CHAPTER 1II

EXAMPLE 1 : THE.SENTENTIAL CALCULUS. (SC)

In this chapter we formulate a theory of sentential logic
and we prove a completeness theorem for it by using fhe theory of
Boolean Algebras. The knowledge about Boolean Algebra used in this
chapter is in Appendix A. At the end of this chapter we give some
subtheories of SC which have SC as their only complete and consis-

tent extension.
We first introduce the symbols of SC which are the following:

(1) a denumerable set of sentence variables :

Ps Q5 T, Sy Pys gy Tys Sqsp vevvnvncccncsn -
(ii) 1logical connectives : ~, >, v, A,
(iii) parentheses : (,).

We define sentences of SC as in Definition 1.1, and rules of

inference are as 1.2.

The axioms of SC are the following :

Al. p —(q—p)

A2, (s— (p—q)) =((s—p) = (s —q))
A3, P AQ— P

Ad. . pagq—q

AS. p— (q—pArq)




A6 . P—Pvq

A7. qQ—Ppvq

A8. (p—1)—((q—1)—(Pvq—1))
AS.  ~p— (p—q)

Al0. (p—9)— ((p—~q) —~p)

All. p v~p.

From now on we say that the sentence ¢ is a theorem of SC
instead of saying ¢ is a theorem of the set of all axioms of SC,
and instead of saying the set of all theorems of SC, we say the

theory SC, or SC.

b b
. 12 e By
Note that if };E ¢, then FEE S¢1, = ¢nq)| where bl’
shen bn are sentence variables in ¢ and ¢1, Wieieis ¢n are some sent-

ences.

2.1 Definition. A variant of a sentence ¢ of SC is a sentence

obtained from ¢ by alphabetic changes of the variables of such a
sort that two occurrences of the same variable in ¢ remain occur-
rences of the same variable, and two occurrences of distinct va-

riables in ¢ remain occurrences.of distinct variables.

Thus if a;, ..., a_ are distinct variables, and bl’ vy

are distinct variables, and there is no variable among bl’ = h
which occurs in ¢ and does not occur among 815 ey B, then
a oo a
1.2 L ;| ’ .
S ¢ | is a variant of ¢.
b 5 B
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Note that if ¢ is a variant of Y, then ¢y 1s a variant of ¢;
and any variant of a variant of ¢ is a variant of ¢3 and any sen-

tence ¢ is a variant of itself.

2.2 Definition. A finite sequence of sentences 1;;1, B ‘pn is

called a proof from a set of sentences I in SC if and only if each

wi’ l<i<n, is

(1) a sentence in %, or

(ii) a variant of an axiom, or

(iii) a conclusion from ‘pj(j <1i) by Subs. where the variable
substituted for does not occur in the sentences in I, or

(iv) a conclusion from tpj, wk(j,k< i) by MP,

Such a finite sequence of sentences, wn being the final sen-
tence of the sequence, is called more explicitly a proof of tpn from

L and we use the notation Ij=_ ¢ _.
sc 'n

2.3 Lemma. For any sentence ¢ of SC, l?c d— .

Proof. 1. p—(q —p) by Al.
2. ¢ —@p—9) by (1) and Subs.
3. ¢—=>(@—9%) —¢) by (1) and Subs.

4. (s—(—=>q))— ((s—=p)— (s—q)) by A2.

w

©— ((0—=9¢)—=¢))— ((¢— (9—¢)) — (o—¢))
by (4) and Subs.

6. (¢—(¢—¢)) —(¢—¢) by (3), (5) and MP.

o i by (2), (6) and MP.



Hence ¢—¢ is a theorem of SC

2.4 Theorem. (Deduction Theorem.) Let § be a set of sentences in

SC, ¢, ¥ be sentences in SC. If I U{¢} |—§C 1, then ZIEC o—y.

Proof. Assume I J{¢}|;_ ¥. Then there is a finite sequence
of sentences 81, 5 ey en such that Bn = y and for each i, 1<i<n,
Bi is a variant of an axiom, or Gi eZ, or Bi = ¢, or Gi is a conclu-
sion from Bj (j <i) by Subs. where the variable substituted for does

not occur in the sentences in I U{¢}, or Bi is a conclusion from Bj'

6, (j, k<i) by MP.

Claim that Z|-¢—6,, 1<i<n. We will show this by induc-
tion'on i. For i =15 61 is a variant of an axiom or 8182 or 61 = ¢.
Suppose 81 is a variant of an axiom or 81 €. Since IE: 81—-> (¢—>81],

ZI;__. ¢—0,. Suppose 6, = ¢. Since from Lemma 2.3 we have |-§: o — 0,

zl?c $—0,.

Now assume Z}?c ¢—*6j for all j<k<n. If 6, is a variant
of an axiom, or Bkez, or Bk = ¢, then we can prove similarly to
the case i = 1 that z|;c ¢—8,. If 6 is a conclusion from ej (j <k)
by Subs., then by induction hypothesis we have Z]—s-c ¢—>6j, and we
get ¢—*8k from ¢—> ej by Subs. because the variable substituted for
K For the last case if Bk is a
conclusion from ej and e].—»ek (j <k) by MP., then 8J.—+8k = Bm for

does not occur in ¢, so Zl;c ¢—0

some m<k and by induction hypothesis we have I }gc ¢—>8j and

D ¢—>(8,—6,). Hence from A2, 5 4—0, .



Therefore El?c ¢$—6., 1<i<n. Consequently E|§c ¢—6,

i.e. E|—s‘c o— .
2.5 Note. The following are theorems of SC :

(1) (29— ((qg—+)—>(p—1))
(ii) ~(pa~p)

(1ii) (p—q)—((p—r)—(p—q AT))
(iv) (pa(qvr))—((paq) v(par))
(v) ((paq)vipar))—(palqvr))
(vi) (pv(qar))—((pvaq) A(pvr))
(vii) ((pva) A(pvr))—(pv(qar))
(viii) (~pvq)— (p—q)

(ix) (p—q)—(~pvq).

2.6 Definition. A realization of SC is a map

£f: {p, q x,", Pys 15 Tys Sps cevennnnnn } —L

2
whereﬁ is defined as in Appendix A.

Given a realization f of SC we extend it to a map

2
F: {6|¢ is a sentence of sC}— B

in the following manner :

For any sentences ¢ and y and sentence variable a;,

(1) E(ay

(i) £(~¢)

f(ai)
HOK
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(iii) fvYy) = £(9) vE(Y)
Gv) Fav) = E(o)Af(V)
v) F@—y) = E£(o)*vE(Y).

2.7 Definition. If a realization f is extended in the way just
described, and ¢ is a sentence of SC, then we say that f satisfies

¢ if and only if f(¢) = 1.

A sentence ¢ is said to be satisfiable if and only if it is

satisfied by some extended realization.

A sentence ¢ is said to be a tautology if and only if it is

satisfied by all extended realizations.
2.8 Theorem. If +§b ¢, then ¢ is a tautology.

Proof. The proof is by induction on the length of proofs in
SC. We show that each axiom is a tautology and rules of inference
preserve tautology. It follows that a proof consists of a sequence

of tautologies, and that every provable sentence is a tautology.

We first show that all axioms of SC are tautologies. Let f

be any realization of SC. Then

£(p)*v £(q—p)
= £(p)*v (£(q)* v£(p))
= 1v£(q)*

£(p— (q—p))

g 1k,
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£((s— (p—q))— ((s—p)— (s—q)))

E(s— (p— Q) *v £((s—p)— (s—q))

= (£(s)* vEMP)* vE(Q)))* v(E(s)*v £(p))*v (£(s)*v £(q))
= (£(s) ~f(p) Af(q)*) v (£(s) Af(p)*) v (£(s)* v £(q))

= (£(s) A((£(p) A£f(q)*) vE(P)*)) v (£(s)*Vv f(q))

= (£(s) A(£(Q)* vE(P)*)) v (£(s)*V £(q))

= (£E(s)A£(q)*) v (£(s) Af(p)*) v(£(s) Af(q)*)*

= 1v (f(s) A£(p)*)

=, 1 4

fE(prq—p) = £(pAqQ* vE(D)
= (Em)~ E(@)* v ED)
= (£(p)»~£(q))* v£i(p)
= f(p)RisEiq)Ei(p)
= LV E(q)*

= J s

f(prq—q) = £(prq)*VE(q)
= (E@rE@)*vEQ
= (E(@)~£(q))* Vv E(q)
= f(P)*VvE(Q*VE(q
= f(P)*Vvl

= 1 ,

£(p)* v (E(q)* vE(p AQ))

f(p)* v (£(q)* v (£(p) A£(q)))

n

£(p— (@—p AQq))
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= £(P)* v ((E(@* vE(P)) A (£(q)*v £(q)))
= f(p)* v((£(@)* v £(p)) A1)

= f(p)*v (f(qQ)* v £(p))

= 1v f(9)*

= 1 ,

f(p—pv q) = £(p)*v f(pva)
= f(p)*v (£(p) v £(q))
= (f(p)*v £(p)) vi(q)
=/ £0q)

# / HECE

£(q—pV q) = £(qQ*vEf(pvq)
= f(q)*v (f(p)v £(q))
= 1v £f(p)

= 1 ,

f((p—1) — ((q—1) — (pv q—1)))
= (£(P)*v £(x))*v ((£(qQ)*v £(x))*Vv (£(p) v £(q)) * Vv £(x)
= (E(P)A £(r)*) v (£(q) A £ (x]) v ((£(p) vE(Q))*v £(x))
= ((£(p)v £(q)) Af(x)*) v ((£(p) v£E(q))* vE(r))
= ((£(p) v £(q)) A £(x)*) v ((£(p) v £(q)) A £(x)*)*

= 1 ,

(F(P)*)*v (£(p)* v £(q))
f(p)v £(p)*v £(q)
lv £(q), S

£(~p— (p—q))



f((p—q)— ((p—>~q) —~P))
= (E@*vE@)* v (E@* vE@*)N £(p)*
= (£ A£(@*) v (£(P) Af(q) v E(@)*
= (£(p) A (£(q)* v £(q))) v £(P)*
= (f(P) A1) v EP)*
= f(p) vE(P)*

= 1 . .53:and

£(p) v £(p)*

= 1

£(pv~p)

Hence all axioms of SC are tautologies.

Next, will show that rules of inference preserve tautology.
It is clear that Subs. preserves tautology. To show MP. preserves
tautology, suppose that ¢ and ¢—{ are tautologies and let f be

any realization of SC. Then f(¢) = E(¢-—+w) =1, and so

(£(9) A £(0)*) v £(¥)
= (£(0) v EW) A(£(9)* v EW))
= (A1vEw) Al

= 1a1

£(V)

006492

= 1

Therefore  is a tautology.

11828870 4
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2.9 Theorem, SC is consistent.

Proof. Since any sentence variable is not a tautology, it

is not a theorem of SC. Thus SC is consistent.

Let S be the set of all sentences in SC. Define the relation

n on S as follows : For any sentences ¢, U
¢vy if and only if |§ ¢— 1 and 'E: Y— 0.

Thus v is an equivalence relation on S and denote the equiva-

lence class containing ¢ by [¢].

2.10 Theorem. Let J@ = {[4] l¢€.S}. Define the relation < on S by
[¢] < [¥] if and only if fs—c o —> .

Then <Jg,i > is a Boolean Algebra. (Call it the Lindenbaum Algebra.)

Proof. If ¢, then f— ¢—V and |- ¥v—¢, so [¢] <[V]
i.e. [¢] <[¢]. Then < is reflexive. By Note 2.5 (i) we also have
< is transitive. Now suppose [¢] < [¥] and [v] <[¢]. Then }-s-c d—
and |— y—9¢, so ¢y, i.e. [¢] = [¥]. Hence < is antisymmetric.

Thus < is a partial ordering ofJ@.

Let [4], [V] ej@. Since from A3. and A4., l?c dA V—¢ and
= ¢ A¥—>y hence [¢ Ay] < [¢] and [¢A¥] <[¥]. Suppose [6]le Jo
such that [6] < [¢] and [6] < [¥], so lE 6— ¢ and |E 96— . Hence
by Note 2.5 (iii) and two applications of MP., }; 86— AP, SO

[¢] <[¢aV]. This shows that [¢1 A[¥] = [¢Aay]. Similarly by using
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A6., A7., and A8., we also have [¢] v[V] = [¢ v¥]. We have now that

<Jé,i > is a lattice.

Let [¢], [v], [©] EJ@. By Note 2.5 (iv) - (vii) we have
[(dvi) A8l = [(dA8) v AB)], [(d AY)vE] = [(dvE)A(WVE)],
hence ([¢] v [¥]) al8] = ([4] A[6]) v([¥] A[6]) and ([¢] A [y]) v[6] =

([6]v [6]) A([¢v] v([6]). Therefore <J@,_<_ > is a distributive lattice.

By Al., if IE: ¢, then for any sentence Y, {;: y— ¢ and so
[v] <[¢]. Hence [¢] = 1, the maximum element ofcﬁ. Similarly,
using A9., if {E: ~¢, then for any sentence U, IE ¢— ¥ and so
[¢] <[¥]. Hence [¢] = O, the minimum element of J@ Conversely if
[¢#] = 1, then for any sentence ¥, [y] <[¢] and so l;: y—¢. There-
fore by choosing y so that IE: 1, we have I?: ¢ by MP. Similarly
if [¢] = 0, then for any sentence ¥, [4] <[¥], and so. 'E: o— V.

Then |§ ¢— p and |;; ¢— ~p and so by AlO., we have ~b.

w
(7]

Finally from All., and Note 2.5 (ii) we have that for any

sentence ¢, ‘;: ¢ v~ and l?c ~($ A ~9), hence [¢] v [~¢] = 1 and
[64] A [~¢ ]= 0. This shows that <.ﬂ,i > is a complemented distributive
lattice and the complement of [¢] is [~¢]. Therefore <ﬁ,i > is a

Boolean Algebra.

2,11 Lemma. Let h be a homomorphism of the Lindenbaum Algebra jff?
2
into the Boolean-AlgebrafB . If £:{p, q, r, 5, Pys Q5 Ty» Sy,
2
stk —*ﬁ is defined by f(a) = h([a]), where-a is_a sentence

variable af SC, then f is:a realization of SC such that for each ¢




£(9) = h(le]).

Proof. The proof is by induction on length of ¢ (number of
connectives in ¢). By hypothesis it is true for sentence variables

standing by themselves.

Now suppose it is true for sentences of length less than k.
Let ¢ be a sentence of length k. Then ¢ is of the forms YA 8, or
Yv B, or y)—06 or ~y for some sentences Y and 6. Then length of ¥

and 6 less than k. Then since h is a homomorphism,

fFWAB) = £W) A£(8) = h([v]) ah([6]) = h([Y] A[6]) =
h([¥A6]), and £(~8) = £(8)* = h([6])* = h([6]*) = h([~6]), and simi-
larly we also have f(wvO) = h([yve]) and £(y—6) = h([y—6]),

and hence the result is true for all sentences.
The realization f is called the realization induced by h.
2.12 Theorem. Each tautology of SC is a theorem of SC.

Proof. Suppose }tE ¢. Then in the Lindenbaum Algebra
<;Zﬁ§_>, [¢] # 1 and so [~4] # 0. Then by Theorem A7. in Appendix
A, [~¢] is contained in an ultrafilter U in J@ and hence by Propo-
sition A10. in Appendix A, Jé/U = 532. Let f be the realization of
SC induced by the canonical homomorphism h Ofgﬁ@ into j@XU. Since
[~¢] €U, we have |[[~¢]| = h([~0]) =1 in:ﬂ?/u by Lemma A9. in Appen-
dix A, and so £(~9) = 1. It follows that f(¢) = 0 and so ¢ is not

a tautology of SC.

18



2.13 Theorem. SC 1s complete.

Proof. Let ¢ be any sentence of SC. Suppose that ¢ is not a
theorem of SC. Then by Theorem 2.12, ¢ is not a tautology and so

there exists a realization f such that £(¢) # 1, that is f(¢) = 0.

Let a;5 ..... s Ey be all sentence variables in ¢ and ty ™
iy wwes &
£(&.), L =1, .iu, 0, L6t ¢, &8 7 4| where ¥, = pAa~p if
i 1 Wys eees ¢n 1

t; =0and y, = pv~p if t; =1. Then for any realization £~ of SC

f'(¢1) = 0 and so
f'(¢1—*P) = f’(¢1)*vf(P) =1vfi(p) = 1.

Hence ¢1—**p is a tautology and then again by Theorem 2.12, we have
}EE ¢;—p. Thus if we add ¢ as an axiom of SC, then IEE p and
this means every sentence in SC is a theorem of SC. Hence SC is com-

plete.

2.14 Theorem. If X is a consistent set of sentences of SC which
contains the following ten sentences as elements : p — ~~p,
q—(—q), ~p—(—q, p—~>(~q—>~(p—q)), p—~PVq q>PVQ,
~p—>(~q—>~(pva)), P (Q@—pAQ, ~p—~(pArq), ~q—~(pra),
then SC is the only consistent and complete theory which includes

the set X.

Proof. Let X, be the set of ten sentences : p—>~~p,

q—(p—q), ~p—>(p—q), p—>(~q—~(p—q)), P—PVQq q—PpVQq,

~p—(~q—~(pvq)), p—(@—prq), ~p—~(pArq), ~q—~(pArq).

19
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Will show that SC is the only consistent and complete theory which

includes XU,

Since every sentence in XO is a tautology, SC is a complete

and consistent theory which includes Xoﬁ

Next, let Z = {p—~~p} and Y = {¢eS|peCn(X,) or ~¢ECn(X0)}.
We claim that Z €Y and Y is closed under every connective of SC.
Since p —>~~p € X, QCn(XO), p—>~~p€Y and so ZES Y. To show that
Y is closed under ~, let ¢€Y. Then d)ch(Xo) or ~¢E:Cn(X0). If
¢ e Cn(XO), then ~~¢ ECn(XO} since ¢—>~~0p € Cn(XO) . Hence ~~¢€ Cn(xo_)
or ~¢€.Cn(X0) and so ~$eY. If ~¢E€ Cn[xo), then ~p €Y. Next to show
that Y is closed under —, v, and A, let ¢, YeY. Here three cases

are to be distinguished :

Case 1. ¢eCn(X0), wan(XO), Since ¢—> WV —9), ¢ —>dvy
and ¢ —= (Y = ¢ AY) are in Cn(XO), we have ¥ —¢, ¢ vy and Ay are

also in Cn(XO). Hence V—¢, ¢ Ay and ¢ v are in Y.

Case 2. ¢an(XO}, ~Lp€Cn(K0)n Since ¢ —=>p vy, ¢— (~p—~
(¢_"P)). ~‘p_'*('~p_’¢); ~‘J)_‘*~(¢AW are in cntxo)) we have ¢ Vw:
~(0—VY), Y —0¢ and ~(p AY) are also in Cn(XO}. Hence Yy —¢, ¢ —V,

¢vy and pAyY are in Y.

Case 3. ~¢eCn[XO), ~lpeCn{X0). Since ~0—>~(dAY), ~0—
(~p—~(dvy)), and ~¢ — (¢ =) are in Cn(XO), we have ~(¢A V),
~(dvy), ¢ =Y are also in Cn(XO). Hence ¢ Ay, ¢ vy and ¢— | are

an Y,



Therefore by Theorem 1.11, SbZ(S)SY.

Next show that X, is complete with respect to sz(S). Let

0
¢ €Sb,(S). suppose ¢¢Cn(x0). Since Sb,(S)SY, ~¢eCn(Xy) and since
further - for any sentence U, ~p— (¢—1) ECn[XO)SCn(XOU {6} ),
and so wECn(XOU{tP}). Then XOU{¢} is inconsistent. Therefore X,

is complete with respect to sz(S].

Now will show that XOLJsz(S) is inconsistent. Let Y be any
sentence of SC. Since ~(p—~~p) — ((p—~~p)—V) ECn(XOU SbZ(S))
and ~(p—~~p), P—>~~p are in sz(S) QCn(XOUsz(S)), leCn(XOU sz

(S)). Hence Cn(xou sz(S)) = S and so XOU sz(S) is inconsistent.

Then now we apply Theorem 1.12 and in this way conclude

that SC is the only consistent and complete theory which includes XO'

If X is any consistent set of sentences such that XOEX, then by
Lindenbaum’sTheorem, X can be extended to a consistent and complete
theory Y. Since XOEY, Y can not be distinct from SC. Consequently

SC is the only consistent and complete theory which includes X.

21



	Chapter II Example 1 the Sentential Calculus

