การศึกษาทวีปโดยโลกในยุคคนไทย

และในผู้เป็นไทยเมืองร่อนบางขัน

นางสมมา ศิริภัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาตรีซ้ายทางสัตวบาลมหาบัณฑิต

แผนกวิชาเวชศาสตร์

นักศึกษาประจำ นพ. จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2564

006678
STUDIES ON THE SERUM HAPTOGLOBIN LEVEL IN THAI BLOOD DONORS AND IN PATIENTS WITH SOME TROPICAL DISEASES

MRS. UMA KITTIYANEE

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Pharmacy
Department of Pharmacology
Graduate School
Chulalongkorn University

1976
Accepted by the Graduate School, Chulalongkorn University in partial fulfilment of the requirements for the Degree of Master of Science in Pharmacy.

Yinid Proekphumol
Dean of the Graduate School

Thesis Committee:

A. Pengavitng.
Chairman

Plengvidhya. P.

Thesis Supervisor: Dr. Suvit Areekul
การศึกษาการระดับแอนโตโลยีในเลือดคนไทยปกติและผู้ป่วยโรคเสื้อถึงถุงผังชาย

ชื่อ
นางฐานา กิตยานนิ

ปีการศึกษา
2554

บทคัดย่อ
แอนโตโลยีเป็นปัจจัยหนึ่งที่มีผลต่อ ผลแห้ง-2-แอนตาโลยี ซึ่งสามารถรับฟื้น
ยามไอโอดิน ทั้งในร่างกายและในตลอดด้วย แอนโตโลยี-1-สามไอโอดินคอมเพล็กซ์
สารนี้จะทำให้การผลิตมีการเพิ่มขึ้น ขณะนี้ในรายที่มีการแตกทั่วถึงเม็ด
เม็ดแอนโตโลยี จะมีแอนโตโลยีในเลือดภายนอก ระดับแอนโตโลยีในเลือดจะสูงขึ้นในโรคที่
มีการยืดเยื้อมากกว่าการแตกทั่วถึงของเนื้อเยื่อ ในบางเจริญกิจที่ระดับแอนโตโลยีจะสูงกว่า
ปกตินะไอโอดินเป็นการแตกทั่วถึงของเนื้อเลือดภายนอกในตลอดเลือด ภาวะไอโอดินแบบ
เพอร์เนียส (Fernicious anaemia) และภาวะเซลล์ของตับอุดกทั่วถึง

ชนิดของแอนโตโลยีในเชื้อเม็ดความสำคัญทางการแพทย์นี้จะอยู่มาก
บทคัดย่อดังงน แอนโตโลยี-1- ซึ่งเกิดจากภาวะมีแอนโตโลยีในเลือดภายนอกหรือไม่อาจ
อาจพบได้ในผู้ป่วยที่มีการแตกทั่วถึงของเนื้อเลือดภายนอก การศึกษาได้มีความจำเป็นที่จะ
ศึกษาความสัมพันธ์และระดับแอนโตโลยีในโรคที่มีการแตกทั่วถึง ผู้ป่วยโรคไซซ์เทนนิส, พยาธิ
ปากขอ, สิ่งอินเดีย, พยาธิใบไม้ในตับ, ตับโต, เนื้อทองในตับ, ตับแข็ง, ตับอักเสบ, มะเร็ง
ของตับ, และโรคชนิดเนื้องอกจากอาการอุดกับของตับภัยการ เตรียมเย็บเก็บค่าในatak>หก

การตรวจวิทยาศาสตร์และระดับแอนโตโลยีในเชื้อเม็ดใช้วิธีเชื้อเล็กทีโอซิช
บัณฑิตเชื้อเจล (Starch-gel electrophoresis) วิธีเซิ์เกิดจากความสมบูรณ์ในการ
เพอร์ออกไซติฟิว (Peroxidative activity) ของสารรวมระหว่างแอนโตโลยีเกี่ยวกับ
ยามไอโอดินตามล่าด้วย

ในการศึกษาได้ทำการตรวจวิทยาศาสตร์และระดับแอนโตโลยีในเชื้อเม็ด

ช่องพี่ริศำนิลกิศะวิทยา 233 คน พบว่าคำเสี่ยง + คำเปลี่ยนมาตรฐานของระดับแอลกิโอลใน 88.24 ± 27.41 มิลลิกรัมเปอร์เซ็นต์ (ค่าระหว่าง 4.00 - 164.0) ไม่มีความแตกต่างกัน อย่างมีนัยสำคัญทางสถิติ ระหว่างคำเสี่ยงของชายและหญิง ผลที่ได้มีเป็นไปในทิศทางเดียวกัน ที่สำคัญคือผู้อื่นรายงานไม่แพร่

คำเสี่ยง + คำเปลี่ยนมาตรฐานของระดับแอลกิโอลในเชิงรุกของหญิงมี
กรรม 220 คน (44.60 ± 27.41 มิลลิกรัมเปอร์เซ็นต์) นั้นตัวกว่าคำเสี่ยงในหญิงมี
ทั้งนี้อาจเป็นเพราะวัยเหล่านี้มีระดับแอลกิโอลในร่างกาย และมีการเจรจากองเสื่อมเกิดขึ้นจาก
ผลของการดื่มเครื่องดื่ม

คำเสี่ยง + คำเปลี่ยนมาตรฐานของระดับแอลกิโอลในเชิงรุกของผู้ชาย
โรคพยายามบอกขอคง คน (44.60 ± 27.41 มิลลิกรัมเปอร์เซ็นต์) กับกว่าคำเสี่ยงเปอร์เซ็นต์ (P < 0.001) ซึ่ง
อาจเป็นผลมาจากคำเสี่ยงเสื่อมและพลังมากในทางเดินอาหารเครื่องดื่ม

คำเสี่ยง + คำเปลี่ยนมาตรฐานของระดับแอลกิโอลในเชิงรุกของผู้ชาย
โรคใช้เข้าปั้น 59 คน (44.60 ± 27.41 มิลลิกรัมเปอร์เซ็นต์) ต่ำกว่าคำเสี่ยงเปอร์เซ็นต์ (P < 0.001)
เนื่องจากมีการเด็กทารกไม่สม่ำเสมอในตลอดเด็กทารกเพื่อข้าวไข่ข้าว ปรับวิธี-
โคอิน-ไอ ในผู้ใหญ่ 66 คน จาก 166 คน ที่เป็นโรคใช้เข้าปั้น ซึ่งแสดงให้เห็นว่าระดับแอลกิ-
โคอินในเชิงรุกต่อเนื่องจากมีการเด็กทารกไม่สม่ำเสมอแต่มากเกินไปในตลอดเด็ก

ได้ทำการวิเคราะห์ระดับแอลกิโอลในผู้ใหญ่โรคพยายามปั้นไม่ได้ 4 คน โรคสิบ
ในสัตว์ 33 คน โรคดับโอด 11 คน อาการตีนบนเนื้อจากการลูกสัตว์ของท่อนม้า 8 คน โรคสับ
แข็ง 12 คน โรคดับถูกเป็น 6 คน โรคมะเร็งของสัตว์ 6 คน และโรคเนื้อยักษ์ในสัตว์ 6 คน
คำเสี่ยงของระดับแอลกิโอลในผู้ใหญ่เหล่านี้ทำให้คำเสี่ยงในคนเพศ ทั้งนี้อาจเกิดจาก
มีการเด็กทารกไม่สม่ำเสมอ ซึ่งทำให้ดูจากภาวะระดับปั้นต่าง ๆ ระบบที่แอลกิโอลในคด้วย
ผู้ใหญ่ทั้งหมดมีการกระจายของชนิดของแอลกิโอลในเชิงที่นอนกับการกระจายที่พบใน
คนเพศ

Name: Mrs. Uma Kittiyane

Academic Year: 1975

ABSTRACT

Haptoglobin is the alpha-2-globulin which specifically combines with haemoglobin both in vivo and in vitro. The haptoglobin-haemoglobin complex is cleared from the plasma much more rapidly than free haemoglobin, so that marked hypohaptoglobinaemia is a concomitant of haemolysis. It has been demonstrated that the haptoglobin levels were elevated in a wide variety of inflammatory diseases of tissue destruction. On the other hand, a decreased serum haptoglobin level has been found in intravascular haemolysis, pernicious anaemia and liver cell failure.

The phenotypes of serum haptoglobin is also a genetical importance. Hp O which designated ahaptoglobinaemia or hypo-haptoglobinaemia has been demonstrated in patients with intravascular haemolysis. The object of the present work is to determine the serum haptoglobin phenotypes and levels in pregnant women, patients with malaria, hookworm, amoebic liver abscess, opisthorchiasis, hepatomegaly, hepatoma, cirrhosis, infectious hepatitis, carcinoma of the liver and obstructive jaundice.
The phenotypes and the level of serum haptoglobin were determined by a starch gel electrophoresis and a colorimetric method based on the activity of the haptoglobin-haemoglobin complex respectively.

Serum haptoglobin phenotypes and levels were determined in 213 Thai blood donors. A mean value ± S.D. of serum haptoglobin levels were found to be 88.29 ± 27.17 mg% (range 40.0-168.0 mg%). There was no statistically significant difference between a mean value of male subjects and female subjects. These results were in accordance with data reported by other authors.

Serum haptoglobin levels in 220 pregnant women (54.50 ± 31.52 mg%) were found to be lower than those of the non-pregnant women (P < 0.01). This could be possibly due to the increase plasma estrogen level and haemodilution effect in pregnant women.

Serum haptoglobin levels in patients with hookworm infection (74.90 ± 39.53 mg%) were also lower than those of the normal (P < 0.01) which may be due to the increased blood and plasma loss through the gastro-intestinal tract.
The haptoglobin levels in the serum of patients with malaria infection (29.60 ± 31.59 mg%) were also lower than those of the normal subjects (P < 0.01) which was due to the increased intravascular haemolysis caused by malarial parasites. Hp O was observed in 53 out of 166 patients with malaria infection which indicated hypohaptoglobinaemia due to excessive intravascular haemolysis.

Serum haptoglobin levels were determined in 5 patients with opisthorchiasis, 13 patients with amoebic liver abscess, 11 patients with hepatomegaly, 8 patients with obstructive jaundice, 12 patients with cirrhosis, 71 patients with infectious hepatitis, 5 patients with carcinoma of the liver and 6 patients with hepatoma. The mean value of serum haptoglobin levels in these patients were lower than those of the normal subjects. These could possibly due to the damage of hepatic cells which were responsible for synthesis of serum proteins including haptoglobin. All these patients had the frequency distribution of serum haptoglobin phenotypes similar to that of the normal subjects.
ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and thank to Assistant Prof. Dr. Suvit Areekul, Head Department of Tropical Radioisotopes, Faculty of Tropical Medicine, Mahidol University, for his supervision, keen interest, guidance and encouragement during the course of this study.

I am indebted to Professor Chamlong Harinasuta, Dean of the Faculty of Tropical Medicine, Mahidol University, for his providing me the opportunity and means to carry out this work.

I also want to remember with my sincere thank to the staffs of the Department of Tropical Radioisotopes for their cooperation, particularly to Mrs. Kanokwan Ukoskit for her technical assistance.

My appreciation is expressed to Assistant Prof. Dr. Pricha Charoenlarp, Department of Clinical Tropical Medicine for kindly giving me the access to the electrophoresis apparatus, and also to every member of this department, especially to Mr. Tian Pholpodhhi, who without his valuable assistance this thesis would not have been possible.

I also would like to acknowledge Mrs. Duangmarn Tangprasert for her helpful assistance and advice concerning the technique on the beginning of this study.
My gratitude is extended to Professor Captain Pishidhi Sudhi-Aromma R.T.N., Dean of the Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his support.

My appreciation is due to the members of the Department of Obstetric and Gynaecology, Siriraj Hospital, Bangkok; Dr. Vichien Panitchob, Hospital of Vachiralongkorn Dam, Tamaung, Kanchanaburi; and Dr. Poonsakdi Kittiyanee, Thai Police Medical Hospital, Bangkok.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>Hp</td>
<td>Haptoglobin</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>S.D.</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>

LIST OF ABBREVIATIONS

จุฬาลงกรณ์มหาวิทยาลัย
CHULALONGKORN UNIVERSITY
CONTENTS

THAI ABSTRACT .. iv
ENGLISH ABSTRACT .. vi
ACKNOWLEDGEMENTS ... ix
LIST OF ABBREVIATIONS xi
LIST OF TABLES .. xiv
LIST OF FIGURES ... xvi

CHAPTER

1. INTRODUCTION .. 1
 The sub-types of haptoglobin 8
 Estimation of serum haptoglobin 13
 The object of the present study 16

2. MATERIALS AND METHODS 17
 Subjects .. 17
 Methods .. 18
 Determination of haptoglobin phenotypes 18
 Determination of serum haptoglobin level 28

3. RESULTS .. 34
 Normal subjects 34
 Pregnant women 39
 Patients with hookworm infection 42
 Patients with malaria infection 44
 Patients with opisthorchiasis 45
 Patients with amoebic liver abscess 47
 Patients with other liver diseases 48
CONTENTS (Cont.)

4. DISCUSSION ... 52
5. CONCLUSION ... 62
REFERENCES ... 64
VITA ... 76
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The distribution of haptoglobin types in the normal subjects</td>
<td>34</td>
</tr>
<tr>
<td>2.</td>
<td>Serum haptoglobin levels (mg%) in normal subjects</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>Serum haptoglobin levels in normal subjects</td>
<td>36</td>
</tr>
<tr>
<td>4.</td>
<td>The distribution of haptoglobin types in the pregnant and non-pregnant women</td>
<td>39</td>
</tr>
<tr>
<td>5.</td>
<td>Serum haptoglobin levels (mg%) in the pregnant and non-pregnant women</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>The distribution of haptoglobin types in patients with hookworm infection</td>
<td>42</td>
</tr>
<tr>
<td>7.</td>
<td>Serum haptoglobin levels (mg%) in patients with hookworm infection</td>
<td>43</td>
</tr>
<tr>
<td>8.</td>
<td>The distribution of haptoglobin types in patients with malaria infection</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>Serum haptoglobin levels (mg%) in patients with malaria infection</td>
<td>45</td>
</tr>
<tr>
<td>10.</td>
<td>The distribution of haptoglobin types in patients with liver diseases</td>
<td>46</td>
</tr>
<tr>
<td>11.</td>
<td>Serum haptoglobin levels (mg%) in patients with opisthorchiasis</td>
<td>47</td>
</tr>
<tr>
<td>12.</td>
<td>Serum haptoglobin levels (mg%) in patients with amoebic liver abscess</td>
<td>48</td>
</tr>
<tr>
<td>13.</td>
<td>Serum haptoglobin levels (mg%) in patients with amoebic liver abscess</td>
<td>49</td>
</tr>
<tr>
<td>14.</td>
<td>Serum haptoglobin levels (mg%) in patients with obstructive jaundice</td>
<td>49</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>15. Serum haptoglobin levels (mg%) in patients with cirrhosis</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>16. Serum haptoglobin levels (mg%) in patients with infectious hepatitis</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>17. Serum haptoglobin levels (mg%) in patients with carcinoma of the liver</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>18. Serum haptoglobin levels (mg%) in patients with hepatoma</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>19. The distribution of haptoglobin types in some groups of Asian population</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electrophoretic pattern of haemoglobin-haptoglobin complex</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>General layout of the electrophoresis apparatus</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>Gel tray and spacer</td>
<td>24</td>
</tr>
<tr>
<td>4.</td>
<td>Levelling table and gel slicer</td>
<td>27</td>
</tr>
<tr>
<td>5.</td>
<td>Calibration graph for estimation of haptoglobin concentration</td>
<td>32</td>
</tr>
<tr>
<td>6.</td>
<td>The frequency distribution of serum haptoglobin levels in 159 normal males</td>
<td>37</td>
</tr>
<tr>
<td>7.</td>
<td>The frequency distribution of serum haptoglobin levels in 79 normal females</td>
<td>38</td>
</tr>
<tr>
<td>8.</td>
<td>The frequency distribution of serum haptoglobin levels in 220 pregnant women</td>
<td>41</td>
</tr>
</tbody>
</table>