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CHAPTER III

THEORY

%3¢1 Cyclic Extraction

3.1«1 Unsteady State Process and Cyclic Steady State

Cyclic extraction is an unsteady-state process in which the
concentrations of both phases (extract & raffinate) in all parts of
the column change with time. Since the concentration of raffinate
and extract phases is a function of time. Therefore the process is
a unsteady state process.

Despite the fact that cyclic extraction is an unsteady state
process, the whole system is said bto be in a cyclic steady-state
condition when the concentration at any point within the column
varies with time in the same manner from one cycle to another as

shown in Figure 3.1

0GCS428
/.\
N
b
Concentratio \\\\‘
.
nT (n+1)T (n+2)T
Time

Figure 3.1 Concentration fluctuation at cyclic steady state
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The concentration of raffinate and extract leaving the column is
constant from one cycle to another when the whole system has reached

the cyclic steady state.
342 Interphase Mass Transfer

In most of mass transfer operation, two insoluble phases are
brought in to contact to permit transfer of constituent substances
between them. Therefore we are now concerned with the simul taneous
application of the diffusionel nechanism for each phase, lie have seen
that the rate of diffusion within each phase is depend on concentration
gradient, At the same timé ‘the concentration gradients of the two
phase system are indicative of the departure from equilibrium which
exists between phases. It is necessary, therefore to consider both
the diffusional phenomena and equilibrium in order to describe the
system fully. The coummon principles for all systems involving the
distribution of a substance between two insoluble phases are:-

1« At a fixed set of conditioné, referring to temperature
and pressure, there exists a set of equilibrium relationships which
may be shown graphically in the form of an equilibrium-distribution
curve by plotting the equilibrium concentrations in the two phases
one against the other,

2, For a system in equilibrium, there.is no net diffusion of
the components between the phases

3« For a system not in equilibrium, diffusion of the components
between the phases will occur in such a maner as to being the system

to a condition of equilibrium,
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345 Lffect of Mass Transfer on Drop Formation

For liquid-liquid mass transfer operations in which drops of
one liquid are dispersed throughout another, the size distribution
of the drops is of great importance because the rate of mass transfer
depends directly on the interfacial area. The size distribution of
drops resulting from the injection of one liquid of an immiscible
pair into the another has been studied as a function of flow conditions
and physical properties of each phase by Hayworth and Treybal (1950)

and Keith and Hixson (1955).
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Figure 3,2 Graphical determination of number cof ideal stages
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The ideal stage is a standard to which an actuel stage may be
compared, In an ideal stagce, the raffinate phase leaving the stage
is equilibrium with extract phase leaving the same stage.

To use ideal stages in design, it is necessary to apply a
correct factor, called the stage efficiency or plate efficiency, which
relates ideal stage to an actual one.

3elte1 Graphical Method for Evaluating Number of Ideal Stage.

The graphical determination of the number of ideal stages is
generally satisfactory method, The simplest graphical method, is
based on the use of the operating line and equilibrium line, An
example of stage calculation for simple counter current is shown in
Figure 3.2, The operating line and equilibrium line may be ploted by
knowing all four of compositions at 'both ends of the cascade, The
ends of operating line are point a, having coordinates (Xa'Ya) and
point b, having coordinates (Xb,Yb). It is desired to determine the
nunber of ideal stages to accomplish the raffinate phase concentration
change Y, to Ya and extract phase concentration change X to X. The
problem is solwved as follows.

The concentratinn of raffinate (light phase) leaving the top

stage, stage 1, is Ya or Y, If the stage is ideal X the concen-

1 1?

tration of extract phase (heavy phase) leaving this stage is equilibrium,
Then the point (X1,Y1) must line on the equilibrium line, This fact
fixed point R found by moving horizontal line from point a to equilibrium
line, The abscissa of point R is Xq. The operating line is now used.

)y

It passes through all points having coordinates of the type (xn‘Yn+1

and since X1 is known, Y, is found by moving vertical from point R
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to the operating line at point S, the coordinates of which are (Xﬂ,Yaﬁ.
The step, or triangle, defined by points a, R and S represents one
ideal stage, the first one in this column. The second stage is located
graphically on the diagram by repeating the same construction, passing
horizontally to the equilibrium curve at point T, having coordinates
(Xa,Yz), and vertically to the operating line again at point b, having
coordinates (Xé,Yb). For the situation shown in Figure 3,2, The
second stage is the last, as the concentration of light phase leaying
that stage is Yb' and the heavy phase leaving is Xb, which are the
desired terminal concentrations. Two ideal stages are reqguired for
the separation,

3ele2 Method for Calculating the Number of Ideal Stages

When the operating and equilibrium lines are both straight over
a given concentration range Xa to Xb, the number of ideal stage can
be calculated by formula; and graphical construction is unneessary
Formulas for this purpose are derived as follows.

Let the equation of the equilibrium line be

T = mEg e B e e (3:1)
where by definition, m and B are constant, If stage n is ideal
¥ = mX +B & s waie s (3.2)

substitution for Kn into equation of overall material balance

around level a & n+1 we get,
Ef.xa + R

len+1 = Ef.xn+ Rcha llllﬂl'(}.})

for ideal stage and constant Ef/Pf

. i Es (Yn - B) B = Ep o ¥ -
n+1 me . a ___Rf . .
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It is convenient to define an extraction factor A by

E
A . Rf ........... (345)
e

The extraction factor is the ratio of the slope of the operating
line to that of equilibrium line, It is constant when both of these

line are straight eqe(3.4) can be

I

. S A(Yh ~ B) % Iaf Amxa ..... ssivial3e6)

AYn- A{mxa+ B)+ Ya U, S

The quantity mX + B is, by equation(3.1) The concentration

of light phase that is in equilibrium with the inlet R_ phase, the

£
concentration of which Xa. This can be seen by Figure 3,5. The

*
symbol Y 1is used to indicate the concentration of Rf phase in equili-
brium with specified Ef phase,  Then

*

T U= mX+B e svoe swnes kI w T
and equation 3,6 becones
-
Yn+1 = A_Yn- 1Y3+ Yﬂ, ........ R (3¢8)
o= Ined +
. Jopesaiamaiial ot e )
4 Y'b= YN N,

< e, |
|- = e — e
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Figure 3.3 Determination of ideal stage
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Equation (3,8) can be used to calculate, step by step, the value

of Yn+ for each stage starting with stage 1. The method may be

1
followed with the aid of Figure 3.2

For stage 1. using n=1 in equation (3.8) and noting that ¥, = ¥

a
* *
T, = AY - AT +¥ = ¥ (1+4)- AY
a a “a a a
For stage 2. using n = 2 in equation (3.8) and eliminating I,
* * *
Y, = AY. = AY + Y/ = A Y (1+A)=-AY =AY + ¥
3 2 a’ a a a a ‘a
2 = 2
= Y (1+a+a7) (- ¥ (A+A7)
These equation may be generalized for the nth stage,giving
/ *
Y z X (1+A+A2+ =ML ¢ (A+A2+ ----- A"
n+1 a a
for the entire cascade, n=N, the total number of stages,
ey Yn+‘l - YN+’l = Ib'
Then
R L]
T, = Y (1+A+A?+ -————— o o U G (T O (PR +4) s (3:9)
a a
Equation (3.9) can be written
T+ N
_ 1-4 -y gL NS e
Y, = Ya(1_A ) -y a () (3.10)

Equation (3.10) is a form of the Kremer equation. It can be used as
such as in the form of chart relating N,A, and the terminal concentra-
tions. It can also be put it to 2 simpler form by the following

method.

Equation (3.8) is, for stage N

. 2

*
% KE, = AY, wE 0§ leeemessoss (3.11)
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*
It cen be secen from Figure 3.2 that Y, = ¥ and Eq.(3.11) can be

written

T & e ARST Y P a  sesuessd (3.12)

Collecting terms in Equation (3.10) containing Ah+1 gives

N+1 5" * - ST —

AT (Y- T) = AY =T )+ (T-1) (3.13)
Substituting Y - ¥, from (3.42) into equation (3.13) give

N %* _ * * B o *

(Y -Y) =AW N+ L- 1 (3.14)

Taking logarithms of equation (3+14) and solving for N gives

-
Yo Y

log Ya' Y

a

log A

and from equation (3.,12)

N = ssmmmine(3.17)

The various concentration differences in equation (3.17) are shown

in Figure (3.%)
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Figure 3.4 Concentration differences in equation (3.17)

Heavy phase Fomm of Equation-(3.17}. The choice of Y as the
concentration coordinate in the above equations rather than X is

arbitrary and equations analogous to equation (3.15) and (3.17) in X

can be derived

They are
* *
-G %o %,
og - log —
Xa- Xa Xa- Xa
N = T e————— TS (3.18)
* *
log A L= X
log

»
where X dis the equilibrium concentration corresponding to Y. The

concentration differences in equation (3.,18) are shown in Figure 3.5
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Figure 3.5 Concentration differences in equation (3.18)

3,5 The Transfer Unit
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Figure %.5 Extraction with counter current contact
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3e5¢1 Individual-film Transfer Unit

Consider the extraction column of Fig.53.6, where raffinate and
extract phase flow countercurrently. The raffinate phase, enter at
a rate R moles/(hr)(sq.ft.of tower), with a concentration of distri-
buted solute VAR mole fraction, and leaves at a rate Ra with concentra-
tion Y. Similarly, the extract phase enters at a rate E; moles/(hr)(sqft),

undergoes a concentration change X to x and leaves at a rate Eb‘

b?
For a crosscctional area oi the tower is s sq.ft.and the total inter-
facial surface between phase /A fta, the exposed interfacial serface is
a sqeft/cu.ft. of tower, /At some position in the tower where raffinate
and extract rates are R and E,; a differential change in concentmation
of these streams occurs over a differential height dH, This change in
concentration resulted from the ‘diffusion;of distributed solute from
phase R to phase E beczuse of the concentration gradients.

If N is the total rate of transfer of solute moles/hr.sqeft., then

the rate of transfer for the differential section can be described by
av_ = d(R;) - deA.cRM(y-yi) ---------- (3.19)

where CRM is the average of values CR and CRi

This equation limits where solvents are completely immiscible and
relatively dilute solutions. Since the total raffinate rate R varies
from one end of the tower to the other, but the solute-free raffinate,

R(1-yR), remains constant. Consequently,

a(Ry) = R(1-y) d(y)

Rdy = =—ceeeee—- (3.20)
(T-y) (=)

1
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The mass transfer coefficient KR includes a term (1-y) in which varies

throughout the towers The quantity kR(1*y)iM is more likely to be

constant. 1In addition, dA = aSdH. Equation 3.19 may be modified,

(=) Ry

—— e = kpa 8(1-¥) 3y Ot L (3.21)
(1=y)

(1=-y) .. dy a 8(1+y),.. C_, dH

VY B - M O (3.22)

(1-y)(y-yi) R

Siﬁce the terms (1—y)iM and /(1-y) are usually nearly unity, the left
hand portion of eqe. 3.22 is tﬁe concentration change per unit of
concentration difference /causing the change, and represents a measure
of the difficulty of éxtractiOn. This| in turn is desinated as NTU,
the number of transfer units, which when multiplied by experimentally
determined factor HTU, the height per transfer unit, gives the height

of the tower, Thus,

(NTU)  (HTU) = Hivrpory 0 cee—e—e- (3.23)
where NTU, = (P Q-y)gy dy
- f‘l-yjf}-yi)
:’ra
_(f e
d) HTU,
R (3.24)
HTU,,

Consider equation (3,22) and (3.24) shows that HTUR and the mass

transfer coefficient are related

ATV = — (3.25)

R
kp a (1-yim)CRavS
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In similar fashion, the concentration differences in terms of the

extract phase might have been used, which

NTU

f’% (1-x) 5, dx

5 (1—x)(x;xi)
a

E

(1) 1

3e5e2 Over=211 Transfer Units

HTU =

88, o B iu(%26)
HTUE HTUE

The practical difficulties entering into the use of true

equilibrium interfacial concentretions xg and Ti have led to the

introduction of overall mass transfer coefficient Kp and Ko, vhich

* *
express in terms of overall concentration gradients (y=y ) and (x-x )

guilibrium line
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In the absence of mass transfer coefficient,

X

i X x

= — = = T/ % @ memecmeeaem— .28

m 3 /:)r /Yt (3 )
. 4

be truely constant over the range of concentrations encounted in the

design. This:is a serious resfriction, and in practice the equations

are usually used regardess of constancy of m

From
dNS = KE ds (cE- cE) - KE as coE
st = KR ds (CR- cR) = KR ds coR
We obtain
y
NTUR = )f B okdgy) oy 4
(ey ) y-3 )
ya
3 be dy . m — -~(3.29)
(1-y ) HTUR
y, (1- y)ln-(,l—ga— [o)
HIUR = e iliints: M [ onaosmns (3.30)
g 201=7) \CrayS
X
b
and NTUE_ = ‘J (1=%)
(’l-x)(x—x)
&
7 %5
5 J = ET—U"‘ -“—-(3-31)
(1-x)ln(——- ) “o
a 1=-x
HTUE = = B e W L ) (3.32)

KE a (1-x) oM Eavs
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These equation are used for design, equation (3.29) incases
where the principle diffusionzl resistance lies in the R phase (m large),
Equation (3431) in cases where the principle diffusionsl resistance
lies iﬁ the E phase (m amall),

To determine the value of NTURo or NTURE, graphical, integration
of the respective expressions is ordinary required, for which in turn,
operating diagrams, refer to Figuve 3,7, where in operating diagram
is shown, including equilibrium curve and operating line, directions
for obtaining which hasve previously been described, For any point P
on the operating liney the wertical distance to the equilibrium curve
gives the overall conceptration difference (y - y*), while the hori-
zontal distance give (x*- %)s - To evaluate NTURO, either the quantity
(1_y)oM 4

(1=y) In(4=g")
(1-y

points on the operating line as required to give a smooth curve when

or the quantity is calculated for as many

(1=y) (y-3 )

plotted against y. The area under the resulting curve between the
limits Xy and X, is the required value. NTUEO may be obtained in a
similar maner, Equation (3.24) and equation (3.25) could be evaluated
in the same fashion also, if the position of points corresponding to Q
could be located,

Considerable effort has been put into the problems of reducing
the tedium of the graphic integration for NTUR  and NTUE . If (1—y*)
and (1-y) differ by no more than a factor of 2, an arithematic average
rather than a logarithmic average for (‘1-y)OM incurs an error of

T¢5 percent, thus

n (1-3*)+(1-y)
(1.—y)01\’1 = Bay. . X T, o SRR (3 .33)
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and substitution in equation (3.29) leads to

y o

NTUR - - SR R LT

© (y-y ) ¢ (1-y.)

Y. b
X (1-x,)

Similarly, NTUE = boax oy Lqp B 338

’ © (x‘-x) 2 (1=x )

Xa a

and graphic integration is made of  a curve of ——1—;~ vs y for NTURO.
(y-y )
Weight fraction are usually more convenient than mole fraction, since

the triangular equilibrium /diagrams from which the operating diagrams

are plotted use this unit most frequently. Thus,

X
X = . o BN (3.36)

> xw +] - Xw

where r is the ratio. of molecular weight of non solute substitution in

equation (3.,29) and (3,31) leads to results that are too awkward to
use directly, but if the arithematic rather than logarithmic average

is used for (1-XW)OM, there dis obtained

NTUR = d[ W dYy, 1 (=T
o] —— = Ini
¥ (YW- Yw) 2 1=Y
Wa
1 YW& (r=-1) + 1
+ =- ln ——— e (3-3?)
2 L 55 (r=-1) + 1
and NTUE - /[xWb Xy R
o] = + = 1ln ————
e e X2 1exy |

(r=1) + 1
g THBAEEE | ke (3.38)

o
2 xwa(r-1) + 1
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weight ratio, X = X, /(1-X,) and Y = ¥, /(1-Y)

are sometimes convenient since the operating line on the operating
diagram is then freguently a straight line., Substitution in equation

(3429) and (3.31) leads to

Y (1+rY) day
oM

NTUE = { b *
0o Y-) (1+rY)(Y-Y )
a
(1=-rY )
- sz _.g_._’_._ 4 l In ———-L -------- (3-39)
= j (x=y ) 2 (‘I—I‘Y.b)
and ,xs (1+rX) p 4X
NTUE = ] : —
o D (1+rX) (X - X)
a
1+r
i j’xb ax v 1, S (3.40)
. (-3 2 141X
S a

where the right hand (part of preceding equations include an approximation
equation equivalent to that of equation (3.33). Mole ratio concentra-
tion units leads to equations identical with equation (3,39) and (3.40)
with the exception that r is omitted.

Further simplification can be introduced by evaluation of the
integrals of equation (3.,34) to (3.40) formally rather that graphically,
This can be accomplished with more or less precission depending on the
validity of the assumption necessary to permit formal integration.

For dilute solutions (1-Y) and (1-X) for system using mass ratio are
nearly unity, and R, and E_, are substantially constant, where R

£ f
the weight of solute free raffinate phase (gm/hr), and E

£ is

£ is the weight

of solute-free extract phase (gm/hr). A material balance over the
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lower portion of the tower of figure 3.6 then becomes

T gy = 0 s - s e e e .L{-
R (Y fa) Ef(x xa) (3.41)
For m = XyY‘
*
Substitution X = mY and rearrangement leads to
* Rf xa
¥o= — (¥ =Y)+—=— e (3.42)
m
B 5
Define é; = diffusion coefficient = mEf/Rf

and inserting in the integral of equation (3.39)

T+rY

dY 1 a
B % + = In -~(3.43)
NTURO = ,( ¥= 1 (Y-Y )+ﬁa_ 2 ‘I+rYb
¥ £ 2
a
For dilute solution (1-rYd) = 1 and (1-rYb) = 1 and also the term
(1—rYa)
In = 0
(1-rYb)
So equation 3.43 can be reduced to
Ly
NTUR = P dr1 =
¥ g - [— (Y-Y_)+ _g]
a £ 2 m

4

(1- 1) Y+(—Y & )
a

=
m

1

1 1 - X
{ b d[('}— E)Y + (gYa _;_ )}

1—— X
[(1- Ly +dy -2,
- n
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N =
-

B

-+

[(x, - x 06 -

+

1
E(Ya - a/m) z.

.

=

M=
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( 1 1
- 1 in (Yb - Xa/m) (1 -5) + E
B 1
1 "g (Ya - a/m)
RO P T s N
NTOR = 1y | P e/m’ £ 'g
° (2. w3
B L e (345)
SR
&
In the case of no solute contain in extract phase Xa =0
leads to:-
- W N
NTUR, = in .-i-)(‘: - E) +z
— SR X7y
1
1 = 3)
In similar maner we can prove that
X.b - mY
NTUE, = In |[(——3)(1=-g)kgs| - (3.47)
° X - mY
a a
1 =%
. 1 5 _
xa=0, = ln[(']-g E)('l—%_)-f-é]
""""" (3.48)
15

So by using equation (3.29) and (3.31) we can evaluate HTURO and

H'I'UEo if we know the height of column,
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