REFERENCES

- Agrawal, R.C. and Gupta, R.K. (1999) Superionic solids: composite electrolyte phase-an overview. <u>Journal of Materials Science</u>, 34, 1131.
- Ahmed, S. and Krumpelt, M. (2001) Hydrogen from hydrocarbon fuels for fuel cells.
 <u>International Journal of Hydrogen Energy</u>, 26, 291.
- Avci, K.A., Onsan, Z.I., and Trimm D.L. (2001) On-board fuel conversion for hydrogen fuel cells: comparison of different fuels by computer simulations. <u>Applied Catalysis A: General</u>, 216, 243.
- Au, C.T., Wang, H.Y., and Wan, H.L. (1996) Mechanistic studies of CH₄/O₂ conversion over SiO₂-supported nickel and copper catalysts. <u>Journal of Catalysis</u>, 158, 343.
- Barbieri, F., Cauzzi, D., Smet, F.D., Devillers, M., Moggi, P., Predieri, G., and Ruiz; P. (2000) Mixed oxide catalysts involving V, Nb and Si obtained by a non-hydrolytic sol-gel route: preparation and catalytic behaviour in oxidative Dehydrogenation of Propane. <u>Catalysis Today</u>, 61, 353.
- Boucouvalas, Y., Zhang, Z., and Verykios, X.E. (1994) Heat transport limitations and reaction scheme of partial oxidation of methane to synthesis gas over supported rhodium catalysts. Catalysis Letters, 27, 131.
- Boucouvalas, Y., Zhang, Z., and Verykios, X.E. (1996) Partial oxidation of methane to synthesis gas via direct reaction scheme over Ru/TiO₂ catalyst. <u>Catalysis</u> <u>Letters</u>, 40, 189.
- Bozo, C., Guilhaume, N., Garbowski, E., and Primet, M. (2000) Combustion of methane on CeO₂-ZrO₂ based catalysts. <u>Catalysis Today</u>, 59, 33.
 - Chellappa, A.S., and Viswanath D.S. (1995) Partial oxidation of methane using ferric molybdate catalyst. <u>Industrial Engineering Chemistry Research</u>, 34, 1933.
- Dietz III, A.G., Carlsson, A.F., and Schmidt, L.D. (1996) Partial Oxidation of C₅ and C₆ Alkanes over Monolith Catalysts at Short Contact Times. <u>Journal of Catalysis</u>, 176, 459.

- Dissanayake, D., Rosynek, M.P., Kharas, K.C.C., and Lunsford, J.H. (1991) Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al₂O₃ catalyst. <u>Journal of Catalysis</u>, 132, 117.
- Dong, W., Jun, K., Roh, H., Liu, Z., and Park, S. (2002) Comparative study on partial oxidation of methane over Ni/ZrO₂, Ni/CeO₂ and Ni/Ce-ZrO₂ catalysts. <u>Catalysis Letters</u>, 78, 215.
- Elmasides, C. and Verykios, X.E. (2001) Mechanistic study of partial oxidation of methane to synthesis gas over modified Ru/TiO₂ catalyst. <u>Journal of Catalysis</u>, 203, 477.
- Ferreira M.J., Nichio N.N. and Ferretti O.A. (2003) A semiempirical theoretical study of Ni/α-Al₂O₃ and NiSn/α-Al₂O₃ catalysts for CH₄ reforming. <u>Journal of Molucular Catalysis A: Chemical 202</u>, 197.
- Freni, S., Calogero, G., and Cavallaro, S. (2000) Hydrogen production from methane through catalytic partial oxidation reactions. <u>Journal of Power Sources</u>, 87, 28.
- Fornasiero, P., Monte, D.R., Ranga, G.R., Kaspar, J., Meriani, S., Trovarelli, A., and Graziani, M. (1995) Rh-loaded CeO₂-ZrO₂ solid solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties. <u>Journal of Catalysis</u>, 151, 168.
- Fornasiero, P., Balducci, G., Monte, R.D., Kaspar, J., Sergo, V., Gubitosa, G., Ferrero, A., and Graziani, M. (1996) Modification of the redox behaviour of CeO₂ induced by structural doping with ZrO₂. <u>Journal of Catalysis</u>, 164, 173.
- Garbarczyk, J., Jakubowski, W., and Wasiucionek, M. (1983) Effect of selected mobile ions on moisture uptake by beta"-Alumina. <u>Solid State Ionics</u>, 9&10, 249.
- Gonzalez-Velasco, J.R., Gutierrez-Ortiz, A.M., Jean-Louis, M., Botas, A.J., Gonzalez-Marcos, P.M., and Blanchard, G. (1999) Contribution of cerium/zirconium mixed oxides to the activity of a new generation of TWC. <u>Applied Catalysis B: Environmental</u>, 22, 167.

- Guillet, N., Rives, A., Lalauze, R., and Pijolat, C. (2003) Study of adsorption of oxygen on β-Al₂O₃ + Au and β-Al₂O₃ + Pt: work function measurements proposition of a model. <u>Applied Surface Science</u>, 210, 286.
- Hargreaves S.J. Justin, Graham J. H., and Richard W. J. (1990) Control of product selectivity in the partial oxidation of methane. <u>Letters to Nature</u>, 348, 428.
- Harkness, I.R., Hardacre, C., Lambert, R.M., Yentekakis, I.V., and Vayenas, C.G. (1996) Ethylene oxidation over platinum: in situ electrochemically controlled promotion using Na-β" alumina and studies with a Pt(111)/Na model Catalyst. Journal of Catalysis, 160, 19.
- Hegarty, M.E.S., O'Connor, A.M., and Ross, J.R.H. (1998) Syngas production from natural gas using ZrO₂-supported metals. Catalysis Today, 42, 225.
- Hickman, D.A. and Schmidt L.D. (1993) Production of syngas by direct catalytic oxidation of methane. Science, 259, 343.
- Hochmuth, J.K. (1992) Catalytic partial oxidation of methane over a monolith supported catalyst. Applied Catalysis B: Environmental, 1, 89.
- Hori, C.E., Permana, H., Simon Ng, K.Y., Brenner, A., More, K., Rahmoeller, K.M., and Belton, D. (1998) Thermal stability of oxygen storage properties in a mixed CeO₂-ZrO₂ system. <u>Applied Catalysis B: Environmental</u>, 16 (1998) 105.
- Hou Z., Yokota O., Tanaka T., and Yashima T. (2004) Surface properties of a cokefree Sn doped nickel catalyst for the CO₂ reforming of methane. <u>Applied</u> <u>Surface Science</u>, 233, 58.
- Huff, M. and Schmidt, L.D. (1995) Oxidative dehydrogenation of isobutane over monoliths at short contact times. <u>Journal of Catalysis</u>, 155, 82.
- Irigoyen, B., Castellani, N., and Juan.A. (1998) Methane oxidation reaction on MoO₃ (100): a theoretical study. <u>Journal of Molecular Catalysis A:</u>
 Chemical, 129, 297.
- Jehng, J. M. and Wachs, I.E. (1993) Molecular design of supported niobium oxide catalysts. <u>Catalysis Today</u>, 16, 417.
- Kiwi, J., Thampi, K.R., and Gratzel, M. (1991) Methane dimerization through ion conductors (β-Al₂O₃). Solid State Ionics, 48, 123.

- Krummenacher, J.J., West, K.N., and Schmidt, L.D. (2003) Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel. <u>Journal of Catalysis</u>, 215, 332.
- Looij, F. and Geus, J.W. (1997) Nature of the active phase of a nickel catalyst during the partial oxidation of methane to synthesis gas. <u>Journal of Catalysis</u>, 168, 154.
- Lu, Y., Xue, J., Yu, C., Liu, Y., and Shen, S. (1998) Mechanistic investigations on the partial oxidation of methane to synthesis gas over a nickel-on-alumina catalyst. Applied Catalysis A: General, 174, 121.
- Luo, M. and Zheng, X. (1999) Redox behaviour and catalytic properties of Ce_{0.5}Zr_{0.5}O₂-supported palladium catalysts. <u>Applied Catalysis A: General</u>, 189, 15.
- Mallens, E.P.J., Hoebink, J.H.B.J., and Marin, G.B. (1997) The reaction mechanism of the partial oxidation of methane to synthesis gas: a transient kinetic study over rhodium and a comparison with platinum. <u>Journal of Catalysis</u>, 167, 43.
- Miao, Q. Xiong, G., Sheng, S., Cui, W., Xu, L., and Guo, X. (1997) Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. Applied Catalysis A: General, 154, 17.
- Ming, Q., Healey, T., Allen, L., and Irving, P. (2002) Steam reforming of hydrocarbon fuels. <u>Catalysis Today</u>, 77, 51.
- Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angle, P., and Monzon, A., (2000) Methane reforming with CO₂ over Ni/ZrO₂-CeO₂ catalysts prepared by sol-gel. Catalysis Today, 63, 71.
- Moon, D.J., Sreekumar, K., Lee, S.D., Lee, B.G., and Kim, H.S. (2001) Studies on gasoline fuel processor system for fuel-cell powered vehicles application. <u>Applied Catalysis A: General</u>, 215, 1.
- Neri, G., Plietropaolo, R., Galvagno, S., Milone, C., and Schwank, J. (1994) Characterization of carbon supported ruthenium-tin catalysts by highresolution electron microscopy. <u>Journal of the Chemical Society. Faraday</u> <u>Transactions</u>, 90, 2803.

- Neri G., Milone C., Galvagno S., Pijpers A.P.J. and Schwank J. (2002) Characterization of Pt-Sn/carbon hydrogenation catalysts, <u>Applied Catalysis</u> A: General 227, 105.
- Nichio N.N., Casella M.L., Santori G.F., Ponzi E.N. and Ferretti O.A. (2000)

 Stability promotion of Ni/α-Al₂O₃ catalysts by tin added via surface organometallic chemistry on metals: application in the methane reforming processes. Catalysis Today, 62, 231.
- Noronha, F.B., Fendley, E.C., Soares, R.R., Alvarez, W.E., and Resasco, D.E. (2001)

 Correlation between catalytic activity and support reducibility in the CO₂

 reforming of methane over Pt/Ce_xZr_{1-x}O₂ catalysts. Chemical Engineering

 Journal, 82, 21.
- O'Connor, R.P., Klein, E.J., and Schmidt, L.D. (2000) High yields of synthesis gas by millisecond partial oxidation of higher hydrocarbons. <u>Catalysis Letters</u>, 70, 99.
- Onda A., Komatsu T. and Yashima T. (2001) Preparation and catalytic properties of single-phase Ni-Sn intermetallic compound particles by CVD of Sn(CH₃)₄ onto Ni/Sillica. <u>Journal of Catalysis</u>, 201, 13.
- Otsuka, K., Wang, Y., Sunada, E., and Yamanaka, I. (1998) Direct partial oxidation of methane to synthesis gas by cerium Oxide. <u>Journal of Catalysis</u>, 175, 152.
- Otsuka, K., Wang, Y., and Nakamura, M. (1999) Direct conversion of methane to synthesis gas through reaction using CeO₂-ZrO₂ solid solution at moderate temperature. Applied Catalysis A: General, 183, 317.
- Pacheco, M., Sira, J., and Kopasz, J. (2003) Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen: isooctane reforming. <u>Applied Catalysis A: General</u>, 250, 161.
- Pantu, P., Kim, K., and Gavalas, G.R. (2000) Methane partial oxidation on Pt/CeO₂-ZrO₂ in the absence of gaseous oxygen. <u>Applied Catalysis A: General</u>, 193, 203.
- Pantu, P. and Gavalas, G.R. (2002) Methane partial oxidation on Pt/CeO₂ and Pt/Al₂O₃ catalysts. <u>Applied Catalysis A: General</u>, 223, 253.

- Pedeste C., Trimm D.L. and Lamb R.N. (1993) Characterization of Sn doped Ni/Al₂O₃ steam reforming catalysts by XPS. <u>Catalysis Letters</u>, 17, 333.
- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Bunyakiat, K. (2002) Catalytic oxidation of methane over CeO₂-ZrO₂ mixed oxide solid solution catalysts prepared via urea hydrolysis. <u>Applied Catalysis A: General</u>, 234, 221.
- Pengpanich, S., Meeyoo, V., and Rirksomboon, T. (2004) Methane partial oxidation over Ni/CeO₂-ZrO₂ mixed oxide solid solution catalysts. <u>Catalysis Today</u>, 93-95, 95.
- Peppley, B.A., Amphlett, J.C., Kearns, L.M., and Mann, R.F. (1999) Methanol-steam reforming on Cu/ZnO/Al₂O₃. Applied Catalysis A: General, 179, 21.
- Praharso, A., Adesina, A., Trimm, D.L., and Cant, N.W., (2003) Partial oxidation of iso-octane over Rh based catalysts. Korean Journal of Chemical Engineering, 20, 468.
- Ramirez-Cabrera, E., Atkinson, A., and Chadwick, D., (2002) Reactivity of ceria, Gd- and Nb-doped ceria to methane. <u>Applied Catalysis B: Environmental</u>, 36, 193.
- Roh. H., Jun, K., Dong, W., Chang, J., Park, S., and Joe, Y. (2002) Highly active and stable Ni/Ce-ZrO₂ catalyst for H₂ production from methane. <u>Journal of</u> <u>Molecular Catalysis A: Chemical</u>, 181, 137.
- Rostrup-Nielsen J.R., and Alstrup I. (1999) Innovation and science in the process industry steam reforming and hydrogenolysis. <u>Catalysis Today</u>, 53, 311.
- Ruckenstein, E. and Hu, Y.H. (1999) Methane partial oxidation over NiO/MgO solid solution catalysts. Applied Catalysis A: General, 183, 85.
- Savage P.E. (2000) Mechanisms and kinetics models for hydrocarbon pyrolysis.

 <u>Journal of Analytical and Applied Pyrolysis</u>, 54, 109.
- Seo, Y.S., Shirley, A., and Kolaczkowski, S.T. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. <u>Journal of Power Sources</u>, 108, 213.

- Shishido, T., Sokenobu, M., Morioka, H., Kondo, M., Wang, Y., Takaki, K., and Takehira, K., (2002) Partial oxidation of methane over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors. Applied Catalysis A: General, 223, 235.
- Stagg-Williams, S.M., Noranha, F.B., Fendley, G., and Resasco, D.E. (2000) CO₂ reforming of CH₄ over Pt/ZrO₂ catalysts promoted with La and Ce exides.

 Journal of Catalysis, 194, 240.
- Swann, H.M., Kroll, V.C.H., Martin, G.A., and Mirodatos, C. (1994) Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide. <u>Catalysis Today</u>, 21, 571.
- Takeguchi, T., Furukawa, S., and Inoue, M. (2001) Hydrogen spillover from NiO to the large surface area CeO₂-ZrO₂ solid solutions and activity of the NiO/CeO₂-ZrO₂ catalysts for partial oxidation of methane. <u>Journal of Catalysis</u>, 202,14.
- Tang, S., Lin, J., and Tan, K.L. (1998) Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO₂. Catalysis Letters, 51, 169.
- Trimm D.L. (1999) Catalysts for the control of coking during steam reforming.

 <u>Catalysis Today</u> 49, 3.
- Tsang, S.C., Claridge, J.B., and Green, M.L.H. (1995) Recent advances in the conversion of methane to synthesis gas. <u>Catalysis Today</u>, 23, 3.
- Tsipouriari, V.A., Zhang, Z., and Verykios, X.E. (1998) Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts. <u>Journal of Catalysis</u>, 179, 283.
- Ushikubo, T. (2000) Recent topics of research and development of catalysis by niobium and tantalum oxides. <u>Catalysis Today</u>, 57, 331.
- Vidal, H., Kaspar, J., Pijolat, M., Colon, G., Bernal, S., Cordon, A., Perrichon, V., and Fally, F. (2000) Redox behavior of CeO₂-ZrO₂ mixed oxides I. influence of redox treatments on high surface area catalysts. <u>Applied Catalysis B: Environmental</u>, 27, 49.
- Wachs, I. E., Jehng, J.M., Deo, G., Hu, H., and Arora, N. (1996) Redox properties of niobium oxide catalysts. <u>Catalysis Today</u>, 28, 199.

Zhu, T. and Flytzani-Stephanopoulos, M. (2001) Catalytic partial oxidation of methane to synthesis gas over Ni-CeO₂. <u>Applied Catalysis A: General</u>, 208, 403.

CURRICULUM VITAE

Name:

Mr. Sitthiphong Pengpanich

Date of Birth:

March 1, 1978

Nationality:

Thai

University Education:

1994-1998

Bachelor Degree of Chemical Engineering, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand

1998-2001

Master Degree of Chemical Technology, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand

Awards/Honors:

Scholarship from the Royal Golden Jubilee Ph.D. Program, Thailand Research Fund

Working Experience:

1997

Position:

Trainee (2 months)

Company name:

Rayong Gas Separation Plant,

Petroleum Authority of Thailand

Publications:

- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Bunyakiat, K. (2002)
 Catalytic Oxidation of Methane over CeO₂-ZrO₂ Mixed Oxide Solid Solution
 Catalysts Prepared via Urea Hydrolysis. Applied Catalysis A: General, 234, 221.
- Pengpanich, S., Meeyoo, V., and Rirksomboon, T. (2004) Methane Partial Oxidation over Ni/CeO₂-ZrO₂ Mixed Oxide Solid Solution Catalysts. <u>Catalysis</u> Today, 93-95, 95.
- Pengpanich, S., Meeyoo, V., and Rirksomboon, T. (2005) Oxidation of Methane over Nb-doped Ce_{0.75}Zr_{0.25}O₂ Mixed Oxide Solid Solution Catalysts. <u>Journal of</u> Chemical Engineering of Japan, 38, 49.
- Pengpanich, S., Meeyoo, V., Rirksomboon, T. and Schwank, J. (2006) Hydrogen production from partial oxidation of *iso*-octane over Ni/Ce_{0.75}Zr_{0.25}O₂ and Ni/β"-Al₂O₃ catalysts. Applied Catalysis A: General, 302, 133.

 Pengpanich, S., Meeyoo, V., Rirksomboon, T. and Schwank, J. (2006) Catalytic properties of Ni-Sn/Ce_{0.75}Zr_{0.25}O₂ catalysts for methane partial oxidation. <u>Applied</u> <u>Catalysis A: General</u>, submitted.

Proceedings:

- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Boonyakiat, K. (2002, September 29 - October 3) Catalytic Oxidation of Methane over Nb-doped Ce_{0.75}Zr_{0.25}O₂ Mixed Oxide Solid Solution Catalysts Prepared via Urea Hydrolysis. <u>Proceedings of the 9th Asian Pacific Confederation of Chemical</u> Engineering 2002, Christchurch, New Zealand.
- Bunyakiat, K., Tanasrisuk, C., and Pengpanich, S. (2002, September 29 October
 Global Mass Loss Kinetic Studies of Thai Coal by TGA. Proceedings of the 9th
 Asian Pacific Confederation of Chemical Engineering 2002, Christchurch, New Zealand.
- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Schwank, J. (2004, November 7-12) Hydrogen Production from Partial Oxidation of iso-Octane over Ni/Ce_{0.75}Zr_{0.25}O₂ and Ni/beta"-Al₂O₃ Catalysts. <u>Proceedings of the AIChE annual</u> meeting 2004, Austin, Texas, United States of America.

Presentations:

- Pengpanich, S., Meeyoo, V., and Rirksomboon, T. (2003, April 25) Methane Partial Oxidation over Ni/Ce_xZr_{1-x}O₂ Catalysts. Oral presentation at <u>RGJ Ph.D.</u> congress, Chonburi, Thailand.
- Pengpanich, S., Meeyoo, V., and Rirksomboon, T. (2003, October 12-15)
 Methane Partial Oxidation over Ni/CeO₂-ZrO₂ Mixed Oxide Solid Solution
 Catalysts. Poster presentation at the 3rd Asia-Pacific Congress on Catalysis 2003,
 Dalian, China.
- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Schwank, J. (2005, September 25-30) Catalytic properties of Ni-Sn/Ce_{0.75}Zr_{0.25}O₂ catalysts for methane partial oxidation. Poster presentation at the 5th World Congress on Oxidation Catalysis, Sapporo, Japan.