CHAPTER II

QUANTUM THEORY OF IMPURITY-BAND TAILS
: - 25,26 . .
* In Halperin and-Lax thecxy » an  impurity potential is
considered only as screened Coulomb potential while in Sa-yakanit
27,29,32

theory both screened Coulomb potential and Gaussian.potential

are considered.

2,1 Halperin and Lax Theory (Minimum Counting Method)

Halperin and Lax have proposed a new theory, using the full
quantum theory of‘Scheringer for calculating the density of states
P(E) in the low energy-tail of an impurity band in heavily doped
semiconductor based upon counting minima in an appropriately smoothes

version of the random potential,
004156

2.1.1 Minimum Counting Method

In heavily doped semiconductor, there are many impurity
atoms within a volume which characterize the "spread" or the "width"
of a typical wave function. These impurities are distributed in a
random manner throughout the solid. In the region of high impurity
»

concentration the potential is deep, the wave function is narrow and

the electron kinetic enerqy of localization is large. 1In the region of lew
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Concentration the potential is shallow, the wave function is spread out
and the electron kinetic energy of localization is small. Halperin
and Lax assume that tﬁe impurity potential distribution obeys Gaussian
statistic, And they expect, therefore, that there will be the most
probable shape for the wawe function, not too narrow and not too

spread out and assume that at a given energy E, in the low-energy
tail, almost all of the wave function have approximately the‘same shape.
For determining the probable shape of the wave function, Halperin and
Lax assume that for a given energy E there is an optimum well depth

to get the most value of low Ei' they denote the wave function wi(;)

for the optimum well by
-+ f‘-b -
wi(XJ o x-y,) (2.1.;)
-+ -+ -
where f(x = yi) is a fixed function for each energy E and ' is
a position variable which may be anywhere in the crystal and will be

different for each eigenstate. In this case f(; - ;i) is a real

value function satisfying the normalization condition

sz& -y)ax = 1 (2.1.2)

3

Since the Hamiltonian of the disordered solid is given by

>
H = T + V(x) (2.1.3)
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2 2 *
where T = -h V /2m + EO (2.1.4)

V(X) is the random potential due to the impurity atoms and Eo is the
energy of the unperturbed parabolic band edge. -

According to the quantum-mechanical theory there is the
correspondence between the wavefunction and the eigen energy E for
each state. Then, the associated energy for a trial wave function

- -
f(x - yi) is
E(Jia = Sf( X = ;i) H f(x - ;i) ax (2.1.5)

Substituting for the value of H from (2.1.3) and (2.1.4) one gets

-+ -+ -+ 2.2 * -+ - -
E(yi) = S = yi){-h Vi/2m ) f(x - yi}dx
2 - > i
+ Eo + Sf (x = yi) V(x)dx (2.1.6)
- T -+ —_ - 2
= T Eo + vS(yi) = 0+ vs(yi) (2.1.7)

Note that the kinetic energy 6 is independent to the choice of ;i'
because the operator T is translationally invariant. The potential
energy vs(§i) is an average of the potential V(;) in a region about®
x = ?i. As Yi is permitted to vary throughout the crystal,

VS(;A} will fluctuate about an average value of zero, and at various

> .
places in the crystal vs(yi) will exhibit an unusual large negative

fluctuation.
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.+
These places correspond to regions of very low V(x), and hence to

the places expected to find a low-energy eigenstate ¢i(;5'
Since a variational approximation of the ground-state energy of a
system always overestimates this enerqgy. Hence ,one expectgthat
E(;;) in region of negative fluctuations will always be larger
than the true energy Ei of the local low-energy eigenstate. The
best estimation of the energy Ei is thus obtained by choosing i&

so that E(;gj is as small as possible, i.e., so that E(ﬁi) is

a local minimum. Halperin and Lax assume that there is a chose one-
to-one correspondence between local minima in E(gi) and the energy
+ of eigenstates in the vicinity of E, then the number of eigenstates
with energy E is approximately equal to the number of local minima
in E(;i) with value E, For example in Fig. 2.1 there is only one
local minima not three with the energy Ei‘ Thu; one has the following

approximation to the density of states in the volume @

e ITY . >
pf(EJ =S [ Number of local minima in E(yi] such that

at the minimum E < E Gi) <E + dE ] (2.1.8)

Halperin and Lax define "a local minima" as any point where
-

?E(yi} = 0 and the second derivatives are positive. Since only
o g — >

Vs{yi) in (2.1.7) depend on y,, then vE(yi) = 0 can be

-
replaced by VVS(Vi) = 0.

i
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Fig. 2.1 Potential wells in heavily doped semiconductor.

2.1.2 Density of states

The density of states is defined by

p (E)

1

E L 6(E-E,) > (2,1.9)
i 1
1 \'

with the assumption that all Ei are given by the optimum E(;i). B

5 e (+ _ -
i = E Yi) = 0 + Vs(Yii (2.1.10)
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Hence

(Z:151L)
1 v

when the property of the Dirac delta function S f(x) §(x-a)dx = f(a)

is applied the density of states becomes

P -+ >
Pe(E) = S X s 6(y-y;)6 [E-6-V_(v)] > (2:1:12)
Q : i s
i \
> >
where {yi} is the set of all points satisfying W ly,) = o.

After averaging, the quantity in brackets in (2.1.12) becomes
independent of ;, and the integration over ; merely yields a factor

of o . Thus it may be written as

> > -
Pe(E) = &I 8(y-y,)é[E-0-v_(y)]> (2.1.13)
. A s
i v
Next make a transformation from the variable }' to vvs (¥) by

writing

+ > > -
I 8(y-y,) = 6[vv5(y)] |[get wv v ) | (2.1.14)
b
»

The determinant of the second derivatives in (2.1.14) arises as the
Jacobian of the transformation. Equation (2.1.13) can now be

written
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pf{E) = p(A) p3t\|A) x(A, A) (2.1:16)

-
where the function p(}) is the probability density for Vs(y)
to take on the value A at an arbitrary point ;. P3L\IA) is the

conditional probability density for Vvs(;) to take on the value A ,

when it is specified that Vs(;) = X, and x(A ,A) is the
conditional expectation value of |det vV Vs(;ﬂ , when it is
specified that V_(y) = ) —and W_(y) = A . Halperin and
Lax are interested in the functions p, Ps and x when A = E - 8

and A = 0.

To estimate the probabi lity function itis needed to know
. -+ >
the two-point autocorrelation function (Vs(yi Vs{y')> . This
function may be expressed interms of autocorrelation function

- - F -+
{ V(X)V(xX') > of the original potential, vix - z).

(vs@)vs(;"n sz(?f-}’) XTI ¢ VEVEDD & ay (2.1.17)

and

+> & > > -
nN s v(x-z) v(x'-z') dz (2.1.18)

CU(x)V(X') >

In order to exhibit explicity the dependence of thesemoments on the
concentration of impurities N and the strength of the potential n2.

Halperin and Lax introduce a parameter
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£ = n N (2.1.19)

Then (2.1.17) and (2.1.18) can be written as

(VSG} v5(§'}> = EG(y - y") (2.1.20)
CVX) V(x') Y = £ wWx-x") (2.1.21)
where
Gly - y') = sz&-}’) £2(X'Sy) W(k-%') dudr’ (2.1.22)
and
WE - %) D= Svt; - Dveet - 3oas (2.1.23)

when the concentration of impurities is sufficiently high, Halperin and
Lax assume that Gaussian statistics can be used. The statistical

—_
properties of Vs(y), in the Gaussian case, are completely determined
by the two-point autocorrelation function £ vs(y)vs(y')> . Then,
the function p()\) in (2.1.16) is a Gaussian distribution.

2 "4 2 2 .
p(X) - (ZTrﬁco) exp(-A /2500) (2.1.24)

with variance
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1

s cv.m?y = o (2.1.25)

r

-
For determining the tonditional probability density for Vvs{y)

P3ﬂ |1 A), the covariance of VS{?) with its first derivative is

considered, Such that

¢ VSG;) wWoy)y = EW' G(y - y1) (2.1.26)

O
¥ =y

Because the function G, by definition, is an even function of its

argument, Then
(vs@) vvstiv'n > 0 (2.1.27)

This means that autocorrelated variables such as VS(;) and ?VS(;)
are statistically independent. Thus P.Q | A) is independent of

A and reduces to the ordinary probability distribution of VVS{;).

The covariances of the derivatives among themselves are

given by

( [vvsti?)][vvs(i?)] Y =  -EW G0 (2.1.28)

It is convenient to choose the coordinate axes such that the matrix

of second derivatives of G is diagonal, with the form
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2
01 0 0
2
G (o) = - 0 02 0 (2.1,29)
0 0 og

Here, the three components of VVE(;) are uncorrelated, and the

function P3m I ) is simply the product of three Gaussiang,

-3/2 2 A2 ny a2
PyCA LX) = (2 (06,0) “exp [ - L __2 - =]

3 I 2%a A -

&0,y 2P 3
(2.1.30)

Since A = 0 (2.1.30) becomes
=342 L

PoOIA) = (2n¢) (0,050, (2.1.31)

To find X(A . A ), the conditional expectation value of the
determinant of the second derivatives of VS(;) » 1t can be written

as

vwstir') = vS(§)§+3c’ (2.1.32)

‘+ - Il . . -
where M ig g constant matrix, and 'ﬁ 1s a matrix of variables,
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uncorrelated with VS(;) » which have mean zero and variznces

proportional to ¢ , The matrix T is given by

> >
) b3 Vs (v) VWS (yv)y

-IG g - —g%g;—'o')-— (2.1.33)
<V ()
s
. -+ ; > . 2
By using the condition Viy) = 2 and variance Vs(y) = Eoo =£G(0)
one obtains
2
- (6-E) > oi o§ 9,
M = 3 =  yx(E-8, 0) (2.1.34)
o
o
Combining the results for P, P3, and X , when A\ = E-6 and
AN = 0, the density of states obtained is

A

_ 2 - 2 2 -3/2 =
pe(E) = (2n80 ) * exp[ - (6-E) /250 ] (21£) r(010203)
x (6-E)°> ci oi og/ o (2.1.35)
(010203)(8 - 3)3 ; 2 2
Pe(E) = 5y exp [ - (6 -E) 260 ] (2.1.36)
- (o]
(2mE) o

L
Now consider the problem of finding the best choice

% ; ] :
of f(x - ;i). In the spirit of the variational calculation, it jig known
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that f(i i ;i)gives a highér energy than the true eigenvalue. The
density of states is expected to decrease rapidly and monotonically in
the tail, any density.of states calculated will be smaller than the
true value. Therefore, for finding the best choice of the wave function
£(x - ;;}, Halperin and Lax maximize the density of state pf(E].

When £ — 0 , pf(E) is dominated by the exponential factor. The
further approximation is done by maximizing the exponential factor in

(2.1.36) or equivalently, to minimize the exXpression

2 2
LB e fedr shaz)

r = 2 - (2.1.37)

% sz&l EAWE -~ Ryatane
Let p, (E) = max. [ o () ] (2.1.38)
So that pltEJ = A(E) 6-2 exp [ -B(E)/ZE] (2.1.39)

where A(E) is the pre-factor of pf(E) and B(E) is the minimum

value of T
0010203 (6 - E}3
A(E) = R , (2.1.40)
(2n) o
o
B(E) = T = min [ (6 - B)%/ o1 (2.1.41) -
min o e

and
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2 .
ro 2 =[L=E] = o0
mi [ dgo
r . is determined by the ratio method, the method of variational

min

-calculation, suggested by Butkov33. This leads to the Hartree-Fock

like equation for f{;)

TE(X) - uf(x) sz&')w(;- X') dx' = Ef£(X) (2.1.42)
or
-+ -+ -+ -+
TE(x) - uf(x) U(x) = Ef(x) (2.1.43)
where y is a lagrange multiplier, and
u(x) = 5 [ ] 2w G~ 2xax (2.1.44)

Then multiply each side of (2.1.43) by f(;) and integrate

throughout the configuration space of the system,one obtains

Sf&)T £00 dx - uj[f(?c) 1% udax = E (2.1.45)

or

(o]0 S

8 -uo = E (2.1.46)

(6 - E) =  uo ' (2.1.47)
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where
0 = S (%) pE(%) dx (2.1.48)
and
2 -+ 2 > >
o, = S[f(x) ] uxax (2.1.49)
Similary using (2.1.22), (2:1.29), and (2.1.43) , one gets
2 ) 4 = 2 + ¢ -+
o] - A SU(X) v [ f(x) ] dx (2.1.50)
Tren the nierical valdes @Eo~l . -, . and the mean Xinetic energy

to get the density of states.

o
6 are substituted into (2.1.386)

2.1.3 Screened Coulomb Potential

Halperin and Lax assume that an impurity potential having the

screened Coulomb form

—Zez

> -+ -+ e o L
vix - z) = -E-TEEEFT__exP (=Q Ix - 2z|) {2:1,51)"
o

where e is the electronic charge, Eo is the dielectric constant of



the pure semiconductor, @ is the reciprocal screening length, and
Ze is the charge of impurities. The autocorrelation function for the
potential fluctuations can be evaluated by working with the Fourier
transform of (2.1.23). The random position 2z can be integrated out.

One finds after straightforward calculation that

- = -+ -+
Wix - x') = rexp (=oly - 2'|) (2.1.52)
where
4 2
E 4 2nezz (2.1.53)
Qe

-
They also assume that the optimum choice of f£(x) is a spherically
symmetric function. ILet
B vy
f(x) = (4m) S(r)/r (2.1.54)
>
where r = lx_l, and S(r) is required to vanish at r = 0
+
and r = o, Substituting for the value of f(x) and 1 into

the Hartree-Fock like eigenvalue equation,idd2.1.43J will result

h2 d2
[-=— — -Yuw ]s) = €-E) s (2.1.55)
2m dr °
where U(rx) = S Kilg, x') S(r'}zdr' (2.1.56)
)
The averaging of the function exp(-0 |® - ¥'| ) with respect

to the angular coordinates of the variable # gives

i
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1
2 2
Kl ¥') = % S epr-Q(r *r' +2rr'u}l’] du (2::3.:57)
-1
; 2 .2 .
Using the change of variable R = (r'+ r'“+ 2rr'y)
2 2r. 1N
= ry (1 + E%- + ——ir—Ld the above integral becomes
¥s *
I, +r¢
1
' = - 2.1.5
K(r, r'") oo 5 R exp (-QR) dR ( 8)
Iy ~x¢
-0x . 1 ; ;
By application of the formula Sxe Qxdx =-éQx(% - aé%xtr,r'} obtained is as:
K(r, r') = 5%;7 e 90 [ (ry +Q-l) sin hg r =-r, cos hQrz]{2.1.59)

where r, and r¢ are the greater and lesser, respectively, of

the two numbers r' and r.

For simplicity, Halperin and Lax consider the whole calculations

*
in unit of EQ = hzgz/(Zm ) = s then (2,1.55) reduces to

[ -dz/drz -uU(r) ] S(r) = -v S(r) (2.1.60),

where v is the dimensionless energy,

<
i

(EO - E) /E (2:1.61)

Q
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and the density of states pl(E) in (2.1.39) can be rewritten as

3 3.2 S 2
(B = (Bg'07/8%)a(v) exp [-(Eg /26)b(v) ] (2.1.62)

where a(v) and b(v), the universal dimensionless functions, are

2 e .
equal to A(E) and B(E) in units where Q = h/2m = 1, i,e.

3
010,054 (6 - E)

a(v) = A(E) = (2.1.63)
==
(2m) "~ o
o
: E 4 > 2 2 2
Since f(X) is spherically symmetric, then 0, = o, = 03 and

using (2.1.47) , one gets

3 A 3 3
9, (u oo) o, M
a(v) PN L A e (2.1.64)
(21) " o (2n)2 o
o o

From, (2.1.49) and (2.1.50) Ui and ci can be written in the form

of the radial wavefunction S(x)  'as

3 ]

2 2
o = ( [s(n] © unar (2.1.65)
o
and
ci = - %— ( rU(r)dr [ S(r)z/r ]" (2.1.66)

o

" ’
The symbol [ ] denotes the second derivative d2/dr2.
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.

Similarly, b(y) = U o (2.1.66)
and the logarithmic derivative n(v) of the exponent b(v) in nltE( is

n(v) = d log b(v) /4 log v (2.1.67)

FPor each value of v » Halperin and Lax solve (2.1.60) and
(2.1.56) by using iteration pProcess, i.e, a trial function is first

used for S(r) and the value of M 1is varied until the solution S(r)of

(2.1.60)satisfies. the required boundary conditions and the function

S(r) thus obtained is used as a new trial function in (2.1.58).

The wave function finally obtained is used to calculate the constant
<

T = 6 - E = HO VY, o and 0, , and the function
o o o 1

a(v) and b(v) of (2.1.62) .

The limiting values of a(v) , b(v) andg n(v) are shown in

Table 2.

Table 2.1 The limiting values of a(v), b(v) and n(v) when a

Screened Coulomb potential is applied,

B v <2 [ P

a(v) - 0.4u3/2 = 10—2y772

b}v) > 3u1/2 = u2 2
n(v) ® % = 2
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2.2 Sa-yakanit Theory

Sa—yakanit27'2? presented a new theory, for calculating the

density of states in heavily doped semiconductors using.fhe path
integral method of Feynman30. His theory succeeded in evaluating an
: . 3

expression for p(E) which valid at all energies E 2. Here one focuses
on the density of states p(E) in the deep tail state, which can be

. ’ ; 25,26 :
compared with Halperin and Lax theory + and consider the two
different impurity potentials; the Gaussian potential and the screened

Coulomb potential. _The outline of Sa-yakanit theory is briefly mention

as follow

2.2.1 Density of states

To calculate the density of states, .the full expression (2.1.9) for

pE) is started

p (E) = <& O6(E. ~ Ei} > (2.2.1)

p s v
i
Next the retarded propagator G(;2 ” ;1 , t) is introduced which
t ->
1 o X,.
This propagator G(§2 ; il » t) is (-ih) times of the usual retarded

describes the propagation of an electron from point x

Green's function and can be written as a path integral over all the

possible paths between ;l and ‘;5 ;

. -+ _ - . y
Gy v xp » 8) = Y Dix(1) exp[ (i/m) s ] e
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where D(?(T}J denotes the path-integral with boundary condition

x(0) - ;l and x(t) = ;2 s Sq is the action

t

m 32 >
Se = g drt [ 3 X (1) - V{X(T))] (2.2.3)
[e]

and V(X(1)) denotes the sum of the impurity potentials,

V(X(1)) = £ v(X(r) = R,)

(2.2.4)
i

> -
where v(x(t) - Ri) represents the potential at x(t1) due to an

impurity at point Ri' The properties of the system are obtained

from the averaging of G(;é A 21 , B) over all impurity confiquration

{Ri] « In the limits of weak impurity potential v{z(r}) - Ri)——+0

s . - - 2
and their high density N— o so that Nv remains finite, The

average propagator can be expressed in the forms

Glxy X, 8) s Gx,, X, 6> = Sn&rrn &' AAIS (2.2.5)
\%
where S is the full action of the random system given as
t t A
_ m %2 i =2 -+ >
S = S dT[E‘X (1) - g d'rEo + Eﬁ'Nn g §’ drdo w(x(t) - x(o))](2.2.6}
o o o o e

-

Here the mean potential is taken to be E_ and the autocorrelation
o

function is defined . by
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->

w(X(t) - X(0)) = S'dg viX(t) - 1) V(;{q) - R) (2.2.7)

The quantity n  in (2.2.6) is parameter which one hag introduced
in order to discuss more easily the behavior of the density of states
as a function of the strength of the impurity potential. The density
of states per unit volume is then related to the diagonal part of

the average propagator

1 - ;
p (E) = T SdtG(0.0.t) exp [ (1/’1’1)5:1:] (2.2.8)

- 00

To obtain the density of‘states expression, the approximate expression
G in (2.2.5) have to be calculated. - The path integral of
the action S given in (2.2.6) is very difficult to evaluate
analytically because it is not gquadratic in 4 (only quadratic action
will lead to integral path integration). To perform the path integral
in (2.2.3), sa-yakanit assumes that there will be an action which is
simple, integrable and intimated the action S. He modelled the full
action S by a non-local harmonic "trial" action

% 2 ,° 2
s, = g dr-‘zf‘-[',?m -% g do | X(1) - %(0) | ] (2.2.9)

o] o

where w is an unknown parameter to be determined. Once the trial

action SO has been introduced, one may proceed to find the average

T{1bB6%LA%

L
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propagator which can be written as
G(0,0,8) = T_(0,0,t) Lexp[ (i/n) (s-5.) ]»s_ (2.2.10)
-
where G_(0,0,t) = S D(x(1)) exp[(i/'h)so] (2.2.11)

and the symbol ¢ -- - - -)S means averaging with respect to the trial
o

action §
o

(D@ s e[ ims, ]

(),

s SD(X(T)) exp [ (i/‘h)SO]
The approximation of (2.2.8) by the first cumulant results
G,(0,0,t) = Eo(o,o,t) exp [ (im) ¢ s - So ) ] (2:2:12)
o
Sa-yakanit finds that the diagonal part of the zerpth-order

propagator E(0,0,t} can be calculated exactly as follows

- w2 GE 3
GO(O,O,t) = (m—} =i

2sin (']é" wt)

Then

_ B V2 3
G,(0,0,t) = (=—/——) ( ) . .
1 2mifit 2uin (_21; ey exp[ (i/n) {5-5_> ; ] (2.2.13)

o
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Note that if the impurity potential is known, the density of states

can be evaluated.

2.2.2 Gaussian potential

For an impurity potential having the Gaussian form
- 2.2 \3d</3/2 s> 2 5 |
vixtc) =R = w9 exp[ - k) =R | 7] (2.2.14)

It follows from (2.2.7) that
Wik - ) = Pt exp (%) - 1722 ] (2.2.15

where L” = 222 denotes the autocorrelation length and u is another

parameter introduced in order to take care the dimension of the system.

After substitute the above equation into (2.2.6) S becomes

t t
t

t
m32 i 4
s = ( a 2%y - (awe, + 3 € ([ { araoexo [-1% (02011 /27 (2.2.16
o [o] o o

= 2 2 2. 3/2
where £, = Nnu /(aL") / has the dimension of the energy square,

Sa-yakanit determines the average (S—So} for the case of a Gaussian

s
potential which can be written as 2

4

232 F 2

= = i_ L . & _ 3. EE EE _
{s SO'J =~Et+pE (T) t { dx[jL(X)] 5 ih(= cot 5= A

So . - o

(2.2.17)
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where

2
0 = 2+

.owX ., wl(t=x) , sin yt
(sin = sin > vd > ) ] (2.2.18)

gl

To obtain the approximated density of states, equations (2.2.17)
and (2.2.13) are substituted into (2.2.8). For energies deep in the
tail only the ground state in the potential fluctuations should be taken
into account. This corresponds to the limit t —w . Then the

density of states becomes

oo

pLE) = _Smdt(ﬂ‘;—hg R Yexp[ - 2 iut - 2(e_-m)t - i;fu + o)
(2.2.19)

By using the formula

Smdt(it)P exp(-g%t%- iqt) = 2-P/2ﬁr8-P-1exP(-q2/882)Dp(q/B-/Z} (2.2.20)

-

One obtains

»

/2 .=-5/2

pL(E) = F(V3/m Y23 (m2m) 32 exp(-q"/88%)D, , (a/8 /) (2.2.21)
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]

where g {% Ew + Eo - E)/n, Em = hw and DP(Z) denttes the

: ; . 34
parabolic - cylinder function
and

2 ~3/2
(1/2h7) gL{l #*: 4EL/Ew} (2.2.22)

™
I

12 /2m1.2

3]
]

Using the asymptotic properties of the parabolic - cylinder function,

P

D
P(z) =  exp(- %‘Zz)z + the density of states deep in the tail

Z—N

(E — - or keeping E constant and let gL — 0) in the form

proposed by Halperin and Lax is obtained.

oy®  =[ & /n¥e Jatw, 0 exp[ e blv, x) /2¢ | (2.2.23)
where a(v, %) = (% X + u)3/2 (4 + x) 3/8 W (2.2.24)
and

bv, x) = (3 x+ w21+ a/x) /2 (2.2.25)
with - =

E/E. and v = (E_ - E)/E_ .

i
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The parameter w , is introduced in the trial action S0 '

will be determined from the procedure of maximizing p,(E) , which

1
- TR S 35
there are three procedures, the Lloyd and Best variational principle

36,3 R
the maximizing pl(E) as a whole 6. ?, and the minimizing the exponent

36,37

b(v,x) as the spirit of Halperin and Lax. Here will be mention
only the last case. As shown by Halperin and Lax, the maXimization of
the density of states deep in the tail is achieved with the sufficient
accuracy when the exponential is maximum. From the condition

db(v, x)/dx = 0, the best choice of x is found to be satisfied

the equation :

x2 + X - 4v

It
o

(2.2.26)
Here only the positive root is kept , because x is the ratio of the

energy associated with the harmonic oscillator and the energy of the

fluctuation.

[ a+160?_ 1] (2.2.27)

E3
]
N =

The value of x that is obtained for each value of v will be
substituted into (2.2.23) and the value of pl(E) for each v can

be obtained.

3

The functions a(v, x), b(v, x) , n(v, x) and the kinetic

energy of localization, T(v , X) in the terms of the variable v
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only can be expressed as follows

a = [ @+1602 - 11¥2 (@ s 1602 4+ 171%22125 12 (2.2.20)

bv) = [@+16w™? o112 [+ 1602 4 7] P " (2.2.29)

nv) = 320/ [(1+ 6w 21 + 16w 2 4 7] | (2.2.30)
and ‘

v = S ew% o1 ] (2.2.31)

Sa-yakanit considers = the limiting values of a(v, x) and b(v, x) in
two cases, when v, <1 and v >> 1 respectively.

For v << 1,

av) (= 032829 %742 (2.2.32)

and

b(v) =  1ev/? (2.2.33)

S 3

For v >> 1,

(o) v Bn> | (2.2.34)
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b (v) = v (2.2.35)

2.2.3 Screened Coulomb Potential

For an impurity of the screened Coulomb form

—232 ex > -
—=F (-0 Ix(1) - R|) (2.2.36)

- >
nv(x(t) - R) ~ =
< [%(1)-R |

the autocorrelation function can be written
- - 422 2 B -
Wix(D-x(a)) = (2ne B /e Yexp[ -0lx(1)-x(0)]| ] (2.2.37)

The action associated with the above autocorrelation function is

t t tt
m 2 N > +
s = ( dr EET) - g dat Eo + > EQ ( ( d*rdoexp[ —le(ﬂ-x(c}l ]’
o o oo
(2.2.38)
2 4 2 : .
where E’n = 2nZ e N/QEO has the dimension of the energy square.

5

s 4 . ;
After writing W(x(1) - X(0)) in terms of Fourier components

the average (5§ - So) becomes

S
-0
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0rd 2
i ot dk 4q K ih
{ s-5 ) =-Et+i- "—-gdxg—-— ( ) exp[-—-—-
2
o oo T %o 2 en® B o mo
S o
o
oowX L owp(t-x) , . gt 3 ., uwt wt
X (sin 5 sin —3-—-/51n 2)] 3 ih( 7 oot = - 1).
(2.2.39)
Inserting the identity
y =2 2 2
(E‘E + in = g dy y exp[—[i + 0 }y] (2.2.40)
o
into (2.2.39) and performing the ® integration, one gets
t =)
_ - ST 2 -3/2
(5-807; = Eot 55 EQJﬁ ( dx S dy vy exp(-Q°y) [jytx)]
o o o
- 5 iR cot £2 - 1) (2.2.41)
where
- . Mg OX el Lt
jy(X) = [y+ —~(sin 3 sin = /sin 2)] (2.2.42)

i

The approximate density of states is obtained by substituting

(2.2.39) and (2.2.11) into (2.2.6). For energies deep in the tail,
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the ground state contribution is considered at t—

then the density of states becomes

o

3/2
1 m : 3
BB} * R Sdt ( e (dut)
2
g £ Ot -3/2

X eXp [- %‘iwt - %—(EowE)t -2 5 g dy y exp(-sz)(y+h/2mm) . i ]’

2h
(2.2.43)

After integrating (2.2.43) by using the formula (2.2.18), the density

of states in tail region can be expressed in terms of two dimensionless

functions, af(v, 2 ) and b(v , z) as follow
3
N 0 a(v,z J ! —
R 7 T DT EYE! J Dy lvi Al AN ]
Q

(2.2.44)

In the limit of large bi(v, z)/f" {gi-e o) the asymptotic exXpression
for the parabolic cylinder function is
2, P By, 1 4
D,(x) = exp (-x"/9)x [ 1-P(5 =, + ... ] (2.2.45)

2 2
X

If only the first term of (2.2.45) is kept then the density of states

in (2.2.44) * becomes”
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0y B = [(E ) 3/53 Ja(v,z)exp [-Eéb(v,z}/ZgQ] (2.2.46)
where

av,2) = G+ 0 2 e ) 07, (2) (2.2.47)
and

b(v, z) = /7 (-g- 2002 20 exp{% z?) D_, (2) (2.2.48)
with z = {2EQ/EM)1/2 and '\ ' = EQ/E;.

Similarly to the Gaussian potential case, the maximization of
the density of states deep in the tail is achieved with a sufficient
accuracy when the exponential is maximium. From the condition
db(v, z)/dz = 0, one obtains the following equation for the best

choice of parameter 'z,
1 3
D _(z) = 32 ['2—2 +Vv) D, (2) (2.2.49)

The value of 2z that is obtained for each value of VvV is substituted
»
back into (2.2.46) . The value of Dl(E) for each VvV can be obtained.
The other two quantities of interest are n(v , z) and T(v, z)

can be expressed as follows
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3 2
n(v, %) = 2v/(z 2 =) (2.2,50)
and
3 -2
T(v, 2) = 7 2 (2.2.51)
Sa-yakanit considers the limiting values of al(v, 2z), b(v, z)
n(v,z ) and T(v, z) in two limiting cases, strong screening and

weak screening respectively.
For strong screening (Q — =) which is equivalent to v. <<1

or 2z —= , the limiting value of 2z obtainedby substituting the

asymptotic form of parabolic cylinder function D (z) = exp(- -;—zz)zP
z9w
into (2.2.49) is
Y79
z =y (2.2.52)
and consequently, one obtains
a(v, 2z) = y e /¥ 2x (2.2.53)
b(v, 2) = 2y 12 (2.2.54)
1
n(v, 2) = 3 (2:2.55)
»
and T(v, 2z)/v = 3 (2.2.56)
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For weak screening (Q — o) , or equivalently, Vv >> 1l(z—o),

substituting the asymptotic forms of the parabolic - cylinder functions
B 1 J-Tr W ;

D_3(z) = > 3 and D_4(z} * 3 into (2.2.49) and using

Z —0 2 Z=30
the assumption =z <<y, the limiting value of 2z obtained is

/3 =1/3

z = [ 32 ] v (2.2.57)

and consequently one obtains
al(v, z) 2 5/(9113} v7/2 (2.2.58)

~ 2
b(v, z) = v (2.2.59)
n(v,z) = 2 (2.2.60)

and

T(v, ZFNa< 0 (2.2.61)
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