CHAPTER II1I
EXPLICIT EXTRACTION COF PARAMETERS

The first step in the application of an interpolation
Scheme is the extraction of tihe values of the parameters. This
may be done by fitting the interpolated bands at symmetry poinis
with accurately caleculated bands, and later, if desired, they
may be changed in order to saecure the best possible agreement
with available experimental data. This fitting is fe=asible
because, at certain points of high symmetry in the Brillouin
zone, the Hamiltonian secular determinant can be quite readily
diagonalized by the eigenvectors explicitly. The resultant
expressions form groups with each group involving a closed set
of the parameters. There are certain enerpgy eigenvalues which
are represented, even at points of symmetry, by expressions
involving complicated arrays of the parameters, However, by
proceeding in a judicious step-by-step, it turns out to be
possible to extract all the 17 parameters employed in our
scheme,

The eigenstates labelled by the symmetry notations

I&ag IE5,, XB, X2, Xj, L31, L32’ and Kh are pure
d levels and their eigenfunctions do not hybridize with the
conduction bands, The explicit enerszy expressions for these

levels involve cnly the & parameters, E , A, Aysecesshg o
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As there are 8 independent expressions for the 8 eigenvalues,

the 8 adjustable parameters can be determined uniquely, The
parameter /6 is fixed by the eigenvalue rl which is also

taken as the zero of the energy scale, In the conduction bands,
there are only three energy eigenvalues, labelled by 'Ti, L2"

and Xh,, which are pure conduction eigenstates not hybridizing

with the d levels, However, in our scheme, the L,, and Xppo

21
eigenvalues depend on the orthogenalization parameters Ko and
Ro as well as the pseudopotential Fourier coefficients Vlll

and V,,- and the parameter A . The extraction of these
parameters, and the hybridization parameters K K}’ and Rl

are more involved, as the simultaneous equations linking all
these parameters are not linecar, However, by trial and error,

we have succeeded in finding the sequence of algebraic operations

which permit the explicit extraction of all the parameters,
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1 Pure 4 States

Consider first the pure 4 band eigenvalue E(Tés,).

In the representation spanned by the following basis vectors:

v o= 1 L
k+K1
Wl 4772 L
k+K2
7S iz,
DIBRL e -
ey (3.1)

V = 2 (fix

14 = 8 =
CFI’: _3_2

v -7 Cfgza-rz

the eigenvector for the state with symmetry .P55| is
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at I'(0,0,0), the reduced coordinates 'g, V(_, and ‘S in (2,30)

have the values
.0, M=0, - o0. (3.5)

Therefore, the values of the matrix elements, as shown in (2429) 4

are
Hgs = BT bay + BAZ s
Hyg = 0 .
Hgp = 0 »
Hes /= o! s
Heg = B  =kh, + 84, ' (3.6)
Hgy = o ’
Hpg = 0 ’
Hog = 0 '
H %

2 Ee - 4&1 + Saa

Substituting in (3.%),we obtain

BT,5,) = E, - bag + 84, . (3.7)

By performing the same type of operation, we obtain the 8

expressions for the 8 pure d levels as follows:

I E(,)

i

Eo+ﬁ+*’+A4-8A5
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111 E(x5) = Eo+hﬂ1
v E(x3) = Eo-knl-snz
v E(Xa) = E°+A +4Au+8ﬁ5
(3.8)
VI E(K,) = E°+A+2A4+1+\r2:15

Vil E(L:ﬁi) Eo+(A)/2+2A3—(l/2) {(ﬁ -‘+A3‘)2+128A2] *

VIIX E(L32)

1"

E°+(Z5)/2+2A3+(1/2)‘fil-#gs)2+1aaag] .

The 8 parameters are extracted explicitly through the

following sequence of equations:

1

: 1
2. A, = BE(xs)—IE{E(I’%.)w(xj)}
3. E, = %E(K5)+‘%{E(TE5,)+E(X3)1
b, A, = = |B(x)-E(], )]

5 16 [ 2 12 (3.9)
5. Ay = %[E(I’la)-E(Kk)l +a(a+\_l‘2)a5
kv .

6. D = E(112)+8A5-EO-QA4

; 1 1 1
7. AB = 5 {E(L31)+E(L32)l - EEO- n-&

8. Solve for Ag from

( 2 2 1%
E(L31)+E(L32) - L(A-ME) +128a¢ .

7/



2 Pure Conduction States

As the algebraic expressions get more involved, there is a
need to introduce progessive abbreviations, Eventually, the
computer has to be employed. For simplicity, we, therefore,

introduce the following notations:

o 5 )
Ro = Bl% ’
K3‘ = B3 )
X, = B, ) (3.10)
Ry = By N
B ——
Vaode———
From now on, the 17 parameters in our scheme are
dencted by
Es Ay Al, AZ, A3’ A#’ A5, A6,
(3,11)

- /g, Vis Vs Byy B, Bzy By Bee

There are three pure conduction band states which we
shall concern with, -They are labelled by the symmetry notatilons
I&, Xy 80d Ly, o«  Their properly symmetrized eigenfunctions,

in our representation, are the following (see Appendix A):
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v : 1 2 3 456 7 89
e . [1 © 000000 0] .
e(x,) = [1-1 0000 00 0] QN
e(L,,) a [1 0-1 0 0 0 0 0 0] (N2

To calculate the pure conduction eigenvalues at these symmetry
points, the above symmetrized eigenfunctions and the full

9x9 band Hamiltonian are used. Then

BT) = efpred)
giving E(P)) - R4 . (3.13)
Similarly, we obtain

B(Xy,) = 3 (g H) -y 4, ) (3414)
and B(Ly,) = g (A Mg ) (3.15)
at T K= (0,000, ¥ - [EF] - o .
Since 32(0) = 0

£xf) = o , gy = o ,
and QEP = 1l .
As Hig = 0, H{l = 0 4 and Hil = /B,
we have Hyy = ' ﬁ o
Therefore B(T)) = Ye .

In other word, the value of /3 is simply fixed at the bottom

of the conduction band E(Pl).
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In the evaluation of the matrix elements of the OPW-OPW
block, as given in (2.43)=(2.47), and the OPW-LCAO block,
Qa given in (2.,56), we often require the values of the products
CnFn(ﬂ;) . We therefore tabulate here the values of these
products at the various symmetry points. All wave-vectors and
T

reciprocal lattice vectors are expressed in units of T

( a : lattice constant ) .

CAL X s XL ol ok - |FE - 8.
-Ei = Tt.x + ‘R'l = (0’8'0) 3 k% = 8 = kx 3
K- B AE = (0,-8,0) Ky = 8 = K,
k§ = K4 Ky o= (=8,0,-8) , k§ = 82 ,
—x =X

5
H
®
M
-

Ky = K +K, = (=8,0,8) , k&

o 5 6 7 8 9
1 0 0 o -3 -5%3
2| o o o -3 -3 (3.17)
3 0 0 = T E%B
4 0 o -3 : 5%3




At L K = (bbb, K° = \EEL‘ = V&8,
_l%: = 'EL+"131 = (4,4,4) ’ in' = V48 =
PR oK, = (12, kg = W11
K o= B e By = (clymbye) K = VIS -
B s WaR, = (<beby-12) , k) o= WO

=1,

Values of CnFn(ki)

" 5 6 7 8 9
1 1 1
. Y /1% 3 © ©
3 3 1N _ & 4
2 1“1 11 11 11 ﬁﬁ
1 1 1
% 3 s 3 0 0
= . - 2
4 11 I% 5 0 32‘5

At W : o= (4,8,00., k' = \"’“’! = VB,
.iq = kﬂ' '.'-I-{.l = (4,8,0) 'Y Hw =2 m =
i{.g = i.w + .]-{.2 = ("i’"B,O). i kg = m =
Eg = -l?l+¥{.3 = (-'4,0,-8) 3 kg = m =
E{T‘. = -l:.' +¥(’4 = (-4,0'8) ’ k‘ﬁ = m =

6L

?
(3.18)

(3.19)
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-..w
Values of CnFn(k )

N s s 7 8 9
3 0 0 % 5% i%f?
A 0 o, & 5 3

These tabulations have been checked by

: |en@)E 3

The orthogonalization form factor (2.43), hybridization form

the relation (2.8)

(3.21)

factor (2,44), and the normalization constants (2.,49) at various

symmetry points are listed below :

£(k%) = B

Hy
[}

Hy
n

L L

)
0

W W
W (k) = sta(k BQ) 3 Ew

X X
S(k ) = B3jz(k Bl)

o]
k

" o b L
g(k™) = 8232(k 31)

|%al’

W W
g(k") = Byi,(k B,)

2
C
| O

< 1-g

= l-

= 1=

i

2
X

1.2

3

3

3

L

2
fw

i

(3.22)

(3.23)

(3.24)
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Then from (2.,45) to (2.49) we have :

at X :
T T i I
Hy, = 64X + B = Hoy o Hy, = V.,
11 /5 22 © "1l 2z = "2 (3.25)
v 2 v v v oV
Hip = -3 Cxfy8y »  Hyy = Hyy » Hy, o= Hpy o
41V é) 2 4 +H-)2 20 s ofAMELY 2 .
11 = 5] fx Hgg + (3 X Y99 2 /lav3) *x "89
1 .2 1
= -E: fx [HSB + 3H99 + .éﬂag]
1.2 =20 8 -
= 3 fx [Eo ‘}Aq - 3A5] . (3.26)

If the eigenstates xl had beén an unhybridized level, and if we
follow the steps leading {0 (3.7), we will obtain the

d-contribution to the eigenvalue of xl as

B = ?7A - §A i (3.27)

J

d,,
E (‘{1)

Then (3.26) becomes

If aftii2lid
Bis = T Iy B (X,) : (3.28)

Similarly, we have
LIV LV Iv Iv
Hyy = Hyy Hy, = Hj, . (3.29)

Combining (3,25), (3.28), and (3.29) according to (2. 45), we have

i
fas]
U]

n"E . ~ 2 i 2 2 d
By 5 85y & &g [6“"( * P -5 0fey -5 L E (xl)]

2 .d ] (3.303

-2
B
-

2
o= C {Vz =X Pelygy -



67

Therefore Eq.{(3.14) gives

B(x,,) = Cp [/3 4 Bhk =V, } (3.31)
with C3° given by (3.22); namely

c;a = (1 - %— fi)-l ” [1 -3 3532(1: Bh)} “

"Similarly, we have, at L ,

I 1 I 1
Hy, = 48 + ﬁ ; Hyz'= Hyy o B, = vl 5
Hv = "% chLsL 3y H;} = Hv - H-13 ll s (3032)
IV Iv IV _ IV
Bz = "3' (I' )y 333 v~ Hyz = Hyy
with
ML) = B, - 8, . (3.33)
Therefore
Hy, = By = czz [1@80( + - -§- c.f 8 - % fi 241, )} . (3.34)
2 2 ] 22 w6
Bz = S [Vl " 3t S ut (Ll)J . (3.35)

Then (3.15) gives ‘
. 2 .
E(L,,) = Cf [ﬂ + 48 - vll (3.36)
with C;z given by Eq.(3.23); namely

-2 1 ,2\~-1
CL = (l-gfL) = [1..

It is useful %to summarize at this point the unhybridized levels :

N

3. % o) <2
Bgd,(k Bu)l .



Pure 4 levels

e ¢
I E(F,,)

1 i 3(x5)
TV a(xz)
v OB(X.)
VI E(Kq}
VI P;(L3 )

VIII  E(L,.)

Pure conduction levels

i

1]

X E(IZ}
X E(X,,)
T B(L,,)

68

Eo-4A1+8A2
E + A +ba ~8A,
o 4 5

L
E°+.Al

30_4A1-8A2 (3‘}?)
Ey+ N+, 488 5
E0+[§+2Ak+hfék5

Eof(&'/2)+2;‘-.3-(1/2) [(A L )2+128A§ Y
1
a5+ (N /2)2h4+(1/2) [(4 ~4iy) 2112842 ]g

s

-5
P [ /b 64k -val
-1 (3.38)
123820, )] {/s.pstm. -val
-y ) .
cL [ﬁ +484 -JI]

{1 % 8252 B‘*l 1[ﬂ+48a{-vl]

For the first group of pure d levels, eight parameters

are related by eight independent simulianeous equations, and the

eight parsmeters can be solved without much trouble, as indicated

in Eqs.(3.9) .
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For the second group, the first equation determines /3
uniquely. The remaining two equations involving 5 parameters
yet to be determined; namely &, Vis V5, By, and Boe
There are three more parameters to be determined, those signifying
hybridization effects : Byy B5y B3 « TFor these 3 parameters,
at least 6 more independent relations are required to determine

all parameters uniquely. These are sought for from the

hybridized states,
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3 Hybridized States

In the range of energy under coasideration, there are
5> other eigenvalues aveilable from asccurate first~principles
calculatione which are not yet utilized in the fitting

process; namely, Xl’ Ll’ and W These are the hybridized

21°

states, In our notation, their eigenvectors are ;

.

e(xl) = ‘fg (‘f; f% 00 0 0 © E% % \) y (3.29)
er) = A (12' 0 s oé.\;%é 0 o ) s (3.4%0)
o) = @ (EEEL 60038 ) . G

Agein expressing the eigenvalues in terms of the

Hamiltonian matrix elements tharough

B(X,) & é?xl)ﬂe(xl) s ete.,
we have
B(X) = % L H11+H22+2H12+%(5H88+H99)+V3H89
+VE(518+H28}+fE(H19+329) ] (3.42)
B(L. ) = *% [ 3(H,  +H, ,+2H, . )+2(H - +H,, +H__+2H
1 iz 117337513 557766777756
+2H5?+2ﬁ67)+2VE(H15+H16+H1?+H33*356+H37} ]

(3.43)
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BOWz)) = g LHyg ol g 4y 42(H) 5oH, =B, ) ~H,,

:
_H24+H3h)+H88+3H99+2\3H89
+a<¢18+328-H38-348)+2V3(319+329

“H39-HQ9} ] (5-44)

The matrix elements for the OPW-OPW block

(H v ,Dléh} for the symmetry points X and L have been

UI-I'P i
calcuiated in (3.30), (3.34) and (3.35). The matrix elements
for the symmetry point W can be calculated in the same way,
although through a somewhat lengthier procedure, These matrix

elements are listed bhelow :

-2 2 1,2.4d
X Hyy = By, = Cg LA +6.11-0".-30xfx5x xE (X))]
(3.30)
<2 2 1.2
Hy, = Cy [Va--s-cxfxgx--sfxlﬂ (x,)1
-—2 TR
L i Hy = Hy, = [[-4+1+80£ 0158, - 3::1}: (1,)] (3.34)
T8
Hy4 = G [vy- 3cL 1@ 3f E (L )] (3.35)
W Hy, = H,, = H' = H 0'2[/34,80&-2 £
b Hyy = By, = ¥ By e oy Ty By
-—5:1‘W{E (w, )+128° ('.\'2,)+12E (W3)}1 (3.45)
-2-
Hy, = H3l+ = Cy [v > 7,,c:‘",fwg}!J =% f {F (W, )+4.2E (w »
-12g% G )11 (3.46)
=2 22,
Hyy = By = Hyy = Hz# = Cy [V +5zCytusy

-5eo(at(w)-128 w,,0)1 (3.47)
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3 2 2 2
The Symbols Cx, CL, CW’ fx, qu fw! s:(_i SL? sw were

defined in (3.22)~—(3.2%), Notations like Ed{Xl) represent
the d-electron contribution to energy of the state of that
symmetry and could be caloulated in the same way &8 the
derivation of (3.8). Their values in terms of our

parameters are listed below :

B = B e A -2y, - S, (3.48)
Ed(Ll) = B - BA3 (3.49)
Ed(wl) = B A+ %Ah + }%AS (3.50)
Ed(wa,) 7 /BN = kA (3.51)
Bw;) 4 /B, (3.52)

The matrix elements of the LCAC-LCAO block
/
(Hy,'s 5 4¥,¥49) at the symmetry points X, L, W are easily

written down from the general expressions given in (2,29)

X gﬂ

T . |
%(031,0); = G(O,ag()): ‘? = 0, "Lz ‘ﬂ', (f = 0:

H55 = HSS = Eo+4Al

oo - 30-4A1-8A2
}188 = Eo'l- A -hﬂq
- (3.53)
B o+ A ey 16
H99 = Eo‘f TAY Eo\q'l' 313-5

H),S = HS? = Hsa = H59 = H67'1= H68 = H69: H?S = H79 = 0

; 3 8
Hgg = VEALTYEAS



H88 = "!ag = E + A

hsé = H57 = Hs? = ":‘I'A.j
g

fsg = V3%

H68 = ‘*]{-?8 = "'LFAG
4

1‘159 B H.r--( -—-.;‘}'31:16

11 T
W K . %(é,l,:) 7 -4-5(4,3,_0) "3': 3 foﬂ-f T =0

H,_.‘: = H,.’,..(. =8 *4&2

Hbé = EO*‘#Al

H =5 +A +1¥A

+ 2 > 2 (3.55)

H99 = EO+A “3&#4‘3‘.&5

H56 = HB? = H58 = H59 = He? = H68 = H69 = H?a = E?g = 0
T

HSQ = ﬁﬁla"‘ﬁn&s

The matrix elements of the OPW=LCAG block
7
(H,,';s Y44, 54v<9) for the symmetry points X, L,

written down from (2.56) and are listed below :

) 1
18 = Hyg = -38y

=]
\

P |
19 * F2¢ T 738y

W are easily



(3.57)

2
=<5Ey 3 Hzg=. 0 aBg= 0
2 2
O s Hzp= 5y 0 Hug = 58y 0
: 1 _
g = -138 » Fag = ~To8 » B38 = ToBw » S48 = Tofw °
1

o
=578y » Hog = " 578y 0 Hzg = I?c:‘\l‘33w y Hyg = I%‘\ragw .

b b
=W
i n
il
o
=
-
fa o
)
i
|
bl
|

i

19
(3.58)
. . X LL
here + = BoJ (KRS =B,3,(k"R,)
VR B = P32V 1) | &2 Y (3.59)
and By = jJZ(R R,) .

Substituting the values of the matrix elements into
(3.42)—(3,44), we get the resultant expressions for the states

with symmetry X,, Ll and WE' respectively as follows :

BOX) = 3 [8°0)+%(x)] + Yx) (3.60)
B(L,) (= 3 (B2 0480 (8)] & (L)) . (3.61)
B(W,,) = & [B®(w }+Ed(w 11 + ¥(w,,) (3.62)
W24/ = F 21 21 - R .
where

.S " -2 4 2oPel,y

E (xl; = Cy [/5 +61W<--!»V2--5-foxgx 3fx (xl}] {3.63)

- N ,,*"2 y a ¥ Ll' 2,2.4d

E {Ll) = \.JL [’f.g +48 K 4-;1"3'61.‘ LEL BfLE (L )} (3164)

ES

(Wy) = GRZLA+BOK +V,-2V, 220, £y, ~22faB (W, ,)] (3.65)
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are the energies of conduction bands with the designated

symmetry if there were no hybridization,

d . 20 8
E (Xl) = ‘o + N\ - -—3A1+ —~ '-3-A5
d
E (Ll) = EO - 833
d
E (w2|) = EO + A -4A'+

are the enorgies of d-bands with the designated symmetry

if there were no hybridization, as given in (3,48)—(3,50),

and
T x) = .jg 8y | = .f% Byi(K'B) 5 (3.66)
Yy -7/l j% Bodp(kUB) 5, (3.67)
T, = LRg « - 280,0") . (3.68)

In a simplified notation it may be noted that when a
conduction band of energy £° and a d=-band of energy Ed hybridize,
che energies after hybridization may be obtained from solving

he secular determinant :

E° -« B 3

4 £ - §

- &) (3.69)

here Y denotes the hyoridization matrix element. This

secular equation gives the energies :

E = (° + %) # %A/(EB -eH? 452 | (3.70)

1
o] 1=
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It may be noted that where the two unhybridized levels cross

{i.844 E® = Ed), the eﬁergies are
E = ,f_,: (2% + 2% £ ¥ (3.71)

Comparing with (3,60)—(3.62), we see that "{(Xl),
ﬁ((Ll), ﬁf(wa,) in (3.66)—(3.68) may be taken as the
hybridization matrix elements for the states with the designated
eymmetries,

We will therefore take as expressions of the pair of

hybridized states the following :

i

AL B() = FLEamd00 )3 300 )220k ) PPa V2(x ) I (3.7

b

XIIT  E(X,,) %[Estxl)wd(xl)]+%E{E5(xl)-zd(xl)}2+h’*’a(xl)]% (3.73)

1]

IV B(y,) = 300 Rt = A ES (L) -840, ) 1Pk Y2 (o
X E(L,) = %[EE(L]_)-PEd(Ll)] +%{{EE‘(L1)-E‘1(L1)}2+‘+ Ta(Ll)ﬁ* (3.75)
I B(H,, )= FE°(05)+8%(H,,)]
= 3R 0 12k V20, )T (3.75)
XVIT B(W,,,)= 30e%(H,,)45%w, )]

+ 505w, ) -5%w,,) )24 1,01 (a7

These equations, together with the eleven earlier listed
as (3.37) and (3.38) are the 17 equations linking the
17 parameters, They are the 17 equations from which the

17 parameters are to be ultimately determined,
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4 Algebraic Sclution for the Parameters

To summerise tne situation, we have 17 parameters to be
fitted from 17 independent relations linking 17 first-principles ’
calculated energy eigenvalues with 17 parameters, The first
8 of thesa relations, Nos, I~VITI, involve only 3 parameters;
namely &_, A Pyseesshg.  These parameters are already
explicitly extrzcted in “Hu(% 3).  kelatior number IX determined
the ninth parxmﬂtar,~jg, g*rectly. We are thus left with 3
independent rs;ation#: namely Nos, X-XVII, for the determination
of the remaining & pargﬁeters, namely K o Vs V35 Bys B,y Bay
Bys ms, The parametbrvfg'is simply evaluated because
its value depends /271 3 dﬁ\th lattice comstant, Eq.(2.35).

There are eventaa;ly nniyw?"ghrameters to be axtracted, These
parameters wiliaﬁé éﬁﬁfﬁﬁtﬁi iﬁfiﬁéisequenue Bl’ BE’ BE’ Bk’

T

BE’ Gl‘ VZ‘ s
The most impaertart step in the scheme for explicit

extraction by the observation that isolation of the first

single parsmeter; namely B,, is possible through the feollowing

manipulation of the relastions:

" By 3 nd 2 r
BAXyq )4B(X 50 - BT (X )+E (%) s (5.78)
B(W,, 04B0W,,) = E3(w,)+E%(n,,) y  (3.79)
P r ;2 5 ,.,d 2 -
(B, )-B(X )T = [EB(Xl)—ﬂ. (xl)} + YK , (3.80)
(B(v,, 0B, 002 = (8%, 3-E000,)) +4T5(H,,) o (3.81)
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Eliminating E°(X,) and E°(W,,), we get

i

2
4-?’?’%) {E(Xta)’f(xu)}a-' {E(Kn)“'Efxn) =2 Ed(’(u)}

” {ECX;:,)—E(K,.)-E(x")-E(X:z)+z.E'I{X;)}
x {E(X) - EKu)+EX )+ E(Xip )2 EJ(X;)}
+{ EUR)-EXn) HE,,)-E%x,))

1

(3.82)

and _ '
d 2 d
av’tw) = G {ESSEGIRDHEW,)-E W)} | (5.83)
Similarly, we can obtain

4 -
4-“(fo;] = 4iEd(h)—E{L”)}‘{E(L;;)‘E “-’)} X (3.85)

Taking the ratio of (3,.852) and (3 83), we get
L LAY
47 (X)) (,/5) bsmk B,) 25 ;x;(kBJ
g EPTSTL R
4‘7{WJI) (___‘_ ) (* B}) -24 ?.;(‘k B)

_{£ YX))-EX) Y EXiz) - ETHY) )}

{Ed(WJf(Wz)} E(,)-E W)}

yielding
) M@ [EX,)-E(X)} {Eoc,a x0} i)
nk"g) f- ECW,)-EW ) H{E (W, )- E9Wy) § R
Tterating on & computer, the numerical value of B, can be
extracted, - With B, determined, Eq.(3.84) can be used to

1
obtain B

o [Pl ) ), o
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and Eq.(3.82) can be used to obtain B3 :

8, =f§ xﬂf"(x.)—mn)}{Ecxn)-f"(xa}}/j‘ckxs,) . (3.87)

The parameters Bq and B5 appearing in the

orthogonality form factor can be extracted in a similar way.

We now again introdice some simplifying notations :

X o= BOX G )AE(X) ) 4B(X, ) 3 (3.88)

L = B(Ly )48y 5 )+E(L,,) . (3.89)

Using Eqa. (3.72) and/(3.73), we ebtain
X = Es{xl)+Ed(Xl)+E(14,} ) (3.90)
L = EB(L1}+E3(L13+E(L2,) . (3.91)

Substituting Ea(xl) as given in (3.63) and E(Xk') as given

in (3.31)" into (2.90), we obtain

= ke d
X = Cpfutprsd)§Culydy - 25, £+ £

Substituting the term 0y e given in (3.22) and rearranging

the expression, we finally get

4 102 z d X B of } .z
7 x(m3F0) 7, = 2(pHia) +E c&.)-)@{g E0G) 11y (3a92)

with g, given in (3.59).

Taking the square of both sides of (3.92) and setting

ax'= 2.()34—64-0()*'5&(’4:)"}{ .

(3.93)

d
b, = §..E(><-,)



we obtain

z 2 4 Z z s
b 16 _ 2 2
'[?ijxfx”ﬁ IxTx ay + 205 by £+ By fy

il

(b-{-ﬂ'ﬂx'f.;.(zaxxg’?;),fxl*_ a:-;o .

This is a quadratic equation in fi.. Therefore we czan obizin

the value of fi to be

2. & 2 2 £§ &

’i.z. m(?,ax X~ qu) .\/'Zﬂxbx qu_)-q.ax( ?(+2-?9X/
%X . 2

z(bﬁzﬁx)

(3.94)

Similarly, substituting Es(Ll), as given in (3.64), and E(La,),

as given (3.36), into (3,91), we obtain
--?. 4_ _'% G} 0)
L = C, {e(pre8)-5C 49,7 5FE L)+ ELy)
Substituting CL as given in (3.23), we finally get

45 (-1, = 24443+ E il - L+ { N30 )}f

Again, letting (3.95)
a = 2(f+esx)s EAL - L
L d (3.954)
L:)L - -3- - E (L,!) ;

aind taking the square of both sides of (3.95), we finally

*earrange terms to get

e 2,2 6 ,2r% 2 ! L, &

r

(b2 o )fbecab - o)
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This is again a guadratic equation in fi, and we obtain

6 2 6 2 ¢
)c::_ -(zal_b}_~'-cjéjl_)r/(zaa.b¢_n FIL) - 4af{bf+149 )
L B rd L
z(b
590 (3.96)

The parameter B£+ can now be obtained by taking the ratio of

(3.9"") and L3-96) 5

i

[& A& W, o Rhes §
S W(KBa) (‘%"-3?52“%1’%){-*@ 95-24cb) — 4 05T 95+ b5

= e—— e
=

¥ I NN T6 2 &
L }L“f 54) L(-‘T‘?szqt‘bz‘)_ﬁ%'?:-—gqtb ﬂ-q{_g ’.?11 -" )

)

+
(zﬂ ,

and again iteraiing~0h-a computery With Bh determined,

55 can be obtained from (3.54) :

(% o rabiys gt oo (59, 1)
Bg z! (b+“’9“;
g ZFIX /
& R -
L #lk 6] : (3.98)

With Bq and B5 determined, the parameters Vl and VE appearing
in E(La,) and E(X,,) can be obtained directly from Eq,(3.36)
and Eq.(3,31) :



and

G2

v B+ 48X - B(L,, (

i

v - !2 + 040(. = E(XQI‘(

| i
—-f? \ bl (jo‘)‘i’}
3 u/

]_ 2

=f> L100)
3ty \) (2

/

It is useful to summarize here the expresslons through

which the 2 parameters are extracted explicitly:

9.

10,

1is

12,

13‘

14,

g

]

gt I3

J =
52 [ T
om

Gl

9

from

_j{ys(x,) B f‘E(X:z) 3 (U}

e e

AE - B IS (- B )}

P

b, f ‘/éf"lﬂ) E(Lu)j Efiul 3 (a)e,/J, (KB,)

——

83 /.mx/{ﬁ(%" E(Y”JHE(X)E’R') /;’L?

Solve Bg from
_ . r’“"‘"‘“’*"“*h—“_““‘*‘”
X 2L . Yo Hibo 2 D o 2"

BB (7 % 28) A a-2ac) b aaic g bY)
I[kf_ \E "‘._"_i'_.i'ﬂe /f& N !n\z :122. &:‘-}! k;z:
.'}J BQ‘j L‘? 77{'_ L ‘:-‘bl.) + (.é-?:.— ?_QL-.: .) - G4, {ET'JL + L

( :‘-f.:} L“‘f- bz z) l ‘E‘

© ot L)
‘/;;F!ﬁ 0 J
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15.
I6
8 ( 3Xz 20 X) (’%ﬁ'ﬁx-zdx@) ’rax(cﬂx
g =
z?ux*bl) )
| 4.(68,)]
(3.101)
16, v, = 3+ 48K - E(L) (1 . %fg)
17V, = B +6hK < E(Xk.)(l -.}ri)

It using these expressions, the abbreviations ay and
and bx are given in (5.,93), a and bL 49 (3,954), fx and By
in (3.22), and f, and g ina Laee)) ¢

Eq.{3.9) and Eq.(3.101) constitute our scheme for the

explicit extraction of the 17 interpolation parameters,
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