CHAPTER V

EXPERIMENTAL RESULTS

5.1 Analysis for Glucose and Fructose

5.1.1 Relationship between factor, f and G/F ratio

Relationship between factor, f and G/F ratio was studied in 2 cases according to 4.3.1.3.1 and 4.3.1.3.2.

Table 5-1 Relationship between f value and G/F ratio at constant content of glucose

25 ml of sample solution			Calculated	G/F ratio	
True G, mg	True F, mg	G _t , mg	G _I , mg	f value	G/I Idele
65.0	4.3	69.6	66.7	3.1	15.1
65.0	6.5	72.8	66.7	16.2	10.0
65.0	13.0	78.7	66.7	13.0	5.0
65.0	32.5	97.9	66.7	25.0	2.0
65.0	65.0	128.6	67.6	16.2	1.0

Table 5-2 Relationship between f value and G/F ratio at constant total content of sugars

25 ml of sample solution				0/7
True F, mg	G _t , mg	G _I , mg	f value	G/F ratio
4.1	66.2	62.8	5.9	14.9
5.9	66.1	61.2	5.9	10.0
10.8	65.4	56.0	7.7	5.0
21.7	62.9	46.5	4.1	2.0
32.5	61.9	35.1	5.7	1.0
	True F, mg 4.1 5.9 10.8 21.7	True F, mg G _t , mg 4.1 66.2 5.9 66.1 10.8 65.4 21.7 62.9	True F, mg G _t , mg G _I , mg 4.1 66.2 62.8 5.9 66.1 61.2 10.8 65.4 56.0 21.7 62.9 46.5	True F, mg G _t , mg G _I , mg f value 4.1 66.2 62.8 5.9 5.9 66.1 61.2 5.9 10.8 65.4 56.0 7.7 21.7 62.9 46.5 4.1

Table 5-3 Relationship between f value and G/F ratio at constant content of glucose and at constant total content of sugars

G/F ratio	f value				
G/F TALIO	Constant content of glucose	Constant total content of sugars			
14.9-15.1	3.1	5.9			
10.0	16.2	5.9			
5.0	13.0	7.7			
2.0	25.0	4.1			
1.0	16.2	5.7			

5.1.2 Fructose determination by Iodometric method.

 $\label{eq:fructose} \text{Fructose content was determined by Iodometric method} \\$ according to 4.3.1.4

Table 5-4 Fructose determination at different G/F ratio

0/2	25 ml of sample solution				
G/F rati	Calculated F, mg	G _I , mg	True M, mg	True F, mg	True G, mg
00	-	75.6 ± 0.0	-	- 1 - 1	75.0
6.5	9.7 ± 0.4	65.9 ± 0.4	-	10.0	65.0
2.0	23.6 ± 0.0	52.0 ± 0.0	-	25.0	50.0
1.3	30.9 ± 0.0	44.7 ± 0.0] -	33.0	42.0
1.0	34.3 ± 0.2	41.3 ± 0.2		37.0	38.0
∞	-	79.5 ± 0.4	5.0		75.0
6.5	9.4 ± 0.4	70.1 ± 0.0	5.0	10.0	65.0
2.0	23.6 ± 0.8	55.9 ± 0.4	5.0	25.0	50.0
1,3	30.4 ± 0.8	49.1 ± 0.4	5.0	33.0	42.0
1.0	34.1 ± 0.7	45.4 ± 0.3	5.0	37.0	38,0

5.2 Composition of Tapioca Flour

The composition of tapioca flour was determined according to $4.3.2.1 \, - \, 4.3.2.8 \, .$

Table 5-5 Composition of tapioca flour

01	Sample no.		
Characteristics	1	2	
% Moisture content	9.7 ± 0.7	12.4 ± 0.3	
% Ash (on dry basis)	0.40 ± 0.09	0.40 ± 0.01	
% Acid insoluble ash (on dry basis)	0.10 ± 0.01	0.08 ± 0.00	
% Protein (on dry basis)	0.37 ± 0.05	0.00 ± 0.00	
% Starch (on dry basis)	88.6 ± 1.0	89.3 ± 0.8	
Pulp, m1/50 gm of flour max	0.1	0.1	
pH of aqueous extract	5.95	5.6	
% Fineness max	1.0	1.0	

5.3 Production of Glucose Syrup

5.3.1 Effect of special heat treatment and inactivation of Termamyl on the yield of glucose

Four samples of starch slurry were prepared according to 4.3.4.2.

 $ag{Table 5-6}$ Effect of special heat treatment and inactivation of Termamyl on the yield of glucose

Sample no.	T	Treatment		
Jampie No.	Special heat treatmen	Inactivation of Termanyl	of glucose	
1	+	+	101.7 ± 0.4	
2	+	-	100.9 ± 0.6	
3	-	+	101.3 ± 0.5	
4	-	-	100.4 ± 0.9	

 $\underline{\text{Note}}$ + = Treatment applied

- = Treatment not applied

Table 5-7 ICUMSA color index of glucose syrup produced according to 4.3.4.2

	Treat	ICUMSA color	
Sample no.	Special heat treatment	Inactivation of Termamyl	index
1	+	+	736.5
2	+ 1	- , [1]	631.4
3		+	722.0
4	4 1 3 1 1 1	_	623.0

Note + = Treatment applied

- = Treatment not applied

5,3,2 Effect of deionized and tap water on the yield of glucose

Two samples of starch slurry were prepared according to 4.3.4.3.

Sample no.	Types of water used	Calcium content	% yield of glucose
1	Deionized water	1	100.4 ± 0.9
2	Tap water	16	100.3 ± 0.4

Table 5-9 ICUMSA color index of glucose syrup produced according to 4.3.4.3

Sample no.	Types of water used	ICUMSA color index
1	Deionized water	623.0
2	Tap water	751.0

5.4 Pre-treatment of Glucose Syrup

5.4.1 Effect of pre-treatment on the yield of fructose

Four samples of glucose syrup (30° Brix) were pre-treated according to 4.3.5.2 and isomerized according to 4.3.6.1.

Table 5-10 Effect of pre-treatment on the yield of fructose

C 1	Pre-t	reatment		% yield of fructose
Sample no.	Activated carbon treatment	Cation	Anion exchange	% yield of
				7.7
1	+	+	+	14.3 ± 0.6
2	+	+	-	15.2 ± 0.8
3	+	-	-	15.1 ± 1.1
4		-	-	11.0 ± 0.4

Note + = Pre-treatment applied

- = Pre-treatment not applied

Table 5-11 ICUMSA color index of syrup pre-treated according to 4.3.5.2 and isomerized according to 4.3.6.1

Sample	P	re-treatment		ICUMSA color index		
no.	Activated carbon treatment	Cation exchange	Anion	Before isomerization	After isomerization	
1	+	+	+	143.7	224.9	
2	+	+	-	171.7	274.8	
3	+	-	-	199.8	277.9	
4			1 2 2	723.3	780.3	

Note + = Pre-treatment applied

- = Pre-treatment not applied

5.4.2 Effect of cation exchange on the yield of fructose

Two samples of glucose syrup (30°Brix) were pre-treated according to 4.3.5.3 and isomerized according to 4.3.6.1.

Table 5-12 Effect of cation exchange on the yield of fructose

	Pr	e-treatment		T T	% yield
Sample no.	Activated carbon treatment	Cation	Anion exchange	Calcium Content ppm	of fructose
1 2	-	+	-	2	11.1 ± 0.4 9.4 ± 0.5

Note + = Pre-treatment applied

- = = Pre-treatment not applied

5.5 Isomerization of Glucose Syrup to Fructose Syrup

5.5.1 Effect of cobalt chloride on the yield of fructose Two samples of glucose syrup (30 Brix) were pre-treated according to 4.3.6.2 and isomerized according to 4.3.6.1.

Table 5-13 Effect of cobalt chloride on the yield of fructose

Sample no.	Sample characteristics	% yield of fructose
1	Addition of cobalt chloride	15.1 ± 1.1
2	No addition of cobalt chloride	7.2 ± 0.4

Table 5-14 ICUMSA color index of syrup pre-treated according to 4.3.6.2 and isomerized according to 4.3.6.1

Sample no.	Sample characteristics	ICUMSA color index		
		Before isomerization	After isomerization	
1 2	Addition of cobalt chloride No addition of cobalt chloride	199.8 199.8	277.9 263.8	

5.5.2 Effect of Mg/Ca ratio on the yield of fructose

Four samples of pure glucose syrup (28 Brix) were prepared according to 4.3.6.3 and isomerized according to 4.3.6.1.

Table 5-15 Effect of Mg/Ca ratio on the yield of fructose

Sample	Mg/Ca				
no.	ratio	1 st	2 nd isomerization	3 rd isomerization	Total yield
1	10	6.5 ± 0.3	3.7 ± 0.2	2.8 ± 0.2	13.0 ± 0.7
2	20*	6.5 ± 0.1	3.7 ± 0.2	2.8 ± 0.5	13.0 ± 0.8
3	32	6.5 ± 0.1	3.7 ± 0.5	2.8 ± 0.3	13.0 ± 0.9
4	20**	7.7 ± 0.3	3.3 ± 0.5	2.2 ± 0.01	13.2 ± 0.8

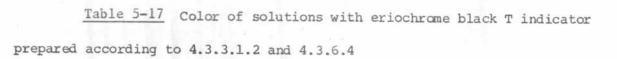
Note * Sample 2 was prepared with deionized water and added with magnesium sulfate to get Mg/Ca ratio = 20

** Sample 4 was prepared with tap water and added with magnesium sulfate to get Mg/Ca ratio = 20

5.5.3 Effect of polyphosphate and EDTA addition on the yield of fructose

Five samples of pure glucose syrup (28 Brix) were prepared according to 4.3.6.4 and isomerized according to 4.3.6.1.

Table 5-16 Effect of polyphosphate and EDTA addition on the yield of fructose


Sample no.	% yield of fructose					
	l st isomerization	2 nd isomerization	3 rd isomerization	Total yield		
1	6.6 ± 0.04	3.7 ± 0.3	2.5 ± 0.1	12.8 ± 0.4		
2	2.3 ± 0.1	1.8 ± 0.1	1.3 ± 0.2	5.4 ± 0.4		
3	2.3 ± 0.3	1.9 ± 0.2	1.4 ± 0.1	5.6 ± 0.6		
4	3.9 ± 0.1	3.4 ± 0.08	2.6 ± 0.04	9.9 ± 0.2		
5	5.1 ± 0.2	4.0 ± 0.03	3.0 ± 0.2	12.1 ± 0.4		

Note 1 = Sample prepared with deionized water and adjusted

Mg/Ca to 10

- 2 = Sample prepared by mixing polyphosphate, cobalt chloride and Sweetzyme type A together
- 3 = Sample prepared by mixing cobalt chloride and Sweetzyme type A for 1 hour before polyphosphate addition

- Table 5-16 (cont.) Effect of polyphosphate and EDTA addition on the yield of fructose
 - Note 4 = Sample prepared by mixing EDTA, cobalt chloride and Sweetzyme type A together
 - 5 = Sample prepared by mixing cobalt chloride and Sweetzyme type A for 1 hour before EDTA addition

Sample	Sample Sample	Color with	eriochrome blac	k T indica	itor
no,	Preparation	Before heating at 60°C, 20 hr	1.00	PO ₄ addition (3gm/1)	EDTA addition (0.275gm/1)
1	Deionized water	Blue			
2	Tap water	Wine-red		Violet blue	
3	Tap water/PO ₄ (3 gm/1)	Violet-blue			
4	Tap water/PO ₄	VIOLET-DIGE		114	5
5	(3 gm/1) Deionized water,	Violet-blue	Blue-violet		
,	CoCl ₂	Blue	ei .		1
6	Tap water/CoCl ₂ /				d .
7	PO ₄ (3 gm/1) Tap water/CoCl ₂ /	Pink-red	Pale Wine-red	Pale	
0	PO ₄ (3 gm/1)	Pink-red		Pink red	7
8	Tap water/EDTA (0.225 gm/1)	Pink-red			Blue
9	Tap water/EDTA				
	(0.5 gm/1)	Blue	Blue		

Table 5-17 (cont.) Color of solutions with eriochrome black T indicator prepared according to 4.3.3.1.2 and 4.3.6.4

Sample no.	Sample Preparation	Color with	eriochrome blac	ek T indica	itor
		Before heating at 60°C, 20 hr		PO ₄ addition (3gm/1)	EDTA addition (0.275gm/1
10	Tap water/CoCl ₂ / EDTA (0.225 gm/l)). Wine-red			Violet blue
11	Tap water/CoCl ₂ /				,
12-16	EDTA (0.5 gm/1) Syrup from	Violet-blue	Blue-violet		
	4.3.6.4		Wine-red		

Note Sample 1-11 prepared according to 4.3.3.1.2

Sample 12-16 prepared according to 4.3.6.4

5.5.4 Effect of pure glucose and prepared glucose syrup on the yield of fructose

Four samples of syrup (40 $^{\circ}$ Brix) were prepared according to 4.3.6.5 and isomerized according to 4.3.6.1.

Sample	Syrup characteristics		Sweetzyme i	% yield	
no,	Pure glucose	Prepared glucose	1.6 gm/ 1,000 gm G	33.8 gm/ 1,000 gm G	of fructose
1	+	1784	+	-	6.4 ± 0.1
2	- 1	+	+	-	6.9 ± 0.3
3	+		-	+	44.7 ± 0.4
4	-11	+	-	+	46.1 ± 0.0

Note + = Addition

- = No addition

5.5.5 Activity of Sweetzyme type A

The activity of Sweetzyme type A determined according to 4.3.6.6 was 426.6 ± 5.3 GINU/gm enzyme.

5.5.6 Determination of Sweetayme type A dosage in the first isomerization

Three samples of pure glucose syrup (40 Brix) with different amounts of Sweetzyme type A were isomerzed according to 4.3.6.7.

Table 5-19 Sweetzyme type A dosage in the first isomerization

Sample no.	Sweetzyme type A dosage, gm/1,000 gm glucose	% yield of fructose
1	25.0	37.8 ± 0.3
2	30.0	40.5 <u>+</u> 0.6
3	33.8	44.7 ± 0.4

5.5.7 Effect of magnesium reduction on the yield of fructose

Two samples of pure glucose syrup (40 $^{\circ}$ Brix) were prepared according to 4.3.6.8 and isomerized according to 4.3.6.1.

Table 5-20 Effect of magnesium reduction on the yield of fructose

Sample	MgSO ₄ addition	% resi	dual activ	ity	% у	vield of fr	uctose
no.	gm/l syrup	1 st isomerizat ⁿ	2 nd isomerizat ^I	3 rd isomerizat	4 th isomeizat	5 th isomeizat ⁿ	6 th isomeizat ⁿ
1	2.0	100,0 45,0±0.1	75.4 36.0±0.3	63.6 14.8±0.2	66,3 5,3±0,3	59,2 3.4±0.4	59.2
2	0.1	100.0	72.8 35.9 [±] 0.1	56.7	55.9 10.8±0.2	49.1 6.4±0.1	51.1

Table 5-21 ICUMSA color index of fructose syrup prepared according to 4.3.6.8 and isomerized according to 4.3.6.1

Sample	MgSO ₄ addition	ICUMSA color index after isomerization						
no.	gm/l syrup	l st isomerizat ⁿ	2 nd isomerizat ⁿ	3 rd isomerizat ⁿ	4 th isomerizat ⁿ	5 th	6 th isomerizat ^r	
1	2.0	385.3	129.9	93.4	91.5	91.5	101.7	
2	0.1	365.5	138.1	99.6	99.7	99.8	101.8	

5.6 Post-treatment of Fructose Syrup

5.6.1 Color determination of fructose syrup before and after activated carbon treatment

The color of fructose syrup before and after activated carbon treatment was determined according to 4.3.7.2.

Table 5-22 ICUMSA color index of fructose syrup before and after activated carbon treatment

Sample	ICUNSA color index			
Sample	Before activated carbon treatment	After activated carbon treatment		
Fructose syrup	385.3	167.6		

5,6.2 Cobalt determination of fructose syrup before and after cation exchange

The cobalt content of fructose syrup before and after cation exchange was determined according to 4.3.7.3.

Table 5-23 Cobalt content of fructose syrup before and after cation exchange

Sample _	Cobalt content, ppm		
Jampie	Before cation exchange	After cation exchange	
Fructose syrup	20	. 0	