CHAPTER II
CLIQUE PARAMETERS OF THE K-POWER OF
PATHS AND CYCLES

Our purpose in this chapter is to investigate the values or bounds of the clique
covering numbers and the clique partition numbers of the k-power of paths and
cycles. We separate this chapter into two sections. The first section contains

results of paths and the other contains results of cycles.

2.1 Clique Parameters of the k-power of Paths

First, we recall a definition of a path and find the number of edges of the

k-power of paths.

Definition 2.1.1. A path is a simple graph whose vertices can be ordered so
that two vertices are adjacent if and only if they are consecutive in the list. The

path with n vertices is denoted by P,.

Figure 2.1: Path of n vertices (FP,)

Remark 2.1.2. For n,k € N where k > n — 1.

Since diam(P,) = n — 1, we have k > diam(P,). Hence P¥ is a complete graph.
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Proposition 2.1.3. Forn,k € N where 1<k<n-—1,

|E(PY)| = kn — k(k; b

Proof. Let V(P,) = {v1,v2,...,vn} and E(P,) = {vviy1 | 1=1,2,...,n— 1}.
Fori = 2,3, ..., k, edge set E(P:\Pi™!) is compossed of all edges in P} connecting
two vertices of distance i in P,. Thus E(P:\Pi~!) = {v1v14:, V2V24i, -, Vn—in},

and we get |E(P!\P:™!)| = n —i. Note that

Pt = P, + (P2\P,) + (P2\P?) + ... + (PI\P}71).

n

Hence,

|E(PE)| = |E(P)| # |E(PI\P)| + |E(PAPD)| + ... + [E(P\P;)
= n-1)+n-2)+(n—3)+..+(n—k)
= kn—(1+24..+k)

= kn - k(k; 1).

a

Example 2.1.4. The set C := {P2[{v1,v2,va}], P2[{v2, v3, va}], PZ[{vs, va, vs}]}

forms a clique covering of P2. Thus cc(PZ) < |C| = 3.

Figure 2.2: P}
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Figure 2.3: C in Example 2.1.4

Let I = {v,v3,vov4,v3vs}. We have that I is a clique-independent set of PZ.

Thus ce(P2) > |I| = 3. Hence cc(P?) = 3.

Figure 2.4: I in Example 2.1.4

The set P := {PZ[{v1,va,vs}], vavs, PZ[{vs, v4, vs}]} forms a clique partition of

PZ2. Thus cp(P?) < |P| = 3. Since cp(P2) > ce(P?) = 3, cp(P?) = 3.

Figure 2.5: P in Example 2.1.4

Next, we give the values of the clique covering numbers of the k-power of

paths.
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Theorem 2.1.5. For n,k € N,

1 if k>n-1,
cc(P,'f) =

n—k if 1<k<n-1

Proof. Let V(P,) = {v1,v3, ..., v} and E(P,) = {viviy1 | 1 =1,2,...,n— 1}.

Casel: k>n—1.

Since diam(P,) = n — 1, P¥ is a complete graph. Hence cc(P}) = 1.

Case2:1<k<n-1.
Consider a subset of the edge set of P¥, let Iy = {vivisx | 1 =1,2,...,n— k}.

Then |Ix| = n — k.

Figure 2.6: Iy in Theorem 2.1.5

Next, we show that I is a clique-independent set of P¥. Let e;,e; € E(I)
where e; # ey, say €; = V,Up4k and e; = VgUqyx Where p < g. Since the distance
between v, and vgyx in P, is more than k , v, is not adjacent to v,k in Pk. By
Remark 1.1.15, we have that e; and e, are clique-independent edges of P¥. Thus
I is a clique-independent set of P¥. Hence cc(PF) > |Ix| = n — k.

Consider subsets of the vertex set of P¥. Fori =1,2,...,n — k, let
Vi = {vi, Vit1, .-, Vigx }. Note that the distance between two vertices of V; in P,'f

is at most k. Thus B; := P¥[V;], an induced subgraph of P¥, is a clique in P¥.
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v, V. Vysia

Figure 2.7: B; in Theorem 2.1.5

Let C = {By, By, ..., Ba—x}. We show that C is a clique covering of Pk, Let
e € E(PF). Then e = v;v; for some i,j € {1,2,...,n}. WLOG, assume i < j.
Since e € E(PF), the distance between v; and v; in P, is at most k. If 1 <1 < n—¥k,
then e € E(B;). Otherwise n —k <1 <n—1, then e € E(B,_;). Thus, Cis a

clique covering of P¥. Hence cc(PF¥) < |C| = n—k. Therefore, cc(Pf) =n—k. O
We next show the values of the clique partition numbers of the square of paths.
Theorem 2.1.6. Forn € N,

1 Ran=1,2,3,
Cp(Pf)=<n—1 if AW, r> 2,

n—2 if n=2r+1, r>2.

Proof. Let V(P,) = {v1,v,...,vn} and E(P,) = {viviy |1 =1,2,..,n - 1}.

Casel: n=1,2,3.

We have that P? is a complete graph. Hence cp(P?) = 1.

Case 2 : n = 2r where r > 2.
For i = 1,3,5...,2r — 3, let B; = P2[{v;,vi41,vi4+2}]- Then B; is a copy of K;
and |E(B;)| = 3.
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Figure 2.8: B; in Theorem 2.1.6

By Proposition 2.1.3, |E(P2)| = 2n — 22t = 2n — 3 = 2(2r) - 3 = 4r - 3.
Let H = P?\(B; + B3 + ... + Boy_3). Then |E(H)| = (4r —3) = 3(r —1) =r. We
have that {B, Bs, ..., Bs,_3} U E(H) forms a clique partition P of P? such that
|P|=(r—1)+(r) =2r — 1 =n~1. Thus ep(P?) < |P| = n — 1. By Theorem
2.1.5, cc(P?) = n— 2. Hence ep(P?) > n— 2. Next, we show that cp(P?) # n—2.
Suppose that there exists P’ = {A;, A3, ...An—2} a clique partition of P2, For each
v;,v; € V(P2), v; is not adjacent to v; if the distance between v; and v; in P, is
more than 2. Thus P? does not contain a copy of K,, for all m > 4. We have
that A; is a copy of Ko or K3 foralli =1,2,...,n — 2.

From |E(P?)| = 2n — 3 , we get

3ki+ k= 2n-3 (21)

ki 45k Svma (2.2)

where k; is the number of copies of K3’s in P’ and k, is the number of copies
of Ky’s in P'.

From (2.1) - (2.2), we have that 2k; =n—1 = 2r — 1. This is a contradiction.

Thus there is no clique partition P’ of P? such that |P'| = n — 2. Hence

n — 2 < cp(P?) < n — 1. Therefore, cp(P?) =n — 1.

Case 3: n=2r + 1 where r > 2.
For i = 1,3,5...,2r — 1, let B; = P?[{v;,vi41,vis2}] . Then B; is a copy of

Kj and |E(B;)| = 3. By Proposition 2.1.3, |[E(P2)| = 2n — 2&H) = 2, -3 =
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202r+1) =3 =4r — 1. Let H = P2\(B; + B3 + ... + By_1). Then |E(H)| =
(4r — 1) — (3r) = r — 1. We have that {B, Bs, ..., Bor_1} U E(H) forms a clique
partition P of P2 such that |P| = (r)+(r—1) = 2r—1 = 2(%+)—1 = n—2. Thus
cp(P2?) < |P| = n — 2. By Theorem 2.1.5, cc(P?) = n — 2. Hence cp(P2) > n—2.
Therefore, cp(P?) =n — 2. O

To find the values of the clique covering numbers of the k-power of paths,
we get the complete results for all kK € N. However, for the values of the clique
partition numbers of the k-power of paths, we have the results in case k = 2.
Finding the values of the clique partition numbers of the k-power of paths where

k > 3 is still an open problem.

2.2 Clique Parameters of the k-power of Cycles

Now, we recall a definition of a cycle and find the number of edges of the

k-power of cycles.

Definition 2.2.1. A cycle is a graph with an equal number of vertices and edges
whose vertices can be placed around a circle so that two vertices are adjacent if
and only if they appear consecutively along the circle. The cycle with n vertices

is denoted by C,,.

Figure 2.9: Cycle of n vertices (C),)
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Remark 2.2.2. For n,k € N where k > 251

We have k > %51 4+ 1 = 2 > | 2| = diam(C,). Hence C} is a complete graph.

Proposition 2.2.3. Forn,k € N where k < "T“,
|B(C)] = kn.

Proof. Let vg € V(CF). Let V; = {v1,va,...,ux} be a subset of V(CF) whose all
elements are adjacent to vy along clockwise direction and Vo = {v,_1,vy_2, ..., Un—x }
a subset of V(C*) whose all elements are adjacent to vy along anticlockwise

direction.

Figure 2.10: V; and V; of vy in Proposition 2.2.3

Since k < 25, n > 2k+1. Thenn—k > k+1 > k. We have that VNV, = ¢.

Thus d(vg) = 2k. We have that d(v) = 2k for all v € V(PF). Hence

(k) = 200 _2n

O

Example 2.2.4. The set C := {CZ[{v1, v2, v3}], C¢[{vs, vs, vs}], CZ[{vs, ve, 1 }],

Ca[{v2,v4,v6}]} forms a clique covering of Cz. Thus cc(C?) < |C| = 4.
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Figure 2.12: C in Example 2.2.4

Let I = {v,vq, Va4, v4vs, U5V }. Since v3vy, vavs ¢ E(CZ), 1 is a clique-independent

set of C2. Thus cc(C?) > |I| = 4. Hence cc(CZ) = 4.

Figure 2.13: I in Example 2.2.4

The clique covering C in Example 2.2.4 is a clique partition of C? because
each pair of clique in C do not share an edge. Thus ¢p(CZ) < |C] = 4. Since
cp(CE) = cc(CF) = 4, ep(CE) = 4.
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Next, we show upper bounds of the clique covering numbers of the k-power of

cycles.
Lemma 2.2.5. Forn,k € N, cc(CF) < n.

Proof. Case 1: k > [%J

Since diam(Cy,) = | 2], C¥ is a complete graph. Hence cc(C*) =1 < n.

Case 2: k < |2].

Let v € V(CF). Let V, be the subset of V(C¥) containing v and all elements
adjacent to v along clockwise direction. Note that the distance between two
vertices of V; in Cy, is at most k. Thus B, := C£[V,], an induced subgraph of C¥,
is a clique in C¥. Let C = {B, | v € V/(C¥)}. Then |C| = n. We will next show
that C is a clique covering of CX. Let e € E(C¥). Assume that e = vo' for some
v,v" € V(C%). Since e € E(CF), the distance between v and v' in C,, is at most k.
We have that e € E(B;) or e € E(B,,). Thus C is a clique covering of C*¥. Hence
ce(CF) < |C| = n. O

In Theorem 2.2.6, we give the values of the clique covering numbers of the

k-power of cycles where k < &

Theorem 2.2.6. Forn,k € N where k < o
cc(CF) = n.

Proof. For k = 1,2,..., | 2], let Iy = {vv; | v;,v; € V(C*) and de, (vi,v;) = k}.

Note that [

IN

E(Cy). Since vv; = vjv; for all v;,v; € V(CF), we have |I;| =

ek
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Figure 2.14: I in Theorem 2.2.6 where k = 3 and n = 10

We claim that Iy is a clique-independent set of C¥. Let e;,e; € I; where
ey # ez. Assume that e; = v;,v; and ey = v;,v;, for some distinct vertices

k
Uiy Ujyy Vip, Ujpy € V(Cn)-

Case 1 : e, is incident to e,.

Assume v;, = v;,. Suppose that there exists a clique in C* which is containing
er and e;. We have dc, (vj,, vi;) =k, de, (vi,,v5,) = k and d¢, (vj,,v;,) < k. Then
n = dc, (vi,, vj,) +dc, (V5,, V5, ) +de, (v, ;) < 3k. This is a contradiction because

n > 3k. Hence e; and e; do not be contained in a clique in C¥.

Figure 2.15: Case 1 in Theorem 2.2.6
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Case 2 : e; is not incident to e,.
Let A and B be the set of vertices from v;, along the cycle to v;, not include

vi, and v;, in clockwise direction and anticlockwise direction, respectively.

Case 2.1 : v;, and vj, are in the different set of A and B.
Suppose that there exists a clique in C¥ which is containing e; and e,.
We have dc, (vi,,vj,) = k, dc,(vj,,vj,) < k and dg, (vj,,v;,) < k. Then
n = dc, (vi,,v;,) + de, (vj;,v5,) + de, (vj,, vi,) < 3k. This is a contradiction

because n > 3k. Hence €, and e; do not be contained in a clique in C¥.
)

v
<k
e
‘{JQ
v

<k

vﬂ

I
Figure 2.16: Case 2.1 in Theorem 2.2.6

Case 2.2 : v;, and vj, are in the same set of A or B.
Assume dg, (vi,,v;,) < dg, (vi,,v),). We have dg, (vi,,v;,) > k+1 > k.
Thus v;, is not adjacent to v;, in C.
v,

@

vjl

Figure 2.17: Case 2.2 in Theorem 2.2.6
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By all cases, we can conclude that e; and e, are clique-independent edges of
C%. Hence, I is a clique-independent set of C*. Thus cc(C¥) > n. By Lemma

2.2.5, ec(C*) < n. Therefore, cc(C¥) = n. O

In Example 2.2.4, we have cc(C3) = 4 (n =6 and k = 2 ie, k = %). By
Theorem 2.2.5, we have cc(C¥) < n for all n,k € N. Hence, the values of the
clique covering numbers of the k-power of cycles maybe less than n where k& > o

In Theorem 2.2.7, we give the values of the clique covering numbers of the

square of cycles.

Theorem 2.2.7. Forn € N,

(

1 if\N = n <8,

ce(0R) =84 if n=6,

&% if n>T.
Proof. Case 1: 1 <n<5.

Since diam(Cy) = |2] < 2, C2 is'a complete graph. Hence cc(C?) = 1.

Case 2: n=6.

From Example 2.2.4, cc(C?) = 4.

Case 3:n>1T.

Since n > 7, we have 2 > I > 2. By Theorem 2.2.6, cc(C2?) = n. O

We show the values of the clique partition numbers of the square of cycles in

the next theorem.
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Theorem 2.2.8. Forn € N,

1 i 1<n<h,
4 i n=6,

n+1 if n=2r+102>3,

n if n=2r,r> 4.

Proof. Let V(Cy) = {vo, v, ..., vn-1} and E(Cp) = {viv; | j = i + 1(mod n)}.

Casel:1<n<5.

Since diam(C,) = |2] <2, C? is a complete graph. Hence ¢p(C2) = 1.

Case 2 : n=6.

From Example 2.2.4, cp(C?) = 4.

Case 3 : n=2r + 1 where r > 3.
For i = 0,2,4...,2r — 2, let B; = CZ[{vi,vi41,vi42}]. Then B; is a copy of
K; and |E(B;)| = 3. Since n > 7, nl > =1 = 3 > 2. By Proposition 2.2.3,

|E(CH|=2n=2(2r+1) =4r+2. Let H =C?\(By+ By +... + Bs,_3). Then
|E(H)| = (4r +2) — (3r) =r+ 2.

i+2

i+

Figure 2.18: B; in Theorem 2.2.8
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We have that {By, By, ..., B2;_2} U E(H) forms a clique partition P of C7 such
that [P|=(r)+ (r+2)=2r+2=2(%2)+2=n+1. Thus ¢p(C?) <n+1. By
Theorem 2.2.7 and n > 7, cc(C?) = n. Hence cp(C?) > n. Next, we show that
cp(C?) # n. Suppose that there exists P’ = {A;, Ay, ..., A, } a clique partition of
C2. For each v;,v; € V(C?), v; is not adjacent to v; if the distance between v;
and v; in C, is more than 2. Thus C? does not contain a copy of K, for all m >

4. We have that A; is a copy of Ky or K3 foralli=1,2,...,n.

From |E(C?)| = 2n , we get

3ki+ky= 2n (23)

kl + kg = n (24)

where k; is the number of copies of K3’s in P’ and k, is the number of copies
of Ky’sin P'.

From (2.3) - (2.4), we have that 2k; = n = 2r+1. This is a contradiction. Thus
there is no a clique partition P* of C2 such that |P’| = n. We have cp(C?) # n.

Hence n < ep(C?%) < n + 1. Therefore, cp(C?) = n + 1.

Case 4: n= ér where r > 4.

For i = 0,2,4...,2r — 2, let B; = C2[{v;, Vi41,Vi+2}]- Then B; is a copy of K;
and |E(B;)| = 3. Since n > 8, 251 > I > 2. By Proposition 2.2.3, |E(C?)| = 2n
=2(2r) =4r. Let H = C?\(By+By+...+By,_3). Then |E(H)| = (4r)—(3r) = r.
We have that {By, By, ..., Byy_2} U E(H) forms a clique partition P of C? such
that |P| =7+ 7 = 2r = n. Thus ¢p(C?) < n. By Theorem 2.2.7 and n > 7,

cc(C?) = n. Thus ¢p(C?%) > n. Hence cp(C?) = n. O
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We have obtained the values of the clique covering numbers of the k-power of
cycles where k < 2. And since diam(C,) = | 2|, we have that C} is a complete
graph and cc(CF) = 1 for all k¥ > |2]. For the clique partition numbers of the
k-power of cycles, we get the results for case k = 2. Open problems are to find
values of the clique covering numbers of the k-power of cycles where § < k < I_%J

and the values of the clique partition numbers of the k-power of cycles where

k> 3.
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