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CHAPTER 1

INTRODUCTION

The general study of permutation polynomials started with Hermite who
considered the case of finite prime fields. For the case of arbitrary finite fields,
permutation polynomials were first systematically studied by Dickson. In order
to understand permutation polynomials over a finite field, we collect here, mostly
without proofs, basic properties of finite fields, basic definitions and theorems
relating to permutation polynomials.

The proofs of these results can be found in [5], [6], [7] and [8].

A finite field is a field that contains only finitely many elements. The most
familiar example is the field F, = {0,1,2,...,p — 1}, where p is a prime and the

operations are addition and multiplication (mod p).
Theorem 1.1. Let F be a finite field. Then

(1) F has prime characteristic and
(2) the multiplicative group F* of all nonzero elements of F' is cyclic.
(3) the prime subfield of F' is isomorphic to F,,.

Theorem 1.2. Let F' be a finite field. Then E has p" elements where the prime
p is the characteristic of Fand n is the degree of F' over its prime subfield.
Lemma 1.3. If F is a finite field with q elements, then every a € F' satisfies

a? = a.

Lemma 1.4. If F is a finite field with q elements and K is a subfield of F, then

the polynomial x¢ — x in K[x] factors in F[z| as

xq—a::H (xr —a)



and F is the splitting field of x? — x over K.

Theorem 1.5. For every prime p and every positive integer n there exists a finite
field with p™ elements. Any finite field with ¢ = p™ elements is isomorphic to the

splitting field of 9 — x over IF,,.

By Theorem 1.5, a field of order ¢ = p” is unique up to isomorphism, it is
denoted by IF, and is called the Galois field of order g.
Next, we shall give basie definitions and theorems about permutation

polynomials.

Definition 1.6. A polynomial f(x) € Fy[x] is said to be a permutation

polynomsial of F, if and only if it is a byjection map from I, to itself.

Example 1.7. Let f(z) = z° + 22 € Frlz]. Since f(0) = 0, f(1) = 3, f(2) =
5, f(3) =2,f(4) =6, f(5) =4 and f(6) =1 in F;, f is a bijection map from F;

to F7. Hence f(x) = 2 + 22° is a permutation polynomial of F.

Lemma 1.8. A polynomial f(z) € F,[z] is a permutation polynomialof F, if and

only if one of the following conditions holds:
(1) f:ecr— f(c) s onto;
(2) f:crflc) is one-to-one;
(3) f(z) = a has a solution in F, for each a € Fy;
(4) f(z) = a has a unique solution in F, for each a € F,.

Lemma 1.9. For f,g € F,[z] we have f(c) = g(c) for all ¢ € F, if and only if

f(z) = g(x)(mod x — ).



Lemma 1.10. Let ag,aq,as,...,a,-1 be elements of F,. Then the following two

conditions are equivalent:

(1) ag,a,as,...,a,-1 are distinct,

a—1 0 fort=0,1,...,q9— 2,
(2) > ai=

=0 —1 fort=¢q—1.

The following criterion, proved first by Hermite for F, and later by Dickson
for I, is frequently used and provides an essential tool in discovering most

permutation polynomials. Because of its importance, we give a complete proof.

Theorem 1.11. (Hermite-Dickson’s Criterion) A polynomial f(x) € F,lx] is a

permutation polynomial of Fy if and only if the following two conditions hold:
(1) f has exactly one root in Fy;

(2) for each integer t with 1 <t < q—2 and t Z 0 (mod p), the reduction of

(f<37))t (mod x4 — x) has degree < q — 2.

Proof. Let f be a permutation polynomial of F,. Then (1) is trivial. Let ¢ be
q—1

any integer with 1 <t < g —2and t # 0 (mod p). Let g(x) = Zby)xj be the
=0

reduction of (f(ac))t (mod z? — ). By Lemma 1.9 and Lagrange Interpolation

Formula, g(z) = Z (f(c))t (1= (2 —¢)*").” Comparing the coefficient of
c€lfy
L we get b((;_)1 = —Z (f(c))t. According to Lemma 1.10, b((lt_)1 = 0 for

c€ly
t=1,2,...,q— 2, hence (2) holds.

xd™

Conversely, let (1) and (2) be satisfied. Then (1) implies
Z (f(c))qil:0+1—|—1+---—|—1:—1, while (2) implies Z (f(c))t:()
———
c€ly g—1 times c€lg

for 1 <t <q—2,t#0 (mod p). From

> @) = (3 @),

cely celfg

3



Wegetz (f(c))t:Oforlgtgq—Q, andz (f(c))t:1+...+1:0for

cely cely g times
t = 0. By Lemma 1.10, f(c) are distinct for all ¢ € F,. Hence f is a permutation

polynomial of F,. O

Corollary 1.12. If d > 1 is a divisor of ¢ — 1, then there is no permutation

polynomial of F, of degree d.

Theorem 1.13. (1) Ewery linear polynomial over F, is a permutation

polynomial of IF,,.

(2) The monomial & is a permutation polynomial of F, if and only if

gcd.(i,gq—1)=1.

Proposition 1.14. Let f(r) € F,lz|, a € F, and b € F,. Then the following

conditions are equivalent.
(1) f permutes F;
(2) f(z)+ a permutes Fy;
(3) bf(x) permutesF,.

Definition 1.15. A polynomial f(x) € F,[z] is said to be a p-polynomial over

F, if and only if f(x) is of the form Zaixpi where m € N.

i=0
Example 1.16. f(x) = 28 + z* + 2 € Fy[z] is a 2-polynomial over Fy but

f(x) =a® + 2% + 2 + x € Fy[z] is not a 2-polynomial over Fy.

Theorem 1.17. A p-polynomial

m

L(z) = Zaixpi € F,[z]

=0

is a permutation polynomial of F, if and only if L(x) only has the root 0 in F,.



Lemma 1.18. Let f(z) = cha:m € F,[z] where my, > mp_q1 > ... >my > 1
i=1

and Hci # 0. Suppose e = g.c.d.(my,ma,...,my). Then f(zx) is a permutation

i=1
polynomial of F, if and only if g.cd.(e,q—1) =1 and Zcz-xmi/e is a
i=1

permutation polynomial of F,.

Proposition 1.19. Let f(x) = ax’ + bx’ + ¢ € F,[z] withi > j > 1, 0 # a, and
assume that g.c.d.(i —j yq— 1) =1. Then f permutes F, if and only if b =0 and

gcd.(i,g—1)=1.

Definition 1.20. A polynomial f(x) € F,|x] is said to be in normalized form

(or reduced form) if and only if the following statements hold:
(1) f is monic, i.e. the leading coefficient of f is 1,
(2) f(0)=0, and
(3) the coefficient of ™~ is 0 when m is the degree of [ and ptm.
Note that any permutation polynomial can be put into normalized form.

Example 1.21. f(z) = %4 2234 22? + & € F3fa] is in normalized form but it is

not a permutation polynomial of Fy since f(0).= 0= f(1).

Definition 1.22. A polynomial f(x) € F,[z] is said to be a normalized
permutation polynomial of F, if and only if f is a permutation polynomial of

F, and f is in normalized form.

Example 1.23. Let f(z) = 2* — 2z € F3[z|. Then f is in normalized form.
Also by Lemma 1.8 f is a permutation polynomial of F3. Hence f is a normalized

permutation polynomial of Fs.



On the basis of Hermite-Dickson’s criterion, the following list of all normalized

permutation polynomials of degree < 5 (Table A) is tabulated in [1] and [5].

Table A
Normalized permutation polynomials of I, q
x any ¢
2 ¢ =0 (mod 2)
x? g =2 (mod 3)
z3 —az (a not a square) ¢ =0 (mod 3)
xr* 4+ 3z q="1

z* + a12? + agw (if its only root in F, is 0) | ¢ =0 (mod 2)

P2 g # 1 (mod 5)
z° — az (a not a fourth power) ¢ =0 (mod 5)
o+ az (> =2) q=9
x° & 232 q=71
x° 4+ ax® + 2% + 3a*x (a not a square) q="71
2° + ax® — 5 'a*z (a arbitrary) q = %2 (mod 5)
z° 4+ ax® + 3a*r (anot a square) g=13
z° — 2ax® + a*x (a not a square) ¢ =0 (mod 5)

The next set of theorems taken from [5], [6] and [7] provide further classes of

permutation polynomials.

Theorem 1.24. Let r € N with g.c.d.(r,q — 1) = 1 and let s be a positive divisor
of ¢ — 1. Let g € Fy[x] be such that g(z*) has no nonzero root in F,. Then

flz)=a" (g(xs))(q_l)/s is a permutation polynomial of F,.



Theorem 1.25. Let f(z) = ax’ + ba? + ¢ € Fyz] witha # 0 and i > j > 1.
Assume that —ba™" is an (i — j)™ power in F,. Then f permutes F, if and only

ifb=0 and g.c.d.(i ,q—1) = 1.

Theorem 1.26. Let f(z) = ax’ +bx? +c € Fylz] withi >j>1,a#0, 7|1,
g.c.d.(%—l ,q—1)=d, and g.c.d.(j ,q—1)=1. Suppose —ba"137! is a d™ power
in By, where 3 = 20/~ 4 2@0=2 1 11 for some 2 € F, and z # 1. Then f

permutes Fy if and only if b =0 and g.c.d.(i ,¢g—1) = 1.

Theorem 1.27. If f(x)= az”+bx"2+c, where a # 0 and k > 2, permutes F,,

then q £ +1 (mod k) orb = 0.

Theorem 1.28. Let f(x) =a' —az?,i>j>1,0#a € F,, and put k =i — j.
Assume f permutes F, and suppose without lost of generality that 1 < g — 1 and
k > 2. Then eitheri ¥ q—1-+k, or # is a multiple of p, the characteristic

of F,. The second case cannot arise unless p | k — 1.
Theorem 1.29. Lel f(z) =12 =az’ wheres>1>0,0+#a €F,. Then
(1) f permutes F, if and only if a is not a (p° — p’")th power in F;

(2) Ifa is a primitive element in ¥, (i.e:; agenerator for the multiplicative group

'

F7), then f permutes ¥y, unless p =2 and g.c.d.(s —r,n) =1 where g = p".

The objectives of this thesis are as follows:

(i) to determine all normalized permutation polynomials of degree 6 over fields

whose characteristics are relatively prime to 6,
(ii) to find new classes of permutation polynomials.

These two kinds of problems are posed in [3] and [4] and the results are shown

in Chapters II and III.



CHAPTER II

NORMALIZED PERMUTATION POLYNOMIALS

OF DEGREE 6

In this chapter, we will use Theorem 1.11 and ideas from [2] in order to
determine all normalized permutation polynomials of degree 6 over IF, where ¢ is
relatively prime to 6.

At first, we shall state a Multinomial Theorem that will be later used .

Multinomial Theorem: Let R be a commutative ring with identity, n a positive

integer, and ay,as, . ..,as € R. Then
n n' i1 12 is
(a1+a2+---+as) :Z.',| -'ala'Q"'as’
1119 ... 15
where the sum is over all s-tuples of nonnegative integers (iy,is,...,is) such that

i1+i2+...+is:n.

Consider the general polynomial of degree 6 over F,, g.c.d.(¢,6) = 1, ¢ = p",
az® + bx® + cx* + do’ + ex? + rx + s. Its normalized form is the form f(z) =
2% + cat + dadr ex? Fra.

It is enough to consider ¢ > 6 ( else degree of f(z) (mod 27 —z) <6 ).

Since g = p™ is relatively prime to 6, ¢ = 6m + 1 or 6m +5 for some m € Z*. If
q = 6m + 1, then by Corollary 1.12, f(x) is not a permutation polynomial of F,,.
Hence ¢ = 6m + 5.

Clearlyy m+1<6m+4=q—1.

If m+1=0 (mod p), thenp | (m+1),s0p| (p"+1)since p" +1=q+1=

6(m + 1), and then p | 1, a contradiction. Hence m + 1 # 0 (mod p).



Consider

(f(x))m+1 = (2% + ca* + da® + ea? + ra)""

1
= g8m+1) 4 (m j— )x6m(cx4 + da?® + ex® 4+ rx)

1
+ <m; >m6m6(0x4 +dz® + ex® + Tx)2

+ - (er® +da? + ex® + T:L‘)m+1.

Then the coefficient of 2™ in (f(x))Wrl (mod 29 — z) is (m+ 1)c. By
Theorem 1.11, (m +1)c = 0. Since m + 1 # 0 (mod p), ¢ = 0. Hence f(z) =
2% + da? + ex? + ra.

Clearly, m+2 <6bm +4=q— 1.

Ifp=7=6+1, then ¢ =p" =T7"=1 (mod 6), a contradiction. Thus p # 7.
To prove that m + 2 # 0 (mod p), suppese not. Then p | (m +2),sop | (p" +7)
since p" +7 =q+ 7 =6(m+2). Then p| 7, so p = 7, a contradiction. Hence
m+2 % 0 (mod p).

Consider

(f(x))m+2 = (2% +da’® +ex® + m:)Wr2

2
g+ 4 (m f )$6m+6(da:3 + ex? 4+ rx)

2
+ (m;— )x6m(dx3 +ex? +rz)’

3
+oo A+ (dat + ex® +ra

2
L] (m 14 >x6m"6(d:c3 +ex? F r:c)3

)m+2

By Multinomial Theorem, the coefficient of 2™ in (f(:c))m+2 (mod x7—x) is
("3) (2dr +e?) = w (2dr+e?). By Theorem 1.11, % (2dr+e*) =

0. Since m+ 1 # 0 (mod p) and m + 2 # 0 (mod p), w # 0 (mod p), so

2dr + e* = 0. (2.1)



Clearly, m+3 <bm+4=q— 1.
If p=13=06(2)+ 1, then ¢ = p" = 13" = 1 (mod 6), a contradiction. Thus

p # 13. To prove that m + 3 # 0 (mod p), suppose not. Then p | (m + 3), so

p | (p" + 13) since p" + 13 = ¢+ 13 = 6(m + 3). Then p | 13, so p = 13, a
contradiction. Hence m + 3 # 0 (mod p).

Consider

(f(a:))m+3 — (@Srd®tex ¥ ra)™

200mi8) 4 (m J 3) 22 (dg? 4 ex? + ra)

1

3 :
+ (m; >$6m+6(dx3 + ea? + rx)’

+ (m;— 3) 2 (do® + ea® + rz)’

3
+ <m: )Jc6m_6(d$3 + ex? + mc)4

3
+ (m;— >x6m_12(dx3 + ex® + rx)5

+ o (da? + ex® 4+ rz)™

Case 1. m > 1. Then ¢ = 6m+5 > 11. By Multinomial Theorem, the coefficient of
25m+ in (f(x))m+3 (mod z? = ) is (mgg) [ g—: er? |+ (ng) [ g—id:”r + %d2€2 | =

(") [ 3er? + B (2dr + 3d%¢?) |. By Theorem 111, ("3°)[ 3er? + 7 (2d% +

3d%e?)] = 0. Since m+ 1, m +2, m+ 3% 0 (mod p), (";*) # 0 (mod p), so
[ 3er? + 2(2d%r + 3d%¢?)] =0, Le.

6er® + m(2d°r + 3d*e*) = 0. (2.2)

Clearlyy m+4 <6bm+4=q— 1.
If p=19=06(3)+ 1, then ¢ = p" = 19" = 1 (mod 6), a contradiction. Thus

p # 19. To prove that m + 4 # 0 (mod p), suppose not. Then p | (m + 4), so

10



p | (p" + 19) since p" +19 = ¢+ 19 = 6(m +4). Then p | 19, so p = 19, a
contradiction. Hence m + 4 # 0 (mod p).
Consider

(f(x))m+4 = (2% 4 da® +ex® + T.r)mH

4
= S0+ 4 (m;— >x6m+18(dx3 +ex® +ra)+ -

4
+ (mz— )xGm(dxg —— Tx)4

4
+ <m;— )me_G(d:p?’ + ex® + T$)5

4
+(m€—3|— ) om—12(da® + ex? —|—7’x)6

4
+(m;— ) 6m=18 (43 + ex ~|—m)7

4ot (d2? + ex® 4 rz) "

Subcase 1.1. m > 2. Then ¢ = 6m + 5 > 17. First note that if p = 5, then 5" =

p" =q="6m+5,s05 |m and so ¥ is a positive integer. By Multinomial
Theorem, the coefficient of 2™+ in (f(x))m+4 (mod z¢ —z) is ("F)rt+
(") [ amder® + Gde'r + & | + (") [ G+ qmd'e® | = (") [+
m( 30d%er? + 20de’r + ¢ ) + "D ( 6d5r + 15d%? )]. By Theorem 1.11,
(" [+ 30d%er? +20der + e ) + _m(?; (6d°r 4+ 15d*e? )] = 0. Since
m+1, m+2, m+3, m+4%0 (modp), ("*) Z0 (mod p), so

m(m =

AR )(6d5r+15d4 2)=0. (2.3)

o %( 30d2er? & 20de®r +e% )
From (2.1), we have e? = —2dr. Substituting into (2.2) and (2.3), we get

0 = 6er’ + m[2d°r + 3d°(—2dr)] = Ger® — 4md’r. (2.4)

0 = r'+ %[ 30d%er? + 20der(—2dr) + e(4d*r?) }

~1
%[ 6d°r + 15d*(—2dr) |
dm(m — 1
= 7t —6? d*er® — —m(n; ) d’r. (2.5)

11



From (2.4), we have 6er? = 4md>r. Substituting into (2.5), we get

dm(m — 1) dm((2m — 1)

0 =r*— % d?(4md°r) — 5 dr = rt— B d°r. (2.6)
Multiplying (2.1) by md?,
2md°r + md*e* = 0. (2.7)
Substracting (2.7) from (2.2),
6er? + 2md?e* = 0. (2.8)

Next, we shall show that e = 0. Suppose not.

If p =5, then m = 0 (mod p), so that from (2.8), 6er? = 0, but since 6 # 0

(mod 5), er? = 0, then r* =0 and so r = 0.

Assume that p # 5. Then from (2.8), 3r* + md?*e = 0, and so md?e = —3r?.

Substituting into (2.5), we get

4 =] 1 4 -1
0 =r'— §r2(—3r2) — —m(n; )d5r = 7t 387“4 — —m(ﬂ; )d5r ,

and then

0 NEN 849 el

3 - d°r) = 23rt —dm(m — 1)d°r.  (2.9)

If 2m—1 =0 (mod p), then p | (2m—1), and so p | (p"—8) since p"—8 =

3(2m —1), and then p | 8, so p = 2, a contradiction. Hence 2m —1 # 0 (mod

p)-
From (2.6), we have 4md°r = % Substituting into (2.9), we get
5r 5(m —1)
0 = 2374 — —1( >: 4(23——)
reme DG Ty) T om — 1

and so 0 =r123(2m —1) —5(m — 1) | = r*(41m — 18). Since 42m + 35 =

7(6m +5) = 0 (mod p), 41m = (—35 — m) (mod p) and so 1871 = 41mr* =

12



(—=35—m)rt = =35r* —mr* and then mr* = —53r%. Thus 18r* = —2173r4,
so 0 = 2191r* = 7-313r%. Since 7 # 0 (mod p), 313r* = 0. To show that
313 # 0 (mod p), suppose not. Since 313 is prime, p = 313 = 6(52) + 1, so
q = 313" = 6k + 1 for some k € Z*, then ¢ # 5 (mod 6), a contradiction.

Hence 313 # 0 (mod p). Therefore 7! = 0, i.e. r = 0.

Thus 7 = 0 for both p = 5 and p # 5. Substituting » = 0 into (2.1), we get

e? = 0 and then e = 0, a contradiction.
Hence e = 0. By (2.1), dr = 0. Substituting into (2.6), we get r* = 0, so
r = 0. Hence f(r) = z°+ da®.

Clearly, 3m +2 < 6m +4 = ¢ — 1. Suppose that 3m + 2 = 0 (mod p).
Then p | 3m +2), s0 p | (p" — 1) since p" — 1 =2(3m +2). Thusp | 1, a

contradiction. Hence 3m + 2 # 0 (mod p).

Consider

(f @) 2= (a® da®or?
- x9m+6<x3 4/ d)3m+2
— $9m+6[ ($3)3m+2 =+ G3m+1(33'3)3m+1 NI al(xd)z
+“‘+CL1(I‘3)+CLQ]

_ 36mta) P 2 IMHO+3EmA1) | ang9m+6+3(3m)

4 aix9m+6+3z N a0x9m+6

where q; is the coefficient of ()" in (2 + d)*"*% 0 <i < 3m+ 1.

Claim that for all integer 7, 0 < i < 3m + 1 implies z9m+6+31 £ 76m+4 (1mod
29+ — 2). Since 27 = g+ (mod 29+ — ) for all integer z, it
suffices to show that 9m + 6 + 37 # 0 (mod 6m + 4) for each integer ¢ where

0<i<3m+1.
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Subcase 1.2.

Let ¢ be an integer such that 0 < ¢ < 3m + 1. Then 0 < 8 < 3m + 2 <
i+3m+2 < 6m+3 < 6m+ 4. Suppose that 9m + 6 + 3i = 0 (mod
6m + 4). Then 9m + 6 4+ 3i = (6m + 4)w for some w € Z*, and so
3(i +3m +2) = (6m + 4)w. Since 3 is prime and 3 1 (6m + 4), 3 | w,
so w = 3u for some u € Z*. Thus i +3m + 2 = (6m + 4)u = 0 (mod
6m +4), a contradiction, and the claim is proved . Therefore the coefficient
of 5™+ in (f(x))3m+2 (mod 27— ) is 1 # 0. Hence for m > 2, there is no

permutation polynomial of degree 6 over IF,.

m =2. Then ¢=6(2) +5 =17, sop = 17.

Consider

(F@)"™" = (f)°
= (2% deiex® + rx)G
= 2%52° 4 da? fex + r)6
= 292 + agr® + - + @12 + ap)

4 3 2 16 15
T+ Qo9X” + A8X" + Qo7 + QX + Qo5 + -+ a1k

Fa100% + agx'® + -+ ay2” 4+ apz® (mod 7 — 1)

where a; is the coefficient of 2 in' (25 +da2 4 ex + r)".

By Multinomial. Theorem, as = Se = 6e "and  ajo = 5! + 5 d%er? +
Sde’r + Sdor + Se® + Sd'e? = 1501 + 180d%er? + 120de®r + 6d°r + 6€” +
15d*e? = 15r* +10d%er? + de3r +6d°r + 6 + 15d*e?. Hence the coefficient of
2% in (f(:zr;))6 (mod z'"—x) is 6e-+15r*+10d*er*+dedr+6d°r+6e°+15d*e?.

By Theorem 1.11,

6e + 157" + 10d*er? + der + 6d°r + 6€° + 15d*e* = 0. (2.10)
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Since 2 £ 0 (mod 17), by (2.2),

3er® + 2d°r + 3d%e* = 0. (2.11)

From (2.1), we get €2 = —2dr. Substituting into (2.10) and (2.11), we get
0 = 3er? +2d% + 3d*(—2dr) = 3er® — 4d°r (2.12)
and

0 = 6e+ 150+ 10d%er® + der(—2dr) + 6d°r + 6e(4d*r?) + 15d*(—2dr)
= 6e+ 15r* + 10d%er® — 2d%er? + 6d°r + 24d%er? — 30d°r
= 6e + 15r" +-32d%er® — 24d°r
= 6e + 15r* — 36d%er® — 24d°r

= 3(2e+ 50" — 12d%er® — 8d°r).
Since 3 #Z 0 (mod 17),
0 = 2e + 5r* — 12d%er? — 8d°r. (2.13)
From (2.12), 3er? = 4d®r. Substituting into (2.13), we get

0= 2e + 51t —12d%r? = 2d*(3er?) = 2e + 5rt— d*er?. (2.14)

To show that e = 0, suppose not. From (2.1), € = —2dr, so d # 0 and

r # 0. Then from (2.11) and 3er? = 4d>r,

2
0 = 3er’+ 3% + 3d?e?

= 3er® — Ter? + 3d*e?
= —der? 4 3d*e?
= e(—4r* + 3d%),

SO 0 = —4r?+ 3d%,
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and so 12 = 3¢ — e _ W0d%e _ 52, Qubstituting into (2.14), we have
0 = 2e + 5(25d*e?) — d?e(5d*e) = 2e + d'e? = 2e + d*(—2dr) = 2e — 2d°r
and so 0 = e — d°r. Then e = d®r. Since 3er? = 4d3r, 3d°r® = 3er? = 4d°r.
Since d # 0 and r # 0, 3d*r? = 4, then e* = 4d*? = £ = =8 = —6, so
e ! = el® = (—6)* = 4 £ 1, a contradiction. Hence e = 0. From (2.14),

5rt = 0 and so r = 0. Therefore f(z) = 2°+ da3.
If d =0, then f(z) = &% and since g.c.d.(6,17 — 1) = 2 # 1, f(z) is not a
permutation polynomial of [Fy7.

If d # 0, then by Proposition 1.19, f(x) = z% + dz?® is not a permutation

polynomial of [Fq7.

Hence there is no permutation polynomial of degree 6 over F;.

Case 2. m = 1. That is ¢ = 6(1) +5 = 11. From above, we get f(z) =
2% + da® + ex® + ro. For each integer ¢ with 3 < t < ¢ — 2 = 9, consider
(f(2))" = 2(2® + dr>+ea i)

If t = 3, then by Multinomial Theorem, the coefficient of z'° in (f(x))t (mod

o't — 1) is 3ldr + g—ieQ = 6dr + 3e?, and by Theorem 1.11, 6dr + 3¢ = 0, and so

2dr + e? = 0. (2.15)

If .= 4, then by Multinomial Theorem and 2?° = ' - 2% = 21° (mod 2z — ),
the coefficient of !9 in (f(a:))t (mod 2 — ) is fe+ fer + Ldr + 5 d%e® =
de + 12er? + 4d3r + 6d*e?, and by Theorem 1.11, 4e + 12er? + 4d3r + 6d%e* = 0,

and so

2¢ + 6er? + 2d°r + 3d*e* = 0. (2.16)

If t = 5, then by Multinomial Theorem and z?° = 2™ - 29 = 2! (mod 2" — z)

and 2% = 2!t M. 28 = 219 (mod 2™ — z), the coefficient of 2! in (f(x))t (mod
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e —x) is 14 25?4 dPe+ Bt 4 2dPer? 4+ SdePr + €® = 1+ 10r? + 30d%e +
514 + 30d%er? 4 20de3r + €® = 1+ 1002 + 8d%e + 5r* + 8d%er? + 9de®r + €°, and by

Theorem 1.11,
14 107 + 8d%e + 5r* + 8d*er? + 9de’r + €° = 0. (2.17)

If ¢t = 6, then by Multinomial Theorem and z?° = x'' - 2% = 2'° (mod 2™ — z)

and 730 = 2!t M. 2% =219 (mod 2'' — z), the coefficient of 2% in (f(x))t (mod

11 .6 2, 6l 2.2, 6l.7.2 6l 4, 6 g4 6l 2.4, 6 723, 6 4.2
v =) IS gi5d° + g d Pt g de’r+ gt + hd et g dtr + g de e + et =

4d% + 2d%r? + 4de*r + 4e* + 8d*e + 4d*r* + 5de*r? + 4e*r?, and by Theorem 1.11,
4d* + 2d%r* 4-4de’r +4e* + 8d*e + 4d°rt + Bde’r® + 4e'r? = 0. (2.18)

If t = 7, then by Multinomial Theorem and #?° = z'! - 2° = 21° (mod 2! — ),

30 _ .11 11 8 10

€T =7 - =7 11 11 11

(mod 2 — z) and 20 = z'1 . 1. g1 . 27 = £1° (mod

x'' — 1), the coefficient of 21° in (f(x))t (mod z'' —z) is Tder+ e’ + shdi +

sider® + sl edr? 4 dir? + L die?r + snd?et + Didle + Dders + Jhetrt =
der +2€3 4 2d* + 2der3 + €3r? + 6d*r* + 2d°e*r + 6d*e* + 7d°e + 9der® + 2¢*r?, and

by Theorem 1.11,

0. = der+2e3+ 2d* ¥ 2der3 4 &r2 + 6d*r? + 2d3e?r

+6d%e* + 7d%e + 9der® +2¢*r?. (2.19)

If t = 8, then by Multinomial Theorem and 1?° = 2! 2% = 21° (mod 2! — ),

1'30 — JZH . ZL‘H . 178 = 1.10 (IIlOd I’ll _ {L‘) and 1340 — 1.11 . ZEH . JZH . IL‘7 = l,lO

. . t . | |
(mod ' — z), the coefficient of z'% in (f(z))" (mod ' — ) is 5dr+ F;e* +
8 73, 8 22, 8 3 8 23, 8 46, 8 55, 8 2.4 8 53 3
"+ e+ ggdier + gpgdie” + ggd° + ggdr” 4 ggger” + ggdier” +
8. 1232 , 8 362 , 8 715 8! 55 3 87 , 8 a4 837 , 8 26 _
s d €T + g d Tt + de’r + gndletr + et + gpdiet + Sdrt + ginetr =

dr + 6e% + 5dr® + 2e2r? + 9d3er + 10d%e® + 6d° + 3dr® + 2e%r* + 9d3er? + 8d?e3r? +
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6d%r? + 6de’r + 3d°e*r + 8e” + 4d*e + 8dr™ + 6e2r®, and by Theorem 1.11,

0 = dr+6e*+5dr + 2¢*r* + 9d3er + 10d%e® + 6d°® + 3dr®
+22r* + 9d3er® + 8d2e3r? + 6d°r? + 6de’r + 3d°e3r

+8¢” + 4d'e! + 8dr™ + 6e*r°. (2.20)

If t =9, then by Multinomial Theorem and #?° = 2! - 2% = 21° (mod 2™ — ),

30 11 11 8

o =ttt =g 40 dii 11 11

10 (mod @'t —x), 240 = ! 2! . 21 . 27 = 21 (mod 2™ — 1)

11 11 11 11 6

and %0 = gl . 11 . pllplld 46 = ;10

(mod #'' = ), the coefficient of x'% in
t .
(f(a:)) (mod 2™ — z) is g:e + 6,2,67’ + 5?:;,d37 < 5,2,2,d2€2 + 4,4, Lopd 3,3,3, 33 4

9! d3,r,5 +

2 9! 5 43 9' 8 | Ol
3'2'2'2'd e*r? + 3,4,de (A 2!5|d er + ?'6'6 + 2'4'3'd e’ + §d° + 2'6'€T + 3

sand2e?rt 4+ 2 detrd + L dPerd+ Letr?+ I dtedr?+ X dPedr+ Sl dPe+ Ser® =
9e+10er? +9d3r 4+ 8d%e? 4+ 3er* +8d3r> + 3d?e’r? +de*r +5d%er + 7eb +6d*e® +9d® +
10er® +9d3r® + 7d%e*r* + de'*r3 + 9d°er® + 10e8r2 + 6d*e3r? + 9d3e®r + 3d%e” + 9er®,

and by Theorem 1.11,

0 = 9e+ 10er® + 9d°r + 8d%¢* + 3er* + 8d°r3
+3d%e?*r? + de'r + 5d’er + Te® + 6d'e® + 948
+10er® +9d3r° + Td*e®r + de*r® + 9d°er?

T10e%7% 4+ 6d%e®r? +9d%er + 3d%e” + 9er®.  (2.21)

In [Fy;, the possible values of €% are 0,1, 3,4, 5 and 9.
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Table showing all possible values of -2dr

10

10

10

8

01101 9

6

10

From (2.15), e* = —2dr, so the possible values of (d.r) or (r,d) are

.,(0,10),

(0,0),(0,1),(0,2),(0,3),..

(1,1),(1,3),(1,4), (1,5), (1,9),

(2,2):(2,6);(2,7), (2,8),(2,10),

(3,3),(3,4),(3,5),(3,9),

(4.4),(4,5), (4,9),

(5,5), (5,9),

(6,6),(6,7),(6,8),(6,10),

(7,7),(7,8),(7,10),

(8,8),(8,10),

(9,9),

(10, 10).
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If » = 0, then from (2.15), e = 0. Substituting into (2.17), we get 0 = 1, a

contradiction. Hence r # 0.

Subcase 2.1. d = 0. From (2.15), we get e = 0. Substituting into (2.17), we get 0 =

14+ 10r2 +5rt =172 —6rt = (1 — 3r}) (1 + 2r?) = (1 — 3r?)(1 — 9r?) =

_ _ 1 _ 12 _
f4orrf3f3f4or

(1 —3r*)(1 — 3r)(1 + 3r), so r? =

“lS

1
3
r =3 = 5% = —4. Hence r = £2, +4 satisfying (2.15) to (2.21). Therefore

2% £ 22 and 2% £4a are permutation polynomials of Fy;.

Subcase 2.2. d = 1. Then e # 0. From (2.15) and (2.16), 0 = 2e + 6er? + 3d%e* — d*e* =
2e + 6er? + 2%, s0 0 = 14 3r2 +e.
If r =1, then e = =4 = 7 and (2.17) is not satisfied.
If r =3, then e = —6 = 5 and (2.17) is not satisfied.
If » = 4, then e = —16 = 6 which satisfies (2.15) to (2.21).
If r =5, then e = —10 = 1 which satisfies (2.15) to (2.21).
Ifr=9, thene=—-13= -2 =9 and (2.17) is not  satisfied.
Hence 28422422 +52 and 2%+23+62°+42 are permutation polynomials of

FH.

Subcase 2.3. v = 1. Then e #0. From (2:15) and (2:16); 0 = 2e +3d%ec? — d*e? + 6er? =
2e + 2d%e? + 6e,50 0 = 1 + d%e + 3 = 4 + d?e.
If d =1, then e = —4 =7 and (2.17) is not satisfied.

If d =3, then e = 7' = =) = 2 and (2.17) is not satisfied.

Ifd:4,thene:_—4:%:

- =2 = -3 =28and (2.17) is not satisfied.

3

Wi

Ifd=5,thene= 3 == =1 ==%=-5=06 and (2.17) is not satisfied.

If d=9, then e = > = —1 = 10 and (2.17) is not satisfied.

Hence there is no permutation polynomials of Fy; in this case.
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Subcase 2.4. d = 2. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d%e* — d*e* + Ger? =
2e + 82 + 6er?, so 0 = 1 + 4e + 3r2.

If r=2 thene==2==2 =1 =10 =5 and (2.17) is not satisfied.

4
If r = 6, then e = =% = 5% = & = 3 which satisfies (2.15) to (2.21).

If r =7 thene =="=5% =2 = =8 = —4 = 7 which satisfies (2.15) to

(2.21).

If r =8, thene=2==% =2 =14 and (2.17) is not satisfied.

If r = 10, then e = =* = —1 =10 and (2.17) is not satisfied.

Hence 2% + 223 4 322 + 62 and 2% + 22° + 72? + 7x are permutation

polynomials of Fy;.

Subcase 2.5. r = 2. Then e #0. From (2.15) and (2.16), 0 = 2¢ + 3d%e? — d*e? + 6er? =
2e +2d%e® +2e,50 0 = 1 + d?e + 1= 2 + d?c.

If d =2, then e = 22 = 2! = & =5 and (2.17) is not satisfied.

If d =3, then e = =t = =2 = 2 and (2.17) is not satisfied.

If d = 6, then e = =2 =% =3 and (2.17) is not satisfied.

If d =7, thene = 2 = =2

2 == =3 =+ =4and (2.17) is not satisfied.

If d =8, then e = =3 = 1 and (2.17) is not satisfied.

If d =10, then ¢ =52 = -2 =9 and (2.17) is not satisfied.

Hence there is no permutation polynomials -of [F1; in this case.

Subcase 2.6. d = 3. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d%e* — d*e? + 6er? =
2e —4e* 4+ 6er?, s00=1—2e+3r>2 =1+ 9e + 3r%.

If r =3, then e = = = 22 = 2 = 3 and (2.17) is not satisfied.

If r =4, then e = 3 = 3 = % = —3 = 8 which satisfies (2.15) to (2.21).

If r =5, then e = /% = =12 = 5 which satisfies (2.15) to (2.21).
If r =9, then e = 52 = =2 = 1 and (2.17) is not satisfied.

Hence 2% + 323 + 822 + 42 and 2% + 323 + 522 + 5x are permutation
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polynomials of Fy;.

Subcase 2.7. ¥ = 3. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d%e¢? — d*e? + 6er? =
2e + 2d%e? + 10e, s0 0 = 1 + d%e + 5 = 6 + d’e.
If d =3, then e = ¢ = =2 = 3 and (2.17) is not satisfied.

If d =4, then e = =2 = 1 and (2.17) is not satisfied.

If d =5, then e =

=6
~6
%6 = —2 =9 and (2.17) is not satisfied.

Ifd=9, then e = 58 = 2} = 8 = 4 and (2.17) is not satisfied.

Hence there is no permutation polynomials of Fy; in this case.

Subcase 2.8. d = 4. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d%e¢? — d*e? + 6er? =
2e + 10e? 4 6er?, s0 0 = 1 + 5e + 3r2.
If r = 4, then e = 22 = —1 = 10 which satisfies (2.15) to (2.21).

5

If r =5, then e = =% = —2 = 9 which satisfies (2.15) to (2.21).
If r =9, then e = 22 = 2 =4 and (2.17) is not satisfied.
Hence 2% + 4a3 4 102% + 42 and 2% + 422 + 92® + 5x are permutation

polynomials of [Fq;.

Subcase 2.9. r = 4. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d%e? — d?e* + 6er? =
2e + 2d%e*-8e,.50 0 =1 +.d*est4 =5+ d?e:
If d =4, then e = 2> = —1 = 10 which satisfies (2.15) to (2.21).

5

If.d =5, then e = 3 = § = 2 which satisfies (2.15) to (2.21).

Ifd=9 thene===%=23 === -4 =7 which satisfies (2.15) to
(2.21).
Hence 8+ 423+ 1022+ 4z, 2%+ 523 + 222 + 4w and 2%+ 923 + 722 + 42 are

permutation polynomials of Fy;.

Subcase 2.10. d = 5. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d%e¢? — d?e? + 6er? =

2e + 6e2 + 6er?, so 0 = 1 + 3e + 3r2.
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Subcase 2.11.

Subcase 2.12.

Subcase 2.13.

If r =5, then e = 5% = £ = 2 = 4 which satisfies (2.15) to (2.21).

Wl

If r=9, then e = _?2 = % = 3 and (2.17) is not satisfied.

Hence %4 523 + 422 + 52 is a permutation polynomialof [Fy;.

r = 5. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d*e* — d*e* + Ger? =
2e +2d%e? — 4e, 50 0 = 1 + d’e — 2 = —1 + d%e = 10 + d?e.

If d =5, then e = 3 = <2 = 4 which satisfies (2.15) to (2.21).

If d=9, then e = ; = =1 = =% = 8 = 3 which satisfies (2.15) to (2.21).

Hence 2% 4 523 + 42® + 5z, and 2% + 92° + 322 + 5z are permutation

polynomials of ;.

d = 6. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d*e? — d*¢* + Ger? =
2e + 62 + 6er?, so 0 =1+ 3e + 3r2.

If r = 6, then e = =% = 22 = 4 which satisfies (2.15) to (2.21).

If r =7, then e = =2 = & = 2 which satisfies (2.15) to (2.21).

3 7 3

If r =8, thene=3=="=-2=09and (2.17) is not satisfied.

If r = 10, then'e = =* = & = 6 and (2.17) is not satisfied.
Hence 2% + 623 + 422 4+ 6x and 2% + 623 4+ 222 4+ 7 are permutation

polynomials of [Fq;.

r = 6. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d?e® — d?e? + 6er? =
2e +2d?e? —4es0 0 = 1+ d?e =2 = ~1+ d% = 10+ d%.

If d = 6, then e = § = £ = 4 which satisfies (2.15) to (2.21).

W=

If d =7, then e = + = =% = —2 = 9 which satisfies (2.15) to (2.21).

(S

If d =8, then e = & = =X = 5 which satisfies (2.15) to (2.21).

If d = 10, then e = 1 = 1 which satisfies (2.15) to (2.21).
Hence 2%+ 623 4 422 + 62, 2% + 72® + 922 + 62, 25 + 823 + 522 + 62 and

2% + 1023 + 22 + 62 are permutation polynomials of Fy;.
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Subcase 2.14.

Subcase 2.15.

Subcase 2.16.

Subcase 2.17.

Subcase 2.18.

d=7. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d?e? — d*¢* + Ger? =
2e + 10e? + 6er?, so 0 = 1 + 5e + 3r2.

If r =7, then e = 2% = —1 = 10 which satisfies (2.15) to (2.21).

If r =8, then e = 2 =1 and (2.17) is not satisfied.

If » = 10, then e = _?4 = :_é . % - %9 = —3 =8 and (2.17) is not satisfied.

Hence 2%+ 723 4+ 1022 + 7x is a permutation polynomial of Fy;.

r = 7. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d*e* — d*e* + Ger? =
2e + 2d%e? + 8e;50 0= L+ d% +4 =5+ d’.
If d =7, then e = 22 = —1 = 10 which satisfies (2.15) to (2.21).

5

If d =8, then e = =2 = -% = —3 = 8 which satisfies (2.15) to (2.21).
If d = 10, then e = 52 = —5 = 6 which satisfies (2.15) to (2.21).
Hence 28+723+102°4 7z, 2°+823 + 822+ Tz, and 2°+1023 +622 472 are

permutation polynomials of Fy;.

d = 8. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d%ec* — d*e? + 6er? =
2e — 4e® 4 6er?, so 0 = 1 — 2e + 3r2.
If r =8, then e = % = =2 = 3 and (2.17) is not satisfied.

If r = 10, then e = == 2 and (2.17) is not satisfied.

Hence there is no permutation polynomials of Fy; in this case.

r= 8. Then e # 0. From (2.15) and (2.16), 0 = 2¢ + 3d*e* — d*¢* + Ger? =
2e 4+ 2d%e? + 10e, s0 0 = 1 + d%e + 5 = 6 + d’e.
If d =8, then e = 2% = =8 = 3 and (2.17) is not satisfied.

If d = 10, then e = 2 = 5 and (2.17) is not satisfied.

Hence there is no permutation polynomials of Fy; in this case.

d=9and r =9. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d*e* —

d?e® +6er? = 2e+ 8¢ +2¢ =4de+8e¢ s00=1+2¢. Thuse= S =12 =5
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and (2.17) is not satisfied.

Hence there is no permutation polynomials of Fy; in this case.

Subcase 2.19. d = 10 and r = 10. Then e # 0. From (2.15) and (2.16), 0 = 2e + 3d?e? —
d*e® 4 6er? = 2e +2e? +6e =8¢ +2e?, 500 =4+ e. Thus e = —4 = 7 and
then (2.17) is not satisfied.

Hence there is no permutation polynomials of 1 in this case.

Therefore for m = 1, all normalized permutation polynomials of [F1; of degree

6 are

x5+ 2z,
Pt a3+ ax®£bz ; a=1,3,4,5,09,
28+ 4a’2® +ax® +4x ; 0 =0,2,6,7,8,10.

All normalized permutation polynomials of degree 6 over F, where ¢ is

relatively prime to 6 are shown in Table B.

Table B

Normalized permutation polynomials of I, q

xSt 2% q=11

28 + a2 +ax’+52; a=1,3,4,5,9 q=11

28 £4a%2® fax’ £42 5 a=0,2,6,7,8,10 | g =11

25



CHAPTER III

SOME NEW CLASSES OF

PERMUTATION POLYNOMIALS

In this chapter, we give some new results about permutation polynomials
related to Theorem 1.24 - Theorem 1.29 stated in Chapter 1.

The next two theorems are obtained by studying the proof of Theorem 1.24.

Theorem 3.1. Let r € N and s be a positive divisor of ¢ — 1. Let h,g € F[z]
be such that h(0) = 0, h(2") and g(z°) has no nonzero root in F,. If for each
teZ,1<t<q-—2, the degree of each term in h(x") is not divisible by s, then

f(z) = h(x’”)(g(xs))(q_])/s is a permutation polynomial of F,.

Proof. Assume that for each mteger t, 1 <t < g — 2, the degree of each term in
(h(x”))t is not divisible by s.

(1) We shall show that f has exactly one root in I,. Consider f(z) = 0.
Then h(xr)(g(xs))(q_l)/s =0, so h(z") =0 or (g(xs))(q_l)/s = 0. Then 2" =0 or
g(x*) = 0. Since g(2*) and h(z") has no nonzero root in F,, x = 0 is the only root
of f.

(2) We shall show that for each integer t, 1°'< t < ¢ — 2, the reduction of
(f(x))t (mod z? — ) has degree < ¢ = 2.

Case 1. s | t, say t = ks with k € N. Then (f(x))t = (h(xr))t(g(xs))(q_l)k.
Let ¢ € F;. Since ¢® # 0 and g(2°) has no nonzero root in Fy, g(c*) # 0 and so
(Lq(cs))[ﬁ1 = 1. Thus (f(c))t = (h(cr))t(g(cs))(qfl)k = (h(c’“))t. Also since 0 is
the only root of h(z") in F, (f(()))t =0= (h(()r))t. By Lemma 1.9, (f(:c))t =
h(z")t (mod z? — x). By assumption, each term in (h(xr))t is of the form az™

where s t ru and a is a constant. Since s { ru and s | (¢ — 1), (¢ — 1) 1 ru, say



ru = (qg—1)A+B where 0 < 3 < ¢—2. Thus 2™ = g0~ DA+8 = 294-445 = 26 (mod
x? — ). Hence the reduction of (h(ZL‘T))t (mod 27 — x) has degree < g — 2.

Case 2. s{t. Then (f(a:))t = (h(xr))t(g(ass))(qfl)t/s. Each term in (h(m"))t is
of the form az™. By assumption, st ru, so (¢—1) { ru. Hence (f(x))t is a sum of
terms whose exponents are of the form ru -+ sm where m is a nonnegative integer.
Since st ru and s | sm, s 1 (ru+ sm). Then (¢ — 1) 1 (ru + sm), say ru + sm =
(g—1)A+B where 0 < < ¢—2. Thus 2"+ = pla=D)A+8 = 3eA=-4+8 = 38 (mod
x? — ). Hence the reduction of (f(x))t (mod 2% — x) has degree < q — 2.

By Theorem 1.11, f(z) is a permutation polynomial of F,. [

Theorem 3.2. Let v € N and s be a positive diwisor of ¢ — 1 such that
g.c.d. (T(q Y s) =1 and g € F,[z] be such that g(x*) has root only at 0 in F,.

Assume that for each integert, 1 <t < q—2, if s | t, then the reduction of (g(xs))t
(mod 27 — x) has degree < q = 2. Then f(x) = g(z*)z" 9 V/* is a permutation

polynomial of F,.

Proof. (1) We shall show that f has exactly one root in F,. Consider f(z) = 0.
Then g(2*)x"@~1/* = 0. Since g(z*) has no nonzero root in F,, 0 is the only root
of f.

(2) We shall show that for each integer t, 1 < t < g = 2, the reduction of
(f(x))t (mod ¢ — ) has degree < ¢ — 2.

Case 1. s | t, say t = ks with k € N. Then (f(a:))t =
¢ € F;. Then (f(c))t = (g(¢*)) o=k = (g(cs))t. And (f(O))t =
(9(0%)) 0tk = 0 = (g(0%))". By Lemma 1.9, (f(z))" = (g(«*))" (mod 24 — ).

g(ms))tx(q*I)Tk. Let

—

By assumption, the reduction of (f(x))t (mod z? — x) has degree < g — 2.
Case 2. s tt. Then (f(x))t = (g(xs))t:v(q_l)”/s. Each term in (g(xs))t is of
the form az*. Thus (f (a:))t is a sum of terms whose exponents are of the form

SU—’—thl If (g — )|(Su—|—ﬁ(q 1)) thensu+Ls_1)=(q 1)m, Sos|rtq U,a
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contradiction. Thus (¢ — 1) { (su+ @), say su+ @ = (q¢—1)A+ [ where

0<B<q—2. Then gt R DA — paA- A4S = 4B (mod x?—x). Hence
the reduction of (f(x))t (mod z9 — x) has degree < g — 2.

By Theorem 1.11, f(z) is a permutation polynomial of F,. [

We now give examples of permutation polynomials of the form in Theorem 3.1

and Theorem 3.2 but not of the form in Theorem 1.24.

Example 3.3. Let f(z) = o' — 22° € Fslz|, h(z) = 2° — 22 € Fsz] and
g(z) = 2% € F3[z]. Then f(x) = (22 — 22325 = h(z®)g(2?), g(z?) and h(x?)
has no nonzero root in By and h(0) = 0. Also the degree of each term in h(x3) is

not divisible by 2. By Theorem 3.1, f(x) is a permutation polynomial of Fs.

Example 3.4. Let r € N and f(z) = (2® + 2% )2 = (2% 4 23)2"C-D/1 € Fyz],

where g(x) = 23 + 2% € Fslz]. Clearly, 1 | g — 1 and g.c.d.(2r,1) = 1. Since

g(0) =0,9(1) = 2 and g(2) = 1, g(x) has only root at 0 in F3 and is a permutation

polynomial of F3, then for each integert, 1 <t <3 —2 =1, (g(x))t = 2z (mod
3

x® — x) which has degree < 3 —2 = 1. By Theorem 3.2, f(x) is a permutation

polynomial of Fs.

Theorem 1.25 was proved by R.A.Mollin ‘and C.Small in-1987 under an
assumption on the coefficients. Removing this restriction we can still find a class

of permutation polynomials.

Theorem 3.5. Let f(z) = ax’ +bx? +¢, i >j>1 and a(#0),b,c € F,. Assume
that —ba=1 is not an (i — )™ power in F,. Ifi—j=q—1 and g.c.d.(j,q—1) =1,

then f(x) is a permutation polynomial of F,.
Proof. Assume that i —j = ¢—1 and g.c.d.(j,¢q — 1) = 1. By Proposition 1.14 we

have that f permutes F, <= 2+ ba~'2/ = 27 (2" + ba™') permutes F,. Since

g.cd.(j,q—1)=1,(i—j)|(¢—1) and —ba"" is not an (i — j)*" power in F,, by
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Theorem 1.24, x7(2°™7 4+ ba™') is a permutation polynomial of F,. Hence f(x) is

a permutation polynomial of [F,. Il
Next, we give an example of Theorem 3.5.

Example 3.6. Let f(r) = 23 + x + ¢ € F3[z]. We can show easily that —1 is not

a square in F3. By Theorem 3.5, f(x) is a permutation polynomial of F3.

Since the hypothesis on —ba~!3~' in Theorem 1.26 is difficult to check,

simplifying this condition, we get the following result.

Theorem 3.7. Let f(x) = ax’ + bzl + ¢, i > j > 1, a(#£ 0),b,c € F, j |4 and

g.c.d.(j,q — 1) = 1. Then the following statements hold:
(1) if b=0, then f permutes F,<~= g.c.d.(i,q —1) =1,

(2) if b# 0, then f(x) is not a permutation polynomial of F, provided that

2@/N=Y 4 ba~! has a nonzero root in Fy.

Proof. (1) Assume that b = 0. Then f(x) = az' + ¢. By Theorem 1.13 and
Proposition 1.14, f permutes F, <= z' permutes F, <= g.c.d.(i,q—1) = 1.
(2) Assume that b # 0. Then —ba~! # 0. By Lemma 1.18, z°+ba~'27 permutes
F, < 27 £ba7 s = (27" 4 ba 1) permutes F,. If 2@/9)~1 + ba~! has a
nonzero root (3 in F,, then (291 4 ba~') has both 0 and 3 # 0 as roots in F,,

so z(zWP) 714 ba1) is not a permutation polynomial of F,,. O

In the case that (/9)~! + ba~! has no nonzero root in F,, f(z) may or may

not be a permutation polynomial of F, as illustrated in the following examples.

Example 3.8. Let f(z) = 2° + 22 € Fs[z], i.e. i =3, =1,a=1, and b = 2.
Then /D=1 4 ba™' = 22 + 2 has no root in Fs and f(x) = z(2® +2). Since
f(1) =3 = f(3), f(x) is not one-to-one, so f(x) is not a permutation polynomial

Of]F5.
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Example 3.9. Let f(x) = 2® +x € Fslz], ie. i =3,7=1,a=1, and b= 1.
Then /)71 + ba=' = 22 + 1 has no root in F3 and f(z) = (2> +1). By

Ezample 3.6, f(z) is a permutation polynomial of Fs.

Theorem 1.27 was also proved by R.A.Mollin and C.Small in 1987. The

following theorem is an extension of it.

Theorem 3.10. Let f(x) = az® + ba"2 + ¢ € F,a] with k > 2 and a # 0. Then
(1) Forq=2, f permutes Fy<= b=0 ork =2,
(2) For q =3, f permutes F,<=> k is odd and either b= 0 orba™' =1,
(3) Forq> 3,

(3.1) if f permutesF,, then either b= 0 or g # +1 (mod k),
(3.2) assume that z* + ba~" has a root in F,. Then
(1) if b=0, then f permutes F, <= g.cd.(k,q—1) =1,
(17) if b#£ 0, then k > 2 implies f(z) is not a permutation polynomial
of Fy while k =2 vmplies IF, has characteristic 2 <= f permutes
F,.

Proof. (1) Let ¢ =2. Then

2

f permutes F, 28 4+ ba12F? permutes F,

< 2" *(2? +ba"") permutes F,

<= either b=0 or k=2.

(2) Let ¢ = 3. We have

f permutes F, <= 2*72(2? + ba™"') permutes F,.
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Case 2.1 b=0. Then

k

f permutes F, <= 2" permutes [,

<= g.cd.(k,2) =1 (by Theorem 1.13), i.e. k is odd.

Case 2.2 b # 0. If ba™t = 2, then h(z) = 2*2(2? + ba™1) = 2" 2(2? + 2)
is not a permutation polynomial of F, since h(1) = 0 = h(0), which implies
that f is not a permutation polynomial of F,. Assume that ba™' = 1. If
k =2, then f(z) = ax®+ b+ c and f(x) is not a permutation polynomial of
3 since g.c.d.(2,3 =1) = 2 £ 1. Consider k > 2. Let g(z) = 2*23(22 +1) €
F,[z]. Then g(0) = 0,9(1) = 2,9(2) = 2871 so g(x) is a permutation
polynomial of F, if and only if 21 = 1 (mod 3), that is, k is odd. Hence

f permutes [, if and only if £ is odd.
(3) Let ¢ > 3.

(3.1) The following proof is the same as that of Theorem 1.27. By
Proposition 1.14, f permutes F, if and only if 2* — ax®~2 permutes
F, where &« = —ba~'. Assume that f permutes F,. Suppose that
g = =1 (mod k) and b # 0. Then « # 0. Letnzﬂkl. Then n # ¢ — 1.

By Lemima 1.10 and the fact that f is a permutation polynomial of I,

0 = Z (w* — aw*=2)"

= Z Z (”) ()" (—aw* =2y
— u%; g(?)(_a)iwkn—kim—gi

By Lemma 1.10, if kn — 2¢ £ ¢ — 1, then Z whnT% =0,
welFy

Assume that kn — 2i = ¢ — 1. Either kn = ¢ — 1 which implies i = 0
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(3.2)

or kn = ¢ + 1 which implies # = 1. Then either, when kn = ¢ — 1,

0= Z <7Z) (—a)’ Z W = Z w?™' = —1, a contradiction, or if

1=0 wel, wel,
kn =q+ 1, then 0 = Z (n) (—a) Z W = n(—a) Z w50
im0 \' weF, weF,
0= Z w?™', a contradiction. Hence either ¢ # +1 (mod k) or b = 0.
wel

Assume that 2?4+ ba ! has a root in F,. We have that
f permutes F, < "2 (al:2 + ba‘l) permutes F,.
By Theorem 1.13, (i) is trivial. To show that (ii) holds, assume that

b# 0. Then ba~! # 0, so the root of > 4+ ba~! is not zero.

If k> 2, then 2" 2(2? + ba™') has at least two distinct roots, so
2*=2(2? +ba~1) is not a permutation polynomial of F, and so f is not
a permutation polynomial of IF,.

If £ =2, then

f permutes F, < z*>+ba""

permutes [,
<~ gcd(2,g—1)=1
<= ¢ is even

<= [, has characteristic 2.

Hence (ii) holds.

]

Theorem 1.28 was due to C.Small. Our next result gives an analysis of some

larger classes.
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Theorem 3.11. Let f(x) =2' —az/,i>j>1,0#a € F,, and put k =i — j.

Then

(1) Fori<q—1andk>2,if i|(q—1+k) but pt =2 then f(x) is not a

i

permutation polynomial of F,.

(2) Assume that (g — 1) | k and (g — 1) does not divide i, i — k, 2i, 2i — k,
% — 2k, ..., (q— 2, (q—2)i—k, (qg—2)i—2k,..., (q—2)i—(q—2)k.

Then a # 1 if and only if f(x) is a permutation polynomial of F,.

(3) If (¢—1) does not divide ((g—1)i — k),....((g—1)i — (g — 2)k), then f(z)

is not a permutation polynomial of F,.

Proof. (1) Let i <q— land k> 2. Since 2 <k <i < q—1, ¢ > 3. Assume that
i|(g—1+k) andpf‘ki%k,say ir=q—1+k Ifr=1,theni=q¢—1+k>qg—1
which contradicts i < ¢—1. Thusr > 1. Since k(r—1) =kr—k <ir—k =q—1,
7“—1<q;kl<q;—1,r<%<q—1 (using ¢ > 3). Thus 1 < r < ¢ — 1. Suppose

that f(x) is a permutation polynomial of F,. By Lemma 1.10,

r

0= Z (w' — aw’)" = Z <:> (—a)t Z wir—D+it

weF, t=0 wely

Since i(r — t) 4+ jt = ir — kt = g — 1+ (1 — t)k, the w-exponents in the sum, for
t=0,1,...,r,are q—1+k,q—1,q-1-k,qg=1-2k ,1.., g—1+(1—1)k.
Since k <i<qg—1,and 0 < i(r —¢)+jt =ir =kt < g—1forallt=1,... r,
r . .
by Lemma 1.10, 0 = ; (t) (—a)twequ WO = p(—a)(—-1) = ra,s0 p | 7, a
contradiction. Hence f(x) is not a permutation polynomial of F,.
(2) Assume that (¢ — 1) | k and (¢ — 1) does not divide 4, i — k, 2i, 2i — k,

20—2k,...,(q—2)i, (¢—2)i—k, (¢q—2)i—2k,..., (¢—2)i—(¢—2)k. By Lemma
1.10 we have that

, iy 0 fort=0,1,...,q9—2,
f permutes F, < Z (W' —aw’?) =

weky —1 fort=¢q—1.
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Consider

t=0: Z(wi—awj)t:ZIZO.

welq welRq
t=1: Z (w' — awj)t = (1) Z w' + <1> (—a)z wF = 0.
0 1
welfy welfy welfy
t=2: ) (w' - aw’)’ = (2) > w (2> (—a))  wr*
0 1
welRq weRy welRg
2 .
4+ (2) (_a)Q Z w2k
welq

t : -2 Y (i — aw’) = (q % 2) Y wldig (q . 2) () w2

wel,

q—2 —2 (q—2)i—(a—2)k
_|_..._|_( 2)(_a)q qu q

wel,

ot S A L B ) o o

weF, wEF, wel,
L (q - 1) (—a)?! Z waDi—(a=1k
4= 1 welRg
(=D -a

If a =1, then Z (w' — awj)q_l = 0, implying that f(z) is not a permutation
polynomial of IF;EF(I

If a # 1, then Z (w* - awj)q_1 = =1, so f(z) is a permutation polynomial
of F,. o

(3) Assume that (¢ — 1) 1 ((¢ — 1)i — k),...,((¢ = 1)i — (¢ — 2)k). From the

proof of (2), Z (w' — awj)q_1 =(=1)+(—=a)” ! (=1) = =2 # —1, 50 f(z) is not

wel,
a permutation polynomial of [F,. Il

Example 3.12. Let f(x) = 2° — 223 € Fslx]. By Theorem 3.11(2), f is a
permutation polynomial of Fy.
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Example 3.13. Let f(z) = 2° — 23 € F3[z]. By Theorem 5.11(2), [ is not a

permutation polynomial of Fy.

The next theorem is an extension of Proposition 1.29(2), which was due to

C.Small.

Theorem 3.14. Let a be a primitive element in F, (i.e., a generator for the
multiplicative group Fy) where g = p* and f(x) = P — az? where s > r > 0.

Then f permutes F, if and only if one of the following conditions holds:

1) p>2
(2) p=2and g.cd.(s—=r,n) > 1.

Proof. From Proposition 1.29(1), we have that f permutes F, if and only if a is
not a (p® — pr)th power in F,.
We claim that a is not a k" power in F, if and only if g.c.d.(k,q—1) =d > 1.
Assume that d = 1. Then uk + v(q — 1) = 1 for some u,v € Z, so
uk —1 = (¢ —1)(—v). Thus a"*~! = @D = 1. Then (a*)* = a** = a. Since
a is a primitive element, a* = w for some w € F,. Hence a = w*, a k' power.
Assume that a = w* for some w € F,. Since 0 # a is a primitive element,
w = a* for some integer u; 1 <u < ¢ — 1. Then a = a", and so a**~! = 1. Thus
uk — 1= (¢ = 1w for somewe Z. Since d| kand d | (¢ =1);d |1, s0d =1, and

the claim is proved.

From this claim we deduce that

f permutes F, <= g.c.d.(p®°—p",q—1) > L.
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Case 1. p =2. Then

gcd(pP=p",qg—1) = g.cd(2°—=2",2"—1)
= g.cd.(2(2°77 =1),2" = 1)

g.cd(2°7" —1,2" — 1)

Thus g.c.d.(p = nd only if g.c.d(s —r,n) =1.

Case 2. p# 2. Then

AOUUINBUINT )
RN ITNINENAY
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