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APPENDIX A
Standard curves of TCE and INTF



Standard curve of TCE
In each soil microcosm, standard curve was set as the same manner of soil
microcosm. TCE stock solution was added to obtain the desired concentration

(triplicate per each of concentration). The standards were analyzed similar to sample

procedure.
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Figure A-1 Standard curves of TCE in soil
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Figure A-2 Standard curves of TCE in soil containing corncob



250000 -
200000 -
S 150000 -
<
F
s 100000 -
y = 1326.6x - 1830.1
30000 1 R’ = 0.9987
0 1 I G | I ) T ] 1
0 20 4 60 80 100 120 140 160
TCE concentration (mg/kg soil)
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Figure A-4 Standard curves of TCE in soil containing kaffir lime peel at concentration

of 50 mg/kg
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Figure A-5 Standard curves of TCE in soil containing kaffir lime peel at concentration
of 100 mg/kg
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Figure A-6 Standard curves of TCE in soil containing kaffir lime peel at concentration
of 150 mg/kg
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Figure A-7 Standard curves of TCE in soil containing kaffir lime peel at concentration

of 250 mg/kg
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Figure A-8 Standard curves of TCE in soil adjusted C:N to 20:1 by cassava pulp



350000 -

Peak Area

150000 -
100000 -
50000 -

0

y=2332.1x + 1161.5
R? = 0.9992

0 20 40 60 80 100 120 140 160
TCE concentration (mg/kg soil)

Figure A-9 Standard curves of TCE in soil adjusted C:N to 30:1 by cassava pulp
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Figure A-10 Standard curves of TCE in soil adjusted C:N to 30:1 by cassava pulp
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APPENDIX B

Percent recovery of TCE in soil microcosm
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Percent recovery of TCE in soil microcosm

TCE recoveries were determined for soil microcosm in triplicate. In each soil
microcosm, TCE was spiked to obtained final concentration of 100 mg/kg, leaved for
half of hour and then TCE recoveries were analyzed similar to sample procedures.

Percent recoveries of TCE were shown in Table B-1.



Table B-1 Percent recovery of TCE in soil microcosm spiked with 100 mg/kg of TCE

TCE concentration (mg/kg)
Treatments % Recovery
Replication 1 Replication 2 Replication 3 Average

sv 88.91 88.57 88.71 88.73 88.73+0.17%
S-ICC 87.34 89.14 92.28 89.59 89.59+2.50
S-ICO 105.47 113.95 114.82 111.41 111.41#5.16
S-K-50% 99.02 97.95 92.13 96.37 96.37+3.71
S-K-100 100.18 98.54 91.83 96.85 96.85+4.42
S-K-150 103.29 89.65 94.33 95.76 95.76+6.93
S-K-250 99.44 97.80 91.09 96.11 96.11+4.42
S-C-20% 98.88 89.05 80.84 89.59 89.59+9.03
S5-C-30 93.78 97.08 88.02 92.96 92.96+4.58
S-C-40 95.62 98.99 89.76 94.79 94,79+4.67

M S=soil, ICC=immobilized on corncob, ICO=immobilized on coir, K=kaffir lime peel, C=cassava pulp

C:N ratios

Value are expressed as the mean and standard deviation of three replicates.
@ Concentration of kaffir lime peel (mg/kg soil)
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APPENDIX C

Degradation profiles of TCE in soil microcosms
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Figure C-1 Degradation profiles of TCE in soil microcosm added with various
concentration of kaffir lime peel as a primary substrate (ICCAS=

immobilized acclimatized activated sludge on corncob; K= kaffir lime

peel)
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Figure C-2 Degradation profiles of TCE in soil microcosm added with various
concentration of toluene as a primary substrate (ICCAS= immobilized

acclimatized activated sludge on corncob; T=toluene)
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Figure C-3 Degradation profiles of TCE in soil microcosm adjusted by cassava pulp
at various C:N ratios (K= 50 mg/kg of kaffir lime peel; T= 100 mg/kg of

toluene; C= cassava pulps)
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Figure C-4 Degradation profiles of TCE in soil microcosm augmented with
immobilized acclimatized activated sludge on corncob and adjusted by
cassava pulp at various C:N ratios (ICCAS= immobilized acclimatized
activated sludge on corn cob; K= 50 mg/kg of kaffir lime peel; C=

cassava pulps)



APPENDIX D

Cell number of microorggnisms in the soils



Table D-1 Number of TCE degrader in soil microcosm adding with various concentrations of kaffir lime peel and toluene

Number of TCE degrader in soil microcosm (x 10'CFU/g soil)

Time | (without Indigenous microorganism Immobilized acclimatized activated sludge
(days) | primary Toluene (mg/kg) Kaffir lime peel (mg/kg) Toluene (mg/kg) Kaffir lime peel (mg/kg)
substrate) | 50 100 | 150 250 50 100 150 |[250 {50 100 150 250 50 100 | 150 |250

0 5.70 252 | 1.67 | 745 4.65 2.56 235 | 281 | 218 | 183 1.24 1.67 1.93 243 | 462 | 840 | 1.75
3 1.75 735 | 450 | 3450 3.00 | 11.80 | 143 | 630 | 3.50 | 14.80 | 1630 | 13.00 | 1580 | 6.65 | 1.05 | 143 | 0.21
6 1.95 690 | 6.40 | 6.55 5.20 7.55 1.45 | 0.81 | 5.85 | 25.10 | 17.80 | 12.00 | 13.70 | 16.90 [ 1.90 | 1.66 | 1.45
10 8.25 545 | 430 | 13.10 | 7.90 5.60 148 | 500 | 490 | 720 | 14.00 | 5.15 6.10 | 13.30 | 5.70 | 6.75 | 8.10
14 6.25 10.80 | 690 | 815 | 11.00 | 0.72 | 12.60 | 0.21 | 0.45 | 13.00 | 1330 | 8.15 10.20 | 3.59 | 5.25 | 890 | 6.30

SL



Table D-2 Number of TCE degrader in soil microcosm adjusted by cassava pulps at various C:N ratio

e Number of TCE degrader in soil microcosm (x 10’CFU/g soil)
(days) Kiffir lime peel 50 mg/kg"’ Toluene 100 mg/kg Without primary substrate ICCAS+ Kiffir lime peel 50 mg/kg"”
None® | 20:1® | 30:1 | 40:1 | Nome | 20:1 | 30:1 | 40:1 None 20:1 30:1 | 40:1 [ Nome | 20:1 | 30:1 | 40:1
0 2.56 5.40 2.80 3.62 1.67 315 5.50 6.35 5.70 6.90 7.40 4.35 3.79 6.30 2.26 7.20
11.8 2.65 5.40 4.60 4.50 39.00 14.30 8.80 1.75 19.60 15.30 7.00 5.80 10.30 535 1.19
0.75 1.15 132 | 765 6.40 39.00 | 70.50 | 30.50 1.95 22.50 8.65 3.15 555 5.20 3.50 3.70
10 5.60 9.30 4.65 7.85 4.30 2190 | 11.80 | 11.60 8.25 20.10 4.85 2.95 8.35 3.70 8.15 5.50
14 0.72 2.44 4.60 1.33 6.90 38.00 | 41.50 | 67.50 6.25 9.90 4.45 2.80 3.83 1.05 1.68 271
" As primary substrate
@ Augmented immobilized acllimatied activated sludge
@ Without cassava pulp
&) C:N ratio
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Table D-3 Number of bacteria in soil microcosm adjusted by cassava pulps at various C:N ratio

i Number of bacteria in soil microcosm (x 10’CFU/g soil)
ime

(days) Kiffir lime peel S0 mg/kg"’ Toluene 100 mg/kg Without primary substrate ICCAS+ Kiffir lime peel 50 mg/kg"”
ays

None®™ [ 20:1% [ 30:1 | 40:1 None 20:1 30:1 40:1 None 20:1 30:1 40:1 None 20:1 30:1 40:1

0 5.20 485 | 5.20 | 6.25 4.25 5.40 2.92 1.73 6.50 6.20 3.95 6.00 3.75 2.33 4.06 3.38
8.50 3.60 | 13.00 | 4.10 6.60 6.65 7.70 3.40 28.00 2.10 3.70 7.85 5.35 8.85 6.10 6.10
6 2.45 8.50 | 16.30 | 4.25 | 51.00 13.40 4.85 5.30 27.00 8.60 4.45 3.50 6.20 8.50 170 | 14.80
10 7.05 3.30 | 1290 | 4.30 6.30 46.00 65.00 21.50 2.30 4.00 5.70 1.00 4.60 407 | 1540 | 1450
14 0.55 | 16.90 | 20.20 | 11.40 [ 4.50 72.50 69.00 | 116.00 | 5.95 2.95 5.05 3.60 154 13.60 | 18.00 | 16.30

%" As primary substrate
@ Augmented immobilized acllimatied activated sludge
®  Without cassava pulp

@ C:N ratio

LL



Table D-4 Number of fungi in soil microcosm adjusted by cassava pulps at various C:N ratio

s Number of fungi in soil microcosm (x 10°CFU/g soil)

(da5) Kiffir lime peel 50 mg/kg"’ Toluene 100 mg/kg Without primary substrate ICCAS+ Kiffir lime peel 50 mg/kg'”

None® [ 20:1® [ 30:1 [ 40:1 | None 201 | 30:1 | 40:1 | Nome | 20:1 | 30:1 | 40:1 | Nome | 20:1 | 30:1 | 40:1

0 1.67 105 [ 089 [ 085 | 257 1.16 101 | 154 1.90 1.94 126 | 244 | 127 | 1.03 | 1.09 | 1.64

1.07 1290 | 515 | 750 2.21 4.23 440 151 2.95 3.50 27 2.42 1.05 2.15 1.85 4.80

6 1.53 2.70 2.80 | 4.90 4.10 0.77 330 1.45 1.13 2.60 2.35 1.64 1.50 2.26 222 4.48

10 2.61 4.40 420 | 2.10 2.10 0.130 0.53 0.28 7.05 0.02 0.52 0.58 0.98 0.75 1.11 8.25

14 0.82 244 | 635|327 | 112 0.31 048 | 0.67 0.60 0.79 077 | 065 | 034 | 078 | 421 | 0.68

)" As primary substrate

@ Augmented immobilized acllimatied activated sludge
@ Without cassava pulp

@ C:N ratio

8L



APPENDIX E
Effect of cassava pulp on stimulation of microbial activity
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Figure E-1 Microbial activity in soil microcosm adjusted by cassava pulp at various
C:N ratios (K= 50 mg/kg of kaffir lime peel; T= 100 mg/kg of toluene; C=

cassava pulps)
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Figure E-2 Microbial activity in soil microcosm augmented with immobilized

acclimatized activated sludge on corncob and adjusted by cassava pulp

at various C:N ratios (ICCAS= immobilized acclimatized activated

sludge on corncob; K= 50 mg/kg of kaffir lime peel; C= cassava pulps)



APPENDIX F
Calculation of carbon to nitrogen ratio (C:N) in soil microcosm



Calculation of carbon to nitrogen ration (C:N) in soil microcosm

83

Dry weigh of cassava pulp 1 Kg........ooovviiiiiimiiiimmn e e e Wi
Carbon content in cassava pulp =C/100 Kg.......c.ooemiiiiiiriiiiiiiiiiieaes C1
Nitrogen content in cassava pulp=N/100 Kg.........cccorrmriiiiiiiiimmnieaaa N1
Dry weight of SOil X Kg.....uiivrmmuiriiiimeuiiiiiiiniiietannsennisss e w2
Carbon content in SOIIEC/I00 K. .....vvviieiiiiiiiniiiiiiiniiaie e eees C2
Nitrogen content in SOIEN/TO0 K. .....ccovviviiiiiiimiiiniiiiiiineeineeeees N2
Calculate the results according to following equation

C (W1xCl)+(W2x C2)

Lica 09

N (W1 x N1) + (W2 x N2)
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TCE Degradation by Free Cell and Immobilized Cell of Activated Sludge and
Rhodococcus gordoniae P3
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Abstract

This study was conducted to investigate a TCE degradation ability of free cell and immobilized cell of TCE
degrader, R. gordoniae P3 (P3) in comparison to mixed cultures in activated sludge (AS) augmented in soil. Comncob and
coir were used as supporting materials for immobilization. Initial concentration of TCE and toluene as a primary substrate
were 100 mg/kg soil and 172 mg/kg soil, respectively. After 21 days of incubation, a higher percentage of TCE
degradation was obtained in soil inoculated with pure culture (P3) and mixed cultures (AS) i.e., 53.34% and 88.15%,
respectively, which were higher than that in soil without inoculation (19.96%), suggesting that bio-augmentation
technique improved a degradation of TCE in soil. Moreover, TCE degradation were improved by immabilized P3 and
immobilized AS on corncob and coir (60-98%) comparing to free cells (50-80%) indicating that porous structure of
support materials could enhance adsorption capacity and diffusion of contaminant or substrate to immobilized cells. Cells
number of immobilized P3 and immobilized AS in soils were found to be 1-15 times higher than free cells in soil at Day
21. An addition of support materials might increase porosity of soil which was favorable for aerobic microorganisms and
protected the cells from contaminant toxicity indicating by number of cells were not decreased overtime.

Keywords : bioaugmentation; immobilization; trichloroethylene; TCE degrader

Introduction

Trichloroethylene (TCE) is widely used in various industrial applications such as solvent to remove grease from
metal parts, industrial dry-cleaning, printing, production of printing ink and paint, extraction process and textile printing,
etc. TCE is a Dense Non-Aqueous Phase Liquids (DNAPLs) so it does not move with the groundwater flow but instead
move downward by gravitation force through an aquifer until n:aching.an impermeable layer. Thus, DNAPLs can serve as
a long-term source for dissolved contaminant plumes at many contamination sites [1]. TCE enters the environment via an
improper management such as storage, treatment facilities and disposal due to lack of knowledge and environmental
concern of the manufacturers. The contamination of TCE in environment is a serious problem because TCE is known to
be a probably human carcinogenic substance [2]. Thus, the appropriate treatment technologies are required.

Bioremediation is an alternative approach to clean up the contaminated site. This technique is more attractive
comparing with physical and chemical processes because it does not require the final disposal [3]. One of bioremediation
treatments is bioaugmentation which is the technique that microorganism cultures are added to improve the reduction of
conta.minam. Microorganism is a key to a successful bioremediation. Two types of microorganisms can be added into
contaminated soil i.e., mixed cultures such as activated sludge and pure culture such as TCE degrader. Main advantage of
mixed cultures is their abilities to survive in a non-sterile environment [4] while the main advantage of using pure culture
is a convenient to monitor during operation compare to mixed cultures. However, there is a limited information on using
mixed cultures to degrade TCE.

Free cells of bacteria have been reported to successfully degrade chlorinated hydrocarbon in liquid culture
[5, 6, 7). However, in the natural condition the survival of free cells are low [8]. Immobilization is an attractive technique
to solve this problem because immobilized cultures tend to have a higher level of activity and more tolerant to
environmental perturbations such as pH, temperature or toxicity of contaminants [9]. Support materials could be

synthetically made such as alginate, and polyvinyl alcohol and naturally available such as comcob and coir. Synthetic
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support materials are costly and difficult to be degraded due to a non-biodegradation characteristic. Therefore, there is an
interest toward the use of natural materials such as agricultural residues to overcome this problem. Effective support
materials from agricultural residues include coconut fiber [10], comcob powder [11], wheat straw and maple woodchips
[9] used for bioremediation treatment.

In this work, we explored the feasibility of using mixed cultures in activated sludge to degrade TCE in soil in
comparison to a pure culture i.e., TCE degrader Rhodococcus gordoniae P3 with the ultimate aim of application for soil
treatment. One objective of the present work was to study the effectiveness of immobilization materials i.e., corncob and

coir for mixed cultures and pure culture for TCE degradation and remove it efficiently from soil.

Materials and Methods
Microorganism and culture media

TCE degrader, Rhodococcus gordoniae P3, a gram positive aerobic bacterium isolated from petroleum-
contaminated soil in Bangkok was kindly provided by Dr. Ekawan Luepromchai of Chulalongkom University. Aerobic
activated sludge was collected from wastewater treatment plant of Lardkrabang Industrial Sector, Bangkok, Thailand.
Wastewater treated at this wastewater treatment plant is from electronic part industries where organic solvents are used.
Culture media was mineral salts medium (MSM) consist of (in mg/L) K,HPO,, 1741.6; Na,HPO,, 359.94; (NH,),SO,,
1321.3; MgSO,, 120.36; Ca(NO,),, 16.409; Fe(NO,),, 2.419; MnSO,, 0.151; ZnSO,, 0.161; CuSO,, 0.160; NiSO,, 0.015;
CoS0,, 0.016; Na,M0O,, 0.021; adding 17 g/L agar for solid media. Toluene was used as carbon and energy sources.

Soil

Soil was collected near an abandon site at Tumbol Kla:ig—Dong, Aumphur Pak-Chong, Nakonratchasima
Province. This site has been contaminating with Volatile Organic Compounds (VOCs) such as TCE, tetrachloroethylene,
xylene, toluene and 1,1,1-trichloroethylene. Soil was passed through 2 mm sieve and kept at 4°C prior the usage.

Characteristics of soil were shown in Table 1.

Table 1 Characteristics of soil

Parameter Value (Unit)
pH 8.05
EC 0.0 23 (mS/cm)
Organic matter 2.47 (%)
Total nitrogen 0.0896 (%)
Organic carbon 1.43 (%)
C:N ratio 15.97
Sand 52.5 (%)
Silt 42.5 (%)
Clay 5.0 (%)
Texture Sandy loam
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Supporting materials

Corncob and coir were obtained from Faculty of Agriculture, Khon Kaen University. Comncob and coir were
shredded by knife into small pieces (approximately 0.5 x 0.5 x 0.5 cm) and passed through 0.5-1 cm sieve. After that, they
were delignified by boiling in 1% NaOH for 3 hrs [12] to remove lignin which might be toxic to microorganisms and then
thoroughly washed under tap water, and soaked in distilled water overnight. This process was done 2 times and kept at
-20°C prior the usage.

Cell immobilization

Seventy-five g dry wt of delignified support materials i.e., comcob and coir were put into 300 ml MSM
containing 4 g/L glucose as a carbon source which were autoclaved at 121 °C for 15 min for 2 times before inoculating
with 10 % (v/v) of R. gordoniae P3 or activated sludge. Then, 172 mg/L of toluene, a primary substrate, was added into
the bottle before incubating at room temperature, shaken at 200 rpm on orbital shaker for 24 hrs. After that, these support
materials were transferred into fresh MSM containing 4 g/L glucose and 172 mg/L of toluene and incubated as described
previously for 2 times before harvesting by washing with sterile MSM. The numbers of microorganism in support
materials were approximately 10’ cells/g dry wt of support materials determined by viable plate count technique. These

immobilized cells were used as inocula for soil microcosm study.

Soil microcosm study

Ten grams dry wt of non-sterile soil were added into a 50 mL serum bottle containing each immobilized cell (R.
gordoniae P3 and activated sludge) with approximately 10’ cells/g dry wt of support materials. TCE at the final
concentration of 100 mg/kg soil and 172 mg/kg soil of toluene as a primary substrate were added into a serum bottle and
immediately sealed with teflon-lined rubber septa and capped with aluminum cap. The bottle was incubated at room
temperature in dark. TCE remained in soil was determined at Day 0, 3, 5, 7, 14 and 21 by GC-headspace technique.
Numbers of TCE degrader in support materials and soil was determined by viable plate count technique.

Analysis of TCE concentration

TCE concentrations in soil microcosm were analyzed by GC-head space technique. Serum bottle containing soil
sample was heated in heat box at 90°C for 30 min. Fifty U of head space sample were taken by gas tight syringe and
analyzed for TCE concentration using GC-17A Shimadzu-Flame Ionization Detector. The capillary column was 30-m
Rix-VGC with the inner diameter of 0.45-mm (Restex Inc., USA). Helium was used as carrier gas. Splitless mode was
used. The injection and detector temperatures were maintained at 200° C. The column temperature retained at 60 °C for 5
min and was then increased to 8 ° C/min until reached 180 ° C then hold for 2 min.

Enumeration of toluene degrading bacteria

For support material, one g wet wt of immobilized support materials were washed with sterile 0.85% NaCl for 2 times
to remove soil and then blended by blender into small particles. For soil, one g dry wt of soil was mixed with 9 ml of 0.85%
NaCl to make soil dilution. Then, serial 10-fold dilutions of each suspension were made and plated on MSA (Mineral Salt Agar)
and incubated at room temperature in the box fumigated with toluene as a primary substrate for one week to enumerate toluene
degrading bacteria. The number of colony forming units (CFU) between 30-300 colony in each plate were counted.

msUs:gu3rInsdonoadouniog1inson 6 . SufA 7-9 Julau 2550
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Results and Discussion
Degradation of TCE by free cell of Rhodococcus gordoniae P3 and activated sludge

This study compared the TCE degradation ability of mixed cultures in activated sludge to pure culture, ie., R.
gordoniae P3 (P3). Control microcosm represented the ability of indigenous microorganisms to degrade TCE and/or abiotic
process affecting TCE degradation. After 3 weeks of incubation, the percentage of TCE degradation in soil microcosm
inoculated with activated sludge, R. gordoniae P3 and without inoculum were 88%, 53% and 20%, respectively (Figure 1)
indicating that mixed cultures in activated sludge and R. gordoniae P3 improved TCE degradation in soil microcosm. A
percentage of TCE degradation in soil microcosm augmented with activated sludge was founded to be greater than in soil
microcosm augmented with R. gordoniae P3. These may due to the fact that activated sludge contains complex microbial
consortium which can be more tolerant to environment than pure strain. In addition, growth of pure strain generally requires
strictly sterilized conditions and control methods, while mixed cultures used for bioaugmentation could be grown quickly and
easily in the environment. Thus, the ability of mixed cultures could be better than pure culture. These explanations were
supported by the work of Buitron and Gonzalez [13] on the degradation of phenol, 4-monochorophenol, 2,4-dichlorophenol
and 2,4,6-trichlorrophenol by activated sludge and isolated bacteria in which the degradation rate of these phenols by
activatedsludgewas&omonemnvoordmofmagnimdehigha'thmpwestninisolawdﬁmnacﬁvatedsludge.

Degradation of TCE by immobilized R. gordoniae P3 and activated sludge on corncob and coir

In order to improve a survival of microorganisms in soil microcosm, we immobilized R. gordoniae P3 and
activated sludge by comcob and coir and checked their TCE degradation abilities. Profiles of TCE degradation by
immobilized R. gordoniae P3 and immobilized activated sludge on comcob and coir were depicted in Figure 1. After 3
weeks of incubation, TCE was degraded 94%, 98%, 94% and 60% by immobilized P3 on corncob (ICC-P3), immobilized
P3 on coir (ICO-P3), immobilized activated sludge on comcob (ICC-AS) and immobilized activated sludge on coir (ICO-
AS), respectively, which were higher than the percentage of removal by free cells. Results implied that immobilization
technique improved the degradation of TCE comparing to free cells. A porous structure of support materials could
enhance adsorption capacity and diffusion of contaminant or substrate to the immobilized cells might be responsible for
this trend [11, 14]. Similar results were reported by Pattanasupong et al. [10] who founded that microbial consortium
immobilized on loofa sponge and coconut fiber degraded carbendazim higher than free cells approximately 12%.

—&— ICC-P3

—O— ICC-AS
120 —w— ICO-P3

—&— |CO-AS
—-— P3
—0O— AS
—#— Control

% TCE remaining

Time (days)

Figure 1 Degradation of TCE in soil microcosms (ICC= Immobilized cell on corncob,
ICO= Immobilized cell on coir, P3= Rhodococcus gordoniae P3, and AS= Activated sludge)
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Toluene degrading bacteria produce oxygenase which is a broad-substrate enzyme that could transform TCE
into less toxic compounds. Growth of toluene degrading bacteria were used to indicate the survival of augmented bacteria
in different soil microcosms as well as to represent population of TCE degrader in soil which was observed as shown in
Table 2. Cell numbers of TCE degrader in soil, estimated by number of toluene degrading bacteria, were approximately
107-10° cells/g soil throughout 21 days of incubation. The cell numbers in soils inoculated with immobilized R. gordoniae
P3 and immobilized activated sludge on comcob and coir were higher than in soil inoculated with free cells at the end of
incubation (Table 2). In addition, cell numbers in support material did not markedly decreased throughout the experiment
(Table 3). These results suggested that there was a growth of cells immobilized on support materials, however, the porous
space in support materials was limited resulting in leakage of the cells from support materials into soil. Kumar and Das
[15] reported a similar finding in which the daughter cell produced by binary fission of the immobilized of Enterobactor
cloacae II'T-BT 08 leaked to the culture media when there was no free space on the porous support materials. In this work,
we speculated that cells were immobilized on support materials by physical absorption due to electrostatic forces or by
covalent binding between cell membrane and support materials. Thus, there were no barriers between cells and soil
leading to a possibility of cell detachment and relocation [16].

Table 2 Cell number of TCE degrader in soil microcosms

In seil (x10" CFU/g soil)
Time Control Free cell Immobilized cell
(days) (without P3 AS
inoculum) £ = Corncob Coir Corncob Coir
0 6.40 5.77 7.57 5.43 8.30 2.48 5.67
3 1.43 11.5 5.59 20.8 20.7 25.2 9.25
5 1.73 23.9 320 56.9 3.70 243 9.67
7 8.03 51.7 13.5 153.0 9.00 25.8 11.1
14 5.27 7.30 8.20 316 5.70 29.0 11.6
21 6.73 5.53 5.23 380 7.30 75.0 15.6

A capability of corncob and coir as support materials was evaluated. These two materials adsorbed cells and
attached cells into their porous. Advantages of immobilization by adsorption method is a simple in application and no
chemical reagent was used [17]. Cell survivals in each support materials were presented in Table 3. Results revealed that
cell numbers in support materials did not decrease overtime of incubation. This may due to the survival and stability of
cells could be improved by immobilization technique. Results implied that corncob and coir were suitable support
materials to immobilize both P3 and activated sludge. Porosity of corncob and coir might provide air through the soil, thus
prolong the survival and growth of bacteria [14]. Moreover, the support materials might protect cells from predation and

contaminant toxicity results in a better survival of immobilized cells than free cells [18, 19].

&
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Table 3 Cell number of TCE degrader in support materials

In support material (x10" CFU/g support material)
Time (days) P3 AS

Corncob Coir Corncob Coir
0 5.83 6.7 1.75 6.17
3 6.8 13.5 32.1 11.5
5 201 6.35 244 19.8
7 34 13.8 212 27.1
14 10.1 13.6 84.7 19.8
21 71.73 16.8 534 25.7

Conclusions

Conclusions drawn from this study were as follow:

1) Mixed cultures in activated sludge degraded TCE in soil better than R. gordoniae P3

2) Immobilization technique by adsorbing the cells on comcob and coir could improved cells survival
resulting in the higher percentage of TCE degradation in soil compared to free cell.

3) Corncob and coir could be used as support materials to immobilized cells.
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