CHAPTER IV

CLIQUE PARAMETERS OF THE K-POWER OF LADDERS AND GRIDS

In this chapter, we investigate the values or bounds of the clique covering numbers and the clique partition numbers of the k-power of ladders and grids. In the first and the second sections contain results of ladders, and the other sections contain results of grids.

4.1 Clique Coverings of the k-power of Ladders

First, we recall definitions of a grid and a ladder.

Definition 4.1.1. The cartesian product of G and H, written $G \times H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting (u, v) adjacent to (u', v') if and only if u = u' and $vv' \in E(H)$, or v = v' and $uu' \in E(G)$.

Definition 4.1.2. The *m*-by-*n grid* is the cartesian product $P_m \times P_n$. In case m = 2, $P_2 \times P_n$ is called a *ladder*.

Next, we find the values of the clique covering numbers of the k-power of ladders.

Lemma 4.1.3. For $n, k \in \mathbb{N}$ where $2 \le k < n$,

$$cc((P_2 \times P_n)^k) \ge 2(n-k) + 2.$$

Proof. Let $V(P_2 \times P_n) = \{(i, j) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n\}$ and $E(P_2 \times P_n) = \{(i, j)(i, j + 1) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n - 1\} \cup \{(1, j)(2, j) \mid j = 1, 2, ..., n\}.$

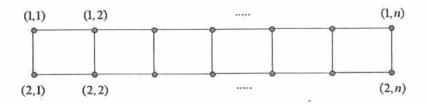


Figure 4.1: $P_2 \times P_n$

Let $I_k = \{(i, j)(i, j+k) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n-k\} \cup \{(1, 1)(2, 1), (1, n)(2, n)\}.$ Then I_k is a subset of $E((P_2 \times P_n)^k)$ and $|I_k| = 2(n-k) + 2$.

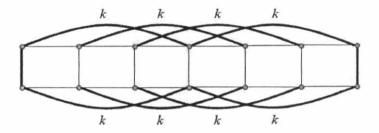


Figure 4.2: I_k in Lemma 4.1.3

We will next show that I_k is a clique-independent set of $(P_2 \times P_n)^k$. Let $e_1, e_2 \in I_k$ where $e_1 \neq e_2$.

Case 1: $e_1, e_2 \in \{(i, j)(i, j + k) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n - k\}$. Then $e_1 = (i_1, j_1)(i_1, j_1 + k)$ and $e_2 = (i_2, j_2)(i_2, j_2 + k)$ for some $i_1, i_2 \in \{1, 2\}$ and $j_1, j_2 \in \{1, 2, ..., n - k\}$. WLOG, assume $j_1 \leq j_2$. We have that $d_{P_2 \times P_n}((i_1, j_1), (i_2, j_2 + k)) \geq k + 1 > k$. Thus (i_1, j_1) is not adjacent to $(i_2, j_2 + k)$ in $(P_2 \times P_n)^k$.

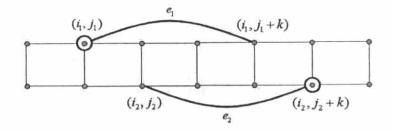


Figure 4.3: Case 1 in Lemma 4.1.3

Case 2: $e_1, e_2 \in \{(1, 1)(2, 1), (1, n)(2, n)\}.$

WLOG, assume that $e_1 = (1,1)(2,1)$ and $e_2 = (1,n)(2,n)$. Since k < n, (1,1) is not adjacent to (2,n) in $(P_2 \times P_n)^k$.

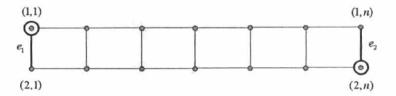


Figure 4.4: Case 2 in Lemma 4.1.3

Case 3: $e_1 \in \{(i,j)(i,j+k) \mid i=1,2 \text{ and } j=1,2,...,n-k\}$ and $e_2 \in \{(1,1)(2,1),(1,n)(2,n)\}.$

Case 3.1 : $e_1 = (i, j)(i, j + k)$ for some $i \in \{1, 2\}$ and $j \in \{1, 2, ..., n - k\}$, and $e_2 = (1, 1)(2, 1)$.

Then for $i' \in \{1,2\} \setminus \{i\}$, $d_{P_2 \times P_n}((i,j+k),(i',1)) = d_{P_2 \times P_n}((i,j+k),(i,1)) + d_{P_2 \times P_n}((1,1),(2,1)) \ge k+1 > k$. Thus (i,j+k) is not adjacent to (i',1) in $(P_2 \times P_n)^k$.

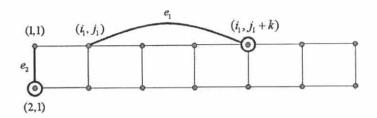


Figure 4.5: Case 3.1 in Lemma 4.1.3

Case 3.2: $e_1 = (i, j)(i, j + k)$ for some $i \in \{1, 2\}$ and $j \in \{1, 2, ..., n - k\}$, and $e_2 = (1, n)(2, n)$.

Similar to case 3.1, for $i' \in \{1, 2\} \setminus \{i\}$, $d_{P_2 \times P_n}((i, j), (i', n)) > k$. Thus (i, j) is not adjacent to (i', n) in $(P_2 \times P_n)^k$.

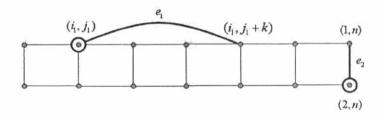


Figure 4.6: Case 3.2 in Lemma 4.1.3

From all cases, for $e_1, e_2 \in I_k$ where $e_1 \neq e_2$, we have that e_1 and e_2 are clique-independent edges of $(P_2 \times P_n)^k$. Thus I_k is a clique-independent set of $(P_2 \times P_n)^k$. Hence $cc((P_2 \times P_n)^k) \geq |I_k| = 2(n-k) + 2$.

Lemma 4.1.4. For $n, k \in \mathbb{N}$ where $2 \le k < n$,

$$cc((P_2 \times P_n)^k) \le 2(n-k) + 2.$$

Proof. Let $V(P_2 \times P_n) = \{(i,j) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n\}$ and $E(P_2 \times P_n) = \{(i,j)(i,j+1) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n-1\} \cup \{(1,j)(2,j) \mid j = 1, 2, ..., n\}.$

Consider subsets of the vertex set of $(P_2 \times P_n)^k$. For i = 1, 2, ..., n - k, let

$$U_i = \{ (1, i), (1, i + 1), (1, i + 2), ..., (1, i + k - 1), (1, i + k),$$

$$(2, i + 1), (2, i + 2), ..., (2, i + k - 1) \}.$$

Note that the distance between two vertices of U_i in $P_2 \times P_n$ is at most k. Thus $A_i := (P_2 \times P_n)^k [U_i]$, an induced subgraph of $(P_2 \times P_n)^k$, is a clique in $(P_2 \times P_n)^k$.

For
$$i = 1, 2, ..., n - k$$
, let

$$V_i = \{ (1, i+1), (1, i+2), ..., (1, i+k-1), (2, i), (2, i+1), (2, i+2), ..., (2, i+k-1), (2, i+k) \}.$$

Note that the distance between two vertices of V_i in $P_2 \times P_n$ is at most k. Thus $B_i := (P_2 \times P_n)^k [V_i]$, an induced subgraph of $(P_2 \times P_n)^k$, is a clique in $(P_2 \times P_n)^k$.

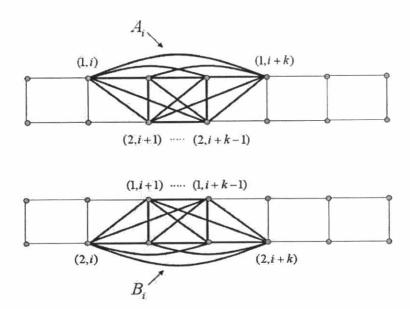


Figure 4.7: A_i and B_i in Lemma 4.1.4

Let $C = \{A_i \mid i = 1, 2, ..., n-k\} \cup \{B_i \mid i = 1, 2, ..., n-k\} \cup \{(1, 1)(2, 1), (1, n)(2, n)\}.$ Then |C| = 2(n - k) + 2. We claim that C is a clique covering of $(P_2 \times P_n)^k$. Let $e \in E((P_2 \times P_n)^k)$. Then $e = (i_1, j_1)(i_2, j_2)$ for some $i_1, i_2 \in \{1, 2\}$ and $j_1, j_2 \in \{1, 2, ..., n\}$.

Case 1:
$$e = (1, j)(2, j)$$
 where $j \in \{1, 2, ..., n\}$.
If $j = 1$ or n , then $e \in \{(1, 1)(2, 1), (1, n)(2, n)\}$.
If $2 \le j \le n - k$, then $e \in E(A_{j-1})$.
If $n - k + 1 \le j \le n - 1$, then $e \in E(A_{n-k})$.

Case 2:
$$e = (i_1, j_1)(i_2, j_2)$$
 where $j_1 < j_2$.

Since $e \in E((P_2 \times P_n)^k)$, the distance between (i_1, j_1) and (i_2, j_2) in $P_2 \times P_n$ is at most k.

Case 2.1:
$$i_1 = 1$$
.
If $1 \le j_1 \le n - k$, then $e \in E(A_{j_1})$.
If $n - k < j_1 \le n - 1$ and $j_2 \ne n$, then $e \in E(A_{n-k})$.
If $n - k < j_1 \le n - 1$ and $j_2 = n$, then $e \in E(B_{n-k})$.

Case 2.2:
$$i_1 = 2$$
.
If $1 \le j_1 \le n - k$, then $e \in E(B_{j_1})$.
If $n - k < j_1 \le n - 1$ and $j_2 \ne n$, then $e \in E(B_{n-k})$.
If $n - k < j_1 \le n - 1$ and $j_2 = n$, then $e \in E(A_{n-k})$.

By all cases, we can conclude that \mathcal{C} is a clique covering of $(P_2 \times P_n)^k$. Hence $cc((P_2 \times P_n)^k) \leq |\mathcal{C}| = 2(n-k) + 2$.

In the next theorem, we conclude the values of the clique covering numbers of the k-power of ladders.

Theorem 4.1.5. For $n, k \in \mathbb{N}$,

$$cc((P_2 \times P_n)^k) = \begin{cases} 1 & \text{if } k \ge n, \\ 2(n-k)+2 & \text{if } 2 \le k < n, \\ 3n-2 & \text{if } k = 1. \end{cases}$$

Proof. Case $1: k \geq n$.

Since $diam(P_2 \times P_n) = n$, we have that $(P_2 \times P_n)^k$ is a complete graph. Hence $cc((P_2 \times P_n)^k) = 1$.

Case $2: 2 \leq k < n$.

By Lemma 4.1.3 and Lemma 4.1.4, $cc((P_2 \times P_n)^k) = 2(n-k) + 2$.

Case 3: k = 1.

Since
$$P_2 \times P_n$$
 is K_3 -free, $cc(P_2 \times P_n) = |E(P_2 \times P_n)| = 3n - 2$.

4.2 Clique Partitions of the Square of Ladders

We give the number of edges of the square of ladders in the next proposition.

Proposition 4.2.1. For $n \in \mathbb{N}$ where $n \geq 2$,

$$|E((P_2 \times P_n)^2)| = 7n - 8.$$

Proof. Let $V(P_2 \times P_n) = \{(i,j) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n\}$ and $E(P_2 \times P_n) = \{(i,j)(i,j+1) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n-1\} \cup \{(1,j)(2,j) \mid j = 1, 2, ..., n\}.$ Note that $|V((P_2 \times P_n)^2)| = |V((P_2 \times P_n))| = 2n.$ For $v \in V((P_2 \times P_n)^2)$,

$$d_{(P_2 \times P_n)^2}(v) = \begin{cases} 4, & \text{if } v \in \{(1,1), (2,1), (1,n), (2,n)\}, \\ 6, & \text{if } v \in \{(1,2), (2,2), (1,n-1), (2,n-1)\}, \\ 7, & \text{otherwise.} \end{cases}$$

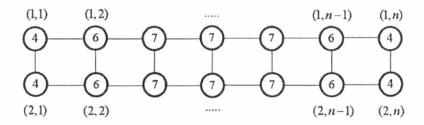


Figure 4.8: Degrees of vertices of $(P_2 \times P_n)^2$

Thus

$$\sum_{v \in V((P_2 \times P_n)^2)} d(v) = 4(4) + 6(4) + 7(2n - 4 - 4)$$
$$= 16 + 24 + 14n - 56$$
$$= 14n - 16.$$

Hence

$$|E((P_2 \times P_n)^2)| = \frac{\sum d(v)}{2} = \frac{14n - 16}{2} = 7n - 8.$$

In Theorem 4.2.2, we show bounds of the clique partition numbers of the square of ladders.

Theorem 4.2.2. For $n \in \mathbb{N}$.

- (i) If n = 1 or 2, then $cp((P_2 \times P_n)^2) = 1$.
- (ii) If n = 2r + 1 where $r \ge 1$, then

$$2n-2 \le cp((P_2 \times P_n)^2) \le \frac{5n-3}{2}.$$

(iii) If n = 2r where $r \ge 2$, then

$$2n-2 \le cp((P_2 \times P_n)^2) \le \frac{5n-4}{2}.$$

Proof. Let $V(P_2 \times P_n) = \{(i, j) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n\}$ and $E(P_2 \times P_n) = \{(i, j)(i, j + 1) \mid i = 1, 2 \text{ and } j = 1, 2, ..., n - 1\} \cup \{(1, j)(2, j) \mid j = 1, 2, ..., n\}.$

- (i) Let n=1 or 2. Then $(P_2 \times P_n)^2$ is a complete graph. Hence $cp((P_2 \times P_n)^2) = 1$.
- (ii) Let n = 2r + 1 where $r \ge 1$.

For i = 1, 3, ..., 2r - 1, let $A_i = (P_2 \times P_n)^2 [\{(1, i), (1, i+1), (1, i+2), (2, i+1)\}].$

Then A_i is a copy of K_4 and $|E(A_i)| = 6$.

For
$$i = 1, 3, ..., 2r - 1$$
, let $B_i = (P_2 \times P_n)^2 [\{(2, i), (1, i + 1), (2, i + 2)\}].$

Then B_i is a copy of K_3 and $|E(B_i)| = 3$.

For
$$i = 2, 4, ..., 2r - 2$$
, let $C_i = (P_2 \times P_n)^2 [\{(2, i), (2, i + 1), (2, i + 2)\}].$

Then C_i is a copy of K_3 and $|E(C_i)| = 3$.

By Proposition 4.2.1, $|E((P_2 \times P_n)^2)| = 7n - 8 = 7(2r + 1) - 8 = 14r - 1$.

Let
$$H = (P_2 \times P_n)^2 \setminus [(A_1 + A_3 + \dots + A_{2r-1}) + (B_1 + B_3 + \dots + B_{2r-1}) + (C_2 + C_4 + \dots + C_{2r-2})].$$

Then
$$|E(H)| = (14r - 1) - [(6r) + (3r) + 3(r - 1)] = 2r + 2$$
.

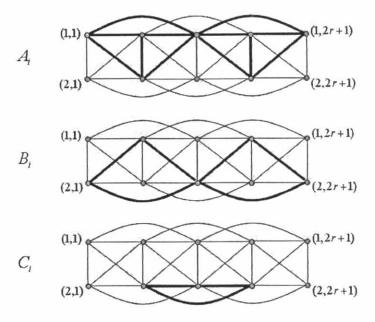


Figure 4.9: A_i , B_i and C_i in Theorem 4.2.2 (ii)

We have that $\{A_1, A_3, ..., A_{2r-1}\} \cup \{B_1, B_3, ..., B_{2r-1}\} \cup \{C_2, C_4, ..., C_{2r-2}\} \cup E(H)$ forms a clique partition \mathcal{P} of $(P_2 \times P_n)^2$ such that

$$|\mathcal{P}| = r + r + (r - 1) + (2r + 2) = 5r + 1.$$

Since $r = \frac{n-1}{2}$, $|\mathcal{P}| = 5(\frac{n-1}{2}) + 1 = \frac{5n-3}{2}$. Thus $cp((P_2 \times P_n)^2) \le \frac{5n-3}{2}$. By Theorem 4.1.5, $cc((P_2 \times P_n)^2) = 2(n-2) + 2 = 2n-2$. We have $cp((P_2 \times P_n)^2) \ge 2n-2$. Therefore, $2n-2 \le cp((P_2 \times P_n)^2) \le \frac{5n-3}{2}$.

(iii) Let n = 2r where $r \ge 2$.

For i = 1, 3, ..., 2r - 3, let $A_i = (P_2 \times P_n)^2 [\{(1, i), (1, i + 1), (1, i + 2), (2, i + 1)\}].$ Then A_i is a copy of K_4 and $|E(A_i)| = 6$.

For i = 1, 3, ..., 2r - 3, let $B_i = (P_2 \times P_n)^2 [\{(2, i), (1, i + 1), (2, i + 2)\}].$

Then B_i is a copy of K_3 and $|E(B_i)| = 3$.

For i = 2, 4, ..., 2r - 4, let $C_i = (P_2 \times P_n)^2 [\{(2, i), (2, i + 1), (2, i + 2)\}].$

Then C_i is a copy of K_3 and $|E(C_i)| = 3$.

Let $D = (P_2 \times P_n)^2[\{(1, 2r - 1), (1, 2r), (2, 2r - 1), (2, 2r)\}].$ Then D is a copy of K_4 and |E(D)| = 6.

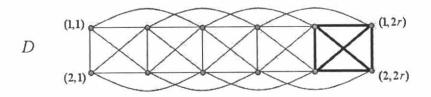


Figure 4.10: D in Theorem 4.2.2 (iii)

By Proposition 4.2.1,
$$|E((P_2 \times P_n)^2)| = 7n - 8 = 7(2r) - 8 = 14r - 8$$
.
Let $H = (P_2 \times P_n)^2 \setminus [(A_1 + A_3 + ... + A_{2r-3}) + (B_1 + B_3 + ... + B_{2r-3}) + (C_2 + C_4 + ... + C_{2r-4}) + D]$.
Then $|E(H)| = (14r - 8) - 6(r - 1) - 3(r - 1) - 3(r - 2) - 6 = 2r + 1$.
We have that $\{A_1, A_3, ..., A_{2r-3}\} \cup \{B_1, B_3, ..., B_{2r-3}\} \cup \{C_2, C_4, ..., C_{2r-4}\}$.
 $|D| \cup E(H)$ forms a clique partition P of $(P_2 \times P_n)^2$ such that $|P| = (r - 1) + (r - 1) + (r - 2) + 1 + (2r + 1) = 5r - 2$.
Since $r = \frac{n}{2}$, $|P| = 5(\frac{n}{2}) - 2 = \frac{5n-4}{2}$. Thus $cp((P_2 \times P_n)^2) \le \frac{5n-4}{2}$.
By Theorem 4.1.5, $cc((P_2 \times P_n)^2) = 2(n - 2) + 2 = 2n - 2$. Hence, $cp((P_2 \times P_n)^2) \ge 2n - 2$. Therefore, $2n - 2 \le cp((P_2 \times P_n)^2) \le \frac{5n-4}{2}$.

In the next section, we investigate values and bounds of the clique covering numbers of the k-power of grids.

4.3 Clique Coverings of the k-power of Grids

In this chapter, we use $V(P_m \times P_n) = \{(i,j) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n\}$ and $E(P_m \times P_n) = \{(i,j)(i,j+1) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n-1\} \cup$ $\{(i,j)(i+1,j) \mid i = 1, 2, ..., m-1 \text{ and } j = 1, 2, ..., n\}.$

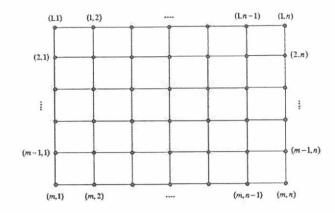


Figure 4.11: $P_m \times P_n$

Remark 4.3.1.

- 1. If m=1 or n=1, then $P_m \times P_n$ is a path. It is done by Theorem 2.1.5.
- 2. If m=2 or n=2, then $P_m \times P_n$ is a ladder. It is done by Theorem 4.1.5.

Remark 4.3.2. For $m, n, k \in \mathbb{N}$.

- 1. If k = 1, then $cc(P_m \times P_n) = |E(P_m \times P_n)| = m(n-1) + n(m-1)$ because $P_m \times P_n$ is K_3 -free.
- 2. If $k \ge m+n-2$, then $(P_m \times P_n)^k$ is a complete graph because $diam(P_m \times P_n) = (m-1) + (n-1) = m+n-2. \text{ Hence } cc((P_m \times P_n)^k) = 1.$

In Lemma 4.3.3 and Lemma 4.3.4, we give lower bounds of the clique covering numbers of the k-power of grids where $k < min\{m, n\}$.

Lemma 4.3.3. For $m, n, k \in \mathbb{N}$ where $k < \min\{m, n\}$ and k is odd,

$$cc((P_m \times P_n)^k) \ge 2mn - k(m+n).$$

Proof. Let $A_k = \{(i,j)(i,j+k) \mid i=1,2,...,m \text{ and } j=1,2,...,n-k\}$ and $B_k = \{(i,j)(i+k,j) \mid i=1,2,...,m-k \text{ and } j=1,2,...,n\}$. Let $I_k = A_k \cup B_k$. Then I_k is a subset of $E((P_m \times P_n)^k)$ and $|I_k| = m(n-k) + n(m-k) = 2mn - k(m+n)$. Next, we show that I_k is a clique-independent set of $(P_m \times P_n)^k$. Let $e_1, e_2 \in I_k$ where $e_1 \neq e_2$.

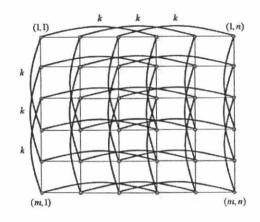


Figure 4.12: I_k in Lemma 4.3.3

Case 1 : $e_1, e_2 \in A_k$.

Then $e_1 = (i_1, j_1)(i_1, j_1 + k)$ and $e_2 = (i_2, j_2)(i_2, j_2 + k)$ for some $i_1, i_2 \in \{1, 2, ..., m\}$ and $j_1, j_2 \in \{1, 2, ..., n - k\}$. WLOG, assume $i_1 \leq i_2$.

Case 1.1 : $j_1 \leq j_2$.

We have $d_{P_m \times P_n}((i_1, j_1), (i_2, j_2 + k)) \ge k + 1 > k$. Thus (i_1, j_1) is not adjacent to $(i_2, j_2 + k)$ in $(P_m \times P_n)^k$. Hence e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

Case 1.2: $j_1 > j_2$.

We have $d_{P_m \times P_n}((i_1, j_1 + k), (i_2, j_2)) \ge k + 1 > k$. Thus $(i_1, j_1 + k)$ is not adjacent to (i_2, j_2) in $(P_m \times P_n)^k$. Hence e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

Case 2: $e_1, e_2 \in B_k$.

Then $e_1=(i_1,j_1)(i_1+k,j_1)$ and $e_2=(i_2,j_2)(i_2+k,j_2)$ for some $i_1,i_2\in\{1,2,...,m-k\}$ and $j_1,j_2\in\{1,2,...,n\}$. WLOG, assume $i_1\leq i_2$. We have

 $d_{P_m \times P_n}((i_1, j_1), (i_2 + k, j_2)) \ge k + 1 > k$. Thus (i_1, j_1) is not adjacent to $(i_2 + k, j_2)$ in $(P_m \times P_n)^k$. Hence e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

Case 3: $e_1 \in A_k$ and $e_2 \in B_k$.

Then $e_1 = (i_1, j_1)(i_1, j_1 + k)$ for some $i_1 \in \{1, 2, ..., m\}$ and $j_1 \in \{1, 2, ..., n - k\}$ and $e_2 = (i_2, j_2)(i_2 + k, j_2)$ for some $i_2 \in \{1, 2, ..., m - k\}$ and $j_2 \in \{1, 2, ..., n\}$.

$$\begin{aligned} &\text{Case } \mathbf{3.1}: \ i_1 \leq i_2 + \left(\frac{k-1}{2}\right). \\ &\text{If } j_1 < j_2 - \left(\frac{k-1}{2}\right), \text{ then } d_{P_m \times P_n}((i_1, j_1), (i_2 + k, j_2)) \\ &= d_{P_m \times P_n}((i_1, j_1), (i_1, j_2)) + d_{P_m \times P_n}((i_1, j_2), (i_2 + k, j_2)) \\ &= (j_2 - j_1) + (i_2 + k - i_1) > \left(\frac{k-1}{2}\right) + \left(k - \left(\frac{k-1}{2}\right)\right) = k. \\ &\text{Thus } (i_1, j_1) \text{ is not adjacent to } (i_2 + k, j_2) \text{ in } (P_m \times P_n)^k. \\ &\text{If } j_1 \geq j_2 - \left(\frac{k-1}{2}\right), \text{ then } d_{P_m \times P_n}((i_1, j_1 + k), (i_2 + k, j_2)) \\ &= d_{P_m \times P_n}((i_1, j_1 + k), (i_1, j_2)) + d_{P_m \times P_n}((i_1, j_2), (i_2 + k, j_2)) \\ &= (j_1 + k - j_2) + (i_2 + k - i_1) \geq (k - \left(\frac{k-1}{2}\right)) + (k - \left(\frac{k-1}{2}\right)) = k + 1 > k. \end{aligned}$$

$$\text{Thus } (i_1, j_1 + k) \text{ is not adjacent to } (i_2 + k, j_2) \text{ in } (P_m \times P_n)^k.$$

Hence e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

Case 3.2:
$$i_1 > i_2 + (\frac{k-1}{2})$$
.

Similar to case 3.1, e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

From all cases, we can conclude that I_k is a clique-independent set of $(P_m \times P_n)^k$. Hence, $cc((P_m \times P_n)^k) \ge |I_k| = 2mn - k(m+n)$.

Next, we show lower bounds of the clique covering numbers of the k-power of grids where $k < min\{m, n\}$ and k is even.

Lemma 4.3.4. For $m, n, k \in \mathbb{N}$ where $k < \min\{m, n\}$ and k is even,

$$cc((P_m \times P_n)^k) \ge mn - k^2.$$

Proof. Let $A_k = \{(i,j)(i,j+k) \mid i=1,2,...,m \text{ and } j=1,2,...,n-k\}$ and $B_k = \{(i,j)(i+k,j) \mid i=1,2,...,m-k \text{ and } j=1,2,...,\frac{k}{2},n-\frac{k}{2}+1,n-\frac{k}{2}+2,...,n\}.$ Let $I_k = A_k \cup B_k$. Then I_k is a subset of $E((P_m \times P_n)^k)$ and $|I_k| = m(n-k) + k(m-k) = mn-k^2$. We claim that I_k is a clique-independent set of $(P_m \times P_n)^k$. Let $e_1, e_2 \in I_k$ where $e_1 \neq e_2$.

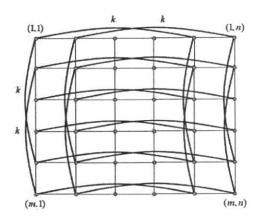


Figure 4.13: I_k in Lemma 4.3.4

Case $1: e_1, e_2 \in A_k$.

Similar to proof of case 1 in Lemma 4.3.3.

Case 2: $e_1, e_2 \in B_k$.

Similar to proof of case 2 in Lemma 4.3.3.

Case 3: $e_1 \in A_k$ and $e_2 \in B_k$.

Then $e_1 = (i_1, j_1)(i_1, j_1 + k)$ for some $i_1 \in \{1, 2, ..., m\}$ and $j_1 \in \{1, 2, ..., n - k\}$ and $e_2 = (i_2, j_2)(i_2 + k, j_2)$ for some $i_2 \in \{1, 2, ..., m - k\}$ and $j_2 \in \{1, 2, ..., \frac{k}{2}, n - \frac{k}{2} + 1, n - \frac{k}{2} + 2, ..., n\}$.

Case 3.1:
$$i_1 \leq i_2 + \frac{k}{2}$$
.

If
$$j_2 \in \{1, 2, ..., \frac{k}{2}\}$$
, then $d_{P_m \times P_n}((i_1, j_1 + k), (i_2 + k, j_2))$

$$=d_{P_m\times P_n}((i_1,j_1+k),(i_1,j_2))+d_{P_m\times P_n}((i_1,j_2),(i_2+k,j_2))$$

$$= (j_1 + k - j_2) + (i_2 + k - i_1) \ge (1 + k - \frac{k}{2}) + (k - \frac{k}{2}) = k + 1 > k.$$

Thus $(i_1, j_1 + k)$ is not adjacent to $(i_2 + k, j_2)$ in $(P_m \times P_n)^k$.

If
$$j_2 \in \{n - \frac{k}{2} + 1, n - \frac{k}{2} + 2, ..., n\}$$
, then $d_{P_m \times P_n}((i_1, j_1), (i_2 + k, j_2))$

$$=d_{P_m\times P_n}((i_1,j_1),(i_1,j_2))+d_{P_m\times P_n}((i_1,j_2),(i_2+k,j_2))$$

$$= (j_2 - j_1) + (i_2 + k - i_1) \ge ((n - \frac{k}{2} + 1) - (n - k)) + (k - \frac{k}{2}) = k + 1 > k.$$

Thus (i_1, j_1) is not adjacent to $(i_2 + k, j_2)$ in $(P_m \times P_n)^k$.

Hence, e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

Case 3.2: $i_1 > i_2 + \frac{k}{2}$.

Similar to case 3.1, we have that e_1 and e_2 are clique-independent edges of $(P_m \times P_n)^k$.

By all cases, we can conclude that I_k is a clique-independent set of $(P_m \times P_n)^k$. Hence $cc((P_m \times P_n)^k) \ge |I_k| = mn - k^2$.

In the next theorem, we give the values of the clique covering numbers of the square of grids.

Theorem 4.3.5. For $m, n \in \mathbb{N}$ where m, n > 2,

$$cc((P_m \times P_n)^2) = mn - 4.$$

Proof. Recall that $V(P_m \times P_n) = \{(i, j) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n\}$ and $E(P_m \times P_n) = \{(i, j)(i, j + 1) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n - 1\} \cup \{(i, j)(i + 1, j) \mid i = 1, 2, ..., m - 1 \text{ and } j = 1, 2, ..., n\}.$

For
$$j=1,2,..,n-2$$
, let
$$A_j=(P_m\times P_n)^2[\{(1,j),(1,j+1),(1,j+2),(2,j+1)\}] \text{ and }$$

$$B_j=(P_m\times P_n)^2[\{(m,j),(m,j+1),(m,j+2),(m-1,j+1)\}].$$
For $i=1,2,..,m-2$, let
$$C_i=(P_m\times P_n)^2[\{(m,j),(m,j+1),(m,j+2),(m-1,j+1)\}] \text{ and }$$

$$D_i=(P_m\times P_n)^2[\{(m,j),(m,j+1),(m,j+2),(m-1,j+1)\}].$$
For $i=2,3,..,m-1$ and $j=1,2,..,n-2$, let
$$F_{i,j}=(P_m\times P_n)^2[\{(i,j),(i,j+1),(i,j+2),(i-1,j+1),(i+1,j+1)\}].$$
Note that A_j,B_j,C_i,D_i and $F_{i,j}$ defined above are cliques in $(P_m\times P_n)^2$.
Let $\mathcal{C}=\{A_j,B_j\mid j=1,2,...,n-2\}\cup\{C_i,D_i\mid i=1,2,...,m-2\}\cup\{F_{i,j}\mid i=2,3,...,m-1 \text{ and } j=1,2,...,n-2\}.$ Then

$$|\mathcal{C}| = 2(n-2) + 2(m-2) + (m-2)(n-2)$$
$$= 2n - 4 + 2m - 4 + mn - 2m - 2n + 4$$
$$= mn - 4.$$

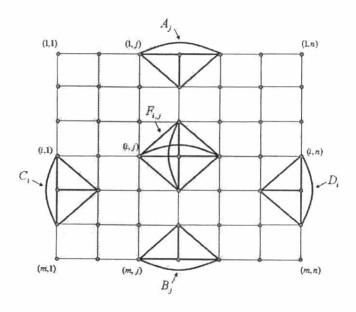


Figure 4.14: C in Theorem 4.3.5

We claim that C is a clique covering of $(P_m \times P_n)^2$. If $e \in E(P_m \times P_n)$. It is easy to see that e is covered by a clique in C. We consider only edges in $(P_m \times P_n)^2 \setminus (P_m \times P_n)$. Let $e \in E((P_m \times P_n)^2 \setminus (P_m \times P_n))$. Then $e = (i_1, j_1)(i_2, j_2)$ for some $i_1, i_2 \in \{1, 2, ..., m\}$ and $j_1, j_2 \in \{1, 2, ..., n\}$. WLOG, assume $i_1 \leq i_2$. Hence the distance between (i_1, j_1) and (i_2, j_2) in $P_m \times P_n$ is 2.

Case 1:
$$i_1 = i_2$$
.
If $i_1 = 1$, then $e \in E(A_{j_1})$.
If $2 \le i_1 \le m - 1$, then $e \in E(F_{i_1,j_1})$.
If $i_1 = m$, then $e \in E(B_{j_1})$.

Case 2:
$$i_1 < i_2$$
.

Case 2.1: $j_1 = j_2$.

If $j_1 = 1$, then $e \in E(C_{j_1})$.

If $2 \le j_1 \le n - 1$, then $e \in E(F_{i_1+1,j_1-1})$.

If $j_1 = n$, then $e \in E(D_{j_1})$.

Case 2.2:
$$j_1 > j_2$$
.

If $1 \le i_1 \le m - 2$ and $2 \le j_1 \le n - 1$, then $e \in E(F_{i_2,j_2})$.

If $1 \le i_1 \le m - 2$ and $j_1 = n$, then $e \in E(D_{i_1})$.

If $i_1 = m - 1$ and $2 \le j_1 \le n - 1$, then $e \in E(B_{j_2})$.

If $i_1 = m - 1$ and $j_1 = n$, then $e \in E(F_{m-1,n-2})$.

Case 2.3 : $j_1 < j_2$.

If
$$1 \le i_1 \le m - 2$$
 and $j_1 = 1$, then $e \in E(C_{i_1})$.

If
$$1 \le i_1 \le m-2$$
 and $2 \le j_1 \le n-1$, then $e \in E(F_{i_1+1,j_1-1})$.

If
$$i_1 = m - 1$$
 and $j_1 = 1$, then $e \in E(F_{m-1,1})$.

If
$$i_1 = m - 1$$
 and $2 \le j_1 \le n - 1$, then $e \in E(B_{j_1-1})$.

From all cases, we can conclude that \mathcal{C} is a clique covering of $(P_m \times P_n)^2$. Hence $cc((P_m \times P_n)^2) \leq |\mathcal{C}| = mn - 4$. By Lemma 4.3.4, $cc((P_m \times P_n)^2) \geq mn - 4$. Therefore, $cc((P_m \times P_n)^2) = mn - 4$.

4.4 Clique Partitions of the Square of Grids

Remark 4.4.1.

- 1. If m = 1 or n = 1, then $P_m \times P_n$ is a path. It is done by Theorem 2.1.6.
- 2. If m=2 or n=2, then $P_m \times P_n$ is a ladder. Bounds of clique partition numbers of $(P_m \times P_n)^2$ follow from Theorem 4.2.2.

The number of edges of the square of grids is shown in the next proposition.

Proposition 4.4.2. For $m, n \in \mathbb{N}$ where $m, n \geq 2$,

$$|E((P_m \times P_n)^2)| = 6mn - 5m - 5n + 2.$$

Proof. Recall that $V((P_m \times P_n)^2) = V(P_m \times P_n) = \{(i, j) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n\}$. For $v \in V((P_m \times P_n)^2)$,

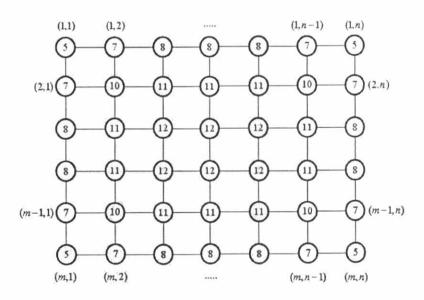


Figure 4.15: Degrees of vertices of $(P_m \times P_n)^2$

Thus

$$\sum_{v \in V((P_m \times P_n)^2)} d(v) = 5(4) + 7(8) + 8[2(m-4) + 2(n-4)] + 10(4)$$

$$+ 11[2(m-4) + 2(n-4)] + 12(m-4)(n-4)$$

$$= 20 + 56 + 40 + 19[2(m-4) + 2(n-4)] + 12(mn - 4m - 4m + 16)$$

$$= 12mn - 10m - 10n + 4.$$

Hence

$$|E((P_m \times P_n)^2)| = \frac{\sum d(v)}{2} = \frac{12mn - 10m - 10n + 4}{2} = 6mn - 5m - 5n + 2.$$

Next, we give bounds of the clique partition numbers of the square of grids.

Theorem 4.4.3. For $m, n \in \mathbb{N}$ where m, n > 2.

(i) If
$$m = 2r_1 + 1$$
 and $n = 2r_2 + 1$ where $r_1, r_2 \ge 1$, then

$$mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{5m}{2} - 2n + \frac{9}{2}.$$

(ii) If $m = 2r_1 + 1$ and $n = 2r_2$ where $r_1 \ge 1$ and $r_2 \ge 2$, then

$$mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{3m}{2} - 2n + \frac{5}{2}$$

(iii) If $m=2r_1$ and $n=2r_2+1$ where $r_1\geq 2$ and $r_2\geq 1$, then

$$mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{3n}{2} - 2m + \frac{5}{2}.$$

(iv) If $m = 2r_1$ and $n = 2r_2$ where $r_1, r_2 \ge 2$, then

$$mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{3m}{2} - \frac{n}{2} - 3.$$

Proof. Recall that $V(P_m \times P_n) = \{(i, j) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n\}$ and $E(P_m \times P_n) = \{(i, j)(i, j + 1) \mid i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n - 1\} \cup \{(i, j)(i + 1, j) \mid i = 1, 2, ..., m - 1 \text{ and } j = 1, 2, ..., n\}.$

(i) Let $m = 2r_1 + 1$ and $n = 2r_2 + 1$ where $r_1, r_2 \ge 1$.

For
$$i = 1, 3, ..., 2r_1 - 1$$
 and $j = 2, 4, ..., 2r_2$, let

$$A_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i+1,j-1), (i+1,j), (i+1,j+1), (i+2,j)\}].$$

We have that $A_{i,j}$ is a copy of K_5 and $|E(A_{i,j})| = 10$.

For
$$i = 1, 3, ..., 2r_1 - 1$$
 and $j = 3, 5, ..., 2r_2 - 1$, let

$$B_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i+1,j-1), (i+1,j+1), (i+2,j)\}].$$

We have that $B_{i,j}$ is a copy of K_4 and $|E(B_{i,j})| = 6$.

For
$$i = 1, 3, ..., 2r_1 + 1$$
 and $j = 1, 3, ..., 2r_2 - 1$, let

$$C_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i,j+1), (i,j+2)\}].$$

We have that $C_{i,j}$ is a copy of K_3 and $|E(C_{i,j})| = 3$.

For $i = 1, 3, ..., 2r_1 - 1$, let

$$D1_i = (P_m \times P_n)^2[\{(i,1), (i+1,2), (i+2,1)\}]$$
 and

$$D2_i = (P_m \times P_n)^2 [\{(i, 2r_2 + 1), (i + 1, 2r_2), (i + 2, 2r_2 + 1)\}].$$

We have that $D1_i$ and $D2_i$ are copies of K_3 and $|E(D1_i)| = |E(D2_i)| = 3$.

For $i = 2, 4, ..., 2r_1 - 2$, let

$$E1_i = (P_m \times P_n)^2[\{(i,1), (i+1,1), (i+2,1)\}]$$
 and

$$E2_i = (P_m \times P_n)^2 [\{(i, 2r_2 + 1), (i + 1, 2r_2 + 1), (i + 2, 2r_2 + 1)\}].$$

We have that $E1_i$ and $E2_i$ are copies of K_3 and $|E(E1_i)| = |E(E2_i)| = 3$.

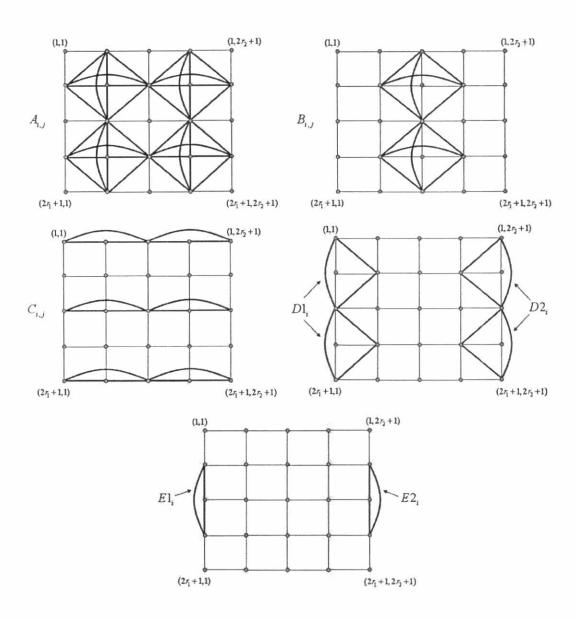


Figure 4.16: Cliques of $(P_m \times P_n)^2$ in Theorem 4.4.3 (i)

By Proposition 4.4.2,

$$|E((P_m \times P_n)^2)| = 6mn - 5m - 5n + 2$$
(since $m = 2r_1 + 1$, $n = 2r_2 + 1$) = $6(2r_1 + 1)(2r_2 + 1) - 5(2r_1 + 1) - 5(2r_2 + 1) + 2$

$$= 24r_1r_2 + 2r_1 + 2r_2 - 2.$$

Let

$$H = (P_m \times P_n)^2 \setminus \left[\bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=2,4,\dots,2r_2}} A_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=3,5,\dots,2r_2-1}} B_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1+1\\j=1,3,\dots,2r_2-1}} C_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1+1\\j=1,3,\dots,2r_2-1}} C_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=1,3,\dots,2r_1-2}} E_{1,i} + \bigcup_{\substack{i=2,4,\dots,2r_1-2\\i=2,4,\dots,2r_1-2}} E_{2,i} \right].$$

Then

$$|E(H)| = (24r_1r_2 + 2r_1 + 2r_2 - 2) - [(10r_1r_2) + 6(r_1)(r_2 - 1) + 3(r_1 + 1)(r_2) + 2(3r_1) + 2(3(r_1 - 1))]$$

$$= (24r_1r_2 + 2r_1 + 2r_2 - 2) - (19r_1r_2 + 6r_1 + 3r_2 - 6)$$

$$= 5r_1r_2 - 4r_1 - r_2 + 4.$$

We have that

$$\bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=2,4,\dots,2r_2}} \{A_{i,j}\} \ \cup \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=3,5,\dots,2r_2-1}} \{B_{i,j}\} \ \cup \bigcup_{\substack{i=1,3,\dots,2r_1+1\\j=1,3,\dots,2r_2-1}} \{C_{i,j}\} \ \cup \bigcup_{i=1,3,\dots,2r_1-1} \{D1_i,D2_i\} \ \cup \bigcup_{i=1,3,\dots,2r_1-1} \{E1_i,E2_i\} \ \cup E(H)$$

forms a clique partition \mathcal{P} of $(P_m \times P_n)^2$ such that

$$|\mathcal{P}| = (r_1 r_2) + (r_1)(r_2 - 1) + (r_1 + 1)(r_2) + (2r_1) + 2(r_1 - 1) + (5r_1 r_2 - 4r_1 - r_2 + 4)$$

$$= (3r_1 r_2 + 3r_1 + r_2 - 2) + (5r_1 r_2 - 4r_1 - r_2 + 4)$$

$$= 8r_1 r_2 - r_1 + 2.$$

Since
$$r_1 = \frac{m-1}{2}$$
 and $r_2 = \frac{n-1}{2}$,

$$|\mathcal{P}| = 8(\frac{m-1}{2})(\frac{n-1}{2}) - (\frac{m-1}{2}) + 2 = 2mn - \frac{5m}{2} - 2n + \frac{9}{2}.$$

Thus $cp((P_m \times P_n)^2) \le 2mn - \frac{5m}{2} - 2n + \frac{9}{2}$.

By Theorem 4.3.5, $cc((P_m \times P_n)^2) = mn - 4$. Hence $cp((P_m \times P_n)^2) \ge mn - 4$.

Therefore, $mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{5m}{2} - 2n + \frac{9}{2}$.

(ii) Let $m = 2r_1 + 1$ and $n = 2r_2$ where $r_1 \ge 1$ and $r_2 \ge 2$.

For $i = 1, 3, ..., 2r_1 - 1$ and $j = 2, 4, ..., 2r_2 - 2$, let

$$A_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i+1,j-1), (i+1,j), (i+1,j+1), (i+2,j)\}].$$

We have that $A_{i,j}$ is a copy of K_5 and $|E(A_{i,j})| = 10$.

For $i = 1, 3, ..., 2r_1 - 1$ and $j = 3, 5, ..., 2r_2 - 1$, let

$$B_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i+1,j-1), (i+1,j+1), (i+2,j)\}].$$

We have that $B_{i,j}$ is a copy of K_4 and $|E(B_{i,j})| = 6$.

For $i = 1, 3, ..., 2r_1 + 1$ and $j = 1, 3, ..., 2r_2 - 3$, let

$$C_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i,j+1), (i,j+2)\}].$$

We have that $C_{i,j}$ is a copy of K_3 and $|E(C_{i,j})| = 3$.

For $i = 1, 3, ..., 2r_1 - 1$, let

$$D1_i = (P_m \times P_n)^2[\{(i,1), (i+1,2), (i+2,1)\}]$$
 and

$$D2_i = (P_m \times P_n)^2 [\{(i, 2r_2), (i+1, 2r_2-1), (i+1, 2r_2), (i+2, 2r_2)\}].$$

We have that $D1_i$ and $D2_i$ are copies of K_3 and K_4 , respectively.

Thus $|E(D1_i)| = 3$ and $|E(D2_i)| = 6$.

For $i = 2, 4, ..., 2r_1 - 2$, let

$$E_i = (P_m \times P_n)^2[\{(i,1), (i+1,1), (i+2,1)\}]$$
 and

We have that E_i is a copy of K_3 and $|E(E_i)| = 3$.

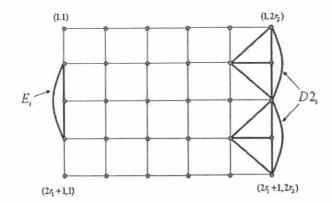


Figure 4.17: E_i and $D2_i$ in Theorem 4.4.3 (ii)

By Proposition 4.4.2,

$$|E((P_m \times P_n)^2)| = 6mn - 5m - 5n + 2$$
(since $m = 2r_1 + 1$, $n = 2r_2$) = $6(2r_1 + 1)(2r_2) - 5(2r_1 + 1) - 5(2r_2) + 2$

$$= 24r_1r_2 - 10r_1 + 2r_2 - 3.$$

Let

$$H = (P_m \times P_n)^2 \setminus \left[\bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=2,4,\dots,2r_2-2}} A_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=3,5,\dots,2r_2-1}} B_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1+1\\j=1,3,\dots,2r_2-3}} C_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1+1\\j=1,3,\dots,2r_2-3}} D1_i + \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=1,3,\dots,2r_1-1}} D2_i + \bigcup_{\substack{i=2,4,\dots,2r_1-2\\i=2,4,\dots,2r_1-2}} E_i \right].$$

Then

$$|E(H)| = (24r_1r_2 - 10r_1 + 2r_2 - 3) - [10(r_1)(r_2 - 1) + 6(r_1)(r_2 - 1) + 3(r_1 + 1)(r_2 - 1) + (3r_1) + (6r_1) + 3(r_1 - 1)]$$

$$= (24r_1r_2 - 10r_1 + 2r_2 - 3) - (19r_1r_2 - 7r_1 + 3r_2 - 6)$$

$$= 5r_1r_2 - 3r_1 - r_2 + 3.$$

We have that

$$\bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=2,4,\dots,2r_2-2}} \{A_{i,j}\} \cup \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=3,5,\dots,2r_2-1}} \{B_{i,j}\} \cup \bigcup_{\substack{i=1,3,\dots,2r_1+1\\j=1,3,\dots,2r_2-3}} \{C_{i,j}\} \cup \bigcup_{i=1,3,\dots,2r_1-1} \{D1_i,D2_i\} \cup \bigcup_{i=1,3,\dots,2r_1-1} \{E_i\} \cup E(H)$$

forms a clique partition \mathcal{P} of $(P_m \times P_n)^2$ such that

$$|\mathcal{P}| = (r_1)(r_2 - 1) + (r_1)(r_2 - 1) + (r_1 + 1)(r_2 - 1) + 2(r_1)$$

$$+ (r_1 - 1) + (5r_1r_2 - 3r_1 - r_2 + 3)$$

$$= (3r_1r_2 + r_2 - 2) + (5r_1r_2 - 3r_1 - r_2 + 3)$$

$$= 8r_1r_2 - 3r_1 + 1.$$

Since $r_1 = \frac{m-1}{2}$ and $r_2 = \frac{n}{2}$,

$$|\mathcal{P}| = 8\left(\frac{m-1}{2}\right)\left(\frac{n}{2}\right) - 3\left(\frac{m-1}{2}\right) + 1 = 2mn - \frac{3m}{2} - 2n + \frac{5}{2}$$

Thus $cp((P_m \times P_n)^2) \le 2mn - \frac{3m}{2} - 2n + \frac{5}{2}$.

By Theorem 4.3.5, $cc((P_m \times P_n)^2) = mn - 4$. Hence $cp((P_m \times P_n)^2) \ge mn - 4$.

Therefore, $mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{3m}{2} - 2n + \frac{5}{2}$.

- (iii) Let $m = 2r_1$ and $n = 2r_2 + 1$ where $r_1 \ge 2$ and $r_2 \ge 1$. Similar to case (ii).
- (iv) Let $m=2r_1$ and $n=2r_2$ where $r_1,r_2\geq 2$. For $i=1,3,...,2r_1-3$ and $j=2,4,...,2r_2-2$, let $A_{i,j}=(P_m\times P_n)^2[\{(i,j),(i+1,j-1),(i+1,j),(i+1,j+1),(i+2,j)\}].$ We have that $A_{i,j}$ is a copy of K_5 and $|E(A_{i,j})|=10$. For $i=1,3,...,2r_1-3$ and $j=3,5,...,2r_2-1$, let

 $B_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i+1,j-1), (i+1,j+1), (i+2,j)\}].$

We have that $B_{i,j}$ is a copy of K_4 and $|E(B_{i,j})| = 6$.

For
$$i = 1, 3, ..., 2r_1 - 1$$
 and $j = 1, 3, ..., 2r_2 - 3$, let
$$C_{i,j} = (P_m \times P_n)^2 [\{(i,j), (i,j+1), (i,j+2)\}].$$

We have that $C_{i,j}$ is a copy of K_3 and $|E(C_{i,j})| = 3$.

For
$$i = 1, 3, ..., 2r_1 - 3$$
, let

$$D1_i = (P_m \times P_n)^2[\{(i,1), (i+1,2), (i+2,1)\}]$$
 and

$$D2_i = (P_m \times P_n)^2 [\{(i, 2r_2), (i+1, 2r_2 - 1), (i+1, 2r_2), (i+2, 2r_2)\}].$$

We have that $D1_i$ and $D2_i$ are copies of K_3 and K_4 , respectively.

Thus
$$|E(D1_i)| = 3$$
 and $|E(D2_i)| = 6$.

For
$$i = 2, 4, ..., 2r_1 - 2$$
, let

$$E_i = (P_m \times P_n)^2[\{(i,1), (i+1,1), (i+2,1)\}]$$
 and

We have that E_i is a copy of K_3 and $|E(E_i)| = 3$.

For
$$j = 1, 3, ..., 2r_2 - 3$$
, let

$$F_i = (P_m \times P_n)^2 [\{(2r_1, j), (2r_1 - 1, j + 1), (2r_1, j + 1), (2r_1, j + 2)\}]$$

We have that F_j is a copy of K_4 and $|E(F_j)| = 6$.

Let
$$Z = (P_m \times P_n)^2 [\{(2r_1 - 1, 2r_2 - 1), (2r_1 - 1, 2r_2), (2r_1, 2r_2 - 1), (2r_1, 2r_2)\}].$$

We have that Z is a copy of K_4 and |E(Z)| = 6.

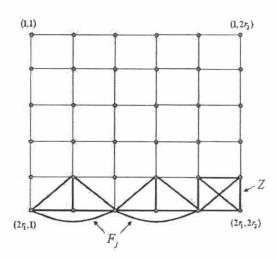


Figure 4.18: F_j and Z in Theorem 4.4.3 (iv)

By Proposition 4.4.2,

$$|E((P_m \times P_n)^2)| = 6mn - 5m - 5n + 2$$
(since $m = 2r_1, n = 2r_2$) = $6(2r_1)(2r_2) - 5(2r_1) - 5(2r_2) + 2$

$$= 24r_1r_2 - 10r_1 - 10r_2 + 2.$$

Let

$$H = (P_m \times P_n)^2 \setminus \left[\bigcup_{\substack{i=1,3,\dots,2r_1-3\\j=2,4,\dots,2r_2-2}} A_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1-3\\j=3,5,\dots,2r_2-1}} B_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=1,3,\dots,2r_2-3}} C_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_1-1\\j=1,3,\dots,2r_2-3}} C_{i,j} + \bigcup_{\substack{i=1,3,\dots,2r_2-3\\j=1,3,\dots,2r_2-3}} C_{i,j} + Z \right].$$

Then

$$|E(H)| = (24r_1r_2 - 10r_1 - 10r_2 + 2) - [10(r_1 - 1)(r_2 - 1) + 6(r_1 - 1)(r_2 - 1) + 3(r_1)(r_2 - 1) + 3(r_1 - 1) + 6(r_1 - 1) + 3(r_1 - 1) + 6(r_2 - 1) + 6]$$

$$= (24r_1r_2 - 10r_1 - 10r_2 + 2) - (19r_1r_2 - 7r_1 - 10r_2 + 4)$$

$$= 5r_1r_2 - 3r_1 - 2.$$

We have that

$$\bigcup_{\substack{i=1,3,\ldots,2r_1-3\\j=2,4,\ldots,2r_2-2}} \{A_{i,j}\} \ \cup \bigcup_{\substack{i=1,3,\ldots,2r_1-3\\j=3,5,\ldots,2r_2-1}} \{B_{i,j}\} \ \cup \bigcup_{\substack{i=1,3,\ldots,2r_1-1\\j=1,3,\ldots,2r_2-3}} \{C_{i,j}\} \ \cup \bigcup_{i=1,3,\ldots,2r_1-3} \{D1_i,D2_i\} \ \cup \bigcup_{i=1,3,\ldots,2r_1-3} \{E_i\} \ \cup \bigcup_{j=1,3,\ldots,2r_2-3} \{F_j\} \ \cup \ \{Z\} \ \cup \ E(H)$$

forms a clique partition \mathcal{P} of $(P_m \times P_n)^2$ such that

$$|\mathcal{P}| = (r_1 - 1)(r_2 - 1) + (r_1 - 1)(r_2 - 1) + (r_1)(r_2 - 1) + 2(r_1 - 1)$$

$$+ (r_1 - 1) + (r_2 - 1) + 1 + (5r_1r_2 - 3r_1 - 2)$$

$$= (3r_1r_2 - r_2 - 1) + (5r_1r_2 - 3r_1 - 2)$$

$$= 8r_1r_2 - 3r_1 - r_2 - 3.$$

Since $r_1 = \frac{m}{2}$ and $r_2 = \frac{n}{2}$,

$$|\mathcal{P}| = 8\left(\frac{m}{2}\right)\left(\frac{n}{2}\right) - 3\left(\frac{m}{2}\right) - \frac{n}{2} - 3 = 2mn - \frac{3m}{2} - \frac{n}{2} - 3.$$

Thus
$$cp((P_m \times P_n)^2) \le 2mn - \frac{3m}{2} - \frac{n}{2} - 3$$
.

By Theorem 4.3.5,
$$cc((P_m \times P_n)^2) = mn - 4$$
. Hence $cp((P_m \times P_n)^2) \ge mn - 4$.

Therefore,
$$mn - 4 \le cp((P_m \times P_n)^2) \le 2mn - \frac{3m}{2} - \frac{n}{2} - 3.$$

In conclusion, we get the complete results of the values of the clique covering numbers of the k-power of ladders for all $k \in \mathbb{N}$. For grids, we obtain the values of the clique covering numbers of the square of grids and lower bounds of the clique covering numbers of the k-power of grids where $k < \min\{m, n\}$. Finding the values of the clique covering numbers of the k-power of grids where $k \geq 3$ is still an open problem. In the section 4.2 and the section 4.4, we obtain bounds of the clique partition numbers of the square of ladders and grids, respectively.