CHAPTER III

GRAPHS AND EMBEDDING OF GRAPHS INTO SURFACES

3.1 Graphs

A graph G is an ordered pair (V, E), where V is a finite
nonempty set and E is a set of 2-subset of V. Elements of V and

E are called vertices and edges of (V, E), respectively.

If {u, v} is an edge of a graph G, we say that v and u are

adjacent and vertex v and edge {u, v} are incident.

If v is any vertex in a graph G, we define the degree of
vertex v to be the number of edges which are incident to v and de-

noted by deg v.

Theorem 3.1.1 If G is a graph with n vertices and m edges and d
n
is the average degree of vertices of G, i.e., d = (igldi)/n, then

dn = 2m.

Proof. Let di be the degree of a vertex v, of G. Since every

il

edge is incident with two vertices, it contributes two to the sum

of the degree of vertices, that is,

ldi = 2m,

e 3

i

But ) i=1"4i .
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Hence
dn = 2m
Q.E.D.
Let (Vl, El) be a graph, then (Vl, El) is a subgraph of
(V,E) if VSV and E, S E. Observe that the relation “being sub-

graph" is a partial order on any set of graphs.

Let G be a graph having more than one vertex. By the re-

moval of a vertex v from a graph G, we mean the removal of a

vertex v and edges incident with v. The resulting graph is a
subgraph of G and will be denoted by G - v. Thus G - v is the

maximal subgraph of G not containing v. By the removal of an

edge e from a graph G, we mean the removal of that edge only.

The resulting graph is a subgraph, denoted by G - e, which is the

maximal subgraph of G not.containing e.

If every pair of vertices of a graph G are adjacent, then G
is called a complete graph. The complete graph with n vertices is

denoted by Kn. We see that Kn has (2) edges.

By a path of G, we mean the alternating sequence of vertices
and edges,
Vor €15 Vis eees 8 1% Veoq s €s Yy
in which each edge incident with the two vertices immediately pre-
ceding and the following it provided all of its vertices and all

of it edges are distinct.
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If G consists of a single vertex or every pair of its ver-

tices is joined by a path, we say that G is a connected graph.

Let G = (V, E) be a graph and C = {cl, o1 iy cn} be a set of
n elements, called colors. An n-coloring of G is a function ¢ from

V into C such that c(u) # c(v) whenever u and v are adjacent ver-

tices of G. If c(v) = c;» We say that we assign the color ¢, to v.
e

By the chromatic number of a graph G, we mean the smallest

n for which G has an n-coloring, and denote by x(G).

Note that X(Kn) = n.

3.2 A Realization of a Graph

If P is a set of points in'R? such that no three of its
points lie on the same line and no four of its points lie on the

same plane, we say that P is in general position.

Let G = (V, E) be a graph. Let P be a set of points in‘R3

and L be a set of line segments such that the endpoints of any ele-

ment q in L belong to P. We say that (P, L) is a realization of

(V, E) if and only if P is in general position and there exist 1 - 1
correspondences £ : V + P, g : E - L such that for any u, ve V,

{u, v} € E if and only if f(u), f(v) are endpoints of g({u, v}).

For example, let (V, E) be a graph, where V = {a, b, ¢, d}

and E = {{a, b}, {a, c}, {b, c}, {c, d}}.  Let
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p = {0, 0, 0); (I, 0, 0), (0, I, 0), (0, &, I)} and

L = {qy, Gps Gq» 44}, where

q, = 16,(0, 0, 0) +6,(1, 0, 0) = 6;, 8, eR, 0 <0 <1,
0<62<1 and 61+82=1} ;

q, = {6,(0, 0, 0) +6,(0, 1, 0) :6,,6, R, 0<80 <1,
O<82< 1 and Bl+62=1} s

4, = {6/(1, 0, 0) +6,(0, I, 0) 2 06,, 68, cR, 0<0, <1,
0<6,<1 and 6, /+%0,=1} ,

9, = {91(0, 1, Oy 92(0, ===} 61, 62 eR, 0 < 81 < 722

0<8 <1 and ©, 6 +6,=1} .

2 1 2

Then (P, L) is a realization of (V, E) and it can be repre-

sented by the following diagram :
Z

{0,0,1)

\/
ke ¢

We observe that PU (qléJLq) can be considered as a topological
subspace of 'IR3. We shall denote this topological subspace by |G|
Any homeomorphic image of [G| in a topological space (X, 1) will be

called a topological realization of (V, E) in (X, T).

In this section we shall show that every finite graph can be

realized in IR3 .




Lemma 3.2.1 Given any positive integer n, we can find n points in

IR3 such that these n points are in general position.

. 3
Proof. Let a; be a point inR". Choose a point, say ay, from the
complement of the set {al}. Choose a point, say ays from the com-
a, and a, do

from the comple-

plement of the set l(al, az). Hence the points a,,

not lie on the same line. Choose a point, say s

ment of the set P(al, 2, a3). Hence the points a1 855 ag and a,

do not lie on the same plane and any three of them do not lie on

the same line. Choose a point, say a_., from the complement of the

5’

and a

e T 5

1

have no three points lie on the same line and no four points lie

U 4 .
set 1§i<j<k§ﬁP(ai’ aj, ak). Then the points a

on the same plane.

After a o am have been chosen so that no three points

l!

lie on the same line and no four points lie on the same plane, we

choose a from the complement of the set.

L (a;» Uys a,).

U
1§;<j<k£;

Hence we can find the points a vees @ such that these n points

1!
are in general position.

+E.D,

Theorem 3.2.2 Any graph G = (V, E) can be realized in E;.

Proof. Let P be a set of points in R? such that P is in general

position and such that P and V are in 1 - 1 correspondence.

Let £ : V - P be al - 1 correspondence. We define g on E

by setting
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g{v, w}) = q(@), £(w)).
Let L be the image of E under g. It can be seen that (P, L) is a
realization of (V, E).

.E.D.

Note From the assumption that the points in P are in general posi-

tion, it can be shown that no line segments in L intersect.

3.3 Embedding of a Graph into a Surface

Let S be a surface. An embedding h of any realization |G|

of a graph G to S will be called an embedding of G into S. The

images of points and line segments under any embedding will be also

refered to as points and lines, respectively.

Roughly speaking an embedding of a graph G into a surface S is
a drawing of G on S. OBserve that the lines in the drawing do not

intersect, this followsfrom fact that the embedding is an injection.

To illustrate this, let G = (V, E) be the graph given in the
example of Section 3,2. Then h : |G| +1R2, defined by
h(x, vy, 2) = (x+vy,v5 + 2)
is an embedding of graph G = (V, E) intolmz. The image of this

embedding can be represented by the following diagram.
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(0,1) (1,1)

g B8

10,0) 11,0)

If (P, L) is a realization of graph G = (V, E) and
h: |G| +Sis an embedding from |G| into a surface S, then the

components of S-h([G]) are called the regions of the embedding.

If each region of an embedding h is homeomorphic to Rz, then h will

be called a proper embedding. When the proper embedding

h : [G] + S exists, we say that G can be properly embedded into S.

We shall call a region whose boundary consists of three points and

three lines, a triangle. [““tr'1 o
JUIL :

If G has an embedding into a surface S, we say that G can be

embedded into S or G is S—-embeddable. A maximal S—-embeddable graph

is an S-embeddable graph to which no edge can be added without los-
ing S-embeddability. From this we can show that a graph G is maxi-
mal S-embeddable if and only if each region of the embedding is a

triangle.

Let G and G' be any two connected graphs with n vertices m
edges and n' vertices, m' edges, respectively, and G, G' can be

properly embedded into a surface St' It can be shown that



n-m+r = n'-m'"+r', wvhere r and r' are numbers of regions

of the embeddings. Proof of this fact can be found in [4] or [8].

We denote the number n - m + r by x(St) and call the Euler

characteristic of S ..
L

By using special graph for each surface St’ it can be shown
that

X(St) = A
From this we have the following theorem.

Theorem 3.3.1 If G is a connected graph with n vertices, m edges
and G can be properly embedded into a surface St’ then
n-m+r = 2 - 2t, where r is the number of regions of the em-

bedding.

Corollary 3.3.2 If G is a connected graph with n-vertices, m edges

and G is maximal St-embeddable, thenm = 3(n - (2 - 2¢t)).

Proof. Since G is maximal St—embeddable, hence each region of the
embedding of G is a triangle.

Let r be the number of these regions.

By counting argument, we see that 3r = 2m.

By Theorem 3.3.1, we have

n-m+r = 2 - 2t ,
so
R R T



Hence

m B 3(n - (2 - 2t)).

Q.E.D.

Corollary 3.3.3 If G is a connected graph with n vertices
m edges and G can be properly embedded into a surface St’ then

m < 3 - (2 - 2t)).

Proof. This follows immediately from Corollary 3.3.2,

-.E .D.
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