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ABSTRACT

4771020063: Petrochemical Technology Program
Racharith Sripituk: Recovery of Mixed Surfactants from Water
Using Multi-Stage Foam Fractionation: Effects of Feed Position,
Reflux Position and Reflux Ratio.
Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Prof. John F.
Scamehorn, and Asst. Prof. Pomthong Malakul, 56 pp.
ISBN 974-9937-73-2

Keywords: Multi-stage foam fracﬁonati;)nf Surfactant recovery/ Feed position/
Reflux position/ Reflux ratio

Surfactants are widely used in many industries, such as healthcare, food
processing, and textile, as well as several surfactant-based separation processes, and
the effluent streams of these processes usually contain surfactants that need to be
removed and recovered for both environmental and economic reasons. In this study, a
multi-stage foam fractionation column using bubble-cap trays was used to recover
surfactants, and the effects of feed position, reflux position and reflux ratio on
surfactant recovery were investigated for two single-surfactant systems and a mixed
system of cetylpyridinium chloride (CPC), a cationic surfactant, and polyethylene
glycol tert-octylphenyl ether (OPEO)(), a nonionic surfactant. For the two single-
surfactant systems, both the surfactant recovery and the enrichment ratio were
strongly affected by feed position. The surfactant recovery decreased with increasing
reflux position and reflux ratio. In contrast, the effects of reflux position and reflux
ratio were not significant on the enrichment ratio. The results of the mixed surfactant
system showed that the recovery of CPC was lower than that of the pure CPC system.
Interestingly, for the case of OPEO,, it was higher than that of the pure OPEO,

system due to the synergism effect.
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