CHAPTER III

EXPERIMENT

3.1 Equipments

3.1.1 Neutron Source: Thai Research Reactor-1/Modification-1 (TRR-1/M-1) which is a swimming pool type designed to operate at a maximum power of 2 MW but routinely operate at 1 MW and has been operated for 5-6 hours a day, five days a week.

3.1.2 Counting equipments, composed of:

3.1.2.1 A Ge (Li) co-axial detector (ORTEC, Model 8001-2021 ORTEC) has a nominal active volume of 26 cm³ and a resolution (FWHM) of 2.1 KeV at 1332 KeV of Co-60.

3.1.2.2 A ORTEC 4096 channel pulse height analyzer (Model 7030) with mini computer.

3.1.3 Mechanical shaker: Shaker with shaking heads, for four separatory funnels from Arthur H.Thomas Company, Model 8292-B10.

3.1.4 Laminar flow ultra clean work station (Dexon, Model HT 53E-830)

3.2 Sample Collection and Sampling

3.2.1 Sample Collection

About 180 head hair samples were collected from

24.23

men, who entered into the priesthood on April, 1980. Each whole head hair was shaved off by a clean razor (very sharp) and stored in a separate clean plastic bag with identification, and scaled. Informations of the individual donor i.e age, field of study or occupation, residence, hair treatment and date of collection, were recorded.

3.2.2 Sampling

owing to the unforseen circumstances e.g. shut down of the research reactor, the delay of a newly designed irradiating facility, a malfunction of detector etc, only 50 samples could be analyzed. Consequently, samples were selected in such a way that they would represent all occupations or subjects of study, age and residence. The selected samples for study were divided into five groups, according to occupation or field of study, that is:

a) Private businessman.

b) Farmer and officer working in Maize Research

Center.

c) College student in the field of engineer.

d) College student in the field of Science and applied science, including chemistry, pharmacy, zoology, fishery,

forestry and agricultural science.

e) College student in the field of Social Science, including political science and forensic science.

A list of selected samples together with their occupation/subject of study, residence, age and character of hair

Table 3.1 A list of selected samples together with their occupation/subject of study, residence, age and character of hair.

Occupation/Subject of study	Age (Years)	Residence	Character of hair	
Private businessmen				
F21	27	BK.13	S	
F-25	25	BK.12	Μ	
F26	19	BK.12	L	
F-27	22	BK.12	M, P	
F-28	18	BK.12	М	
F-29	18	BK.12	M Soft	
Farmer and officer				
working in Maize				
Research Center				
C-25	21	Ayutthaya	М	
D 10	20	Pathum Thani	L	
B-11	32	Nakhon Ratchasima	S	
c28	23	Nakhon Ratchasima	S	
College student in				
the field of Engi-				
neering				
A-4	22	BK . 11	S, VP	
B5	21	BK.26	L	
B22	24	BK.6	S	
B-24	21	BK.11	L	

Table 3.1 (contd.)

Occupation/Subject of study	Age (Years)	Residence	Character of hair
College student in			
the field of Engineering	5		
E-8	20	BK.6	S
E-25	21	BK.10	M
College student in			
the field of Science			
& Applied Science			
a) Chemistry			
D-22	21	BK.9	M
F5	21	BK.19	S
b) Pharmacy			
A-28	21	BK.3	L
C-1	20	BK.5	L .
C-2	22	BK.5	L
C-16	22	вк.5	М
D-2	22	BK.4	S
王 1	20	BK.6	L
E - 13	20	BK.4	L
E-26	20	BK.5	L
c) Zoology			
A-22	24	BK.5	Very L
A-26	20	BK.21	M, Thick
压20	23	BK.9	M, Hair-oil


Table 3.1 (contd.)

Occupation/Subject of study	Age (Years)	Residence	Character of hair	
d) Fishery	THE REAL PROPERTY OF	ann an ann ann ann ann ann ann ann ann		
D-7	21	BK.27	L	
B10	21	BK.7	М	
F-2	21	BK.6	М	
F-6	20	BK.14	L	
e) Forestry				
B - 15	20	BK.9	• L	
f) Agricultrual -				
science				
D-17	21	BK.9	L	
College student in the				
field of Social science				
A-3	23	BK.23	М	
A-23	20	BK.22	М	
D-6	21	BK.24	М	
B-13	21	BK.24	S	
B - 18	24	BK.24	L	
B23	21	BK.21	S	
C-15	21	BK.24	L	
C-19	22	BK.11	L	
C-21	22	BK.11	Ъ	
D-23	24	BK.11	м	
E6	20	BK.24	М	
E-7	22	BK.21	М	
E-29	21	BK.21	L	
F-11	22	BK.24	S	
F-13	22	BK.10	L	

S-Short hair (length $< 1^{11}$)

P-Permanent wavy hair

M-Medium hair (3"(length > 1") VP-Very permanent wavy hair L-Long hair (length > 3")

.

Fig. 3.1 The distribution of residence of selected hair samples

3		BK.3	Dusit	13	**	BK.13	Phra Pradaeng
4		BK.4	Phaya-Thai	14	64	BK . 14	Rat-Burana
5	•••	BK.5	Pathum Wan & Bangrak	19		BK.19	Nontha b uri
6	-	BK.6	Thonburi, Bangkok Yai,	21	••	BK.21	Min Buri
			Khlong-San	22		BK.22	Ram Inthra
7	-	BK.7	Bangkok Noi	23		BK.23	Bang Kapi
9		BK.9	Bang Khen	24		BK.24	Khlong Chan
10	.,	BK.10	Bang Kapi & Huay Khwang	26	***	BK.26	Bang Na
11		BK.11	Phra Khanong	27		BK.27	Samut Prakan
12	-	BK.12	Yan Nawa				

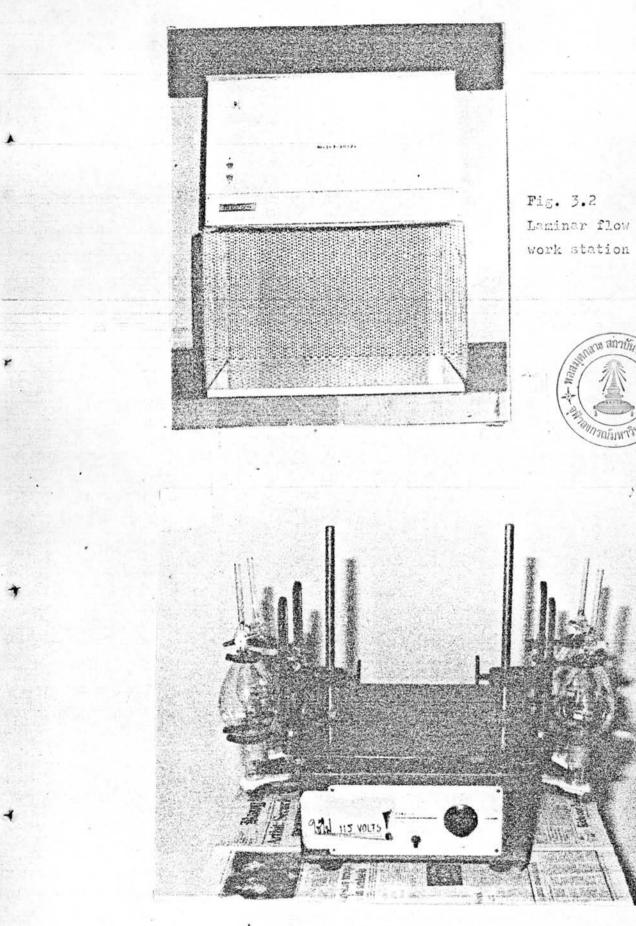
Residence	No.of s ample	Identification No.					
BK.3	1	A-28					
BK.4	2	D-2,E-13					
BK.5 .	5	C-1, C-2, C-16, E-26, A-22					
вк.6	4	B-22, E-1, E-8, F-2					
BK.7	1	B-10					
BK.9	L ;	B-15, D-17, D-22, E-20					
BK.10	2	E-25, F-13					
BK.11	5	A-4, B-24, C-19, C-21, D-23					
BK.12	5	F-25,F-26,F-27,F-28,F-29					
BK.13	1	F-21					
BK.14	1	F-6					
BK.19	1	F-5					
BK.21	4	A-26, B-23, E-7, E-29					
BK.22	1	A-23					
BK.23	1	A-3					
BK.24	6	B-13, B-18, C-15, D-6, E-6, F-11					
BK.26	1	B-5					
BK.27	1	D-7					
Ayutthaya	1	C-25					
Pathumthani	1	D 10					
Nakhonratsima	2	B-11,C-28					

Table 3.2 Distribution of residence of the samples

Table 3.3 Distribution of age of samples

Age	No.of	Identification No.
(Years)	sample	
18	2	F-28,F-29
19	1	F-26
20	11	A-23, A-26, B-15, C-1, D-10, E-1, E-6, E-8, E-13,
		E-26,F-6
21	16	A-28, B-5, B-10, B-13, B-23, B-24, C-15, C-25,
		D-6, D-7, D-17, D-22, E-25, E-29, F-2, F-5
22	10	A-4, C-2, C-16, C-19, C-21, D-2, E-7, F-11, F-13,
		F-27
23	3	A-3, C-28, E-20
24	4	A-22, B-18, B-22, D-23
25	1	F-25
27	1	F-21
32	1	B-11

was shown in table 3.1. Figure 3.1 illustrated the distribution of residence of selected hair samples. In addition, grouping of sample according to residence and age was shown in table 3.2 and 3.3 respectively.


3.3 Sample Preparation

3.3.1 Washing Procedure

Each sample was first washed three times with 200-500 cm³ of tap water to remove soap on hair which was used on the shaving step and washed again three times with 200-500 cm³ of demineralize water. In each washing, hair sample was swilled and transfered from one washing to another little by little by using a clean aluminium tong (12"length). After washing, individual hair sample was air-dried on a clean aluminium tray (8"x12") at room temperature in a laminar air flow fumehood. (Fig.3.2)

Each dried hair sample was divided into two portions. The first portion, about 1-3 g , was kept in a clean plastic bag and named unwashed sample. The latter, about the same weight, was washed by using the IAEA's recommended procedure (3). The detail can be briefly described as follows:

Hair sample was put into a clean pyrex separatory funnel (250cm³) and washed with 200 cm³ portions of reagent grade acetone and successively, distilled-demineralized water, distilleddemineralized water, distilled-demineralized water and reagent grade acetone, decanting off the washing liquid after each 10minute washing. The mechanical shaker (Fig. 3.3) was used throughout

Laminar flow ultra clean

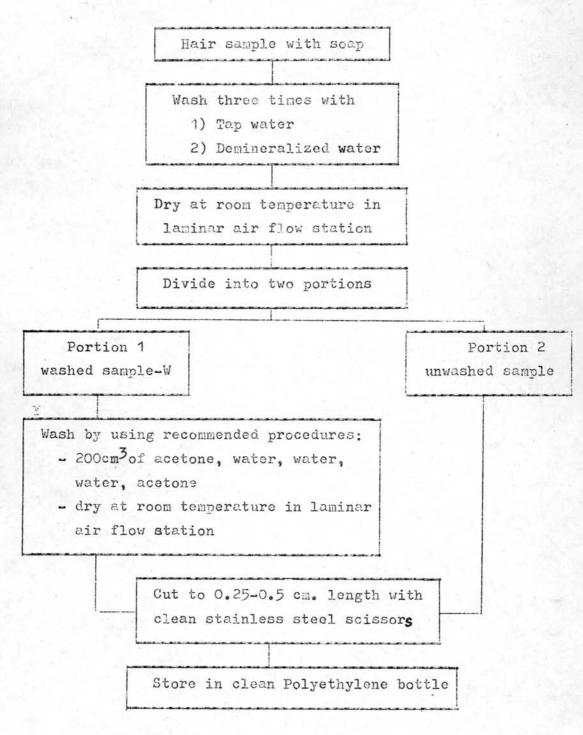
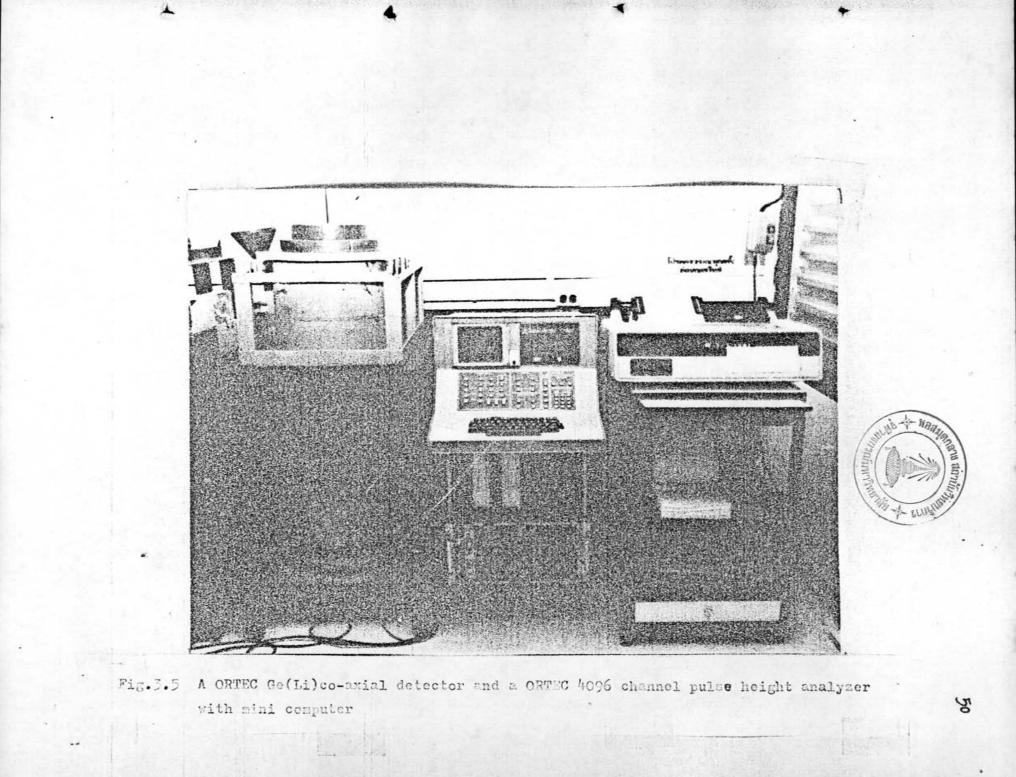
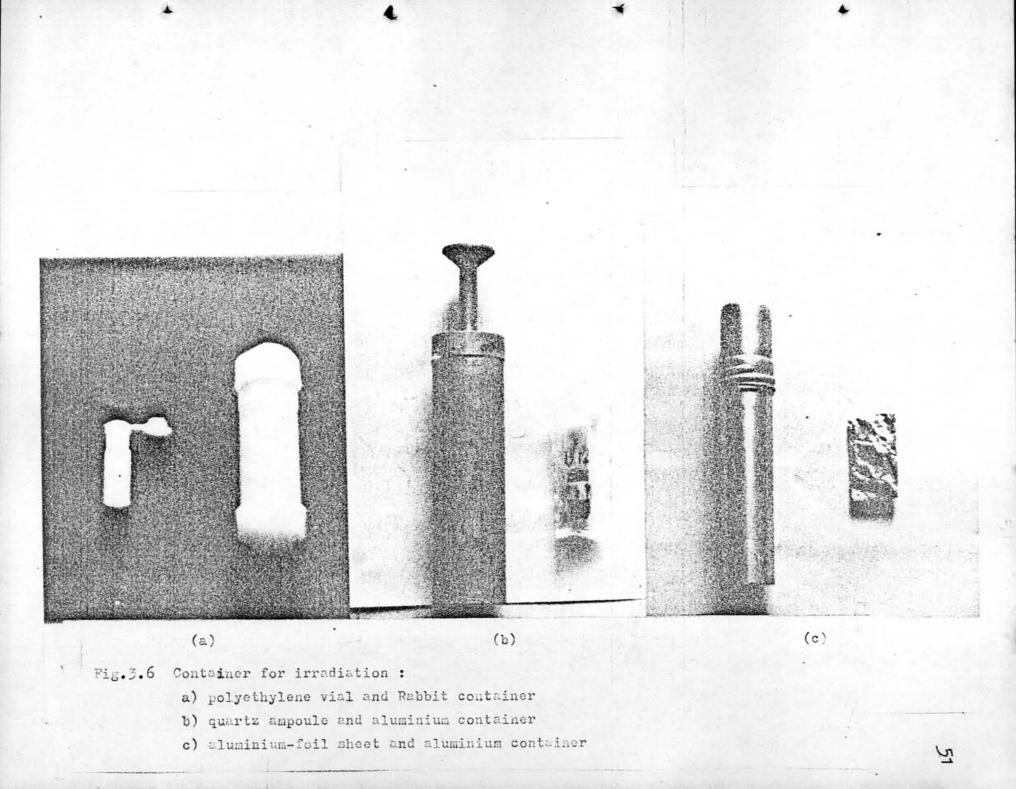


Fig. 3.4 Flow chart of sample preparation

this washing step. After washing, hair sample was air-dried on the clean-aluminium tray at room temperature in the laminar air flow station. The sample was stored in a clean plastic bag and named washed sample.

3.3.2 Cutting

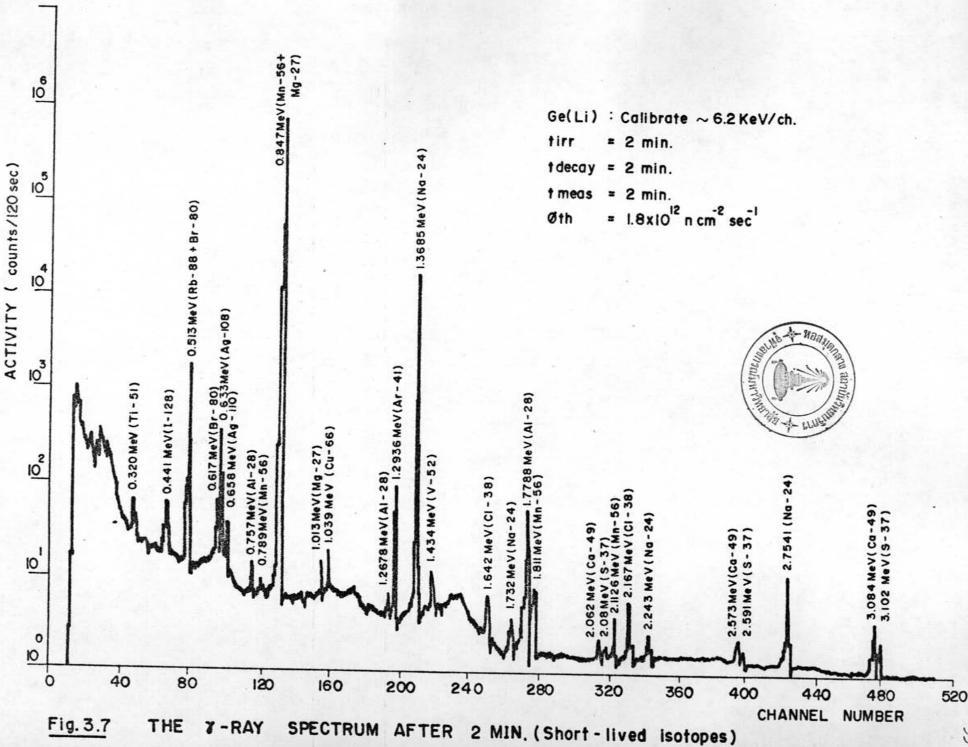

Both types of sample were cut separately to a 0.25-0.5 cm length with clean stainless steel scissors in a laminar air flow station. The hair was stored in a clean dry polyethylene bottle with identification. The sample preparation scheme was shown in the form of flow chart in Fig 3.4.


3.4 Qualitative Analysis

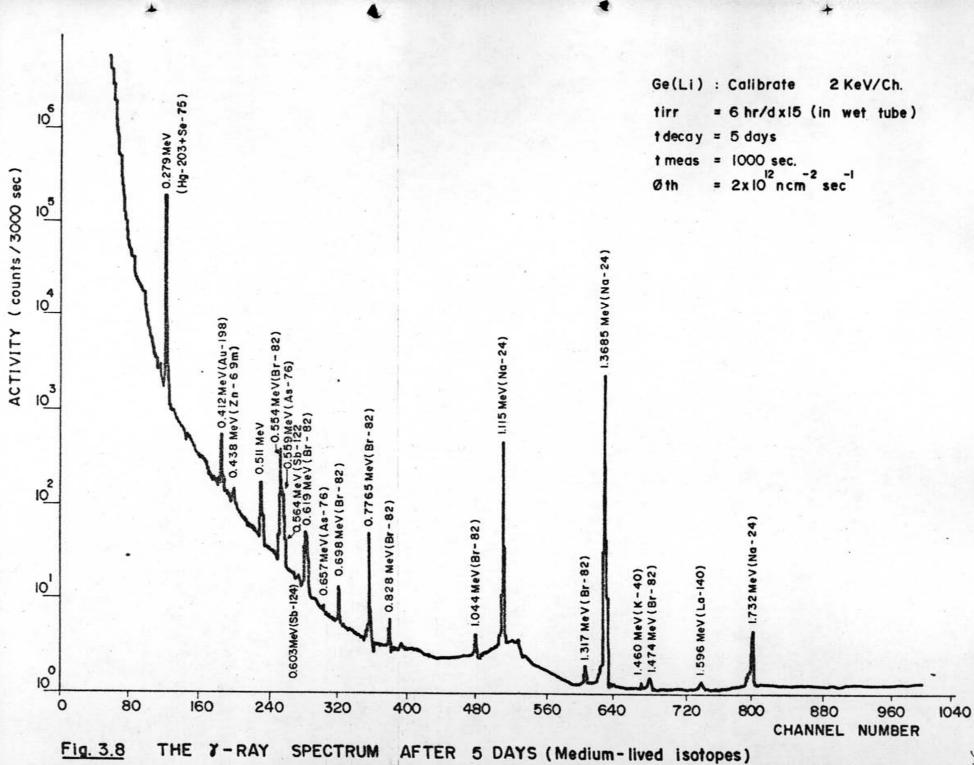
The determination was divided into three groups according to the half life of activated radioisotopes i.e short, medium and long-lived radioisotopes respectively.

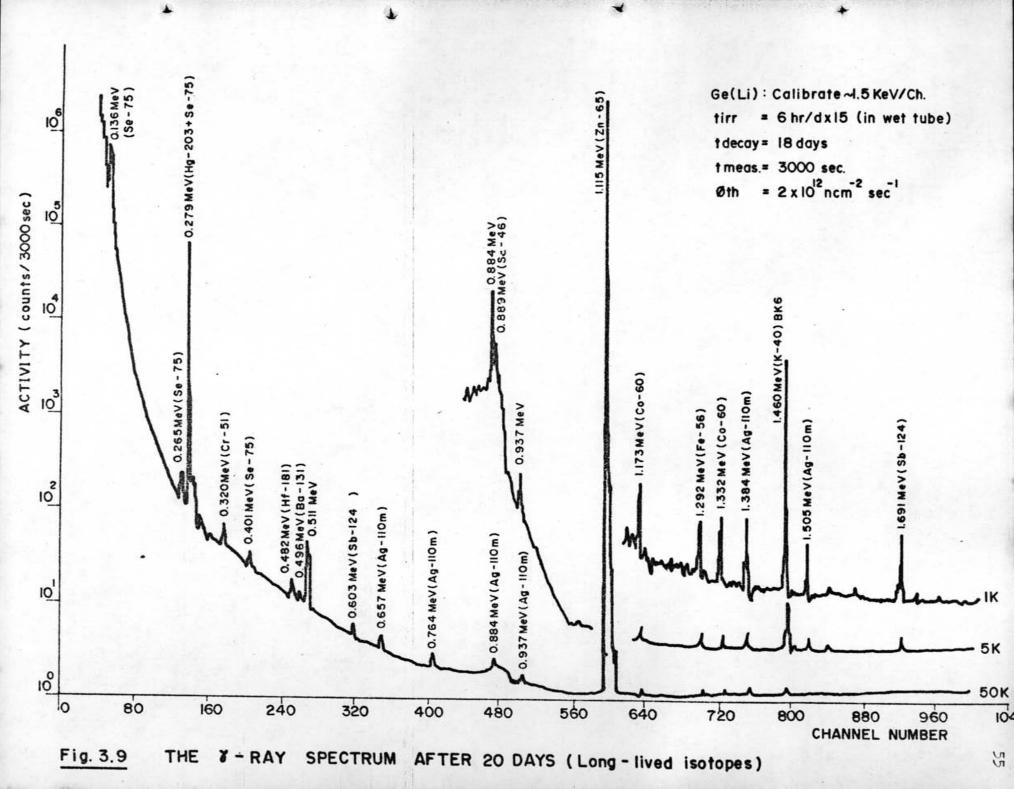
3.4.1 For short-lived nuclides.

About 400 mg of hair sample was put into a clean dry polyethylene vial of ca. 1 ml capacity with a snap cap, heat sealed, and placed in a Rabbit container. Sample was irradiated in the pneumatic transferring tube system of TRR-1/M-1 for 2 minutes at a flux of 1.8x10¹² n cm⁻²sec⁻¹. After cooling for some time, the irradiated sample was counted by ORTEC Ge(Li) co-axial detector coupled with a 4096 channel pulse-height analyzer (ORTEC) for 2 minutes. The spectrum was identified and recorded. An example of spectrum was shown in Fig.3.7.


About 400 mg of hair sample was encapsulated in a clean dry quartz ampoule and placed in a aluminium container. Sample was irradiated in a wet facility of TRR-1/M-1 for 15 days (about 90 hrs.) at a flux of 2x10¹² n cm⁻²sec⁻¹. After an appropriate time of cooling, the irradiated sample was transferred into a clean dry polyethylene bottle and counted on the Ge(Li) detector coupled with a 4096 channel pulse height analyzer for 1000 and 3000 seconds for the investigation of the medium-lived and long-lived nuclides, respectively. These spectrums were identified and recorded in which the individual example was shown in Fig.3.8 and 3.9 respectively.

In case of the determination of Potassium, since the half life of K-42 is not too long (about 12 hours) and could not be determined by the method described above, the technique must be modified as follows:


About 400 mg of hair sample was wrapped with aluminium and placed in a aluminium can. Sample was irradiated in Rotating Specimen (Lazy Susan) facility of TRR-1/M-1 reactor for 2 days (10-12 hours) at a flux of 4x10¹¹ n cm⁻²sec⁻¹. After cooling for about 18 hours, the irradiated sample was unwrapped and transferred into a clean dry polyethylene bottle and counted on Ge(li) detector for 1000 seconds.


3.4.3 The Interpretation of Gamma-Ray Spectrum

Since a radionuclide is characterized by its half-

+

life $(t_{j_2'})$ and the emitted gamma radiation (s), the interpretation of gamma-ray spectrum involves:

1) locating photopeaks in the spectra,

2) determining photopeak energies from calibration curve which is done by plotting between the energies of measured gamma rays (vertical line) and numbers of channel in which &-rays occurred (horizontal line),

3) calculating the half-life of each radionuclide by following the decay of radionuclide as a function of time.

If the radionuclide emits more than one X-ray per disintegration, both the X-ray energies and their relative intensities, characteristic of radionuclide, are also calculated. If two photopeaks are overlapped, the activities of the interested photopeak can be determined by using spectrum stripping method. This method is performed by successive substraction of the various pure components until the photopeak of interest is free from interferring activities.

4) Comparing the energies of §-radiation (s), halflife, relative intensities of each radionuclide to the value(s) which was . reported in the literature.

3.5 Quantitative Analysis

The concentration of an element in a sample can be calculated by using a comparative method. In the comparative method an element X in sample and a known amount of the same element X as a standard are irradiated together and counted under exactly the same conditions by the same radiation detector. The equation by the comparative method is

weight of element X in sample = Ax^* in sample $e^{\lambda tsample}$ weight of element X in standard Ax° in standard $e^{\lambda tstandard}$ (3.1)

Knowing the activities of x^* , Ax^* , in the sample and standard, the sample and standard decay time (t) and weight of X in the standard, the weight of element X in the sample is then calculated. The activities of x^* is the net energy peak area which can be calculated by using a method described by Das and co-worker (65).

3.5.1 Standard Reference Material (SRM)

In comparative method as mentioned above, SRN was used instead of standard solution. In this study the IAEA Soil-5 and Lake Sediment (SL-1) and the National Bureau of Standards (NBS) Orchard Leaves (SRM1571), and Bovine Liver (SRM1577) were used in which their details were shown in table 3.4.

3.5.2 Irradiation, Counting and Calculation

Each weighted hair sample and all the Standard reference materials were individually enclosed in polyethylene vial or quartz capsule and the whole arrangement was put in the polyethylene container or in aluminium can. Sample and SRM were irradiated together and counting under the same configurations as shown in table 3.5.

Only the case of medium and long irradiation, a

weighted pure copper sheet was attached to outside of the quartz capsule as a neutron flux monitor. After the irradiation was finished, both samples and SRM were separately transferred into the new clean dry polyethylene bottles and reweighed.

The concentration of each element in each hair sample was calculated by using the comparison method as in equation 3.1. In this method, the net peak area of a chosen gamma-ray energy of each chosen nuclide in sample and SRM were compared. The chosen gamma-rays were marked with an asterisk on the corresponding nuclides as in table 3.6.

3.6 The Reliability Test for Analysis Method.

The reliability in quantitative analysis is based on both precision and accuracy. Accuracy of a procedure can be evaluated by analysing elements in a well-homogenized geological standard. While the precision or the reproducibility of analysis is characterized by the standard deviation which can be evaluated by the replicate analysis of a homogen**eous** sample.

The reliability of the analytical methods used in this study was previously tested by **gna**lysing IAEA Powered Human Head Hair, HH-1. The result was shown in table 5.4.

Element		Concentratio	n of element (ppm) Orchard leaves Bovine liver		
11 Chieffe	Soil-5	Lake Sediment	Orchard leaves	Bovine liver	
Ag	(1.9:0.11)			-	
Al	81900+2800				
As	1. s+		14 _{±2}	-	
Au	-	1	0.004°±0.002		
Ba	562 <u>+</u> 53		-		
Br			(10)		
Ca	i n te e		20900±300		
Cl		•	(700)		
Co	14.8±0.76			-	
Cr	28.9±2.8	-	-		
Cu		days and the	12 <u>÷</u> 1	-	
Fe	125-		300±20		
Hg			0.155±0.015		
Hf	6.30±0.38		-	-	
I	(35)	-	2 6 7 - 2		
K	18600±1500				
La	28.1±1.5				
Mg	- kr- 1		6200±200	-	
Mn	-	-	91±4	-	
Na			82 <u>+</u> 6		
Rb			12 <u>+</u> 1	-	
Sb	14.3:2.2	_		-	
Sc	14.8:0.66			-	
Se				1.1:0.	
Sn	(4.2)		-	-	
Ti.		5170±370		·	
v		170±15			
Zn				130±10	

Table 3.4 Standard Reference Materials (SRM)

*Value reported by Das and co-workers(65)

() Information value only

Table 3.5 Survey of irradiation and counting detail

				Contraction and the second	
Group of		A. 199	Time of	Time of	Time of
nuclides	(Thermal		irradia.	cooling	counting
	neutron	Container	tion		
	fluz, in				
	ncm ⁻² sec ⁻¹				
Short- lived	12				
Ti-51,	Pneumatic	polyethylene	2 min	2 min	2 min
I-128,	(1.8×10^{12})			- mart	
Br-80,		capacity) in			
Ar-41*,		Rabbit container		-	
Mg-27,		(2.5cm i.dx8.0			• •
Cu-66,		cm)		-	
V-52,					
C1-38,			1.1.1.1		
A1-28,					
Mn-56,			Three y	1000	
Ca-49					
Medium- lived					
Hg-197,	Wet tube	quartz ampoule	15days	'5days	1000sec
Sm-153,	$(2x10^{12})$	(1.2cm i.dx8cm)	(90hrs)	2000	
*Np(U)-		in aluminium			
239,		container (4.0	6		
Au-198,		cm i.d x 22.0			
Sb-122,		cm)		12	
As-76,					
W*-187,					
Br-82,			1		
Na-24,					- State
La140,					
Zr*-69m,					
*Cu-64,	Stranger 1				
				1929	

Table 3.5 (contd)

Group of nuclides	Facility (Thermal neutron flux, in ncm ⁻² sec ⁻¹)	Container	Time of irradia. tion	Time of cooling	Time of counting
K*-42	Lazy Susan (4x10 ¹¹)	Al-foil sheet (3.5 cm x 5.5cm) in aluminium container (2.2cm i.d x 10.5cm)	2 days (12hrs)	18hrs	1000sec
long- lived Ce-141, Ba-131, Se-75, Hg-203, Cr-51, Sb-124, Ag-110m, Sc-46, Rb-86, Fe-59, Zn.65, Co-60, Hf-181	Wet tube (2x10 ¹²)	quartz ampoule (1.2cm i.d x 8cm) in aluminium container (4.0cm i.d x 22.0cm)	15days (90hrs)	18-21 days	3000sec

Element	Stable isotope	Nuclide produced	x-sect. ^a (6,barn)	%Abun- ^a -dance	Half ^b life	Gamma - ray energy (MeV) (Intensity: Number per loo decays.
Al	A1-27	A1-28	0.235	100.0	2.31m	1.7788(100.0)
Br	Br-79	Br-80	8.5	50.52	17.6m	0.511 (5.01), 0.617 (7.2), 0.666 (1.10)
	Br-81	Br-82	3.0	49.48	35.4h	0.54434(72.5), 0.61910(39.6) 0.69836(28.0), 0.77650(83.20) 0.82779(24.20), 1.04400(28.0)
					0	1.31743(27.0), 1.47488(17.0)
Ca	Ca-48	Ca-49	1.1	0.185	8.70m	1.40890(0.62), 2.2290(0.26) $3.0844^{*}(91.7), 4.07190(7.0)$
Cl	C1-37	C1-38	0.4	24.47	37.3 u	1.64240(32.8), 2.16750(44.0)
Cu	Cu-63	Cu-64	4.5	69.1	12.8h	0.5110(37.0), 1.34576(0.48)
	Cu-65	Cu-66	2.3	30.9	5.10m	0.8336(0.25), 1.03900(9.00)
I	I-127	I-128	6.4	100.0	24.99m	0.44289(17.50), 0.52662(1.68)
Mg	Mg-26	Mg-27	0.027	11.29	9.48m	0.84376(72.0), 1.01440(28.0)
Mn	Mn-55	Mn-56	13.3	100.0	2.576h	0.8466(99.0), 1.8112(30.0)
Ti	Ti-50	Ti-51	0.14	5.25	5.79m	2.11260(15.50), 2.5230(1.50) 0.32000(95.0), 0.92850(5.0)
V	V-51	V-52	4.9	99.76	3.75m	1.43420(100.0)
AS	As-75	~s-7 6	4.5	100	26.3h	0.55910(44.6), 0.65710(6.4), 1.21625 (3.70)

Table 3.6 Nuclear Data for the Element in head hair samples.

.

62

-

Table 3.6 (Contd.)

Element	Stable isotope	Nuclide produced	x-sect. ^a (6,barn)	%ablun- ^a -dance.	Half ^b life	Gamma-ray energy (MeV) b (Intensity: number per loo decays)
Au	Au-197	Au-198	98.8	100	2.697d	0.41180(95.53), 0.6758 (0.83), 1.08768 (0.16)
Hg	± ₆ -196	Hg-197	800	0.146	64 .1h	0.06881(36.1),0.07735(19.5), 0.0779(12.63)
	Hg-202	Hg-203	4	29.8	46.59d	0.27917(81.5), 0.07287(6.4)
Na	Na- 23	Na - 24	0.40	100	15.00h	1.36855(100), 2.75410(199.85)
Sm	Sm-152	Sm-153	210	26.63	46.8h	0.04090(16), 0.04154(30), 0.10412(13)
Sn	Sn-116	S n-117m	0.006	14.24	14.0d	0.15840(65)
Sb	\$b-121	\$b-122	6	57.25	2.70d	0.56408(63.0), 0.69276(3.27)
	\$b-123	5b-124	3.3	42.75	60.20d	0.60271(98.10), 0.64584(7.2)
La	La-139	La-140	8.9	99.911	40.27h	0.72278(10.8), 0.96822(1.8) 1.04512(1.84), 1.36821(2.44) 1.69104(50.0), 2.09120(5.5) 0.32875(21.3), 0.43255(3.1) 0.48703(45.7), 0.75179(4.5) 0.81580(23.6), 0.867861(5.6)
W	₩-186	W-187	40	28.4	24.0h	0.91960(2.5), 0.92525(6.8) 1.59620(96.0), 2.52183(3.25) 0.13424(10.1), 0.47948(26.6) 0.55147(6.0), 0.68570(32.0) 0.77284(4.8)

A

T

*

Table 3.6 (Contd.)

lement	Stable isotope	Nuclide produced	x-sect. ^a (6,barn)		Half ^b Life	Gamma-ray energy (Mey) (Intensity: number per 10) Licays)
Zn	Zn- 68	Z n- 69m	0.1	18.56	13.8h	0.43890(100)
	Zn- 64	Zn- 65	0.46	48.89	245d	0.5110(3.10), 1.11552(48.8)
K	K - 41	K - 42	1.2	6.77	12.36h	0.3129(0.3), 1.52470(17.7)
Ag	Ag-109	Ag-110m	3	48.65	250.4d	0.65772(94.4), 0.67758(11.1)
					1	0.68695(6.8), 0.70665(16.6)
						0.74426(4.5), 0.76392(22.5)
						0.81799(6.95), 0.88465(73.5)
						0.93745(34.3), 1.38424(25.9)
						1.50495(14.02)
Ba	Ba-130	Ba-131	8.8	0.1-0.13	11.5d	0.12375(32), 0.21601(21.0)
		1.1				0.37315(13.0), 0.49670(41.))
Ce	Ce-140	Ce-141	0.6	88.48	32.38d	0.14545(49.30)
Cr	Cr- 50	Cr- 51	17	4.31	27.8d	0.32010(9.80)
Co	Co- 50	Co- 60	19	100	5.263y	1.17323(99.88), 1.33252(100)
Fe	Fe- 58	Fe- 59	1.1	0.31	44.6d	1.09927(56), 1.29158(44.0)
Hf	Hf-180	Hf-181	10	35.22	42.5d	0.13305(41), 0.13625(6.9),
			1.9 . A . A . A			0.34595(12.0), 0.48216(83.0)
Rb	Rb- 85	Rb- 86	0.9	72.15	18.60d	1.0786(8.8)
Sc	Sc- 45	Sc- 46	13	100	83.9d	0.88930(100), 1.12050(100)

Table 3.6 (Contd.)

Element	stable isotope	Nuclide produced		%Ablun- ^a -dance.	Half ^b Life	Gamma-ray energy (MeV) (Intensity: number per 100 decays)
Śe	Se-7 4	\$e- 75	30	0.87	120.0d	0.12110(16.5), 0.13590(58.0) 0.26450(58.5), 0.2795(25) 0.40070(12.0)

* Energy chosen for quantitation

a Villforth, J.C. and Shultz, C.R. (eds) <u>Madiological Health Handbook Revised Edition</u>
U.S. Department of Health, Education and Welfare Public Health Service, Maryland, 1970.
b. Erdtmann, G. and Soyka; W. "The Gamma-Ray Lines of Radionuclides, ordered by Atomic and Mass Number : Part I." <u>J.Radioanel. Chem</u>. 26(1975): 376.