การเกิด N₂O และ SO₃ บนตัวเร่งปฏิกิริยา V-W-Mo/TiO₂ เตรียม โดยวิธีการเติม โลหะเป็นลำดับ ในระหว่างการรีดักชันแบบเลือกเกิดของ NO ด้วย NH₃

นางสาวกมลทิพย์ แซ่บ้าง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2555

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิท**ฒิโนสิ้นได้เมื่อเงญีฬาลิสึกษณ์ ม**ีปรมวิ**ที่เต้าเถีย**ารในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

Formation of N₂O and SO₃ on V-W-Mo/TiO₂ Catalysts Prepared from Sequential Loading Method during the Selective Reduction of NO with NH₃

Miss Kamoltip Saebang

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2012 Copyright of Chulalongkorn University

Thesis Title	FORMATION OF N2O AND SO3 ON V-W-MO/TIO2
	CATALYSTS PREPARED FROM SEQUENTIAL LOADING
	METHOD DURING THE SELECTIVE REDUCTION OF NO
	WITH NH ₃
By	Miss Kamoltip Saebang
Field of Study	Chemical Engineering
Thesis Advisor	Associate Professor Tharathon Mongkhonsi, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

......Dean of the Faculty of Engineering (Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

.....Chairman (Assistant Professor Suphot Phatanasri, Ph.D.)

......Thesis Advisor

(Associate Professor Tharathon Mongkhonsi, Ph.D.)

.....Examiner (Assistant Professor Anongnat Somwangthanaroj, Ph.D.)

.....External Examiner

(Thongchai Glinrun, D.Eng.)

กมลทิพย์ แซ่บ้าง: การเกิด N₂O และ SO₃ บนตัวเร่งปฏิกิริยา V-W-Mo/TiO₂ เตรียมโดย วิธีการเติม โลหะเป็นลำดับในระหว่างการรีดักชันแบบเลือกเกิดของ NO ด้วย NH₃. (FORMATION OF N₂O AND SO₃ ON V-W-MO/TIO₂ CATALYSTS PREPARED FROM SEQUENTIAL LOADING METHOD DURING THE SELECTIVE REDUCTION OF NO WITH NH₃) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ.ดร.ธราธร มงคลศรี, 78 หน้า.

งานวิจัยนี้ทำการศึกษา การเกิด N₂O และ SO₃ บนตัวเร่งปฏิกิริยา V-W-Mo/TiO₂ซึ่งเตรียม โดยวิธีการเติมโลหะเป็นลำดับในระหว่างปฏิกิริยารีดิวซ์แบบเลือกเกิดของ NO ด้วย NH₃ การ ทดสอบการเกิด N₂O และ SO₃ กระทำในช่วงอุณหภูมิ 120°C-450°C พบว่าทุกตัวเร่งปฏิกิริยา V-W-MO/TiO₂ ทำให้เกิด N₂O ในช่วงอุณหภูมิสูง และเพิ่มขึ้นอย่างมีนัยสำคัญเมื่อ NO conversion ลดลง การเกิด N₂O เป็นปฏิกิริยาระหว่าง NH₃ บนพื้นผิวกับ NO ซึ่งเป็นไปตามกลไกของ Eley-Rideal และพบว่าการลดปริมาณ W ส่งผลต่อการเพิ่มขึ้นของปริมาณ N₂O แต่การลดลงของปริมาณ Mo มีผลเพียงเล็กน้อย ในส่วนของการเกิด SO₃ จากการออกซิเดชันของ SO₂ นั้นตรวจไม่พบการ เกิด SO₃ จากตัวเร่งปฏิกิริยาทุกตัวที่ทำการศึกษา

ภาควิชา	วิศวกรรมเคมี
สาขาวิชา	วิศวกรรมเคมี
ปีการศึกษา <u>.</u>	2555

ดายมือชื่อา	นิสิต			
ลายมือชื่อ	อ.ที่ปรึกษ	าวิทยานิพเ	เช์หลัก	

5470108421 : MAJOR CHEMICAL ENGINEERING KEYWORDS : SELECTIVE CATALYTIC REDUCTION (SCR)/ VANADIUM OXIDE/ TUNGSTEN OXIDE/ MOLYBDENUM OXIDE /TITANIUM (IV) OXIDE/ AMMONIA/ NITRUS OXIDE/ SULFUR DIOXIDE

KAMOLTIP SAEBANG: FORMATION OF N₂O AND SO₃ ON V-W-MO/TIO₂ CATALYSTS PREPARED FROM SEQUENTIAL LOADING METHOD DURING THE SELECTIVE REDUCTION OF NO WITH NH₃. ADVISOR: ASSOC.PROF. THARATHON MONGKHONSI, Ph.D., 78 pp.

This work studies formation of N₂O and SO₃ on V-W-Mo/TiO₂ catalysts that prepared from sequential loading method during the selective catalytic reduction of NO with NH₃. The formation of N₂O and SO₃ testing is carried out in a temperature range 120°C-450°C. The results indicate that all catalysts produced N₂O at high temperature and significant increasing of N₂O when NO conversion decreases. The formation of N₂O occurs from the reaction between NH₃ on surface of catalyst and NO in gas phase followed Eley-Rideal mechanism. It also found that decreasing amount of W content tends to increases the amount of N₂O, but decreasing amount of Mo content was less affected. In the part of formation of SO₃, it is found that overall the catalysts studied, the oxidation of SO₂ to SO₃ does not occur.

Department :Chemical EngineeringField of Study :Chemical EngineeringAcademic Year :2012

Student's Signature ______ Advisor's Signature _____

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Assoc. Prof. Dr. Tharathon Mongkhonsi for his invaluable help and constant encouragement throughout the course of this research. I am grateful for his teaching and advice, not only the research methodologies but also many other methodologies in life. I would not have achieved this far and this thesis would not have been completed without all the support that I have always received from him.

Kietlada and in supported me so much in all research's experimental. I had a real pleasure to stay with my friends who were in Center of Excellence on Catalysis and Catalytic Reaction Engineering, Chulalongkorn University during studying: Weeranuch, Noppamas, Siwaporn, Wararee, Arpatchanee, Jitraporn, Boonwara and Pongsatorn.

In addition, I am most grateful for financial support from the PTT Public Company Limited.

Finally, I would like to dedicate the achievement of my work to my family. Without their love, support, encouragement, and understanding, I do not know if I would be able to finish this work ever.

CONTENTS

ABSTRACT IN THAI	iv	
ABSTRACT IN ENGLISH		
ACKNOWLEDGEMENTS	vi	
CONTENTS	vii	
LIST OF TABLES	ix	
LIST OF FIGURES	xi	
CHAPTER		
I INTRODUCTION	1	
II THEORY AND LITERATURE REVIEWS	6	
2.1 NO _x removal technologies	6	
2.2 The Selective Catalytic Reduction (SCR) of NO _x with ammonia	6	
2.3 The ammonia (NH ₃) oxidation	8	
2.4 The sulfur dioxide (SO ₂) oxidation	9	
2.5 SCR catalyst	9	
2.6 The surveys of previous studies for SCR catalysts	11	
2.7 Comment on the previous work	13	
III EXPERIMENTAL	16	
3.1 Catalyst preparation	16	
3.2 Characterization of catalysts	21	
3.3 Catalytic activity testing	34	

viii

IV RESULTS AND DISCUSSION	39
4.1 Formation of SO ₃ over V ₂ O ₅ -WO ₃ -MoO ₃ /TiO ₂ catalysts.	39
4.2 The selective catalytic reduction performance over	
V ₂ O ₅ -WO ₃ -MoO ₃ /TiO ₂ catalysts	42
4.3 The reaction path way occur during the selective catalytic reduction of	
NO with NH ₃	57
4.4 Conclusions	62
V CONCLUSIONS	63
5.1 Conclusions	63
5.2 Recommendations	63
REFERENCES	64
APPENDICES	67
APPENDIX A Calibrating data for mass flow meter	68
APPENDIX B Calculation for catalyst preparation	74
APPENDIX C Operating condition of Shimadzu GC-2014	76
APPENDIX D List of publication	77
VITA	78

LIST OF TABLES

TABLE

2.1	Different methods for NO _x reduction in flue gases	7
2.2	The surveys of catalysts and operating condition for SCR	14
3.1	Chemicals used in the catalyst preparation	16
3.2	The percentage compositions of vanadium, tungsten and	
	molybdenum on V ₂ O ₅ -WO ₃ -MoO ₃ /TiO ₂ catalysts	22
3.3	The specific surface area of V ₂ O ₅ -WO ₃ -MoO ₃ /TiO ₂ catalysts	23
3.4	The amount acid site on V_2O_5 -WO ₃ -MoO ₃ /TiO ₂ catalysts and	
	TiO ₂ -support	28
3.5	The concentration of flue gases that simulates that of a real power	
	plant	34
3.6	The composition and concentration of feed gases for SCR process	35
3.7	The operating condition of Shimadzu GC-2014 for analyzing in the	
	SCR process	36
3.8	The composition and concentration of feed gases for ammonia	
	oxidation process	37
3.9	The composition and concentration of feed gases for sulfur dioxide	
	oxidation process	38
4.1	Data for figure 4.2 (concentration of SO ₂ -ppm)	41
4.2	Data for figure 4.3	45
4.3	Data for figure 4.4	47
4.4	Data for figure 4.5	49
4.5	Data for figure 4.6	52
4.6	Data for figure 4.7	54
4.7	Data for figure 4.8	56

TABLE

A1	Calibration data of ammonia mass flow controller	69
A2	Calibration data of nitrogen oxide mass flow controller	70
A3	Calibration data of oxygen mass flow controller	71
A4	Calibration data of nitrogen mass flow controller	72
A5	Calibration data of sulfur dioxide mass flow controller	73
C1	Operating condition of Shimadzu GC-2014	76

LIST OF FIGURES

FIGURE

3.1	Preparation TiO ₂ by sol-gel method	17
3.2	Preparation V ₂ O ₅ /TiO ₂ by impregnation method	18
3.3	The sequence of loading metal oxides Method I	19
3.4	The sequence of loading metal oxides Method II	20
3.5	The sequence of loading metal oxides Method III	21
3.6	NH ₃ -TPD profiles of TiO ₂ support	24
3.7	NH ₃ -TPD profiles of 3V7W10Mo#1 catalyst	25
3.8	NH ₃ -TPD profiles of 3V7W10Mo#2 catalyst	25
3.9	NH ₃ -TPD profiles of 3V7W10Mo#3 catalyst	26
3.10	NH ₃ -TPD profiles of 3V7W5Mo#2 catalyst	26
3.11	NH ₃ -TPD profiles of 3V3.5W10Mo #2 catalyst	27
3.12	NH ₃ -TPD profiles of 3V3.5W5Mo #2 catalyst	27
3.13	XRD patterns of V ₂ O ₅ -WO ₃ -MoO ₃ /TiO ₂ catalysts	29
3.14	FT-IR spectra of 3V7W10Mo#1 catalyst	30
3.15	FT-IR spectra of 3V7W10Mo#2 catalyst	31
3.16	FT-IR spectra of 3V7W10Mo#3 catalyst	31
3.17	FT-IR spectra of 3V7W5Mo #2 catalyst	32
3.18	FT-IR spectra of 3V3.5W10Mo#2 catalyst	32
3.19	FT-IR spectra of 3V3.5W5Mo #2catalyst	33
3.20	Flow diagram of the Selective Catalytic Reduction system	38
4.1	A simplified diagram of the reactor system	40
4.2	Outlet concentration of SO ₂ of V_2O_5 -WO ₃ -MoO ₃ /TiO ₂ catalysts and	
	TiO ₂ -support at various temperatures	41
4.3	Catalytic activities testing on 3V7W10Mo#1 catalyst	
	at 120°C-450°C	44

FIGURE

4.4	Catalytic activities testing on 3V7W10Mo#2 catalyst	
	at 120°C-450°C	
4.5	Catalytic activities testing on 3V7W10Mo#3 catalyst	
	at 120°C-450°C	
4.6	Catalytic activities testing on 3V7W5Mo#2 catalyst at 120°C-450°C	
4.7	Catalytic activities testing on 3V3.5W10Mo#2 catalyst	
	at 120°C-450°C	
4.8	Catalytic activities testing on 3V3.5W5Mo#2 catalyst	
	at 120°C-450°C	
4.9	Eley-Rideal mechanism	
4.10	The NH_3 oxidation in blank reactor for SCR of NO with NH_3	
A1	Calibration curve of ammonia	
A2	Calibration curve of nitrogen oxide	
A3	Calibration curve of oxygen	
A4	Calibration curve of nitrogen	
A5	Calibration curve of sulfur dioxide	

CHAPTER I

INTRODUCTION

A combined cycle of gas and steam turbines is used in the process of generating electrical power. In order to achieve high performance a high fuel combustion temperature is required, which results in nitrogen oxide (NO, NO₂ and N₂O) emission caused by oxidation of nitrogen compounds in the fuel and/or oxidation of atmospheric nitrogen in the combustion air. Emissions of NO_x cause acidification of the environment and smog formation in the atmosphere, such as acid rain, photochemical smog, ozone depletion, and greenhouse effect. NO_x can be reduced by a variety of methods. The selective catalytic reduction (SCR) of NO_x with NH₃ is one of the most efficient and widely used methods for flue gas cleaning. SCR is a process in which a reducing agent (ammonia) reacts selectively with NO_x to produce N₂ as shown in equations 1.1-1.2.

$$2NO_2 + 4NH_3 + O_2 \rightarrow 5N_2 + 6H_2O \qquad (eq. 1.1)$$

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O \qquad (eq. 1.2)$$

At a high reaction temperature, the following undesirable oxidation of NH_3 to NO, N_2 and N_2O may also occur:

$$4\mathrm{NH}_3 + 5\mathrm{O}_2 \rightarrow 4\mathrm{NO} + 6\mathrm{H}_2\mathrm{O} \qquad (\mathrm{eq.}\ 1.3)$$

$$4\mathrm{NH}_3 + 3\mathrm{O}_2 \rightarrow 2\mathrm{N}_2 + 6\mathrm{H}_2\mathrm{O} \qquad (\mathrm{eq.}\ 1.4)$$

$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O \qquad (eq. 1.5)$$

As shown in equation 1.5, N_2O (Nitrous oxide) is a byproduct of ammonia oxidation. Because N_2O is not included in the generic term for NO_x and cannot be reduced by the normal SCR process as shown in equations 1.1 and 1.2, therefore operating condition for the SCR to avoid apparent N_2O is necessary as N_2O is a powerful greenhouse gas and has been reported to destroy the ozone in the protective layer of the upper atmosphere. In addition, if the fuel contains sulfur. The sulfur compound(s) can react with oxygen to produce SO_3 , resulting in sulfur dioxide which can be further oxidized as shown in equation 1.6.

$$2SO_2 + O_2 \quad \rightarrow \quad 2SO_3 \tag{eq. 1.6}$$

 SO_3 can react with unconverted NH₃, as shown in equation 1.7 and 1.8, to form ammonium bisulfate, a sticky, corrosive compound, which fouls heat exchanger and other equipment downstream of power plant.

$$2NH_3 + SO_3 + H_2O \rightarrow (NH_4)_2SO_4 \qquad (eq. 1.7)$$

$$NH_3 + SO_3 + H_2O \rightarrow NH_4HSO_4$$
 (eq. 1.8)

Commercial V₂O₅/TiO₂ catalysts are very active and selective and have reasonable operating temperature windows (300-400°C), reasonably stable, resistant to poisoning by SO₂ even at high concentration. They, however, are still active for SO₂ oxidation to SO₃ when increasing vanadium oxide and increasing reaction temperature (V₂O₅ catalyst are used for sulfuric acid production at T > 450°C). The optimal loading of vanadium oxide on tiatania surface is most essentially. The good catalyst for SCR must be able to operate in various conditions as such the addition of a promoter is able to speed up the operation.

WO₃ and MoO₃ are the promoters of choice for the vanadia catalyst. These additives prevent the transformation of anatase to rutile, increase Brönsted acidity, blocking adsorption of SO₃. For example, V₂O₅-MoO₃/TiO₂ can remove NO_x at low temperature 150-350°C (Taweesuk, 2011) and V₂O₅-WO₃/TiO₂ can remove NO_x at high temperature 200-400°C. (Mongkhonsi and Kaewbuddee, 2012), therefore three mixed oxide (V₂O₅-WO₃-MoO₃), will be an alternative catalyst for SCR as it is will be able to remove NO_x at low and high temperature that are operating conditions temperatures of each power plant.

However, in the past, the developed catalysts for the selective catalytic reduction of NO with NH_3 were determined by efficient of removal NO, but not mention the formation of N_2O and the oxidation of SO_2 . Therefore a good catalyst for the removal of NO may be not a good catalyst when considering the formation of N_2O and oxidation of SO_2 .

This work is a continuation of a previous work by Kietlada Warinsirirux, 2011. The previous work has developed three mixed oxide catalyst (V_2O_5 - WO_3 - MoO_3/TiO_2) for the selective catalytic reduction of NO_x with NH₃.

The objective of this research is to determine the formation of N_2O and SO_3 over V_2O_5 -WO₃-MoO₃/TiO₂ catalyst during the selective catalytic reduction with NH₃ process that contains high concentration of sulfur dioxide and oxygen and including H₂O at temperature ranging between 120°C and 450°C.

This research has been scoped as follows:

- 1. Catalytic activity testing.
 - 1.1 Determination of the reduction of NO with NH₃.

Feed gases composition:	120 ppm NO
	120 ppm NH ₃
	15% by volume O_2
	30 ppm SO ₂
	15% by volume H ₂ O
Total flow rate:	200 ml/min
Reaction temperature range:	120°C-450°C

1.2 Determination formation of N_2O during the selective catalytic reduction of NO with NH_3 .

Feed gases composition:	120 ppm NO
	120 ppm NH ₃
	15% by volume O_2
	30 ppm SO ₂
	15% by volume H ₂ O
	N ₂ balanced
Total flow rate:	200 ml/min
Reaction temperature range:	120°C-450°C

1.3 Determination formation of NO from NH_3 oxidation during the selective catalytic reduction of NO with NH_3 .

Feed gases composition:	120 ppm NH ₃
	15% by volume O_2
	30 ppm SO ₂
	15% by volume H ₂ O
	N ₂ balanced
Total flow rate:	200 ml/min
Reaction temperature range:	120°C-450°C

1.4 Determination formation of SO_3 from SO_2 oxidation during the selective catalytic reduction of NO with NH₃.

Feed gases composition:	30 ppm SO ₂
	15% by volume O ₂
	120 ppm NO
	N ₂ balanced
Total flow rate:	200 ml/min
Reaction temperature range:	120°C-450°C

- 2. Measuring concentration of NO, N₂O and SO₂ by Shimadzu GC-2014
 - 2.1 Measuring concentration of NO

Detector: Electron Capture Detector Column: Hyasep-DB Temp column: 40°C

2.2 Measuring concentration of N₂O

Detector:Electron Capture DetectorColumn:Hyasep-DBTemp column:150°C

2.3 Measuring concentration of SO₂

Detector: Flame Photometric Detector Column: Rt-XL sulfur Temp column: 180°C

The present thesis is organized as follows:

Chapter I describes background, objective and scopes of the research.

Chapter II presents principles of SCR of NO by NH₃, NH₃ oxidation, SO₂ oxidation and SCR catalysts.

Chapter III presents procedure for preparation of titania and three mixed oxide $(V_2O_5-WO_3-MoO_3/TiO_2)$ catalyst, characterization of the catalyst and catalytic activity testing.

Chapter IV presents result of the catalytic activities testing.

Chapter V presents conclusion and recommendation of the research.

CHAPTER II

THEORY AND LITERATURE REVIEWS

This chapter presents previous studies that relate to NO_x removal technologies, the selective catalytic reduction (SCR) of nitrogen oxide (NO_x) with ammonia (NH_3) including ammonia oxidation, sulfur dioxide oxidation and SCR catalysts.

2.1 NO_x removal technologies

 NO_x arises from a number of different sources, including fuel NO_x , which is formed by oxidation of nitrogen containing compounds in the fuel. Thermal NO_x , which is formed by oxidation of atmospheric nitrogen, from the combustion air. Prompt NO_x , which is formed by oxidation of intermediate species such as HCN (Bosch and Janssen, 1988). Thus, NO_x removal technologies need to have high efficiency. Table 2.1 shows the variety of methods can be reduced NO_x . One of the most efficiency is catalytic reduction of NO_x by the selective catalytic reduction (SCR) which can be reduced NO_x reaching to 90%.

2.2 The Selective Catalytic Reduction (SCR) of NO_x with NH₃

The selective catalytic reduction (SCR) plays major role worldwide and the trend of industry power plant also pushes forward the development of new flue gas cleaning technologies. This technology can reduce nitric oxide (NO and NO₂) that is released from stationary source and using a reducing agent such as ammonia (NH₃) which reacts selectively with the NO to produce N_2 . The two main reactions in the SCR process show in equation 2.1-2.2.

$$6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$$
 (eq. 2.1)

$$4\text{NO} + 4\text{NH}_3 + \text{O}_2 \quad \rightarrow \quad 4\text{N}_2 + 6\text{H}_2\text{O} \quad (\text{eq. 2.2})$$

Mechanism	Technique	Efficiency%
Reduced peak temperature	Water injection	40-70
	Flue gas recirculation	40-80
	Burner out service	30-60
	Less excess air firing (LEA)	15-20
Limiting thermal NO _x	Oxyfuel	70-90
formation		
Lower residence time at	Low-NO _x burners, overfire air,	30-70
peak temperature	staged combustion, rotating	
	opposed fired air, etc.	
Catalytic reduction of NO_x	Selective catalytic reduction	70-98
	(SCR)	
	Selective non-catalytic	25-50
	reduction (SNCR)	
	Adsorption and reduction NO _x	60-90

Table 2.1 Different methods for NO_x reduction in flue gases (Gabrielsson and Pedersen, 2008).

Equations 2.1 and 2.2 are the SCR reaction of NO with NH_3 . Both equations can convert NO to N_2 . It is known that nitrogen oxides (NO_x) also contains NO_2 , NO_2 can react with NH_3 as showed in equation 2.3 below

$$2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O \qquad (eq. 2.3)$$

Selective reduction of NO and NO₂ with NH₃ occurs with high activity and selective to N₂ within a narrow temperature window of 50-150°C. This window typically occurs within the broad temperature range of 150-500°C. The precise location is catalyst-dependent.

2.3 The ammonia (NH₃) oxidation

 NH_3 is supplied to SCR process using the gaseous (anhydrous form), an aqueous solution, or a solution of urea. The choice will depend on economy and any safety issue involved in handling the most preferred anhydrous ammonia (Gabrielsson and Pedersen, 2008). Due to the SCR of NO_x used ammonia as a reducer, in case of the feed gases includes excess O_2 and high temperatures may be occurs the ammonia oxidation which side reaction are undesirable.

The ammonia oxidation is the side reaction when NH_3 reacts with excess O_2 at high temperatures. It is a main side reaction of the SCR because it produces NO and N_2O . The different stoichiometric reactions of ammonia oxidation are show in equation 2.4-2.6.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O \qquad (eq. 2.4)$$

$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O \qquad (eq. 2.5)$$

When NH_3 oxidation occurs in parallel with the SCR reaction, NH_3 consumption is greater, while NO_x removal efficiency is lower. Since the rates of the oxidation reactions are generally more temperature sensitive than NO reduction, their competition is greater at higher reaction temperatures, leading to a decrease in net NO_x conversion. Accordingly, there was a window for high conversions of NO_x , reaching a maximum at medium reaction temperatures. (Bartholomew and Farrauto, 2010)

Formation of nitrous oxide (N₂O) is according to equation 2.5. N₂O cannot be reduced by normal SCR process and not included in the generic term for NO_x (Gabrielsson and Pedersen, 2008). It is, however, a powerful greenhouse gas (i.e. it absorbs the sun's infrared energy) and has been reported to destroy the ozone in the protective layer of the upper atmosphere. (Stratospheric ozone absorbs, through a cycle of reactions, the sun's damaging UV rays, which would otherwise reach the earth's surface.) (Bartholomew and Farrauto, 2010)

2.4 The sulfur dioxide (SO₂) oxidation

Sulfur dioxide can reacts with oxygen to form sulfur trioxide as showed in equation 2.6. SO_3 ultimately react with unconverted NH_3 to form ammonium bisulfate according to equation 2.6, a sticky, corrosive compound, which fouls heat exchangers and other equipment downstream.

$$2SO_2 + O_2 \longrightarrow 2SO_3 \qquad (eq. 2.6)$$

$$2NH_3 + SO_3 + H_2O \rightarrow (NH_4)_2SO_4 \qquad (eq. 2.7)$$

$$NH_3 + SO_3 + H_2O \rightarrow NH_4HSO_4$$
 (eq. 2.8)

 SO_2 oxidation increased almost linearly with V_2O_5 loading below the monolayer capacity and attained saturation with further increase (Kamata et al, 2001). Sulfation occurs when commercial vanadia SCR catalysts are exposed to SO_2 -laden coal combustion flue. It can inhibit NO adsorption in the presence of oxygen, but greatly enhances NH_3 adsorption by generating additional Brönsted acid sites while reducing the concentration of Lewis acid sites. (Guo et al, 2009)

2.5 SCR catalyst

The main requirements for an SCR catalyst includes, high volume activity for remove NO, low sulfur oxidation activity, high mechanical or attrition strength, high deactivation resistance and low price (Gabrielsson and Pedersen, 2008). selective catalytic reduction of NO_x with NH_3 is partial oxidation reaction required catalyst in form oxides phase such as vanadium oxide (V_2O_5), molybdenum oxide (MoO_3), tungsten oxide WO_3 and copper oxide CuO.

The choice of support material is also dependent on the activity with active ingredients and its stability. It is possible to obtain good SCR activities in the industrial temperature window with alumina (Al_2O_3), zirconia (ZrO_2), and titania (TiO_2).

- Alumina (Al₂O₃) are the most common commercial carriers because of their excellence thermal stability and wide range of chemical, physical and catalytic properties but it easy to sulfate.
- Titania (TiO₂) has found limited application, as a support for vanadia catalyst used in NO_x, Commercial high surface area titanias (25-100 m²/g) are formed by precipitation from titanate solutions or by decomposition of organotitanates, although new preparations from the aerogel promise to provide materials of higher surface area (200-400 m²/g). In general, commercial titanias consist of 2 phases or crystal structures: anatase and rutile.
 - Anatase is the most important catalytically. in that it has a surface area of about 50-80 m²/g.
 - Rutile structure forms at about 500 °C and low surface area.

Essentially, the transformation of anatase to rutile generally results in surface area loss. Only titania exhibits a sulfur tolerance, which is sufficient for the industrial high-temperature application while alumina and zirconia are rather easy to sulfate, which might affect their activity and mechanical stability. As such a TiO_2 is the good support choice for SCR process. It can be by various methods prepared various methods such as sol-gel, solvothermal and flame spray pyrolysis. The favorite method is sol-gel because it has mild condition (low temperature and ambient pressure), high purity precise stoichiometry, controllable pore size and porosity and no special equipment.

2.6 The surveys of previous studies for SCR catalysts

The first catalyst for SCR, Pt and Pd were developed in the early 1970s. While they were very active for NO reduction at 125-175°C, they are also active for the oxidation of NH_3 and SO_2 when reaction temperature is above 200°C and also less tolerant to poisoning and undesirably selective for N₂O.

Among metal oxides catalyst, investigated since the mid-1960s, V_2O_5/TiO_2 catalyst promoted with WO₃ or MoO₃ were found to be the most effective and the dominant SCR catalysts technology from about 1980 to the present. Although V_2O_5/TiO_2 catalyst is less active than Pt but V_2O_5/TiO_2 has higher and larger operating temperature window (300-400°C). (Bartholomew and Farrauto, 2010)

Zeolite have ideal properties for SCR, i.e. high acid site concentration, high surface area, high thermal stability, permit operation at much higher temperatures and over windows (350-500°C) and advantage for some turbine applications since less cooling is required, but they are the less active and significantly more expensive than V_2O_5/TiO_2 catalysts. (Bartholomew and Farrauto, 2010)

 V_2O_5/TiO_2 catalyst, however, is the technology of choice for NO_x abatement in large power plants because its operating temperature is a good match to the flue gas temperature at the exit of economizer and its cost relative to either Pt or zeolite catalysts is significantly lower. They are very active and selective, reasonably stable in the presence of coal ash, resistant to poisoning by SO_2 even at high concentrations and operate near the ideal temperature range of 300-400°. Unfortunately these catalyst are active for SO_2 oxidation to SO_3 and since SO_2 concentration is high at this location, catalyst activity is purposely limited to prevent this reaction and subsequent downstream corrosion/-fouling of heat exchangers by ammonium sulfates formed by reaction of SO_3 and NH_3 and due to costs for handling and disposing of spent catalyst are high. In order to avoid SO_2 oxidation, optimize level of vanadium depending on the support was about 3% w/w (Amiridis et.al, 1996) The promoters for the vanadium and titanium-based catalyst that exhibited the highest number of Brönsted acid sites, and which exhibited the highest SCR activity, were the metal oxides WO₃ and MoO₃, which are commonly used in industrial catalyst today. WO₃ is employed in larger amount 10% w/w (Chen and yang, 1992). It acts both as chemical and structural promoter by enlarging the temperature window of the SCR reaction and by improving the mechanical, structural and morphological properties of the catalysts. MoO₃ (loadings as high as 6% w/w) has been reported to be less active than V₂O5-WO₃/TiO₂ but more tolerant to As.

 V_2O_5 -WO₃/TiO₂ catalysts are co-oxide catalyst which added WO₃ to V_2O_5 /TiO₂. These catalysts were reported to be more active than V_2O_5 /TiO₂ (Casagrande et.al, 1999) wanted removed NO_x at high temperature (200°C-400°C) (Mongkhonsi and kaewbuddee, 2012), Similarly V_2O_5 -MoO₃/TiO₂ catalysts are co-oxide catalyst which added MoO₃ to V_2O_5 /TiO₂. These catalysts can remove NO_x at low temperature (150°C-350°C) (Taweesuk, 2010)

 V_2O_5 -WO₃-MoO₃/TiO₂ catalysts are three mixed oxide over titania support. In order to improved Co-Oxide catalyst for good performances at high temperature (above 200°C) and give high NO conversion in wide reaction temperature range. (Warinsirirux, 2011) and the suitable composition of these catalyst was 3%V, 7%W, 5%Mo very active to removed NO_x in wide rang temperature. (Piyanantarak, 2011)

2.7 Comment on the previous work

In the previous work, good method for removal NO_x is the selective catalytic reduction with NH₃. The suitable catalyst for SCR is V_2O_5 -WO₃-MoO₃/TiO₂ (three mixed oxide). It has high efficiency to remove NO_x and reaching to 80-100% (Warinsirirux, 2011). However, the selective catalytic reduction process appears the main side reaction for instant sulfur dioxide oxidation and ammonia oxidation therefore formation of N₂O and SO₃ are necessary to measure.

Generally, selective catalytic reduction of NO_x with NH_3 describes especially net NO reduction conversion and feed gases compose NO, NH_3 , O_2 (without SO_2 and H_2O) for example, the research of Nova and others (1998), Boyano and others (2009) Haitao and others (2010) (see table 2.2). Although, in case of flue gases compose high concentration of O_2 and appearance of SO_2 and H_2O was previously studied by Warinsirirux, 2011 and Piyanantarak, 2011 only NO conversion was measured. There is no study on the formation of N_2O and the oxidation of SO_2 to SO_3 .

In the previous research the V₂O₅-WO₃-MoO₃/TiO₂ catalyst been shown to have high performance for NO_x removal but the formation of N₂O and SO₃ that may be occur in this system at high concentration of O₂, H₂O and SO₂ (15%O₂, 15%H₂O and 30 ppm SO₂) was not mentioned. Thus the purpose of this research is to determine the formation of N₂O and SO₃ during the SCR process of the V₂O₅-WO₃-MoO₃/TiO₂ catalysts that mention in the previous research (Warisirirux, 2011).

Voar	Researcher Catalyst		Temp(°	Feed gases composition					Moosuring		
I Cal		Catalyst	C)	NO(ppm)	NH ₃ (ppm)	O ₂ (%vol)	SO ₂ (%vol)	H ₂ O(%vol)	balanced	wiedsuring	
		V/TiO ₂									
1998	Beretta et.al	V/Mo/TiO ₂	380	500	550	2	500	10	N_2	NO_X , SO_2	
		V/W/TiO ₂									
1998	Nova et.al	WO ₃ /TiO ₂	550	800	800	9000 ppm	-	-	Не	NO	
1008	Orsenigo	V ₂ O ₅ -	330 380	500	550	n	500	10	N	NO SO	
1990	et.al	WO ₃ /TiO ₂	330 - 380	500 5.	550	2 500	10	1N2	$10, 50_3$		
1000	Casagrande	V ₂ O ₅ -	27.527	27 527 800	800	800	0000 ppm			Но	NO NO
1999	et.al	WO ₃ /TiO ₂	21-321	800	800	9000 ppm	-	-	110	100, 1020	
1999	Delahay et.al	Cu-FAU	80-450	2000	2000	3	-	-	N ₂	NO, N_2O	
2001	Kamata et.al	V ₂ O ₅ /TiO ₂	300-460	-	-	7500 ppm	500	-	N ₂	SO_2	
2002	Huang et.al	V ₂ O ₅ /AC	250	500	600	3.4	2.5	500	Ar	NO, SO ₂	
2002	Jung et.al	V ₂ O ₅	100-400	0.1	0.105	2.5	-	-	He	NO, N_2O	
2003	Qi and Yang	Fe-Mn/TiO ₂	80-180	1000	1000	2	100	2.5	He	NO	
2009	Boyano et al	V ₂ O ₅ /AC	150-350	1000	1000	10		_	Ar	NO	
2007		V_2O_5/Al_2O_3	150-550	1000	1000	10	_		2 11	110	
2010	Haitao et al	Si-Ce complex	100-500	600	600	5	-	-	N ₂	NO	
2010		oxide	100 000			5			1.7	1,0	

 Table 2.2 The surveys of catalysts and operating condition for SCR.

voor	Researcher	Catalvet	Temp(°	Feed gases composition					Magguring	
ycai	Veal Researcher Catalyst		C)	NO(ppm)	NH ₃ (ppm)	O ₂ (%vol)	SO ₂ (%vol)	H ₂ O(%vol)	balanced	Wiedsuring
2010	Gao et.al	CeO ₂ -TiO ₂	150-450	1000	1000	3	200 ppm	10	N_2	NO
2010 Shap at al	Shen et al	Iron-droped	80-260	0.06%	0.06%	3	0.01	3	N ₂	NO, NO ₂ ,
2010	Shen et.u	Mn-Ce/TiO ₂								SO_2
		MnO _x -TiO ₂								
	Xiaodong	CeO ₂ -MnO _x -								NO NO ₂
2010	et al	TiO ₂	25-400	500	500	5	-	-	N_2	$N_{2}O$ NH ₂
	ottui	V ₂ O ₅ -MnO _x -								1120, 1113
		TiO ₂								
		Alkalai metals								
2011 Chen et al	doping over	150-500	500	500	3	_	_	Na	NO N ₂ O	
2011	Chen et.ur	nano V ₂ O ₅ -	150 500	200	500	5			1.72	110,1120
		WO ₃ /TiO ₂								
		MnO _x -								
2012	Xu et.al	CeO ₂ /WO ₃ -	100-450	0.1%	0.1%	5	0.01	10	Ar	NO, NH ₃
		ZrO ₂ monolith								
2012	Lee et.al	V/TiO ₂	350-450	400	420	8	-	6	Ar	NO
2012		W/TiO ₂	550-450							

Table 2.2 The surveys of catalysts and operating condition for SCR. (con,t)

CHAPTER III

EXPERIMENTAL

This chapter shows experimental details, which can be divided into three separate procedures according to their state. The first section (3.1) is catalysts preparation. The second section (3.2) is characterization of the catalysts of the previous research. (Warinsirirux, 2011) and the last section (3.3) is procedure of catalytic activities testing (3.3).

3.1 Catalyst preparation

This section shows the detail of catalyst preparation for V_2O_5 -WO₃-MoO₃/TiO₂ catalysts that were reported in Warinsirirux's thesis. The catalysts were prepared by impregnation method. Sequence of metals loading and calcinations are different. The chemicals and procedure of catalyst preparation are described below.

3.1.1 Chemicals

The chemicals used to prepare V_2O_5 -WO₃-MoO₃/TiO₂ catalysts are listed in table 3.1.

 Table 3.1 Chemicals used in the catalyst preparation.

Chemical	Supplier
Titanium (IV) isopropoxide, 97%	Aldrich
Ammonium metavanadate, 99.99%	Aldrich
Ammonium metatungstate hydrate, 99.99%	Aldrich
Ammonium molybdenate tetrahydrate, ≥99.0%	Aldrich
Nitric acid 65%	Aldrich
Oxalic acid hydrate	Fluka

3.1.2 Preparation of TiO₂ (anatase) by a sol-gel method

Titania-anatase (TiO₂) is prepared by a sol-gel method. In this experiment, 83.5 ml of titanium isopropoxide, used as a precursor, is added into 1000 ml of distilled water, which is mixed with 7.5 ml of nitric acid and then stirred for 3 days, or until it has a clear sol. Then the solution was dialyzed with adjusting the pH to approximately 3.5 and then subsequently dried at 110°C for 24 hours before being crushed, grinded, and calcined in air at 350°C for 2 hours.

Figure 3.1 Preparation of TiO₂ by sol-gel method

3.1.3 Preparation of V₂O₅ over TiO₂ catalyst

 V_2O_5 over TiO₂ catalyst is prepared by incipient wetness method. First, Ammonium metavanadate is dissolved with oxalic acid anhydrous in deionized water by a fixed amount of vanadium metal into TiO₂ approximately 3% (The volume of prepared solution is equal to the pore volume of TiO₂ powder). An ammonium metavanadate solution is obtained. Next, the prepared solution is gradually dropped into the TiO₂ powder. After that, incipient wetness point is observed. In this step a pore of TiO₂ saturated with ammonium metavanadate solution is obtained. This is then dried at 110°C for 24 hours and finally calcined in air at 500°C for 2 hours.

Figure 3.2 Preparation of V₂O₅/TiO₂ by impregnation method.

3.1.4 Addition of WO₃ and MoO₃ over V₂O₅/TiO₂ catalyst

Ammonium metamolybdenate tetrahydrate and ammonium metatungstate hydrate are precursors used to the promoter that are molybdenum and tungsten, are impregnated over V_2O_5/TiO_2 catalyst. The sequence of loading ammonium metamolybdenate tetrahydrate and ammonium metatungstate hydrate differs and is divided into the following three methods. See the example of calculation for the catalyst preparation in Appendix B.

3.1.5 Preparation of WO₃ and MoO₃ over V₂O₅/TiO₂ catalyst Method I

First, ammonium metatungstate hydrate is dissolved in de-ionized water, from which we obtain an ammonium metatungstate solution. Then the prepared solution is gradually dropped into the V_2O_5/TiO_2 , observing the incipient wetness point. In this step a pore of V_2O_5/TiO_2 saturated with ammonium metatungstate solution is obtained. This is then dried at 110°C for 24 hours before being crushed, grinded and then calcined in air at 500°C for 2 hours. After that, ammonium metamolybdenate tetrahydrate is dissolved in de-ionized water from which we obtain an ammonium metamolybdenate tetrahydrate solution. The prepared solution is then gradually dropped into the V_2O_5 -WO₃/TiO₂ observing the incipient wetness point. In this step a pore of V_2O_5 -WO₃/TiO₂ observing the incipient wetness point. In this step a pore of V_2O_5 -WO₃/TiO₂ saturated with an ammonium metatungstate hydrate solution is obtained. Finally it is dried at 110°C for 24 hours before being crushed, grinded and

then calcined in air at 500°C for 2 hours. The sequence diagram of experiment for loading the metal is showed below:

Figure 3.3 The sequence of loading metal and calcinations Method I.

3.1.6 Preparation of WO₃ and MoO₃ over V₂O₅/TiO₂ catalyst Method II

First, ammonium metamolybdenate tetrahydrate is dissolved in de-ionized water, from which we obtain an ammonium metamolybdenate tetrahydrate solution. The prepared solution is then gradually dropped into the V_2O_5/TiO_2 , observing the incipient wetness point. In this step a pore of V_2O_5/TiO_2 saturated with an ammonium metamolybdenate tetrahydrate solution is obtained. This is then dried at 110°C for 24 hours before being crushed, grinded and then calcined in air at 500°C for 2 hours. After that, ammonium metamolybdenate tetrahydrate solution, which is gradually dropped into the $V_2O_5-WO_3/TiO_2$ observing the incipient wetness point. In this step a pore of $V_2O_5-MO_3/TiO_2$ saturated with ammonium metamolybdenate tetrahydrate solution, which is gradually dropped into the $V_2O_5-WO_3/TiO_2$ observing the incipient wetness point. In this step a pore of $V_2O_5-MO_3/TiO_2$ saturated with ammonium metatungstate solution, which is obtained.

Finally, this is dried at 110°C for 24 hours before being crushed, grinded and then calcined in air at 500°C for 2 hours. The sequence diagram of experiment for loading the metal is as below:

Figure 3.4 The sequence of loading metal and calcinations Method II.

3.1.7 Preparation of WO₃ and MoO₃ over V₂O₅/TiO₂ catalyst Method III

First, ammonium metatungstate hydrate and ammonium metamolybdenate tetrahydrate is dissolved in de-ionized water, from which a mixed solution of ammonium metatungstate and ammonium metamolybdenate thetrahydrate solution is obtained. The prepared solution is then gradually dropped into the V₂O₅/TiO₂, observing the incipient wetness point. In this step a pore of V₂O₅/TiO₂ saturated with mixed solution of ammonium metatungstate hydrate and ammonium metatungstate bydrate and ammonium metatungstate bydrate and ammonium metamolybdenate tetrahydrate is obtained. This is then dried at 110°C for 24 hours before being crushed, grinded and finally calcined in air at 500°C for 2 hours.

Figure 3.5 The sequence of loading metal and calcinations Method III.

3.2 Characterization of the catalysts

All the prepared catalysts were characterized in order to describe chemical and physical properties. Characterization in this experiment includes:

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) to determine percentage composition of the catalysts.

BET surface area measurement to determine specific surface area of the catalysts.

NH₃ Temperature Programmed Desorption (NH₃-TPD) to determine the amount of acid site of the catalysts

Three techniques were used to determine the V_2O_5 -WO₃-MoO₃/TiO₂ catalysts by Warinsirirux, 2010. The properties of these catalysts with these techniques were shown again in this chapter. Other techniques for instant X-Ray Diffraction (XRD) and Fourier Transforms Infrared (FT-IR) were learning more in this research.

3.2.1 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES)

The chemical composition percentage of all the prepared catalysts (combination of chemical elements, as active species and promoter) will be analyzed by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) Perkin Elmer model PLASMA-1000. The preparation procedures of analyzed samples were as follows: First 0.2 g of the catalyst was dissolved in 10 ml of hydrofluoric (HF) 49%. Then this was stirred until it forms a homogeneous solution. The volume was then adjusted to 100 ml with a volumetric flask. The obtained concentrations of samples were about 1-24 ppm (mg/l). The result of characterization by ICP-OES shows in table 3.2.

Table 3.2 The percentage compositions of vanadium, tungsten and molybdenum on V_2O_5 -WO₃-MoO₃/TiO₂ catalysts. (Warinsirirux, 2011)

Method	Vanadium	Tungsten	Molybdenum	Total	Catalyst Name
	oxide (%wt)	oxide (%wt)	oxide (%wt)	(%wt)	
Ι	3.2	7.2	10.5	30.9	3V7W10Mo#1
Π	3.2	6.9	10.6	30.7	3V7W10Mo#2
III	3.3	7.8	10.7	31.7	3V7W10Mo#3
Π	3.1	7.4	5.3	15.8	3V7W5Mo#2
ΙΙ	3.1	3.4	10.3	16.8	3V3.5W10Mo#2
II	3.3	3.8	5.7	12.8	3V3.5W5Mo#2

3.2.2 BET surface area measurement

The surface area of catalyst was determined by BET surface area technique, using Micromeritrics ASAP 2020 with nitrogen as the adsorbate. The sample cell contained 0.2 g of sample and the operating condition was set to 200°C. The specific surface area of the V_2O_5 -WO₃-MoO₃/TiO₂ catalysts are showed in table 3.3.

Table 3.3 The specific surface area of V_2O_5 -WO₃-MoO₃/TiO₂ catalysts and TiO₂ support. (Warinsirirux, 2011)

Catalyst Sample	BET surface area (m²/g)
TiO ₂	90.9
3V7W10Mo#1	39.1
3V7W10Mo#2	43.7
3V7W10Mo#3	40.2
3V7W5Mo#2	44.0
3V3.5W10Mo#2	45.2
3V3.5W5Mo#2	47.8

From table 3.3, the specific surface areas of the catalysts are lower than TiO₂support because these catalysts were passed calcinations in several time lead to aggregation of pore and losing surface area. The 3V7W10Mo#2 (prepared by method II) has specific surface area higher than 3V7W10Mo#1 and 3V7W10Mo#3 that prepared by method I and method III respectively because total percentage composition loading of 3V7W10Mo#1 and 3V7W10Mo#3 more than 3V7W10Mo#2 (see in table 3.2), so volume of pore are loss result in losing surface area. In addition, the specific surface area of the catalysts was increased when the percentage of metal loading decreased, example 3V7W10Mo#2 (10%Mo) has specific surface area higher than 3V7W5Mo#2 (5%Mo) because percentage of molybdenum loading is lower.

3.2.3 NH₃ Temperature Programmed Desorption (NH₃-TPD)

Ammonia temperature program desorption (NH₃-TPD) is one of the most widely use and flexible techniques for characterizing the acid site on oxide surface. Determining the quantity and strength of the acid sites on catalyst surfaces and predicting the performance of a catalyst. The amount of NH₃ desorbed relates to the amount of acid site on catalyst surface and calculate from area under the curve are listed in figures 3.6-3.12 and table 3.4.

Figure 3.6 NH₃-TPD profiles of TiO₂ support. (Warinsirirux, 2011)

Figure 3.7 NH₃-TPD profiles of 3V7W10Mo#1 catalyst. (Warinsirirux, 2011)

Figure 3.8 NH₃-TPD profiles of 3V7W10Mo#2 catalyst. (Warinsirirux, 2011)

Figure 3.9 NH₃-TPD profiles of 3V7W10Mo#3 catalyst. (Warinsirirux, 2011)

Figure 3.10 NH₃-TPD profiles of 3V7W5Mo#2 catalyst. (Warinsirirux, 2011)

Figure 3.11 NH₃-TPD profiles of 3V3.5W10Mo#2 catalyst. (Warinsirirux, 2011)

Figure 3.12 NH₃-TPD profiles of 3V3.5W5Mo #2 catalyst. (Warinsirirux, 2011)

Figures 3.6–3.12 show NH₃-TPD profiles of V_2O_5 -WO₃-MoO₃/TiO₂ catalysts including TiO₂ support. The amounts of acid site were calculated from the area under the curve of desorption. The results show the two peaks of NH₃-TPD profiles of the catalysts. The first peak was found in all figures but the second peak was not found in the NH₃-TPD profile of TiO₂ support. The second peak shows the strong acid sites. Considering the amount of acid strength of these catalysts is necessary and relate to SCR reaction.

Catalyst name	Amounts of acid site (µmolH ⁺ /g)	Amounts of strong acid site (µmolH ⁺ /g)
TiO ₂	377	-
3V7W10Mo#1	378	94
3V7W10Mo#2	385	91
3V7W10Mo#3	380	88
3V7W5Mo#2	388	78
3V3.5W10Mo#2	390	87
3V3.5W5Mo#2	379	78

Table 3.4 The amount acid site on V_2O_5 -WO₃-MoO₃/TiO₂ catalysts and TiO₂-support.(Warinsirirux, 2011)

Although V_2O_5 -WO₃-MoO₃/TiO₂ catalysts have specific surface area lower TiO₂ support, they have the same number of surface acid site see in table 3.4, This means that the addition of V, W and Mo cause losing surface area in contrast the this addition increase the acid sites on the catalysts surface.

3.2.4 X-Ray Diffraction (XRD)

The crystalline, crystalline size and crystalline pattern of the prepared catalysts are analyzed by using D8 Advance of Bruker AXS. A material that is sufficiently crystalline to diffract X-Rays (crystallites larger than 3-5 nm) is needed for characterization using this technique. The experiment is carried out by using CuK α radiation. Scans are performed over the 2 Θ ranges from 20° to 80° with step size 0.02° /sec and slit width 0.6 nm. The XRD spectrum is used to identify the crystal structure of the catalyst.

The XRD patterns of the V₂O₅-WO₃-MoO₃/TiO₂ catalysts that compared with TiO₂-support are displayed in Figures 3.13, the TiO₂ contained anatase phase and small amount of rutile and brookite phases. Like, the SCR catalysts, the result indicates that these catalysts pattern are same TiO₂ primary. In addition, no peak of V₂O₅, WO₃ and MoO₃ in any XRD patterns although various loading of WO₃ and MoO₃ content. However, the disappearance of other compound apart from TiO₂ on XRD pattern indicates that V, W and Mo may not form a crystal structure, but they may be form oxide structures having crystal size too small to be detected by XRD.

Figure 3.13 XRD patterns of V₂O₅-WO₃-MoO₃/TiO₂ catalysts.

3.2.5 Fourier Transforms Infrared (FT-IR)

The functional group on the catalyst surface was determined by FT-IR using Nicolet model Impact 6700 of the IR spectrometer. Infrared spectra are recorded between 400 and 4000 cm^{-1} on a microcomputer.

The functional groups of the V_2O_5 -WO₃-MoO₃/TiO₂ catalysts were determined by this technique. Figures 3.14-3.19 show FT-IR spectra of all catalysts. Three peaks of the all spectra that were absorbed are reported in the (400-1200) cm⁻¹ range. The results show two strong absorption at 707 cm⁻¹, the typical of TiO₂ anatase and 764 cm⁻¹, the W=O stretching of wolframyl species. The weak band on the shoulder near 974 cm⁻¹ is assigned to the composite oxide of vanadium and molybdenum. In addition no peak of V₂O₅ and MoO₃ passed absorption band.

Figure 3.14 FT-IR spectrum of 3V7W10Mo#1 catalyst. (Warinsiriux, 2011)

Figure 3.15 FT-IR spectrum of 3V7W10Mo #2 catalyst. (Warinsiriux, 2011)

Figure 3.16 FT-IR spectrum of 3V7W10Mo#3 catalyst. (Warinsiriux, 2011)

Figure 3.17 FT-IR spectrum of 3V7W5Mo#2 catalyst. (Warinsiriux, 2011)

Figure 3.18 FT-IR spectrum of 3V3.5W10Mo#2 catalyst. (Warinsiriux, 2011)

Figure 3.19 FT-IR spectrum of 3V3.5W5Mo#2 catalyst. (Warinsiriux, 2011)

3.3 Catalytic activity testing

All prepared catalysts are tested on selective catalytic reduction of NO_x with ammonia, NH_3 oxidation and SO_2 oxidation to determine the formation N_2O and SO_3 that occurs in the SCR process. The flue gas simulates that of a real power plant with various gases, such as nitric oxide (NO), oxygen (O₂), sulfur dioxide (SO₂), and water (H₂O) as shown in table 3.5

Feed gases	Concentration
NO	120 ppm
O_2	15% vol
SO_2	30 ppm
H ₂ O	15%vol
N_2	balanced

Table 3.5 The concentration of flue gases that simulates that of a real power plant.

3.3.1 Selective catalytic reduction of NO_x with NH₃ testing

The selective catalytic reduction of NO_x with NH_3 is one of the methods for catalytic activity testing to determine removal NO_x and formation of N_2O . The feed gas composes of NO, NH_3 , O_2 , H_2O , SO_2 and N_2 . The concentration of the feed gas and volumetric flow rate of each gas were adjusted by mass flow controller. Total volumetric flow rate is approximately 230 ml/min and WHSV 120,000 ml/g.min as shows in table 3.6. The feed gases flow through a stainless tubular fixed bed reactor with a outside diameter of 3/8 in (SS-314) which contains a catalyst packing of 0.1 g on quartz wool. Operating condition varies between 120°C and 450°C. An electric furnace was supplied heat to a reactor. The temperatures in the furnaces were control by a digital temperature controller. (see figure 3.20)

Shimadzu GC-2014 equipped with an Electron Capture Detector (ECD) measures the concentration of NO_x and N_2O in the outlet stream. Detail of operating condition of the GC-2014 to analyze NO and N_2O show in table 3.7.

 Feed gases
 Concentration

 NO
 120 ppm

 NH₃
 120 ppm

 O₂
 15% vol

 SO₂
 30 ppm

 H₂O
 15% vol

 N₂
 balanced

 Table 3.6 The composition and concentration of feed gases for SCR process.

Shimadzu GC-2014	Analyzed gas			
	NO	N_2O	SO_2	
Detector	ECD	ECD	FPD	
Temp Detector (°C)	200	200	185	
Column	Hyasep-DB	Hyasep-DB	Rt-XL sulfur	
Max temperature column (°C)	190	190	240	
Temperature column (°C)	40	150	180	
Inner Diameter column (mm)	0.1	0.1	1	
Length column (m)	2	2	2	
Temperature injector (°C)	-	-	100	
Carrier gas	N_2	N_2	He	
Carrier gas flow	240 kPa	240 kPa	15ml/min	
			Air:35	
Add flow (kPa)	-	-	H ₂ :105	
Sampling rate (msec)	80	80	40	

Table 3.7 The operating condition of Shimadzu GC-2014 for analyzing in the SCR process.

ECD: Electron Capture Detector FPD: Frame Photometric Detector

3.3.2 Ammonia oxidation testing

The ammonia oxidation is main side reaction of SCR process bring about the NO_x reduction conversion decrease at high temperature, therefore measuring NO_x that is appear during SCR process is necessary. The feed gas composes of NH_3 , O_2 and N_2 . The concentration of the gases and volumetric flow rate of each gas were adjusted by mass flow controller. Total volumetric flow rate is approximately 230 ml/min and WSHV 138,000 ml/g.min as shows in table 3.8. The feed gases flow through a stainless tubular fixed bed reactor with a outside diameter of 3/8 in (SS-314) which contains a catalyst packing of 0.1 g on quartz wool. Operating condition varies

between 120°C and 450°C. An electric furnace was supplied heat to a reactor. The temperatures in the furnaces were control by a digital temperature controller.

Table 3.8 The composition and concentration of feed gases for ammonia oxidation process.

Feed gases	Concentration
NH ₃	120 ppm
O_2	15% vol
N_2	balanced

The concentration of NO_x was measured by Shimadzu GC-2014 equipped with an Electron Capture Detector (ECD). The operating condition for GC-2014 is same the SCR process as show in table 3.7.

3.3.3 Sulfur dioxide oxidation

Sulfur dioxide can be oxidized to sulfur trioxide catalytically. The common catalyst is vanadium (V) oxide (V_2O_5). Because the prepared SCR catalyst is V_2O_5 -WO₃-MoO₃/TiO₂ as possible occurring SO₂ oxidation and generates sulfur trioxide that can produce ammonium bisulfate result from reacts with unconverted NH₃ bring about a sticky, corrosive compound, which fouls heat exchangers and other equipment downstream thus it is necessary to measure SO₂.

The feed gas composes of SO₂, NO, O₂ and N₂. The concentration of the gases and volumetric flow rate of each gas were adjusted by mass flow controller. Total volumetric flow rate is approximately 230 ml/min and WSHV 138,000 ml/g.min as shows in table 3.9. The feed gases flow through a stainless tubular fixed bed reactor with an outside diameter of 3/8 in (SS-314) which contains a catalyst packing of 0.1 g on quartz wool. Operating condition varies between 120°C and 450°C. An electric furnace was supplied heat to a reactor. The temperatures in the furnaces were control by a digital temperature controller.

 Table 3.9 The composition and concentration of feed gases for sulfur dioxide oxidation process.

Feed gases	Concentration
SO_2	30 ppm
O_2	15%vol
NO	120 ppm
N_2	balanced

The concentration of SO_2 was measured by Shimadzu GC-2014 equipped with a Flame Photometric Detector (FPD). The operating condition for measuring SO_2 concentration is show in table 3.7.

Figure 3.20 Flow diagram of the reactor system for SCR of NO by NH_3 , NH_3 oxidation and SO_2 oxidation.

CHAPTER IV

RESULTS AND DISCUSSION

This chapter shows results and discussion of the catalytic activities testing. The chapter is divided in to three major sections. The first section (4.1) summarizes the experimental results obtained from the oxidation of SO₂ to SO₃ over all V₂O₅-WO₃-MoO₃/TiO₂ catalysts studied in this research.

The second section (4.2) reports the selective catalytic reduction performance, the formation of N₂O, and the oxidation of NH₃ to NO over all V₂O₅-WO₃-MoO₃/TiO₂ catalysts studied in the present work. This section is further divided in to two sub-sections. The first sub-section (4.2.1) compares the behavior of catalysts having the same composition, but prepared from different procedures (3V7W10Mo#1, 3V7W10Mo#2 and 3V7W10Mo#3). The second sub-section (4.2.2) compares the behavior of catalysts having different compositions (3V7W5Mo#2, 3V3.5W10Mo#2 and 3V3.5W5Mo#2).

The last section (4.3) is the discussion on the reaction path ways occurring during the selective catalytic reduction of NO with NH_3 .

4.1. Formation of SO₃ over V₂O₅-WO₃-MoO₃/TiO₂ catalysts.

In the SO₂ oxidation experiments, water was removed from the feed stream in order to avoid dissolution of SO₃ (if occurs) in condensed water vapor which may present in some part of tubing system where heating is not sufficient.

The concentration of SO_2 measured at the outlet of reactor of all catalysts and TiO_2 support are reported in figure 4.1 and table 4.1. From the figure one can see that the outlet concentration of SO_2 begins to decrease from the reaction temperatures $250^{\circ}C$. This decrease is also observed even though TiO_2 is used. In addition, no peak of SO_3 appears on any chromatograms. These two phenomena (decrease of SO_2 when TiO_2 is used and disappearance of SO_3 peak) suggest that the reaction of SO_2 concentration at the outlet at high temperatures is not the result of the oxidation of

 SO_2 to SO_3 . The real cause is the effect of the back pressure, at the outlet of the SO_2 mass flow controller, with increase when the reactor temperatures increase.

Figure 4.1 A simplified diagram of the reactor system.

Since the concentration of SO_2 used in our experiments is very low. The valve opening of the SO_2 mass flow controller is therefore very low (0.45 from 10 full scale or equivalent to 0.6 ml/min at the supply pressure 2 barg). When the back pressure increases, the differential pressure across the valve decreases. This phenomena reduces the actual flow rate of SO_2 . This explanation is confirms by performing experiment by packing TiO₂ support having different pack density into the reactor. The higher pack density results in the higher back pressure. It is observed that at too high packing decreasingly the SO_2 mass flow controller will lose the capability to control the flow rate of SO_2 gas.

Therefore we can conclude that all the catalysts used in this research under the operating condition studies have insignificant SO₂ oxidation to SO₃ capability.

Figure 4.2 Outlet concentration of SO₂ of V₂O₅-WO₃-MoO₃/TiO₂ catalysts and TiO₂support at various temperatures. Reaction condition: $[SO_2] = 30$ ppm, $[O_2] = 15\%$ vol, [NO]= 30 ppm, N₂ balanced for WSHV =120,000 ml/g.h.

Table 4.1 Data for figure 4.2	(concentration of SO ₂	₂ -ppm)
--------------------------------------	-----------------------------------	--------------------

Comple	Temperature (°C)							
Sample	120	150	200	250	300	350	400	450
3V7W10Mo#1	30	30	30	29.56	27.89	25.38	23.66	15.87
3V7W10Mo#2	30	30	30	29.09	28.71	27.69	25.67	18.01
3V7W10Mo#3	30	30	30	29.41	29.04	28.16	24.89	17.98
3V7W5Mo#2	30	30	30	29.01	27.66	25.56	22.36	15.38
3V3.5W10Mo#2	30	30	30	29.94	29.39	28.48	27.17	20.90
3V3.5W5Mo#2	30	30	30	29.47	28.56	26.63	20.14	13.22
TiO ₂	30	30	30	29.01	27.25	23.30	17.54	8.14

4.2. The selective catalytic reduction performance over V_2O_5 -WO₃-MoO₃/TiO₂ catalysts.

This section is further divided in to two sub-sections. The first sub-section (4.2.1) compares the behavior of catalysts having the same composition, but prepared from different procedures (3V7W10Mo#1, 3V7W10Mo#2 and 3V7W10Mo#3). The second sub-section (4.2.2) compares the behavior of catalysts having different compositions (3V7W5Mo#2, 3V3.5W10Mo#2 and 3V3.5W5Mo#2).

4.2.1 Behavior of catalysts having the same composition and different procedure.

The catalysts reported in this section have the same composition, but prepared from different procedures (3V7W10Mo#1, 3V7W10Mo#2 and 3V7W10Mo#3) as described previously in section 3.1. The catalysts were tested by the selective catalytic reduction of NO with NH₃ and NH₃ oxidation as described in sections 3.3.1-3.3.2. The results are showed in figures 4.3-4.5.

3V7W10Mo#1 catalyst begins to exhibits NO conversion at reaction temperature 120°C. The NO conversion increases up to level higher than 80% at the reaction temperature around 200°C and remains at this level up to 300°C before rapidly drop. The formation of N₂O appears when the decrease of NO conversion appears. In addition, the oxidation NH₃ to NO carried out in a separate experiment show that NH₃ can be oxidize by O₂ to NO at the same temperatures.

3V7W10Mo#2 catalyst exhibits higher NO conversion at 120° C, than as 3V7W10Mo#1 (32% versus 2%). The NO conversion increases up to level higher than 80% at the reaction temperature around 200° C and remains at this level up to 350° C before rapidly drop. The formation of N₂O appears before the decrease of NO conversion become pronounce. In addition, the oxidation NH₃ to NO carried out in a separate experiment show that NH₃ can be oxidize by O₂ to NO at the same temperatures that N₂O appears.

The NO conversion curve of 3V7W10Mo#3 catalyst has the same pattern as of 3V7W10Mo#1 and 3V7W10Mo#2. This catalyst achieves only 60% NO conversion at 200°C. And interesting phenomenon observed is the formation of N₂O is observed at the temperature lower than the oxidation of NH₃ begins.

Since the catalyst prepared by using the second procedure (3V7W10Mo#2) has high NO conversion and widest operating temperatures. Because of these reasons the catalysts prepared by using second procedure, but having different Mo and W loading (3V7W5Mo#2, 3V3.5W10Mo#2 and 3V3.5W5Mo#2) are further investigated. The results are reported in section 4.2.2.

The discussion on the main reactions involve during the selective catalytic reduction of NO with NH₃ process will be discus in section 4.3

Figure 4.3 Catalytic activities testing on 3V7W10Mo#1 catalyst at 120°C-450°C.

Table 4.2 Data for figure 4.3.

Temperature (°C)	NO reduction conversion (%)	[NO] from NH ₃ oxidation (ppm)	[N ₂ O] from SCR (ppm)
120	2.39	0	0
150	31.82	0	0
200	92.48	0	0
250	100	0	0
300	89.19	0	0
350	40.46	36.50	20.34
400	-22.66	90.17	18.78
450	-34.31	115.59	15.95

Figure 4.4 Catalytic activities testing on 3V7W10Mo#2 catalyst at 120°C-450°C.

Table 4.3	Data for	figure	4.4.
-----------	----------	--------	------

Temperature (°C)	NO reduction conversion (%)	[NO] from NH ₃ oxidation (ppm)	[N ₂ O] from SCR (ppm)
120	32.37	0	0
150	50.81	0	0
200	82.96	0	0
250	100	0	0
300	91.45	0	0
350	84.99	48.84	23.79
400	32.42	83.90	20.40
450	-18.25	100.45	13.12

Figure 4.5 Catalytic activities testing on 3V7W10Mo#3 catalyst at 120°C-450°C

Table 4.4 Data	for figure	4.5.
----------------	------------	------

Temperature (°C)	NO reduction conversion (%)	[NO] from NH ₃ oxidation (ppm)	[N ₂ O] from SCR (ppm)
120	13.31	0	0
150	20.52	0	0
200	60.37	0	0
250	54.33	0	0
300	39.83	0	44.80
350	14.62	45.11	48.85
400	10.20	108.70	26.25
450	9.24	115.57	17.47

4.2.2 Behavior of catalysts having the same procedure preparation and different composition.

The catalysts reported in this section have the same preparation procedure, but having different compositions (3V7W5M0#2, 3V3.5W10M0#2 and 3V3.5W5M0#2) as described in section 3.1. The catalysts were tested by the selective catalytic reduction of NO with NH₃ and NH₃ oxidation as described in sections 3.3.1-3.3.2. The results are showed in figures 4.6-4.8.

3V7W5Mo#2 catalyst exhibits significantly high NO conversion at reaction temperature 120°C. The NO conversion increases up to level higher than 80% at the reaction temperature around 200°C and remains at this level up to 250°C before slightly decrease at 300°C and rapidly drop at 350°C. The formation of N₂O appears when the decrease of NO conversion appears. In addition, the oxidation NH₃ to NO carried out in a separate experiment show that NH₃ can be oxidize by O₂ to NO at the same temperatures.

3V3.5W10Mo#2 catalyst also begins to exhibit NO conversion at 120° C, the same as 3V7W5Mo#2, but with lower conversion (3% versus 32%). The NO conversion increases up to about 60% at the reaction temperature around 250° C before rapidly drop. The formation of N₂O appears before the decrease of NO conversion become pronounce. In addition, the oxidation NH₃ to NO carried out in a separate experiment show that NH₃ can be oxidize by O₂ to NO at the same temperatures that N₂O appears.

The NO conversion curve of 3V3.5W5M0#2 catalyst as the same pattern of 3V7W5M0#2 and 3V3.5W10M0#2. This catalyst achieves only 70% NO conversion at 200°C and interesting phenomenon is the formation of N₂O is observed at the temperature lower than the oxidation of NH₃ begins.

Figure 4.6 Catalytic activities testing on 3V7W5Mo#2 catalyst at 120°C-450°C.

Table 4.5 Dat	ta for figure 4.6.
---------------	--------------------

Temperature (°C)	NO reduction conversion (%)	[NO] from NH ₃ oxidation (ppm)	[N ₂ O] from SCR (ppm)
120	32.48	0	0
150	60.43	0	0
200	82	0	0
250	100	0	0
300	70	0	29.20
350	-0.77	25.87	35.46
400	-26.52	95.17	31.21
450	-31.73	110.08	25.61

Figure 4.7 Catalytic activities testing on 3V3.5W10Mo#2 catalyst at 120°C-450°C.

Table 4.6 Data for figure 4.7.

Temperature (°C)	NO reduction conversion (%)	[NO] from NH ₃ oxidation (ppm)	[N ₂ O] from SCR (ppm)
120	3.79	0	0
150	8.39	0	0
200	30.18	0	0
250	59.56	0	18.88
300	11.43	0	33.05
350	-6.31	55.42	38.06
400	-15.09	102.95	22.70
450	-29.26	116.86	14.10

Figure 4.8 Catalytic activities testing on 3V3.5W5Mo#2 catalyst at 120°C-450°C. **Table 4.7** Data for figure 4.8.

Temperature (°C)	NO reduction conversion (%)	[NO] from NH ₃ oxidation (ppm)	[N ₂ O] from SCR (ppm)
120	36.08	0	0
150	46.63	0	0
200	72.79	0	0
250	16.04	0	44.41
300	7.30	0	52.91
350	-33.01	28.93	30.08
400	-41.30	112.67	24.06
450	-43.69	118.00	14.92

4.3 The reaction path way occurring during the selective catalytic reduction of NO with NH₃.

Three possible mechanism which can described the selective catalytic reduction of NO_x with NH_3 are Eley-Rideal, Reduction-Oxidation (ReDox) mechanism and homogeneous reaction mechanism.

1. Eley-Rideal mechanism is proposed in 1938 by D. D.Eley and E. K.Rideal. In this mechanism only one of the molecules adsorbs and the other one reacts with it directly from the gas phase, without adsorbing. This mechanism is showed below.

- (a) An atom adsorbs on the surface
- (b) Another atom passes by which interacts with the one on the surface.
- (c) A molecule is formed which desorbed

Figure 4.9 Eley-Rideal Mechanism

2. Reduction-Oxidation (REDOX) mechanism proposed in 1954 by Mars and van Krevelenv (Mar and van Krevelenv, 1954), the molecule is adsorbed on the catalyst surface, using an oxygen vacancy in the lattice of the oxide as a deposition place for one of its oxygen atom. This mechanism can be written follow:

A + (oxidized catalyst)
$$\rightarrow$$
 P + (reduced catalyst) (eq. 4.1)

$$O_2 + (reduced catalyst) \rightarrow (oxidized catalyst)$$
 (eq. 4.2)

3. Homogeneous Reaction mechanism, the reaction is chemical reactions in which the reactants are in the same phase.

During the SCR process the followings reactions are hypothesized

- I. Adsorption of NH₃ on catalyst surface, NO form gases phase reacts with NH₃.
- II. Adsorption of NH₃ on catalyst surface, O₂ form gases phase reacts with NH₃.

These hypothesizes (I and II) are followed by Eley-Rideal mechanism. This mechanism is limited by the ability of catalyst surface to hold NH₃ molecules on its surface. The ability of the catalyst to hold the NH₃ can be quantified from NH₃-TPD result. This mechanism is not likely to occurs at low temperature.

- III. NH₃ molecule reacts with lattice oxygen at the catalyst surface result in the reduction of the catalyst surface. Then NO molecule oxidized the catalyst surface back to the normal state.
- IV. NH_3 molecule reacts with lattice oxygen at the catalyst surface result in the reduction of the catalyst surface. Then O_2 molecule oxidized the catalyst surface back to the normal state.

These hypothesize are follows by REDOX mechanism. This mechanism is not likely to occur at high temperature.

- V. Homogeneous reaction, gas phase NH₃ react with NO
- VI. Homogeneous reaction, gas phase NH₃ react with O₂

These reactions (V-VI) are not dependent on the catalyst, but depend on the temperature.

4.3.1 The selective catalytic reduction in the low reaction temperature region

The selective catalytic reduction at low reaction temperature region here mean from the 120°C to the maximum conversion NO. The mechanism in this low reaction temperature region was proposed by Langmier-Hinsherwood, but in our opinion Eley-Rideal is more reasonable because of the following reason:

Normally, the surface of metal oxide composes of cation and anion species.
 These species prefer adsorb polar molecules such as ammonia in our case.

2) The adsorption of non-polar molecule such as O_2 and NO on metal oxide surface can occur if the oxide surface is oxidized or reduced (Bond, 1987). For instant when transition metal (V, W, Mo) are in there highest oxidation state, the adsorption of the non-polar molecules (O_2 , NO) can occur when these oxides reduced to a lower oxidation state. The meaning of reduction here is the loss of O^{-2} to O_2 without the involvement of any reducing agents (such as NH₃, H₂, CO). This reduction process normally requires high temperature in order of several hundred degree celsius.

Therefore the mechanism at low temperature should be following the the reason 1 and 2. If we look at the NO conversion curve and NH_3 oxidation curve, we can see that the oxidation of NH_3 by O_2 (in the absence NO) at reaction temperature higher than the reaction of NO conversion. (see in figures 4.3-4.8), thus the selective catalytic reduction of NO with NH_3 at low temperature followed by Eley-Rideal mechanism and according to hypothesis I.

4.3.2 The selective catalytic reduction at high reaction temperature region

At high reaction temperature the amount of adsorbed NH_3 on the catalyst surface is lower than at low reaction temperature. (see figures 3.4-3.10: NH_3 -TPD profiles) This phenomenon leads to lower reaction rate. On the contrary the rate constant increases result in reaction rate increases. The overall reaction rate depend on with factor plays the dominate role.

4.3.3 Formation of N₂O during the selective catalytic reduction

For the catalysts having the same compositions, but different method of preparation we found that difference in SCR activity is observed. All three catalysts (3V7W10M0#1, 3V7W10M0#2 and 3V7W10M0#3) have similar NH₃ oxidation result. However, the catalyst having the lowest NO conversion, having the highest N₂O formation.

The question we are fa now is "Where N₂O come from"

- a) Reaction between NH₃ and NO and/or
- b) Reaction between NH₃ and O₂

At high temperature, the decrease of selective catalytic reduction activity is the result of

- c) The desorption of NH₃ on catalyst surface and/or
- d) The loss of NH_3 via the NH_3 oxidation by O_2 to NO

In order to specify the source of N_2O , the data of 3V7W10Mo#2 was used because this catalyst produce N_2O while the NO conversion still very high at $350^{\circ}C$ this catalyst has 85% NO conversion with mean that 102 ppm of NH₃ must be consume in the reaction with NO. At this temperature N_2O produce 20 ppm and NH₃
oxidation, NH_3 loss by the oxidation with O_2 (in the absence of NO) can be as high 50 ppm.

If N_2O is produce from the reaction between NH_3 and O_2 there will be no enough NH_3 for the SCR process to achieve 85% NO conversion therefore should come from the reaction between NO and NH_3 .

Another interesting point is tungsten play an important role in the selective catalytic reduction reaction, N_2O formation in the high reaction temperature region reduction in tungsten loading cause via reduction in NO conversion (3V7W10Mo#2 and 3V3.5W10Mo#2 in figures 4.4 and 4.6), but N_2O formation increase significantly. Decrease the amount of Mo content less pronounces effect on the decrease in the SCR conversion and N_2O formation (see result of 3V7W10Mo#2 and 3V7W5Mo#2 in figures 4.4-4.5).

4.3.4 Oxidation of NH₃

It was consider the highest temperature NH_3 can be adsorbed on the catalyst surface (further NH_3 -TPD results reported in section 3.3.2), we can see that at the temperature NH_3 began to be oxidized, less small amount or none of NH_3 can be adsorbed on the catalyst surface. Therefore, the oxidation of NH_3 to NO should not proceed via the same mechanism as the SCR (Eley-Rideal mechanism). Homogeneous reaction between NH_3 and O_2 is known to be able to occur at high temperature. But the amount of NO produced from the experiment with blank reactor (see figure 4.10) is lower than the amount observed with reactor packed with catalyst. Therefore, there is another catalytic oxidation reaction of NH_3 occurs co-currently with the homogeneous reaction. The possible mechanism for this catalytic reaction is REDOX model. In this model NH_3 reacts with lattice oxygen (O^{2-}) of the catalyst to form N_2O and H_2O . Then gaseous O_2 reoxidized the catalyst surface back to its original state.

4.4 Conclusions

From the experimental results illustrated in this chapter, the following conclusions can be drawn.

- 1. N_2O is produced from the reaction between NH_3 and NO
- 2. In the low reaction temperature region, the reaction proceed via Eley-Rideal mechanism.
- 3. In the high reaction temperature region, the reaction likely proceeds via REDOX mechanism.
- 4. Since at high temperature, NH₃ barely exists on the catalyst surface. The oxidation of NH₃ should be proceeding via REDOX mechanism and homogeneous reaction.

Figure 4.10 The NH₃ oxidation in blank reactor for SCR of NO with NH₃. (Keawbuddee, 2010)

CHAPTER V

CONCLUSIONS

This chapter shows the conclusions obtained from the experimental results. From the experimental results reported and the discussion in the previous chapter the following conclusions can be drawn:

5.1 Conclusions

1. The selective catalytic reduction process followed by Eley-Rideal Mechanism. Because of this mechanism, signifies catalytic of selective catalytic reduction at low reaction temperature, but higher reaction temperature the amount of NH₃ adsorption on the catalyst surface determined how much NO conversion can be achieve.

2. N_2O occurred from NO react with adsorb NH_3 on the catalyst surface following the Eley-Rideal mechanism.

3. Decreasing amount of W content tends to increases the amount of N_2O , but decreasing amount of Mo content was less affected.

4. NH_3 oxidation occurred while via homogeneous reaction, NH_3 in gas phase react with O_2 , and be REDOX mechanism.

5. The oxidation of SO_2 to SO_3 does not occur.

5.2 Recommendations for future work

- 1. Study the removal N₂O by selective catalytic reduction with NH₃.
- 2. Improve a catalyst which minimizes production N_2O occur during the selective catalytic reduction of NO with NH_3

REFERENCES

- Amiridis, M.D., Wachs, I.E., Deo, G., Jehng, J.M. and Kimy, D.S. reactivity of V₂O₅ Catalysts for the Selective Catalytic Reduction of NO by NH₃: Influence of Vanadia Loading, H₂O, and SO₂. Journal of catalysis 161 (1996): 247-253.
- Bartholomew, C.H., Farrauto, R.J. Catalytic Reduction of NO_x. <u>Fundamentals of</u> <u>Industrial Catalytic Processes</u> (2010): 756, 777.
- Beretta A., Orsenigo G., Ferlazzo N., Tronconi E. and Forzatti P. Analysis of the performance of plate-type monolithic catalysts for selective catalytic reduction deNOx applications. <u>Ind. Eng. Chem. Res</u>. 37 (1998): 2623-2633.

Bond, G.C. Heterogeneous Catalysis, Principles and applications, pp 38-47. Oxford :

```
University Press, 1987.
```

- Bosch, H. and Janssen, F. Formation and control of nitrogen oxides. <u>Catal Today</u> 23 (1988): 69-79.
- Boyano, A., and others. A comparative study of V₂O₅/AC and V₂O₅/Al₂O₃ Catalysts for the selective catalytic reduction of NO byNH₃. <u>Chemical Engineering</u> <u>Journal</u> 149 (2009):173-182
- Casagrande, L., Lietti, L., Nova, I., Forzatti, P., Baiker, A. SCR of NO by NH₃ over TiO₂-supported V₂O₅-MoO₃ catalysts reactivity and redox behavior. <u>Applied</u> <u>Catalysis B: Environmental</u> 22 (1999): 63-77.
- Chen, J. and Yang, R. Catal.A:General 80 (1992): 135.
- Chen, L., Li, J. and GE, M. The poisoning effect of alkali metals doping over nano V₂O₃-WO₃/TiO₂ catalysts on SCR of NO_x by NH_{3.} <u>Chemical Engineering</u> <u>Journal</u> 170 (2011):531-537
- Delahay, G., Coq, B., Kieger, S., Neveu, B. The origin of N₂O formation in the selective catalytic reduction of NO_x by NH₃ in O₂ rich atmosphere on Cufaojasite catalysts. <u>Catalysis Today</u> (1999): 431-438
- Gabrielsson, P. and Pedersen, H.G. Flue Gas from Stationary Sources. <u>Handbook of</u> <u>Heterogeneous Catalysis</u> 2 (2008): 2349
- Guo, X., Bartholomew, C., Hecker, W. and Baxter, L. Effects of sulfate species on V₂O₅/TiO₂ SCR catalysts in coal and biomass-fired systems. <u>Applied</u> <u>Catalysis B: Environmental</u> 92 (2009) 30-40.

- Gao, X., Jiang, Y., Zhong, Y., Luo, Z., Cen, K. The activity and characterization of CeO₂-TiO₂ Catalysts prepared by the sol-gel method for SCR. <u>Journal of</u> <u>Hazardous Materials</u>, 174 (2010):734-739
- Haitao, X., and others. A novel catalyst of silicon cerium complex oxides for SCR of NO by NH₃. Journal of rare earth 28 (2010):721
- Huang Z., Zhu Z. and Liu Z. Combined effect of H₂O and SO₂ on V₂O₅/AC catalysts for NO reduction with ammonia at lower temperatures. <u>Applied Catalysis B:</u> <u>Environmental</u> 39 (2002): 361–368.
- Jung S. M. and Grange P., DRIFTS investigation of V=O behavior and its relations with the reactivity of ammonia oxidation and selective catalytic reduction of NO over V₂O₅ catalyst. <u>Applied Catalysis B: Environmental</u> 36 (2002): 325–332.
- Kamata, H., Ohara, H., Takahashi, K., Yukimura A. and Seo, Y. SO₂ oxidation over the V₂O₅/TiO₂ SCR catalyst. <u>Catalysis Letters</u> 73 (2001): 79-83.
- Kaewbuddee C. <u>Selective catalytic reduction (SCR) of nitrogen oxide by ammonia</u> <u>over V₂O₅-WO₃/TiO₂ catalysts</u>. Mater's Thesis, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn university 2009.
- Lee, X., Kim, X. and Hong, S. Systematic mechanism study of the high temperature SCR of NO_x by NH₃ over a W/TiO₂ catalyst. <u>Chemical Engineering Science</u> 79 (2012):177-185
- Mars, P. and van Krevelen, D.W., Chem. Eng. Sci. (Spec. Suppl.), 3, (1954) 51-59.
- Mongkhonsi, T. and Kaewbuddee, C. Selective Catalytic Reduction of NO in Gas Turbine Exhaust Gas with NH₃. <u>Pathumwan Academic Journal</u> 5 (2012) 1-9
- Nova I., Liettia L., Casagrandea L., Dall'Acquab L., Giamellob E. and Forzatti P. Characterization and reactivity of TiO₂-supported MoO₃ De-NO_x SCR catalysts. <u>Applied Catalysis B: Environmental</u> 17 (1998): 245-258.
- Orsenigo C., Lietti L., Tronconi E., Forzatti P. and Bregani F. Dynamic investigation of the role of the surface sulfates in NO_X reduction and SO₂ oxidation over V₂O₅-WO₃/TiO₂ catalysts. <u>Ind. Eng. Chem. Res.</u> 37 (1998): 2350-2359.
- Piyanantaruk B. <u>Selective catalytic reduction of nitrogen oxide by ammonia over</u> <u>V₂O₅-WO₃-MoO₃/TiO₂ catalysts</u>. Master's Thesis, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn university 2011.

- Qi G. and Yang R.T. Low-temperature selective catalytic reduction of NO with NH₃ over iron and manganese oxides supported on titania. <u>Applied Catalysis B:</u> <u>Environmental</u> 44 (2003): 217–225.
- Taweesuk B. <u>Selective catalytic reduction (SCR) of nitrogen oxide by ammonia over</u> V_2O_5 -MoO₃/TiO₂ catalysts. Master's Thesis, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn university 2011.
- Shen, B., Liu, T., Zhao, N., Yang, X., Deng, L. Iron-doped Mn-Ce/TiO₂ catalyst for low temperature SCR of NO with NH₃. <u>Journal of Environmental Sciences</u> (2010):1447-1454
- Warinsirirux K. <u>Selective catalytic reduction of nitrogen oxide by ammonia over</u> <u>V₂O₅/TiO₂ containing WO₃ and MoO₃ catalysts</u>. Master's Thesis, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn university 2011.
- Xiaodong, W., Zhichun, S., Guo, L., Duan, W., Ziran, M. Effects of cerium and vanadium on the activity and selectivity of MnO_x-TiO₂ catalyst for low-temperature NH₃-SCR. Journal of Rare Earths. 29 (2011):64-68
- Xu, X., and others. Tungsten modified MnO_x-CeO₂/ZrO₂ monolith catalysts for SCR of NO_x by NH₃. <u>Chemical Engineering Science</u> 76 (2012):120-128

APPENDICES

APPENDIX A

CALIBRATING DATA FOR MASS FLOW METER

A1 Calibration data of mass flow meter are shown as follows:

Component of feed gas mixture: ammonia, nitrogen oxide, nitrogen, oxygen and sulfur dioxide

A1.1 Calibration for ammonia mass flow controller

Use the bubble flow by passing the gas through the glass tube in order to measure the time. Recording the time from scale 0 ml to 5 ml of the tube. **Table A1** Calibration data of ammonia mass flow controller.

Mass flow	r	Fime (sec))	Time	Actual flow	
meter scale (ml/min)	#1	#2	#3	average (sec)	(ml/min)	
1	54.62	54.91	55.91	55.15	2.18	
2	25.03	24.91	24.88	24.94	4.81	
3	16.09	15.69	15.84	15.87	7.56	
4	11.97	11.84	11.87	11.89	10.09	
5	9.38	9.47	9.38	9.41	12.75	

Figure A1 Calibration curve of ammonia mass flow controller

Use the bubble flow by passing the gas through the glass tube in order to measure the time. Recording the time from scale 0 ml to 5 ml of the tube.

 Table A2 Calibration data of nitrogen oxide mass flow controller.

Mass flow	Time (sec)			Time	Actual flow
meter (ml/min)	#1	#2	#3	average (sec)	(ml/min)
1	75.38	80.25	75.97	77.20	1.43
2	34.22	35.00	37.75	35.66	3.09
3	22.82	23.78	23.37	23.32	4.73
4	17.50	17.37	18.04	17.64	6.37
5	13.78	13.47	14.16	13.80	7.81

Figure A2 Calibration curve of nitrogen oxide mass flow controller.

Use the bubble flow by passing the gas through the glass tube in order to measure the time. Record the time from scale 0 ml to 5 ml of the tube.

Table A3 Calibration data of oxygen mass flow controller.

Mass flow	Time (sec)			Time	Actual flow
meter (ml/min)	#1	#2	#3	average (sec)	(ml/min)
10	55.56	55.50	55.44	55.50	10.81
20	28.00	27.97	28.00	27.99	21.44
30	18.85	18.75	18.44	18.68	32.12
40	14.07	14.10	14.03	14.07	42.65
50	11.13	11.18	11.25	11.19	53.64

Figure A3 Calibration curve of oxygen mass flow controller.

Use the bubble flow by passing the gas through the glass tube in order to measure the time. Recording the time from scale 0 ml to 5 ml of the tube.

 Table A4 Calibration data of nitrogen mass flow controller.

Mass flow]	Гіте (seo	:)	Time average (sec)	Actual flow (ml/min)	
meter (ml/min)	#1	#2	#3			
150	8	8	8	8	147	
160	8	8	8	8	157	
170	7	7	7	7	165	
180	7	7	7	7	176	
190	7	6	6	6	187	

Figure A4 Calibration curve of nitrogen mass flow controller.

Use the bubble flow by passing the gas through the glass tube in order to measure the time. Recording the time from scale 0 ml to 5 ml of the tube.

 Table A5 Calibration data of sulfur dioxide mass flow controller.

Mass flow	Time (sec)			Time	Actual flow	
meter (ml/min)	#1	#2	#3	average (sec)	(ml/min)	
1	84.9	82.5	83.59	83.66	1.43	
2	38.72	38.65	39.06	38.81	3.09	
3	25.34	25.50	25.31	25.38	4.73	
4	18.75	18.84	18.94	18.84	6.37	
5	15.32	15.43	15.37	15.37	7.81	

Figure A5 Calibration curve of sulfur dioxide mass flow controller

APPENDIX B

CALCULATION FOR CATALYST PREPARATION

Preparation of V₂O₅-WO₃-MoO₃/TiO₂ catalyst is shown as follows:

Reagent:

- Titania powder prepared by a sol-gel method
- Ammonium metavanadate 99.999%
 NH₄VO₃ (Aldrich)
- Ammonium metatungsteae hydrate 99.99%
 (NH₄)₆H₂W₁₂O₄₀•xH₂₀ (Aldrich)
- Ammonium heptamolybdate
 (NH₄)₆Mo₇O₂₄•4H₂O (Aldrich)
- Oxalic acid hydrate (Fluka)

Calculation for the preparation of V₂O₅-WO₃-MoO₃/TiO₂

Example calculation for the preparation of 3 wt. %V2O5-7 wt. %WO3-10 wt. %MoO3

Based on 2 g of catalyst used, the composition of the catalyst will be as follows:

V_2O_5	=	0.03×2	=	0.06 g
WO ₃	=	0.07×2	=	0.14 g
MoO ₃	=	0.06×2	=	0.12 g
TiO ₂	=	2 - 0.06 - 0.14 - 0.12	=	1.60 g

Vanadium oxide 0.06 g was prepared from NH_4VO_3 and molecular weight of V_2O_5 is 180.39 g/mole.

$$NH_4VO_3$$
 required = $\frac{(NH_4)_2VO_3 \times \text{tungsten oxide required x 2}}{MW \text{ of } V_2O_5}$

$$= \frac{116.98 \times 0.06 \times 2}{180.39} = 0.0778 \text{ g}$$

Tungsten oxide 0.14 g was prepared from $(NH_4)_6H_2W_{12}O_{40}\bullet xH_2O$ and molecular weight of WO₃ is 231.84 g/mole.

$$(NH_4)_6H_2W_{12}O_{40}\bullet xH_2O = \frac{(NH_4)_6H_2W_{12}O_{40}\cdot xH_2O \times tungsten \text{ oxide required}}{12 \times MWof WO_3}$$

$$= \frac{2956.3 \times 0.14}{231.84 \times 12} = 0.1488 \text{ g}$$

Molybdenum oxide 0.12 g was prepared from $(NH_4)MoO_4$ and molecular weight of MoO_3 is 143.94 g/mole

 $(NH_4)_2MoO_4 = \frac{(NH_4)_2MoO_4 \times molybdenum oxide required}{MWof MoO_3}$

$$= \frac{196.02 \times 0.2}{143.94} = 0.2724 \text{ g}$$

Oxalic acid require

Mole of vanadium oxide = 0.06/180.39 = 0.000333 mole

Molecular weight of oxalic acid equal to 126.07 g/mole. Oxalic acid required = $0.000333 \times 126.07 = 0.0416$

APPENDIX C

SHIMADZU GC-2014

 Table C1 The operating condition of Shimadzu GC-2014.

Shimodzu CC 2014	Analyzed gas					
Sinniauzu GC-2014	NO	N_2O	SO ₂			
Detector	ECD	ECD	FPD			
Temp Detector (°C)	200	200	185			
Column	Hyasep-DB	Hyasep-DB	Rt-XL sulfur			
Max temperature column (°C)	190	190	240			
Temperature column (°C)	40	150	180			
Inner Diameter column (mm)	0.1	0.1	1			
Length column (m)	2	2	2			
Temperature injector (°C)	-	-	100			
Carrier gas	N_2	N_2	He			
Carrier gas flow	240 kPa	240 kPa	15ml/min			
(11 (l (l. D)			Air:35			
Add flow (kPa)	-	-	H ₂ :105			
Sampling rate (msec)	80	80	40			

 ECD: Electron Capture Detector
 FPD: Frame Photometric Detector

APPENDIX D

LIST OF PUBLICATION

กมลทิพย์ แซ่บ้าง, เกียรติลดา วารินศิริรักษ์ และ ธราธร มงคลศรี. ผลของลำดับการเติมโลหะต่อ ความว่องไวของตัวเร่งปฏิกิริยาโลหะออกไซค์ผสม V-W-Mo บนตัวรองรับ TiO₂ สำหรับการรีดิวซ์ แบบเลือกเกิดของแก๊ส NO ด้วยแก๊ส NH₃ การประชุมวิชาการวิศวกรรมเคมีและเคมีประยุกต์แห่ง ประเทศไทย, ครั้งที่ 22, 25 – 26 ตุลาคม 2555, ณ โรงแรมเดอะกรีนเนอรี่รีสอร์ท จ. นครราชสีมา, Ref. NO. TCR-08

VITA

Miss Kamoltip Saebang was born on November 03, 1988 in Nakhonsi thammarat, Thailand. She finished high school from Triam Udom Suksa School of the South, Nakhonsithammarat, and graduated the bachelor's degree of Chemical Engineering, Rajamankala University of Technology Thunyaburi, in academic year 2010. She continued her master's study at Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University in 2011.