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APPENDIX A

VACUUM CHAMBER

A.1 Vacuum Chamber Design

The main body of vacuum chamber is constructed from stainless steel cylinder
with outer diameter of 219 mm and height of 254 mm. The vacuum chamber has
six ports connected to the bottom plate, the front plate, the left plate, the right
plate (ISO 63), the rear plate (ISO 63), and the top plate, as showed in Fig. A.1

Figure A.1: The photograph of vacuum chamber.

A.1.1 Bottom plate

The bottom plate (no.10 in Fig. A.4) is made of a 260 mm diameter stainless
steel. O-ring is used as a vacuum seal for this plate. There are many equipments

connected with this plate as the followings;
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¢ The short flange (no.12 in Fig. A.4) which is connected with Edwards
Speedivalve to allow the pressure control inside the chamber during the diamond
growth processes. The Edwards ACX75 turbo molecular pump is connected with
Speedivalve and backed by Edwards RV3 rotary vane pump where a base pressure

of 7.0 x10~% Torr can be achieved.

¢ The short flange (no.11 in Fig. A.4) is connected with an air vent valve

that allowed the chamber to be purged to the atmospheric pressure.

¢ The photograph of the punctured stainless steel substrate with diameter
of 60 mm and the substrate holder are illustrated in Fig. A.2. The punctured
substrate is mounted with the substrate holder, which is located axially in the

vacuum chamber. The position of the punctured substrate can be adjusted and

Substrate Holder

Figure A.2: The photograph of the punctured substrate and substrate holder.

acts as a short circuit part of the circular waveguide while allowed the gases
to flow through. The substrate temperature was measured by a calibrated K-
type thermocouple which is attached at the back of the punctured substrate, the
temperature is displayed by ID-8 DIGICON temperature indicator.

¢ Port number 2 and 3 of bottom plate (Fig. C.3 in appendix C.1) are not
attached with any equipment. The drawing diagram of bottom plate is showed in

Fig. C.3. The photograph of bottom plate is showed in Fig. A.3.
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Figure A.3: The photograph of bottom plate.

A.1.2 Front plate

The front plate (no.13 in Fig. A.4) is covered with a 154 mm diameter hinged-door
and is sealed by a o-ring. This plate is used for sample loading.

A.1.3 Left plate

Two left flanges are welded to the main body of vacuum chamber as an installation

port for following equipments: (no.1, and no.2 in Fig. A.4)

o The short flange (NW16) which is connected with the Edwards Penning
vacuum gauge used to monitor the pressure within chamber during the turbo

molecular pumping process.

o The short flange (NW25) which is connected with the Edwards Pirani
vacuum gauge used to monitor the pressure within chamber during the growth

process.
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A.1.4 Right plate

The right flange (no.8 in Fig. A.4) is connected with ISO63 standard flange and

is sealed by a o-ring. This flange no equipment is connected.

A.1.5 Rear plate

The rear flange is made to comply with ISO63 standard flange size and is at-
tached to a short flange (NW16) to be used as a feedthrough port for the K-type

thermocouple.

A.1.6 Top plate

The top plate of the chamber is connected with a donut-plate (no.3 in Fig. A.4)
which is designed for water cooling and gas-inlet line. A quartz bell jar inside
diameter of 76.2 mm and thickness of 6 mm is placed on this plate and a Viton
o-ring is used as vacuum seal for this plate. The upper part of the donut-plate
is covered by the cylindrical cavity resonator. Detail of the cavity resonator is
presented in section 3.2.3. The drawing diagram of chamber components are
showed in appendix C.1. The schematic diagram of MW-PECVD design is showed
in Fig. A4
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[1] Penning Gauge [10] Bottom Plate

[2] Pirani Gauge [11] Short Flange NW25
[3] Donut Plate [12] Short Flange NW40
[4] Air-Vent Valve [13] Loading Door

[5] Speedivalve [14] Circular Cavity

[6] Perforated Substrate [15] Brass Antenna

[7] Bell Jar Quartz [16] WR-340 Waveguide
[8] Right Plate [17] Magnetron Head

[9] Type K Thermocouple  [18] Short-Circuit Plunger
[19] GA3007 Dual Power Monitor

Figure A.4: The schematic diagram of MW-PECVD reactor.
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APPENDIX B

CUTOFF FREQUENCY

B.1 Cutoff Frequency

Both rectangular and circular waveguide are the types of transmission used lines
in this study. In order to consider which electromagnetic wave can propagate, the
cutoff frequency in the transmission lines must be considered. In appendix B.1, we
will show the calculation details of the cutoff frequency in rectangular and circular

waveguide.

B.1.1 TE Modes in rectangular waveguide

The TE modes in an air-filled rectangular waveguide are characterized by E,=0,
and H, is a solution of the wave equation,

1 8%H,

Vsz == c—z'—at—z— = 0. (B.l)

Since H,(z,y,2) = H,(z,y)e "*s*=“t) where e~**+* is a propagation term. Equa-

tion (B.1) can be expressed in rectangular coordinate system as

o*H, ©H, w?
and let
l._“_‘,2
g-g=@
Also,
2 2
7K, + CH. +k2H, = 0. (B.3)

0z? ay?
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The partial differential of equation (B.3) can be solved by the separation variable
method,
H, (z,y) = X(2) T (y), (B.4)

and substituting into equation (B.3) to obtain

?X &7

i 2: R 5
i gt =0 (B.5)

From equation (B.5), each of terms must be equal to a constant. So

d*X

=57 X =0, (B.6)
and

% + k2T =0. (B.7)
Since,

k2¥ K+ k=0,

and the general solution of equation (B.4) can be written as
H, (z,y,2) = (Acos k,x + Bsink,z) (C cos k,y + Dsin k,y) e"**s*=«)_ (B.8)

The boundary conditions can be applied that

H, (zafe=a g eEdemand y = 0, b.
Therefore B and D must be equal zero and k.= %, ky= nTr
P
t L
yl} '/L -------------
b
il .
0 |e a >|

Figure B.1: Coordinates of a rectangular waveguide
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Also, the propagation factor is

toe = (8- () + (5 )

It clearly seen that if k, is a real numbers, corresponding to a propagation mode,

(&) > b= [T+ ) 510

Each of modes has a cutoff frequency (f.,,.) given by

e 2 () @y

a

or

B.1.2 TM Modes in circular waveguide

The TM modes in an air-filled circular waveguide are characterized by H, = 0,

and E, is a solution of the wave equation.

1 9B, -

V2E, - Sp =0 (B.12)

Since E.(p, ¢, z) = E.(p, ¢)e~"*s*=4 swhere e~**+% is a propagation term.

Z4

[

Figure B.2: Coordinates of a circular waveguide

Equation B.12 can be expressed in cylindrical coordinate system as

10°E, 10 [ OE, w? o
758+ 53 (P5) (5 -8) B =0 =
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and let
-

W _ada s
czkk

Also,

18E, 128 OFE, ey .
?Tfﬂ + ;3—)9 (p Bp ) +k:E;,=0. (B.14)

The partial differential equation of (B.14) can be solved by the separation of

variables method,
E:(p,¢) = R(p) ¥ (4), (B.15)

and substituting into equation (B.14) to obtain

d*v pd [ dR 2.2 _
+'§E-(p ) k;p® =0,

Wdgp? dp
pP?d®R_ p (dR - d*v
EE?+R(dp)+kp \I’d(f)z- (B.16)
From equation (B.16), each of terms must be equal to a constant, So
p* &R dR 2.2 2
de2+R + kop® = m®, (B.17)
multiply equation (B.17) by R/p?
d*R 1 (dR) ( 9 mg)
—k = — ]+ kc---—— H=10, B.18
dp*  p\dp P? (B8
This solution is
R(p) = AJp (kep) + BN, (kep) (B.19)

Where J,(k.p) and Np,(k.p) are the Bessel functions of first and second kinds,
respectively. Since N,(k.p) is physically unacceptable for the circular waveguide

problem, so B= 0. The right hand of equation (B.16), solution is
¥(p)=Ce™ m=0,1,23.. . (B.20)
The solution of E, can be written as
E; (p,$,2) = De™ J, (kcp) e o7, (B.21)
The boundary condition can be applied as

E:(p,¢)=0 at p=a. (B.22)
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Thus, we have

o (ko) =10, (B.23)
or k.@ = @y Where iy, is n'* root of J,, (). Each of modes has a cutoff frequency
(femn) given by

fomn = (5] [527] - B2

Table B.1: Values of ay,, for TM modes of a circular waveguide [40].

m Xmi G2 3

0 2405 5.520 8.654
1 3832 7.016 10.174
2 '5.135 8.417 11.620




APPENDIX C

MECHANICAL DIAGRAM

C.1 Drawing Diagram

C.1.1 Front view reactor chamber

97
10
130

219
i
225
5731

l-3|
245
260
1. NWlé 3. 15063
2. NW25 4. Door of Reactor

Figure C.1: Vacuum chamber in front view dimension
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C.1.2 Top and bottom plates

LT ——et
<260

1. Water Cooling

2, Gas Inlet {I%llll}

Figure C.2: Donut plate dimension

Se

1. Connected with substrate holder

2 Hole number 2 no elements is sttached
3. Hele number 3 no elements is ottached
4, Connected with on air vent valve

S. Connected with o speedivelve

Figure C.3: Bottom plate dimension



APPENDIX D

MAGNETRON HEAD

D.1 Magnetron Head

D.1.1 Magnetron type: MB2422A-130CF

Characteristic Specification Typical
Frequency of operation: 2470 MHz 2460 MHz
Frequency variations: +/- 10 MHz
CW Power Output: 1400 W 1260 W
Anode Voltage: 450 mA 400 mA
Filament Voltage (standby) 4.8 V 44V
Filament Current: 155 A 14 A

RF launch type:
Efficiency:
Basis Type:
Cooling:
Water-cooled
Net weight:

rectangular or oven cavity
approx: 70 %
2M137 (Panasonic)

3 1/min; 3 bar
approx: 1.5 kg
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