การจำแนกลักษณะกลุ่มสารอินทรีย์ละลายน้ำในน้ำเสียการนิคมอุตสาหกรรมโดยการวิเคราะห์ ด้วยสเปคโตรฟลูโอโรมิสทรีและไพโรไลซิสจีซีเอ็มเอส

นายจรงค์พันธ์ มุสิกะวงศ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ISBN 974-14-2706-9 ลิขสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

491977

Thesis Title	CHARACTERIZATION OF FRACTIONATED DISSOLVED
	ORGANIC MATTER IN INDUSTRIAL ESTATE
	WASTEWATER USING SPECTROFLUOROMETRY AND
	PYROLYSIS GC/MS ANALYSIS
By	Charongpun Musikavong
Field of Study	Environmental Management
Thesis Advisor	Assistant Professor Suraphong Wattanachira, D.Eng.
Thesis Co-Advisor	Professor Hiroaki Furumai, D.Eng.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

LET. Dean of the Graduate School (Assistant Professor M.R.Kalaya Tingsabadh, Ph.D.)

THESIS COMMITTEE

Chairman (Manaskorn Rachakornkij, Ph.D.) (Assistant Professor Suraphong Wattanachira, D.Eng.) (Professor Hiroaki Furumai, D.Eng.) Chat Clumdain Member (Associate Professor Chart Chiemchaisri, D.Eng.) Lleury mrs. Member (Associate Professor Prasert Pavasant, Ph.D.) 10 puangrat Member (Assistant Professor Puangrat Kajitvichyanukul, Ph.D.) (Assistant Professor Chavalit Ratanatamskul, Ph.D.)

จรงค์พันธ์ มุสิกะวงศ์:การจำแนกลักษณะกลุ่มสารอินทรีย์ละลายน้ำในน้ำเสียการนิคม อุตสาหกรรมโดยการวิเคราะห์ด้วยสเปคโตรฟลูโอโรมิสทรีและไพโรไลซิสจีซีเอ็มเอส (CHARACTERIZATION OF FRACTIONATED DISSOLVED ORGANIC MATTER IN INDUSTRIAL ESTATE WASTEWATER USING SPECTROFLUOROMETRY AND PYROLYSIS GC/MS ANALYSIS) อ. ที่ปรึกษา: ผศ.คร.สุรพงษ์ วัฒนะจีระ อ.ที่ปรึกษา ร่วม: Prof.Hiroaki Furumai ISBN 974-14-2706-9.

งานวิจัยนี้มีวัตถุประสงก์เพื่อศึกษาหาปริมาณสารอินทรีย์การ์บอนละลายน้ำ โอกาสการก่อตัวของสารไตร-ฮาโลมีเทน(THMFP) และโอกาสการก่อตัวของสารไตรฮาโลมีเทนจำเพาะ (Specific THMFP) ของกลุ่มสารอินทรีย์ ละลายน้ำในน้ำเสียการนิกมอุตสาหกรรมและน้ำที่ผ่านการบำบัคด้วยระบบบำบัคน้ำเสียรวมของการนิกมอุตสาหกรรม ภากเหนือ จังหวัคลำพูน ประเทศไทย ซึ่งประกอบด้วย บ่อเติมอากาศ บ่อแฟกกัลเททีฟ บ่อออกซิเคชั่น และบ่อคีเท็นชั่น ไพโรไลซิสจีซีเอ็มเอสและสเปกโตรฟลูโอโรมิสทรีได้ถูกนำมาใช้ในการวิเคราะห์กลุ่มทางเกมีและกลุ่มสารอินทรีย์ที่ สามารถวิเคราะห์ได้โดยสเปกโตรฟลูโอโรมิสทรีตามลำคับ น้ำตัวอย่างถูกเก็บจากน้ำเสียการนิกมอุตสาหกรรมและน้ำที่ ผ่านการบำบัดแล้วจากแต่ละบ่อระหว่างเดือนมิถุนายน พ.ศ.2547 ถึง เดือนกรกฎากม พ.ศ. 2548 กระบวนการเรชิ่น-แฟรกชั่นเนชั่นด้วยเรชิ่น 3 ชนิดคือ DAX-8, AG-MP-50 และ WA-10 ถูกนำมาใช้ในการแบ่งกลุ่ม สารอินทรีย์ละลายน้ำ (DOM) ออกเป็น 6 กลุ่มได้แก่ ไฮโครโฟบิกที่เป็นกลาง (HPON) ไฮโครโฟบิกที่เป็นด่าง (HPOB) ไฮโครโฟบิกที่เป็น กรด (HPOA) ไฮโครฟิลิกที่เป็นด่าง (HPIB) ไฮโครฟิลิกที่เป็นกรด (HPIA) และไฮโครฟิลิกที่เป็นกลาง(HPIN)

จากการทดลองพบว่า HPOA และ HPIN เป็นสารอินทรีย์ที่พบมากที่สุด ในน้ำเสียและน้ำที่ผ่านการบำบัดโดย บ่อเติมอากาศ (ผลรวมของ HPOA และ HPIN มีก่ามากกว่า 50% ของ DOM ทั้งหมด) HPOA และ HPIA เป็น สารอินทรีย์ที่พบมากที่สุดใน น้ำที่ผ่านการบำบัดโดยบ่อแฟกกัลเททีฟ น้ำที่ผ่านการบำบัดโดยบ่อออกซิเคชั่น และน้ำที่ ผ่านการบำบัดโดยบ่อดีเท็นชั่น (ผลรวมของ HPOA และ HPIA มีก่ามากกว่า 50% ของ DOM ทั้งหมด) ก่า THMFP ของ HPOA และ HPIA มีก่าก่อนข้างสูงเมื่อเปรียบเทียบกับก่า THMFP ของกลุ่มสารอินทรีย์ละลายน้ำกลุ่มอื่นๆ ส่วน ค่า Specific THMFP ของ HPOA และ HPIA นั้นก็มีก่าก่อนข้างสูง สารอินทรีย์กล่มอลิฟาติกไฮโครการ์บอน (ประมาณ 70%) พบมากในน้ำเสียและน้ำที่ผ่านการบำบัดแล้วจากบ่อต่างๆ (25-58%) สารอินทรีย์กลุ่มอโรมาติก-ไฮโครการ์บอน (ประมาณ 20-55%) และกลุ่มเอสเทอร์ (ประมาณ 5-21%) พบมากใน HPON สารอินทรีย์กลุ่มการ์-บอกซิลิก (ประมาณ 27-75%) พบมากใน HPOB สารอินทรีย์กลุ่มอลิฟาติกไฮโครคาร์บอน(ประมาณ 17-42%) และ อโรมาติกไฮโครการ์บอน (ประมาณ 26-41%) พบมากใน HPOA สารอินทรีย์กลุ่มอลิฟาติกไฮโครการ์บอน (ประมาณ 25-71%) พบมากใน HPIB, HPIA และ HPIN เมื่อพิจารณาโอกาสการก่อตัวของสารไตรฮาโลมีเทน สารอินทรีย์กลุ่ม ไฮโครโฟบิกซึ่งประกอบด้วยสารอินทรีย์กลุ่มอโรมาติกไฮโครการ์บอน การ์บอกซิลิก ฟีนอล เอสเทอร์และสารอินทรีย์ กลุ่มอลิฟาติกไฮโครการ์บอน (C, < อลิฟาติกไฮโครการ์บอนแฟรกเม้น < C₁₁) เป็นสารอินทรีย์ที่ก่อให้เกิดสารไตร-ฮาโลมีเทนได้ก่อนข้างสูง ส่วนสารอินทรีย์กลุ่มอลิฟาติกไฮโครการ์บอน (C₁₈≤ อลิฟาติกไฮโครการ์บอนแฟรกเม้น SC24) และอลิฟาติกไนโตรเจนเป็นสารอินทรีย์ที่ก่อให้เกิดสารไตรฮาโลมีเทนได้ก่อนข้างต่ำ จากผลการวิเคราะห์ด้วย สเปกโตรฟลูโอโรมิสทรีพบว่าสารอินทรีย์กลุ่ม tyrosine-like และ tryptophan-like พบมากใน HPON ส่วน สารอินทรีย์กลุ่ม tyrosine-like และ humic and fulvic acids-like พบมากใน HPOA HPIA HPIB และ HPIN บ่อเติม อากาศ บ่อแฟกกัลเททีฟ สามารถลด HPON HPIB และ HPIN ได้ดี HPOA และ HPIA สามารถลดได้ดีโดยบ่อเติม อากาศ ส่วนบ่ออื่นๆ นั้นมีประสิทธิภาพในการลด HPOA และ HPIA ก่อนข้างต่ำ ระบบบำบัดน้ำเสียรวมของการ นิกมอุตสาหกรรมภาคเหนือซึ่งประกอบด้วย บ่อเติมอากาศ บ่อแฟคคัลเททีฟ และบ่อออกซิเคชั่น สามารถลุค HPON HPIN HPIB HPIA และ HPOA ได้ 73% 46% 60% 18% และ 11% ตามลำดับ

สาขาวิชาการจัดการสิ่งแวคล้อม ปีการศึกษา 2549

ลายมือชื่อนิสิต จอการาง มูลิกะรวด

IV

4689660620: MAJOR ENVIRONMENTAL MANAGEMENT KEY WORD: FRACTIONATED DISSOLVED ORGANIC MATTER/FLUORESCENT EXCITATION-EMISSION MATRIX/PYROLYSIS GC/MS/STABILIZATION PONDS/INDUSTRIAL ESTATE WASTEWATER CHARONGPUN MUSIKAVONG: CHARACTERIZATION OF FRACTIONATED DISSOLVED ORGANIC MATTER IN INDUSTRIAL ESTATE WASTEWATER USING SPECTROFLUOROMETRY AND PYROLYSIS GC/MS ANALYSIS: THESIS ADVISOR: ASST.PROF. SURAPHONG WATTANACHIRA, D.Eng, THESIS CO-ADVOSOR: PROF.HIROAKI FURUMAI, D.Eng. 272 pp. ISBN 974-14-2706-9.

The aims of this research were to investigate the dissolved organic carbon (DOC) mass distribution, trihalomethane formation potential (THMFP) and specific THMFP of dissolved organic matter (DOM) fractions in industrial estate wastewater and effluent water from the aeration, facultative, oxidation and detention ponds of the central wastewater treatment plant of the Northern-Region Industrial Estate, Lamphun province, Thailand. Pyrolysis gas chromatography mass spectrometer and three-dimensional fluorescent spectroscopy (fluorescent excitation-emission matrix, FEEM) analysis were utilized on the DOM fractions of all water samples to identify the fluorescent organic matter and chemical classes, respectively. Industrial estate wastewater and treated effluent from each pond were collected from June 2004 to July 2005. The resin fractionation technique, used with three different types of resins (i.e. DAX-8, AG-MP-50 and WA-10), was employed to characterize the DOC in all water samples into six fractions, namely hydrophobic neutral (HPON), hydrophobic base (HPOB), hydrophobic acid (HPOA), hydrophilic base (HPIB), hydrophilic acid (HPIA), and hydrophilic neutral (HPIN).

The results showed that HPOA and HPIN were the major DOM fractions in the industrial estate wastewater and aeration pond effluent; summations of HPOA and HPIN were more than 50%. However, HPOA and HPIA were the dominant DOM fractions in the effluent from the facultative, oxidation, and detention ponds; summations of HPOA and HPIA were more than 50%. THMFP_{HPOA} and THMFP_{HPIA} were found in the largest quantities when compared with the THMFP of others species. In addition, the specific THMFPs of HPOA and HPIA were considerably high. The aliphatic hydrocarbon class (approx. 70%) was dominant in the industrial estate wastewater and in the treated effluent from each pond (25-58%). Aromatic hydrocarbon (20-55%) and ester (5-21%) were the major chemical classes of HPON: whereas carboxylic acid (27-75%) was the major chemical class of HPOB. Aliphatic (17-42%) and aromatic hydrocarbons (26-41%) were classified as the major chemical classes of HPOA. In the case of the hydrophilic organic (HPI) fraction, aliphatic hydrocarbon (45-71%) was identified as the major chemical class in HPIB, HPIA, and HPIN. Trihalomethanes could be easily associated with hydrophobic organic (HPO) fractions that are mainly composed of the aromatic hydrocarbon, carboxylic acids, phenol and ester classes, along with the aliphatic hydrocarbon class ($C_5 \leq$ aliphatic hydrocarbon fragments \leq C_{11}). The aliphatic hydrocarbon ($C_{18} \leq$ aliphatic hydrocarbon fragments $\leq C_{24}$) and organic nitrogen classes (mainly composed of aliphatic organic nitrogen fragments), when combined with chlorine could be inactive and fail to form THMs. With regard to the FEEM results, tyrosine-like and tryptophan-like substances were classified as major fluorescent organic matter in HPON. For HPOA, tyrosine-like and humic and fulvic acids-like substances were the major fluorescent organic matter. In the HPI fractions, tyrosine-like and humic and fulvic acids-like substances were the dominant fluorescent organic matter of HPIB, HPIA, and HPIN. With regard to DOM reductions, the aeration and facultative ponds were the main processes that reduced HPON, HPIN, and HPIB. Only the aeration ponds reduced HPOA and HPIA, however, only moderately. In total, the aeration + facultative + oxidation ponds] reduced HPON, HPIN, HPIB, HPOA, and HPIA by 73%, 46%, 60%, 18%, and 11%, respectively.

Field of study Environmental Management Academic year 2006

Student's signature in how white
Advisor's signature
Co-advisor's signature古术配明

ACKNOWLEDGEMENTS

I am deeply indebted to my thesis advisor, Assistant Professor Dr. Suraphong Wattanachira at the Department of Environmental Engineering of Chiang Mai University for his valuable guidance, inspiration, utmost help and encouragement throughout this research. Special respect and thanks are also extended to Professor Dr. Hiroaki Furumai at the Department of Urban Engineering of the University of Tokyo for his valuable suggestions and guidance as a co-advisor. The author wishes to express his gratitude to Dr. Manaskorn Rachakornkij, Postgraduate Program Director of the International Postgraduate Programs in Environmental Management, Chulalongkorn University; Associate Professor Dr. Prasert Pavasant of the Department of Chemical Engineering, Chulalongkorn University; Associate Professor Dr. Chart Chiemchaisri of the Department of Environmental Engineering, Kasetsart University; Assistant Professor Dr. Puangrat Kajitvichyanukul of Department of Environmental Engineering, King Mongkut's University of Technology Thonburi; and Assistant Professor Dr. Chavalit Ratanatamskul of Department of Environmental Engineering, Chulalongkorn University for their valuable advice.

I would like to sincerely thank the National Research Center for Environmental and Hazardous Waste Management (NRC-EHWM), Chulalongkorn University for the financial support for this research work and the Northern-Region Industrial Estate of Lumphoon, Thailand for the permission to collect water samples.

Special thanks are also made to all friends at Chaing Mai University (especially Orapin Thapsingkeaw, Tansiporn Janhom, Thanun Poonsawat and Akkarawin Phumpaisanchai) for all their help during the experimentation and dissertation writing processes. I would like to express my sincere thanks to Ms. Akiko Uyeda and Mr. Warren Bogg at the NRC-EHWM, Chulalongkorn University for their kindness and valuable comments with regard to English correction.

Finally, I would like to express my deep sense of appreciation to my family and Jongkol Iammi for their strong support, encouragement and inspiration.

Page
Abstract (Thai)iv
Abstract (English)
Acknowledgementsvi
Contentsvii
List of Tablesxii
List of Figuresxv
Abbreviation and Symbolsxx
CHAPTER I Introduction1
1.1 Motivations1
1.2 Objectives
1.3 Scope of Study4
CHAPTER II Background and Literature Review
2.1 Dissolved Organic Matter
2.2.1 Defining Dissolved Organic Matter
2.2.2 Disinfection by-Products
2.2 Quantification and Characterization of DOM7
2.3 Characterization of DOM by Nonspecific Parameters
2.4 Resin Fractionations
2.5 Three-Dimensional Fluorescence Spectroscopy15
2.5.1 FEEM of DOM in Water Sources
2.5.2 FEEM of DOM fractions
2.6 Pyrolysis GC/MS Analysis21
2.7 Aerated Lagoons and Stabilization Ponds27
2.7.1 Aerated Lagoons
2.7.2 Stabilization Ponds
CHAPTER III Methodology41
3.1 Study Site41
3.2 The Central Wastewater Treatment Plant41
3.3 Sample Collections42

CONTENTS

3.4 Experimental Procedure
3.5 Resin Fractionation Procedure44
3.5.1 Resin Preparation45
3.5.2 Fractionation Procedure
3.6 Pyrolysis GC/MS Analysis
3.6.1 Pyrolysis Condition
3.6.2 GC Condition
3.6.3 MS Condition
3.7 Spectrofluorometry Analysis
3.7.1 Sample Preparation49
3.7.2 Quinine Sulfate Standard
3.7.3 Spectrofluorometer Operating Condition
3.7.4 FEEM Measurement Procedure
3.8 Analytical Methods
3.8.1 pH51
3.8.2 Turbidity51
3.8.3 Alkalinity51
3.8.4 UV-25451
3.8.5 DOC
3.8.6 THMFP52
CHAPTER IV DOM Fractions and their THMFP in Industrial Estate Wastewater Treated
by Stabilization Ponds
4.1 Introduction and Literature Reviews
4.2 Objectives of This Chapter
4.3 Material and Methods
4.4 Results and Discussion
4.4.1 Characterization of DOM Fractions by Resin Fractionation57
4.4.2 Distribution of DOM Fractions in Terms of DOC60
4.4.3 Distribution of DOM Fractions in Treated Wastewater from This
Study and from Literature data and in Groundwater and Reservoir,
Lake, and River Water from Literature data
4.4.4 THMFP of DOM Fractions70

viii

4.4.5 Specific THMFP75
4.5 Concluding Remarks
CHAPTER V Chemical Classes of Unfractionated and Fractionated DOM in Industrial
Estate Wastewater Treated by Stabilization Ponds
5.1 Introduction and Literature Reviews
5.2 Objectives of This Chapter
5.3 Material and Methods
5.3.1 Sample Collection, Sample Preparation and GC/MS Analysis89
5.3.2 Interpretation of Pyrolysis GC/MS Data
5.4 Results and Discussions
5.4.1 Chemical Classes in Influent Wastewater and
its Treated Effluent93
5.4.2 Chemical Classes of HPON101
5.4.3 Chemical Classes of HPOB106
5.4.4 Chemical Classes of HPOA109
5.4.5 Chemical Classes of HPIB113
5.4.6 Chemical Classes of HPIA116
5.4.6 Chemical Classes of HPIN119
5.4.7 Specific Pyrolysis Fragments of DOM Fractions
5.4.8 Summary of the Important Pyrolysis Fragments and Specific
Fragments in DOM fractions127
5.4.9 Relationship between Specific THMFP and Chemical Classes130
5.5 Concluding Remarks
CHAPTER VI Spectrofluorometry Analysis for Characterizing DOM and DOM Fractions
in Industrial Estate Wastewater Treated by Stabilization Ponds
6.1 Introduction and Literature Reviews
6.2 Objective of This Chapter135
6.3 Material and Methods135
6.3.1 Sample Collections and Experimental Procedure
6.3.2 Interpretation of FEEM Data
6.4 Results and Discussions138

ix

6.4.1 FEEM of Influent Wastew	vater and its Treated Wastewater138
6.4.2 FEEM of HPON	
6.4.3 FEEM of HPOB	
6.4.4 FEEM of HPOA	
6.4.5 FEEM of HPIB	
6.4.6 FEEM of HPIA	
6.4.7 FEEM of HPIN	
6.4.8 Summary of Location of F	EEM Peak Positions
of DOM Fractions	
6.5 Concluding Remarks	
CHAPTER VII Reduction of Dissolved Organi	c Matter and Fractionated Dissolved
Organic Matter in Industrial Es	state Wastewater by Stabilization
Ponds	
7.1 Introduction and Literature Reviews	s158
7.2 Objectives of This Chapter	
7.3 Material and Methods	
7.3.1 Sample Collection	
7.3.2 Experimental Procedure	
7.4 Results and Discussion	
7.4.1 Reduction of DOC, UV-25	54 and SUVA160
7.4.2 Reduction of THMFP and	it THMs species163
7.4.3 Reduction of DOC and TH	MFP of DOM fractions167
7.4.4 Reduction of Fluorescent C	Drganic Matter Evaluated by using
FEEM	
7.6 Concluding Remarks	
CHAPTER VIII Conclusions and Recommendation	itions180
8.1 Conclusions	
8.2 Contributions of This Work	
8.2 Recommendation for Future Works.	
References	

х

Appendices197
Appendix A198
Appendix B202
Appendix C264
Appendix D270
Biography

LIST OF TABLES

Page
Table 2.1 DOC, UV-254, SUVA and percent distribution of DOC in groundwater
and reservoir water obtained from literature data13
Table 2.2 DOC, UV-254, SUVA and percent distribution of DOC in groundwater and
reservoir water obtained from literature data14
Table 2.3 Summary of fluorescent peak position of DOM fractions
from literature data20
Table 2.4 Pyrolysis fragment from a mixture of biopolymers: (bovine serum
albumin, cellulose acetate, fluka humic acid, and chitin) for pyrochromatograms
shown in Figure 2.223
Table 2.5 Specific pyrolysis fragment of biopolymer
Table 2.6 Design guidelines for depth of stabilization ponds
Table 3.1 Detail of sampling dates and sampling points
Table 3.2 Temperature programs for analyzing THMs
Table 3.3 Analytical methods and instruments
Table 4.1 Percent difference of DOC and THMFP in influent wastewater and effluent
water from aeration, facultative, oxidation and detention ponds collected in June
2004 and February 2005
Table 4.2 The mass distribution sequences and percent mass distribution of the
six DOM fractions and of the hydrophobic and hydrophilic DOM fractions of
influent wastewater and effluent water from the aeration, facultative, oxidation
and detention ponds63
Table 4.3 DOC, UV-254, SUVA, and percent distribution of DOC obtained from treated
wastewater in this study and literature data
Table 4.4 The THMFP distribution sequences and percent THMFP distribution of the six
DOM fractions of influent wastewater and effluent water from the aeration,
facultative, oxidation and detention ponds
Table 4.5 The specific THMFP sequences and specific THMFP values of the
unfractionated water samples and six DOM fractions in influent wastewater and
effluent water from the aeration, facultative, oxidation and detention ponds79
Table 5.1 Summary of the prominent major fragments of each chemical class in the
unfractionated waters96

Table 5.2 DOC and percent distribution of chemical classes in unfractionated waters in
this study and other water sources from literature data100
Table 5.3 Summary of the prominent major fragments of each chemical class
in HPON103
Table 5.4 Summary of the prominent major fragment of each chemical class
in HPOB108
Table 5.5 Summary of the prominent major fragment of each chemical class
in HPOA110
Table 5.6 Summary of the prominent major fragment of each chemical class
in HPIB115
Table 5.7 Summary of the prominent major fragment of each chemical class
in HPIA118
Table 5.8 Summary of the prominent major fragment of each chemical class
in HPIN121
Table 5.9 Specific fragments of the six DOM fractions
Table 5.10 Organic compound classes of the DOM fractions obtained in this study and
from literature data129
Table 6.1 Fluorescent peak positions and major pyrolysis fragments of major fluorescent
components from literature data137
Table 6.2 Fluorescent peak positions and theirs putative fluorescent organic matter with
major pyrolysis fragments of unfractionated waters
Table 6.3 Fluorescent peak positions of HPON and theirs putative fluorescent organic
matter with major pyrolysis fragments142
Table 6.4 Fluorescent peak positions of HPOA and theirs putative fluorescent organic
matter with major pyrolysis fragments146
Table 6.5 Fluorescent peak positions of HPIB and theirs putative of fluorescent organic
matter with pyrolysis fragments149
Table 6.6 Fluorescent peak positions of HPIA and theirs putative of fluorescent organic
matter with pyrolysis fragments151
Table 6.7 Fluorescent peak positions of HPIN and theirs putative of fluorescent organic
matter with pyrolysis fragments154

Table 6.8	Comparison of fluorescent peak positions of each DOM fraction obtained in	n
	this study compared with those of in literature datd	156

 Table 7.6 Reduction efficiency and accumulated reduction efficiency of the stabilization

 pond process on the fluorescent intensity of each peak

 and overall peaks

 176

LIST OF FIGURES

Page
Figure 2.1 Resin fractionation process
Figure 2.2 Sample of the three dimensional view (a) and contour view
(contour interval of 10 QSU) with fluorescent peaks and its sections (b)
of a FEEM
Figure 2.3 Pyrochromatogram of a mixture of biopolymer:(bovine serum albumin,
cellulose acetate, fluka humic acid, and chitin)22
Figure 2.4 Pyrochromatogram of water from the Seine River, France25
Figure 2.5 Aerated lagoon systems
Figure 2.6 Graph for determining K
Figure 2.7 Graph for determining Y and K _e
Figure 2.8 Stabilization pond systems
Figure 3.1 Diagram of stabilization pond system of the central wastewater treatment
plant of the studied industrial estate41
Figure 3.2 Schematic diagram of experimental procedure of water samples
collected on February 18, 200444
Figure 3.3 Diagram of the fractionation procedure for the DOM fractions47
Figure 4.1 DOC of influent wastewater, DOC of six organic fractions (with standard
deviation ranges) and of HPO and HPI with their percent distribution
sampling taken in February 200560
Figure 4.2 DOC of effluent water from aeration ponds, DOC of six organic fractions
(with standard deviation ranges) and of HPO and HPI with their percent
distribution taken in February 200561
Figure 4.3 DOC of effluent water from facultative ponds, DOC of six organic fractions
(with standard deviation ranges) and of HPO and HPI with their percent
distribution taken in February 200561
Figure 4.4 DOC of effluent water from oxidation ponds, DOC of six organic
fractions (with standard deviation ranges) and of HPO and HPI with their
percent distribution taken in February 200562

Figure 4.5 DOC of treated wastewater, DOC of six organic fractions
(with standard deviation ranges) and of HPO and HPI with their percent
distribution taken in June 2004 and February 200562
Figure 4.6 Relationship between HPI and HPO in treated wastewater
Figure 4.7 Relationship between HPI and HPO in reservoir water67
Figure 4.8 Relationship between HPI and HPO in river water
Figure 4.9 Range of percent distribution of six organic fractions in treated wastewater,
river and reservoir water
Figure 4.10 THMFP of influent wastewater and THMFP of six organic fractions
(with standard deviation ranges) with their percent distribution sampling
from February 200571
Figure 4.11 THMFP of effluent water from aeration ponds and THMFP of six organic
fractions (with standard deviation ranges) with their percent distribution
sampling from February 200571
Figure 4.12 THMFP of effluent water from facultative ponds and THMFP of six organic
fractions (with standard deviation ranges) with their percent distribution
in the percent distribution () and the percent distribution
sampling from February 2005
sampling from February 200572
sampling from February 2005
 sampling from February 2005
sampling from February 2005
sampling from February 2005
 sampling from February 2005
sampling from February 2005

Figure 4.18 Specific THMFP of effluent water from oxidation ponds collected in
February 2005 and specific THMFP of the six fractions of effluent water
from oxidation ponds(with standard deviation ranges)77
Figure 4.19 Specific THMFP of treated wastewater collected in June 2004
and February 2005 and specific THMFP of six fractions in the respective
water samples (with standard deviation ranges)
Figure 5.1 Pyrochromatograms of influent wastewater with the order of major
fragments91
Figure 5.2 Percent distribution of chemical classes of DOM in influent wastewater and
effluent water from aeration, facultative, oxidation and detention ponds95
Figure 5.3 Percent distribution of chemical classes of DOM in HPON of influent
wastewater and effluent water after aeration, facultative, oxidation and
detention ponds102
Figure 5.4 Percent distribution of the chemical classes of DOM in HPOB
of the influent wastewater and effluent water from the aeration, facultative,
oxidation and detention ponds107
Figure 5.5 Percent distribution of the chemical classes of DOM in HPOA
of the influent wastewater and effluent water from the aeration, facultative,
oxidation and detention ponds111
Figure 5.6 Percent distribution of the chemical classes of DOM in HPIB
of the influent wastewater and effluent water from the aeration, facultative,
oxidation and detention ponds114
Figure 5.7 Percent distribution of the chemical classes of DOM in HPIA
of the influent wastewater and effluent water from the aeration, facultative,
oxidation and detention ponds117
Figure 5.8 Percent distribution of the chemical classes of DOM in HPIN
of the influent wastewater and effluent water from the aeration, facultative,
oxidation and detention ponds120
Figure 5.9 DOC, percent distribution of chemical classes and specific THMFP of DOM
fractions132
Figure 6.1 Example of a three-dimensional view of a FEEM of influent wastewater135
Figure 6.2 Location of fluorescent peak positions from all water samples in this study.136

xvii

Figure 6.3FEEMs (contour interval of 5 QSU) of influent wastewater and effluent water
from the aeration, facultative, oxidation and detention ponds
Figure 6.4 FEEMs (contour interval of 1 QSU) of HPON of influent wastewater
and effluent water from the aeration, facultative, oxidation and detention
ponds141
Figure 6.5 The proposed FEEM signature of HPON143
Figure 6.6 FEEMs (contour interval of 0.2 QSU) of HPOB of influent wastewater
and effluent water from the aeration, facultative, oxidation and detention
ponds
Figure 6.7 FEEMs (contour interval of 1 QSU) of HPOA of influent wastewater
and effluent water from the aeration, facultative, oxidation and detention
ponds145
Figure 6.8 The proposed FEEM signature of HPOA147
Figure 6.9 FEEMs (contour interval of 1 QSU) of HPIB of influent wastewater
and effluent water from the aeration, facultative, oxidation and detention
ponds148
Figure 6.10 FEEMs (contour interval of 1 QSU) of HPIA of influent wastewater
and effluent water from the aeration, facultative, oxidation and detention
ponds150
Figure 6.11 The proposed FEEM signature of HPIA152
Figure 6.12 FEEMs (contour interval of 0.3 QSU) of HPIN of influent wastewater
and effluent water from the aeration, facultative, oxidation and detention
ponds153
Figure 7.1 Average values of DOC, UV-254 and SUVA (with one standard deviation) of
influent wastewater and effluent water from the aeration, facultative, and
oxidation ponds160
Figure 7.2 Average values (with one standard deviation) of THMFP, CHCl ₃ -FP,
CHCl2Br-FP, CHClBr2-FP and CHBr3-FP in influent wastewater and effluent
water from the aeration, facultative, and oxidation ponds164
Figure 7.3 Percent distribution of CHCl ₃ -FP, CHCl ₂ Br-FP, CHClBr ₂ FP and CHBr ₃ -FP
in influent wastewater and effluent water from the aeration, facultative, and
oxidation ponds164

Figure 7.4 DOC concentrations (with one standard deviation) of HPON, HPOB, HPOA,
HPIB, HPIA and HPIN in influent wastewater and effluent water from
aeration, facultative, oxidation and detention ponds collected on February 18,
2005168
Figure 7.5 THMFP of HPON, HPOB, HPOA, HPIB, HPIA and HPIN in influent
wastewater and effluent water from aeration, facultative, oxidation and
detention ponds171
Figure 7.6 Samples of the patterns of FEEMs (contour interval of 10 QSU) of influent
wastewater and effluent water from the aeration, facultative and oxidation
ponds in October 2004174
Figure 7.7 A demonstration of peak positions A, B, C, D, G and H of FEEM in the
influent wastewater in October 2004174
Figure 7.8 Average fluorescent intensities at peaks A, B, C, D, G and H, and
summations of the fluorescent intensities of peaks A, B, C, D, G and H of
influent wastewater and effluent water from aeration, facultative and oxidation
ponds175

ABBREVIATIONS AND SYMBOLS

AC	Activated carbon
AH	Aldehydes
AL	Aliphatic hydrocarbon
AMW	Apparent molecular weight
AR	Aromatic hydrocarbon
As	Amino sugars
Br	Bromide ion
°C	Degree Celsius
СН	Chloral hydrate
CHBr3	Bromoform
CHCl3	Chloroform
CHCl3-FP	Chloroform formation potential
CHCl ₂ Br-FP	Dichlorobromoform formation potential
CHClBr ₂ -FP	Dibromochloroform formation potential
CH3OH	Methanol
СР	Chloripicrin
DPD	N, N-decthyl-p-phenylenediamine
DBPFP	Disinfection by-product formation potential
DBPs	Disinfection by-products
DOC	Dissolved organic carbon
DOM	Dissolved organic matter
D/DBP rule	Disinfectant and disinfection by-product rule
ECD	Electron capture detector
EfOM	Effluent-derived organic matter
FEEM	Fluorescent excitation-emission matrix
FTIR	Fourier Transform Infrared
GAC	Granular activated carbon
GC	Gas chromatography
GC/MS	Gas chromatography mass spectrometer
GPC	Gel permeation chromatography
HAAs	Haloacetic acids
*1	

HANs	Haloacetonitriles
HCI	Hydrochloric acid
HKs	Haloketons
HOBr	Hypobromous acid
HOC1	Hypochlorite
HPI	Hydrophilic organic
HPIA	Hydrophilic acid
HPIB	Hydrophilic base
HPIN	Hydrophilic neutral
HPO	Hydrophobic organic
HPOA	Hydrophobic acid
HPOB	Hydrophobic base
HPON	Hydrophobic neutral
H2SO4	Sulfuric acid
KHP	Potassium hydrogen phthalate
KT	Ketones
MCL	Maximum contaminant level
mg/L	Milligram per liter
mL/min	Milliliter per minute
NaOH	Sodium hydroxide
NOM	Natural organic matter
nm	Nanometer
NTU	Nephelometric turbidity unit
ON	Organic Nitrogen
OM	Organic matter
PHA	Polyhydroxy aromatics
PN	Phenol
POC	Particulate organic carbon
Pr	Proteins
Ps	Polysaccharides
QSU	Quinine sulfate unit
psi	Pound square per inch
RO	Reverse osmosis
RW	Raw water

SUVA	Specific ultraviolet absorbance
THM	Trihalomethane
THMFP	Trihalomethane formation potential
THMs	Trihalomethanes
TOC	Total organic carbon
TOX	Total organic halides
TOXFP	Total organo-halide formation potential
TW	Treated wastewater
USEPA	United States Environmental Protection Agency
UV	Ultraviolet
UVA	Ultraviolet absorbent
μm	Micro meter
μs/cm	Microsemen per centimeter
µg/L	Microgram per liter