CHAPTER 5

RESULT AND DISCUSSION

5.1 The information of preliminary investigation of solid reactions.

A total of 814 solid-solid reactions, which were selected from the permutations of 170 reactants by observing the colour appearence of their products at the range 25° C to 35° C of room temperature, were tabulated in Table 5.1 with some properties. But the instantaneous reaction was left to be understood without any notice.

For the important contents of these reactions, see appendix II

Rl	-	1 s t	reactant
R ₂		2nd	reactant
р		prod	luct
p_1	-	lst	product
^p 2	•••	2nd	product
^p n	•••	nth	product
dk		darl	k
hygr.	-	hyg	roscopic

×

R ₂ R ₂	AgNO3 white	R2 F1	AgNO3 white	R ₂ R ₂	AgNO3 white
As 2 ^S 3 orange	p-dk.brown time-22hrs	Fu Fu	p ₁ -green p ₂ -pale blue time-20hrs,	K ₂ CrO ₄ yellow	p-black time-16hrs
BaBr ₂ .2H ₂ 0 white hygs	p-yellow- -gray	Cu(CN) ₂ yellow- -gray	p ₁ -pale blue p ₂ -dk.gray time-20hrs	KCN *	p-pale blue -gray time-22hrs
BiCl 3 white hygs	p ₁ -yellow- p ₂ -gray time-20hrs	Cu ₂ I ₂ white	p ₁ -black p ₂ -green time-18hrs	KCNÓ white	p-dk.brown time-20hrs
CaCl ₂ . ^{2H} 2 ^O white	p-gray time-22hrs	Fe(NH ₄) ₂ . (SO ₄) ₂ .6H ₂ O pale green- -blue	p _l -yellow p ₂ -brown time-18hrs.	KC2 ^H 3 ^O 2 white	p-dk.gray time-20hrs
Ca(OH) ₂ white	p-dk.gray time-22hrs	Hg.K.(CN) ₃ white	p _l -black p ₂ -gray time-20hrs	K ₂ Cr ₂ 07 red-orange	p-dk.violet time-16hrs
Ca ₃ (PO ₄) ₂ white	p-dk.gray time-22hrs	Hg ₂ S red	p-brown time-20hrs	K ₃ Fe(CN) ₆ dk. orange	p-brown time-16hrs
CaS white	p-black time-24hrs	KBr white	p-yellow time-20hrs	K ₄ Fe(CN) ₆ . 3H ₂ 0 pale yellow	p-green- -blue time-16hrs
CuCl ₂ .2H ₂ O green-blue	p ₁ -green p ₂ -blue time-18hrs	KCl white	p-pale blue-gray time-18hrs	KF white hygs	p-black

Table 5.1 Solid-solid reactions of inorganic compounds

R ₂ R ₂	AgNO3 white	R ₂ R ₂	AgNO3 white	R ₁ R ₂	AgNO ₃ white
KHCO3 white	p-dh gray time 20hrs	2	p-pale yellow	NH ₄ I dk.yellow hygs	p-pale yellow time 1hrs
KI white hygs	p-yellow tîme l6hrs	NaSCN white hygs	p _l -dk. yellow p ₂ -gray time 22hrs	$(NH_4)_2SO_4$ white	p-pale blue- gray time 22hrs
MnCl ₂ .4H ₂ 0 rose	p-gray time 18hrs	Na ₂ SO ₃ .7H ₂ O white hygs	p-dk brown	SbCl ₃ white hygs	p ₁ -gray p ₂ -yellow time 20hrs
hygs NaCl white	p-pale blue-gray time 18hrs	NH ₄ C1 white	p-pale blue-gray time 19hrs	SrCO3 white	p-dk gray time 20hrs
Na ₂ CO3 white	p-pale blue-gray time 18hrs	(NH ₄) ₂ CO ₃ white hygs	p ₁ -yellow p ₂ -gray time lhrs	Sr(OH) ₂ . 8H ₂ O white	p-black time lOhrs
Na2 ^{C2^O4 white}	p-orange yellow time 18hrs	(NH ₄) ₂ CrO ₄ dk.yellow	p-black time 5min	SnCl ₂ .2H ₂ 0 white	p-red- brown time 10min
Na HASO4. 12H.0 white	p-dk.brown time 24hrs	(NH ₄) ₂ C ₄ H ₄ C white	p-black time 20hrs	TiO ₂ white	p-dk.gray time 12hrs
NaH ₂ FO ₄ . 12H ₂ O white	p-yellow time 16hrs	NH ₄ F white hygs	p ₁ -yellow p ₂ -gray time lhrs	ZnCl ₂ white hygs	p-gray time 16min

Ro	Ag ₂ SO ₄	R ₂	Ag ₂ S0 ₄	R ₂	Ag ₂ SO ₄
	white	R ₂	white	R ₂	white
BaBr ₂ .2H ₂ 0 white hygs	p-yellow- gray	Cu ₂ Cl ₂ yellow- green	p ₁ -dk.green p ₂ -pale blue time 15hrs	Cr ₂ 0 ₃ dk.red hygs	p-black time 15hrs
CaS	p-black	CdI ₂	p-yellow	PbI ₂	p-black
white	time 22hrs	white	time 24hrs	yellow	time 18hrs

Table 5.1 (Continued)

				and mark	
R2 R1	AgNO ₂ white	R ₂ R ₂	AgNO ₂ white	R ₂ R ₂	AgNO ₂ white
	p-dk.brown time 22hrs	** m	p-yellow time 20hrs	Zn0 white	p-black tîme 2hrs

R ₂ R ₁	Al(NO3)3. 9H20 white hygs	R ₂ R ₂	Al(NO3)3. 9H20 white hygs	R ₂ R ₂	Al(NO3)3. 9H20 white hygs
CoCl ₂ .6H ₂ 0 red-violet hygs	Company of an a star of the second star of the seco	Hg.K.(CN) ₃ white	p-pale blue time 20brs	and the second sec	p-brown time 20hrs
CoF ₂ .4H ₂ O pink	p-red time 10min	HgO òrange		K ₃ Fe(CN) ₆ dk.orange	p-dk.green time 18hrs
CuO black	p-red-white time 20hrs	~ ~r	p-orange	K ₄ Fe(CN) ₆ . 3H ₂ 0 pale yellcw	p-blue

R ₂ R ₂	Al(NO ₃) ₃ . 9H ₂ 0 white hygs	R ₂	Al(NO3)3. 9H20 white hygs	R	Al(NO3)3. 9H20 white hygs_
LiC ₇ H ₅ O ₃ white	p-blue hygs time 15hrs	and the second second	p _l -red p ₂ -yellow	PbI ₂ dk.yellow	p-dk.violet time 16hrs

R ₂ R ₂	AlPO4 white	R ₂ R ₂	AlPO ₄ white	R ₂ R ₂	AlPO ₄ white
Cr ₂ 0 ₃ dk.red hygs	p-black	CuCl ₂ .2H ₂ 0 blue-green	p-yellow green time 22hrs	Na L2H20 white hygs	p-red brown time 16hrs
CoCl ₂ .6H ₂ 0 red-violet hygs		KI white hygs	p-pale brown time 24hrs		

R ₂ R ₂	BaBr ₂ .2H ₂ 0 white hygs	R ₂ R ₂	BaBr ₂ .2H ₂ O white hygs	R ₂ R ₂	BaBr ₂ .2H ₂ O white hygs
BiCl ₃ white	p-yellow time 5min	CuCl ₂ .2H ₂ O blue-green	p-black time 10m i n	Hg ₂ (NO ₂) ₂ white hygs	p-brown time 23hrs
$Bi(NO_3)_3$. 5H ₂ O white	p-pale yellow time 21hrs	CuSO ₄ blue	p-black time 10mîn	Hg ₂ 0 orange	p-pale brown time 21hrs
Cr ₂ 0 ₃ dk.red hygs	p-black	Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O green- yellow	p ₁ -dk. yellow p ₂ -brown time lOmin	Hg ₂ SO ₄ white	p-black time 20hrs

R ₂	BaCrO ₄ dk.yellow hygs	R ₁ R ₂	BaCrO ₄ dk.yellow hygs	R ₂	BaCrO ₄ dk.yellow hygs
BaCO3 white	p.black time lhrs	$\frac{Na_2C_4H_4O_6}{2H_2O}$ white	p-black	NaSCN white hygs	p-black

R ₂ R ₂	BaCl ₂ .2H ₂ 0 white	R ₂ R ₂	BaCl ₂ .2H ₂ 0 white	R ₂ R ₁	BaCl ₂ .2H ₂ O white
CoCl ₂ .6H ₂ O red-violet hygs		CoSO ₄ .7H ₂ 0 red	p-purple time 18hrs	CuSO ₄ .5H ₂ 0 blue	p-green time 15hrs
Co(NO ₃) ₂ . 6H ₂ O red hygs	p-blue- purple time 22hrs	CuSO ₄ blue-white	p-green time 20hrs	Fe(NH ₄) ₂ - (SO ₄) ₂ . 6H ₂ O pale blue- green	p-pale yellow time l8hrs

	Ba(C ₂ H ₃ O ₂) ₂ white		Ba(C ₂ H ₃ O ₂) ₂ white	-	$Ba(C_2H_3O_2)_2$ white
CrCl ₃ .6H ₂ O dk.green hygs		CoCl ₂ .6H ₂ O red-violet hygs		CuCl ₂ .2H ₂ 0 blue green	

R2 RJ	BaO ₂	R ₂	BaO ₂	R ₂	BaO ₂
	white	R ₂	white	R ₂	white
Cr ₂ 0 ₃ dk.red hygs	p-black	CoCl ₂ .6H ₂ O red-violet hygs	p-black time lOmin	6H20 red	p ₁ -brown p ₂ -green time 10min

R ₂ R ₂	BaO white	R ₂ R ₂	Ba0 white	R2 RI	BaO white
CdI2 white	p-yellow- ~brown time 19hrs.	HgCl ₂ white	p-brown time 10min.	MnCO3 brown	p-brown time 16hrs.
Co(NO ₃) ₂ . 6H ₂ O hygs.	p-blue- -violet time 5min.	MnCl ₂ .4H ₂ O rose hygs.	p-brown time lOmin.	SnCl ₂ .2H ₂ 0 white hygs.	p ₁ -yellow p ₂ -brown time 24hrs.

R	Ba(OH)2.	R	Ba(OH)2.	R ₁	Ba(OH) ₂ .
R2	8H20	R ₂	8H20	R ₂	8H20
	white		white		white
Co(NO3)2.	p-black	Hg_(NO2)2	p-brown	MnSOL.4H20	p-brown
.6H_0	time 30min.	white	time 20min.	pink	time 24hrs.
red hygs.		hygs.		hygs.	
HgCl ₂ white	p-brown time 20min.		p-brown time 20min.		
		hygs.		L	1

				Contraction of the second	
R ₁ R ₂	BaS white gray	R ₁ R ₂	BaS white gray	R ₂ R ₂	BaS white gray
BiCl ₃ white hygs.	p-yellow- -brown time 20min.	.6H20 red	p ₁ -pink p ₂ -brown time lhrs.	KF white hygs,	p-gray time 5min.
Cr ₂ 0 ₃ dk.red hygs.	p-black	CuCl ₂ .2H ₂ O blue-green	p-black time 10min.	MnCl ₂ .4H ₂ O rose hygs.	p-gray time 20hrs.

R ₂	BaSO ₄	R ₂	BaSO ₄	R ₂	BaSO ₄
R ₂	white	R ₂	white	R ₂	white
KI white hygs.	p-yellow time 18hrs.	NaI.2H ₂ O white hygs.	p-yellow time 20hrs.	NH ₄ I dk.yellow hygs.	p-yellow time 20hrs.

R ₂ R ₂	BiCl ₃ white	R ₂ R ₂	BiCl ₃ white	R ₂ R ₂	BiCl 3 white
CaS white	p-yellow time 18hrs.	KI white hygs.	p ₁ red p ₂ =yellow time 24hrs.	NaI.2H ₂ O white hygs.	p ₁ -orange p ₂ -black p ₃ -yellow time 24hrs.
Hg ₂ SO ₄ white	p-yellow time 20hrs.	MnCO ₃ brown	p ₁ -brown p ₂ -white time 22hrs.	SrCO ₃ white	p-yellow tîme 15hrs.
Hg.K.(CN) ₃ white	p-blue- white time 20hrs.	NaSCN white hygs.	p-orange	SnCl ₂ .2H ₂ 0 white	p _l -gray p ₂ -yellow time 23hrs.

R2 R1	CaBr ₂ .6H ₂ O white hygs.	R ₂ R ₂	CaBr ₂ .6H ₂ O white hygs.	R ₁ R ₂	CaBr ₂ .6H ₂ O white hygs.
Cr ₂ 0 ₃ dk.red hygs.	p-black	CuCl ₂ .2H ₂ O blue-green	p-black	CuSO ₄ blue-white	p-black
CoCl ₂ .6H ₂ O red-violet hygs.		CuCO ₃ . Cu(OH) ₂ pale blue- -white	p-black		

R ₂ R ₂	Bi(NO ₃) ₃ . 5H ₂ 0 white	R ₂ R ₂	Bi(NO ₃) ₃ . 5H ₂ O white	R ₂ R ₂	Bi(NO3)3. 5H20 white
Nal.2H ₂ 0 white hygs.	p-red orange time 15hrs.	NaSCN white hygs.	p-dk.yellow	SnCl ₂ .2H ₂ 0 white	p-orange- -yellow

R ₁	^{Bi} 2 ⁰ 3	R ₂	Bi ₂ 0 ₃	R ₂	^{Bi} 2 ⁰ 3
R ₂	yellow	R ₂	yellow	R ₂	yellow
CoCl ₂ .6H ₂ 0 red-violet hygs.	p-gray time 16hrs.	$\frac{\text{Sr(NO}_3)_2}{4\text{H}_2\text{O}}$ white	p-pale brown time 20 hrs	SnCl ₂ .2H ₂ O white	p-dk.gray time 18hrs.

R ₂	BiOCl	F1	BiOCl	R ₂	BiOCl
R ₂	white	R2	white	R ₂	white
KI white hygs.	p ₁ -red p ₂ -yellow time 15hrs.	NaSCN white hygs.	p-orange -yellow	Na L2H ₂ 0 white hygs.	p-yellow time lhrs.

R2	CaCl ₂ .2H ₂ O	R ₁	CaCl ₂ .2H ₂ O	R ₂	CaCl ₂ .2H ₂ O
	white	R ₂	white	R ₂	white
CoCl ₂ 6H ₂ 0 red-violet hygs.		CoSO ₄ .7H ₂ O red	p-blue time l2hrs.	CuSO ₄ blue-white	p-green
$Hg_2(NO_2)_2$	p-dk.gray	KCN	p-brown	K ₃ Fe(CN) ₆	p-pale
white	time 24hrs.	white	time 18hrs.	dk.orange	time 18hrs.

R ₂	CaC ₂ 0 ₄	R ₂	CaC204	R ₁	CaC ₂ O ₄
R ₂	white	R ₂	white	R ₂	white
4	p-dk.brown time 22hrs.	1 - ~	p-dk.brown time 22hrs.		p-orange time lhrs.

R ₂ R ₂	$Ca(C_2H_3O_2)_2$ $2H_2O$ white	R ₂ R ₂	$Ca(C_2H_3O_2)_2$ 2H_2O white	R ₂ R ₂	Ca(C ₂ H ₃ O ₂) ₂ . 2H ₂ O white
CoCl ₂ .6H ₂ O red-violet hygs.	Star & set of the set	CuCl ₂ ,2H ₂ O blue green	p-green timeo5min.	Cu2Cl2 yellow- green	p-dk.green time 22hrs.
CuSO ₄ blue- white	p-green- -yellow	Fe(NO ₃) ₃ . H ₂ O yellow - brown hygs.	p-dk brown		

R ₂ R ₂	Ca(OH) ₂ white	R ₂ R ₂	Ca(OH) ₂ white	R ₂ R ₂	Ca(OH) ₂ white
Cr ₂ 0 ₃ dk.red hygs.	p-yellow time lhrs.	Co(NO ₃) ₂ . 6H ₂ O red hygs.	p-black time 15min.	CuBr ₂ dk.brown hygs.	p-blue time 20hrs.
CuCl ₂ .2H ₂ O	p-green time 15min.	Cu(NO3)2. 6H20 blue hygs.	p-green time lhrs.	Hg ₂ (NO ₂) ₂ white hygs.	p-red- -brown
HgCl ₂ white	p-black time 24hrs.	MnCl ₂ .4H ₂ 0	p-brown time 20hrs.	MnSO ₄ .4H ₂ O pink hygs.	p-brown time 22hrs.

RJ	CaS gray-white	R ₂ R ₂	CaS gray-white	R ₁ R ₂	CaS gray white
Cr203	p-black time 30min.	CoCl ₂ .6H ₂ 0 red-violet hygs.	p-brown time 22hrs.	CoF ₂ .4H ₂ 0 pink	p-brown time 20hrs.
CuBr ₂ dk.brown hygs.	p-brown time 20hrs.	CuCl ₂ .2H ₂ 0	p-pale green time 22hrs.	$Fe_3(PO_4)_2$. 8H ₂ Occu dk - green	p-black time 30hrs.
Fe(NO ₃) ₃ brown hygs.		Hg ₂ (NO ₂) ₂ white hygs.	p-dk. gray time 20hrs.	NH4I	p-yellow time 20hrs.
Pb(C2H302)2 3H20 white	and and the second se	SPC13	p-orange time 21 hrs	SnCl ₂ 2H ₂ 0 white	p-dk.gray time lhrs.

R ₂	CaF2	R ₂	CaF ₂	R ₂	CaF ₂
R ₂	white	R ₂	white		white
Cr ₂ 0 ₃ dk.red hygs.	p-yellow time 20hrs	CuBr ₂ dk.brown hygs	-	CuCl ₂ .2H ₂ O blue green	p-green time 22hrs

R ₂ R ₂	CdBr ₂ white	R ₁ R ₂	CdBr ₂ white	R ₂ R ₂	CdBr ₂ white
Ag2S04 p-	p-black time 20hrs.	Cr ₂ 0 ₃ dk.red hygs.	p-black	$Na_2S_2O_3$. $7H_2O$ white	p-yellow time 22hrs.
				hygs.	

R ₂ R ₂	CaO white	R ₂ R ₂	CaO white	R ₁ R ₂	CaO white
Co(NO ₃) ₂ . 6H ₂ 0 red hygs.	p-dk.violet -green time 30min.	CuBr ₂ red-brown	p-pale blue time 18hrs.		p ₁ -pale blue p ₂ -green time 12hrs.
HgCl ₂ white	p-red brown time 23hrs.		p _l -black p ₂ -yellow time 23hrs.	NH ₄ I dk.yellow hygs.	p-black time lhrs.

R ₁	CdS	RI	CdS orange	R ₁ R ₂	CdS orange
R ₂ Cr ₂ (SO ₄) ₃ . 18H ₂ O dk.green hygs.	orange p-brown time 24hrs.	R ₂ CuCl ₂ .2H ₂ O blue-green	p-dk.yellow time 30hrs. min.	Hg.K.(CN)3	p-black time 22hrs.
Hg ₂ (NO ₂) ₂ white hygs.	p _l -orange p ₂ -black	SnC1 ₂ .2H ₂ 0 white	p-black time 23hrs.		

	And a lite of the second s				
R ₂	CoSO ₄ .7H ₂ O	R ₁	CoSO ₄ .7H ₂ O	R ₁	CoSO ₄ .7H ₂ O
R ₂	red-white	R ₂	red-white	R ₂	red-white
Hg.K.(CN) ₃	p-green	KCN	p-brown	KCNO	p-blue
white	time 20hrs.	white	time 20hrs.	white	time 20hrs.
КС2 ^H 3 ^O 2	p ₁ -blue p ₂ -purple time lhrs.	NaH ₂ PO ₄ . 12H ₂ O white	p-purple time 20hrs.	Na ₂ S ₂ O ₃ . 7H ₂ O white hygs.	p-blue time lmin.

R ₂ R ₂	CoCl ₂ .6H ₂ O red-violet hygs.	R ₁ R ₂	CoCl ₂ .6H ₂ 0 red-violet hygs.	R ₂ R ₂	CoCl ₂ .6H ₂ O red-violet hygs.
Ca(NO ₃) ₂ . 4H ₂ Owhite hygs.		CuCl ₂ .2H ₂ O blue-green	p-brown time 23hrs.	Cu ₂ Cl ₂ yellow- green	p-dk.brown time 30min.
CuSO4	p-green time 20h rs.	CuSO ₄ .5H ₂ O blue	p-green -yellow time 20hrs.	Hg.K.(CN)3 white	p-brown time 20hrs.
Hg ₂ (NO ₂) ₂ white hygs.	p-orange red time 10hrs.	HgO orange	p-purple time l&hrs.	Hg ₂ SO ₄ white	p _l pink p ₂ -pink- -purple time 22hrs.
KBr white	p-purple time lhrs.	KCNO white	p-blue time lOmin.	K ₂ Cr ₂ 0 ₄ yellow	p-brown time 30min.
KCl white	p-blue- -purple time lhrs.	K ₂ C ₂ O ₄ .H ₂ O white	p-pink- -purple time lbrs.	KCN white	p-brown time lOmin.
KC2H302 white	p-blue purple time lhrs.	K ₂ Cr ₂ O ₇ red-orange	p-black time 20hrs.	KF white hygs.	p _l -blue purple p ₂ -red time lhrs.
KHCO3 white	p-purple time lhrs.	KNO3 (white	p-blue -purple time lhrs,	K ₂ SO ₄ white	p-blue- -violet time 20hrs.
$Mg(BO_2)_2$. $8H_2O$ white	p-pink- -purple time 23hrs.	MgC204. 2H20 white	p-pink- -violet time 23hrs.	$\frac{\text{Mg}_{3}(\text{PO}_{4})_{2}}{4\text{H}_{2}\text{O}}$ white	p-purple time lhrs.

P ₁ R ₂	CoCl ₂ .6H ₂ 0 red-violet hygs.	R ₁ R ₂	CoCl ₂ .6H ₂ O red-violet hygs.		CoCl ₂ .6H ₂ O red-violet hygs.
MgS04.7H20 white	p-purple	MnS04.4H20 pink hygs.	p-red pink	Na2003 white	p-purple time 23hrs.
$\frac{Na_2C_4H_2O_6}{2H_2O}$ white	p-blue- -purple time 23hrs.	Nal.2H ₂ 0 white	p _ī green' p ₂ -black	Na ₂ S ₂ O ₃ . 7H ₂ O white hygs.	p-blue
NaSCN white	p- ·blud	Na ₂ HAs0 ₄ . 12H ₂ 0 white:	p-dk.violet time 23hrs.		p-purple time 24hrs.
hygs. (NH ₄) ₂ C ₂ O ₄ white	p-purple time lmin.	(NH ₄) ₂ CrO ₄ dk.yellow	p-black time 15min.	(NH ₄) ₂ CO ₃ white hygs.	p-green time lmin.
(NH ₄) ₂ C ₄ HC H	p-blue time lhrs.	NH ₄ I dk.yellow hygs.	p-dk.green time lmin.	(NH ₄) ₂ SO ₄ white	p-pink time 18hrs.
NiSO ₄ .6H ₂ green	0 p-brown time 20hrs	PbO	p ₁ -white p ₂ -red orange time 24hrs	Pb304 red orange	p ₁ -white p ₂ -orange time 24hrs.
SrCO3 white	p-black time 3min.	Sr(OH) ₂ . SH ₂ O white	p-black time 30mir	TiO ₂ white	p-purple time 18hrs.
Ti. K_2 - (C_2O_4)3 white	p-pink- -purple time 20hrs	5			

Table 5.1 (Continued)

Table 5.1 (Continued)

R ₁ R ₂	CoF ₂ .4H ₂ 0 pink	R ₂ R ₂	CoF ₂ .4H ₂ O pink	R ₂ R ₂	CoF ₂ .4H ₂ 0 pink
CuC12.2H20	p-brown. time lSh rs.	Hg.K.(CN) ₃ white	p-brown time 18hrs.	Hg ₂ (NO ₂) ₂ white hygs.	p-orange- -pink time lhrs.
KC2H3O2 white	p-blue- -purple time lhrs.	KCN white	p ₁ -yellow p ₂ dk.brown time 20hrs.	KCNO white	p-blue time 20hrs.
KHCO3 white	p-purple time lhrs.	KF white hygs	p _l blue- -purple time lhrs.	KI white hygs.	pīred pīyellow time 28hrs.
MnSO ₄ .4H ₂ O pink hygs.	p-red pink	NaSCN white	p-blue time 20hrs.	NaI.2H ₂ 0 white hygs.	p-red- -purple time lhrs.
(NH ₄) ₂ CO ₃ white hygs.	p-purple time 15min.	(NH ₄) ₂ CrO ₄ dk.yellow	p-black time 30hrs.	NH ₄ I dk.yellow hygs.	p-dk.yellow time lmin.

R ₂ R ₂	Co(NO ₃) ₂ . 6H ₂ O red hygs.	R ₂	Co(NO ₃) ₂ . 6H ₂ O red hygs.	R ₂	Co(NO ₃) ₂ . 6H ₂ O red hygs.
Hg.K.(CN) ₃ white	p ₁ -brown p ₂ -gray time 24hrs.	KBr white	p-purple time lhrs.	KC ₂ H ₃ O ₂ white	p _l blue- -purple time lhrs.
KC1. white	p _l -blue- time lhrs. p ₂ -purple, time l5hrs.	K ₂ Cr ₂ O ₇ red-orange	p _l -black tîme 20hrs.	KCN white	p ₁ -brown p ₂ -green time 22hrs.

R ₂	Co(NO3)2. 6H20 red hygs.	R ₂ R ₂	Co(NO ₃) ₂ . 6H ₂ O red hygs.	R ₂ R ₂	Co(NO ₃) ₂ . 6H ₂ 0 red hygs.
and the second s	pinavy blue	K ₂ C ₂ O ₄ .H ₂ O white	p-pink- -purple time lhrs.	KF white hygs.	p ₁ -blue- -purple p ₂ -red time lhrs.
KHCO3 white	p-purple time lhrs.	Mg(B0 ₂) ₂ . 8H ₂ 0	p-pink- -purple time 18hrs.	MgCO3 white	p ₁ dk.pink p ₂ purple time 20hrs.
MgC_2O_4 . 2H ₂ O white	p-violet- -pink time 18hrs.	$Mg_3(PO_4)_2$. 4H ₂ O white	p-purple time lhrs.	MnCl ₂ .4H ₂ O pink hygs.	p-red-pink
Na ₂ ^{CO} 3 white	p-purple time 18hrs.	Na2 ^C 4 ^H 4 ^O 6. 2H2 ^O white	p-purple time 18hrs.	Na ₂ HASO ₄ . 12H ₂ O white	p-dk.violet time 18hrs.
NaH ₂ PO ₄ . 12H ₂ O white	p-purple time 20hrs.	NaI white hygs.	p ₁ brown p ₂ -orange time lhrs	NaSCN white hygs.	p-navy blue
NiSO ₄ .6H ₂ O green	p-brown time 23hrs.	SrC12.6H20	p ₁ -dk.pink p ₂ -purple time lhrs.	SrCO3 white	p-dk.green time lhrs.
Sr(OH) ₂ . 8H ₂ 0 white	p ₁ -dk.green p ₂ -black p ₃ -brown time lhrs.	n ZnO white	p-purple time 23hrs	•	

Table 5.1 (Continued)

R ₁ R ₂	Cr ₂ 0 ₃ dk.red hygs	R ₁ R ₂	Cr ₂ 03 dk.red hygs	R ₁ R ₂	Cr ₂ 03 dk.red hygs.
A1(C2H3O2)3 white	p-black	As ₂ 03 white	p-black	As ₂ S ₃ orange	p-black
CuCl ₂ .2H ₂ O blue green	p-dk.green	Cu ₂ Cl ₂ yellow- -green	p-black	Cu(CN) ₂ yellow- -gray	p-black time lmin.
FeC ₂ 0 ₄ . 2H ₂ 0 yellow	p-black	Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O yellow- -green	p-black	FeCO3 brown-white	p-black
Fe(NH ₄) ₂ - (SO ₄) ₂ . $6H_2O$ pale green blue	p-black	Fe ₃ (PO ₄) ₂ . 8H ₂ 000 dk.green	p-black	KCN white	p-yellow- ~orange time 23hrs.
KCNO white	p-yellow time 22hrs.	K ₂ C ₂ 0 ₄ .H ₂ 0 white	p-black time lmin.	K ₄ Fe(CN) ₆ . 3H ₂ 0 pale yellow	p-yellow time 23hrs.
MgC ₂ 0 ₄ . 2H ₂ 0 white	p-black	MgC ₄ H ₄ O ₆ . 4H ₂ O white	p-black	MnCl ₂ .4H ₂ 0 rose hygs.	p-black
MnCO3 brown	p-black	~MnC ₂ 0 ₄ . <i>M</i> H ₂ 0 pink	p-black	$\frac{\operatorname{Na}_2C_2H_4O_6}{\operatorname{2H}_2O}$ white	p-black
NaH ₂ PO ₄ . 12H ₂ O white	p-orange time lhrs.	NaF white	p-orange -yellow time 23hrs.	NaSCN white hygs.	p-black

R ₂ R ₂	Cr ₂ 03 dk.red hygs.	R ₂	Cr2 ⁰ 3 dk.red hygs.	R ₂ R ₂	Cr203 dk.red hygs.
(NH ₄) ₂ C ₂ O ₄ white	I I I I I I I I I I I I I I I I I I I	$(NH_4)_2$ - $C_4H_4O_6$ white	p-black	NH ₄ I dk.yellow hygs.	p-black
PbC ₂ 04 white	p-black	PbC ₄ H ₄ O ₆ white	p-black	Ti. $K_2 = (C_2O_4)_3$ white	p-black

Table 5.1 (Continued)

R ₂ R ₁	CuBr ₂ black	R ₂ R ₂	CuBr ₂ black	R ₂ R ₂	CuBr ₂ black
CaSO ₄ white	p-brown	Cu ₂ I ₂ brown white	p-pale blue time 42hrs.	~	p-green time 24hrs.
Mg(BO ₂) ₂ . SH ₂ O white	p-green- -blue time 20hrs.	MgC ₄ H ₄ O ₆ . 4H ₂ O white	p-dk.brown time 20hrs.	Na ₂ HASO ₄ . 12H ₂ O whîtê	p ₁ -green p ₂ -blue time 20hrs.
NaH2P04. 12H20 white	p-blue time 20hrs.	NaSCN white hygs.	p-yellow- -brown	TiO ₂ white	p-red- -brown time 20hrs.
Ti.Kg (C204)3 white	p ₁ -red -brown p ₂ -black p ₃ -purple time 20hrs.		p-green- -blue time 20hrs.	Zn0 white	p-blue time 20hrs.

R ₂ R ₂	CuCl ₂ .2H ₂ 0 blue green	R ₁ R ₂	CuCl ₂ .2H ₂ O blue green	R ₁ R ₂	CuCl ₂ .2H ₂ 0 blue green
	p-dk.green time 10min.	Hg.K.(CN)3	p-black time 20hrs.	Hg ₂ (NO ₂) ₂ white hygs.	p-blue time 46hrs.
Hg0 orange	p-green- -white time 20hrs.	Hg2S04 white	p ₁ -blue p ₂ -green time 18hrs.	K2 ^{C20} 4 white	p _l -green p ₂ -blue time 20hrs.
KC2H302 white	p-blue time 30min.	K ₂ Cr ₂ O ₇ red-orange	p-green time lhrs.	KF white hygs.	p ₁ green- -white p ₂ pale blue time 24hrs.
K ₃ Fe(CN) ₆ dk.orange	p-brown time 20hrs.	K ₄ Fe(CN) 5 . 3H ₂ O pale yellow	p-green time 30min.	KHCO3 white	p-green time lhrs.
KMnO ₄ dk.purple	p-brown time 20hrs.	KNO3	p-yellow time lhrs.	K ₂ SO ₄ white	p-green time 20hrs.
LiC ₇ H ₅ O ₃ white	p-yellow -green time 16h r s.	Mg(BO ₂) ₂ . 8H ₂ 0	p-yellow -green time 20hrs.	MgCO ₃ white	p-green -blue time 20hrs.
$MgC_4H_4O_6$. $4H_2O$ white	p-yellow -green time 20hrs.	Mg ₃ (PO ₄) ₂ . 4H ₂ 0	p-green -yellow time 20hrs.	MgS0 ₄ .7H ₂ 0 white	p ₁ -yellow- -green p ₂ -dk.green time 20hrs.
MnCl ₂ 4H ₂ 0 pink hygs.	p-yellow	MnC ₂ 0 ₄ . 3H ₂ 0 pink	p-green time 40hrs.	MnS0 ₄ .4H ₂ 0 pink hygs.	p-green time 15min.

R ₂ R ₂	CuCl ₂ .2H ₂ 0 blue green	R ₁ R ₂	CuCl ₂ .2H ₂ O blue green	R ₁ R ₂	CuCl ₂ .2H ₂ O blue green
Na ₂ C ₂ O ₄ white	p ₁ -green p ₂ -blue time lbrs.	Ne ₂ CO ₃ white	p-dk.green tîme l&hrs.	$Na_2C_4H_4O_6.$ 2H ₂ O white	p _l -green- -yellow p ₂ -pale -blue t ime 20hrs.
NaF white	p _l green- -yellow time 15hrs.	NaI.2H ₂ 0 white hygs.	p ₁ -brown p ₂ -dk.green	Na2 ^{HASO} 4. 12H2 ⁰ white	p ₁ dk.green p ₂ -navy -blue t ime 20hrs.
NaH2P04. 12N20 white	p ₁ -pale -blue time 23hrs.	Na ₂ SO ₃ .7H ₂ O white hygs.	p-black	NaSCN white hygs.	p-red brown
$(NH_4)_2CO_3$ white	p-blue	(NH ₄) ₂ CrO ₄ dk.yellow	p-red brown time 36hrs.		p-blue time 20hrs.
NH4F white hygs.	p-green time lmin,	NH ₄ I dk.yellow hygs.	p-black time 5min.	NiSO ₄ .6H ₂ 0 green	p-green- time 20hrs.
PbI ₂ yellow	p-dk.brown time 30min.	Sr(BO2)2.	p-green time 20hrs.	SrBr ₂ white hygs.	p-black time 5min.
SrC0 ₃ white	p-dk.green time lhrs.	Sr(NO3)2 white	p-pale yellow - -green time lhrs.	Sr(CH) ₂ . 8H ₂ 0 White	p ₁ -dk.green p ₂ -blue p ₃ pale blue time lhrs.
SnCl ₂ .2H ₂ 0 white	p-yellow time 20hrs.	TiO ₂ white	p-green time 20hrs.	Ti.K ₂ (GQ) ₃ white	p-green time 20hrs.

R ₁ R ₂	Cu ₂ Cl ₂ yellow- green	R ₂ R ₂	Cu ₂ Cl ₂ yellow- green	R ₁ R ₂	Cu ₂ Cl ₂ yellow- green
CaCO ₃ white	p-dk.green time 23hrs.		p-dk.green time 22hrs.	KBr white	p-black time 22hrs.
KCNO white	And the second	кс ₂ н ₃ 02	and a second sec	Mg(B0 ₂) ₂ .	p-yellow -green time 18hrs.
MgC ₂ 0 ₄ . 2H ₂ 0 white	p-yellow- -green time 20hrs.	MgCO ₃ white	p-yellow- -green time 20hrs.	$MgC_4H_4O_6$. 4H_2O white	p-yellow- -green time 18hrs.
		NaC ₂ H ₃ O ₂ white hygs.	p-navy blue time 18hrs. time 18hrs.	~	p-green- -yellow time 20hrs.
NaF white	P ₁ -yellow- -green p ₂ -yellow time 20hrs.	Na ₂ HAsO ₄ . 12H ₂ 0 white	p-navy blue time 20hrs.	1	p-green blue time lhrs.
Nal.2H20 white hygs.	p-dk.gray time 30min.	NaSCN	p-red brown	(NH ₄) ₂ CrO ₄ dk.yellow	p-black time 20hrs.
NH ₄ I dk.yellow hygs.	p-green blue	Ti.K ₂ (CN) ₃ white	p-yellow -green time 20hrs.	TiO ₂ white	p-yellow -green time 20hrs.
Zn(CN) ₂ white	p-black time 22hrs.	ZnO white	p-yellow- -green time 20hrs.		-

R ₁	Cu(CN) ₂	R ₂	Cu(CN) ₂	R ₁	Cu(CN) ₂
R ₂	yellow grey	R ₂	yellow grey	R ₂	yellow grey
HgCl ₂	p-blue	Hg.K.(CN) ₃	p-pale blue		p-pale blue
white	time 20hrs.	white	time 20hrs.		time 20hrs.
KCNO	p-blue	KHCO3	p-pale blue		p-green
white	time 20hrs.	white	time 30hrs.		time 30hrs.
NaCl white	p-black	NaI.2H_0 white hygs.	p-black	Na ₂ SO ₃ .7H ₂ O white hygs.	p-white time 30hrs.
SnCl ₂ .2H ₂ O white	p-green time 20hrs.	TiO ₂ white	p-pale time 20hrs.		

R1 R2	2CuCO ₃ . Cu(OH) ₂ pale blue- white	R ₂	2CuCO ₃ . Cu(OH) ₂ pale blue- white	R ₂	2 CuCO ₃ . Cu(OH) ₂ pale blue- white
kBr white	p-black time 20hrs.	KCNO white	p-blue time 20hrs.	NaH ₂ P04. 12H ₂ 0 white	p-blue time 20hrs.

R ₁	CuO	E1	CuO	R ₁	CuO
R ₂	black hygs.	E2	black hygs.	R ₂	black hygs.
6 6 6	p _l -blue p ₂ -yellow time 20hrs.	NaH ₂ P0 ₄ . 12H ₂ 0 white	p-blue time 22hrs.	1	p _l -green p ₂ -blue time 22hrs.

R ₂ R ₂	Cu(C ₂ H ₃ O ₂) ₂ 2H ₂ O navy blue	R ₂ R ₂	Cu(C ₂ H ₃ O ₂) ₂ 2H ₂ O navy blue	R ₁ R ₂	Cu(C2H3O2)2 2H2O n avy blue
K ₂ CrO ₄ yellow	p-black time 22hrs.	~ / ~	The second secon	KI white hygs.	p-dk.yellow NaH ₂ PO ₄ time 30min.
Na2C4H406 12H20 white	p-blue time 22hrs.	NaI.2H ₂ 0 white	p _l -dk. -yellow p ₂ -white	NaH2P04. 12H20 white	p-navy blue time 20hrs.
Na2 ^{SO} 3. 7H2 ^O white hygs.	p-yellow time 20hrs.	NaSCN white hygs.	p _l -blue p ₂ -brown- -white	(NH ₄) ₂ CO ₃ white hygs.	p-blue time 15min.
NH ₄ I yellow hygs.	p-black time 15min.	SrBr ₂ white hygs.	p-black time 30min.		

R ₂ R ₂	Cu(NO3)2. 6H20 blue hygs.	R ₂ R ₂	Cu(NO ₃) ₂ . 6H ₂ O blue hygs.	R ₂ R ₂	Cu(NO ₃) ₂ . 6H ₂ 0 blue hygs.
Cu ₂ 0 red	p-green time 20hrs.	1 20 20	p-navy blue time 20hrs.	-	p-pale blue time 20hrs.
MgC ₂ O ₄ . 2H ₂ O white	p-navy blue time 20hrs.	MgSO47H20		Ne ₂ 04 ^H 406. 2H ₂ 0 white	p-blue time 20hrs.
Na ₂ HA.SO ₄ . 12H ₂ O white	p-blue time 20hrs.	$\frac{\operatorname{NaH_2PO}_4}{\operatorname{12H_2O}}$ white	1	NaSCN white hygs.	pidk.blua p ₂ -black

Table 5.1 (Continued)

R ₂	Cu ₂ I ₂	R ₂	Cu2I2	R ₂	Cu ₂ I ₂
R ₂	brown-white	R ₂	brown-white	R ₂	brown-white
K2C2O4	p-blue	KCN	p-green	KCNO	p-green
white	time 42hrs.	white	time 18hrs.	white	time 18hrs.
KHCO3 white	p _l -blue p ₂ -green time 20hrs.	MnSO ₄ .4H ₂ O pink hygs.	p-dk.grey time 22hrs.	Na ₂ CO ₃ white	p-blue time 30hrs.

R ₂ R ₂	CuSO ₄ .5H ₂ O blue	R ₁ R ₂	CuSO ₄ .5H ₂ O blue	R ₁ R ₂	CuSO ₄ .5H ₂ O blue
KBr white	p-black time 20hrs.	KCNO white	p-blue time 22hrs.	KI white hygs.	p-brown time 5min.
NaCl white	p-yellow- -blue time 20hrs.	NaI.2H ₂ 0 white hygs.	p- r ed brown	NaH ₂ PO ₄ . 12H ₂ O white	p-pale- -blue time 18hrs.
NaSCN white hygs.	p-black time 5min.	(NH ₄) ₂ CO ₃ white hygs.	p-blue	(NH ₄) ₂ CrO ₄ dk.yellow	p-red brown time 36hrs.
NH ₄ I dk.yellow hygs.	p-brown	SrCl ₂ .6H ₂ 0 white	p-green time 22hrs.		

Table 5.1 (Continued)

R ₂	CuSO ₄ blue-white	R ₁ R ₂	CuSO ₄ blue-white	R ₁ R ₂	CuSO ₄ blue-white
Hg ₂ (NO ₂) ₂ white	p-pale blue time 15min.	KCl	p-green time 20hrs.	KC2H302 white	p _l -green p ₂ -blue time 22hrs.
KCN white	p ₁ -yellow p ₂ -green p ₃ -gray time 24hrs.	KCNO white	p-green- -blue time 22hrs.	KI white hygs.	p-dk.brown time 2min.
MnCl ₂ .4H ₂ O pink hygs.		Nal.2H2 ⁰ white hygs.	p ₁ -brown p ₂ -black	NaSCN white hygs.	p-black time lOmin.
Na ₂ SO ₃ . 7H ₂ O white hygs.	p-yellow brown time 20hrs.	(NH ₄) ₂ CrO ₄ dk.yellow	p-dk. blue time 22hrs.	(NH ₄) ₂ CO ₃ white hygs.	p-blue- purple
NH ₄ F white hygs.	p-pale blue time 22hrs.	1 7	p-brown	$\frac{\mathrm{Sr(BO}_2)_2}{5\mathrm{H}_2\mathrm{O}}$ white	p-dk.brown time 22hrs
SrBr ₂ white hygs.	p-black	SrCl ₂ .6H ₂ 0 white	p ₁ -green p ₂ -yellow- -green time 22hrs	SnCl ₂ .2H ₂ O white	p-yellow time 20hrs.

R ₂	Cu ₂ 0	R ₂	Cu ₂ 0	R ₂	Cu ₂ 0
	black	R ₂	black	R ₂	black
MgC ₂ 0 ₄ . 2H ₂ 0 white	p-dk.green -white time 22hrs.	white	p-dk.red time 18hrs.	SnCl ₂ .2H ₂ O white	p-green time 20hrs.

Table l'et (composition)	Table 5.1	(Continued)
--------------------------	-----------	-------------

				K	
	Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O yellow green		Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O yellow green		Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O yellow green
)		ксі	p ₁ -yellow p ₂ -brown time 22hrs.	KCN white	p ₁ -red brown p ₂ -white time 20hrs.
KC2 ^{H30} 2 white	p-brown tîme lhrs.			KF white hygs.	p _l yellow- p ₂ -white time lhrs.
KI white hygs.	p-brown time 30min.	1	p-black time 16hrs.		p-yellow time 22hrs.
NaCl white	p-yellow time 24hrs.		p-dk. brown time 22hrs.	11	p-brown time 23hrs.
NaH ₂ PO ₄ . 12H ₂ O white	p-whîte tîme 22hrs.	Nal.2H20	p-brown	NaNO ₃ white	p-yellow time 18hrs.
Na ₂ SO ₃ .7H ₂ white hygs.	O∙p-yellow time 20hrs.	(NH ₂)2003	p-yellow. time lmin.	(NH ₄);CrO ₄ dk.yellow	p-brown time 20hrs.
NH ₄ I	p-black time lmin.			SnCl ₂ .2H ₂ 0 white	p-yellow time l6hrs.

R ₂ R ₂	FeC ₂ 0 ₄ . 2H ₂ 0 yellow	R ₂ R ₂	FeC ₂ O ₄ . 2H ₂ O yellow	R ₂ R ₂	FeC ₂ 0 ₄ . 2H ₂ 0 yellow
Hg.K.(CN)3 white	p-brown time 18hrs.	KCNO white	p-red time 16hrs.	KF white hygs.	p-black time 18hrs.

R ₂ R ₂	Fe(NH ₄) ₂ - (SO ₄) ₂ .6H ₂ O pale blue	R ₂ R ₂	Fe(NH ₄) ₂ - (SO ₄) ₂ .6H ₂ 0 pale blue	R ₂ R ₂	Fe(NH ₄) ₂ - (SO ₄) ₂ .6H ₂ O pale blue
HgCl ₂ white	p-red brown time 24hrs.		p-brown time 16hrs.	KB r white	p-yellow time 20hrs.
KC1 white	p-yellow time 22hrs.	KCN white	p _l -yellow p ₂ -green time 20hrs.	KC2 ^{H30} 2 white	p ₁ -black p ₂ -orange tîme 23hrs.
KCNO white	p-brown time 18hrs.	KF white hygs.	p-pale brown	KHCO ₃ white	p-red time 24hrs.
KI white hygs.	p-yellow- -orange time 20hrs.	Mg(BO ₂) ₂ . 8H ₂ 0	p-dk.yellow time 22hrs.		p-yellow time20hrs.
MnCl ₂ .4H ₂ O rose hygs.	-	Na ₂ CO ₃ white	p-dk.brown time 20hrs.	1 ~ / ~	p-brown time 23hrs.
Nal.2H20 white hygs.	p-yellow- -brown time 22hrs.	NaH ₂ PO ₄ . 12H ₂ O white	p ₁ -black p ₂ -white time 22hrs.	NaN03 white	p-orange time 24hrs.

Table 5.1 (Continued)

	Fe(NH_4) ₂ - (SO ₄) ₂ .6H ₂ O pale blue	 Fe(NH ₄) ₂ - (SO ₄) ₂ .6H ₂ O pale blue	R ₂	Fe(NH ₄) ₂ - (SO ₄) ₂ .6H ₂ O pale blue
1 m	p-red brown time 32hrs.	 p-green- -yellow time 23hrs.	$\frac{\text{Sr(NO}_3)_2}{4H_2}$ white	p-dk.yellow time 20hrs.

R ₂ R ₁	Fe ₃ (PO ₄) ₂ . 8H ₂ O white-blue	R ₂ R ₁	Fe ₃ (PO ₄) ₂ . 8H ₂ O white-blue	R ₁ R ₂	Fe ₃ (PO ₄) ₂ . SH ₂ O white-blue
Cr2 ⁰ 3 dk.red hygs.	p-black	Hg.K.(CN) ₃ white	p-red brown time 23hrs.		p-yellow time 18hrs.
KCNO white	p-yellow- -brown time 18hrs.	KF white hygs.		Nal.2H ₂ 0 white hygs.	p-yellow time lhrs.

R ₂ R ₂	FeSO ₄ .7H ₂ O green-white		FeSO ₄ .7H ₂ O green-white	R ₁ R ₂	FeS04.7H20 green-white
KCl white	p-yellow time l8hrs.	KCN white	p ₁ -green p ₂ -white time 22hrs.	KC2H302 white	p-brown time lhrs.
KF white hygs.	p ₁ -black p ₂ -brown time lhrs	MnCl ₂ .4H ₂ O rose hygs.	p-yellow time 21hrs.	NaH ₂ PO ₄ . 12H ₂ O white	p-black time 22hrs.
Nal.2H ₂ 0 white hygs.	p-yellow -brown time 18hrs.	SnCl ₂ .2H ₂ 0 white	p-green time 16hrs.	Zn(CN) ₂ white	p-white time 21hrs.

R ₁	HgCl ₂ white	R ₂ R ₂	HgCl ₂ white	R ₁ R ₂	HgCl ₂ white
Ferric - Citrate brown hygs.	p-black time 24hrs.	Hg.K.(CN) ₃ white	p-yellow time 20hrs.	HgO orange	p-dk.gray time 20hrs.
KCN white	p ₁ -brown p ₂ -green time 22hrs.	KCNO white	p-yellow time 20hrs.	K ₂ CrO ₄ yellow	p-dk.yellow time 16hrs.
KHCO3 white	p ₁ -yellow p ₂ -pink time 18hrs.	KF white hygs.	p ₁ -yellow p ₂ -orange	K ₄ Fe(CN) ₆ . 3H ₂ O pale yellow	p-pale green time 18hrs.
KI white hygs.	p ₁ -orange p ₂ -dk time lhrs.	LiC7H503 white	p-black	Mg(BO ₂) ₂ . 8H ₂ 0 white	p-orange time 20hrs.
MgC03.5H20 white	and the second second	MnCl ₂ .4H ₂ O rose hygs.	p-brown time 16hrs.	Na2 ^{CO} 3 white	p-dk.brown time 20hrs.
Na ₂ HASO ₄ . 12H ₂ 0 white	p-brown time 24hrs.	Nal.2H20	p-red orange time lbrs.	Na ₂ SO3. 7H20 white hygs.	p-dk.brown time lhrs.
NH4I dk.yellow hygs.	p-red orange	PbHA sO₄ white	p-orange yellow time 20hrs	SrCO3 white	p-brown- -white time 18hrs.
and a de latin been half and a start of the	p-dk.gray				

Trong of the (of the ofference)	Table	5.1	(Continued)
-----------------------------------	-------	-----	-------------

· R1 R2	HgI ₂ red orange	R ₁ R ₂	HgI ₂ red orange	R ₁ R ₂	HgI2 red orange
KCN white	p-white time lhrs	K ₄ Fe(CN) ₆ . 3H ₂ 0 pale yellow	p-brown time l8hrs.	Na ₂ CO ₃ white	p-yellow
Nal.2H ₂ O white hygs.	p-yellow time lhrs.	SnCl ₂ .2H ₂ O white hygs.	p-yellow time 20hrs.		

R ₂ R ₂	Hg.K.(CN)3 white	R ₂	Hg.K.(CN)3 white	R ₂ R ₂	Hg.K.(CN) ₃ white
As ₂ S ₃ orange	p ₁ -dk.brown p ₂ -yellow time l6hrs.	white	p-gray time 24hrs.	Hg ₂ SO ₄ white	p-black time 22hrs.
K ₂ Cr ₂ O ₇ orange	p-yellow time 16hrs.	MnC ₂ 0 ₄ . 3H ₂ 0 pink	p-brown time 18hrs.	NiCl ₂ .6H ₂ 0 green hygs.	p-blue -green time 16hrs.
Ni(NO ₃) ₂ . $6H_20^{-1}$ green hygs.	p-blue- -green time 16hrs.	SbCl ₃ white hygs.	p-blue time 60min.	Sb2S3 black	p-brown time 23hrs.

· · · ·	Hg ₂ (NO ₂) ₂ white hygs.		Hg ₂ (NO ₂) ₂ white hygs.		Hg ₂ (NO ₂) ₂ white hygs.
Al(OH) ₃	p-yellow	CdI ₂	p-red	CrCO ₃	p-black
white	time 20hrs	white	time 18hrs.	blue-gray	time 20hrs.

R ₂ R ₂	Hg2(NO2)2 white hygs.	R ₂ R ₂	Hg ₂ (NO ₂) ₂ white hygs.	R ₂ R ₂	$Hg_2(NO_2)_2$ white hygs.
Ferric- Citrate brown hygs.	p~black time 18hrs.	NH ₄ Cl white	p-white time 32hrs.	(NH ₄) ₂ CO ₃ white hygs.	p-grey
(NII ₄) ₂ CrO ₄ dk.yellow	p _l -orange p ₂ -black	(NH ₄) ₂ C ₂ O ₄ white	p-white time 32hrs.	$(MH_4)_2$ - $C_4H_4O_6$ white	p-balck time 34hrs.
NH ₄ F white hygs.	p-black time 40hrs.	NH ₄ I white hygs.	p _] -brown p ₂ -orange	(NH ₄) ₂ SO ₄ white	p-white time 42hrs.

R ₁ R ₂	Hg0 orange	R ₂ R ₂	Hg0 orange	R ₂ R ₂	Hg0 orange
KI white hygs.	p-orange- -yellow time lOmin.	MnCl ₂ .4H ₂ O rose hygs.	p-brown time 18hrs.	Nal.2H ₂ O white hygs.	p-orange time 23hrs.
Na ₂ SO ₃ . 7H ₂ O white hygs.	p _l -black p ₂ -orange time 22hrs.	NH ₄ I dk.yellow hygs.	p-violet time 20hrs.	NiCl ₂ .6H ₂ 0 green hygs.	p-black time 18hrs.
SrCl ₂ .6H ₂ 0 white	p-brown- -white time 18hrs.	SnCl ₂ .2H ₂ 0 white	p-dk.gray time 22hrs.		

Table 5.1	(Continued)
-----------	-------------

R ₂	Hg ₂ SO ₄ white	R ₁ R ₂	Hg2 ^{SO} 4 white	R ₁ R ₂	Hg ₂ SO ₄ white
KCN	p-black time lhrs.	KC2H302 white	p-brown time lhrs.	KCNO white	p-black time lhrs.
white KF white hygs.	p-black time lhrs.	KHCO3 white	p-black time 18hrs.	KI white	p ₁ dk.gray p ₂ -yellow p ₃ -green time 10min.
Na ₂ HASO ₄ . 12H ₂ O white	p-brown time 16hrs.	Nel.2H ₂ 0 white hygs.	p ₁ -black p ₂ -yellow p ₃ -red- -orange time 10min.	Na ₂ SO ₃ . 7H ₂ O white hygs.	p-black` time lhrs.
NaSCN white hygs.	p-black	(NH ₄) ₂ CO ₃ white hygs.	p-black time 5min.	(NH ₄) ₂ CrO ₄ dk.yellow	p-black time lhrs.
(NH ₄) ₂ ^{CO} ₂ white	p-black time lhrs.	$(M_4)_2^{-}$ -C ₄ H ₄ O ₆ white	p-black time lhrs.	NH ₄ F white hygs.	p-black time 10min.
NH ₄ I dk.yellow	p-black time lhrs.	(NH ₄) ₂ SO ₄ white	p-black time lhrs.	NiCl ₂ .6H ₂ 0 green hygs.	p-green -blue time lhrs.
hygs. Ni(NO ₃) ₂ . 6H ₂ O green hygs.	p-green- -blue time lhrs.	SrCl ₂ .6H ₂ O white	p-dk.gray time 20hrs	SnCl ₂ .2H ₂ O white	p-black time lhrs.
Zn(NO3)2 white hygs.	p-pale- -brown time lhrs.				

Table 5.1 (Continued)

R ₂ R ₂	K ₂ CrO ₄ yellow	R ₂ R ₂	K ₂ CrO ₄ yellow	R ₁ R ₂	K ₂ CrO ₄ yellow
MnCl ₂ .4H ₂ 0 rose hygs.	p-dk.brown	Na ₂ CO ₃ white	p-orange time 30hrs.	NaH ₂ PO ₄ . 12H ₂ O white	p ₁ -red- -orange p ₂ -yellow time lhrs.
NH ₄ F white hygs.	p-orange time lhrs	NiCl ₂ .6H ₂ 0 green	p-red brown time lhrs.	1 1 1	p-red brown time lhrs.
SrCl ₂ .6H ₂ 0 white	p-dk.yellow time 20hrs.	~ ~	p _l dk.yellow p ₂ -brown p ₃ -green time lhrs.	ZnCl ₂ white hygs	p-orange time lhrs.

R ₂ R ₂	K ₂ Cr ₂ O ₇ red orange	R ₂ R ₂	K2Cr207 red orange	R ₁ R ₂	K ₂ Cr ₂ O ₇ red orange
BaBr ₂ white hygs.	p-brown time 20hrs.	KCN white	p-yellow time 20hrs.	KC2H302 white	p-yellow time 20hrs.
KF white hygs.	p-yellow time 18hrs.	MnCl ₂ .4H ₂ 0 rose hygs.	p-red brown	MnSO ₄ .4H ₂ O pink hygs.	p-yellow -white time 20hrs.
NaCl white	p-yellow time 20hrs.	NaH2PO4.	p-yellow time 20hrs.	Na2C4H406.	p-red brown time 20hrs.
NaNO ₃ white	p-yellow time 20hrs.	NaSCN white hygs.	p ₁ -yellow p ₂ -brown	NiCl ₂ .6H ₂ 0 green hygs.	p-yellow time 18hrs.

Table 5.1	(Continued)
-----------	-------------

R ₂ R ₂	KCN white	R ₁ R ₂	KCN white	R ₁ R ₂	KCN white
Cr ₂ (SO ₄) ₃ dk.green hygs.	p-dk.brown time 90min.	K3Fe(CN)6	p-yellow- -green time 20hrs.	KMnO ₄ dk.purple	p ₁ -yellow p ₂ -brown time 20hrs.
MgSO ₄ .7H ₂ 0 white		MnCO3 brown	Printer and the second second	MnCl ₂ .4H ₂ O rose hygs.	p-black time 21hrs.
MnC ₂ 0 ₄ . 3H ₂ 0 pink	p ₁ -brown p ₂ -orange- -brown time lOhrs.	MnSO ₄ .4H ₂ O pink hygs.	p ₁ -red p ₂ -black time 18hrs.	NaH ₂ PO ₄ .12H0 white	p-brown time 20hrs.
NiCO ₃ green-	p-dk.yellow time 18hrs.		p-dk.yellow time l8hrs.	6 6	p ₁ -yellow p ₂ -pale blue time 18hrs.
Ni(NO ₃) ₂ . 6H ₂ O green hygs.	-	NISO ₄ .6H ₂ O green	p ₁ -yellow p ₂ -pale -blue time 10min.	Pb(N03)2 white	p-brown time 18hrs.

R ₂ R ₂	KCNO white	R ₂ R ₂	KCNO white	R ₁ R ₂	KCNO white
KMn0 ₄ dk.purple	p-yellow time l8hrs.	MnC ₂ 0 ₄ .3H ₂ O 3H ₂ 0 pink	p ₁ -yellow p ₂ -brown time lhrs.	NH ₄ I dk.yellow hygs.	p-red brown time lhrs.
NiSO ₄ .6H ₂ 0 green	p-yellow- -green time 16hrs.	SnCl ₂ .2H ₂ O white	p-black time 20hrs.		

R ₂ R ₂	KF white hygs.	R ₁ R ₂	KF white hygs.	R ₁ R ₂	KF white hygs.
(NH ₄) ₂ CrO ₄ dk.yellow	p ₂ -orange	NHCl ₂ .6H ₂ 0 green hygs.	p-yellow time lhrs.	Ni(NO ₃) ₂ . 6H ₂ 0 green hygs.	p-yellow time lhrs. time lhrs.
NiSO ₄ .6H ₂ O green	p-pale yellow time 24hrs.	PbI ₂ yellow	p-yellow -white time 20hrs.		

R ₂ R ₂	K3Fe(CN)6 red	R ₂	K3Fe(CN)6 rod	R ₁ R ₂	K3 ^{Fe(CN)} 6 red
Cr ₂ (SO ₄) ₃ . 18h ₂ 0 dk.green	p-brown time 90min.	KI white hygs.	p _l -black p ₂ -brown time 18hrs.	MnCl ₂ .4H ₂ 0 rose hygs.	p-red brown time 18hrs.
NaCl white	p-yellow time 21hrs.	Na ₂ CO ₃ white	p-yellow time 21hrs.	Nal.2H ₂ 0 white hygs.	p-yellow
NaSCN white hygs.	p ₁ -dk.green p ₂ -yellow- -orange time 20hrs.	white hygs.	p-yellow time 20hrs.	NH ₄ I dk.yellow hygs.	p-brown time lhrs.
NiCl ₂ .6H ₂ 0 green hygs.	p-brovm time 20hrs.	SrCl ₂ .6H ₂ 0	p-grcan- -yellow time 18hrs.	$\frac{\text{Sr(NO}_3)_2}{4\text{H}_20}$ white hygs.	p-yellow tîme 21hrs.

Table	5.1	(Continued)
of the party and the		

R ₂ R ₂	K ₄ Fe(CN) ₆ . 3H ₂ 0 pale yellow	R ₂	K ₄ Fe(CN) ₆ . 3H ₂ O pale yellow	R ₂	K ₄ Fe(CN) ₆ . 3H ₂ 0 pale yellow
MnCl ₂ .4H ₂ 0 rose hygs.	a state of the sta	NaSCN	and the second se	SnCl_2.2H20	p-green blue time 21hrs.

R ₂	KHCO3	R ₁	KHCO3	R ₁	KHCO3
R ₂		R ₂	white	R ₂	white
CrCl ₃ .6H ₂ 0 dk.green hygs.	p-blue -green	FeC ₂ 0 ₄ . 2H ₂ 0 yellow	p-red brown time 20hrs.	2 2	p-dk.gray time lhrs.

R ₂ R ₂	KI white	R ₁ R ₂	KI white	R ₂ R ₂	KI white
FeCO3 brown-	p-dk.purple time 18hrs.	MnCl ₂ .4H ₂ O	p-dk.yellow time 40min.	~ ~	p-brown time 20hrs.
MnSO ₄ .4H ₂ O pink hygs.		$Pb(BO_2)_2$. $2H_2O$ white	p-yellow time 23hrs.	PbCl ₂ white	p-yellow time lhrs.
	p-yellow time lhrs.	SbCl ₃ white	p ₁ -red p ₂ -orange time lhrs.	Sr(B0 ₂) ₂ . 5H ₂ 0 white	p-brown -white time 21hrs.
SnCl ₂ .2H ₂ 0 white	p-orange time lhrs.	Ti.K2- (C204)3 white	p-yellow time 24hrs.		

Table 5.1 (Continued)

R ₂ R ₂	K ₂ SO ₄ white	R ₁ R ₂	K ₂ SO ₄ white	R ₂	K ₂ SO ₄ white
NaSCN white	p-pale blue time lhrs.	- 4	p-dk.yellow time 20hrs.	6 6	p-green yellow
hygs.		hygs.		hygs.	time 18hrs.

R ₂ R ₂	MgS0 ₄ .7H ₂ 0 white	R ₂ R ₂	MgS0 ₄ .7H ₂ 0 white	ni si ⁿ tang Kas	
Cd(C2H302 .2H20) ₂ p-brown- -white	PbI ₂ dk.yellow	p-red brown time20hrs.		
white	time 30hrs.				C. A generation

R ₂ R ₂	MnCl ₂ .4H ₂ 0 rose hygs.	R ₁ R ₂	MnCl ₂ .4H ₂ O rose hygs.	R ₂ R ₂	MnCl ₂ .4H ₂ 0 rose hygs.
BaCO ₃ white	p-brown time lhrs.	KBr white	p-pale -brown time 18hrs.	Na ₂ CO ₃ white	p-pale -brown time 22hrs.
Nal.2H ₂ 0 white hygs.	p-yellow time lhrs.	(NH ₄) ₂ CrO ₄ dk.yellow	p-black time lhrs.	NH ₄ I dk.yellow hygs.	p-yellow time lhrs.
SrCO ₃ white	p-brown -white time lhrs.	Sr(OH) ₂ . 3H ₂ 0 white	p-dk.brown time lhrs.	ZnO white	p-brown -white time 24hrs.

Table 5.1 (Continued)

R ₁ R ₂	MnCO3 brown	R ₁ R ₂	MnCO3 brown	R ₁ R ₂	MnCO3 brown
CaCl ₂ .2H ₂ 0 white	p-dk.brown time	NaSCN white hygs.	p-black	NH ₄ I dk.yellow hygs.	p-red time 24hrs.
SnCl ₂ .2H ₂ 0 white	p-black	SrCl ₂ .6H ₂ 0 white	p-black time 20hrs.		

R ₂ R ₂	MnC ₂ 04. 3H ₂ 0 pink hygs.	R ₂ R ₂	MnC ₂ 0 ₄ , 3H ₂ 0 pink hygs.	R ₁ R ₂	MnC ₂ O ₄ . 3H ₂ O pink hygs.
Na ₂ CO ₃ white	p-brown time 21hrs.	Na ₂ SO ₃ . 7H ₂ O white hygs.	p _l -g re y p ₂ -yellow time 24hrs.	8H20	p-dk.brown time lhrs.

R ₂ R ₂	MnSO ₄ .4H ₂ O pink	R ₁ R ₂	MnSO ₄ .4H ₂ O pink	R ₁ R ₂	MnS0 ₄ .4H ₂ 0 pink
NaI .2H ₂ 0 white hygs.	p~dk.yellow time lhrs.	1	p ₁ -brown p ₂ -gray	(NH ₄) ₂ C ₂ O ₄ white	p-black
NH ₄ I dk.yellow hygs.	p-orange -yellow	SrCO ₃ white	p-dk.brown time lhrs.	Sr(OH) ₂ . 8H ₂ 0 white	p-dk.brown time 24hrs.
Zn(CN) ₂ white	p-brown -white time 32hrs.				

R ₂ R ₂	Na2C4H4O6 2H20 white	R ₂ R ₂	^{Na} 2 ^C 4 ^H 4 ^O 6 2H ₂ O white	R ₂ R ₂	Na ₂ C ₄ H ₄ O ₆ . 2H ₂ O white
(NH ₄) ₂ CrO ₄ dk.yellow	p-black time 24hrs.	NiCl ₂ 6H ₂ O green hygs.	p-yellow- -green time 20hrs.	Ni(NO3)2. 6H20 green hygs.	p-yellow- -green time 20hrs.

R ₂ R ₂	Nal.2H ₂ 0 white hygs.	R ₂ R ₂	NaI.2H ₂ 0 white hygs.	R ₂ R ₂	Nal.2H ₂ 0 white hygs.
KMnO4 dk.purple	p-yellow	(NH ₄) ₂ CrO ₄ dk.yellow	p _l -dk. -yellow p ₂ -black time lhrs.	NH ₄ F white hygs.	p-orange -yellow time 20hrs.
$Pb(BO_2)_2$. $2H_2O$ white	p-yellow time 24hrs.	PbCl ₂ white	p-yellow timw lhrs.	Pb(NO3)2 white	p-yellow time lhrs.
SbCl ₃ white	p-orange time lhrs.	SnCl ₂ .2H ₂ 0 white	p ₁ -red- -orange p ₂ -yellow		

R ₂ R ₂	Na2 ^{S20} 3. 7H20 white hygs.	R ₁ R ₂	Na2S203. 7H20 white hygs.	R ₂	Na2 ^{S20} 3° 7H20 white hygs.
CdCl ₂ white hygs.		Cu ₂ I ₂ brown-white	p-dk.brown time 30hrs.	4 6	p-black time lhrs.
Pb(BO ₂) ₂ . 2H ₂ O white	p-gray tîme 20hrs.	Pb(NO3)2 white	p-gr a y time 20hrs.	SnCl ₂ .2H ₂ 0 white	p-black time 30hrs

R1 R2	NaSCN white hygs.	R ₂ R ₂	NaSCN white hygs.	R ₁ R ₂	NaSCN white hygs.
	p-dk.yellow	CaF ₂ white	p-pale -brown time lbrs.	Cr(NO ₃) ₃ . 9H ₂ 0 green hygs.	p-black
CrCl ₃ .6H ₂ 0 green hygs.	p-red- -violet time 20hrs.	CoSO ₄ red-white	p-blue	NiCl ₂ .6H ₂ O green hygs.	p-black
and the second and second product the second	p-black	NiSO4.6H2O green	p-black	Pb(C2H3O2)3 3H20 white	p-red- -orange time 20hrs.
SbCl ₃ white	p-orange -yellow	^{T1.K} 2 ⁻ (C ₂ O ₄) ₃ white		FeSO ₄ .7H ₂ O green-white	p-red brown
FeC ₂ 0 ₄ . 2H ₂ 0 yellow	p-red brown	Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O yellow- -green	p-red brown	Fe ₃ (PO ₄) ₂ . 7H ₂ O dk.green	p-red brown
FeCO3 brown-	p-red brown	States - Annual Annua	p-red brown	Fe(NO3)3. 3H20 yellow hygs	p-red brown

 	(NH ₄) ₂ CO ₃ white hygs.	R ₁ R ₂	$(NH_4)_2^{CO}_3$ white hygs.	R ₁ R ₂	(NH ₄) ₂ CO ₃ white hygs.
CoS04.7H20		SnCl ₂ .2H ₂ O	*	PbI2	p-brown
red-white	time 24hrs.	white	time 23hrs.	AGTTOM	time 20hrs.

R ₂ R ₂	NaSCN white hygs.	R ₁ R ₂	NaSCN white hygs.	R ₁ R ₂	NaSCN white hygs.
	p-dk.yellow	CaF ₂ white	p-pale . -brown time lbrs.	Cr(NO3)3. 9H20 green hygs.	p-black
CrCl ₃ .6H ₂ 0 green hygs.		$cosO_4$ red-white	p-blue	NiCl ₂ .6H ₂ O green hygs.	p-black
	p-black	NiSO ₄ .6H ₂ O green	p-black	Pb(C2H3O2)3 3H20 white	p-red- -orange time 20hrs.
SbCl ₃ white	p-orange -yellow	Ti.K ₂ - (C ₂ O ₄) ₃ white	p-yellow time lhrs.	FeSO ₄ .7H ₂ O green-white	p-red brown
FeC ₂ O ₄ . 2H ₂ O yellow	p-red brown	Fe ₂ (C ₂ O ₄) ₃ . 5H ₂ O yellow- -green	p-red brown	Fe ₃ (PO ₄) ₂ . 7H ₂ O dk.green	p-red brown
FeCO3 brown-	p-red brown	States - Andreast Andreast - States - S	p-red brown	Fe(NO3)3. 3H20 yellow hygs	p-red brown

	(NH ₄) ₂ CO ₃ white hygs.	R ₁ R ₂	(NH ₄) ₂ CO ₃ white hygs.		(NH ₄) ₂ CO ₃ white hygs.
CoSO ₄ .7H ₂ O	p-black	SnCl ₂ .2H ₂ 0	p-brown	PbI ₂	p-brown
	time 24hrs.	white	time 23hrs.	yellow	time 20hrs.

Table 5.1 (Continued)

R ₂	(NH ₄) ₂ CrO ₄	R ₂	(NH ₄) ₂ CrO ₄	R ₁	(NH ₄) ₂ CrO ₄
R ₂	dk. yellow	R ₂	dk. yellow	R ₂	dk. yellow
BaBr ₂ .2H ₂ 0 white hygs.	p-yellow time 24hrs.	Ba(NO3)2 white	p-orange- -yellow time 36hrs.	KC2H302 white	p-orange time 42hrs.
NaCl	p-yellow	Na ₂ CO ₃	p-yellow	$\frac{\text{Sr(NO}_3)_2}{4H_20}$	p-yellow
white	time 18hrs.	white	time 24hrs.	white	time 24hrs.

R ₂ R ₂	NH ₄ I dk. yellow hygs.	R ₁ R ₂	NH ₄ I dk. yellow hygs.	R ₂ R ₂	NH ₄ I dk. yellow hygs.
Ca(OH) ₂ white	p-gr a y time 5min.	CaSO ₄ white	p-orange- -white time 18hrs.	CrCO ₃ blue-gray	p-black time 20hrs.
Fe ₃ (PO ₄) ₂ . .7H ₂ O dk.green	p-brown tîme 24hrs.	FeCO3 brown- -white	p-brown	SrCO ₃ white	p-black p ₂ -yellow- -white time lhrs.
SnCl ₂ .2H ₂ 0 white	p ₁ -yellow p ₂ -orange time lhrs.	ZnO white	p-yellow time 30hrs.		

R ₂	FbI ₂	R ₁	PbI ₂	R ₂	PbI ₂
R ₂	yellow	R ₂	yellow	R ₂	yellow
Fe(NO ₃) ₃ .	p-black	MgC ₂ 0 ₄ .	p-yellow	SnCl ₂ .2H ₂ O	p-black
H ₂ O		2H ₂ 0	time lährs.	white	time 22hrs.
yellow hygs.		white			

Table 5.	(Continued)
----------	-------------

R	NiCl ₂ .6H ₂ O	R ₂	NiCl ₂ .6H ₂ 0	R ₂	NiCl ₂ 6H ₂ 0
	green hygs.	R ₂	green hygs.	R ₂	green hygs.
CoCO ₃	p-black	Hg ₂ S	p-red	KBr	p-yellow
rose	time lhrs.	red	time 40hrs.	white	time lhrs.
KCl. white	p-green time 20hrs.	K2C2O4 white	p-green- -white time 20hrs.	Sr(OH) ₂ . ^{8H} 2 ^O white	p-dk.green time lShrs.

R ₁ R ₂	Ni(NO3)2. 6H20 green hygs.	R ₂ R ₂	Ni(NO3)2. 6H20 green hygs.	R ₂ R ₁	Ni(NO3)2. 6H20 green hygs.
KCl white	p-green- -yellow time lhrs.	K ₂ C ₂ O ₄ white	p-green- white time 21hrs.	K ₂ SO ₄ white	p-blue time 21hrs.
SrCl ₂ .6H ₂ 0 white	p-dk.green time 30hrs.		p-dk.green time 20hrs.	Ti.K ₂ - (C ₂ O ₄) ₃ white	p-blue- -green time 18hrs.

.

R ₂ R ₂	TiO ₂ white	R ₂ R ₂	Ti.K (C ₂ O ₄) 3 white	R ₂ R ₂	Zn(CN) ₂ white
Cu ₂ I ₂ brown- -white	p-green time 20hrs.	Cal ₂ yellow- -brown hygs.	p-dk -yellow time 24hrs.	CuCl ₂ .2H ₂ 0 blue green	
Cu(NO ₃) ₂ . 3H ₂ O navy blue hygs.	p-pale blue white time 23hrs.	LiC7 ^{H50} 3 white	p-yellow time 16hrs.		

Table 5.1 (Continued)

R ₂ R ₂	SnCl ₂ .2H ₂ O white	R ₂ R ₂	SnCl ₂ .2H ₂ 0 white	R ₁ R ₂	SnC1 ₂ .2H ₂ 0 white
BaC12.2H20 white	p-yellow- -orange time 24hrs.	BaS pale gray	p-dk.red- -brown time 5min.	Bi ₂ 0 ₂ 00 ₃ . H ₂ 0 white	p-grey time 22hrs
Ca(OH) ₂ white	p ₁ -brown- -white p ₂ -yellow time 23hrs.	2CuCO ₃ . Cu(OH) ₂ pale-blue- -white	p ₁ -dk. -green p ₂ -yellow- -green time 23hrs.	Fe(NH ₄) ₂ - (SO ₄) ₂ .6H ₂ 0 pale blue	p _l blue p ₂ -green time 16hrs.
Hg.K.(CN)3 white		K2 ^{Cr2⁰7 orange}	p-dk.green time lhrs.	KCN white	p _l -yellow p ₂ -g ray time 20hrs.
KC2H302 white	p ₁ -yellow p ₂ -red tîme 23hrs.	(NH ₄) ₂ CrO ₄ dk.yellow	p ₁ -green p ₂ -yellow -blue time 22hrs.	Mg(B0 ₂) ₂ . 8H ₂ 0 white	p-orange time 21hrs.
Na ₂ CO ₃ white	p-brown time 20hrs.	SrCO3 white	p-brown- -white time lhrs.	Sr(OH) ₂ . SH ₂ O white	p ₁ -yellow p ₂ -black time lhrs.
ZnO white	p-yellow- -brown time 16hrs.	TiO white	p-yellow time 22hrs.		

R ₁	SbCl ₃	R ₂	SbCl ₃	R ₂	SbCl ₃
R ₂	white hygs.	R ₂	white hygs.	R ₂	white hygs.
Al(NO ₃) ₃ . 9H ₂ 0 white hygs.	p-yellow time 5min.	SrCO ₃ white	p-pale- -yellow time lhrs.	26	p ₁ -yellow p ₂ -black time lhrs

Table 5.1 (Continued)

R ₂	Pb0	R ₁	SrCl ₂ .6H ₂ 0	R ₁	$\frac{\mathrm{Sr(NO_3)}_2}{4\mathrm{H}_2\mathrm{O}}$ white
R ₂	orange	R ₂	white	R ₂	
MgC ₄ H ₄ O ₆ . 4H ₂ O white	p-dk.grey time 23hrs.	CoF ₂ .4H ₂ O red	p ₁ -blue- -purple p ₂ -purple p ₃ -violet time 24hrs.	K ₂ Cr ₂ O ₇ red-orange	p-yellow time 20hrs

R ₂ R ₂	Zn(NO3)2 white		
K ₂ CrO ₄ yellow	p _l -yellow time lhrs.		
	p ₂ -orange time 20hrs.		

R ₁	ZnO white	RIR	ZnO white	R ₂ R ₂	ZnO white
Cr ₂ 0 ₃ deep red hygs.	p _l -orange- -yellow p ₂ -brown time 18hrs.	CuCl ₂ .2H ₂ 0 blue green		FeSO ₄ .7H ₂ O green-white	
Ti.K ₂ - (C ₂ O ₄) ₃ white	p-yellow time 20hrs.				

The coloured observation period of 816 reactions lasted **ab**cut two days. These were divided to be 131 instantaneous reaction (16%), three hours appearance 196 reactions (24%), one-day appearance 463 reactions (57%) and two-days 24 reactions (3%). The different colour products of 816 reactions could be classified into 688 one-product reactions (84%), 126 two-products reaction (15%), and 1% or 8 reactions for more than two products.

The number of colour products, which were produced in each pair of reactions, reported above was observed during work-time only, so any change that had appeared when the reaction were left overnight could be unable to inform. It was a pity for uncertain results which was unavoidable.

The process of ring method which was used to select reactions was limited by the rate of diffusion (diffusion sphere). The effect of long range unnoticed time and the rate limitation might decrease the number of study product. It was the continuity diffusion through solid might cause the change of intermediate product to another ones without notice which the limitation of rate in ring method might inhibit the occurrence of further products. For this reason, the whole lot of colour products could be observed if suitable experimental method were developed. The variation of temperature and moisture during a day often affected the rate of reactions and also the number of product.

5.2 Rate of growth of product.

The result shown in the following Tables could represent the whole solid-solid reaction of this present work.

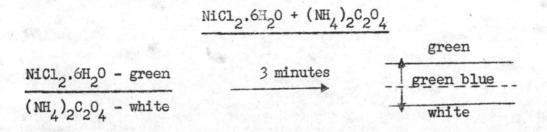


Table 5.2 Result of growth rate of solid reaction

1999 - C. 1997 -	1	Thickness of	
Time	NiCl ₂ green (cm)	(NH ₄) ₂ C ₂ O ₄ white (cm)	product green-blue (cm)
3 minutes	1.50	1.50	line
l day	<1.50	<1.50	0.10
5 days	1.20	1.20	0.60
30 days	1.10	1.10	0.80

$$MiCl_2.6H_20 + (M_4)_2C_20_4$$

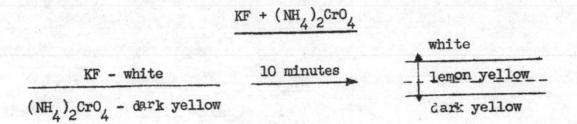


Table 5.3 Result of growth rate of solid reaction KF + (NH4)2Cr04

Time	Thickness					
	KF - white (cm)	(NH ₄) ₂ CrO ₄ - dark yellow (cm)	lemon yellow product			
0	1.50	1.50				
10 minutes	1.50	(1.50	line			
3 hours	1.50	0.90	0.60			
1 days	<1.50	0.60	0.90			

 $\mathrm{KCNO} + \mathrm{CoCl}_2.6\mathrm{H}_2\mathrm{O}$

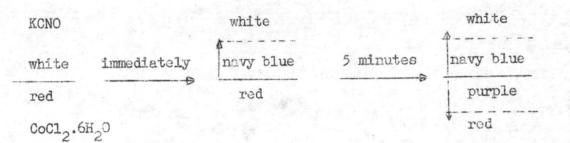
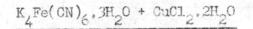



Table 5.4 Result of growth value of solid reaction $KCNO + CoCl_2.6H_2O$

	Thickness						
Time	CoCl ₂ .6H ₂ O-red (cm)	KCNO-white (cm)	nevy blue (cm)	purple (cm)			
immediately	1.50	<1.50	line	-			
5 minutes	< 1.50	1.40	0.10	line			
15 minutes	1.20	1.30	0.20	0.30			
l days	0.90	1.20	0.30	0.60			
10 days	0.80	1.10	0.40	0.70			
30 days	0.70	1.00	0.50	0.80			

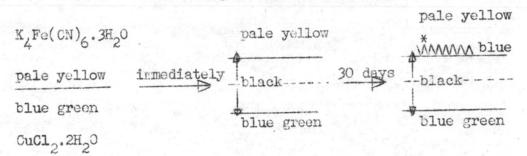


Table 5.5 Result of growth wate on of solid reaction $K_4Fe(CN)_6.3H_2O$ + CuCl₂.2H₂O

	Thickness						
Time	K ₄ Fe(CN) ₆ .3H ₂ O pale yellow (cm)	CuCl ₂ .2H ₂ O blue green (cm)	black product (cm)	blue product (cm)			
immediately	≮1.50	<1.50	line	-			
5 days	1.40	1.30	0.30	-			
30 days	1.30	1.10	0.60	line			
60 days	1.20	1.00	0.70	0.10			
90 days	<1.20	1.00	0.70	0.15			

* MMM - line

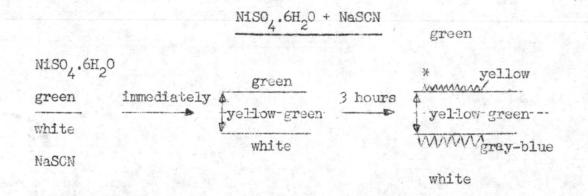


Table 5.6 Result of growth rate of solid reaction

	Thickness						
Time	NiSO ₄ .6H ₂ O green (cm)	NaSCN white (cm)	yellow green product (cm)	yellow product (cm)	gray.blue product (cm)		
immediately	1.50	1.50	line	-	-		
3 hours	1.40	1.20	0.30	line	line		
3 days	1.20	0.70	0.50	line	0.20		
30 days	1.20	0.50	0.50	line	0.30		

NISO4.6H20 + NaSCN

mann- thin line

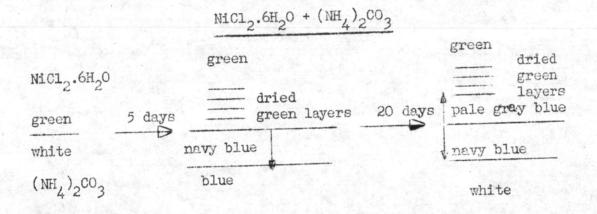


Table 5.7 Result of growth rate of solid reaction NiCl₂.6H₂0 + (NH₄)₂CO₃

	Thickness							
Time	NiCl ₂ .6H ₂ O green (cm)	(NH ₄) ²⁰⁰ 3 white (cm)	navy blue product (cm)	green separately dried layers (cm)	pale gray- -blue product (cm)			
0	1.50	1.50	-	-				
5 days	1.00	<1.50	line	0.50	-			
10 days	0.80	1.30	0.20	0.70	-			
20 days	0.80	1.20	0.40	0.60	0.10			
30 days	0.80	1.20	0.40	0.10	0.50			

 $NiSO_4.6H_2O + KCN$

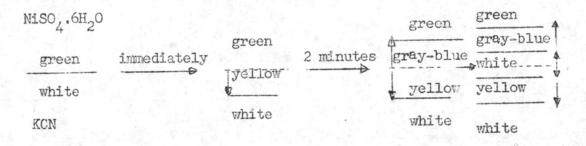
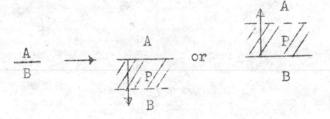


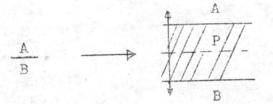
Table 5.8 Result of growth rate of solid reaction

			Thickness		
Time	NiSO ₄ .6H ₂ O green (cm)	KCNwhite (cm)	gray-blue product (cm)	yellow product (cm)	white product (cm)
immediately	1.50	1.50	-	line	
2 minutes	<1.50	<1.50	line	line	
4 hours	1.40	1.40	0.10	0.10	-
1 day	1.00	0.80	0.50	0.70	-
5 days	0.40	0.50	1.10	1.00	1944 - 1945 - 19
ll days	0.10	0.20	1.40	1.30	line
15 days	-		1.40	1.30	0.30
20 days	-	-	1.10	0.90	0.70
25 days	-	11 - 11 -	0.90	0.40	1.40
30 days		1 - <u>1</u> - <u>1</u>	0.50		2.20


NiSO4.6H20 + KCN

The direction of colour change in solid-solid reaction as a whole can be grouped into the following product formation.

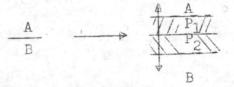
1. One product formation


There are two different ways of formation

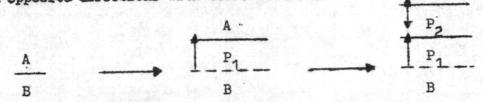
a. One direction growth of product.

One colour change appeared firstly at the interface and aiffused increasingly in one direction only.

b. Two - direction growth of product.

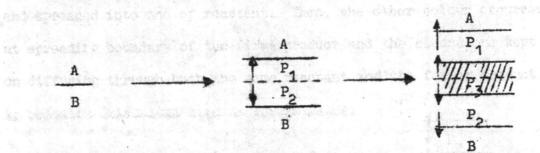


The colour change at the contact surfaces spreaded toward the two of reactants with either the same or different rate.


2. Two - products formation

There are two comparable direction in spreading of colour products :-

a. Two different coloured products occurred simultaneously at the interface and diffused apart into each reactant.


b. The first colour change appeared at reactants interface and spreaded into one of reactant. Then, the other colour occurred at spreading boundary of the first product and the second one kept on diffusing through both the same reactant and the former product in opposite directions with different rates. A

3. More than two-products formation.

Two different processes were observed in this type of formation :-

a. The process started similarly to the two - products formation in 2a. and the third colour product then appeared at the interface of these two former products then spreaded apart and migrated toward each of them.

b. The only one product was produced in the same manner as process lb., after that another two coloured ones occurred at the two ends of the spreading area and then each of them migrated toward both of the former product and remaining reactant adjacent to it with different rates. A B B

the Briter's de bi trees two formes should be Bren entre tel the

There were several other mechanisms which were not reported because of some slightly difference from the former explanation. It was reaction between lemon yellow potassium ferrocyanide, $K_4Fe(CN)_6.3H_20$, and white aluminium nitrate, $Al(NO_3)_3.9H_20$. The initial colours of these two reactants were changed completely before the first permanent green product occurred. Such was the case with the lemon yellow $K_4Fe(CN)_6.3H_20$ which changed to green-yellow beginning at the interface and then dispersing all over $K_4Fe(CN)_6.3H_20$, while the white $Al(NO_3)_3.9H_20$ changed to pale blue with the same manner as $K_4Fe(CN)_6.3H_20$ and then the first green product appeared at the interface of these green-lemon layer and pale blue layer as shown in the following

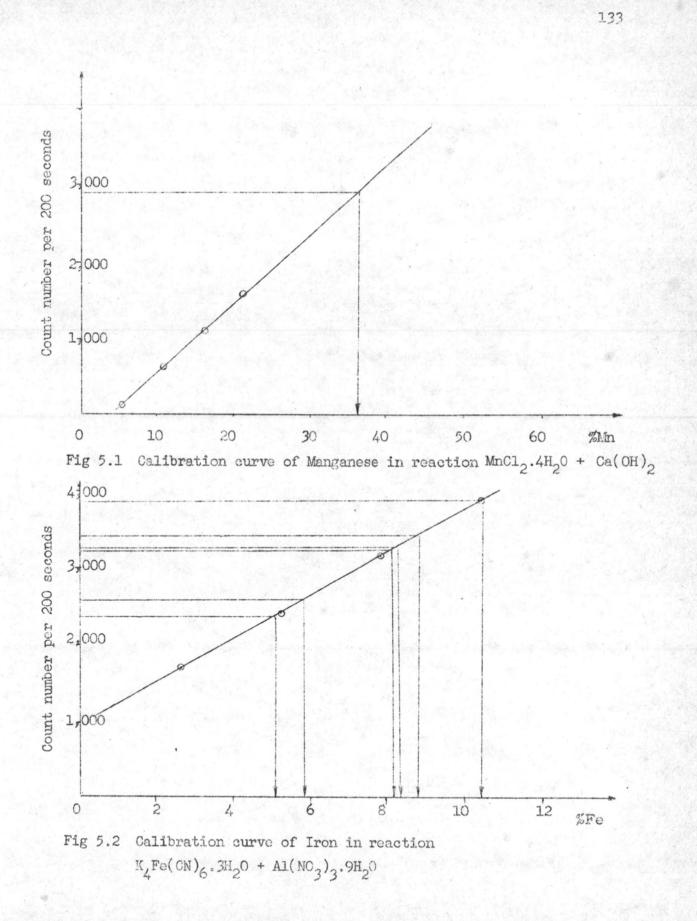
 $\frac{\text{lemon-yellow } K_4 \text{Fe(CN)}_6.3\text{H}_2\text{O}}{\text{white } \text{Al(NO}_3)_3.9\text{H}_2\text{O}} \xrightarrow{\text{green-yellow}} \frac{\text{green-yellow}}{\text{pale blue}} \xrightarrow{\text{green-yellow}} \frac{\text{green-yellow}}{\text{pale blue}}$

The green product did not occur until all two reactants were completely changed. From the analysis of green-yellow and pale blue layers the results showed very few diffusion of iron species.

Several compounds of metals in the same group of periodic table had been tried to compare for getting more relationship. But unfortunately,(the observation) showed the unconcerned results with the other properties of compounds of the same group metals such as the number of products, direction of product growth, type of each product and etc., and even more, they seem to be independent

It can be seen that the number of products in the same reaction which observed in 5.2 were much more than in 5.1. More information may be obtained by further developing experimental techniques. 5.3 Percentage determination of heavy elements in some products from solid-solid reaction by X-ray fluorescence technique.

Table 5.9 Data for the Calibration curve


React	ants		Gram 1	ratio of mi	ixture (A :	B)
A	В		1:4	2:3	3:2	4:1
MinCl ₂ .		MnCalc.	5.4610	10.9220	16.3830	21.8440
4H20	Ca(0H) ₂	Activity	173±2	651±5	1114±8	1676±11
E E (OU)	47(10)	%Fe.Calc.	2.6442	5.2884	7.9326	10.5768
K ₄ Fe(CN) ₆ • 3H ₂ 0	A1(NO ₃)3. 9H ₂ 033.	Activity	1723 ± 8	2427±12	3192±15	3915±19
		%Fe.Calc.	2.6442	5.2884	7.9326	10.5768
K4Fe(CN)6	AgNO3	Activity	1135±6	1.319±10	1531±12	1798±14
3H20		%Ag.Calc.	55.3860	41.5359	27.6930	73.8465
		Activity	30514±183	25532±153	20758±124	15362±92
		%Sn.calc.	10.5209	21.0418	31.5627	42.0836
SnCl ₂ .	Bi(NO ₃) ₃ . 5H ₂ 0	Activity	3794±22	8040±48	13340±80	18254±109
2H20		%Bi.calc.	34.4656	25.8492	17.2328	8.6164
		Activity	10248±71	8039±56	5235±36	3287±23
		%Sn.calc.	10,5209	21.0418	31.5627	42.0836
SnCl ₂ .	KI	Activity	8990±71	15032±90	21008±126	27251±163
2H20		%I.cale.	61.1562	45.8671	30.5780	15.2890
		Activity	21928±153	18511±92	14586±87	10691±64

Activity = Count number per 200 seconds.

Reactants			Gram ratio of mixture (A : B)				
A	inte B		1:4	2:3	3:2	4:1	
		%Cd.calc.	8,2580	16.5161	24.7742	33.0323	
CdBr ₂ Na ₂ SO ₃		Activity	9301 <u>+</u> 55	10850±75	12394±74	13779±96	
	%Br.calc.	5.8709	11.7419	17.6128	23.4838		
	.7H20	Activity	10290±61	14250±21	18435±110	21921±109	

Table 5.9 (Continued)

Activity = Count number per 200 seconds.

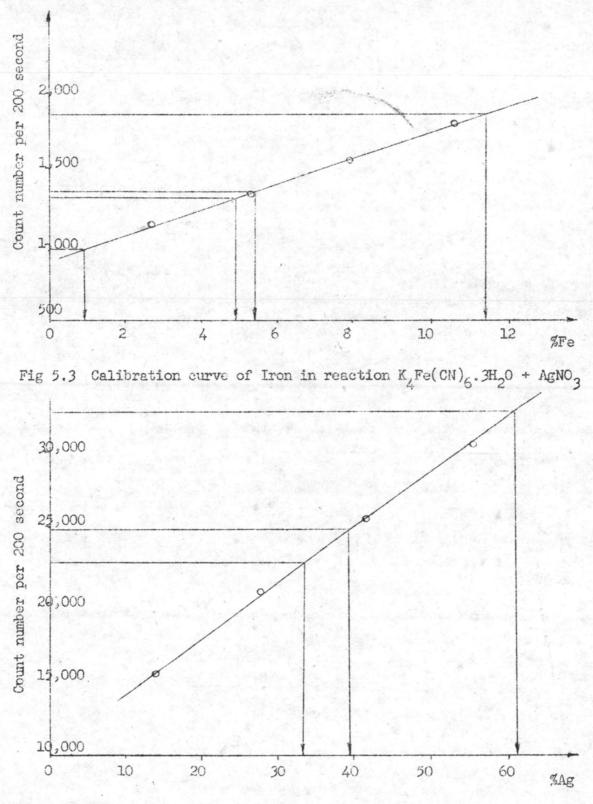


Fig 5.4 Calibration curve of Silver in reaction K4Fe(CN)6.3H20 + AgNO3

1.78

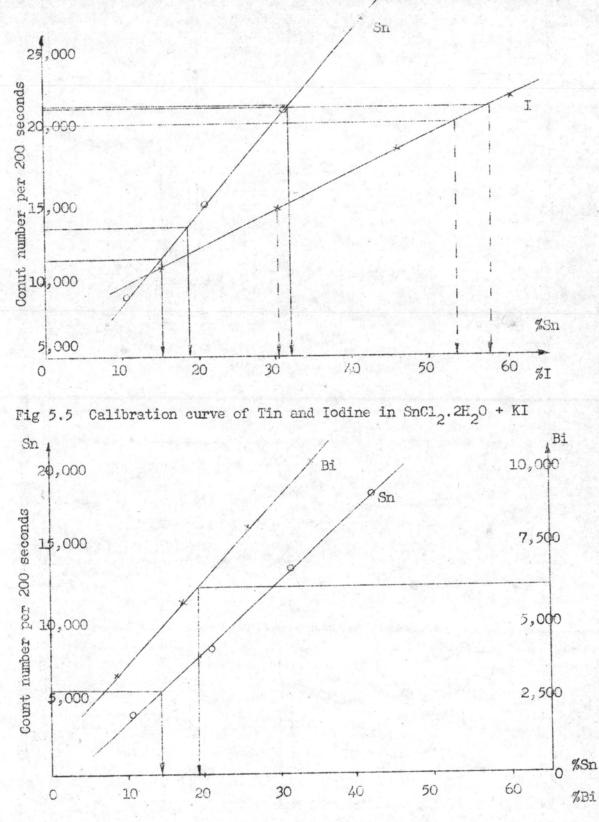
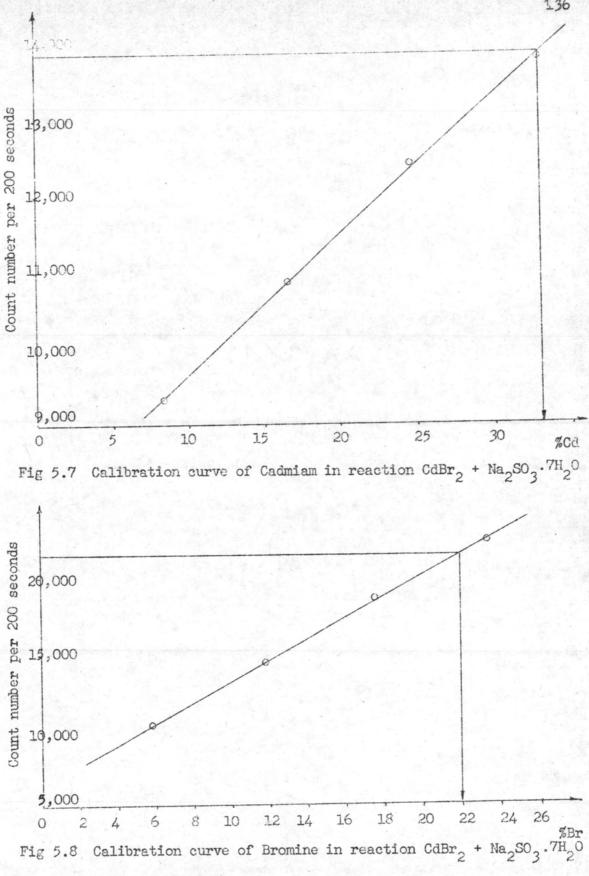



Fig 5.6 Calibration curve of Tin and Bismuth in reaction $SnCl_2 \cdot 2H_2O + Bi(NO_3)_3 \cdot 5H_2O$

*

Table 5.10 Result of percentage determination of heavy elements in some products from solid-solid reaction by X-ray

System	P _{roduct} colour	Activity (c.p. 200 sec)		ercentage elements
$MnCl_2.4H_2O + Ca(OH)_2$	black-brown	2882 ± 17	%Mn	36.50
K ₄ Fe(CN) ₆ .3H ₂ 0 + A1(NO ₃) ₃ .9H ₂ 0	pale blue	302 ± 1.81	%Fe	very little
	green-yellow	3903 ± 23	%Fe	10.50
	yellow-green	3468 ± 20	%Fe	8.90
	dark-green	3313 ± 23	%Fe	8.40
	green	2625 ± 16	%Fe	5.90
	green-blue	2410 ± 14	%Fe	5.12
	blue	3258 ± 19	%Fe	8.25
$K_4 Fe(CN)_6.3H_20 + AgNO_3$	green	1853 ± 13	%Fe	11.45
		6318 ± 38	%Ag	very little
	brown	959 ± 5.75	%Fe	0.95
		32708 ± 196	%Ag	61.00
	green-blue	1333 ± 8	%Fe	5.43
		22752 ± 182	%Ag	33.40
	blue	1301 ± 7	%Fe	4.92
		24967 ± 124	%Ag	39.50
SnCl ₂ .2H ₂ 0 + Bi(NO ₃) ₃ .5H ₂ 0	yellow	5460 ± 32	%Sn	14.50
-95		6126 ± 36	%Bi	19.30

fluorescence technique.

Table 5.10 (Continued)

System	Product colour	Activity (c.p. 200 sec)	1	ercentage elements
SnCl ₂ .2H ₂ 0 + KI	yellow	21486 ± 150	%Sn	32.40
		14605 ± 88	%I	30.70
	orange-yell	ow 11448 ± 68	%Sn	15.20
		21284 ± 127	%I	58.40
	red-orange	13658 ± 95	%Sn	18.80
		20308 ± 142	%I	54.00
CdBr ₂ + Na ₂ SO ₃ .7H ₂ O	yellow	13879 ± 69	%Cd	33.20
		21296 ± 127	%Br	22.10

The quantity of heavy element appeared in product layer indicated the diffusibility of such element, diffused direction, and some information for the composition of product compound. The variation in quantities of heavy elements in each layer of reactants and products indicated the newly formed compound and might be the chemical change of solid-solid reaction. The instrumental result from X-ray fluorescence technique supported the observed result, the colour change, which was firstly used to indicate the occurrence of reaction. Other techniques of analysis for every elements in solid state should be searched for obtaining much more information about the composition of complex product and the mechanism of such reaction. Solvation technique was not suitable for study chemistry of the complex compound from solid-solid reaction.

Diagram of percentage comparison between heavy elements of reactants and products

	SnC12.2H20 9	%Sn	=	52.61			
SnCl ₂ .2H ₂ 0	yellow	%Sn	=	32.40,	%I	=	30.70
KI	red- orange-	%Sn-	. =	18.80;	%I	=	54-00
	orange yellow	%Sn	=	15.20,	%I	=	58.40
	KI				%I		23.56
	SnC12.2H20	%Sn	=	52.61			e e La segura
SnCl ₂ , 2H ₂ 0	yellow	%Sn	=	14.50,	%B:	1	= 19.30
B1(N03)3.5H20	Bi(NO3)3.5H20				%B	i	= 43.08

MnCl ₂ .4H ₂ 0	%Nin = 27.76
black brown	%Mn = 36.50
Ca(OH)2	
CdBr ₂	%Cd = 41.30, %Br = 58.70
yellow	%Cd = 33.20, %Br = 22.10
Na2S03.7H20	
	Ca(OH) ₂ CdBr ₂ yellow

K,Fe(CN)6.3H_0	%Fe =	13.22
---------	---------	-------	-------

K ₄ Fe(CN) ₆ .3H ₂ 0
AgNO3	

		1000		the second
green	%Fe		11.45,	%Ag very little
green-blue	%Fe		5.43,	%Ag = 33.40
blue	%Fe	=	4.92,	%Ag = 39.50
brown	%Fe	=	0.95,	%Ag = 61.00
AgNO3				%Ag = 63.50

green-yellow	%Fe	=	10.50	
yellow-green	%Fe		8.90	
dark green	%Fe	=	8.40	
green-blue	%Fe	н	5.12	
 blue	%Fe	H	8.25	
pale blue	%Fe	=	very	little

K₄Fe(CN)₆.3H₂O Al(NO₃)₃.9H₂O

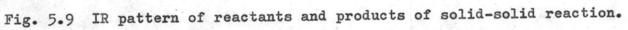
5.4 Examination of complex product by infrared spectroscopic method.

Infrared spectroscopy has proved to be a most useful tool in structural determination and identification of chemical composition. This method of analysis has the advantage of being rapid and unambiguous, it can easily be applied to small quantities of sample especially in solid state condition. But in contrast to organic compound, only few infrared spectre of inorganic compounds are available for reference.

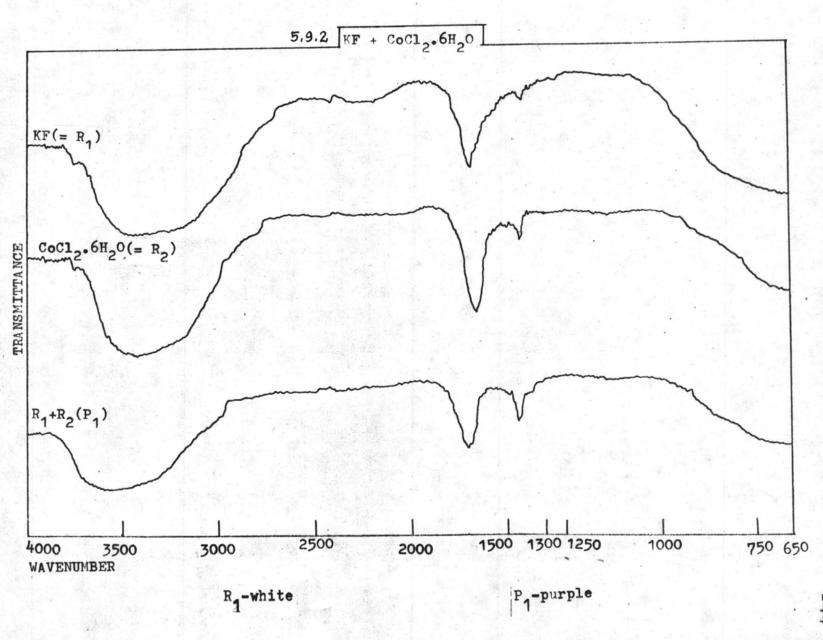
The spectra of reactants and product (s) of the same reaction were compared and shown in Fig 5.9.1 - 5.9.29. This result may be useful for further structural study. The standard spectra of inorganic compounds which have been collected and catalogued are used for comparable study (37). The spectra - pattern of many products showed the complexity and not identical to any of the standard ones. However, they might be kept for future studies of structure of such complex... So far the results only showed the difference of products from starting materials.

The standard spectra of products from reaction between NiSO₄.6H₂O (green) and KCl \cdot (white) were yellow. (P₁), gray-blue. (P₂) and white (P₃). The layer structure of the reaction was

The spectre of reactants and product (s) of the some reaction wors compared and shown in Fig 5.9.1 - 5.9.29. This result may be useful for further structurel study. The standard spectra of incurants perpendent study there collected and catalogued are in used for conversible study (37). The spectra - pettern of many

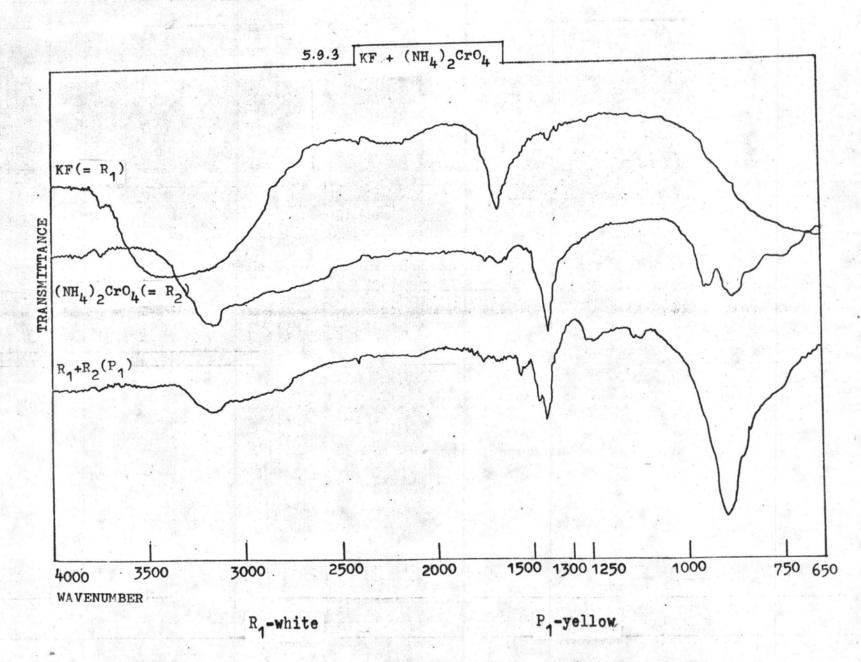

1

represented diagramatically below.

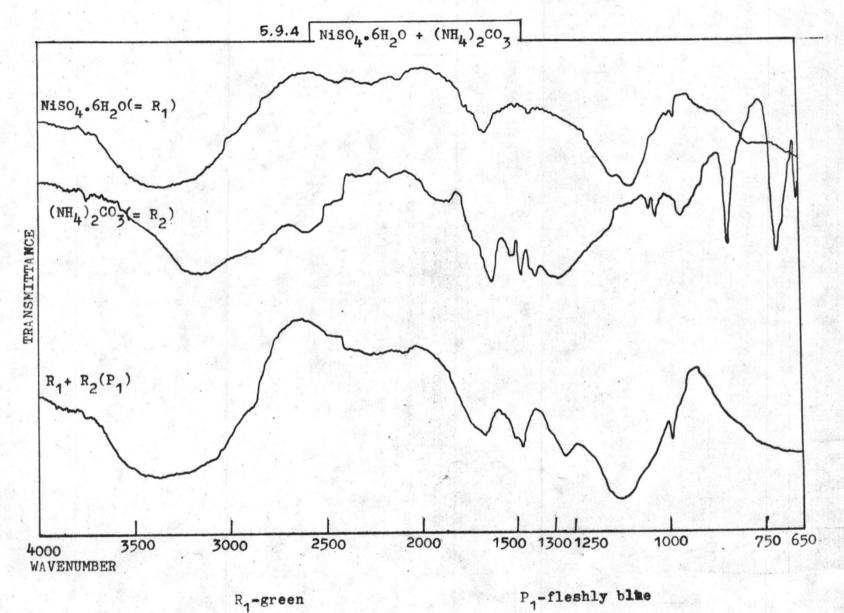

 $\frac{\text{NiSO}_4.6\text{H}_2\text{O}}{\text{P}_2 - \text{grey blue}}$ $NiSO_4.6H_2O - green$ KCN - white - yellow KCN

The third product, which was white colour, showed the equivalent spectra peak as Ni(CN)₂ but yellow and grey-blue products showed the different spectra peak from the reactant species, which of them have not been collected and reported as standard spectra. The results also indicated the direction and species which diffused through solid layer.

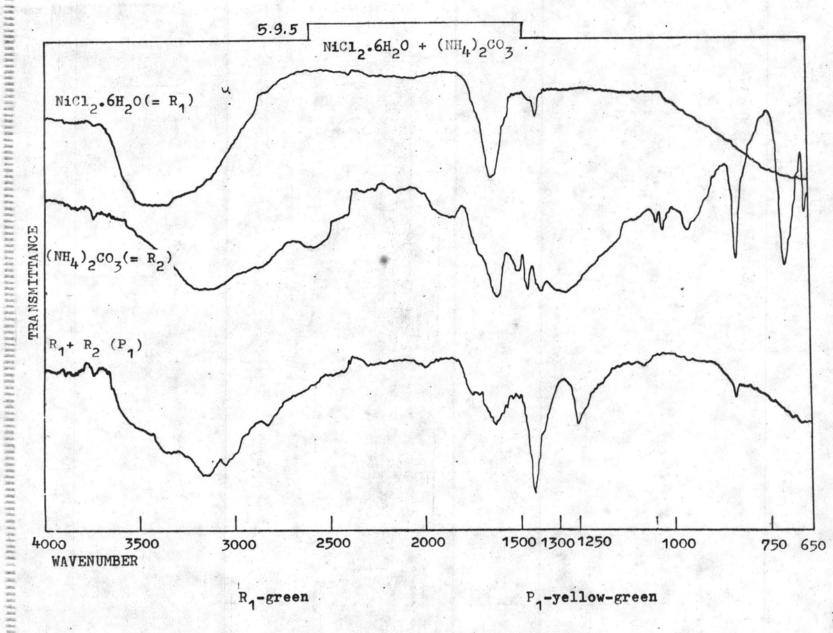
R2-red

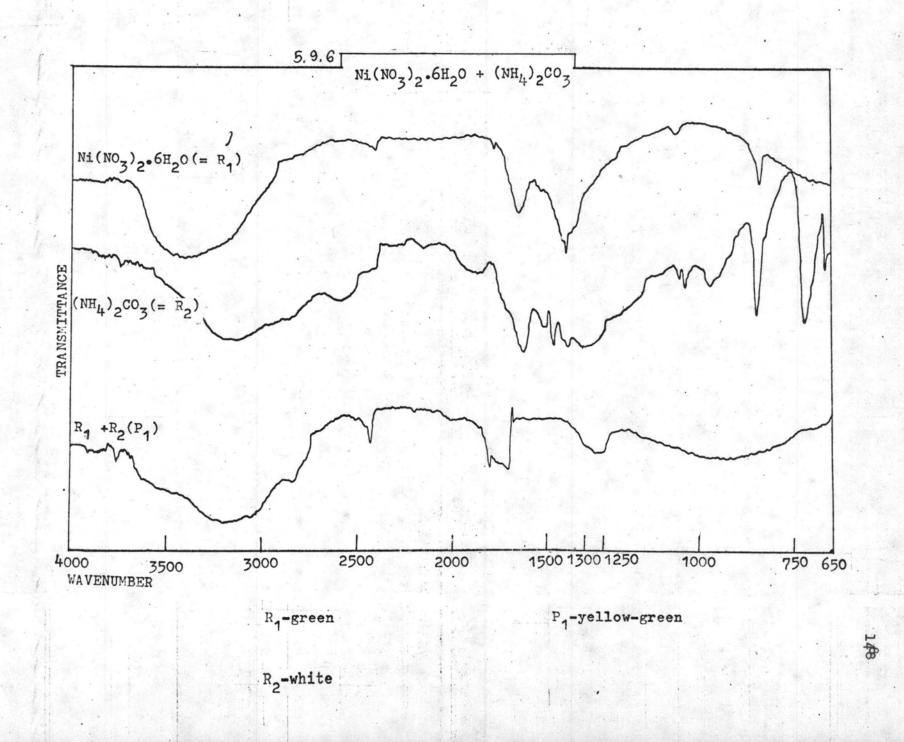


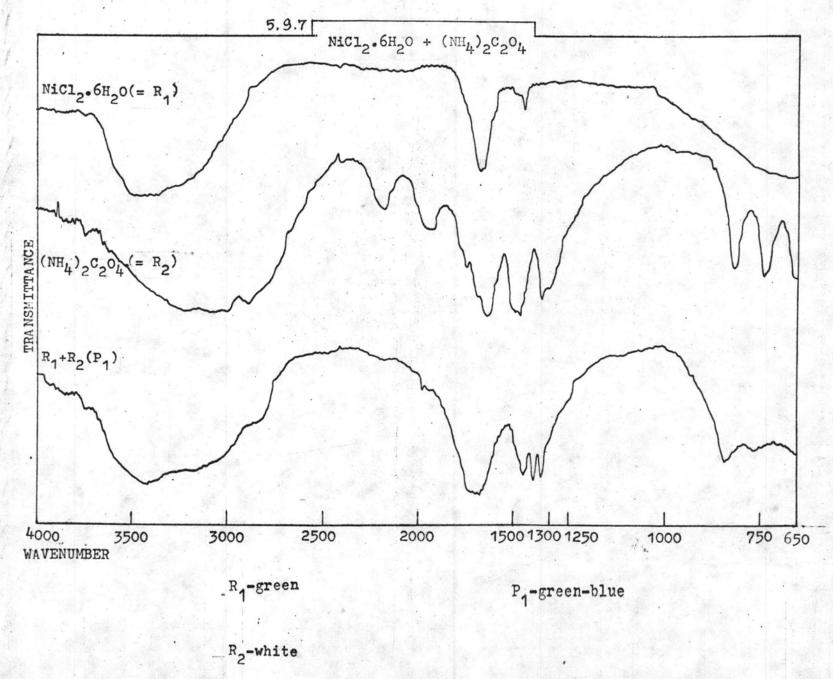
~

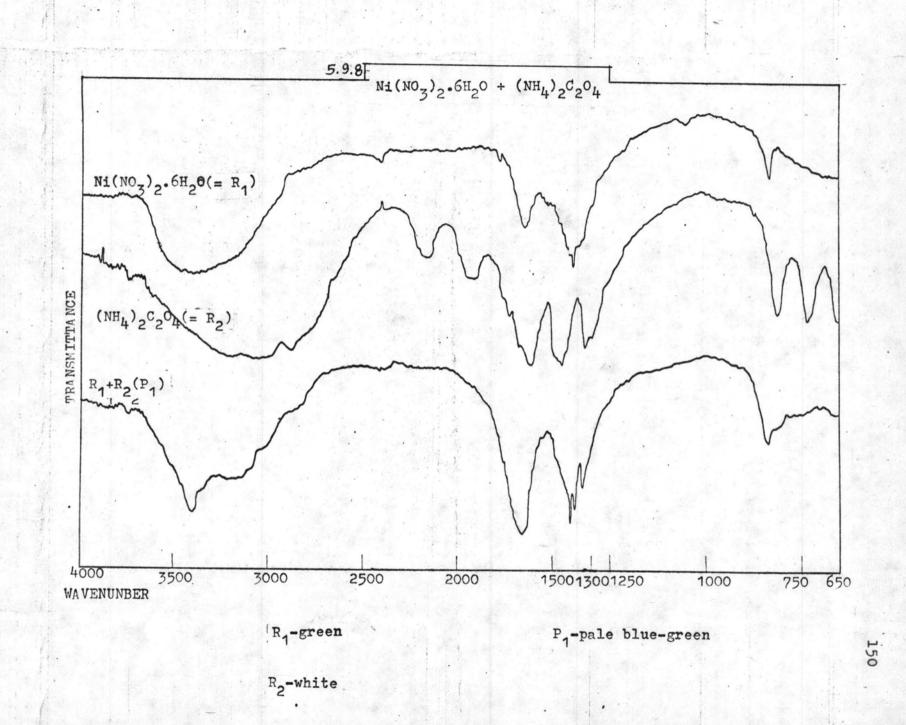

 R_2 -red-violet

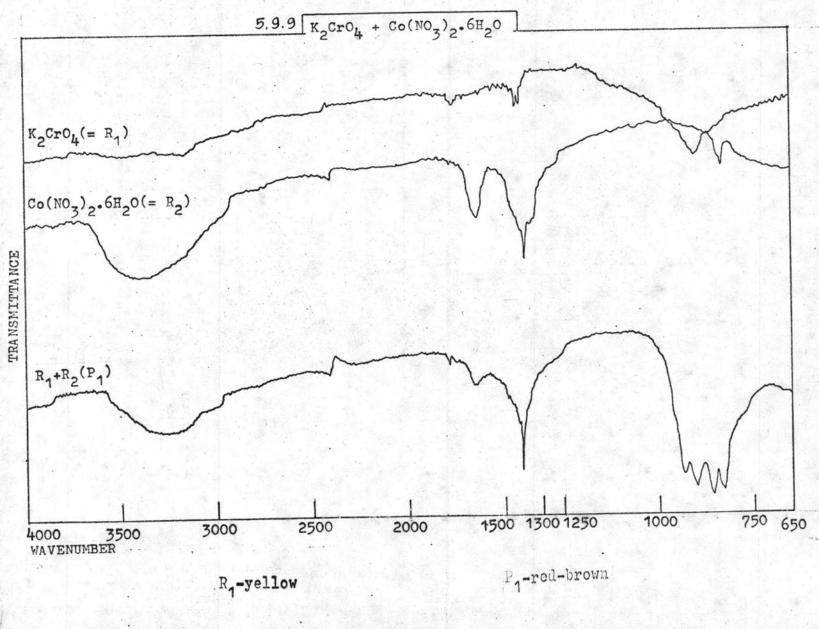
-

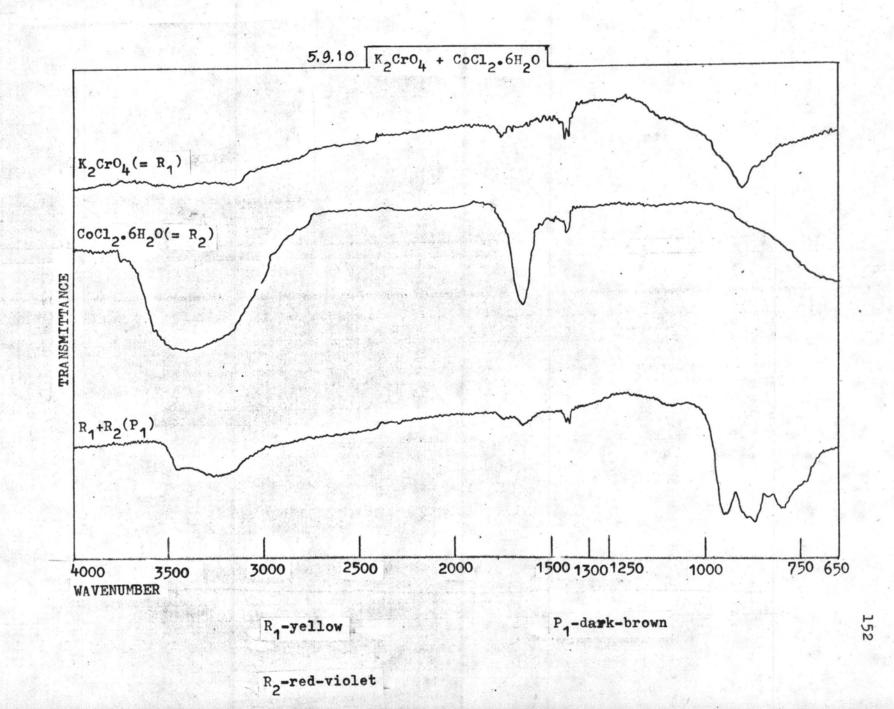

144

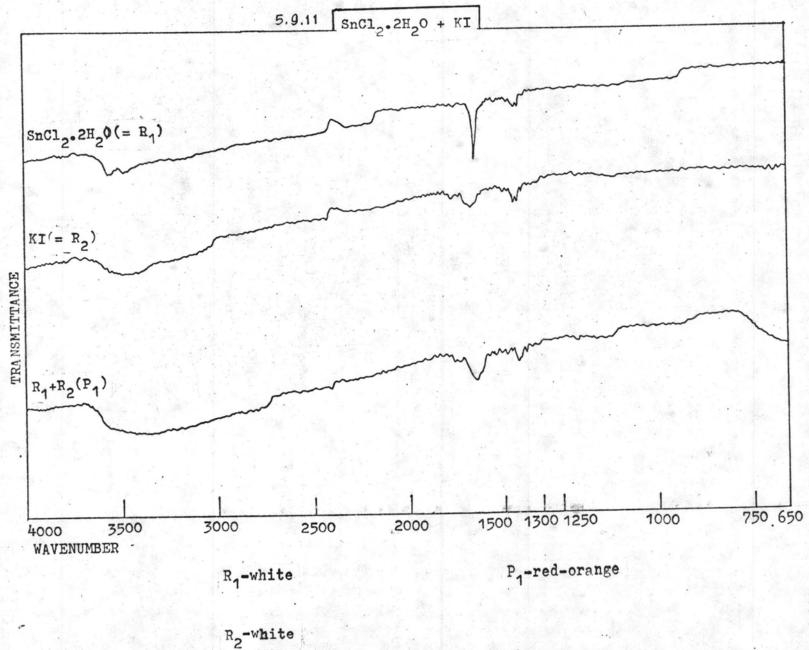

R₂-yellow-brown

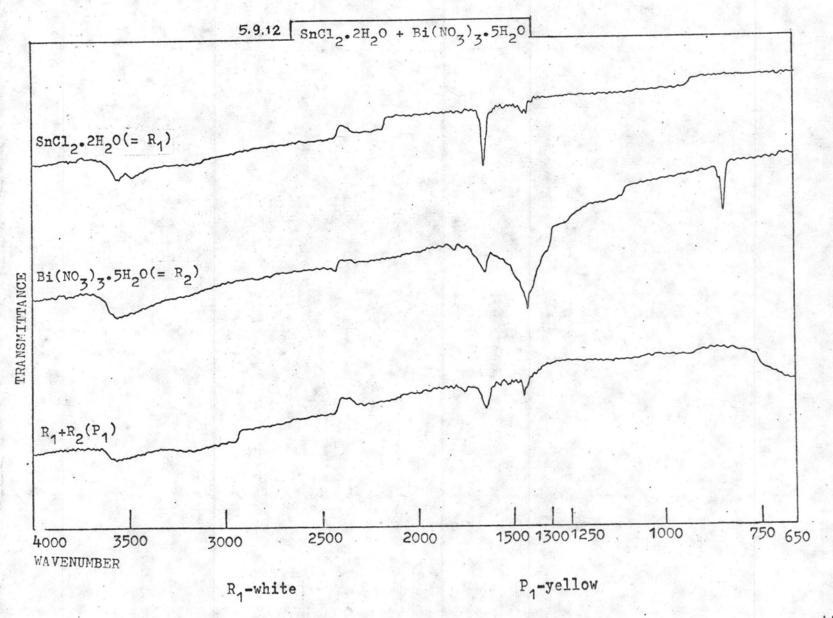


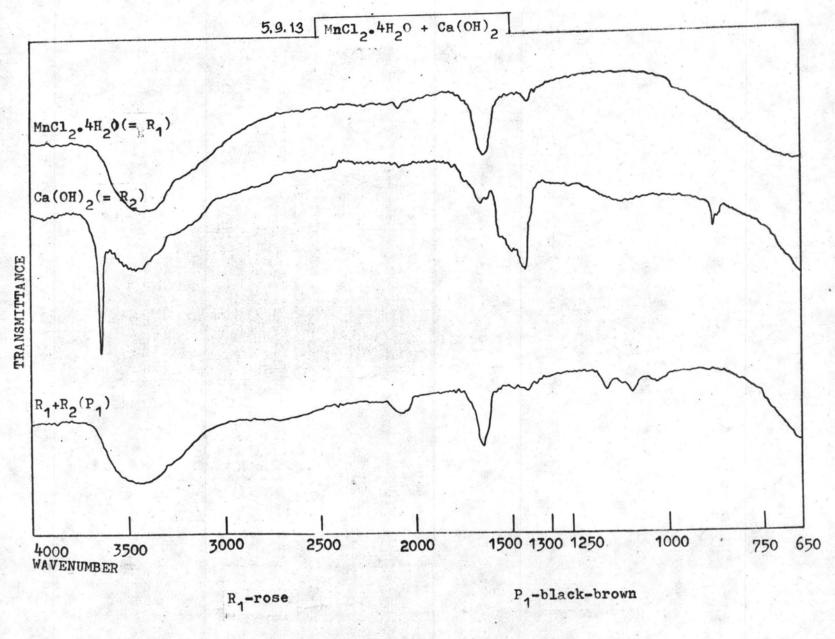

R2-white

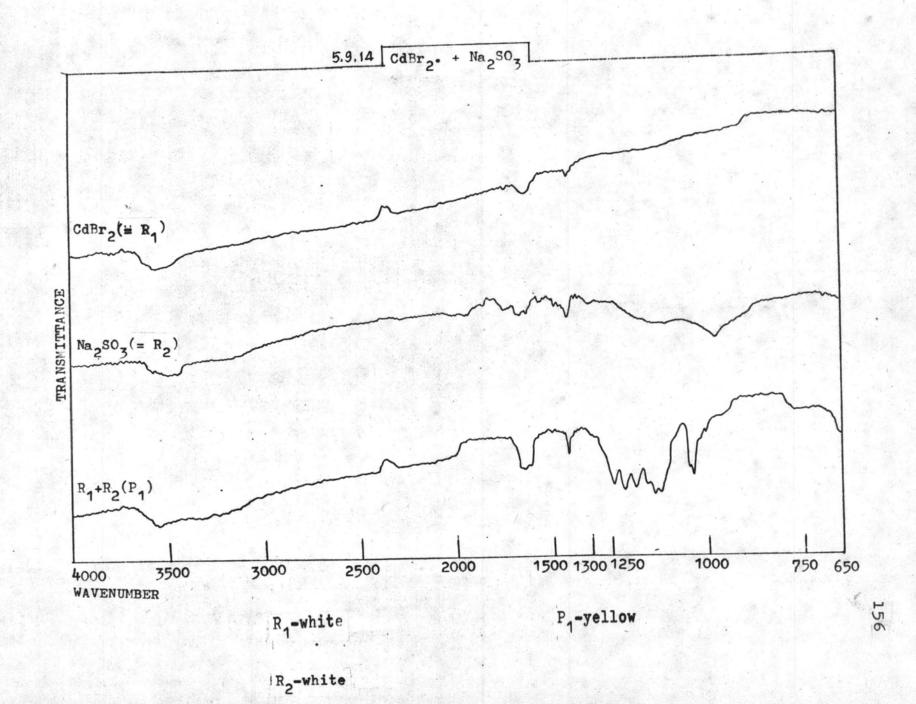

R2-white

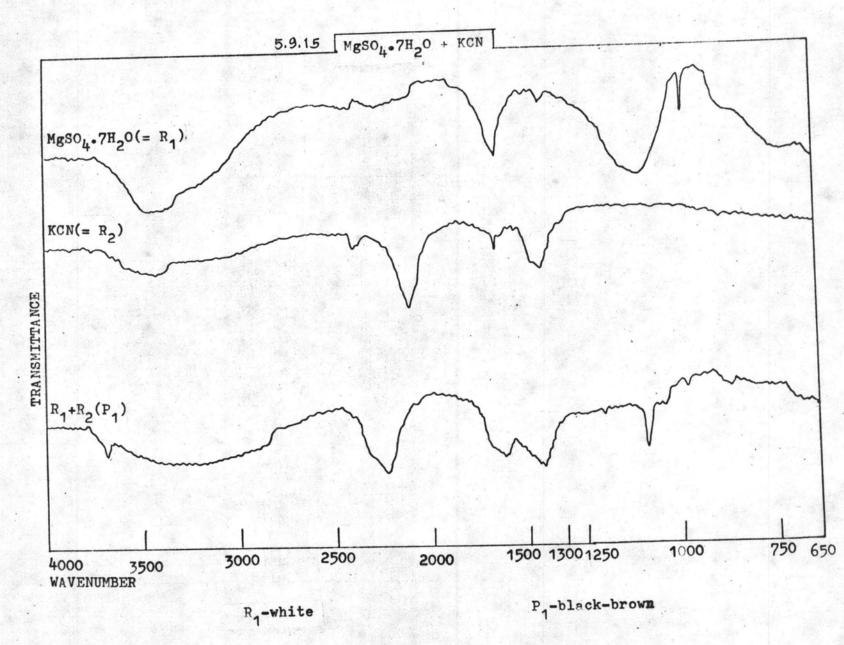


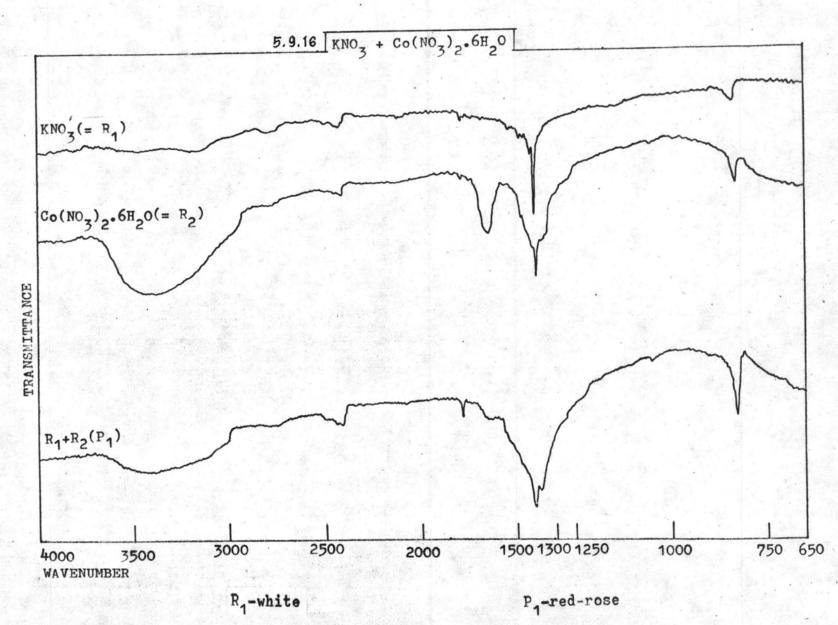


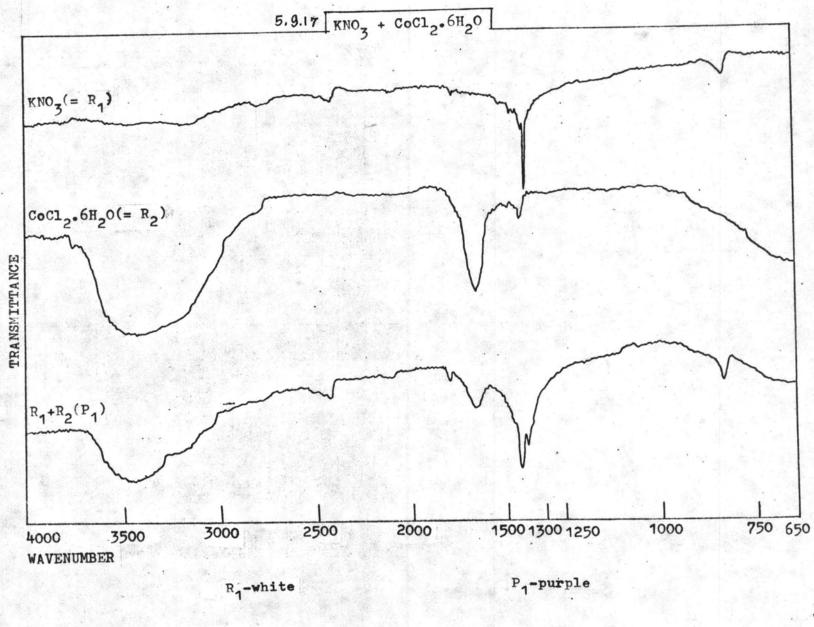

T.

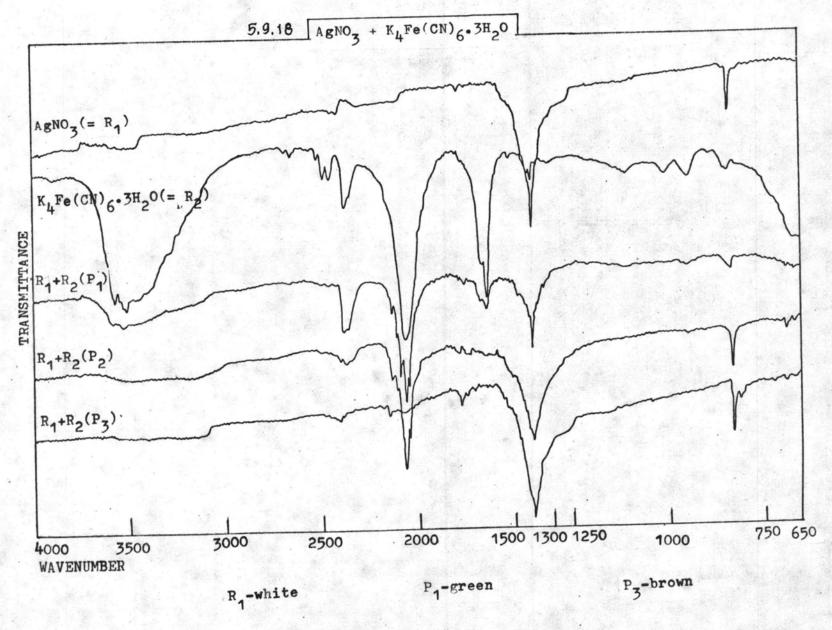

R2-red

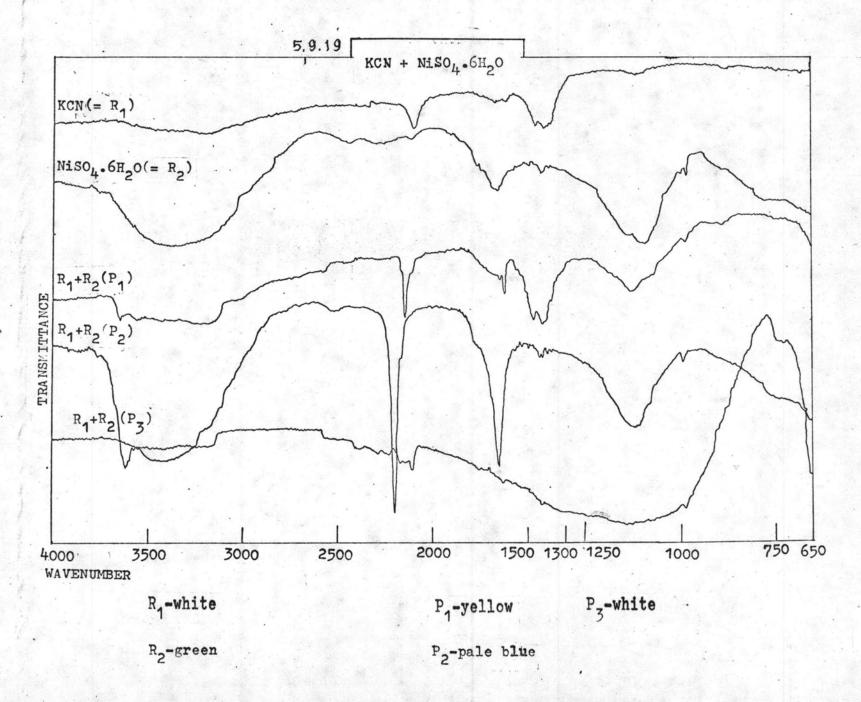


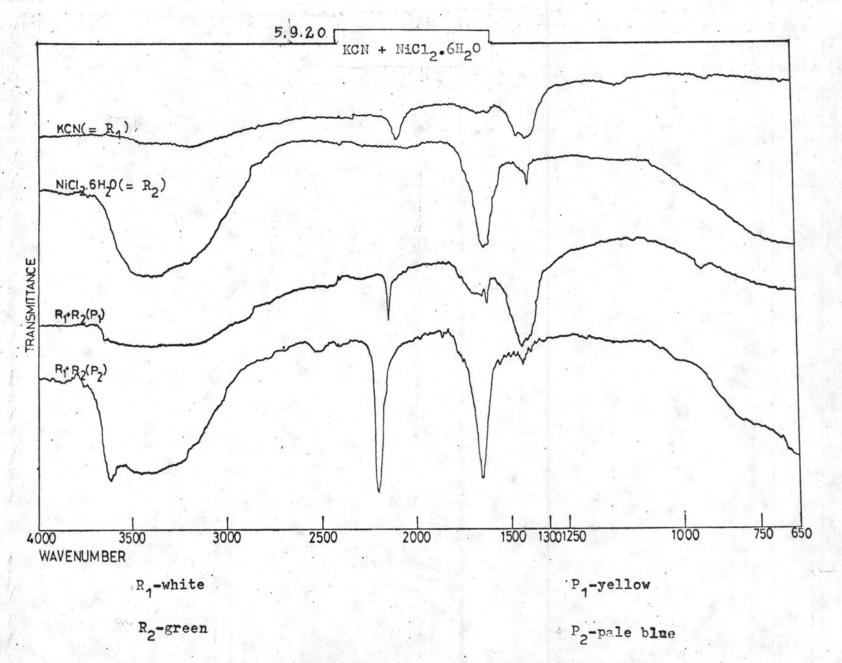




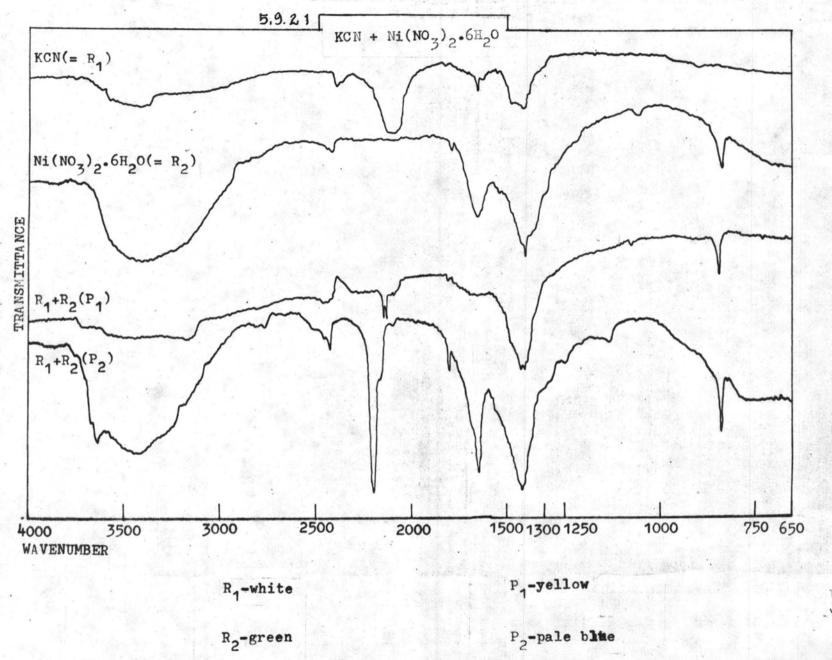

R2-white



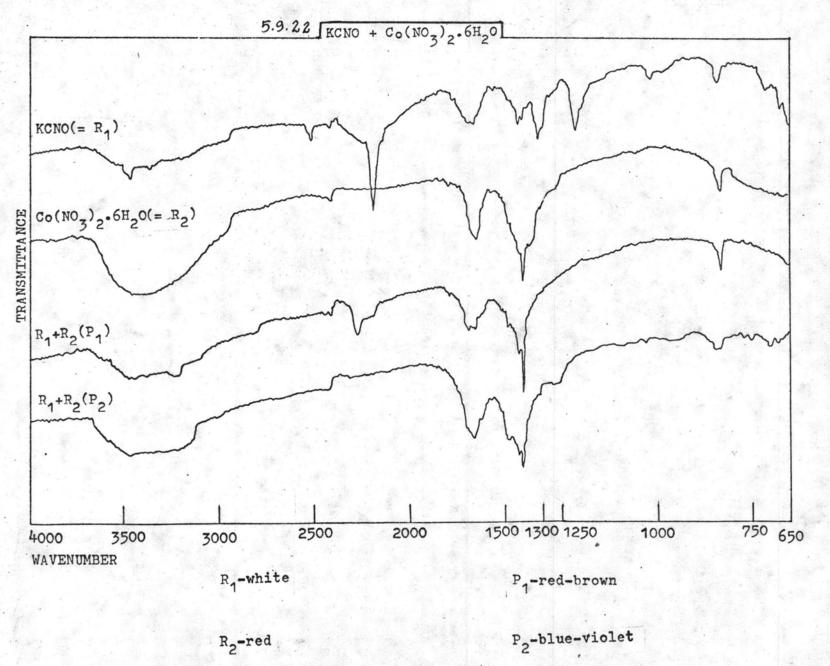


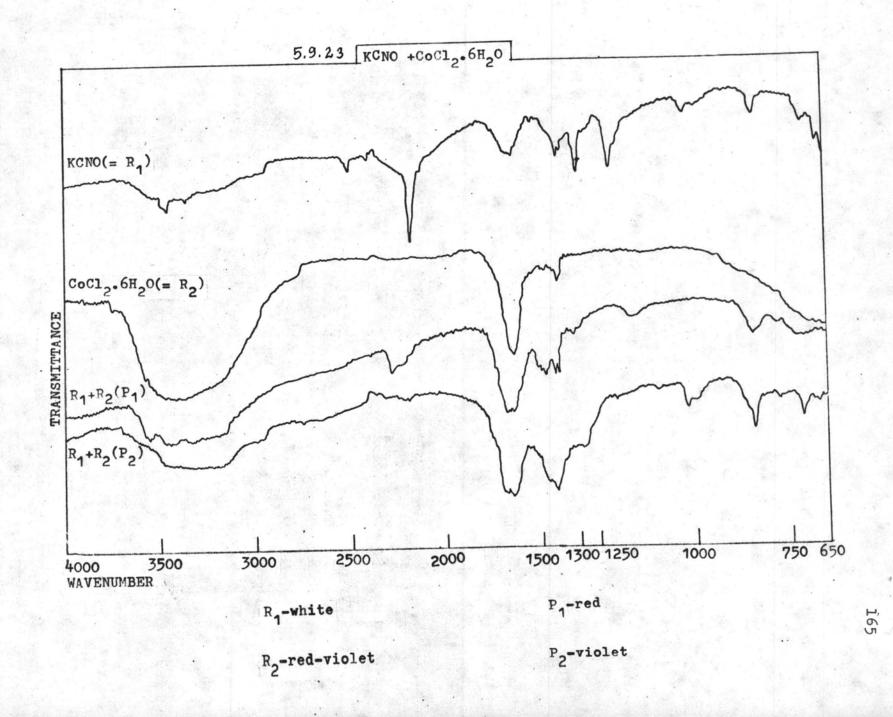


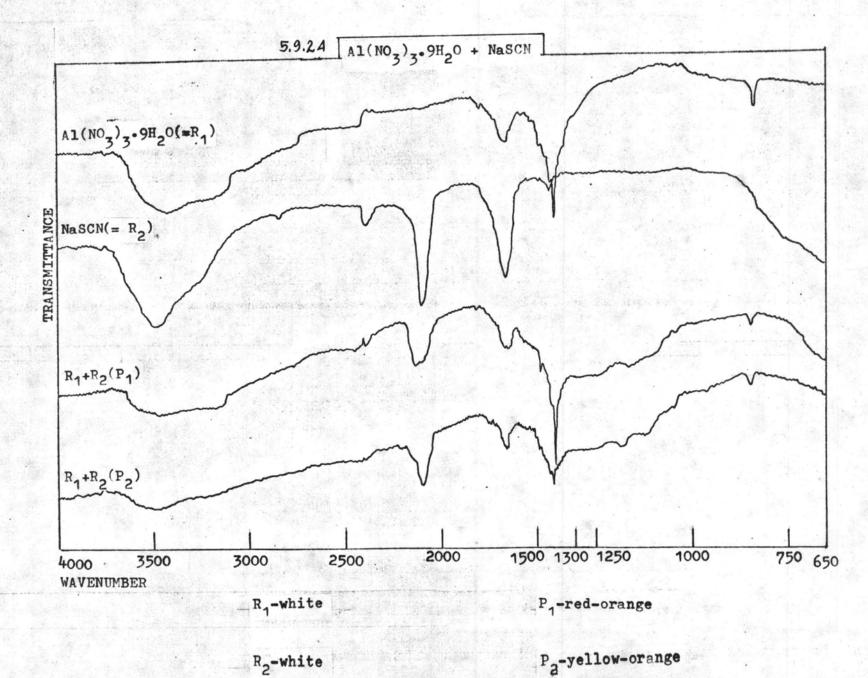
R2-red-violet

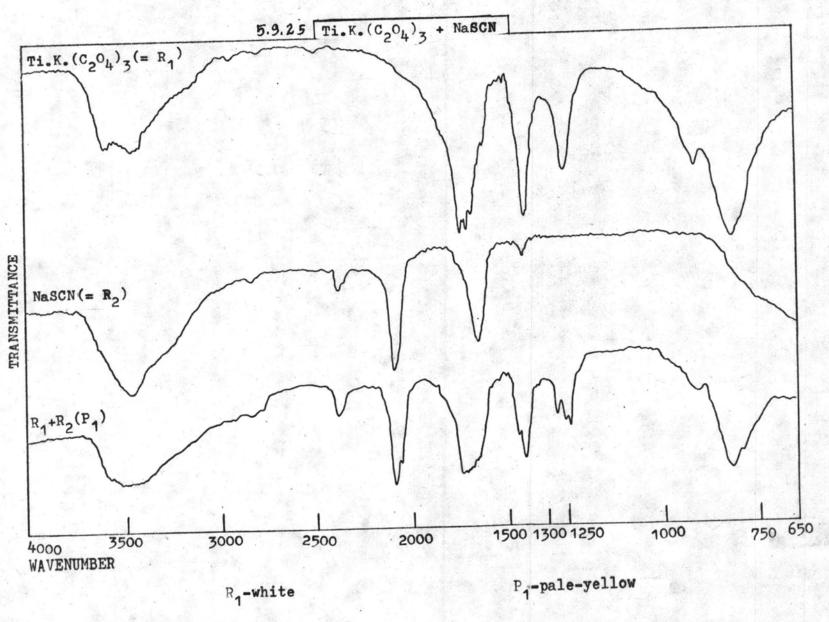


R₂-pale-yellow P₂-blue

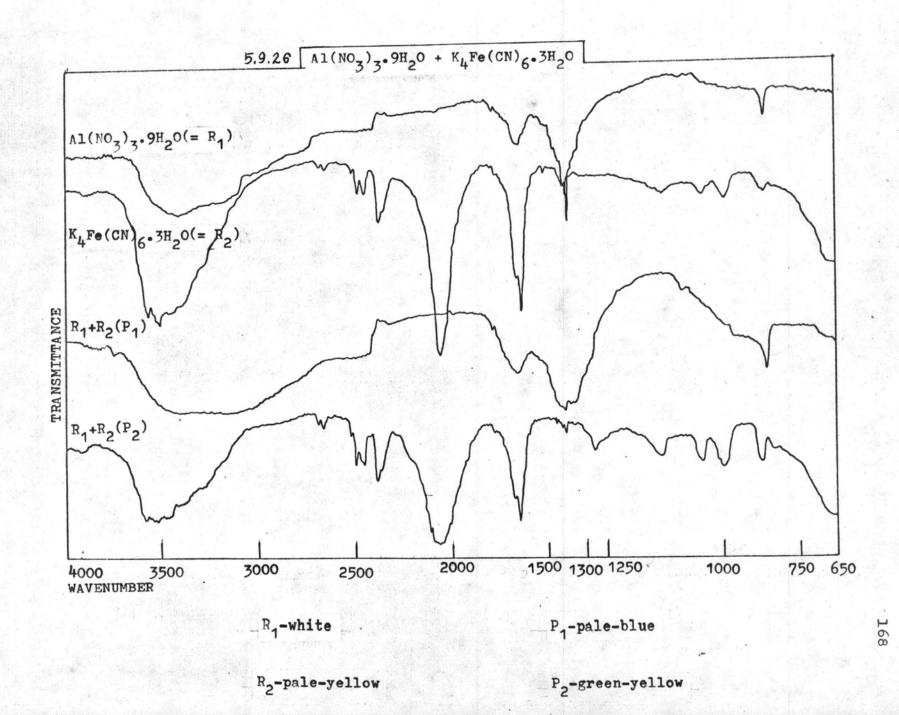


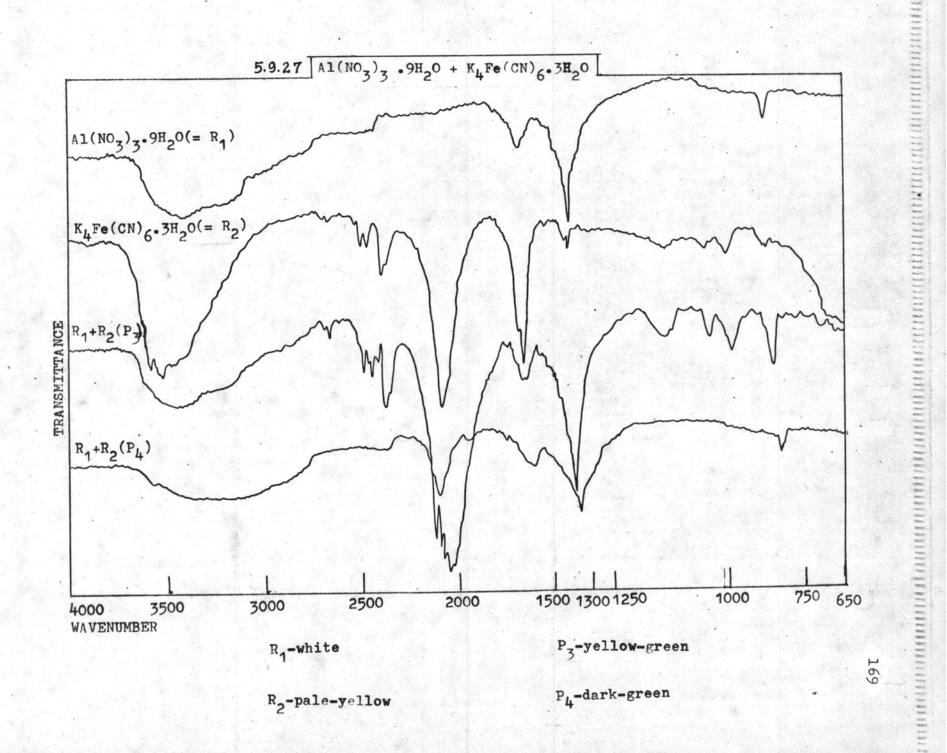


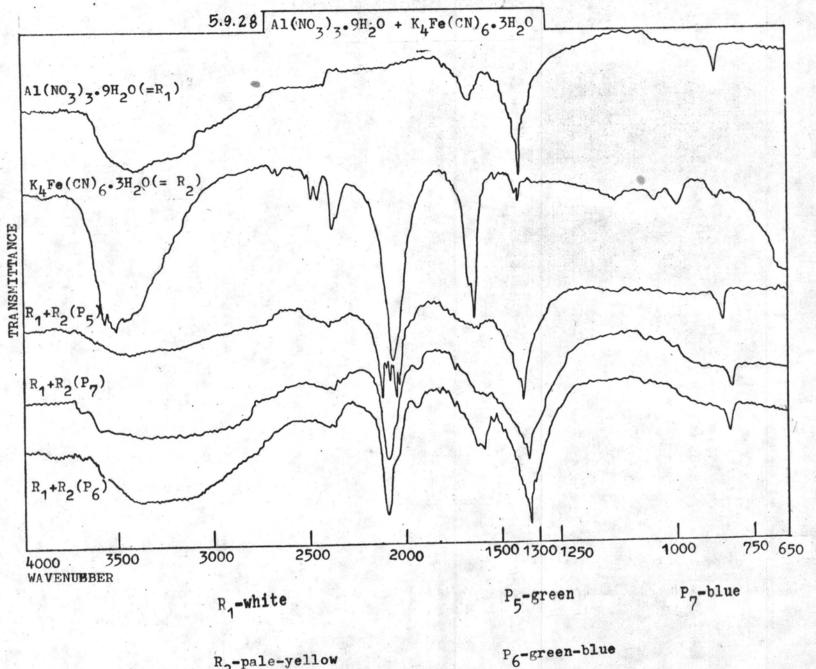

π



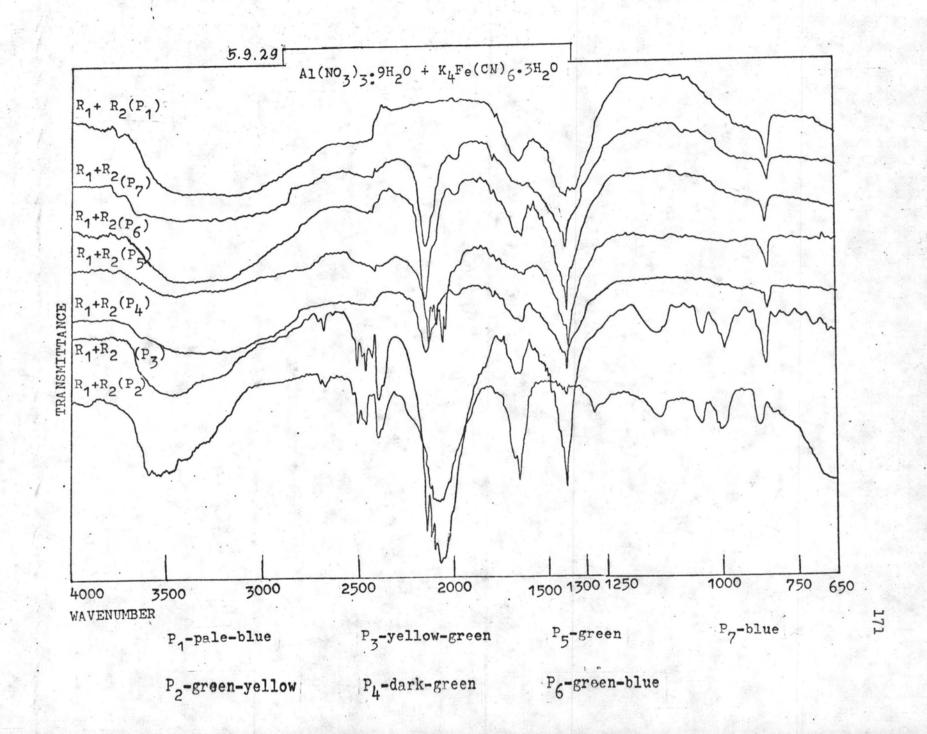
1.







R₂-white



R₂-pale-yellow

-

5.5 Structural investigation of solid - solid reaction product by X-ray powder method.

The X-ray diffraction patterns by powder method of both reactants and products of the same system were compared to show the pattern difference since the X-ray pattern resulted from the characteristic structure of compound. The existence of a dark line on the film satisfied the Bragg relation. An X-ray diffraction pattern obtained by this method enables a series of values of θ for which the Bragg relation 2d sin θ = n λ is obeyed where d is interplanar distance, θ is Bragg's angle, is X-ray's wavelength. These may be used to determine the unit cell dimensions, a, b and c, of simple or known crystal. The determination of size and shape of unknown complex unit cells is possible in principle, but in practice results are doubtful since it may not be possible to make measurements with sufficient accuracy to distinguish between alternative possibilities. The more complex cells yield numerous diffraction on the film from which the determination of all the lattice parameters may be very difficult.

Further examination by other X-ray techniques might give much more information about structure and composition of interesting complex and also support the mechanism interpretation of any particular reaction, while the pattern obtained in a moment only displayed the confirmation of new production from solid - solid reaction.

5.10.1 NiCl₂.6H₂0 + (NH₄)₂C₂O₄

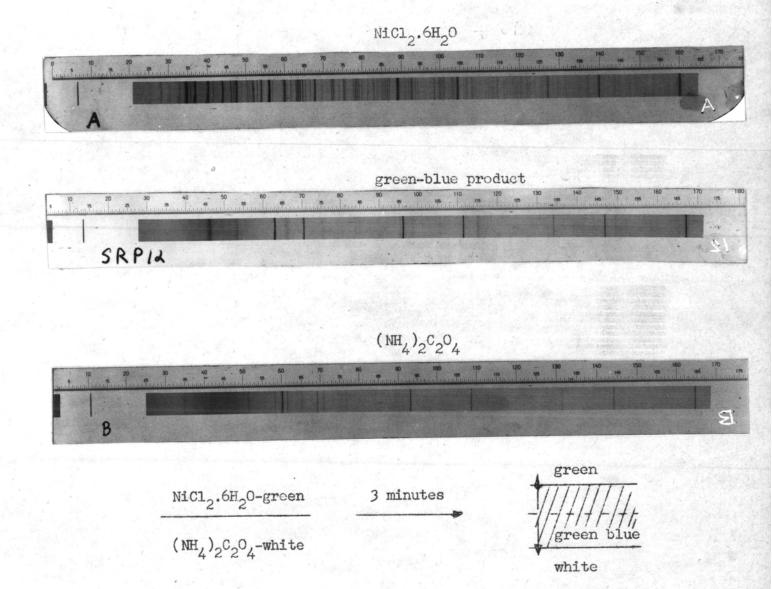


Fig 5.10 X-ray powder pattern of reactant and product of solid-solid reaction. (mixed with Si)

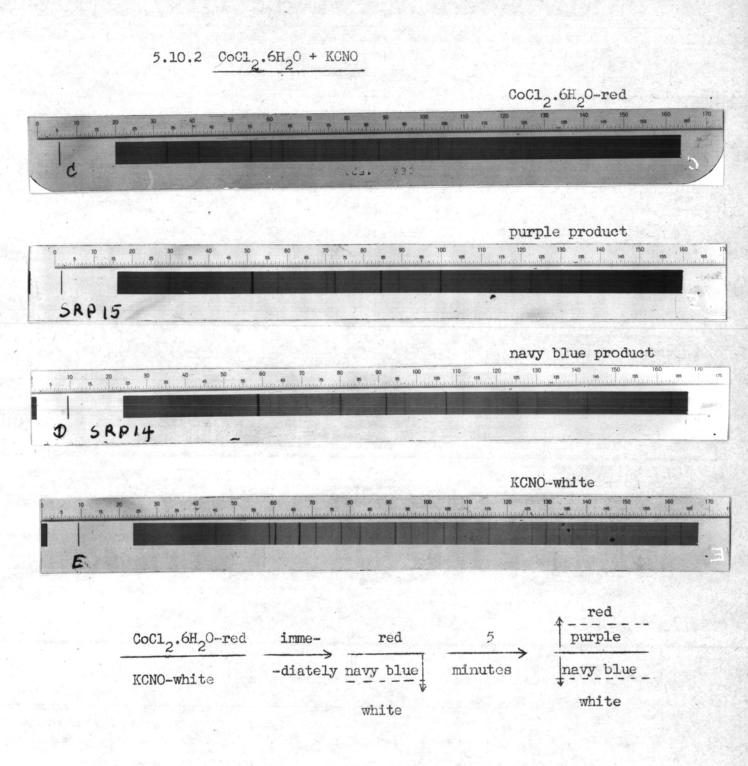


Fig 5.10 X-ray powder pattern of reactant and product of solid-solid reaction. (mixed with Si)

174

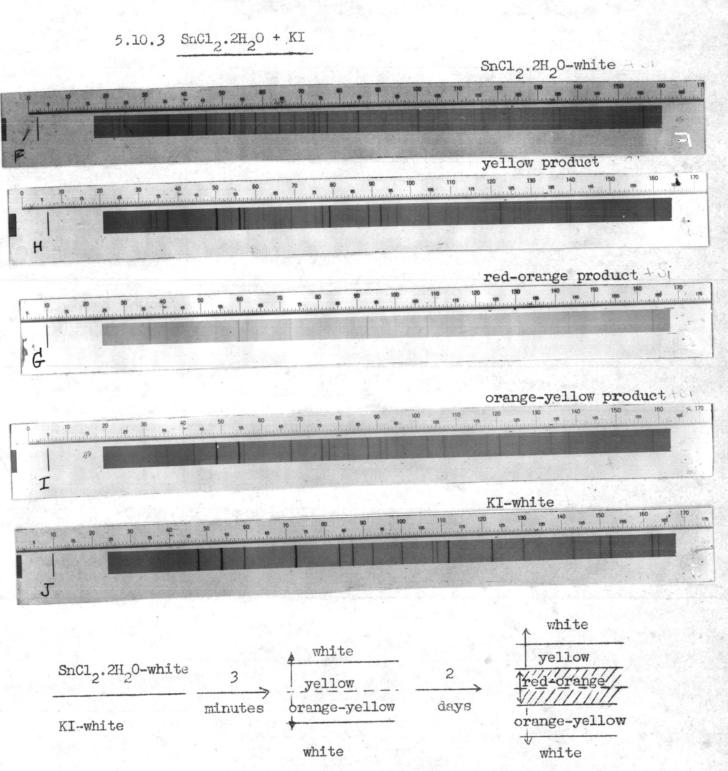
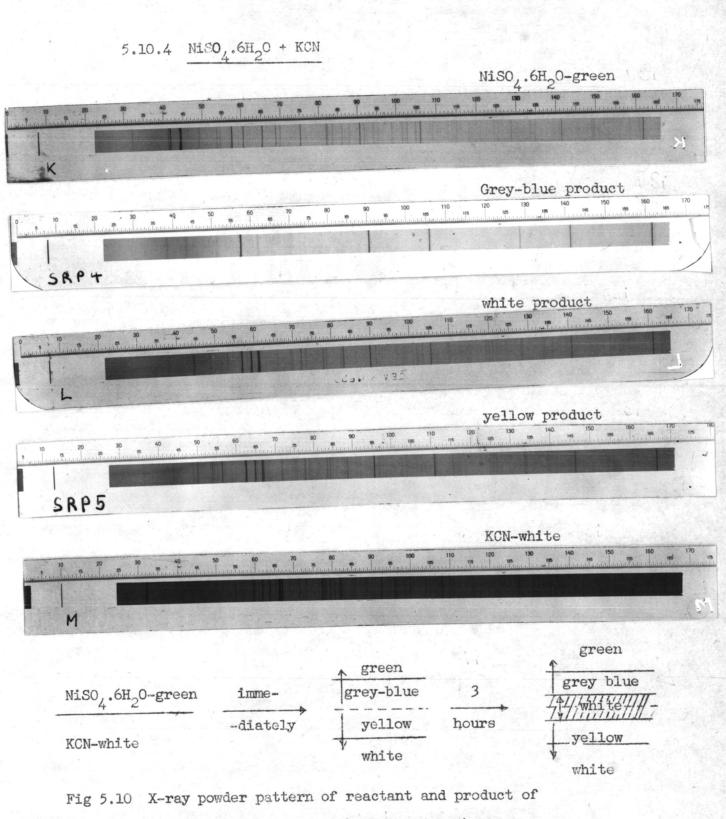



Fig 5.10 X-ray powder pattern of reactant and product of solid-solid reaction. (mixed with Si)

solid-solid reaction. (mixed with Si)

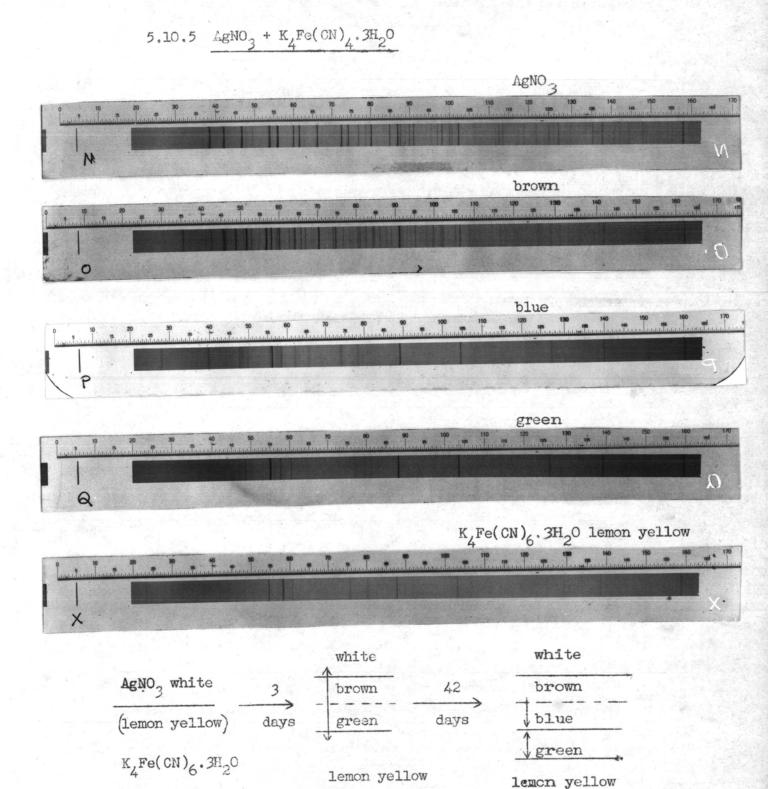
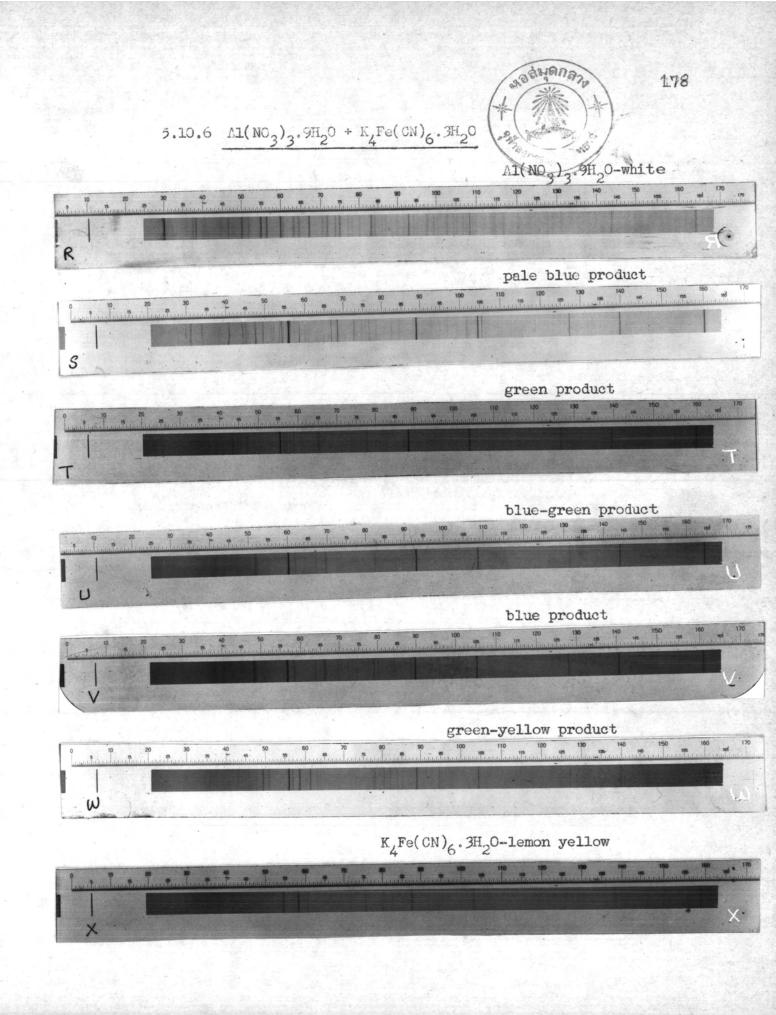
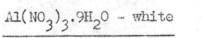
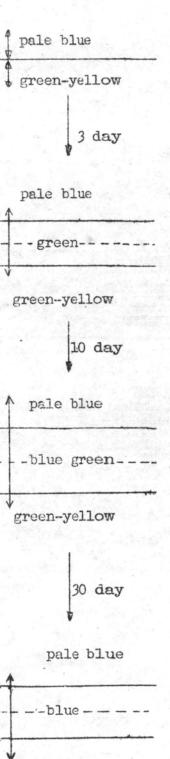




Fig 5.10 X-ray powder pattern of reactant and product of

solid-solid reaction. (mixed with Si)


(maig. 1-21 with S.)

(lemon yellow)

K₄Fe(CN)₆ - lemon yellow

green-yellow

5.6 The conductivity measurement of both inorganic compound and solid - solid reaction.

5.6.1 The conductivity measurement of inorganic compound.

The conductivity of inorganic compound could be measured in solid state by measuring current at variable applied voltage. The conductivity of such compound at given time was related to the current per applied voltage.

The results which showed the relationship between appeared current and applied voltage of such compound, could be presented and concluded as in the following data and figures.

26.2 ⁰ C thickness 2.032 mm.		25.4°C thickness 1.760 mm.		25.4 [°] C thickness 1.850 mm.	
(v)	(ma)	(v)	(µa)	(v)	(ma)
0.0	:0.00	0.0	0.00	0.0	0.00
2.0	:0.30	2.0	10.00	2.0	0.50
4.0	:1.00	5.0	26.00	4.0	2.00
6.0	-1.80	7.0	37.50	6.0	4.20
8.0	-2.70	10.0	56.00	8.0	7.80
10.0	3.80	13.0	70.00	10.0	11.50
12.0	4.70	15.0	82.00	12.0	16.00
14.0	-5.60	18.0	95.00	14.0	23.00
16.0	-6.40	20.0	102.00	16.0	31.00
18.0	:7.30	21.0	97.00	18.0	40.00
20.0	-8.30	22.0	90.00	20.0	60.00
22.0	9.30	23.0	85.00	22.0	75.00
24.0	4.50	24.0	70.00		
26.0	4.00	25.0	55.00		
28.0	4.20	27.0	5.00		full scale
30.0	4.50				immediately
32.0	4.00	Section 24	Ő		and the
34.0	4.00	100	immediatly		
36.0	4.00		THERE AT G OT A		12 1 1 2 2
38.0	4.20				
40.0	4.00	1.1			이 집 같은 것이다.
50.0	4.00				
60.0	4.00				

Table 5.11 Conductivity measurement of inorganic compound.

KI	F	CoCl	.6H ₂ 0	KNO3		
26.8°C thickness 1.670 mm.		25.2°C thickness 2.820 mm.		25.5°C thickness 1.720 mm.		
(v)	(µA)	(v)	(Au)	(v)	(µA)	
0.0	0.00	0.0	0.00	0.0	0.00	
0.5	. 1,00	1.0	0.00	10.0	0.20	
1.0	2.50	2.0	10.00	20.0	0.40	
1.5	12.50	3.0	25.00	30.0	0.70	
2.0	23.00	4.0	44.00	40.0	1.00	
2.5	50.00	5.0	60.00	50.0	1.20	
3.0	85.00	6.0	80.00	60.0	1.50	
3.5	138.00	7.0	100.00	70.0	1.85	
4.0	195.00	8.0	124.00	80.0	2.15	
		9.0	144.00	90.0	2.50	
		10.0	164.00	1.00.0	2.90	
	full scale	11.0	198.00	110.0	3.20	
	Immediately	12.0	226.00	115.0	3.70	
		13.0	232.00	120.0	3.20	
		14.0	256.00	125.0	4.20	
	The states	15.0	274.00	130.0	3.20	
		16.0	296.00	135.0	4.50	
				140.0	3.30	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				145.0	4.10	
			8. A. (24.)	150.0	3.10	
1.6				155.0	4.00	
				160.0	3.20	
				165.0	4.00	
				170.0	3.30	

Table 5.11 Conductivity measurement of inorganic compound.

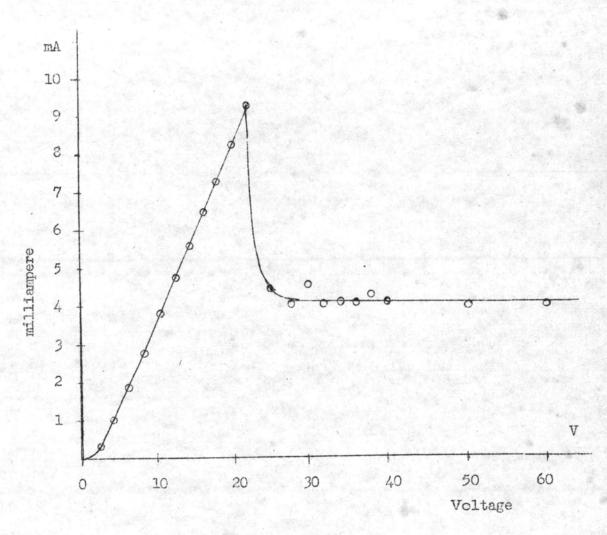


Fig. 5.11 Conductivity measurement of KCN

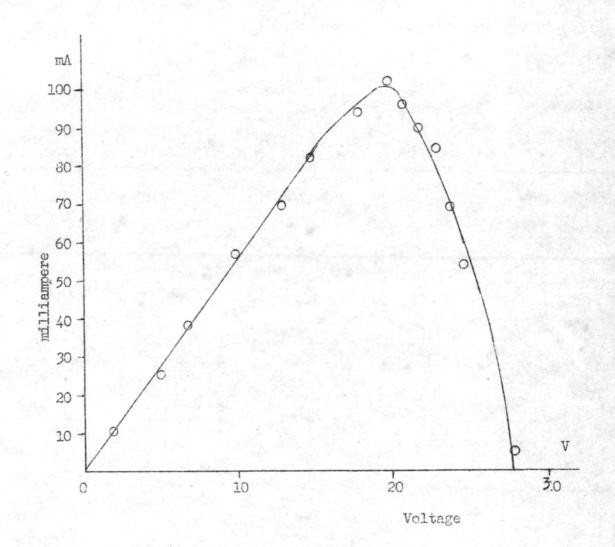


Fig 5.12 Conductivity measurement Of KCNO

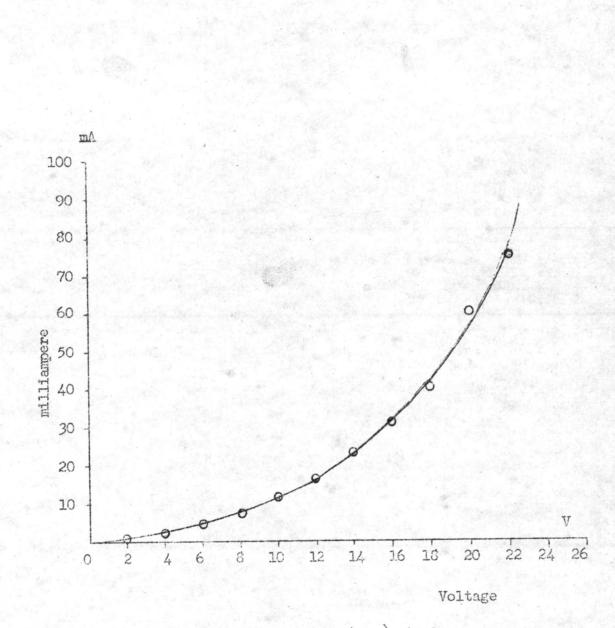
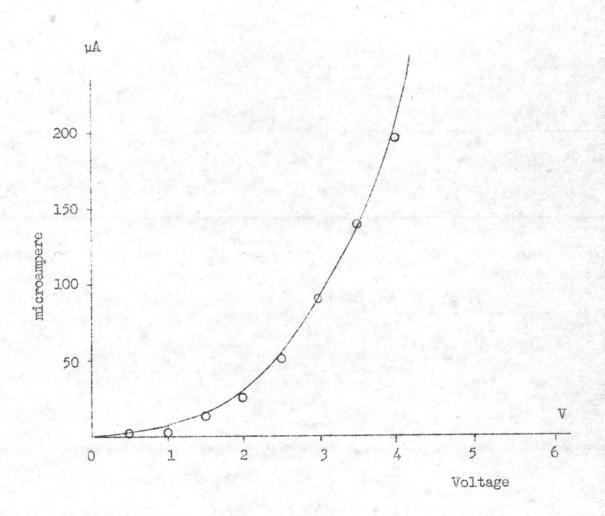
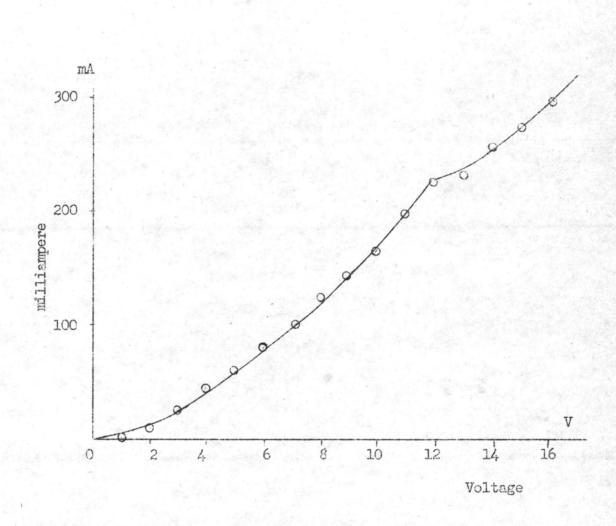
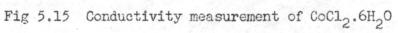
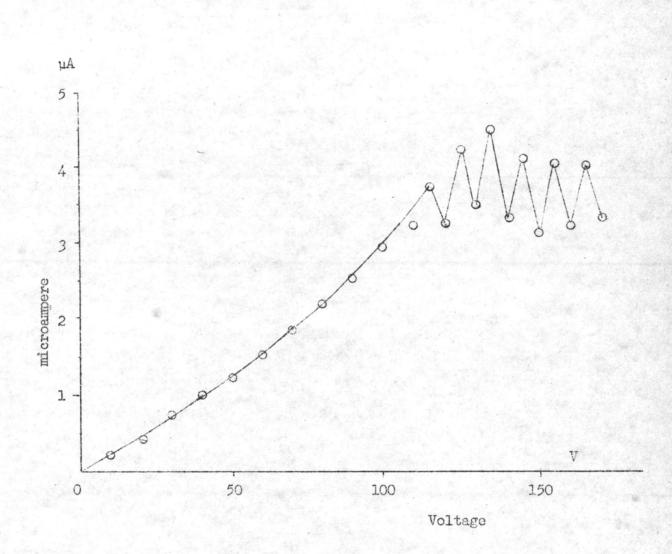
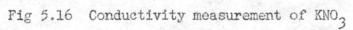


Fig 5.13 Conductivity measurement of Ni(NO3)2.6H20


Fig 5.14 Conductivity measurement of KF

1.87

The current of some compounds increased continuously with applied voltage but in some range of voltage only, the deviation often appeared at the higher one. There was an optimum voltage for each system of this type. There were several types of current distortion and results was explained graphically in detail. For some compounds, the relationship between current and voltage increased continuously over 400 volt which was the highest voltage to be supplied. 5.6.2 The conductivity measurement of solid-solid reactions.

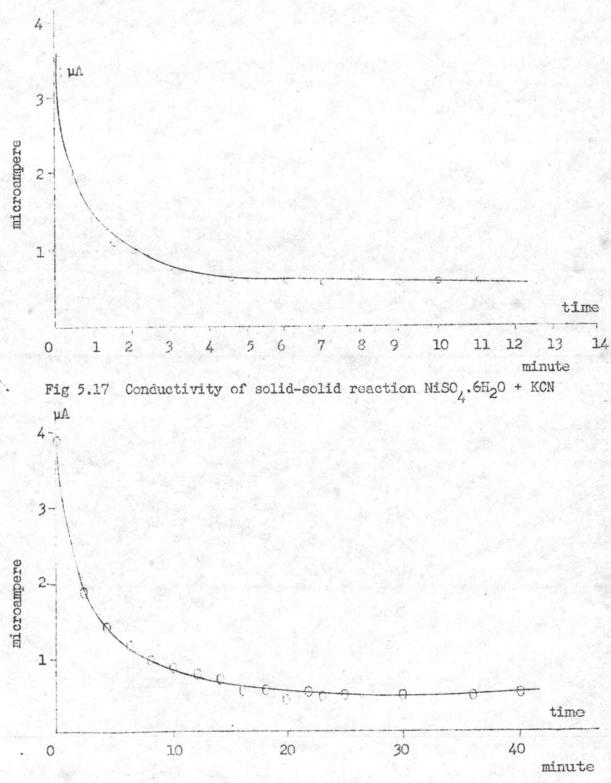
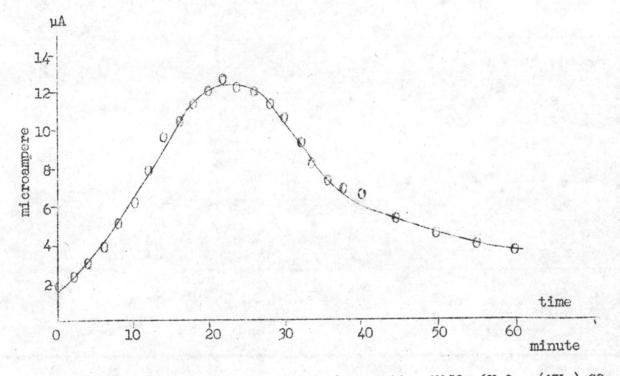
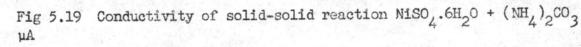
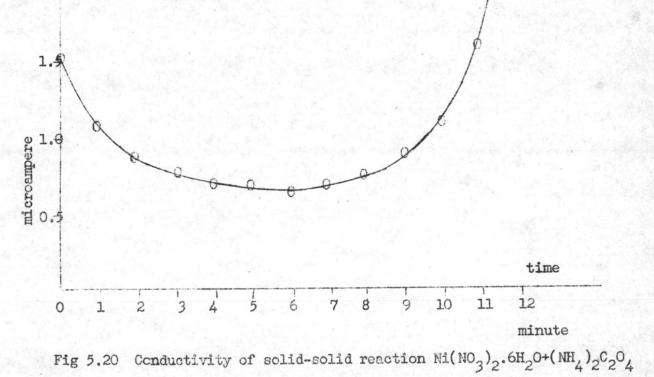
Reactions between solid and solid was capable to take place by the diffusion mechanism. In such the diffusion process, some species migrated through crystal lattice. The observation at any applied voltage could be followed by measuring current at given time. The value of current per unit of voltage was related to the conductivity of system. The voltage was kept consistently while the solid-solid interaction was being in progress, which caused the change in current and to be able to measure. The relationship between current and time at constant voltage was tabulated and represented all the study :solid-solid reaction in the form of graphic group.

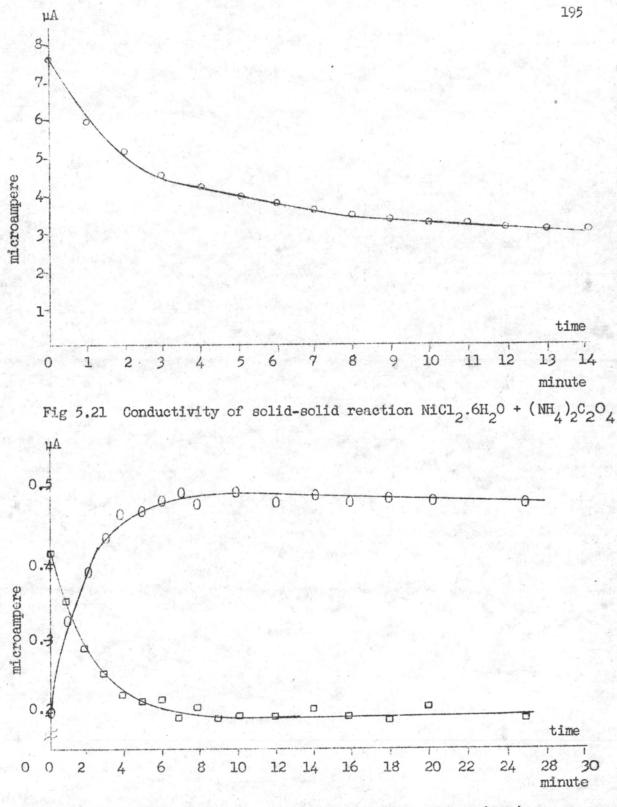
NiSO4.6H20 + KCN		KN03 + CoC12.6H20		NiS04.6H20 + (NH4)200		
$\frac{4}{1000} = \frac{2}{1000} = \frac{1000}{1000} = $		KNO3 1.740 mm		NiSO ₄ .6H ₂ O 2.090 mm (NH ₄) ₂ CO ₃ 2.710 mm 30V. 26.8°C		
0.0	3.60	0.0	3.90	0.0	1.80	
10.5	2.00	2.0	1.90	2.0	2.50	
1.0	1.40	4.0	1.42	4.0	3.00	
1.5	1.10	6.0	1.20	6.0	3.90	
2.0	1.00	8.0	1.00	8.0	5.10	
12.5	0.80	10.0	0.90	10.0	6.20	
3.0	0.70	12.0	0.80	12.0	8.00	
3.5	0.70	14.0	0.70	14.0	9.60	
4.0	0.60	16.0	0.60	16.0	10.40	
4.5	0.60	18.0	0.58	18.0	9.50	
5.0	0.60	20.0	0.50	20.0	12.20	
5.5	0.60	22.0	0.53	22.0	12.60	
6.0	0.65	23.0	0.50	24.0	12.20	
.7.0	0.60	25.0	0.50	26.0	12.00	
.8.0	0.60	30.0	0.50	28.0	11.40	
9.0	0.55	35.0	0.50	30.0	10.50	
10.0	0.60	40.0	0.50	32.0	9.30	
11.0	0.55	50.0	0.50	34.0	8.40	
12.0	0.60	60.0	0.50	36.0	7.50	
				38.0	7.00	
2			Last dise."	40.0	6.50	
				45.0	5.40	
		12.	and a second	50.0	4.60	
		A Constanting		55.0	4.10	
1. Constant	L. Marsher S.	A Section		60.0	3.80	

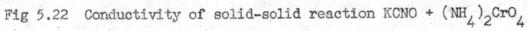
Table 5.12 Conductivity measurement of solid-solid reaction.

$\frac{\text{Ni}(\text{NO}_3)_2.6\text{H}_2\text{O} + (\text{NH}_4)_2\text{C}_2\text{O}_4}{\text{Ni}(\text{NO}_3)_2.6\text{H}_2\text{O}} \qquad 1.860 \text{ nm}}{(\text{NH}_4)_2\text{C}_2\text{O}_4} \qquad 2.320 \text{ nm}}$ $\frac{(\text{NH}_4)_2\text{C}_2\text{O}_4}{30\text{V}} \qquad 25.4^{\circ}\text{C}$		NiCl ₂ .6H	KCNO +	KCNO + (NH4)2CrO4		
		NiCl ₂ .6H	KCNO 1.780 mm			
		(NH ₄) ₂ C ₂	(NH ₄) ₂ CrO ₄ 1.960 mm 80V. 26.5°C			
		15V.				
time (minute)	microampere (µA)	time (minute)	microampere (µA)	time (minute	microam- pere	
			in garage		μA	μΛ2
0.0	1.55	0.0	7.50	0.0	0.2	0.42
1.0	1.10	1.0	5.80	1.0	0.33	0.35
2.0	0.90	2.0	5.00	2.0	0.39	0.29
3.0	0.80	3.0	4.45	3.0	0.43	0.26
4.0	0.72	4.0	4.10	4.0	0.46	0.23
5.0	0.70	5.0	3.90	5.0	0.47	0.22
6.0	0.68	: 6.0	3.80	6.0	0.48	0.22
7.0	0.70	7.0	3.50	7.0	0.49	0.20
8.0	0.78	8.0	3.40	8.0	0.48	0.21
9.0	0.90	9.0	3.30	10.0	0.49	0.20
10.0	1.10	10.0	3.20	12.0	0.48	0.20
11.0	1.60	11.0	3.10	14.0	0.49	0.21
	State State	12.0	3.00	16.0	0.48	0.20
	all Barris	13.0	2.95	18.0	0.48	0.20
	full scale	14.0	2.90	20.0	0.48	0.21
	immediately			25.0	0.48	0.20
1.14				30.0	0.48	0.20

Table 5.12 Conductivity measurement of solid-solid reaction.


Fig 5.18 Conductivity of solid-solid reaction $\text{KNO}_3 + \text{CoCl}_2.6\text{H}_2\text{O}$



2.0

5.7 Concluding remarks and the suggestion for future work

A knowledge of the diffusion in and through crystal lattice is a prerequisite to understand the possibility of both physical and chemical change while the study focused the attention on the subject of solid-solid phenomena. Some special and suitable implements should have been constructed with facile technique in order to provide easily the reliable evidence. The study of solid-solid chemistry seems to be a very wide field of science knowledge. Any suggestion work showing below can be enlarged for forming individual research programme.

a. pursuit the time expenditure of solid-solid interaction at variety of temperature

b. the kinetic study of solid-solid reaction

c. the structural study of reaction product

d. the study of solid-solid chemistry which may affect some analytical techniques

e. the application of solid-solid chemistry to prolong the deterioration of solid material and etc.

The advantage of solid state reaction must be applied to solid-state science such as solid-state physics, metallurgist, engineering and etc. It seems to be one of interdisciplinarity for solid-state study.