9.87	11.27	4.31	5.13
248	26.47	31.71	3.74	15.73	15.73	14.20	11.26	4.22
249	8.28	32.20	1.81	4.49	4.49	11.51	4.55	11.86
250	9.65	11.63	1.26	4.42	4.42	18.19	1.18	1.02
251	21.56	20.70	1.49	4.05	4.05	11.60	10.38	5.50
252	27.19	27.05	1.59	10.23	10.23	9.86	1.22	1.46
253	28.73	30.61	2.86	15.07	15.07	8.70	6.83	6.76
254	24.93	35.50	5.73	22.62	22.62	9.44	12.05	7.63
255	6.57	31.75	2.27	2.87	2.87	12.49	9.05	17.74
256	6.74	18.82	2.87	4.23	4.23	16.45	1.96	6.64
257	12.72	27.42	1.79	8.13	8.13	17.65	3.33	2.58
258	16.01	31.85	2.21	17.36	17.36	19.95	4.65	4.20
259	19.17	33.37	1.99	24.66	24.66	20.61	4.39	8.71
260	20.56	35.29	4.93	33.67	33.67	20.91	7.16	5.48
261	7.29	33.78	1.74	2.49	2.49	13.05	8.30	19.14
262	7.15	17.22	2.37	4.33	4.33	18.10	2.43	8.73
263	15.49	25.53	1.23	9.39	9.39	16.90	7.06	4.88
264	23.17	31.63	6.33	29.41	29.41	18.16	1.20	5.39
265	26.90	33.70	2.49	30.09	30.09	19.95	5.71	4.66
266	25.79	34.90	5.91	39.54	39.54	20.56	7.33	4.38
267	6.90	31.99	2.57	3.83	3.83	16.75	7.81	19.49
268	9.15	16.25	1.39	4.38	4.38	19.89	2.68	6.00
269	19.56	26.32	1.26	11.80	11.80	15.64	6.65	4.43
270	28.48	32.05	2.58	26.33	26.33	17.99	5.76	9.49
271	28.18	34.25	5.36	36.96	36.96	22.42	5.69	7.43

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pr	ractical)	mSM2(p	ractical)
no.	xyz ·	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
272	26.84	36.11	8.02	51.29	51.29	23.50	7.24	7.59
273	6.59	32.45	5.78	4.27	4.27	13.21	9.27	23.55
274	7.96	22.03	3.17	4.54	4.54	15.82	8.07	20.53
275	19.59	32.18	3.91	15.23	15.23	11.84	5.88	9.66
276	24.09	38.17	6.57	40.55	40.55	13.90	6.40	3.80
277	27.38	40.22	4.98	55.71	55.71	16.37	4.73	4.73
278	28.50	41.61	1.87	74.21	74.21	16.58	5.33	6.12
279	7.04	33.25	4.74	3.27	3.27	14.04	8.34	22.25
280	9.67	19.64	2.41	4.39	4.39	16.47	10.49	23.11
281	21.70	30.50	3.14	18.90	18.90	11.65	7.00	10.64
282	28.64	37.66	7.64	47.71	47.71	10.35	4.14	6.05
283	31.41	39.82	5.02	67.07	67.07	15.41	4.47	6.96
284	33.43	41.08	4.03	86.96	86.96	16.18	4.81	7.78
285	6.67	31.01	4.36	3.70	3.70	12.61	8.71	20.77
286	11.23	20.17	1.53	5.05	5.05	20.25	15.07	25.50
287	24.86	31.65	4.71	20.86	20.86	13.68	4.55	11.30
288	31.41	37.51	8.79	55.46	55.46	10.99	4.09	8.16
289	34.07	39.99	7.08	77.17	77.17	15.25	5.07	8.92
290	34.58	41.53	7.89	102.63	102.63	19.52	6.32	10.43
291	7.06	29.61	2.62	5.71	5.71	7.39	6.55	24.42
292	10.98	8.58	5.31	12.16	12.16	13.69	2.96	11.36
293	19.77	16.74	4.73	14.75	14.75	9.14	2.53	11.89
294	21.36	23.45	5.14	17.52	17.52	9.72	11.14	22.58
295	21.55	24.99	4.27	17.57	17.57	8.95	5.23	17.28
296	20.92	26.70	4.70	19.04	19.04	9.93	3.55	14.26
297	7.59	28.52	2.32	3.89	3.89	18.66	4.33	9.77
298	10.76 -	7.40	6.65	11.51	11.51	13.03	3.64	7.46
299	17.68	16.52	7.10	10.20	10.20	13.40	4.24	9.71
300	19.28	24.84	5.32	7.39	7.39	22.77	8.41	12.65
301	17.77	26.38	4.30	6.02	6.02	17.69	12.58	14.72
302	11.20	28.60	5.39	6.37	6.37	11.52	13.97	14.90
303	10.28	32.78	2.25	3.61	3.61	14.47	1.90	4.22
304	17.52	13.90	4.59	9.06	9.06	13.38	3.17	5.05
305	25.32	20.04	3.92	3.24	3.24	17.90	10.88	7.23

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pı	actical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
306	24.15	26.39	2.98	3.17	3.17	12.49	14.20	9.89
307	21.42	28.70	2.49	6.34	6.34	7.58	15.16	9.08
308	14.86	31.71	2.91	8.44	8.44	10.78	14.87	10.73
309	6.18	28.71	2.89	5.64	5.64	8.45	4.53	18.00
310	8.23	7.52	3.36	7.76	7.76	14.13	3.96	12.40
311	17.26	15.72	2.65	9.35	9.35	8.26	3.56	13.73
312	23.03	22.74	2.24	10.51	10.51	15.87	14.25	23.54
313	22.65	24.78	1.92	11.17	11.17	10.77	9.85	20.01
314	23.05	25.85	2.46	13.22	13.22	9.48	5.93	17.39
315	5.29	27.21	1.53	2.73	2.73	17.50	3.62	7.31
316	7.45	4.99	5.91	8.95	8.95	11.63	3.91	7.69
317	17.46	16.53	6.40	7.87	7.87	10.64	4.46	9.79
318	20.22	23.11	3.90	4.62	4.62	16.99	7.92	13.11
319	19.25	25.57	3.82	4.28	4.28	13.18	7.81	12.03
320	16.78	27.34	3.84	4.02	4.02	10.13	8.45	12.88
321	8.85	30.54	1.99	2.23	2.23	13.15	2.51	7.37
322	14.69	13.73	4.09	7.05	7.05	11.19	3.68	5.20
323	25.48	19.23	2.74	1.63	1.63	12.85	10.59	8.09
324	25.48	24.18	1.41	3.65	3.65	9.70	12.52	9.30
325	23.35	26.81	1.24	5.71	5.71	4.51	13.88	9.49
326	19.42	29.35	1.00	7.29	7.29	10.81	11.02	9.32
327	4.03	26.90	2.19	4.57	4.57	6.48	3.57	10.90
328	5.96	8.33	1.68	4.45	4.45	11.99	2.08	11.07
329	11.86	16.72	1.91	4.96	4.96	7.43	3.47	13.86
330	16.47	23.62	2.37	5.97	5.97	13.66	10.63	19.69
331	19.13	25.43	2.53	7.06	7.06	14.04	16.72	24.08
332	24.79	26.82	2.53	9.12	9.12	12.37	11.97	21.42
333	3.72	25.65	1.04	1.87	1.87	14.16	4.11	9.16
334	3.63	2.12	5.91	7.55	7.55	9.52	3.77	7.82
335	9.39 .	16.48	5.36	5.91	5.91	9.20	4.32	12.00
336	16.20	23.93	3.28	3.58	3.58	11.74	6.22	12.36
337	16.82	25.51	3.22	3.62	3.62	10.09	4.63	11.51
338	18.90	27.15	3.77	3.96	3.96	9.38	4.08	12.30
339	7.39	29.48	1.35	1.24	1.24	11.66	3.91	13.05

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(pr	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
340	11.43	13.67	3.08	5.12	5.12	10.72	3.61	4.36
341	19.53	18.82	0.86	0.39	0.39	11.76	7.23	6.98
342	21.22	23.82	0.53	2.82	2.82	8.48	8.90	7.91
343	22.76	26.21	1.06	3.08	3.08	6.75	8.31	7.37
344	22.41	27.84	1.02	3.64	3.64	12.94	4.04	7.66
345	1.73	21.65	3.73	2.82	2.82	8.43	5.52	8.74
346	3.00	10.44	4.39	5.02	5.02	11.73	4.87	5.23
347	7.36	20.42	2.90	2.01	2.01	10.60	4.83	9.90
348	13.64	25.56	3.82	3.29	3.29	16.43	3.06	14.07
349	15.76	27.73	4.03	4.63	4.63	15.95	3.79	15.67
350	19.22	28.85	3.75	7.80	7.80	15.98	9.01	20.93
351	1.01	20.24	1.60	0.79	0.79	12.44	5.62	5.45
352	0.95	4.44	6.43	7.13	7.13	12.02	7.03	7.45
353	3.19	19.31	4.97	5.57	5.57	12.25	7.86	9.82
354	8.10	25.98	3.68	4.96	4.96	12.85	3.66	9.08
355	13.33	27.13	3.22	5.14	5.14	14.01	4.60	10.81
356	16.66	28.21	4.83	7.39	7.39	13.11	2.82	8.05
357	4.34	27.23	0.96	1.93	1.93	11.06	4.21	11.85
358	7.39	12.59	3.19 .	4.31	4.31	10.09	2.28	2.70
359	8.53	20.48	1.08	1.65	1.65	12.21	4.09	5.16
360	12.91	26.28	1.17	2.68	2.68	11.22	4.11	4.18
361	17.17	27.79	1.60	4.17	4.17	10.56	6.74	4.28
362	21.91	28.37	2.91	6.62	6.62	11.41	3.55	4.22
363	7.48	14.46	8.76	9.19	9.19	20.19	7.76	17.40
364	4.00	15.40	7.17	8.11	8.11	17.72	6.44	19.07
365	4.09	30.51	3.37	6.58	6.58	23.91	9.48	21.91
366	8.55	34.41	1.06	8.51	8.51	29.92	12.84	19.75
367	10.26	36.79	2.01	10.35	10.35	29.03	17.28	23.69
368	12.78	37.25	4.89	13.50	13.50	29.95	20.40	25.75
369	4.32	15.11	7.53	7.94	7.94	17.97	6.58	15.74
370	6.38	16.00	7.15	7.97	7.97	18.18	3.89	4.86
371	3.57	28.96	5.83	9.26	9.26	20.45	4.27	9.56
372	5.93	32.52	4.12	11.70	11.70	26.53	3.38	10.19
373	8.63	34.77	4.75	15.53	15.53	28.21	3.90	10.16

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(practical)		mSM2(practical)	
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
374	9.06	36.28	6.31	20.79	20.79	28.91	3.75	9.05
375	4.87	27.61	5.17	5.61	5.61	14.02	6.88	19.72
376	5.26	17.39	3.69	4.72	4.72	14.46	2.30	4.62
377	7.76	27.75	1.86	6.38	6.38	18.44	3.30	4.27
378	8.72	32.09	2.89	13.78	13.78	21.44	6.46	4.64
379	10.57	34.27	4.16	18.84	18.84	22.89	8.12	6.34
380	13.14	34.66	5.26	26.44	26.44	24.62	5.20	7.73
381	3.00	10.39	10.31	10.18	10.18	9.10	3.04	7.12
382	3.30	37.47	7.52	8.84	8.84	8.73	7.49	17.09
383	5.61	53.23	1.95	10.56	10.56	9.36	0.97	9.51
384	7.45	60.23	2.73	19.80	19.80	9.93	2.59	9.51
385	8.09	62.32	4.72	27.51	27.51	8.39	4.40	15.38
386	9.45	61.96	6.20	34.31	34.31	8.42	6.04	19.70
387	5.95	19.63	9.06	8.41	8.41	7.27	8.36	17.64
388	2.24	27.56	7.05	8.25	8.25	8.53	7.66	8.07
389	5.99	41.41	2.92	13.26	13.26	10.42	2.46	16.67
390	9.33	48.88	0.48	24.57	24.57	13.42	2.17	8.18
391	10.16	50.70	1.95	32.64	32.64	11.32	1.96	4.17
392	9.72	52.02	4.22	41.44	41.44	10.70	1.08	1.63
393	5.59	29.09	7.28	6.05	6.05	2.58	8.27	23.22
394	6.58	22.91	3.79	4.74	4.74	9.58	6.48	14.49
395	14.93	34.31	3.48	12.06	12.06	11.93	5.07	20.44
396	18.79	39.60	5.87	29.59	29.59	17.05	5.26	11.01
397	20.39	41.47	3.86	42.45	42.45	17.63	4.36	7.64
398	20.44	42.27	2.33	56.06	56.06	18.23	1.46	2.86
399	10.07	36.69	4.84	3.09	3.09	21.14	4.64	12.35
400	14.10	17.40	3.68	2.07	2.07	15.74	3.93	4.27
401	23.20	16.71	4.55	4.67	4.67	15.42	8.59	5.78
402	24.30	21.24	4.77	6.79	6.79	13.06	9.73	6.17
403	26.49	23.92	4.63	7.54	7.54	10.18	11.71	6.42
404	26.36	25.74	2.34	6.03	6.03	8.09	8.57	6.10
405	9.70	36.09	3.96	1.66	1.66	18.07	5.18	14.59
406	13.54	19.36	2.18	2.53	2.53	12.75	2.72	4.90
407	20.73	16.04	2.34	2.16	2.16	11.46	5.15	3.59

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pi	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
408	24.09	21.10	2.96	4.49	4.49	10.05	8.00	4.76
409	26.43	23.77	2.52	4.77	4.77	6.78	8.68	4.69
410	24.36	25.48	2.68	5.51	5.51	6.13	5.62	3.47
411	10.23	36.29	3.31	0.38	0.38	16.59	5.23	14.71
412	14.46	16.69	1.93	1.88	1.88	11.24	5.84	4.37
413	21.42	15.60	3.15	2.61	2.61	10.79	10.86	6.77
414	24.82	21.19	3.31	4.26	4.26	8.51	12.03	7.18
415	26.20	24.31	2.44	3.83	3.83	6.09	9.29	3.99
416	21.19	26.46	1.20	2.92	2.92	5.64	2.39	2.33
417	9.27	35.54	4.73	3.48	3.48	21.35	5.23	11.87
418	12.54	17.67	3.42	1.96	1.96	15.42	2.91	4.82
419	18.78	16.42	5.61	5.48	5.48	17.04	4.69	4.08
420	19.18	22.55	5.67	6.60	6.60	14.69	3.83	4.63
421	20.18	25.04	6.30	7.55	7.55	13.45	7.90	4.66
422	21.88	26.28	3.52	5.03	5.03	10.81	8.74	4.62
423	8.90	35.48	3.77	2.01	2.01	19.40	5.18	13.22
424	10.75	17.51	2.06	1.83	1.83	12.62	2.23	5.47
425	15.31	16.24	2.36	1.96	1.96	12.78	1.16	2.56
426	17.39	22.74	3.28	3.64	3.64	10.77	7.34	5.06
427	18.08	25.24	3.77	4.42	4.42	8.59	8.37	4.20
428	20.25	26.41	2.31	3.36	3.36	7.34	7.01	3.02
429	9.37	34.63	3.32	1.06	1.06	16.00	6.44	15.27
430	11.95	15.17	2.40	1.32	1.32	11.32	2.62	3.10
431	17.79	16.62	4.13	3.21	3.21	12.19	10.62	7.56
432	17.96	22.51	3.90	3.48	3.48	9.91	12.31	7.19
433	21.31 .	25.25	3.25	2.91	2.91	8.71	9.88	3.94
434	23.32	27.14	1.38	1.90	1.90	7.33	3.51	2.11
435	8.29	34.95	3.35	2.37	2.37	21.51	3.33	14.01
436	11.63	16.96	2.60	1.92	1.92	15.18	2.10	4.09
437	16.67	17.39	5.08	4.55	4.55	17.19	1.98	4.80
438	16.56	22.87	5.41	4.97	4.97	14.15	1.84	4.11
439	17.27	25.64	5.79	4.88	4.88	13.79	8.82	4.69
440	21.54	26.30	3.54	2.48	2.48	12.94	9.70	5.71
441	8.20	35.15	2.89	1.58	1.58	19.89	3.88	15.94

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(practical)	
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
442	10.57	16.85	1.94	1.76	1.76	12.99	1.73	4.55
443	13.59	16.82	2.05	1.26	1.26	13.31	3.86	2.99
444	13.92	22.96	3.31	2.23	2.23	10.55	8.22	4.69
445	17.00	25.30	4.02	2.71	2.71	10.01	11.23	5.32
446	19.28	27.14	2.83	2.05	2.05	9.91	6.70	2.55
447	8.56	35.29	2.26	0.85	0.85	17.18	4.18	16.84
448	10.95	14.42	2.12	1.07	1.07	12.61	3.34	3.03
449	14.57	16.87	3.41	1.81	1.81	12.94	11.98	8.61
450	18.37	22.50	3.66	1.56	1.56	10.09	13.94	6.63
451	23.93	24.56	2.83	1.64	1.64	9.99	10.36	4.48
452	25.95	26.96	1.00	4.45	4.45	9.38	4.10	1.49
453	6.36	33.83	2.59	2.13	2.13	23.02	7.22	24.38
454	7.27	13.45	2.66	2.01	2.01	18.55	1.20	3.21
455	11.04	18.70	5.17	3.53	3.53	20.21	5.08	5.22
456	14.29	24.47	5.89	2.80	2.80	20.57	5.04	4.74
457	16.94	26.87	5.54	2.76	2.76	19.50	6.11	4.06
458	17.71	28.51	3.62	4.29	4.29	18.03	10.28	4.58
459	6.61	35.79	1.65	1.38	1.38	22.10	8.08	26.61
460	6.80	14.87	1.88	1.78	1.78	16.74	1.75	4.91
461	10.40	18.57	2.09	2.12	2.12	15.94	6.20	4.07
462	15.91	24.15	3.45	2.94	2.94	16.09	8.50	5.21
463	18.55	26.14	3.43	4.82	4.82	16.56	9.84	4.19
464	19.00	28.56	3.03	8.68	8.68	14.58	5.67	2.40
465	6.45	34.54	1.11	1.59	1.59	17.36	8.96	25.92
466	7.27	13.60	1.63	1.08	1.08	15.83	3.45	4.55
467	15.53	19.05	3.51	1.04	1.04	16.11	11.09	7.83
468	18.32	23.81	3.15	3.89	3.89	14.99	14.59	6.75
469	20.72	26.14	2.31	7.04	7.04	14.90	11.63	4.93
470	24.37	28.06	1.12	11.91	11.91	16.30	4.17	1.86
471	6.65	36.14	1.99	2.01	2.01	20.67	4.66	21.19
472	7.05	18.42	2.99	4.88	4.88	17.81	3.58	9.42
473	13.74	25.12	3.43	12.19	12.19	21.57	8.57	6.01
474	18.13	30.32	3.06	12.32	12.32	24.28	9.72	7.93
475	19.90	31.91	3.18	17.08	17.08	25.49	15.12	10.47

Table B-3 (CONTINUED)

	without	profile	SM1(calculate)	SM2(calculate)	SM2(pr	ractical)	mSM2(p	ractical)
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
476	19.16	32.35	42.09	42.20	42.20	28.39	14.51	13.30
477	6.95	36.26	13.03	13.84	13.84	18.69	4.59	21.03
478	7.42	18.78	10.99	16.23	16.23	16.29	3.84	11.65
479	13.28	24.11	5.62	17.18	17.18	18.68	7.49	8.69
480	19.21 .	28.93	1.62	18.08	18.08	19.39	10.28	10.83
481	21.04	30.82	0.99	22.67	22.67	22.12	12.68	14.26
482	21.17	32.10	43.92	43.98	43.98	23.55	8.94	16.88
483	6.72	35.02	14.29	15.50	15.50	14.11	4.45	19.92
484	8.35	17.86	11.89	18.43	18.43	17.87	5.20	10.05
485	16.60	24.51	4.71	18.89	18.89	18.20	9.42	8.33
486	21.23	29.52	4.24	10.50	10.50	17.91	11.33	11.40
487	22.93	31.30	3.08	17.13	17.13	19.67	6.86	18.11
488	25.42	32.26	1.48	24.34	24.34	22.96	4.37	11.42
489	6.74	36.04	4.73	2.73	2.73	7.03	8.17	27.40
490	9.79	23.55	4.66	3.36	3.36	14.19	9.03	19.68
491	19.30	31.34	6.37	5.46	5.46	17.57	6.55	25.72
492	23.92	36.74	12.57	13.37	13.37	16.78	7.45	15.91
493	25.85	38.05	11.84	21.31	21.31	18.67	6.56	11.88
494	26.49	39.10	9.34	31.99	31.99	19.27	2.85	6.18
495	7.21	37.49	3.87	1.72	1.72	4.82	7.67	27.80
496	9.91	21.05	4.07	2.23	2.23	13.99	8.98	21.28
497	19.21	29.00	7.09	4.89	4.89	16.23	4.05	21.49
498	25.07	34.86	11.59	16.88	16.88	12.74	2.31	7.02
499	27.28	36.99	10.66	27.00	27.00	13.68	1.98	2.86
500	27.86	38.39	8.12	39.09	39.09	12.61	3.33	3.65
501	6.71	36.08	4.10	1.82	1.82	5.23	7.45	27.32
502	10.38	20.90	3.75	1.63	1.63	21.04	6.06	18.19
503	21.97	29.96	8.24	4.52	4.52	19.29	2.93	16.60
504	26.64	35.04	11.80	19.97	19.97	11.83	2.57	6.57
505	28.03	37.30	9.92	32.42	32.42	10.71	2.45	5.51
506	29.23	38.10	7.38	46.32	46.32	11.42	4.08	6.41
507	6.07	33.08	3.69	4.76	4.76	7.39	2.09	11.06
508	9.17	8.10	4.02	3.42	3.42	15.94	1.56	6.71
509	19.37	16.63	7.49	2.72	2.72	17.86	8.31	9.78

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(practical)	
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
510	24.92	22.16	9.22	2.96	2.96	8.77	5.99	9.07
511	28.06	25.69	11.08	4.23	4.23	11.24	3.74	9.40
512	28.54	26.28	10.35	3.09	3.09	11.67	5.61	13.54
513	5.66	31.09	2.92	3.23	3.23	19.82	2.21	5.94
514	5.77	6.81	1.09	2.65	2.65	13.28	2.45	8.20
515	14.38	15.14	1.69	1.28	1.28	14.90	9.34	16.51
516	19.01	20.26	3.12	1.96	1.96	15.87	10.83	16.21
517	22.14	23.29	4.28	3.56	3.56	17.89	12.40	15.53
518	22.27	24.45	4.09	3.86	3.86	18.49	10.48	15.43
519	7.56	33.69	2.51	2.00	2.00	14.15	2.95	10.58
520	10.98	11.69	1.56	1.89	1.89	12.67	5.31	4.95
521	20.85	16.19	2.09	2.22	2.22	13.64	11.24	8.38
522	24.28	20.74	2.46	4.42	4.42	15.52	12.09	9.00
523	25.75	22.84	2.80	5.61	5.61	14.47	13.55	9.47
524	22.46	24.11	1.45	5.01	5.01	12.33	8.06	7.73
525	5.13	31.75	3.80	4.56	4.56	11.73	1.07	7.30
526	8.86	7.62	4.74	3.89	3.89	15.79	2.76	4.94
527	17.03	16.11	8.24	4.61	4.61	19.37	9.14	8.26
528	21.17	21.96	10.79	5.72	5.72	11.83	7.53	10.35
529	23.25	24.67	11.39	5.41	5.41	12.18	6.77	10.02
530	25.42	26.16	11.19	4.43	4.43	14.75	3.14	10.39
531	4.17	28.14	2.67	2.63	2.63	19.31	1.06	4.91
532	3.96	4.36	2.02	2.97	2.97	12.64	3.04	7.49
533	10.88	15.44	1.72	1.42	1.42	14.92	4.78	13.95
534	12.77	21.09	3.48	2.97	2.97	15.45	6.84	15.11
535	15.08	24.24	3.75	3.47	3.47	14.33	8.70	16.04
536	16.40	25.54	4.15	3.89	3.89	14.94	11.38	16.35
537	6.60	32.07	2.11	1.91	1.91	14.83	2.97	9.63
538	9.54	12.05	0.97	1.77	1.77	12.40	2.53	3.64
539	17.25	16.80	2.49	2.56	2.56	15.66	6.73	8.49
540	19.00	21.52	3.25	4.45	4.45	16.88	7.50	7.76
541	19.02	23.71	2.94	4.63	4.63	14.71	7.67	7.51
542	21.52	24.86	2.81	4.95	4.95	12.76	9.39	8.59
543	3.75	29.25	3.41	3.45	3.45	14.14	3.67	10.52

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(practical)	
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
544	6.86	6.05	6.83	11.50	11.50	17.18	0.74	4.47
545	14.70	16.87	8.48	5.73	5.73	20.21	4.65	9.18
546	18.45	22.43	11.09	6.91	6.91	16.36	5.02	9.19
547	21.10	25.44	11.42	6.27	6.27	15.72	7.42	8.53
548	24.64	26.46	11.31	5.20	5.20	16.10	6.90	8.71
549	3.08	26.62	2.17	1.82	1.82	20.33	4.08	5.14
550	3.56	3.01	2.12	2.43	2.43	13.14	3.99	8.99
551	9.25	15.96	2.21	1.91	1.91	15.56	4.20	13.68
552	11.25	22.39	3.45	2.95	2.95	14.74	3.62	10.75
553	12.69	25.86	4.93	4.25	4.25	15.78	3.85	11.68
554	14.84	26.53	4.45	3.52	3.52	16.12	6.81	13.35
555	5.47	30.44	1.61	1.23	1.23	15.30	2.62	9.28
556	8.95	12.11	0.98	1.41	1.41	12.57	2.06	4.60
557	14.47	16.94	3.02	2.81	2.81	15.23	3.18	6.99
558	13.69	21.73	3.19	3.43	3.43	15.58	1.41	5.21
559	15.55	24.17	2.86	3.21	3.21	14.77	4.19	6.63
560	15.74	25.64	1.59	1.98	1.98	14.22	7.68	6.18
561	2.07	22.90	3.22	2.20	2.20	19.98	5.16	18.37
562	3.50	5.84	3.20	2.59	2.59	22.50	6.92	26.11
563	10.07	19.54	7.60	5.54	5.54	26.23	1.10	3.68
564	14.08	24.58	9.25	5.63	5.63	23.41	5.77	8.35
565	16.94	27.82	10.27	5.61	5.61	25.71	8.07	7.62
566	20.22	29.68	10.52	4.65	4.65	26.88	11.47	8.26
567	1.18	22.34	1.73	0.91	0.91	22.12	6.15	14.11
568	0.99	3.51	3.61	4.05	4.05	17.48	6.49	9.78
569	4.57	19.26	2.55	2.81	2.81	20.50	5.54	10.74
570	8.16	24.52	2.80	2.16	2.16	20.80	3.67	11.61
571	11.16	26.85	3.47	2.39	2.39	21.48	4.88	12.01
572	13.90	28.50	2.92	3.03	3.03	23.02	6.43	13.64
573	3.42	27.56	0.91	1.22	1.22	18.74	4.77	18.61
574	5.75	11.55	1.00	1.71	1.71	16.63	1.68	2.09
575	8.82	18.78	2.65	1.57	1.57	18.94	1.25	5.32
576	10.94	23.26	3.27	1.17	1.17	20.46	2.91	6.09
577	11.78	26.55	2.81	0.88	0.88	21.18	2.64	4.26

Table B-3 (CONTINUED)

	withou	t profile	SM1(calculate)	SM2(calculate)	SM2(p	ractical)	mSM2(practical)	
no.	xyz	L*a*b*	xyz	xyz	xyz	L*a*b*	xyz	L*a*b*
578	12.96	27.86	1.56	3.04	3.04	21.75	5.73	5.02
579	5.79	15.56	6.82	7.15	7.15	26.87	5.32	18.80
580	2.47	15.24	4.60	5.13	5.13	23.30	4.52	23.90
581	5.91	29.07	3.38	2.70	2.70	27.55	6.04	26.58
582	9.28	33.60	4.49	1.52	1.52	29.43	6.08	23.19
583	10.51	36.09	5.80	1.85	1.85	33.16	6.37	21.87
584	13.01	36.66	7.78	3.50	3.50	34.47	7.24	24.69
585	3.63	16.02	5.43	5.70	5.70	24.41	3.96	16.83
586	4.44	14.78	4.62	5.18	5.18	19.69	1.27	6.84
587	2.89	28.05	2.40	4.48	4.48	22.64	4.46	13.04
588	5.83	32.42	1.37	5.44	5.44	26.51	6.18	12.51
589	7.93	34.24	1.74	6.56	6.56	29.31	8.47	13.68
590	8.94	35.34	1.49	9.96	9.96	32.07	8.95	13.31
591	4.06	26.76	3.75	3.85	3.85	18.49	3.75	19.53
592	4.93	16.22	2.28	2.66	2.66	17.53	4.52	5.72
593	8.03	25.36	2.93	2.69	2.69	20.69	7.23	5.26
594	8.32	29.94	3.25	5.04	5.04	24.09	10.39	6.65
595	10.16	31.72	2.86	8.12	8.12	27.29	11.45	8.17
596	10.67	32.74	2.02	13.03	13.03	31.53	13.31	8.96
597	1.47	7.62	8.52	8.30	8.30	9.93	0.71	4.65
598	2.88	39.85	5.71	6.26	6.26	13.92	6.45	24.30
599	6.29	55.99	2.83	3.85	3.85	17.79	1.92	7.92
600	8.38	61.45	2.60	8.29	8.29	11.15	2.86	5.38
601	9.29	63.50	2.32	12.88	12.88	9.45	2.60	8.04
602	9.67	63.90	2.35	17.04	17.04	9.86	2.72	9.41
603	4.11	16.46	7.54	6.79	6.79	9.45	7.02	15.31
604	1.53	27.64	4.68	4.96	4.96	10.92	5.21	8.40
605	6.40	42.42	1.06	5.68	5.68	14.06	1.20	6.22
606	9.44	48.32	2.65	10.33	10.33	10.59	1.96	12.34
607	9.72	50.51	1.30	15.77	15.77	9.54	2.53	9.34
608	10.40	51.31	0.61	20.31	20.31	10.16	3.28	7.65
609	4.54	27.55	5.64	4.32	4.32	7.68	6.33	22.82
610	6.96	22.21	3.35	2.73	2.73	11.74	5.04	12.59
611	14.79	33.59	6.65	3.82	3.82	16.60	7.79	23.87

Table B-3 (CONTINUED)

no.	without profile		SM1(calculate)	SM2(calculate)	SM2(practical)		mSM2(practical)	
	xyz L*a*b*			xyz	xyz	L*a*b*	xyz	L*a*b*
612	17.26	38.77	9.01	10.53	10.53	17.53	8.59	20.88
613	18.38	40.53	7.77	18.15	18.15	19.15	9.02	17.35
614	18.21	41.63	6.31	25.75	25.75	21.93	7.81	14.05
average	13.28	22.69	3.81	8.78	8.78	14.73	5.73	9.48
STDEV	7.73	11.18	3.50	12.64	12.64	5.95	3.46	6.51

APPENDIX C

THE PROFILE PROGRAM

C-1 The 2 parameter values in TIFF file format should be read by "KANYATIF" program; as shown in the following:

```
// tiff file validator
#include <fcntl.h>
// Header file for Tag Image File Format (TIFF) routines.
// TIFF data types */
#define INTELSTR
                          "II"
#define INTEL
                          0x4949
#define MOTOROLA
                          0x4d4d
#define BYTE
                          char
#define ASCII
                          char
#define SHORT
                          int
#define LONG
                          long
typedef struct RAT
         long upper;
         long lower;
         } RATIONAL;
struct tdirent {
         short tagno;
         short ttype;
         long lcount;
         long foffset;
         };
#define BYTE_SIZE
                          sizeof(BYTE)
#define ASCII_SIZE
                          sizeof(ASCII)
#define SHORT_SIZE
                          sizeof(SHORT)
#define LONG_SIZE
                          sizeof(LONG)
#define RATIONAL_SIZE sizeof(RATIONAL)
 #define BYTE_TYPE
```

```
#define ASCII TYPE
                        3
#define SHORT_TYPE
#define LONG_TYPE
                        4
#define RATIONAL_TYPE 5
#define ERROR_VALUE 0
#define DIRECT_VALUE 1
#define INDIRECT_VALUE
// tags
#define STRIP_OFFSETS_TAG
                                0x0111
#define STRIP_BYTE_COUNTS_TAG
                                          0x0117
// Legal compression types. See the description of the "Compression" tag
// in the "Tag Image File Format" abstract, Aldus Corporation.
#define PACK_TIGHTLY
#define ONE_D_MOD_HUFFMAN 2
#define TWO_D_CCITT
// Answer to the question of the meaning of life and arbitrarily-chosen
// version number.
#define LEGAL_VERSION 42
#define SIZEOF_DIR_ENT 12
char *tag_expl[] = {
, , , , , , , , , , , , , , , , ,
"STRIP_OFFSETS_TAG
"STRIP BYTE COUNTS TAG "
#define OPTION '-'
#define OPT_VERBOSE
#define LOWER 0x20
 char creator;
                          /* pointer to the first file descriptor */
long ifdptr;
```

```
int vflag;
                    /* is this a verbose validation? */
                              /* input file name */
char ifile[80];
                    /* No. of Byte count */
long bcount;
int main(argc,argv)
int argc;
char *argv[];
                    /* file descriptor */
          int fd;
if(valid_parm(argc,argv)) {
                    printf("usage: %s [-v] infile.tif\n",argv[0]);
                    exit(1);
if((fd = open_tif_file(ifile)) == -1) {
                    printf("Cannot Open '%s' for reading\n",ifile);
                    printf("Job Aborted\n");
                    exit(2);
if(!read_tif_header(fd)) {
                    exit(3);
get_field_data(fd);
// valid_parm - parses the passed parameters. loads ifile, ofile and vflag
// if only the input file name is passed, the output file is created by
// finding the input filename a putting a .s suffix on the end.
valid parm(argc,argv)
int argc;
char *argv[];
int i;
#ifdef DEBUG
          printf("in valid_parm, argc = %d,\n",argc);
          for(i=0;i\leq argc;++i) {
                     printf("argv[%d] = '%s'\n",i,argv[i]);
           }
```

```
#endif
         if(argc < 2 || argc >3) {
                   return(1);
         }
          for(i=1;i{<}argc;{+}{+}i)\{
                   if(argv[i][0] = OPT(ON) {
                             switch(argv[i][1]|LOWER) {
                                       case OPT_VERBOSE: /* found a 'v' */
                                                 vflag = 1;
                                                 break;
                                       default:
                                                 /* found an illegal parameter */
                                                 return(3);
                                                 break;
                    } else {
                              strcpy(ifile,argv[i]);
#ifdef DEBUG
          printf("leaving valid_parm, vflag = %d, ifile = '%s'\n",vflag,ifile);
#endif
          return(0);
}
// open tiff file - nothing fancy here, just open the tiff file with the
// standard ms-dos file opens
int open_tif_file(infilename)
char *infilename;
          return(open(infilename,O_RDONLY|O_BINARY));
// read tif header - read the tiff header and report on its contents
int read_tif header(filedes)
int filedes;
```

```
int retval;
         struct tif_head {
                   char creat[2];
                                      /* where was this thing made */
                             version; /* what version is this puppy */
                   int
                                                /* 1st image file directory */
                   long
                             ifd;
         } head_data;
         if((retval = read(filedes,(char *)&head_data,sizeof(struct tif_head)))
                             != sizeof(struct tif_head)) {
                   return(-1);
         }
         if(!strncmp(head_data.creat,INTELSTR,2)){
                   printf("File was created on an Intel Processor\n");
                   creator = 'l';
         } else {
                   printf("File was created on an Motorola Processor\n");
                   creator = 'M';
         if(creator == 'M')
                   swapit(&head_data.version,SHORT_TYPE);
         printf("Tiff spec. used to create format of file = %d\n",
                             head_data.version);
         if(creator='M'){
                   swapit(&head_data.ifd,LONG_TYPE);
         printf("Offset of 1st IFD = %Id\n",head_data.ifd);
         ifdptr = head data.ifd;
get_field_data(fileds)
int fileds;
         short count;
         long retval;
         int bytes_to_read;
         char *ifd;
         char *sifd;
```

```
struct tdirent dirent:
         retval = lseek(fileds,ifdptr,0);
         if(read(fileds,&count,sizeof(short)) != sizeof(short)) {
                   printf("Cannot read tiff file, ifd directory entry corrupt\n");
                   exit(1);
         if(creator == 'M')
                   swapit(&count,SHORT_TYPE);
         bytes_to_read = count * SIZEOF DIR ENT;
         ifd = (char *)malloc(bytes_to_read);
         if(read(fileds,ifd,bytes_to_read) != bytes_to_read) {
                   printf("Cannot read tiff file, ifd directory elements corrput\n");
                   exit(2);
         printf("number of entries in the first ifd = %d\n",count);
         sifd = ifd;
         while(count !=0) {
                   memcpy(&dirent,ifd,(unsigned)SIZEOF_DIR_ENT);
                   ifd += SIZEOF_DIR_ENT;
                   breakup(fileds,&dirent);
                   count--;
         free(sifd);
breakup(fd,ptr)
int fd;
struct tdirent *ptr;
          long i;
          union values {
                   char byte[512];
                   char ascii[512];
                   short word[256];
                   long
                             longw[128];
                   RATIONAL ratio[64];
          } *buffer;
```

```
long bytes_to_read;
       if(creator == 'M') \{
                swapit(&ptr->tagno,SHORT_TYPE);
                swapit(&ptr->ttype,SHORT_TYPE);
                swapit(&ptr->lcount,LONG_TYPE);
                if(ptr->ttype == SHORT_TYPE && ptr->lcount == 1){
                         swapit(&ptr->foffset,SHORT_TYPE);
                } else {
                         swapit(&ptr->foffset,LONG_TYPE);
if((ptr->tagno==273)||(ptr->tagno==279))
       printf("\ntag no. = %d ",ptr->tagno);
       if(ptr->tagno -255 >= 0) {
                printf("%s\n",tag_expl[ptr->tagno - 255]);
       }
       else {
                printf("Private Tag\n");
       printf("\tttype = %d",ptr->ttype);
       switch(ptr->ttype) {
                case BYTE_TYPE:
                         printf(" type of TAG is BYTE\n");
                         break;
                case ASCII_TYPE:
                         printf(" type of TAG is ASCII\n");
                         break;
                case SHORT_TYPE:
                         printf(" type of TAG is SHORT\n");
                         break;
                case LONG_TYPE:
                         printf(" type of TAG is LONG\n");
                         break;
                case RATIONAL TYPE:
                         printf(" type of TAG is RATIONAL\n");
```

```
break;
}
printf("\tlcount = %ld\n",ptr->lcount);
printf("\tfoffset = %\ld\n",ptr->foffset);
         if((ptr->lcount == 1)\&\&(ptr->tagno==273))
          printf("*** Values to key in for Offset is: %ld\n",ptr->foffset);
         if((ptr->lcount == 1)&&(ptr->tagno==279))
          printf("*** Values to key in for Count is: %ld\n",ptr->foffset);
if( ptr->lcount > 1 || ptr->ttype > 4 ) {
         printf("values of tag at offset:\n\t");
         switch(ptr->ttype) {
                   case BYTE_TYPE:
                   case ASCII_TYPE:
                            bytes_to_read = BYTE_SIZE;
                            break;
                   case SHORT_TYPE:
                            bytes_to_read = SHORT_SIZE;
                            break;
                   case LONG TYPE:
                            bytes_to_read = LONG_SIZE;
                            break;
                   case RATIONAL_TYPE:
                             bytes to read = RATIONAL SIZE;
         bytes_to_read *= ptr->lcount;
          if(bytes_to_read >4) {
                   lseek(fd,ptr->foffset,0);
                   buffer = (union values *)malloc(bytes_to_read);
                   if(read(fd,buffer,bytes_to_read) != bytes_to_read) {
                             printf("invalid tiff file, cannot read at foffset\n");
                             close(fd);
```

```
free(buffer);
                  exit(5);
}
else
         memcpy(buffer,&ptr->foffset,bytes_to_read);
/* now based on type, break up the read in data area */
for(i=0;i<ptr->lcount;i++) {
         switch(ptr->ttype) {
           case BYTE_TYPE:
                  printf("%x ",buffer->byte[i]);
                  bcount = bcount+(buffer->byte[i]);
                  if(ptr->tagno=273){
                  bcount = buffer->byte[0];
                  break;
           case ASCII_TYPE:
                  printf("%c",buffer->byte[i]);
                  bcount = bcount+(buffer->byte[i]);
                  if(ptr->tagno==273){
                  bcount = buffer->byte[0];
                  break;
           case SHORT_TYPE:
                  if(creator = 'M'){}
                     swapit(&buffer->word[i],SHORT_TYPE);
                  printf("%d ",buffer->word[i]);
                  bcount = bcount+(buffer->word[i]);
                  if (ptr->tagno==273){
                     bcount = buffer->byte[0];
                     }
                  break;
           case LONG_TYPE:
```

```
if(creator == 'M') {
                                      swapit(&buffer->longw[i].LONG_TYPE);
                                      }
                                    printf("%ld ",buffer->longw[i]);
                                    bcount = bcount+(buffer->longw[i]);
                                    if(ptr->tagno==273){
                                       bcount = buffer->byte[0];
                                    break;
                             case RATIONAL_TYPE:
                                    if(creator == 'M') {
                                       swapit(&buffer->ratio[i].upper,LONG_TYPE);
                                       swapit(&buffer->ratio[i].lower,LONG_TYPE);
                                       printf("%ld / %ld ",buffer->ratio[i].upper,
                                                buffer->ratio[i].lower);
                                    break;
                  printf("\n");
                  printf("Total = %ld\n",bcount);
                  free(buffer);
                  bcount = 0;
       /* Add to select only 2 tagno */
}
swapit(ptr,type)
char *ptr;
int type;
// this function will swap the bytes of a long of short
         char temp;
         if(type == SHORT_TYPE) {
                  temp = *ptr;
                   *ptr = *(ptr+1);
```

```
*(ptr+1) = temp;
                  else if(type == LONG_TYPE) {
                            temp = *(ptr+3);
                            *(ptr+3) = *ptr;
                             *ptr = temp;
                            temp = *(ptr+2);
                             *(ptr+2) = *(ptr+1);
                             *(ptr+1) = temp;
         C-2 "KANYAPRO": the program use to convert the original image by modified system model 2;
the detail as shown in the following:
         #include <stdio.h>
         #include <math.h>
         #include<stdlib.h>
         //RGB to R'G'B' transform. Output file is same inputfile.
         //But have to fstablish formular before.
         //You need to have C_language skill.
         int main(int argc,char *argv[])
                   FILE *in, *out;
                   int c = 1;
                   int r,g,b;
                   int rr,gg,bb;
                   double x = 0;
                   long int start, cnt, end;
                   if(argc<3){
                             fprintf(stderr,"usage nabeta inputfile outputfile\n");
                             fprintf(stderr,"inputfile : Inputfile (3 chanel type RGB only raw file.)\n");
                             fprintf(stderr,"outputfile: Outputfile(3\ chanel\ type\ RGB\ only\ raw\ file.)\n");
                             return 0;
```

in=fopen(argv[1],"rb");

```
if(!in){
                                                                                                                                                                            fprintf(stderr,"Inputfile(%s)can't open.\n",argv[1]);
                                                                                                                                                                                                                                  return 1:
                                                                                                                      out=fopen(argv[2],"wb");
                                                                                                                       if(!out){
                                                                                                                                                                             fprintf(stderr, "Outfile(%s)can't open.\n", argv[2]);
                                                                                                                                                                                                                                   return 1;
                                                                                                                                                                             // define //
                                                                                                                                                                              printf("Please enter Strip_Offset :");
                                                                                                                                                                              scanf("%ld",&start);
                                                                                                                                                                              printf("Please enter Strip_Byte_Counts:");
                                                                                                                                                                              scanf("%ld",&cnt);
                                                                                                                                                                              end = start+cnt-1;
                                                                                                                                                                              //printf("start = %ld, count = %ld, end = %ld\n", start, ent, end);
                                                                                                                                                                              while(1){
                                                                                                                                                                                                                                    if (x \ge start & x \le end)
                                                                                                                                                                                                                                               = fgetc(in);
                                                                                                                                                                                                                                                   = fgetc(in);
                                                                                                                                                                                                                                               = fgetc(in);
           if(r \le 127){
           // 0 < R < 128 //
           rr = 8.330742794 + 0.72434745 * r - 0.523295557 * g - 0.235150001 * b + 0.003820047 * r * r + 1.0003820047 * r + 1.
           0.006147514*g*g+0.002874591*b*b-0.00110254*r*g-0.000431718*r*b-0.00299267*g*b;
           gg = -4.726550413 - 1.298319086 * r + 2.279861387 * g + 0.508588187 * b + 0.0092598 * r * r + 1.0092598 * r + 1.0092
  0.004687395*g*g+0.006179986*b*b-0.007822712*r*g-0.002191577*r*b-0.011797862*g*b;
           bb=-1.144134028-0.500883003*r-0.735327063*g+2.314806632*b+0.003472021*r*r+
0.007697529*g*g+0.004209249*b*b+0.005342377*r*g-0.005714404*r*b-0.013121975*g*b;
           }
           if (r \ge 128)
           // 128 < R < 255 //
           rr = -119.2101366 + 2.682934007 * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.106835372 * g - 0.284226658 * b - 0.001938571 * r * r + 0.10683571 * r + 0.1068371 * r + 0.1068371 * r + 0.1068371 * r + 0.10683571 * r + 0.1068371 * r + 0.1068
```

```
0.000140966*g*b;
gg = -38.29875313 - 0.089326042 * r + 2.235824015 * g - 0.085081292 * b + 0.002300932 * r * r - 1.002300932 * r 
 0.001143349*g*g+0.001837729*b*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.00098452!*r*b-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004562329*r*g-0.004662329*r*g-0.0046629*r*g-0.0046600*r*g-0.0046600*r*g-0.0046600*r*g-0.0046600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.0046000*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0.004600*r*g-0
 0.000908951*g*b;
 bb = -18.70980518 - 0.09698503 * r + 0.286607918 * g + 1.759509458 * b + 0.001809199 * r * r + 1.001809199 * r + 1.0018099 * r + 1.001809 * r + 1.00
 0.002328351*g*b;
                                                                                                                                                             //printf("address = %f, r=%d, b=%d, g=%d\n",x,r,g,b);
                                                                                                                                                                                                                                                                      if(rr>=255)rr=255;
                                                                                                                                                                                                                                                                      if(rr<=0)rr=0;
                                                                                                                                                                                                                                                                        if(gg>=255)gg=255;
                                                                                                                                                                                                                                                                      if(gg \le 0)gg = 0;
                                                                                                                                                                                                                                                                        if(bb>=255)bb=255;
                                                                                                                                                                                                                                                                        if(bb \le 0)bb = 0;
                                                                                                                                                               //printf("address =%f, rr= %d, bb= %d, gg = %d\n",x,rr,gg,bb);
                                                                                                                                                                                                                                                                          fputc(rr,out);
                                                                                                                                                                                                                                                                           fputc(gg,out);
                                                                                                                                                                                                                                                                          fputc(bb,out);
                                                                                                                                                                                                                                                                          x = x+3;
                                                                                                                                                                                                                                                                          else {
                                                                                                                                                                                                                                                                                                                              r = fgetc(in);
                                                                                                                                                                                                                                                                                                                                if(r==-1)break;
                                                                                                                                                                                                                                                                                                                                  fputc(r,out);
                                                                                                                                                                                                                                                                                                                                  x = x+1;
                                                                                                                                                                 //printf("x=%f,y=%f,z=%f\n",x,y,z);//
                                                                                                                                                                                                                                                   fclose(out);
                                                                                                                                                                                                                                                 fclose(in);
                                                                                                                                                                  return 0;
```

THE REPEATABILITY OF THE SPECTROPHOTOMETER

					AV Tripopolistic Management (Control of Manag					
No.	1	X measur	ement		No.	X measurement				
	1st	2nd	3rd	average X		1st	2nd	3rd	average X	
1	32.51	33.77	32.43	32.903333	16	0.78	0.8	0.81	0.7966667	
2	37.43	40.88	39.08	39.13	17	0.78	0.8	0.78	0.7866667	
3	29.17	30.32	28.25	29.246667	18	0.78	0.77	0.78	0.7766667	
4	25.86	27.74	26.99	26.863333	19	0.77	0.76	0.8	0.7766667	
5	20.21	20.15	19.64	20	20	0.78	0.79	0.78	0.7833333	
6	17.4	17.54	17.1	17.346667	21	0.76	0.78	0.78	0.7733333	
7	3.7	4.05	3.65	3.8	22	0.78	0.78	0.78	0.78	
8	16.11	17.82	17.65	17.193333	23	51.07	53.47	52.05	52.196667	
9	6.16	6.24	5.88	6.0933333	24	44.74	46.45	44.49	45.22666	
10	6.71	7.23	6.49	6.81	25	40.15	42.02	39.85	40.673333	
11	43.08	46.58	44.6	44.753333	26	32.72	34.56	31.76	33.013333	
12	17.4	19.55	18.26	18.403333	27	70.83	71.62	70.3	70.91666	
13	7.62	6.26	6.1	6.66	28	63.77	64.9	62.77	63.81333	
14	74.74	74.93	75.55	75.073333	29	59.42	60.52	57.32	59.08666	
15	0.79	0.81	0.8	0.8	30	53.11	53.56	52.15	52.9	

Table D-1 The colorimetric value X of colour patches no.1-30

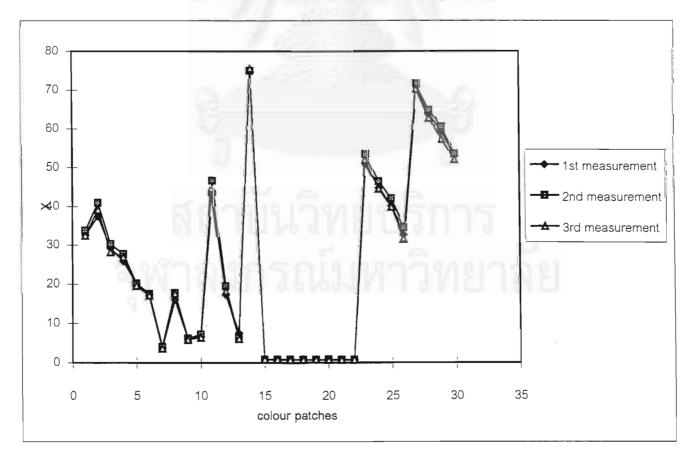


Figure D-1 The colorimetric values \boldsymbol{X} of colour patches number 1-30

No.		Y measu	rement		No.		Y measu	rement	
	1st	2nd	3rd	average Y		1st	2nd	3rd	average Y
1	32.67	33.14	31.58	32.46333	16	0.81	0.82	0.83	0.82
2	34.41	36.28	34.21	34.96667	17	0.81	0.82	0.8	0.81
3	27.66	28.52	26.26	27.48	18	0.81	0.79	0.8	0.8
4	21.26	21.72	20.73	21.23667	19	0.81	0.78	0.82	0.803333
5	25.69	24.72	24.1	24.83667	20	0.81	0.82	0.8	0.81
6	15.36	15.55	15.07	15.32667	21	0.8	0.8	0.8	0.8
7	3.79	3.97	3.59	3.783333	22	0.82	0.8	0.8	0.806667
8	9.76	10.42	10.39	10.19	23	49.08	50.17	48.33	49.19333
9	10.83	10.42	9.92	10.39	24	48.75	49.4	47.26	48.47
10	6.11	6.42	5.77	6.1	25	39.25	40.7	38.27	39.40667
11	47.74	49.02	46.5	47.75333	26	37.62	38.93	35.73	37.42667
12	10.17	11.18	10.47	10.60667	27	72.15	73.06	71.37	72.19333
13	8.37	7.68	7.34	7.796667	28	64.74	65.9	63.65	64.76333
14	77.42	77.64	78.27	77.77667	29	60.65	61.84	58.36	60.28333
15	0.82	0.84	0.82	0.826667	30	53.52	54.2	52.5	53.40667

Table D-2 The colorimetric value Y of colour patches no.1-30

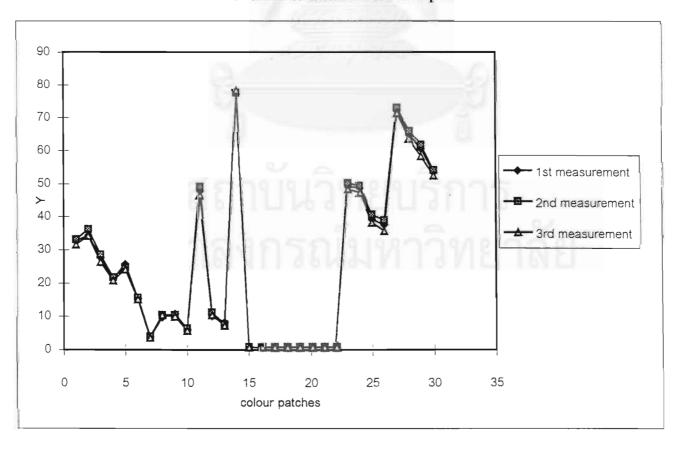


Figure D-2 The colorimetric values Y of colour patches number 1-30

No.		Z measu	rement		No.		Z measu	rement	
	1st	2nd	3rd	average Z		1st	2nd	3rd	average Z
1	22.1	22.79	21.57	22.15333	16	0.62	0.64	0.64	0.633333
2	14.67	16.13	14.46	15.08667	17	0.62	0.64	0.62	0.626667
3	28.16	29.89	27.67	28.57333	18	0.62	0.63	0.62	0.623333
4	7.65	8.14	7.52	7.77	19	0.62	0.61	0.65	0.626667
5	14.1	14.84	14.15	14.36333	20	0.63	0.64	0.62	0.63
6	18.56	17.93	18.15	18.21333	21	0.61	0.62	0.62	0.616667
7	2.7	2.84	2.66	2.733333	22	0.63	0.63	0.61	0.623333
8	2.54	2.69	2.54	2.59	23	28.75	28.96	28.03	28.58
9	6.94	7.79	7.12	7.283333	24	34.49	35.72	34.24	34.81667
10	7.58	8.24	7.45	7.756667	25	36.87	38.84	36.8	37.50333
11	3.87	4.34	4.18	4.13	26	25.25	26.31	24.75	25.43667
12	6.4	6.88	6.47	6.583333	27	63.01	63.72	62.85	63.19333
13	22.18	22.21	21.31	21.9	28	60.36	61.59	60.42	60.79
14	64.85	65.22	65.84	65.30333	29	58.46	59.87	57.66	58.66333
15	0.62	0.65	0.64	0.636667	30	55.63	56.52	55.1	55.75

Table D-3 The colorimetric value Z of colour patches no.1-30

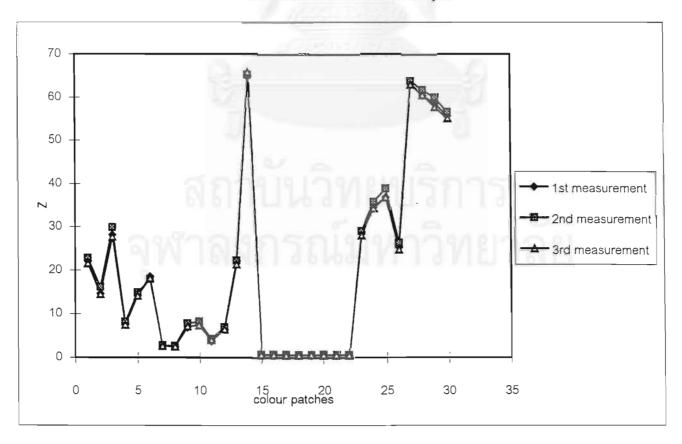


Figure D-3 The colorimetric values \bar{Z} of colour patches number 1-30

THE CONSISTENCY OF THE PRING-OUT FROM COLOUR COPIER

No.		X measu	rement		No.		X measu	rement	
•	morning	afternoon	evening	average X		morning	afternoon	evening	average X
1	32.90	37.30	37.21	35.80	16	0.80	0.85	1.94	1.20
2	39.13	41.93	42.25	41.10	17	0.79	0.85	1.95	1.19
3	29.25	34.63	34.45	32.77	18	0.78	0.87	1.92	1.19
4	26.86	29.32	29.47	28.55	19	0.78	0.86	1.90	1.18
5	20.00	24.60	25.05	23.22	20	0.78	0.87	1.89	1.18
6	17.35	21.45	21.33	20.04	21	0.77	0.85	1.86	1.16
7	3.80	5.27	5.60	4.89	22	0.78	0.84	1.89	1.17
8	17.19	18.12	17.94	17.75	23	52.20	54.42	55.87	54.16
9	6.09	7.54	8.37	7.33	24	45.23	50.13	51.92	49.09
10	6.81	8.67	9.47	8,31	25	40.67	45.26	46.73	44.22
11	44.75	46.62	46.89	46.09	26	33.01	36.64	37.88	35.84
12	18.40	19.14	19.43	18.99	27	70.92	72.13	72.75	71.93
13	6.66	8.39	8.98	8.01	28	63.81	68.26	68.02	66.70
14	75.07	75.09	75.39	75.18	29	59.09	65.24	64.74	63.02
15	0.80	0.88	2.01	1.23	30	52.94	59.02	59.28	57.08

Table E-1 The colorimetric values X and average X of print-out at the different warming-up time

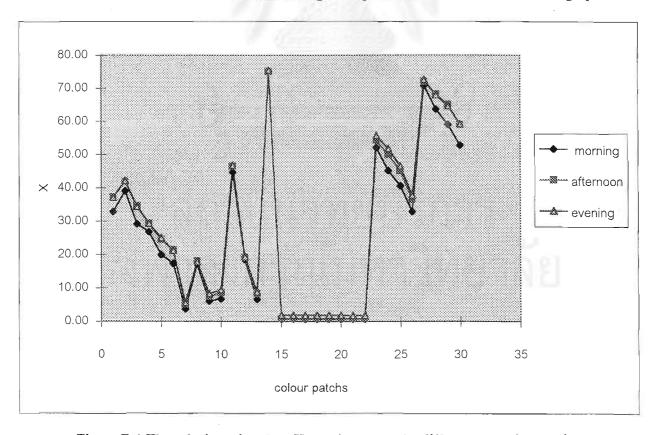


Figure E-1 The colorimetric values X of print-out at the different warming-up time

No.		Y meası	ırement		No.	-	Y measu	rement	
	morning	afternoon	evening	average Y		morning	afternoon	evening	average Y.
1	32.46	37.23	37.45	35.72	16	0.82	0.88	2.01	1.24
2	34.97	38.88	39.53	37.79	17	0.81	0.88	2.02	1.24
3	27.48	32.64	32.61	30.91	18	0.80	0.90	1.99	1.23
4	21.24	24.06	24.58	23.29	19	0.80	0.89	1.98	1.22
5	24.84	30.23	30.74	28.60	20	0.81	0.91	1.97	1.23
6	15.33	19.08	19.12	17.84	21	0.80	0.88	1.93	1.20
7	3.78	5.23	5.65	4.89	22	0.81	0.87	1.96	1.21
8	10.19	10.87	11.06	10.71	23	49.19	52.88	54.93	52.34
9	10.39	12.45	13.31	12.05	24	48.47	53.88	56.01	52.79
10	6.10	7.65	8.53	7.43	25	39.41	43.70	45.65	42.92
11	47.75	51.69	52.19	50.54	26	37.43	41.54	43.07	40.68
12	10.61	11.07	11.56	11.08	27	72.19	73.93	74.57	73.56
13	7.80	. 9.25	10.10	9.05	28	64.76	69.62	69.49	67.96
14	77.78	77.73	78.05	77.85	29	60.28	66.74	66.32	64.45
15	0.83	0.92	2.08	1.28	30	53.41	59.76	60.22	57.79

Table E-2 The colorimetric values Y and average Y of print-out at the different warming-up time

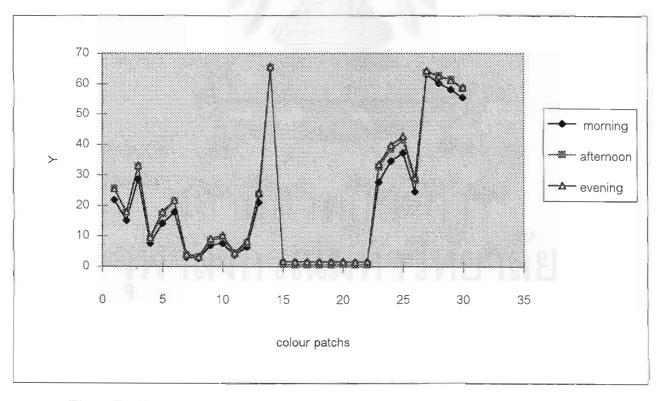


Figure E-2 The colorimetric values Y of print-out at the different warming-up time

No.		Z meas	urement		No.		Z meast	ırement	
	morning	afternoon	evening	average Z		morning	afternoon	evening	average Z
1	21.94	25.67	25.45	24.36	16	1.65	0.67	1.69	1.34
2	15.076667	17.78	18.02	16.96	17	1.59	0.67	1.70	1.32
3	28.62	32.83	33.16	31.53	18	1.5733333	0.68	1.67	1.31
4	7.62	9.15	9.64	8.80	19	1.62	0.67	1.66	1.32
5	14.166667	17.25	18.01	16.48	20	1.57	0.69	1.66	1.31
6	17.916667	21.58	21.75	20.42	21	1.54	0.67	1.63	1.28
7	3.1166667	3.79	4.15	3.69	22	1.5633333	0.66	1.65	1.29
8	2.6166667	3.07	3.33	3.01	23	27.846667	32.83	33.65	31.44
9	6.9333333	8.46	9.24	8.21	24	34.666667	38.61	39.87	37.71
10	7.5633333	9.64	10.30	9.17	25	37.346667	41.40	42.79	40.51
11	3.8433333	4.12	4.52	4.16	26	24.646667	28.37	29.20	27.41
12	6.4266667	7.73	8.31	7.49	27	63.106667	63.76	64.36	63.74
13	21.143333	23.89	24.30	23.11	28	60.253333	62.69	62.60	61.85
14	65.02	65.40	65.72	65.38	29	58.173333	61.45	61.27	60.30
15	1.6433333	0.70	1.76	1.37	30	55.563333	58.48	58.90	57.65

Table E-3 The colorimetric values Z and average Z of print-out at the different warming-up time

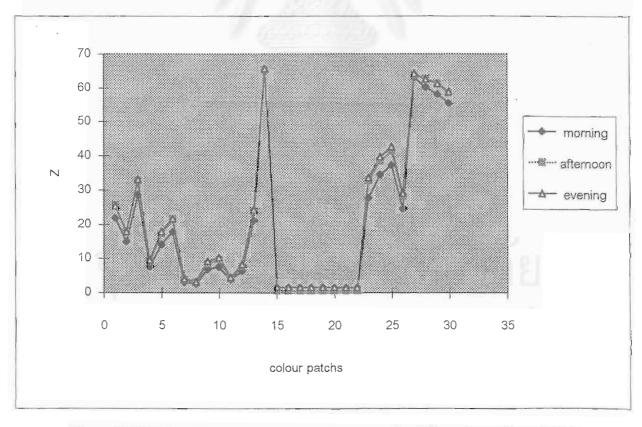


Figure E-3 The colorimetric values Z of print-out at the different warming-up time

VITA

Mrs. Kunnatee Kreprasertkul was born on March 8, 1964 in Nakomrachasrima, Thailand. She graduated a Bachelors degree of Science from Chulalongkorn University in 1987. She worked at 71-Film company for 1.5 years after that she was joined to work at DZ Thailand for 2 years. From 1991 untill the present she works at Note Printing Works, Bank of Thailand. She takes responsibility for researching the security features in the banknote design and the other security documents. At 1996, she was a graduate student study in the Imaging Technology program, at the Faculty of Science, Chulalongkorn University. She graduaded a MSc. Degree in Imaging Technology in April, 2000.

