CHAPTER II

SEMIGROUPS OF NUMBERS

In this chapter, we are concerned with semigroups of numbers. The purpose is to determine whether some semigroups of numbers admit a ring structure.

Throughout this chapter, we adopt the following notation :

- N = the set of all positive integers,
- Z = the set of all integers,
- T = the set of all negative integers,
- Q = the set of all rational numbers,
- Q = the set of all positive rational numbers,
- R = the set of all real numbers,
- the set of all positive real numbers,
- R = the set of all negative real numbers,
- [0,1] = $\{x \in \mathbb{R} \mid 0 \le x \le 1\},$
- [0,1) = $\{x \in \mathbb{R} \mid 0 \leq x < 1\},$
- (0,1] = $\{x \in \mathbb{R} \mid 0 < x \le 1\},$
- (0,1) = $\{x \in \mathbb{R} \mid 0 < x < 1\},$
- $[1,\infty) = \{x \in \mathbb{R} \mid x \geqslant 1\},$
- $(1,\infty) = \{x \in \mathbb{R} \mid x > 1\}.$

Observe that the semigroups ${\bf Z}$, ${\bf Q}$ and ${\bf R}$ under usual multiplication admit ring structure.

From the definition of admitting a ring structure of a semigroup, it follows that a semigroup S admits a ring structure if and only if the semigroup S^{O} admits a ring structure.

It has been shown by Chu and Shyr in [1] that the semigroup of all nonnegative integers, NU {0}, with usual multiplication admits a ring structure. Hence, the semigroup of all positive integers, N, with usual multiplication admits a ring structure since $N^{\circ} \cong NU$ {0} under usual multiplication.

Let S be an infinite cyclic semigroup. Suppose S admits a ring structure under an addition +. Let a be a generator of S; that is,

$$S = \{a, a^2, a^3, ...\}$$

and $a^i \neq a^j$ if $i \neq j$ in \mathbb{N} . Then there exists a positive integer k such that $a + a^k = 0$. If k > 1, then

$$a + a^{k} = 0 = a^{k-1}(a + a^{k}) = a^{k} + a^{2k-1}$$

and thus $a = a^{2k-1}$ and 2k-1 > 1 which is a contradiction. Then k = 1 and therefore a + a = 0 which implies $a^i + a^i = 0$ for all $i \in \mathbb{N}$. Since $a^i \neq 0$ for all $i \in \mathbb{N}$ and x + x = 0 for all $x \in S$, it follows that $a + a^2 = a^j$ for some $j \in \mathbb{N}$ such that j > 2. Then $a = a^2 + a^j = a(a + a^{j-1})$. But $a + a^{j-1} = a^m$ for some $m \in \mathbb{N}$. Thus $a = a^{m+1}$, a contradiction.

This shows that any infinite cyclic semigroup does not admit a ring structure.

The semigroup of all positive integers under usual addition and the semigroup of all negative integers under usual addition are clearly infinite cyclic semigroups.

Hence, we have

- 2.1 Theorem. (1) The semigroup of all positive integers under usual multiplication admits a ring structure.
- (2) The semigroup of all positive integers under usual addition does not admit a ring structure.
- (3) The semigroup of all negative integers under usual addition does not admit a ring structure.

Let S be a semigroup. Define a relation P on S by $(a,b) \in P$ if and only if $S^1a \subseteq S^1b$. Clearly, P is reflexive and transitive. The relation P is antisymmetric if and only if $S^1a = S^1b$ implies a = b. Hence, the relation P on S is a total order on S if and only if

- (a) for a, b ϵ S, S¹a = S¹b implies a = b, and
- (b) for all a, b ϵ S, either $S^1 a \subseteq S^1 b$ or $S^1 b \subseteq S^1 a$.

It was shown by L.J.M. Lawson in [3] that if any semigroup containing more than one element in which the relation P is a total order, then S does not admit a ring structure.

Let S be an infinite cyclic semigroup. Then there exists an element a ϵ S such that

$$S = \{a^n \mid n = 1, 2, 3, ...\}$$

and $a^i \neq a^j$ if $i \neq j$ in \mathbb{N} . Then S has no identity and the semigroup S^1 is not an (infinite) cyclic semigroup. We define $a^0 = 1$. Then

$$S^1 = \{a^n \mid n = 0, 1, 2, ...\},\$$

and $a^i \neq a^j$ if $i \neq j$ in $\mathbb{N} \cup \{0\}$. We will show that the relation P define on the semigroup S^1 is a total order. Let m, n be in $\mathbb{N} \cup \{0\}$.

- (a) If $S^1a^m = S^1a^n$, then there exist r, s in $\mathbb{N} \cup \{0\}$ such that $a^m = a^ra^n$ and $a^n = a^sa^m$, so m = r + n and n = s + m which imply m = n.
- (b) Since m, n $\in \mathbb{N} \cup \{0\}$, m \geqslant n or n \geqslant m. If m \geqslant n, then $S^{1}a^{m} = \{a^{k} \mid k = m, m + 1, ...\} \subseteq \{a^{k} \mid k = n, n + 1, ...\} = S^{1}a^{n}$. If $n \geqslant m$, then $S^{1}a^{n} \subseteq S^{1}a^{m}$.

Under usual addition, \mathbb{N} and \mathbb{Z} are infinite cyclic semigroups. Clearly, under usual addition $\mathbb{N}^1\cong\mathbb{N}$ U {0} and $(\mathbb{Z}^-)^1\cong\mathbb{Z}$ U {0}. Hence, we have

- 2.2 <u>Theorem</u>. (a) The semigroup of all nonnegative integers under usual addition does not admit a ring structure.
- (b) The semigroup of all nonpositive integers under usual addition does not admit a ring structure.

The next theorem shows that each of the semigroups \mathbb{Q}^+ , \mathbb{Q}^+ U {0}, \mathbb{Q}^- , \mathbb{Q}^- U {0}, \mathbb{R}^+ , \mathbb{R}^+ U {0}, \mathbb{R}^- , \mathbb{R}^- U {0} under usual addition does not admit a ring structure.

2.3 Theorem. Let S be the semigroup Q⁺, Q⁺ U {0}, Q⁻, Q⁻ U {0}, R⁺, R⁺ U {0}, R⁻ or R⁻ U {0} under usual addition +. Then S does not admit a ring structure.

 \underline{Proof} : Recall that for any semigroup T, for a ϵ T, $T^1a = Ta \ U\{a\}$. To prove the theorem, let x,y be elements of S.

- (a) Assume $(S + x) \cup \{x\} = (S + y) \cup \{y\}$. Then $x \in (S + y) \cup \{y\}$ and $y \in (S + x) \cup \{x\}$. Thus $(x = y \text{ or } x = s + y \text{ for some } s \in S)$ and $(y = x \text{ or } y = t + x \text{ for some } t \in S)$. If $S \text{ is } \mathbb{Q}^+$, $\mathbb{Q}^+ \cup \{0\}$, \mathbb{R}^+ or $\mathbb{R}^+ \cup \{0\}$, then (x = y or x = s + y) implies x > y, and (x = y or y = t + x) implies y > x. If $S \text{ is } \mathbb{Q}^-$, $\mathbb{Q}^- \cup \{0\}$, \mathbb{R}^- or $\mathbb{R}^- \cup \{0\}$, then (x = y or x = s + y) implies x < y, and (x = y or y = t + x) implies y < x. Hence x = y.
- (b) If x = y, then $(S + x) \cup \{x\} = (S + y) \cup \{y\}$. Case x < y. If S is \mathbb{Q}^+ , \mathbb{Q}^+ $\cup \{0\}$, \mathbb{R}^+ or \mathbb{R}^+ $\cup \{0\}$, then y = r + x for some $r \in S$, and hence $(S + y) \cup \{y\} \subseteq (S + x) \cup \{x\}$. If S is \mathbb{Q}^- , $\mathbb{Q}^ \cup \{0\}$, \mathbb{R}^- or $\mathbb{R}^ \cup \{0\}$, then x = s + y for some $s \in S$, and thus $(S + x) \cup \{x\} \subseteq (S + y) \cup \{y\}$.

Case y < x. If S is \mathbb{Q}^+ , \mathbb{Q}^+ U {0}, \mathbb{R}^+ or \mathbb{R}^+ U {0}, then (S + x) U {x} \subseteq (S + y) U {y}. If S is \mathbb{Q}^- , \mathbb{Q}^- U {0}, \mathbb{R}^- or \mathbb{R}^- U {0}, then (S + y) U {y} \subseteq (S + x) U {x}.

This shows that the relation P defined as before is a total order on S. Thus S does not admit a ring structure.

Next, we study the semigroups (0,1), (0,1], (1, ∞) and [1, ∞) under usual multiplication .

2.4 Theorem If S is the semigroup (0,1), (0,1], $(1,\infty)$ or $[1,\infty)$ under usual multiplication, then S does not admit a ring structure.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ (a) Let } x, \text{ y be elements of S such that } S^1x = S^1y.$ Then x = sy and y = tx for some $s, t \in S^1$. Then x = stx, so st = 1 which implies s = t = 1. Thus x = y.

Case S = (0, 1) or (0, 1]. If x > y, then $\frac{y}{x} \in S$ and so $S^1y = (S^1\frac{y}{x})x \subseteq S^1x$. Similarly, x < y implies $S^1x \subseteq S^1y$.

Case S = $(1,\infty)$ or $[1,\infty)$. If x > y , then $\frac{x}{y} \in S$, and thus $S^1x = (S^1\frac{x}{y})y \subseteq S^1y$. Similarly, x < y implies $S^1y \subseteq S^1x$.

Hence the semigroup S does not admit a ring structure. •

Under usual multiplication, $(0,1)^{\circ} = [0,1)$, $(0,1]^{\circ} = [0,1]$, $(1,\infty)^{\circ} = (1,\infty) \cup \{0\}$ and $[1,\infty)^{\circ} = [1,\infty) \cup \{0\}$. Hence we have the following corollary:

2.5 Corollary. If S is the semigroup [0,1), [0,1], (1,∞)U {0} or [1,∞) U {0} under usual multiplication, S does not admit a ring structure.