
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALYSIS OF CRACKS IN THREE-DIMENSIONAL LINEAR ELASTIC MEDIA WITH 
CONSIDERATION OF SURFACE STRESS EFFECTS 

Mr. Binh Thai Nguyen 

A Dissertation Submitted in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy Program in Civil Engineering 

Department of Civil Engineering 
Faculty of Engineering 

Chulalongkorn University 
Academic Year 2013 

Copyright of Chulalongkorn University 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

การวิเคราะห์รอยร้าวในตัวกลางยืดหยุ่นเชิงเส้นสามมิติโดยพิจารณาหน่วยแรงที่ผิว 

นายบิน ไทย เหงียน 

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต 
สาขาวิชาวิศวกรรมโยธา ภาควิชาวิศวกรรมโยธา 
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 

ปีการศึกษา 2556 
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย 

 



 

 

Thesis Title ANALYSIS OF CRACKS IN THREE-DIMENSIONAL 
LINEAR ELASTIC MEDIA WITH CONSIDERATION OF 
SURFACE STRESS EFFECTS 

By Mr. Binh Thai Nguyen 
Field of Study Civil Engineering 
Thesis Advisor Associate Professor Jaroon Rungamornrat, Ph.D. 
Thesis Co-Advisor Professor Teerapong Senjuntichai, Ph.D. 
 Associate Professor Anil C. Wijeyewickrema, Ph.D. 
  

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Doctoral Degree 

 

 Dean of the Faculty of Engineering 

(Professor Bundhit Eua-arporn, Ph.D.) 

THESIS COMMITTEE 

 Chairman 

(Professor Thaksin Thepchatri, Ph.D.) 

 Thesis Advisor 

(Associate Professor Jaroon Rungamornrat, Ph.D.) 

 Thesis Co-Advisor 

(Professor Teerapong Senjuntichai, Ph.D.) 

 Thesis Co-Advisor 

(Associate Professor Anil C. Wijeyewickrema, Ph.D.) 

 Examiner 

(Associate Professor Akhrawat Lenwari, Ph.D.) 

 Examiner 

(Assistant Professor Watanachai Smittakorn, Ph.D.) 

 External Examiner 

(Assistant Professor Arnon Wongkaew, Ph.D.) 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
THAI ABSTRACT 

บิน ไทย เหงียน : การวิเคราะห์รอยร้าวในตัวกลางยืดหยุ่นเชิงเส้นสามมิติโดยพิจารณาหน่วย
แรงที่ผิว . (ANALYSIS OF CRACKS IN THREE-DIMENSIONAL LINEAR ELASTIC MEDIA 
WITH CONSIDERATION OF SURFACE STRESS EFFECTS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: 
รศ.ดร. จรูญ รุ่งอมรรัตน์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ.ดร. ธีรพงศ์ เสนจันทร์ฒิไชย, Assoc. 
Prof. Anil C. Wijeyewickrema Ph.D., 89 หน้า. 

ดุษฎีนิพนธ์นี้น าเสนอระเบียบวิธีเชิงตัวเลขที่มีประสิทธิภาพส าหรับจ าลองรอยแตกร้าวใน
ระนาบ ในตัวกลางยืดหยุ่นเชิงเส้นสามมิติซึ่งพิจารณาอิทธิพลของหน่วยแรงที่ผิวด้วย หลักการของหน่วย
แรงที่ผิวซึ่งนิยมใช้แพร่หลายในการศึกษาปัญหาในระดับนาโนถูกน ามาใช้ในการพัฒนาแบบจ าลองเชิง
คณิตศาสตร์ซึ่งสามารถจ าลองรอยแตกร้าวขนาดนาโนได้ แผ่นผิวบางของวัสดุบนผิวรอยแตกร้าวจ าลอง
เป็นพื้นผิวที่มีความหนาเป็นศูนย์ ซึ่งยึดแน่นกับวัสดุบัลก์โดยพฤติกรรมถูกก ากับโดยความสัมพันธ์เชิงวัสดุ
ของเกอร์ตินและเมอร์ดอค ในการสร้างปัญหาค่าขอบเขต ทฤษฎีความยืดหยุ่นเชิงเส้นพื้นฐานถูกน ามาใช้
ในการสร้างสมการก ากับของวัสดุบัลก์ในรูปแบบของสมการเชิงปริพันธ์พื้นผิวที่ลดดีกรีความเป็นเอกฐาน
ส าหรับการขจัดและแรงพื้นผิวบนผิวรอยแตกร้าว ส่วนสมการก ากับของพื้นผิวที่มีความหนาเป็นศูนย์ซึ่ง
รวมผลของหน่วยแรงที่ผิวถูกพัฒนาในรูปแบบอ่อนโดยอาศัยระเบียบวิธีน้ าหนักคงค้าง ผลเฉลยของ
ระบบสมการผสมที่พัฒนาขึ้นหาได้จากกระบวนการเชิงตัวเลขร่วมระหว่างระเบียบวิธีไฟไนต์เอลิเมนต์
และระเบียบวิธีบาวดารีเอลิเมนต์แบบสมมาตร เนื่องจากสมการก ากับเชิงปริพันธ์เป็นแบบเอกฐานต่ า ท า
ให้สามารถใช้ฟังก์ชันต่อเนื่องมาตรฐานในการประมาณปริมาณไม่ทราบค่าบนผิวของรอยแตกร้าวได้ และ
จ าเป็นต้องใช้เทคนิคเชิงตัวเลขพิเศษเฉพาะในการหาค่าปริพันธ์เชิงเอกฐานและใกล้เคียงเอกฐานเท่านั้น 
หลังจากสอบเทียบกับผลเฉลยอ้างอิงแล้ว ระเบียบวิธีเชิงตัวเลขที่พัฒนาขึ้นถูกน ามาใช้ในการศึกษา
อิทธิพลในระดับนาโนที่มีต่อรอยแตกร้าวขนาดนาโน ตัวอย่างที่น าเสนอแสดงให้เห็นถึงความสามารถและ
ประสิทธิภาพเชิงค านวณของระเบียบวิธีที่พัฒนาขึ้น นอกจากนี้ผลที่ได้จากการศึกษาอิทธิพลของตัวแปร
ต่างๆที่เกี่ยวข้องชี้ให้เห็นว่า หน่วยแรงที่ผิวบนผิวรอยแตกร้าวไม่เพียงแต่เพิ่มความแข็งแกร่งของวัสดุที่
บริเวณใกล้ผิว แต่ยังส่งผลให้ผลเฉลยของปัญหาขึ้นอยู่กับขนาดของรอยแตกร้าวและหน่วยแรงที่บริเวณ
ใกล้กับขอบของรอยแตกร้าวมีค่าลดลงอีกด้วย 

ภาควิชา วิศวกรรมโยธา 

สาขาวชิา วิศวกรรมโยธา 

ปีการศึกษา 2556 

  

 

ลายมือชื่อนสิิต   
 

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก   
 

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม   
 

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม   
 

 



 v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ENGLISH ABSTRA CT  

# # 5371844721 : MAJOR CIVIL ENGINEERING 
KEYWORDS: FEM-SGBEM COUPLING / GURTIN-MURDOCH MODEL / NANO-CRACKS / SIZE 
DEPENDENCY / SURFACE STRESSES 

BINH THAI NGUYEN: ANALYSIS OF CRACKS IN THREE-DIMENSIONAL LINEAR 
ELASTIC MEDIA WITH CONSIDERATION OF SURFACE STRESS EFFECTS. ADVISOR: 
ASSOC. PROF. JAROON RUNGAMORNRAT, Ph.D., CO-ADVISOR: PROF. TEERAPONG 
SENJUNTICHAI, Ph.D., ASSOC. PROF. ANIL C. WIJEYEWICKREMA, Ph.D., 89 pp. 
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dimensional, linear elastic, infinite medium which accounts for the influence of surface 
stresses is presented in this dissertation. The concept of surface stresses, which has been 
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CHAPTER 1      
INTRODUCTION 

 
Nowadays, Nanotechnology has become one of the most interesting research 

area in various fields such as biology, chemistry, physics, medicine and engineering. 
Although nanotechnology deals only with extremely tiny objects with their length 
scale of few nanometers (where one nanometer is approximately about 50,000 times 
smaller than the average of a human hair), its applications tend to be substantial. For 
instance, nano-crystals are examples of a new invention at a nano-scale level. Metal 
nano-crystals can be incorporated into car bumpers, making the parts stronger, or into 
aluminum, making it more durable. Other applications of the metal nano-crystals can 
be found in the production of bearings, new types of sensors and components for 
computers and electronic hardware. The nano-crystals of various metals have been 
shown to be 100 percent, 200 percent and even as much as 300 percent harder than 
the same materials in the bulk form. Since the wear resistance is often dictated by the 
hardness of a metal, parts made from the nano-crystals might last significantly longer 
than conventional parts. In a field of medicine and healthcare, ones apply the 
nanotechnology to produce a nano-particulate-based synthetic bone. It is well known 
that the human bone is made of a calcium and phosphate composite called 
hydroxyapatite. By manipulating the calcium and phosphate at a molecular level, ones 
can create a patented material that is identical in structure and composition to the 
natural bone. This novel synthetic bone can be used in areas where the natural bone 
is damaged or removed, such as in the treatment of fractures and soft tissue injuries. 
For public utilities, nano-filters are capable of filtering the smallest particles of 
impurities. Such performance results directly from the nano-sized alumina fiber 
attracting and retaining sub-micron and nano-sized particles. This disposable filter 
retains 99.9999 percentages of viruses at water flow rates several hundred times 
greater than virus-rated ultra-porous membranes. This product can be exploited to 
sterilize drinking water, allowing inhabitants in third-world countries to access the clean 
water. In a field of materials, advanced researches of nano-science and 
nanotechnology such as nano-tubes, nano-wires, nano-composites and nano-films 
have grown rapidly and continuously. For examples, the carbon nano-tube which was 
discovered by Iijima in 1991 (Iijima 1991, Iijima and Ichihashi 1993) has been known as 
an ideal material that possesses excellent mechanical properties. For instance, Young’s 
modulus, tensile strengths and failure strains of a defect-free single-walled carbon 
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nano-tube are up to 1 TPa, greater than 100 GPa and about 15-30%, respectively (Peng 
et al. 2008). All above excellent products come from advanced researches conducted 
at the nano-scale level. What we have seen is just the beginning of a revolution, caused 
by the ability to work on the same scale as nature. The nanotechnology is going to 
affect every aspect of our life. It will become the next industrial revolution (Ratner and 
Ratner 2003). The nanotechnology can be compared to a dawn of the digital revolution 
that totally changes the face of technology and human life. Unlike the internet, the 
nanotechnology can equally be applied to old things and processes. It is about creating 
entirely new materials, products, and systems as well as making existing products 
faster, stronger and better. 

 

1.1 Statement of Research Problem 

Due to enormous benefits that nanotechnology has brought out for the human, 
applications of nano-sized devices and nano-structured materials rapidly grow in 
various field. The physical modeling and corresponding comprehensive analysis to gain 
an insight into the complex behavior of nano-sized devices and nano-structured 
materials become crucial aspects in the optimal design of nano-scale products. 
Failure/damage analysis and assessment is one of the essential steps that must be 
properly considered to ensure their safety and integrity in the design procedure. In 
recent years, there are many researches conducted to investigate the nano-sized crack 
problems by the various methods. Some researchers attempted to use the 
experimental methods to deal with the nano-sized crack problems (Karimi et al. 2002, 
Sumomogi et al. 2002, Sundararajan and Bhushan 2002, Chen et al. 2008, Peng et al. 
2008, Zhao and Xing 2008, Qin et al. 2009, Zhao and Xing 2010, Yan et al. 2011). While 
experimental approaches yield results reflecting the real responses or behaviors, they 
are highly dependent on experimental settings and, generally, expensive due to 
requiring high precision testing devices and procedures. Other researchers used the 
mathematical modeling and simulations based on the discrete atomic-scale model to 
handle the nano-sized crack problems (Buehler et al. 2003, Zhang et al. 2005, Buehler 
and Gao 2006, Rafii-Tabar et al. 2006, Pugno et al. 2008, Huang et al. 2009, Masuda-
Jindo et al. 2009, Phan and Tippur 2009, Adnan and Sun 2010). Those proposed 
models have been verified to yield accurate prediction of responses of interest due to 
their effectiveness in detailing of bonds or atoms; however, such simulations require 
enormous computational effort and resources to treat billions of atoms at a Nano 
scale. This therefore renders the discrete atomic-scale models impractical in various 
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applications. Hence, a classical approach based on the stress analysis of a body 
containing pre-existing defects or cracks becomes an attractive alternative due to their 
advantages of saving computational resources. Unlike macro-structures, in the case of 
nano-sized objects (e.g., thin films, quantum dots, nano-wires, nano-tubes and nano-
composites), the surface to volume ratio is much higher and, as a direct consequence, 
the surface free energy often plays a crucial role in the mechanical behavior (Yakobson 
2003). Therefore, the classical theory of continuum-based mechanics commonly used 
in the modeling of macroscopic bodies cannot be directly applied to accurately treat 
the problem of nano-sized cracks. While conventional linear elastic fracture mechanics 
has been well established and employed in the modeling of cracks in linear elastic 
media, an enhancement of the classical model to incorporate the nano-scale influence 
is essentially required. On the basis of an extensive literature survey, work towards 
using continuum-based theories to model defects/fractures at the nano-scale level 
has been very limited. Most of them are restricted to situations where cracks can be 
treated either within the context of two-dimensional boundary value problems (Fu et 
al. 2008, Wang et al. 2008, Fang et al. 2009, Fu et al. 2010, Kim et al. 2010, Kim et al. 
2011, Kim et al. 2011, Nan and Wang 2012, Kim et al. 2013, Nan and Wang 2013) or 
within the context of relatively simple three-dimensional problems (Intarit et al. 2012, 
Intarit 2013). It is remarked, however, that bodies or components involved in the real 
practices are, in general, relatively complex in terms of geometries, loading conditions, 
and influences to be treated (e.g., surface free energy). Existing simplified mathematical 
models are therefore of limited capabilities and insufficient to be used in the prediction 
of responses of those practical cases. This, as a result, necessitates the development 
of a fully three-dimensional models supplemented by efficient and powerful 
numerical procedures.  

 

1.2 Research Objectives 

The primary objectives of the present research is to: 

(i) develop a physically suitable mathematical model based on the 
continuum theory capable of modeling nano-sized cracks,  

(ii) develop an efficient and accurate numerical procedure to determine 
mechanical field quantities and essential fracture information such as 
crack-opening displacements and stress in the vicinity of the crack front 
of nano-sized cracks and 
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(iii) investigate the size-dependent behavior of nano-sized cracks. 

 

1.3 Research Scope 

This research is conducted within the following context: (i) the body containing 
cracks is a three-dimensional, homogeneous, isotropic elastic infinite medium; (ii) the 
medium is free of the body force and remote loadings; (iii) crack surfaces are planar 
and are subjected to general surface tractions; and (iv) only Gurtin-Murdoch surface 
elasticity model is utilized to treat the surface stress effects. 

 

1.4 Research Methodology 

This dissertation concerns the development of a computationally efficient 
numerical technique capable of modeling planar cracks embedded in three-
dimensional isotropic, linear elastic media including the influence of surface stresses. 
To be capable of capturing the surface free energy effect, a model that properly takes 
into account the surface free energy is utilized. The most widely used continuum-
based model which incorporates the surface free energy effects is that using Gurtin-
Murdoch surface elasticity theory. Gurtin and Murdoch (1975, 1978), and Gurtin et al. 
(1998) proposed a mathematical framework to study the mechanical behavior of 
material surfaces through a continuum-based model which includes surface stresses. 
This well recognized model is chosen in the present investigation to explore the nano-
scale influence. A numerical procedure based primarily on the coupling of a standard 
finite element method (FEM) and a weakly singular, symmetric Galerkin boundary 
element method (SGBEM) is employed. The former technique is utilized to efficiently 
handle the governing equations of the surface whereas the latter is employed to 
discretize the governing equations of the bulk material. Extensive numerical 
simulations are conducted and the results are compared with available benchmark 
solutions to verify both the formulation and numerical implementations.  

Above methodology can further be summarized in details as follows: 

(i) A cracked body is first decomposed into two parts: a bulk and a surface 
with zero thickness perfectly bonded to the crack surface of the bulk.  

(ii) The behavior of the bulk is modeled by a classical theory of linear 
elasticity. The governing equations are established in terms of weakly 
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singular boundary integral equations following the work of 
Rungamornrat and Mear (2008a). 

(iii) The behavior of the surface is modeled by a full version of Gurtin-
Murdoch surface elasticity model. A weak-form statement is established 
using standard weight residual approach.  

(iv) The weak-form equation of the surface part is discretized into a set of 
linear algebraic equations using standard finite element procedure. 

(v) A set of weakly singular integral equations are discretized into a set of 
linear algebraic equations using weakly singular SGBEM similar to that 
employed by Rungamornrat and Mear (2008b). 

(vi) Continuity conditions between the surface part and the bulk material 
are utilized to obtain a fully coupled system of linear algebraic 
equations. 

(vii) A final system of linear equations is solved by a selected linear solver. 

(viii) All field quantities within the bulk material can be obtained from a set 
of boundary integral relations appearing in the work of Rungamornrat 
and Mear (2008a). 

(ix) Extensive numerical experiments are conducted and results are 
compared with available Benchmark solutions to validate the proposed 
numerical technique. 

(x) Extensive parametric study is performed to explore the nano-scale 
influence on responses of cracked media.   

 

1.5 Research Significance 

Expected outcomes from the proposed research should enhance or strengthen 
the capability in the modeling of nano-sized crack problems using an alternative, 
computationally cheap continuum-based model along with the proper treatment of 
surface stress effects via Gurtin-Murdoch surface elasticity model. The developed 
mathematical model and the implemented numerical procedure allow more practical 
planar nano-sized fracture problems to be investigated, e.g. cracks of arbitrary shapes 
under general loading conditions. Availability of a computational tool of such high 
capability should be very significant in the parametric study to investigate and gain an 
insight into various crucial responses of interest in the nano-scale level such as the 
size-dependent behavior of an elastic field and all other related quantities.         
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1.6 Outline of Dissertation 

This dissertation is a reflection of the entire research process and findings, which 
is divided into the following chapters: 

Chapter 1 introduces the applications and the benefits of nano technology that 
has brought to humans nowadays, states research problem, research objective, 
research scopes, research methodology, and research significance. 

Chapter 2 presents an extensive literature review on the surface elasticity 
theory, the nano-sized crack problem and the Boundary Element Method and Coupling 
Finite Element Method and Boundary Element Method in solving the boundary value 
problem. 

Chapter 3 clearly states the description of the boundary value problem 
considered in this study and briefly summarizes the formulation of the key governing 
equations for both the bulk material and the zero-thickness layer on the crack surface. 
The fully coupled system of governing equations resulting from the enforcement of 
interfacial conditions is also presented at the end of the chapter. 

Chapter 4 briefly discusses all numerical treatments including the discretization, 
element shape functions utilized in the approximation of primary unknowns and 
numerical integration. In general, standard procedures for the weakly singular SGBEM 
and those for the standard finite element method to form the discretized system of 
linear algebraic equations are summarized. 

In chapter 5, numerical results for a penny-shaped crack embedded in an 
unbounded domain under mode-I loading conditions and with consideration of the 
surface stress effects are reported and compared with existing benchmark solution to 
verify the formulation and numerical implementation of the proposed technique. 
Then, various examples of crack problems such as a penny-shaped crack under mixed-
mode loading, an elliptical crack under mode-I and mixed-mode loading conditions, 
and multiple cracks embedded in an unbounded domain are considered to 
demonstrate the capability and robustness of the proposed FEM-SGBEM numerical 
technique. The influence of surface stresses on the elastic field and the size-
dependent behavior of nano-sized cracks are also reported and discussed.  

Chapter 6 briefly summarizes research findings, conclusion and remarks, and 
possible extensions of this research. 
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CHAPTER 2      
LITERATURE REVIEW 

 

 This chapter provides a summary of background and recent advances in the 
area relevant to the present study. It begins with the review of the surface elasticity 
theory and the Gurtin-Murdoch surface elasticity model. Then, previous studies 
concerning the investigations of nano-sized crack problems by various approaches such 
as experimental methods, discrete atomic-scale models and approaches based on the 
continuum-based theories are summarized. Review of computational techniques 
relevant to the current work such as the boundary element method and the coupling 
of standard finite element techniques and boundary element methods is presented in 
the last section of this chapter. 

 

2.1 Background and Review of Surface Elasticity Model 

In general, to investigate the nano-scale problems, either experimental 
methods (by using a scanning force microscope (SFM), a scanning laser microscope 
(SLM), an atomic force microscopy, electron microscopy, etc.) or mathematical 
modeling and simulations by using quantum mechanics can be employed. However, 
both methods costly or computationally expensive due to the requirement of high 
precision testing devices and procedures in the experiments and enormous 
computational effort and resources to deal with billions of atoms at a nano scale in 
the modeling. Therefore, an alternative computationally cheap continuum-based 
model has become an attractive choice to treat nano-scale problems. To be agreed 
with results obtained from both experiments and atomistic calculations, influences 
appearing or dominating in the nano-scale level must be suitably incorporated in the 
classical continuum-based model. Atomistic simulations pointed out that atoms near 
the free surface of solids behave differently from their bulk. In this sense, the whole 
body is not completely homogeneous, but when its size is comparable to the scale of 
micrometers or larger, a surface free energy effect can be neglected due to its 
insignificant influence on overall properties. Unlike macro-structures, in the case of 
nano-sized objects (e.g., thin films, quantum dots, nano-wires, nano-tubes and nano-
composites) their surface-to-volume-ratio is much higher and, as a direct consequence, 
the influence of the surface free energy often becomes prominent.  
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The concepts of surface free energy effect and surface stresses were first 
formulated by Gibbs (1906). Gibbs (1906) first introduced the concept of surface 
phenomena and a quantity   that represents the excess free energy per unit area 
owing to the existence of such free surface. He was the first person who demonstrated 
that for solid-solid interfaces, there is a fundamental parameter called a surface stress, 
which critically affects the behavior of surfaces. It means that to deform such a solid, 
excessive work is needed to stretch the surface in addition to straining the bulk. 
Extensive historical review on the surface free energy effect and the Gibbsian 
formulation of the thermodynamics of surfaces can be found in various researches on 
surface and interface stresses (e.g., Shuttleworth 1950, Cammarata 1994, Cammarata 
1997, Fischer et al. 2008). In particular, Cammarata (1994) gave an excellent 
explanation of the concept of the surface stress and showed that the difference 
between the surface stresses and the surface free energy   is equal to the change in 
the surface free energy per unit change in the elastic strain of the surface. It should be 
noted that   is simply a scalar quantity whereas the surface stresses are a second 
order tensor in the tangent plane of the surface with the strain normal to the surface 
being excluded. Besides, Nix and Gao (1998) used a microscopic model to show that 
an interface stress gives a work effect associated with the elastic straining of the 
interface and this quantity causes the bending of a substrate. The surface energy   
has usually been accepted as an excess energy term since a surface can be interpreted 
as a layer to which certain energy is attached (Fischer et al. 2008). The reduced 
coordination of atoms in a surface layer versus atoms within the bulk induces a 
corresponding redistribution of electronic charge, and the altered binding situation in 
the surface is the modified layer spacing (interlayer separation), which deviates from 
the bulk value (Sander 2003). As a result, in general, the energy at a free surface is 
different from that of the atoms in the bulk (Dingreville et al. 2005). The ratio of surface 
free energy   (J/m2) and Young’s modulus E(J/m3),  /E, is an inevitable parameter of 
materials (Yakobson 2003). For conventional metallic materials, the ratio is normally 
less than one Angstrom. For some soft solids, such as polymer gels and biological 
materials, however, the surface energy (or surface stress) is a little less than that of a 
metal, but the elastic modulus can be nearly 7-8 orders smaller than that of 
conventional solids. Therefore, the corresponding intrinsic length scale of soft solids is 
much larger, implying that the surface energy can play an important role on the 
properties of the materials, thus their properties become size-dependent (He and Lim 
2006). In past decades, several researchers have attempted to incorporate the effects 
of surface stresses into a classical continuum-based model to be capable of predicting 
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the behavior of soft materials or to obtain correct responses for nano-scale bodies. 
Within the context of nano-sized crack problems, Gao and Ji (2003) investigated 
fractures in nano-materials by using a virtual-internal-bond (VIB) method. Hasheminejad 
et al. (2011) studied the flexural vibrations of cracked micro- and nano-beams with 
consideration of surface effects by using the cracked-beam model, which is set up by 
dividing a classical cracked beam element into two segments connected by a 
rotational spring located at the cracked section. 

 Nevertheless, the most popular continuum-based models with consideration 
of surface energy effects are those using Gurtin-Murdoch surface elasticity theory. 
Gurtin and Murdoch (1975), Gurtin and Murdoch (1978) and Gurtin et al. (1998) 
proposed a mathematical framework to study the mechanical behavior of material 
surfaces through the continuum-based model with the surface stresses. An elastic 
surface is assumed to be very thin and modeled as a mathematical layer of zero 
thickness perfectly bonded to the bulk without slipping. In addition, such idealized 
surface has different elastic moduli from those of the bulk. During the last ten years, 
Gurtin-Murdoch model has been widely used to investigate various size-dependent, 
nano-scale problems. For instance, Cammarata (1994), He et al. (2004), Dingreville et 
al. (2005), Huang (2008), Wang et al. (2008), Song et al. (2011) employed Gurtin-
Murdoch model to clearly elucidate the size-dependent elastic properties of nano-
structured elements such as beams, plates, wires, and films. Results of Dingreville et 
al. (2005) and Wang et al. (2008) calculated from Gurtin-Murdoch model agree 
reasonably well with direct atomistic simulations of Miller and Shenoy (2000) and 
Shenoy (2002). Furthermore, Cammarata (1997), Sharma et al. (2003), Sharma and Ganti 
(2004), Duan et al. (2005), Wang and Wang (2006), Tian and Rajapakse (2006), (2007), 
Ou et al. (2008), Zhao and Rajapakse (2009) applied the Gurtin-Murdoch surface 
elasticity model to point out the significance of the surface effects and conduct 
analytical solutions for nano-inhomogeneities problems. Fang and Liu (2006), Liu and 
Fang (2007), Mogilevskaya et al. (2008), Jammes et al. (2009), (Fang et al. 2009) also 
investigated interactions of multiple inhomogeneities problems at nano-scale by using 
Gurtin-Murdoch surface elasticity model. 

 

2.2 Review of Nano-Sized Crack Problems 

 Research focusing on the investigation of nano-sized defects and fractures has 
become of central interest in the past two decades. Basic approaches proposed in 
those investigations can be categorized into two groups, namely experimental 
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methods and theoretical simulations. Some of previous studies in the first group can 
be briefly summarized as follows. Sumomogi et al. (2002) investigated both subsurface 
and surface cracks of single-crystal silicon by using a scanning force microscope (SFM) 
and a scanning laser microscope (SLM). Sundararajan and Bhushan (2002) evaluated 
the elastic modulus and bending strength and estimated the fracture toughness of 
nanometer-scale fixed-end beam specimens made of single-crystal silicon and SiO2 by 
using a quasi-static bending test technique that was developed by using an atomic 
force microscope. Karimi et al. (2002) combined a depth sensing nano-indentation and 
a nano-scratch testing along with the atomic force microscopy and electron 
microscopy observations to study mechanical properties and fracture behavior of a 
number of TiAlN(Si, C) hard thin films. Chen et al. (2008) carried out an experiment of 
the composite to examine the local mechanical and fracture behavior of an EPON 862 
based-epoxy with 12 nm (primary) and 100 nm (secondary) fumed silica particles by 
using the atomic force microscopy/digital image correlation (AFM/DIC) method. Peng 
et al. (2008) conducted an experiment by using an in-situ transmission electron 
microscopy (TEM) method. They employed a MEMS material testing system that allows 
accurate measurement of both load and displacement along with the TEM imaging to 
measure a single shell failure for multiwalled carbon nano-tubes that display the 
fracture strengths of about 100 GPa and also showed that fracture strains are very 
close to theoretical predictions. Zhao and Xing (2008), (2010) experimentally 
investigated a micro-crack in silicon by using high-resolution transmission electron 
microscopy (HRTEM) and a combination of geometric phase analysis (GPA), the 
numerical moiré method (NM) and the transmission electron microscopy (TEM). Qin et 
al. (2009) quantitatively investigated the effect of the density of nano-scale twin 
bundles on the tensile strength and fracture toughness. In their study, the fracture 
surface characteristics were elucidated by using scanning electron microscopy (SEM) 
and focused ion beam (FIB) microscopy analysis. The fracture toughness was measured 
by a conventional three-point bending test based on ASTM-E399. Most recently, Yan 
et al. (2011) experimentally investigated crack initiation and propagation along the 
Cu/Si interface in multilayered films (Si/Cu/SiN) with different thicknesses of the Cu 
layer (20 and 200 nm) by using a nano-cantilever and millimeter-sized four-point 
bending specimens. Those experiments demonstrated that the elastic modulus, 
bending strength, and fracture toughness were size-dependent at the nano-scale. 
Values of mechanical properties had a tendency higher compared with those obtained 
from experiments of macro-scale structures. The experimental approaches offer results 
reflecting the real responses or behaviors, they are, however, highly dependent on 
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experimental settings and, generally, expensive due to the requirement of high 
precision testing devices and procedures. 

 Another alternative is based on the mathematical modeling and simulations. 
In this group, a set of governing physics and assumptions is chosen to construct a set 
of mathematical equations governing representative quantities of interest and a 
solution methodology is developed to obtain such representative solutions for 
describing the real behavior. The discrepancy between the real responses and the 
representative solutions depends primarily on the choice of governing physics and 
assumptions and the accuracy of the solution strategy. Based on a careful literature 
review, most of existing studies employed two different types of mathematical models, 
one employing discrete-based models and the other utilizing modified continuum-
based models.  

 Within the context of modeling nano-sized cracks, several studies based on the 
discrete atomic-scale model have been recognized. For instance, Buehler et al. (2003), 
Zhang et al. (2005), Buehler and Gao (2006), Rafii-Tabar et al. (2006), Huang et al. 
(2009), Masuda-Jindo et al. (2009), Adnan and Sun (2010) and Sakib and Adnan (2012) 
investigated the crack by using molecular dynamics (MD) atomistic simulations. Phan 
and Tippur (2009) presented a numerical method to evaluate the quantized fracture 
mechanics (QFM) stress intensity factors (SIFs). Pugno et al. (2008) combined quantized 
fracture mechanics and molecular dynamics atomistic simulations to study atomistic 
fractures. While those proposed models have been verified to yield accurate prediction 
of responses of interest due to their effectiveness in detailing of bonds or atoms, such 
simulations require enormous computational effort and resources to treat billions of 
atoms at a nano-scale. This therefore renders the discrete atomic-scale models 
impractical in various applications. 

 Consequently, a group of approaches based upon continuum-based theories 
is considered attractive since it can substantially reduce both the computational cost 
and complexity of the governing physics. Work towards applying the surface elasticity 
model to simulate the nano-scale influence of nano-sized fracture problems has 
become one of an interesting research area. Based upon the investigation of an 
elliptical void, Wu (1999) argued that presence of the surface stresses can effectively 
reduce an applied stress-intensity factor to a lower effective stress-intensity factor. Wu 
and Wang (2000), (2001) proposed the method using a pair of point forces, one at each 
crack tip, a uniformly distributed compressive load on the convex side of the crack, 
and a uniformly distributed tensile load on the concave side to study the influence of 
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surface stress on two-dimensional crack problems and pointed out that the singularity 
of the crack-tip stress fields becomes 1 / r  instead of being 1/ r . Wang et al. (2007) 
explored the dependent relationship of crack-tip stresses on surface elastic parameters 
for both mode-I (opening mode) and mode-III (tearing mode) cracks based on the 
Gurtin Murdoch surface elasticity theory along with a local asymptotic approach. They 
found in their study, that the stress intensities in the vicinity of the crack tip are 
significantly affected by the surface energy when the curvature radius of a blunt crack 
front decreases to nanometers. Fu et al. (2008), (2010) incorporated the effect of 
surface elasticity into the finite element analysis (via ANSYS and ABAQUS) to study 
the influence of surface stresses on the mode-I (opening mode) and mode-II (sliding 
mode) crack tip fields. They found that when the curvature radius of the crack root 
decreases to micro-/nano-meters, the surface elasticity exhibits significant influence on 
stresses near the crack tip. Fang et al. (2009) investigated the influence of surface 
stresses on the dislocation emission from an elliptically blunt crack under mode-I and 
mode-II loading conditions and reported that the impact of the surface stresses on the 
critical stress intensity factors for dislocation emission becomes remarkable when the 
size of the blunted crack is very small, typically of a nanometer scale. However, their 
results for stresses are valid only in the vicinity ahead the crack-tip of the blunt crack.  

 Use of a sharp crack-tip model has also been commonly employed in the 
modeling of nano-sized cracks. The fundamental problem of mode-I crack was 
elaborated by Oh et al. (2005) based upon an extension of continuum mechanics by 
incorporating effects of the nano-scale through the long-range intermolecular force 
obtained from atomistic simulations. They concluded that the fracture tip should be 
sharp rather than blunt and, unlike the classical case, there is no stress singularity at 
the fracture tip when considered at a nano-scale level. It is also important to remark 
that the surface energy is generally nonzero and a function of position on the fracture 
surface. Sendova and Walton (2010) examined mode-I crack in an infinite elastic 
medium using various models of surface energy effects (e.g., a model of constant 
surface tension and a model of curvature dependent surface tension). In their study, 
they proposed that the stress singularity at the crack tip was reduced to the logarithmic 
singularity in the case of the constant surface tension, whereas the finite stress at the 
crack tip was observed for the case of the curvature dependent surface tension. Kim 
et al. (2010) first examined a mode-III crack problem (i.e., anti-plane shear deformations 
of a linearly elastic solid) subjected to non-uniform surface tractions. Later, Kim et al. 
(2011) studied the plane deformations of a linearly elastic solid containing a crack 
under either mode-I or mode-II loading conditions. Kim et al. (2011) considered the 
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contribution of the surface elasticity to the anti-plane deformations of a linearly elastic 
bi-material containing mode-III interface crack. For above three studies, the continuum-
based surface/interface model of Gurtin and Murdoch was employed in the 
formulation of the boundary value problem and complex variable techniques were 
applied in the solution procedure. They pointed out that the surface stresses result in 
elastic responses and corresponding stress fields being size-dependent and also argued 
that, in contrast to classical results from linear elastic fracture mechanics, their model 
yielded the finite stresses at the sharp crack-tips. Recently, Kim et al. (2013) examined 
the role of surface stresses on the singularity behavior of near-tip stress field. They 
showed that the necessary and sufficient conditions for bounded stresses at the crack 
tip cannot be satisfied with the first-order (curvature-independent) theory of surface 
effects, which leads, at most, to the reduction of the classical strong square-root 
singularity to the weaker logarithmic singularity. This finding agrees with the previous 
study of Sendova and Walton (2010) in the case of the constant surface tension. Nan 
and Wang (2012) considered the effect of the residual surface stress on the crack 
surface and obtained solutions of the crack opening displacement (COD) and the 
mode-I stress intensity factor (KI). Their obtained results demonstrated that the 
influence of the surface stresses on the crack deformation and crack-tip field is 
prominent at the nano-scale. Moreover, the COD and KI are influenced by the residual 
surface stress not only on the surface near the crack-tip region but also on the entire 
crack-face. Most recently, Nan and Wang (2013) investigated a problem of a nano-scale 
crack in piezoelectric nano-materials by considering the effect of the residual surface 
stress on the crack surface. They pointed out that the electromechanical coupling 
fracture behavior of the piezoelectric materials is influenced by the residual surface 
stress on the entire crack surface. 

 On the basis of an extensive literature survey, it can be said that work related 
to the modeling of defects/cracks at nano-scale level has been very limited. Most of 
existing studies regarding to the analysis of nano-sized fractures, the corresponding 
boundary value problems were formulated within the context of two-dimensional 
settings and most of them were solved by using analytical techniques such as complex 
variable techniques, complex potential method and Chebyshev polynomials 
technique. Due to limitations of both inherent simplified assumptions and solution 
techniques, complex but more practical loading conditions and fracture geometries 
cannot readily be treated in those existing works. Recently, Intarit et al. (2012) and 
Intarit (2013) analytically investigated a nano-sized crack in a three-dimensional elastic 
media under a mode-I loading conditions. Although a complete Gurtin-Murdoch 
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surface elasticity model was employed to model the effect of surface stresses, it was 
still limited to a crack of circular shape and axisymmetric loading conditions. However, 
bodies or components containing existing defects/flaws involved in practical 
applications are, in general, relatively complex in terms of geometries, loading 
conditions, and influences to be treated (e.g., surface free energy). The existing 
mathematical models are therefore of limited scope and insufficient for the prediction 
of responses in practical cases. This, as a result, necessitates the development of fully 
three-dimensional models, supplemented by efficient and powerful numerical 
procedures. This current gap of knowledge is to be fully investigated in the present 
study. 

 

2.3 Review of BEM and FEM-BEM Coupling for Crack Problems 

 Numerical techniques based on boundary integral equations have been well-
established and proven powerful for both two-dimensional and three-dimensional 
fracture analysis (e.g., Blandford et al. 1981, Cruse 1988, Gray et al. 1990, Sáez et al. 
1997, Pan and Yuan 2000, Sutradhar and Paulino 2004). The techniques possess 
attractive characteristics, such as governing equations with spatially reduced 
dimensions and simplicity of treating remote boundaries and infinite bodies, rendering 
them computationally efficient and convenient for modeling crack problems. The 
weakly singular, symmetric Galerkin boundary element method (SGBEM), which is a 
principal numerical technique proposed to model the cracks in the present study, is a 
particular boundary integral equation method that has been continuously developed 
and widely adopted by various investigators in the past four decades. This special 
numerical technique has been widely and successfully employed to solve both linear 
elasticity and linear elastic fracture problems (Gu and Yew 1988, Xu and Ortiz 1993, 
Bonnet 1995, Li and Mear 1998, Li et al. 1998, Xu 1999, Frangi et al. 2002, Rungamornrat 
2006, Rungamornrat and Mear 2008, Rungamornrat and Mear 2008, Rungamornrat and 
Senjuntichai 2009), since it possesses several important and desirable features. For 
instance, the governing integral equations contain only weakly singular kernels of

(1 )rO ; the technique is applicable for modeling cracks with arbitrary configurations 
and under general loading conditions and for treating an infinite body efficiently; and 
the formulation is established in a symmetric weak-form such that it gives rise to a 
system of linear equations with a symmetric coefficient matrix. The first feature renders 
that all involved integrals exist in an ordinary sense and their validity requires only the 
continuity of the boundary data; i.e., in the numerical implementation, it is possible to 
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employ standard C0 elements in the approximation of the primary unknowns and to 
apply existing quadrature schemes to numerically evaluate all involved integrals (e.g., 
Li and Mear 1998, Li et al. 1998, Rungamornrat and Mear 2008, Rungamornrat and 
Senjuntichai 2009). In addition, the last feature also allows the SGBEM to be 
conveniently coupled with the standard finite element procedure to enhance its 
computational efficiency and capability (e.g., Frangi and Novati 2003, Rungamornrat 
and Mear 2011). Extensive review of the weakly singular SGBEM can be found in Bonnet 
et al. (1998), in Rungamornrat and Mear (2008) and Rungamornrat and Senjuntichai 
(2009) for its application to three-dimensional fracture analysis, and in Rungamornrat 
and Mear (2011) for its coupling with the standard FEM. 

 While the SGBEM and FEM-SGBEM coupling have been well-established and 
extensively employed in the modeling of classical crack problems, their applications 
to performing stress analysis of defects/flaws at the nano-scale level has not been 
well-recognized in the literature. This motivates the present investigation with the 
primary objective to fill the existing gap of knowledge. The potential advantages of 
using the FEM-SGBEM coupling in the analysis of nano-cracks are as follows: the SGBEM 
can be used to efficiently treat an infinite bulk material containing cracks whereas the 
standard FEM is suitable for modeling the nano-scale influence on the crack surface. 
The positive features of both techniques should not only enhance both the accuracy 
and computational efficiency of the proposed technique but also allow fracture 
problems to be solved within the general context. 
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CHAPTER 3      
GOVERNING EQUATIONS 

 

This chapter begins with the clear problem description and assumptions 
essential for the formulation of the boundary value problem that is the main focus of 
the present study. All basic field equations and the development of governing 
equations for both the bulk material and the crack surface are then presented. Finally, 
the fully coupled system of weak-form equations governing the primary unknowns on 
the crack surface is derived. 

 

3.1 Problem Description 

Consider a three-dimensional, linearly elastic, infinite medium   containing an 
isolated, planar crack of arbitrary shape with a selected reference Cartesian coordinate 
system  1 2 3; ; ;O x x x , as shown schematically in Figure 3.1(a).  
 

 

 

 

 

 

 

 

 

(a) (b) 
 

Figure 3.1: (a) Schematic of three-dimensional infinite elastic medium containing an 
isolated crack and (b) prescribed traction on crack surfaces. 
 

The crack is represented by two geometrically identical surfaces, denoted by 
cS   and cS   with the corresponding outward unit normal vectors 

n  and 
n , for 

convenience in further development, are oriented perpendicular to the x3-axis. In the 
present study, the medium is assumed free of body forces and remote loading, but 
subjected to prescribed, self-equilibrated, normal tractions 0

t and 0
t  on the crack 

surfaces cS   and cS  , respectively (see Figure 3.1(b)). An infinitesimally thin layer on 
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each crack surface possesses a constant residual surface tension s  (under unstrained 
conditions) and the surface Lamé constants s  and s , whereas the rest of the 
medium, termed the “bulk material”, is made of a homogeneous, isotropic, linearly 
elastic material with shear modulus   and Poisson’s ratio  . 

A clear problem statement of the present study is to determine the complete 
elastic field including the displacements and stresses within the bulk material by taking 
the influence of surface stresses into account. Fracture-related information such as the 
relative crack-face displacement and the local stress field in the vicinity of the crack 
front is also of primary interest. 

   

3.2 Domain Decomposition 

In the formulation of the boundary value problem, the medium is decomposed 
into three parts: the bulk material, the zero-thickness layer cS   and the zero-thickness 
layer cS   as shown in Figure 3.2. The bulk material is simply the whole medium without 
the two infinitesimally thin layers on the crack surfaces. Since both layers have zero 
thickness, the geometry of the bulk material is therefore identical to that of the whole 
medium (i.e., it can also be completely described by the region   and the two crack 
surfaces cS   and cS  ). 
 

 

 

 

 

 

 

 

  

(a) (b) (c) 
 

Figure 3.2: Schematics of (a) the bulk material, (b) the zero-thickness layer cS   and (c) 
the zero-thickness layer cS  . 

The key difference between the bulk material and the original medium is that 
the bulk material is homogeneous and the crack surfaces cS   and cS   in the bulk 
material part are subjected to unknown tractions (exerted directly by the two layers) 
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b
t  and b

t , respectively. The layer 
cS   is treated as a two-sided surface with one side 

subjected to the prescribed traction 0
t  and the other side subjected to the traction 

s
t  exerted by the bulk material (Figure 3.2(b)). Similarly, the layer cS   is treated as a 
two-sided surface with one side subjected to the prescribed traction 0

t  and the other 
side subjected to the traction s

t  exerted by the bulk material (Figure 3.2(c)). In what 
follows, Greek subscripts denote field quantities associated with the surface and take 
the values 1, 2 while the Latin subscripts take the values 1, 2, 3. It is remarked that, in 
the development to follow, it will suffice to make reference to the single crack surface

c cS S  . 

 

3.3 Governing Equations of Bulk Material 

Since the bulk material is made of homogeneous, isotropic, linear elastic 
material, its behavior is governed by the classical theory of linear elasticity. From 
results developed in the work of Rungamornrat and Mear (2008a) and Rungamornrat 
and Senjuntichai (2009), the displacement and stress components at any interior point 
x , denoted respectively by ( )pu x  and ( )ij x , can be expressed in terms of the traction 
data b

t  and b
t  and the displacement data b

u  and b
u  on the crack surfaces cS   

and cS   as 
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where ( ) ( ) /t tmj m jD n       is a surface differential operator, b b b

j j jt t t    , 
b b b

j j ju u u    , 
irt  is the standard alternating symbol, the kernels { , , , }p p tk p

j mj mj ijU G C H  
for isotropic elastic materials are given explicitly by 
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with || ||r  ξ x  and ,v   are Poisson’s ratio and the shear modulus, respectively. The 
boundary integral relations (3.1) and (3.2) allow the displacement and stress at any 
interior point to be determined once the data b

t , b
t , b

u  and b
u are known. To 

establish the boundary integral equations governing the unknown data b
t  , b

t , b
u  

and b
u , the integral relations (3.1) and (3.2) are utilized along with the limiting process 

to any point on the crack surface and the standard integration by parts procedure using 
Stokes’ theorem to obtain the weak-form equations. The final weak-form, boundary 
integral equations are given by (see details of the development in Rungamornrat and 
Mear (2008a) and Rungamornrat and Senjuntichai (2009))  
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where b b b

j j ju u u    , b b b

j j jt t t    , and { , }p kt u   are sufficiently smooth test 
functions. The pair of equations (3.7) and (3.8) has been well recognized as the weak-
form boundary integral equations for the sum of the displacement b

ju   and the jump 
of the traction b

jt   across the crack surface, respectively. It is worth noting that both 
integral equations contain only weakly singular kernels { , , , }p p tk p

j mj mj ij jU G C H n  of (1 ).rO

This positive feature renders all involved double surface integrals to exist in an ordinary 
sense and their validity requires only C0- boundary data. 
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3.4 Governing Equations of Two Layers 

The two layers cS   and cS   shown in Figures 3.2(b) and 3.2(c) are considered 
as infinitesimally thin membranes adhered perfectly to the bulk material. The behavior 
of these two layers is modeled by the full version of Gurtin-Murdoch surface elasticity 
theory. The equilibrium equations, the surface constitutive relations and the strain-
displacement relationship of the layers cS   and cS 

 are therefore given by (Gurtin and 
Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998) 
 

, 0s s o

i i it t      (3.9) 
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s s su    (3.10) 

 1
, ,2

s s su u        (3.11) 
 

 

where , ,s s s

i iu    represent stress, strain and displacement components within the 
layer. It is important to remark that, in this case, the full version of Gurtin-Murdoch 
surface elasticity theory including both the surface Lamé constants (or in-plane elastic 
constants) and the residual surface tension is considered. This model should suit the 
treatment of general loading conditions when both the normal and tangential tractions 
can be applied simultaneously on the crack surfaces.  

To construct the weak-form equation, the equilibrium equation (3.9) is 
multiplied by a sufficiently smooth test function s

iu  and the result is integrated over 
the entire crack surface to obtain 
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By performing the integration by parts of the first term using the Gauss-divergence 
theorem, it leads to 
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(3.13) 

 

 

Substituting (3.10) into (3.13) finally yields 
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Note that the weak-form equation (3.14) applies to both crack surfaces. In particular, 
the weak-form equations for the surface 

cS   and surface 
cS   can be obtained explicitly 

by  
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where superscripts “+” and “–” are added to differentiate quantities defined on each 
crack surface. Since the boundary integral equations governing the bulk material are 
derived in terms of the unknown sum and jump of quantities across the crack surface, 
it is natural to establish the weak-form equations governing the surface in terms of the 
same type of unknowns. This can be readily accomplished by forming two linear 
combinations of (3.15) and (3.16) as follows: (i) choosing s s s

i i iu u u     and then 
adding (3.15) to (3.16) and (ii) choosing s s s

i i iu u u     and then subtracting (3.15) from 
(3.16). Such pair of equivalent weak-form equations is given by 
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where superscripts “ ” and “ ” indicate the sum and jump of quantities across the 
crack surface. It should be remarked further that since the jump of the displacement 
along the crack-front vanishes identically, the test function s

iu   is chosen to satisfy the 
homogeneous condition 0s

iu    on 
cS . The weak-form equations (3.17) and (3.18) 

now take the form 
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 (3.20) 
 

Equations (3.19) and (3.20) constitute a set of weak-form equations governing the 
unknown quantities { , , , }s s s s

i i i iu t u t    .  

 

3.4.1 Special case with Only Residual Surface Tension 

It has been pointed out by various investigators that the influence of the 
surface Lamé constants on the out-of-plane responses in the local region very near 
the surface is negligibly weak (Intarit et al. 2012, Nan and Wang 2012, Intarit 2013, 
Pinyochotiwong et al. 2013). The simplified version of the Gurtin-Murdoch model 
without the in-plane surface elasticity is therefore considered suitable for modeling 
planar cracks subjected to pure mode-I loading conditions. By simply setting the 
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surface Lamé constants s  and s  to zero in the constitutive relation for the surface 
(3.10), it leads to 
 

,2s s s s s s s su                     ,  3 3,

s s su    (3.21) 
 

Since the same equilibrium equation and strain-displacement relation as those 
employed in the general case (i.e., equations (3.9) and (3.11)) are also considered, the 
model is not restricted mathematically to applied tractions normal to the crack surface 
although it is physically suitable for treating pure mode-I loading conditions. Due to 
the vanishing of the term ,

s

  , which can readily be verified by the relation (3.21), 
the equilibrium equation (3.9) then implies that the applied shear traction is 
transmitted directly to the crack surface of the bulk medium. To construct the weak-
form statement for this particular case, the procedure similar to that employed in the 
previous section is adopted. The final weak-form equations of the two layers take the 
following form: 
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3.4.2 Special case with Only In-plane Surface Elasticity 

Another simplified version of the Gurtin-Murdoch model considered in the 
present study is the one with only the effect of the in-plane surface elasticity being 
treated. The simplified constitutive relation of the layers cS   and cS   is obtained by 
substituting the residual surface tension s  to zero in (3.10) and this results in 
 

2s s s s s

             ,  3 0
s

   (3.24) 
 

It is evident from (3.24) that this simplified model always predicts zero out-of-plane 
shear stresses and this result, when combined with the equilibrium equation (3.9), 
dictates that the applied normal traction is transmitted directly to the crack surface of 
the bulk material. Similar to the previous special case, this simplified model is still 
applicable to general loading conditions on the crack surface. To obtain the weak-form 
statement for this particular case, the procedure similar to that employed in the 
general case is utilized and the resulting weak-form equations are given by 
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3.5 Governing Equations of Whole Medium 

Since the two layers cS   and cS   are adhered perfectly to the bulk material, 
the displacements and tractions along the interface of the two layers and the bulk 
material must be continuous. This yields the following continuity conditions: 
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s b
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i i it t t       (3.29) 
s b

i i it t t       (3.30) 
 

Substituting (3.27) - (3.30) into (3.7), (3.8), (3.19) and (3.20), leads to a system of four 
equations involving four unknown functions { , , , }i i i iu t u t     as follows 
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It is obvious from (3.32) and (3.34) that terms involving the unknown jump of the 
traction it

  are similar and, by choosing s

i iu u  , the two equations can be combined 
and those terms containing it

  can be eliminated. The above system (3.31)-(3.34) now 
becomes a system of three equations involving three unknown functions { , , }i i iu t u  

given by 
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where the bilinear integral operators , , , ,A B C D E  are defined by  
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  (3.41)
  

and the linear integral operators 
1 2{ , }R R  are defined, in terms of prescribed data 0

t  
and 0

t , by  
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3.5.1 Special case with Only Residual Surface Tension 

For the special case when only the residual surface tension is considered, the 
fully coupled system of governing equations (3.35) can readily be simplified by ignoring 
the surface elastic constants to 
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where the additional bilinear integral operators A  and E  are defined by  
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It is remarked that the system (3.44) still contains three equations and involves three 
unknown functions { , , }i i iu t u   . 



 34 

3.5.2 Special case with Only In-plane Surface Elasticity 

For the special case when only the in-plane surface elasticity is considered, the 
fully coupled system of governing equations can readily be obtained by setting the 
residual surface tension to zero in (3.35) and the final result is given by 
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where the additional bilinear integral operators ˆA  and ˆE  are defined by  
 

   

   

, , , , , ,

, , ,

ˆ( , )
2 4

              
2 4

c c

c c

s s

S S

s s

S S

X Y dS X X Y Y dS

X n Y d X n X n Y Y d

           

           

 

 

 

   

     

 

 

X YA

 (3.49) 

ˆˆ( , ) ( ) ( ) ( ) ( ) ( ) ( , )
c c

tk

t k mj m j
S S

D X C D Y dS dS    X Y y y y X YE F     (3.50) 

  , , , , , ,
ˆ( , )

2 4
c c

s s

S S

X Y dS X X Y Y dS           

 
    X YF   (3.51) 

 

Again, the system (3.48) still contains three equations and involves the same three 
unknown functions { , , }i i iu t u   . 
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CHAPTER 4     
NUMERICAL IMPLEMENTATION 

 
In this chapter, essential components required in the numerical 

implementation including the discretization and numerical integration are briefly 
discussed. In general, standard procedures for the weakly singular SGBEM (e.g., Li and 
Mear 1998, Li et al. 1998, Rungamornrat 2006, Rungamornrat and Mear 2008) and those 
for the standard finite element method (e.g., Bathe 1990, Hughes 2000, Zienkiewicz 
and Taylor 2000) are utilized to form the discretized system of linear algebraic 
equations. 

 

4.1 Discretization 

Standard Galerkin approximation is employed in the discretization of the 
system of governing equations (3.35), (3.44), and (3.48). Since all involved boundary 
integrals governing the bulk material contain only weakly singular kernels of (1 )rO , 
continuous (C0) interpolation functions are utilized everywhere in the approximation 
of both trial and test functions. In particular, the following approximation for the test 
functions and the trial functions is introduced: 
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where N  is the number of nodal points; p  is nodal basis functions at the node p ; 

q  is nodal basis functions at the node q ; 3( 1)q iU 

  , 3( 1)q iU 

  , and 3( 1)q iT 

   are nodal 
degrees of freedom associated with the sum of the displacement, the jump of the 
displacement and the sum of the traction across the crack surfaces, respectively; and 

3( 1)

s

p iU 

  , 3( 1)p iU   , and 3( 1)p iT    are arbitrary nodal quantities.  
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4.1.1 General Case 

Substituting (4.1)-(4.3) into (3.35) along with using the arbitrariness of 3( 1)

s

p iU 

  , 

3( 1)p iU   , and 3( 1)p iT   , leads to a system of linear algebraic equations as 
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A B 0 U R

B C D T 0

0 D E U R

  (4.4) 

 

 

where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators 
, , , ,A B C D E ; sub-vectors 

1 2,R R  correspond to the linear operators 
1 2,R R ; 

U  
is a vector of nodal quantities of the sum of the displacement;

 


U  is a vector of nodal 

quantities of the jump of the displacement and 
T  is a vector of nodal quantities of 

the sum of the traction. The sub-matrices , , , ,A B C D E  and sub-vectors 
1 2,R R  are 

given explicitly by 
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3( 1) 3( 1)[ ] q i q iU 
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4.1.2 Special Case with only Residual Surface Tension 

 By applying the same procedure as that employed in the general case to (3.44), 
it leads to a system of linear algebraic equations as follows 
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where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators 
, , , ,A B C D E ; sub-vectors 

1 2,R R  correspond to the linear operators 
1 2,R R ; 

U  
is a vector of nodal quantities of the sum of the displacement; 

U  is a vector of nodal 
quantities of the jump of the displacement and 

T  is a vector of nodal quantities of 
the sum of the traction. The additional sub-matrices A  and E  are given explicitly by  
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3( 1) ,3( 1)[ ] 0p q     F  (4.19) 
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4.1.3 Special Case with only In-plane Surface Elasticity 

 The discretized system of linear algebraic equations of the governing equations 
(3.48) can also be obtained in the same manner and the final result is given by 
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where the sub-matrices ˆ ˆ, , , ,A B C D E  are associated with the bilinear operators 
ˆ ˆ, , , ,A B C D E ; sub-vectors 

1 2,R R  correspond to the linear operators 
1 2,R R ; 

U  
is a vector of nodal quantities of the sum of the displacement; 

U  is a vector of nodal 
quantities of the jump of the displacement and 

T  is a vector of nodal quantities of 
the sum of the traction. The additional sub-matrices Â  and Ê  are given explicitly by  
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4.2. Numerical Integration 

To evaluate the sub-matrices ˆ ˆ, , , , , , ,  ,  A A A B C D E E E

 

and sub-vectors 

1 2,R R numerically, the single and double surface integrals must be properly treated. 
All single surface integrals contain regular integrands and can be efficiently and 
accurately integrated using standard Gaussian quadrature. Unlike single surface 
integrals, double surface integrals can be categorized into three types depending on a 
pair of elements resulting from the discretization of the surface

cS .  

The first type is termed a regular double surface integral since its integrand is 
not singular with only mild variation. This type of integral arises when both elements 
in a pair are relatively remote in comparison with their characteristic size. Similar to 
the single surface integral, all regular double surface integrals can be accurately 
integrated by Gaussian quadrature.  

The second type, termed weakly singular double surface integrals, arises when 
both elements in a pair are identical and, therefore, the integrand is weakly singular 
due to the involved kernels. Although these integrals exist in an ordinary sense (sense 
of Riemann), it was pointed out by Xiao (1998) that they cannot be accurately 
integrated by standard Gaussian quadrature. To circumvent such difficulty, similar 
techniques based on integrand regularization via a series of transformations proposed 
by Li et al. (1985), Hayami and Brebbia (1988) and Xiao (1998) are employed.  

The last type of double surface integrals, which are considered most 
challenging, is a nearly singular integral. The integrand of these integrals is nearly 
singular since both elements in a pair are relatively close in comparison with their 
characteristic size and this renders the kernels appearing in those integrals nearly 
singular and exhibiting rapid variation. Similar to the weakly singular integrals, Gaussian 
quadrature cannot be used to integrate nearly singular integrals efficiently. Special 
techniques proposed by Hayami (1992), Hayami and Matsumoto (1994) and Xiao (1998) 
are adopted to perform the numerical integration. 

 

4.3 Shape Functions 

 As clearly discussed in the literature review, the singularity of the stress along 
the crack front of nano-sized cracks with the presence of surface stresses is still unclear. 
Some investigators pointed out that the stress along the crack front of nano-sized crack 
should be finite (e.g., Kim et al. 2010, Kim et al. 2011, Kim et al. 2011, Nan and Wang 
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2012). Other studies have concluded in the opposite direction that the stress along 
crack front of nano-sized crack is still singular; however the order of singularity reduces 
from square-root singularity to logarithmic singularity (e.g., Sendova and Walton 2010, 
Kim et al. 2013). In the current study, it is postulated that the singularity of the stress 
along the crack front disappears when the surface stresses is taken into account. As a 
result, standard isoparametric C0 elements are employed everywhere to approximate 
all test and trial functions appearing in the governing equations of nano-sized crack 
problems. However, for some special cases when the influence of the surface stresses 
is ignored in certain directions, the special crack-tip shape functions proposed by Li et 
al. (1998) to accurately capture the right behavior of the near tip field are still required. 
The standard isoparametric shape functions can be easily found in Bathe (1990), 
Hughes (2000) and Zienkiewicz and Taylor (2000). The special crack-tip shape functions 
can be referred to the work of Li et al. (1998). The usage of the shape functions 
(standard shape functions or special crack-tip shape functions) in the present study 
can be summarized as follows: 

- For the general case, when the full version of Gurtin-Murdoch model is 
considered, the standard shape functions are used in the approximation of all 
components of primary unknowns. 

- For the special case, when the simplified version of Gurtin-Murdoch model 
without the surface elastic constants is considered, the special crack-tip shape 
functions are employed to approximate the in-plane components of u  and  
u  whereas the standard shape functions are utilized to discretize all remaining 
quantities. 

- For the special case, when the simplified version of Gurtin-Murdoch model 
without the residual surface tension is considered, the special crack-tip shape 
functions are employed to approximate the out-of-plane components of u  
and  u    whereas the standard shape functions are adopted to discretize all 
remaining quantities. 
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CHAPTER 5      
NUMERICAL RESULTS 

 
To verify the formulation and numerical implementation of the proposed 

method for solving nano-sized cracks problems, a penny-shaped crack embedded in 
an isotropic, linearly elastic, unbounded domain under pure mode-I loading conditions 
is considered first. Results of the crack opening displacement and the vertical stress in 
the vicinity of the crack front are compared with existing benchmark solutions (Intarit 
et al. 2012, Intarit 2013). Once the technique is fully tested, the parametric study is 
performed for this particular problem to elucidate the influence of surface stresses 
and the size-dependent behaviors of the predicted solutions. Then, the same penny-
shaped crack is investigated for mixed-mode loading conditions. To further 
demonstrate the capability of the current method in solving cracks of arbitrary shapes 
and multiple cracks, an elliptical crack under mode-I and mixed-mode loading 
conditions and two coplanar cracks under mode-I loading are considered respectively 
in the remaining of this chapter. 

In the analysis, three different levels of mesh refinement are adopted to 
examine the convergence of numerical results. Nine-node isoparametric elements are 
used to discretize the entire crack front, whereas the rest of the crack surface is 
discretized by eight-node and six-node isoparametric elements. Young’s modulus and 
Poisson’s ratio for the bulk material are taken as 107E GPa  and 0.33  , 
respectively, and the surface elastic constants and the residual surface tension are 
chosen identical to those utilized by Intarit et al. (2012) and Intarit (2013) (i.e., 

4.4939 / ,s N m  2.7779 /s N m  , 0.6056 /s N m  ). These above material 
properties are used for all following numerical examples in this dissertation. For 
convenience in the numerical analysis, all quantities involved in the key governing 
equations are properly normalized. For instance, the unknown sum of the traction and 
the prescribed traction on the top surface of the two-thickness layers are normalized 
by the shear modulus   (i.e., 0t t    and 0

0i i   ); the unknown sum and jump 
of the displacement across the crack surface are normalized by a special length scale 

0.24983s nm     (i.e., 0u u    and 0u u   ) where 2s s s    ; and all 

characteristic lengths representing the geometry of the crack such as the crack radius 
a , the semi-major axis a , and the semi-minor axis b  used in following examples are 
normalized by the length scale   (e.g., 0a a   and 0b b  ). 
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5.1 Penny-Shaped Crack under Pure Mode-I Loading 

As a means for verifying the current technique, the problem of a penny-shaped 
crack of radius a embedded in an isotropic, linear elastic infinite medium is considered 
(Figure 5.1(a)). The crack is subjected to self-equilibrated, uniformly distributed normal 
traction 3 3 0t t     . The three meshes of the crack surface used in the numerical 
study are shown in Figure 5.1(b).  

(a) 

 

x3

x2

x1

0

Mesh  1 Mesh  2 Mesh  3

a

(a)

(b)

x3

x2

0

 

(b) 

Mesh 1 Mesh 2 Mesh 3 

Figure 5.1: (a) Schematic of a penny-shaped crack of radius a  embedded in an 
isotropic, linear elastic infinite medium subjected to uniformly distributed normal 
traction 3 3 0t t     ; (b) Meshes adopted in the analysis. Mesh 1: 20 elements and 
77 nodes. Mesh 2: 88 elements and 297 nodes. Mesh 3: 216 elements and 665 nodes. 
 

5.1.1 Verification 

This problem has been previously solved by Intarit et al. (2012) and Intarit 
(2013) using Hankel integral transforms along with a solution technique for dual integral 
equations and their results are used as the benchmark solution to validate the 
proposed FEM-SGBEM technique. In this numerical example, results for mode-I loading 
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conditions are presented for three different models. The model-1 represents the 
classical case without the surface stress effects. It should be noted that, for this 
particular case, the classical solution of the crack opening displacement and the stress 
in the vicinity of crack front can be found in Tada et al. (2000) and Kachanov et al. 
(2004), respectively. The model-2 is associated with a simplified version of Gurtin-
Murdoch surface elasticity model (the first special case) in which the residual surface 
tension ( s ) is only considered. The model-3 corresponds a full version of Gurtin-
Murdoch surface elasticity model where both the surface elastic constants ( ,s s  ) 
and the residual surface tension ( s ) are included. 

The normalized crack opening displacement and the normalized vertical 
stresses near the crack front, when the influence of surface stresses is taken into 
account, are reported in Figures 5.2-5.3 along with the benchmark solution generated 
by a technique proposed by Intarit et al. (2012) and Intarit (2013). It is seen that the 
numerical results are slightly mesh dependent and that they are highly accurate and 
almost indistinguishable from the analytical solution for both the crack opening 
displacement and near-tip vertical stresses 

33  for the model-2 and model-3. It can 
also be pointed out from the results shown in Figure 5.2 that the two models 
incorporating the surface stresses with (model-3) and without (model-2) the influence 
of the in-plane surface elasticity yield results significantly different from those 
predicted by the classical model (model-1). While both the residual surface tension 
and the in-plane surface elasticity contribute to such discrepancy, the influence of the 
residual surface tension seems more significant in the case of mode-I loading 
conditions. The medium tends to be much stiffer than the classical case, when the 
full version of the surface stress model is considered in the analysis. 

 

5.1.2 Parametric Study 

To further examine the influence of the residual surface tension ( s ) on the 
predicted solution of mode-I crack problems, the normalized crack opening 
displacement and the normalized vertical stress 

33  for different values of the residual 
surface tension s  ranging from 0.1 to 1.0 N/m (with the surface elastic constants and 
the bulk material properties remaining fixed) are shown in Figure 5.4. It can be 
concluded that the residual surface tension exhibits significant role on the crack 
opening displacement and the vertical stress 

33  for mode-I loading conditions. In 
particular, as s  becomes larger, the deviation of results from the classical case 
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(without the surface stresses) significantly increases and, clearly, it renders the elastic 
medium much stiffer. 

The investigation of the influence of the surface elasticity constants ( ,s s  ) 
on the solution of cracks under mode-I loading conditions is also considered. The 
normalized crack opening displacement and the normalized vertical stress 

33  in the 
vicinity of the crack front for different values of the surface elasticity constants  
( ,s s  ) ranging from 0, 0.1, 1 and 10 times of their initial value (with the residual 
surface tension and the bulk material properties remaining fixed) are reported in Figure 
5.5. This numerical study is performed only for the model-3 where the full version of 
Gurtin-Murdoch surface elasticity is considered. It can be concluded from this set of 
results that the surface elasticity constants exhibit the slight influence on the crack 
opening displacement and almost no influence on the vertical stress for mode-I 
loading conditions. However, as the surface elasticity constants become larger, the 
deviation of results from those predicted by the model-2 still increases a bit and, 
clearly, it makes the bulk material a bit stiffer. 

To demonstrate the size-dependent behavior of results due to the presence 
of the surface stresses, the crack opening displacements and the near-tip vertical 
stresses are illustrated in Figure 5.6 for all three models. It is evident that, by including 
the surface stress effects in the mathematical model, the predicted solutions 
apparently exhibit size-dependent behavior. In particular, the normalized crack 
opening displacements and the normalized vertical stresses in the vicinity of the crack 
front of the model-2 and model-3 depend significantly on the crack size and this is in 
contrast with the model-1 where the normalized crack opening displacements and 
normalized vertical stresses are, upon the proper normalization, independent of the 
crack radius. 

 

5.2 Penny-Shaped Crack under Mixed Mode Loading 

In this section, a penny-shaped crack in an unbounded medium under mixed-
mode loading conditions (i.e., mode-II and mode-III loading conditions) is investigated 
to demonstrate the capability of the proposed FEM-SGBEM coupling in the analysis of 
nano-sized crack problems. This numerical example should provide the complete 
information and insight of the influence of the surface stresses on elastic responses 
and fracture data within the context of three-dimensional problems. In the Gurtin-
Murdoch surface elasticity model, the surface elastic constants are related to the in-
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plane terms in the governing equations of the surface and should significantly affects 
the in-plane behavior of cracks under mixed-mode loading conditions. Therefore, 
similar to the previous problem, three different models are considered in this case. 
The model-1 is the classical model when the surface stresses are ignored. The classical 
solution of the crack sliding displacements and stresses in the vicinity of the crack front 
can be found in Kachanov et al. (2004). The model-2 is associated with a simplified 
version of Gurtin-Murdoch surface elasticity model where the in-plane surface elasticity 
is only treated. The last model, model-3, again corresponds to the full version of 
Gurtin-Murdoch model. 

Let us consider a penny-shaped crack of radius a  embedded in an isotropic, 
linear elastic infinite medium as indicated in Figure 5.7(a). The crack is subjected to the 
self-equilibrated, uniformly distributed shear traction 1 1 0t t     . Three meshes, 
adopted as depicted in Figure 5.7(b), are employed in the analysis. 
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Figure 5.2: Comparison of the normalized crack opening displacements of a penny-
shaped crack under uniformly distributed normal traction obtained from three different 
models for 107E GPa , 0.33  , 4.4939 /s N m  , 2.7779 /s N m   and 

0.6056 /s N m  . 
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Figure 5.3: Normalized vertical stresses 33 0/   in the vicinity of the crack-front of a 
penny-shaped crack under uniformly distributed normal traction for 107E GPa , 

0.33  , 4.4939 /s N m  , 2.7779 /s N m   and 0.6056 /s N m  : results for (a) 
model-3 and (b) model-2. 
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Figure 5.4: Penny-shaped crack under uniformly distributed normal traction for 
different residual surface tension s  ranging from 0.1 to 1 N/m; 107E GPa , 0.33, 

4.4939 /s N m  , 2.7779 /s N m  : (a) normalized crack opening displacements 
and (b) normalized near-tip vertical stresses 33 0/   obtained by using mesh-3. 
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Figure 5.5: Penny-shaped crack under uniformly distributed normal traction, for 
different surface elasticity constants ( , )s s   ranging from 0; 0.1; 1 and 10 times of 
their initial value ( 4.4939 /s N m  , 2.7779 /s N m  ); 107E GPa , 0.33  , 

0.6056 /s N m  : (a) normalized crack opening displacements and (b) normalized 
near-tip vertical stresses obtained by using mesh-3. 
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Figure 5.6: Penny-shaped crack under uniformly distributed normal traction, for three 
different crack radii 

0 0.5, 1.0, 10a a   , and for 107E GPa , 0.33  ,
4.4939 /s N m  , 2.7779 /s N m  , 0.6056 /s N m  : (a) normalized crack 

opening displacements and (b) normalized near-tip vertical stresses obtained by using 
mesh-3. 
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Results for the crack sliding displacements (CSD) and the stresses in the vicinity 
of the crack front along the x1-direction (the direction of the applied shear traction) 
are reported in Figure 5.8. It is seen that numerical solutions exhibit very good 
convergence for both the CSD and the near-tip stresses. It can be pointed out from 
results in Figure 5.8(a) that the surface stresses significantly influence the CSD. 
Especially, by comparing the CSD predicted by the model-2 and the model-3, the 
discrepancy between them cannot be well recognized; as a results, it can be 
concluded that the in-plane elastic constants prominently affect the CSD of cracks 
under in-plane loading conditions whereas the influence of the residual surface tension 
on the CSD is insignificant. It also can be argued from Figure 5.8(b) that the shear stress 

13  near the crack front is strongly influenced by the surface stresses. The magnitude 
of the predicted stresses near the crack front reduces considerably from the classical 
solution when the surface stresses are present. In particular, the in-plane elastic 
constants affect substantially the in-plane quantities for cracks under in-plane loadings 
in comparison with the residual surface tension.      

To further understand the role of each parameter in the Gurtin-Murdoch model 
on the predicted solutions of mixed-mode crack problems, following four cases 
obtained by varying the value of the in-plane elastic constants and the residual surface 
tension are considered:  

- Case 1: Both the in-plane elastic constants ( ,s s  ) are varied from 0, 1, 5 and 
10 times of their initial value ( 4.4939 /s N m  , 2.7779 /s N m  ) whereas 
the residual surface tension remains fixed.  

- Case 2: The residual surface tension ( s ) is ranged from 0, 1, 5 and 10 times of 
its initial value ( 0.6056 /s N m  ) whereas the in-plane elastic constants 
remain fixed.  

- Case 3: Only the parameter s  is varied from 0, 1, 5 and 10 times of its initial 
value ( 4.4939 /s N m  ) whereas all remaining parameters remain fixed.  

- Case 4: Only the parameter s  is varied from 0, 1, 5 and 10 times of its initial 
value ( 2.7779 /s N m  ) whereas all remaining parameters remain fixed.  

The normalized CSD and the normalized shear stresses in the vicinity of the 
crack front along the x1-direction are reported in Figures 5.9-5.10 for all four cases. It 
can be seen that the surface elastic constants ( ,s s  ) in the Gurtin-Murdoch model 
significantly reduce the CSD and the shear stresses near the crack front, whereas the 
residual surface tension almost have no effect on the predicted solution of mixed-
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mode crack problems. It can be also pointed out that the parameter s  in the Gurtin-
Murdoch model exhibits more prominent effect on the CSD and the near-tip shear 
stresses in comparison with the parameter s  (see Figure 5.9(c)-(d) and Figure 5.10(c)-
(d)). 
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Figure 5.7: (a) Schematic of a penny-shaped crack of radius a  embedded in an 
isotropic, linear elastic infinite medium subjected to uniformly distributed shear 
traction 1 1 0t t     ; (b) meshes adopted in the analysis. Mesh 1: 20 elements and 
77 nodes. Mesh 2: 88 elements and 297 nodes. Mesh 3: 216 elements and 665 nodes. 
 

To investigate the size-dependent behavior of the solution of mixed-mode 
crack problems due to the presence of the surface stresses, the CSD and the shear 
stresses in the vicinity of the crack-front for different crack radii 

0 0.5, 1.0, 10a   are 
considered. Results of the crack sliding displacement and the shear stresses along the 
x1-direction are shown in Figure 5.11. 
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Figure 5.8: A penny-shaped crack under uniformly distributed shear traction, for 
107E GPa , 0.33  , 4.4939 /s N m  ,  2.7779 /s N m  , 0.6056 /s N m  : 

(a) normalized crack sliding displacements and (b) normalized near-tip shear stress 
along the x1-direction. 
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Figure 5.9: Normalized crack sliding displacements of a penny-shaped crack under 
uniformly distributed shear traction for 107E GPa , 0.33   in four cases: (a) 
different values of ( ,s s  ) with 0.6056 /s N m  ; (b) different values of s  with 

4.4939 /s N m  , 2.7779 /s N m  ; (c) different values of s  with 
2.7779 /s N m  , 0.6056 /s N m   and (d) different values of s  with 
4.4939 /s N m  , 0.6056 /s N m   obtained by using mesh-3. 
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Figure 5.10: Normalized near-tip shear stresses of a penny-shaped crack under 
uniformly distributed shear traction for 107E GPa ,  0.33   in four cases: (a) 
different values of ( ,s s  ) ; (b) different values of s ; (c) different values of s  and 
(d) different values of s  obtained by using mesh-3. 

It can be seen in Figure 5.11 that the normalized CSD and the normalized shear 
stresses in the vicinity of the crack front along the x1-direction obtained from the 
model-2 and model-3 are apparently size-dependent. This finding agrees with the case 
of mode-I loading conditions. When the crack-size decreases, the influence of the 
surface stresses on elastic responses of cracks subjected to mixed-mode loading 
conditions becomes more significant in the sense that the medium is stiffer.  
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Figure 5.11: A penny-shaped crack under uniformly distributed shear traction, for 
different crack radii 

0 / 0.5, 1.0, 10a a   , for 107E GPa , 0.33  , 
4.4939 /s N m  , 2.7779 /s N m   and 0.6056 /s N m  : (a) normalized crack 

sliding displacements and (b) normalized near-tip shear stresses obtained by using 
mesh-3. 



 56 

5.3 Elliptical Crack 

To demonstrate the capability of the proposed FEM-SGBEM coupling technique 
for treating crack problems of arbitrary shapes with consideration of the surface stress 
effects, an elliptical crack embedded in an isotropic, linear elastic infinite domain is 
considered (see Figure 5.12(a)). The material in which the crack is embedded is Si [100] 
where properties of the bulk material are 107E GPa , 0.33   and the surface 
elastic constants and the residual surface tension are obtained from Miller and Shenoy 
(2000). The crack-front is parameterized in terms the angle   by 

 1 2 3cos , sin , 0; 0,2x a x b x        (5.1) 

where a  and b  are the major and minor semi-axes of the crack, respectively. In this 
numerical example, two loading conditions are investigated. The first case is associated 
with the crack subjected to the self-equilibrated, uniformly distributed normal traction 

3 3 0t t      (see Figure 5.12(b)) whereas the other case corresponds to the crack 
subjected to the self-equilibrated, uniformly distributed shear traction 2 2 0t t      
(see Figure 5.12(c)). Numerical results are presented for three different aspect ratios 

1,2,3a b   and three meshes shown in Figure 5.12(d) are adopted to model the 
elliptical crack (Mesh 1 has 20 elements and 77 nodes; Mesh 2 has 88 elements and 
297 nodes and Mesh 3 has 216 elements and 665 nodes). 

 

5.3.1 Normal Traction 

For this particular loading condition, results obtained from three different 
models indicated below are presented and compared:  

- Model-1 represents the classical model without the influence of the surface 
stresses. The classical solution of the crack opening displacements and the 
vertical stresses in the vicinity of crack front can be found in Zeng-shen (1982) 
and Kassir and Sih (1975), respectively. 

- Model-2 is associated with the simplified version of Gurtin-Murdoch model 
without the contribution of surface elastic constants. 

- Model-3 is the full version of Gurtin-Murdoch model where the surface elastic 
constants ( ,s s  ) and the residual surface tension ( s ) are included. 

The convergence study of the normalized crack opening displacement (COD) 
and the normalized vertical stress along the minor axis for the aspect ratio 2a b   
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using the model-2 and model-3 are reported in Figure 5.13. As can be seen from this 
Figure, the predicted solutions for COD and the vertical stresses near the crack front 
show good convergence. The normalized CODs and the normalized vertical stresses 

33 0/   along the minor axis of the crack are also presented in Figure 5.14 for the 
aspect ratios 1,2,3a b   and all three models. As can be observed in Figure 5.14, 
when the aspect ratio a b  increases, the influence of the surface stresses on the CODs 
and the near-tip vertical stresses decreases. It can also be remarked that for the mode-
I crack problem, the difference between solutions predicted by the full version and 
simplified version of Gurtin-Murdoch model is insignificant. As a result, the simplified 
version of Gurtin-Murdoch model can be utilized to investigate the nano-scale 
influence of mode-I crack problems to simplify the calculation.  

In order to investigate the role of the residual surface tension on responses of 
cracks under the mode-I loading conditions, the normalized CODs and the normalized 
vertical stresses 

33 0   are computed for different values of the residual surface 
tension s  ranging from 0.1 to 1.0 N/m. Solutions obtained from the model-3 are 
reported in Figure 5.15 for the aspect ratio 2a b  . It can be concluded from this set 
of results that the influence of the residual surface tension is also significant and the 
medium becomes much stiffer when s  increases. 

To examine the size-dependent behavior of predicted results due to the 
presence of the residual surface tension, the CODs and the near-tip vertical stresses 
for 

0 0.5, 1.0, 10b   and the aspect ratio 2a b   are shown in Figure 5.16. As can be 
seen in Figure 5.16, the normalized CODs and normalized vertical stresses are clearly 
size-dependent. This is in contrast with the classical case (i.e., without the surface 
stress effects) where the solutions are size-independent. In particular, when the crack-
size or the aspect ratio decreases, the influence of the surface stresses becomes more 
significant in the sense that the medium is stiffer. 

 

5.3.2 Shear Traction 
Consider, next, an elliptical crack subjected to uniform shear traction 

0  as 
shown in Figure 5.12(c). The direction of the applied shear traction is taken in the x2-
direction as shown schematically in Figure 5.12(c). As a consequence of the anti-
symmetric nature of the applied load, only mode-II (sliding mode) and mode-III (tearing 
mode) responses are investigated. Again, following three different models are 
considered in the numerical study: 
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- Model-1 is associated with the classical model where the surface stresses are 
not included. It is remarked that the classical solution of the crack sliding 
displacement and the shear stresses in the vicinity of the crack front can be 
found in Kassir and Sih (1975).  

- Model-2 corresponds to the simplified version of Gurtin-Murdoch model where 
only the in-plane elastic constants are considered.  

- Model-3 represents the full version of Gurtin-Murdoch model where both the 
in-plane elastic constants and the residual surface tension are considered.  

The numerical results are obtained using the three meshes as indicated in 
Figure 5.12(d) to confirm the convergence of numerical solutions. The convergence 
study of the crack sliding displacement (CSD) and the shear stress 

23  in the vicinity 
of the crack front along the minor-axis are reported in Figure 5.17. It can be observed 
from these results that the proposed technique yields converged solutions for both 
the CSD and the shear stress. 

The Normalized CSDs and the normalized shear stresses 
23 0   near the crack 

front along the minor-axis are presented in Figure 5.18 for three aspect ratios 
1, 2, 3a b   and for three models to show the influence of the surface stresses on 

responses of mixed-mode cracks. Results shown in Figure 5.18(a) indicate that solutions 
of the CSDs predicted by the model-2 and model-3 are almost identical, whereas 
solutions of shear stresses 

23  for this particular case (see Figure 5.18(b)) are slightly 
different. Comparing with the classical solution (model-1), it can be easily recognized 
that the surface stresses (especially the in-plane elasticity constants) significantly 
reduce the CSDs and the shear stresses in the neighborhood of the crack front. This 
confirms that presence of the surface stresses renders the medium much stiffer.  

To further examine the influence of the in-plane elastic constants ( ,s s  ), 
these parameters are varied from 0, 0.1, 0.5 and 1 times of their initial value 
( 4.4939 /s N m  , 2.7779 /s N m  ) while the residual surface tension remains 
fixed. The numerical study is conducted only for two aspect ratios 2, 3a b   and the 
model-3. The normalized CSDs and the shear stresses 

23  in the vicinity of the crack 
front along the minor-axis are reported in Figures 5.19. It can be seen that the surface 
elastic constants ( s , s ) in Gurtin-Murdoch surface elasticity theory significantly 
reduce the CSD and the near-tip shear stresses, whereas the residual surface tension 
almost have no effect on the solution of mixed-mode crack problems.  
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To investigate the size-dependent behavior of the solution of mixed-mode 
crack problems due to the presence of the surface stresses, the elliptical crack of the 
aspect ratio 2a b   is examined for different sizes of the minor semi-axis

0 0.5, 1.0, 10b  . Results of the CSDs and the shear stresses in the vicinity of the crack-
front along the minor-axis are shown in Figure 5.20. It can be seen that the normalized 
CSDs and normalized shear stresses along the minor-axis predicted by the model-2 
and model-3 are size-dependent. Again, this is in contrast with the classical case (i.e., 
without the surface stress effects) where the solutions are essentially size-independent 
upon proper normalization. When the crack-size decreases, the influence of surface 
stresses on the predicted responses becomes more significant. 
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Figure 5.12: (a) Schematic of an elliptical crack embedded in an isotropic, linear elastic 
infinite medium; (b) both surfaces of the crack subjected to uniformly distributed 
normal traction 3 3 0t t     ; (c) both surfaces of the crack subjected to uniformly 
distributed shear traction 2 2 0t t     ; (d) meshes used in the analysis. 
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Figure 5.13: Convergence study of an elliptical crack under uniformly distributed 
normal traction for three different models and the aspect ratio 2a b  , for 

107E GPa , 0.33  , 4.4939 /s N m  , 2.7779 /s N m  , 0.6056 /s N m  : (a) 
normalized crack opening displacements along minor-axis and (b) normalized near-tip 
vertical stresses along the minor-axis. 
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Figure 5.14: Comparison of results of an elliptical crack under uniformly distributed 
normal traction for three different models and three different aspect ratios 

1, 2, 3a b  , for 107E GPa , 0.33  , 4.4939 /s N m  , 2.7779 /s N m   and 
0.6056 /s N m  : (a) normalized CODs along minor-axis and (b) normalized near-tip 

vertical stresses along minor-axis obtained by using mesh-3. 
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Figure 5.15: Elliptical crack under uniformly distributed normal traction for the model-
3 with the aspect ratio 2a b   and different values of the residual surface tension s , 
for 107E GPa , 0.33  , 4.4939 /s N m  , 2.7779 /s N m  : (a) normalized 
CODs along the minor axis and (b) normalized near-tip vertical stresses along the minor 
axis obtained by using mesh-3. 
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Figure 5.16: Elliptical crack under uniformly distributed normal traction for three 
different models with different minor semi-axes 

0 / 0.5, 1.0, 10b b    and the aspect 
ratio 2a b  , for 107E GPa , 0.33  , 4.4939 /s N m  , 2.7779 /s N m   and 

0.6056 /s N m  : (a) normalized CODs along the minor axis and (b) normalized near-
tip vertical stresses along the minor-axis obtained by using mesh-3. 
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Figure 5.17: Convergence study of an elliptical crack under uniformly distributed shear 
traction in the x2-direction with the aspect ratio 2a b  , for 107E GPa , 0.33  , 

4.4939 /s N m  , 2.7779 /s N m   and 0.6056 /s N m  , for three different 
models: (a) normalized CSDs along the minor axis and (b) normalized near-tip shear 
stresses 23  along the minor-axis. 
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Figure 5.18: Elliptical crack under uniformly distributed shear traction in the x2-
direction with the aspect ratio 1, 2, 3a b  , for 107E GPa , 0.33  , 

4.4939 /s N m  , 2.7779 /s N m  , 0.6056 /s N m   and for model-1, model-2, 
model-3: (a) normalized CSDs along the minor-axis and (b) normalized near-tip shear 
stresses 23  along the minor-axis obtained by using mesh-3. 



 66 

(a) 

 

r0/b0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
a/b=2

a/b=3

   1 * (s, s); s

0.5 * (s, s); s

0.1 * (s, s); s

   0 * (s, s); s

Classical Sol.
2u



 

(b) 

 

r0/b0

1.00 1.02 1.04 1.06 1.08 1.10
0.0

2.0

4.0

6.0

8.0

10.0

a/b=2

a/b=3

   1 * (s
, s

); s

0.5 * (s
, s

); s

0.1 * (s, s); s

   0 * (s, s); s

Classical Sol.23

0





 
Figure 5.19: Elliptical crack under uniformly distributed shear traction in the x2-
direction for the model-3, the aspect ratios 2, 3a b   and different values of  
( ,s s  ) ranging from 0 to 1 time their initial values ( 4.4939 /s N m  , 

2.7779 /s N m  ), 107E GPa , 0.33  , 0.6056 /s N m  : (a) normalized CSDs 
along the minor-axis and (b) normalized near-tip shear stresses 23  along the minor-
axis obtained by using mesh-3. 



 67 

(a) 

 

r0/b0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Model-3

Model-1

b
0 
= 0.5

b
0 
= 1.0

b
0 
= 10

2u



 

(b) 

 

r0/b0

1.00 1.02 1.04 1.06 1.08 1.10
0.0

2.0

4.0

6.0

8.0

10.0

Model-3

Model-1

b
0 
= 0.5

b
0 
= 1.0

b
0 
= 1023

0





 
 

Figure 5.20: Elliptical crack under uniformly distributed shear traction in the x2-
direction for 2a b  , 

0 / 0.5, 1.0, 10b b   , for 107E GPa , 0.33  , 
4.4939 /s N m  , 2.7779 /s N m  , 0.6056 /s N m   and model-1, model-3: (a) 

normalized CSDs along the minor-axis and (b) normalized near-tip shear stresses 23  
along the minor-axis obtained by using mesh-3. 
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5.4 Two Coplanar Penny-Shaped Cracks 

Finally, to demonstrate another feature of the proposed FEM-SGBEM technique 
in modeling multiple cracks, in this section, a problem of two interacting penny-shaped 
cracks embedded in an unbounded domain with consideration of the surface stress 
effects is investigated.  

Consider a pair of co-planar, identical penny-shaped cracks of radius a  
embedded in an isotropic, linear elastic unbounded domain as shown in Figure 5.21(a). 
The distance between the centers of the two cracks is denoted by h . Both cracks are 
subjected to the self-equilibrated, uniformly distributed normal traction 

3 3 0 .t t      
Young’s modulus and Poisson’s ratio for the bulk material are taken as 107E GPa  
and 0.33  , respectively. Here, the influence of the interaction between the two 
cracks on the maximum crack opening displacement (COD) and on the stress in the 
vicinity of the crack front at a particular point A (see Figure 5.21(a)) is investigated. To 
investigate the size-dependent behavior, two values of the normalized radius of the 
crack, 

0 1a a    and 10  are considered. Three meshes shown in Figure 5.21(b) are 
used to test the convergence of numerical solutions. For this particular problem the 
surface stress effects are modeled by the simplified version of Gurtin-Murdoch surface 
elasticity model with only the residual surface tension ( 0.6056 /s N m  ) being 
treated. 

To examine the convergence of the numerical solutions, the normalized CODs 
and the vertical stresses in the vicinity of the crack front of one of the penny shaped 
cracks (crack 1) with the normalized radius 

0 1a   are obtained for the three meshes 
and results are reported in Figure 5.22 for 2.2h a  . The results also are compared 
with classical solutions which can be found in Fabrikant (1989). It is seen that converged 
results of the normalized CODs and the near-tip vertical stresses are obtained. The 
residual surface tension reduced significantly the crack opening displacement and the 
near-tip vertical stresses.  

To study the interaction between the two coplanar cracks, the normalized 
maximum COD and the normalized vertical stress at the point A are plotted for 
different values of h a  in Figures 5.23-5.24 for two cases of radius 

0 1a a    and 
10  with three values of the residual surface tension 0s   (classical solution), 

0.6056 /s N m  , and 1 /s N m  . It can be seen in Figure 5.23(a) that, in good 
agreement with all previous examples, the maximum CODs and the vertical stresses 
in the neighborhood of the crack front decreases when the residual surface tension 
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increases. The bulk medium becomes much stiffer with the presence of the residual 
surface tension for cracks under mode-I loading conditions. It can also be seen from 
Figures 5.23 and 5.24 that the interaction between the two cracks for the classical case 
is size-independent (i.e., solutions of the two cracks converge asymptotically to that 
of the single crack in the identical manner). On the contrary, when the residual surface 
tension is incorporated in the mathematical model, the size-dependent behavior can 
be clearly observed by comparing results in Figures 5.23(a), (b) and results in Figures 
5.24(a), (b), respectively. The decrease in the crack size also lowers the interaction 
between the two cracks. 
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Figure 5.21: (a) Schematic of a pair of penny-shaped cracks of radius a  embedded in 
an isotropic, linear elastic infinite medium subjected to uniformly distributed normal 
traction 3 3 0t t      and (b) meshes adopted for each crack. Mesh-1: 20 elements 
and 77 nodes. Mesh-2: 88 elements and 297 nodes. Mesh-3: 216 elements and 665 
nodes.  
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Figure 5.22: A pair of coplanar identical penny-shaped cracks with radius 
0 1a   and 

2.2h a   under uniformly distributed normal traction, for 107E GPa , 0.33  , and 
residual surface tension 0.6056 /s N m   : (a) normalized CODs of crack 1 and (b) 
normalized near-tip vertical stresses of crack 1. 
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Figure 5.23: Normalized maximum crack opening displacements for a pair of coplanar 
identical penny-shaped cracks under uniformly distributed normal traction with 
different values of /h a , for 107E GPa , 0.33  , and residual surface tension 

0.6056 /s N m  : (a) 
0 1a   and (b) 

0 10a   obtained by using mesh-3. 
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Figure 5.24: Normalized vertical stress at the point A for a pair of coplanar identical 
penny-shaped cracks under uniformly distributed normal traction with different values 
of /h a , for 107E GPa , 0.33  , and residual surface tension 0.6056 /s N m  : 
(a) 0 1a   and (b) 0 10a   obtained by using mesh-3. 
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CHAPTER 6      
CONCLUSIONS 

 

6.1. Summary 

A computationally efficient numerical technique capable of modeling planar 
cracks in three-dimensional, linearly elastic media incorporating the influence of 
surface stresses has been established. In the formulation of the boundary value 
problem, the domain decomposition technique has been adopted to separate a 
cracked body into three parts: (i) an infinitesimally thin layer of materials on the upper 
crack surface, (ii) an infinitesimally thin layer of materials on the lower crack surface, 
and (iii) the remaining bulk medium with those two layers being removed. The classical 
theory of isotropic linear elasticity has been employed to form a system of governing 
equations of the bulk cracked medium in terms of weakly singular, weak-form 
boundary integral equations for the sum of the displacement and the jump of the 
traction across the crack surface of the bulk. Such governing equations possess several 
desirable features such as the weakly singular nature, simplicity to treat an infinite 
body and remote loading condition, and applicability to model cracks of arbitrary 
shapes and under general loading conditions. For both thin layers, they have been 
modeled as zero-thickness, two-sided surfaces with their behavior being described by 
Gurtin-Murdoch surface elasticity theory. In the present study, both the full version of 
Gurtin-Murdoch model including the in-plane surface elasticity and the residual surface 
tension and its simplified versions without either the in-plane surface elasticity or the 
residual surface tension are considered. The weight residual technique has been 
applied to derive the final weak-form statement for the surface part in terms of the 
same types of primary unknowns as those appearing in the bulk equations. The strong 
continuity condition of the displacement and traction on the interface of the surface 
and the bulk medium has been enforced to obtain the fully-coupled system of 
equations governing the whole medium. 

Standard FEM-SGBEM coupling procedure has been implemented to construct 
numerical solutions of the final coupled system of governing equations. In the 
discretization, continuous element-based interpolation functions have been employed 
everywhere in the approximation of trial and test functions. In the present study, it has 
been postulated, based on the physical evidence and previous investigations, that 
presence of the surface stresses renders the stress along the crack front of the bulk 
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medium finite. As the direct consequence, standard C0-elements have been employed 
everywhere in the discretization of all primary unknowns on the crack surface when 
the full version of Gurtin-Murdoch model has been considered. For the special cases, 
when the simplified version of Gurtin-Murdoch model without either the residual 
surface tension or the in-plane surface elasticity has been applied, standard C0-
elements have been employed everywhere in the discretization except in a local 
region along the crack front where either the jump of the out-of-plane displacement 
or the jump of the in-plane displacement is discretized by special crack-tip elements, 
respectively, to enhance the capability of the technique to capture the near-tip field. 
In the construction of a coefficient matrix, standard Gaussian quadrature has been 
adopted to evaluate all involved regular integrals whereas such quadrature 
supplemented by a family of suitable transformation has been employed to efficiently 
compute both weakly singular and nearly singular integrals. The final system of linear 
algebraic equations has been solved by a selected linear solver. 

Extensive numerical experiments have been conducted and obtained results 
have been compared with available benchmark solutions to validate both the 
formulation and numerical implementations of the proposed technique. From a 
convergence study of numerical solutions, it has been found that the FEM-SGBEM 
coupling technique yields converged solutions with only weak dependence on the 
mesh refinement. In addition, the capability and the robustness of the proposed 
method to model relatively complex fracture problems with the treatment of the 
nano-scale influence have been confirmed via various examples involving mixed-mode 
loading conditions and interacting cracks.   

From an extensive numerical study aiming to examine the influence of the 
surface stresses present at the crack surface on elastic responses of the bulk cracked 
medium, it has been found that both the residual surface tension and the in-plane 
surface elasticity appearing in Gurtin-Murdoch model play a vital role on the responses 
prediction and can substantially deviate results from the classical solutions. In general, 
results from the simulations using either the full or simplified version of Gurtin-
Murdoch have indicated that the surface stresses tend to increase the local material 
stiffness in the vicinity of the crack; in particular, the predicted relative crack-face 
displacements and near-tip stresses are significantly lower than those obtained by the 
classical model without the contribution of the surface effects. In addition, the size-
dependent behavior of the elastic responses predicted by models incorporating either 
the full or simplified version of Gurtin-Murdoch has been observed. In particular, as 
the characteristic size of the crack decreases to the intrinsic length scale of materials 
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(in the range of nano-scale for metals), the influence of both the residual surface 
tension and the in-plane surface elasticity becomes more prominent.  

Results from the investigation of pure mode-I crack problems have indicated 
that the residual surface tension plays an important role on the reduction of the crack-
opening displacement and the vertical stress in the vicinity of the crack front from the 
classical solution whereas the in-plane surface elasticity exhibits insignificant effect on 
such quantities. This finding suggests that the simplified version of Gurtin-Murdoch 
model with only the residual surface tension being treated can be used sufficiently in 
the modeling of mode-I crack problems to simplify the calculations. On the contrary, 
for cracks subjected to pure in-plane loading conditions (i.e., mode-II and mode-III 
loading conditions), the influence of the in-plane surface elasticity on major in-plane 
quantities such as the crack sliding displacement and the mode-II and mode-III shearing 
stresses is much more substantial than that of the residual surface tension. As a result, 
the simplified version of Gurtin-Murdoch model without the residual surface tension 
yields, in general, similar results to those predicted by a full model incorporating both 
the residual surface tension and the surface elastic constants. However, for cracks 
under full mixed-mode loadings, both the residual surface tension and the in-plane 
surface elasticity can play a crucial role on the predicted responses and the full version 
of Gurtin-Murdoch model is required. 

 

6.2. Limitations and Directions of Future Research 

The present study has provided an alternative computational tool based 
primarily on an enhanced continuum-based model that can be used to explore the 
fundamental behavior of nano-scale fractures. Nevertheless, the proposed numerical 
technique has been developed within the context where the fractures must be 
modeled as isolated planar cracks embedded in a homogeneous, isotropic, linear 
elastic, infinite bulk medium. To further enhance the modeling capability of the 
developed technique to treat a wide range of problems and to access more interesting 
fracture data, following potential extensions are suggested: 

(1) the governing equations of the surface part can be extended to treat non-
planar cracks; 

(2) the formulation can be generalized to treat embedded, near-surface, and 
surface-breaking cracks in half-space or finite bodies; and 
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(3) the constitutive model for bulk materials can be extended to treat material 
anisotropy, non-uniformity, and multi-field material behavior such as 
piezoelectricity; and  

(4) the computation of crucial fracture data such as the T-stress along the crack 
front can be added.     
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