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CHAPTER I 

INTRODUCTION 
  

In this chapter, we first introduce credit derivatives and existing credit risk models 

that are used to price credit derivatives. Then we address problems from past literature 

and our motivation to propose our model. After that, we mention the objective of the 

study and the contributions of our work. 

 

1.1  Problem Review 

Credit derivatives are financial instruments used by market participants such as banks 

and hedge funds for risk management and trading of credit risk. Derivatives can be 

distinguished by the number of underlying reference credits being referenced. In 

single-name credit derivatives, the product relates to only one underlying asset. In 

multi-name credit derivatives, there are multiple credit references. The well-known 

single-name products and multi-name products are Credit Default Swaps (CDS) and 

Collateralized Debt Obligations (CDOs) respectively. CDOs have underlying 

reference entities such as bonds and CDSs. CDO tranches are classified by the 

different levels of the portfolio loss. However there are unobservable dependencies 

between defaults in a portfolio. Undiversified risk has been known in another name as 

systematic risk. Normally, they mitigate systematic risk in credit portfolios such as 

CDOs by hedging. In order to hedge risk exposure in a portfolio, there is the need to 

know its pricing mechanism. 

For pricing credit derivatives, the model is required to characterize the loss 

distribution of the underlying assets. One example of credit risk models is the 

standard Gaussian copula. The dependence structure of the defaults can be modelled 

through the marginal default distributions and their default correlation. Although it is 

easy to implement, the model has no capacity to measure dynamically dependent 

defaults. In financial crisis of 2008, the Gaussian copula has been blamed for 

mispricing CDOs. Due to the fact that the Gaussian copula cannot explain strongly 

joint defaults in a portfolio, it underestimates the actual risk. Many of those who use 

the Gaussian copula as if it were a reliable model suffered a lot from the great loss. As 

a result, a number of literature have proposed their model to solve the Gaussian 

copula’s problems. Another interesting kind of credit risk models which has been 

accepted worldwide is the intensity based model. 

Intensity-based models have been successfully used to price single-name 

credit derivatives such as CDSs. The portfolio loss of intensity-based models is 

concerned by underlying firms’ default times and the loss due to credit event. The 

default time of each firm in a portfolio is determined by its arrival rate of defaults 

which follows a stochastic process. One example of basic intensity-based models is 

the drift-diffusion model. Nevertheless, the drift-diffusion model has an issue with 
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weak default correlation in multi-name credit derivatives. There are numerous models 

that have been invented to defeat this issue. For example, Mortensen [1] uses the 

affine-jump diffusion model. His model is accomplished enough to capture the default 

dependency in both homogenous and heterogeneous portfolios. Peng and Kou [2] 

propose the Conditional Survival (CS) model. The CS model uses cumulative 

intensity processes to construct market factors. The market factors that are shared 

among firm intensity processes are also allowed to have jumps in terms of cumulative 

intensities. Because of its flexibility and mathematical favor, we choose to develop 

the intensity-based model. 

Our proposed model is an extension of Duffie and Garleanu [3]’s notable 

multi-issuer default model. In the Duffie and Garleanu [3]’s model, the defaults are 

concerned as the first jumps of their cox processes with stochastic intensity processes. 

The individual firm intensity consists of market factors and an idiosyncratic factor. In 

particular, each market factor independently responds to different type of default risks 

such as regional risk and global risk, causing the dependence between default events. 

There are other literature motivated by the Duffie and Garleanu [3]’s model, for 

example, Mortensen [1] and Peng and Kou [2]. Unlike any of them, our market 

factors are allowed to be correlated. 

The aim of this thesis is to propose the model that has the ability to capture a 

strong default correlation in multi-name credit derivatives such as CDOs. In doing so, 

we model the default intensity process of each firm to have systematic or market 

factors shared among underlying firms. Market factors are formed of a continuous 

component and a jump component. The continuous component is assumed to follow 

the Ornstein Ublenbeck (OU) process that is decomposed into a drift term and a 

Brownian-Motion-driven diffusion term. Most importantly, market factors are 

correlated through their Brownian motions. With positive correlation between market 

factors, it is expected to increase default dependency in a portfolio. If market factors 

are negatively dependent, systematic risk is supposed to be reduced.  

We also indicate market factors to incorporate jumps. The Gamma-Poisson 

mixture distribution is used to model jump times, since this distribution can represent 

the default contagion phenomena. Specifically, any two events modeled by a Gamma-

Poisson mixture process are time interdependent, which means that occurrence of an 

event triggers an increase of the probability of other events occurring. The feature of 

the Gamma-Poisson mixture distribution is that the mean is not necessary to be equal 

to the variance. In addition, the Gamma-Poisson mixture processes governing arrival 

of jumps present more shapes in the tail of the portfolio loss distribution than would 

be done by the Poisson process.  

Even though market factors are being part of firms’ default intensities, firms 

can be exposed to market risk with different levels. The sensitivity of a firm’s default 

risk to each market factor can be measured by the magnitude of its market factor 

loadings. Furthermore, individual firm has its particular risk represented by the 
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idiosyncratic factor in firm’s default intensity.    

As another objective of this work, we show how to implement our model 

using two alternative methods: a recursive method and a Mimicking Markov Chain 

simulation method. Owing to the fact that market factors are dependent, the default 

state of each individual firm is unable to be described by the marginal default 

probability of each market factor separately. Instead, it must be done by given the 

path of a vector of all market factor processes in the system. This is the huge issue for 

applying the correlated market factor model. Therefore we provide the Laplace 

transform function to describe the characteristics of dependent processes.  The 

Laplace transform function is used to solve for explicit solutions required in 

implementation mechanisms of a recursive method and a Mimicking Markov Chain 

simulation method. 

To calculate the portfolio loss, we first define the conditional loss distribution 

given the path of market processes and then estimate the unconditional ones. We use 

the recursive method that is applied from Andersen [4]. The conditional loss 

distribution given the path of a vector-valued market-factor process can be written in 

a recursive form. The portfolio (unconditional) loss distribution is found by taking the 

expectation of the conditional loss distribution. The difficulty of solving the 

unconditional loss distribution from the recursive form depends on the number of 

underlying firms in the portfolio. For a large heterogeneous portfolio, it is hard to find 

a simple closed-form solution. Moreover, the computation of the portfolio loss has to 

involve with numerous mathematical operations on numbers in the large range that is 

from very small to very large number. Therefore, the number of firms in a portfolio 

should be limited.  

However, if the portfolio is homogeneous, the loss of a portfolio is binomial 

distributed. We can derive the conditional mass function of the portfolio loss given 

the path of a vector of market-factor processes in a simple way. By taking the 

expectation, the unconditional one is done in a closed form.  The closed-form 

solutions of some unconditional terms are obtained by only concerning the required 

inputs and assigning zeros to irrelevant inputs of the Laplace transform function 

which we have derived.  

The Mimicking Markov Chain simulation method is adopted from Giesecke et 

al. [5]. Instead of using usual firms’ intensities to indicate default times, the arrival 

time of the next default is determined by the functions of firm transition rates based 

on the mimicking Markov chain. The individual firm’s transition rate function has the 

meaning of the expectation of its intensity conditioning on a vector of firms’ states in 

the portfolio. However, Giesecke et al. [5] don’t present how to use their method with 

the model that has correlated market factors.  

We choose to apply the Mimicking Markov chain method because it provides 

the time and the firm that defaults without any time discretization. For that reason, we 

apply their simulation scheme with our model. To implement the model, we need to 
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mimic our own continuous-time Markov chain to structure consequences of firms’ 

states in a portfolio. Like Giesecke et al. [5], state arrivals of the mimicking Markov 

chain depend on the transition rate functions of firms in a portfolio. Now market 

factor intensities are replaced by their conditional intensity given firms’ state vector 

embedded in individual firm’s transition rate function. It is even more difficult to find 

the solution for the expectation of each market factor’s intensity conditioning on the 

vector of firms especially when market factors are not independent. Fortunately, the 

problem is resolved by the help of the Laplace transform function that we have 

mentioned.  

 It is not easy to calibrate the model for pricing multi-name credit derivatives 

since default dependencies among underlying reference firms cannot be apparently 

observed on market data. However, tranches of the index are sensitive to systematic 

risk. Especially pricing the senior tranche and the super senior tranche requires strong 

default dependencies. Thus, market factors’ parameters are estimated from the spreads 

of CDO tranches, whereas each firm’s specific parameters such as market factor 

loadings are calibrated to its market quoted CDS. 

The rest of the thesis is organized as follows: Chapter 2 is a background of the 

intensity-based model, representing CDO pricing and reviewing our inspired existing 

models. In Chapter 3, we discuss our proposed model: ‘Multicorrelated Market Factor 

Model’. In Chapter 4, we show a step by step guide to implement our model using 

suggested methods such as a recursive method and a Mimicking Markov chain 

method. Chapter 5 shows numerical results and compares our model with existing 

models. Chapter 6 concludes the results and suggests further work. In Appendix, there 

are closed form solutions of the exponential-affine characteristic function of our 

proposed model, CDO and CDS framework, and the thinning scheme algorithm. 

 

1.2  Contributions and Study Objectives 

In this thesis, the contributions of the work is to propose the model incorporated 

correlated market factors that produces strong default correlation in multi-name 

portfolios such as CDOs. The objectives of the study includes: 

I. Studying improvement in accuracy of pricing CDOs from a normal multi-

market factor model to the model which has market factors correlated across 

Brownian motions. 

II. Studying performance development in capturing joint defaults from the model 

that has jumps in market-factor intensities driven by Poisson processes to the 

model that has Gamma-Poisson mixture processes characterizing jumps’ 

frequency in market factors. 

III. Developing efficient methods to compute a portfolio loss distribution and 

exactly simulate default times for our proposed model 
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CHAPTER II 

BACKGROUND 
  

It is known that value of credit derivatives is derived from the loss due to defaults of 

assets being referenced. The prices of the multi-name credit derivatives or CDO 

tranches are significantly dependent on the default correlations among names.  

Consequently, we measure the performance of our proposed model in producing 

default dependency through fitting the model to index tranche spreads of CDOs. 

In order to understand pricing of CDOs and the credit risk modelling, this 

chapter gives a grasp on CDO pricing, the basic concepts of the credit risk models, 

and the review of existing models. We will show our proposed model later in the next 

chapter. 

 

2.1 CDO Pricing 

Suppose that a portfolio has 𝑛 firms. The portfolio loss process is defined as 

𝐿𝑡 = ∑(1 − 𝑅𝑖)Θ𝑖𝑁𝑖(𝑡)

𝑛

𝑖=1

, 𝑡 ≥ 0, 

where 𝑅𝑖 is the deterministic recovery rate, Θ𝑖 is the notional principle Θ𝑖, 𝑁
𝑖  is the 

indicator process that presents the status (0=survive,1=default) of the underlying firm 

𝑖. When the firm defaults at time 𝜏𝑖, the indicator process 𝑁𝑖  jumps from 0 to 1, 

illustrated by  

𝑁𝑖(𝑡) = 1𝜏𝑖≤𝑡, 𝑖 = 1, … , 𝑛. 

 The tranches of a CDO are classified by the level of the portfolio loss. The 

loss process of the tranche for the attachment point 𝐾1 and the detachment point 𝐾2 is 

given by 

𝑈[𝐾1,𝐾2](𝑡) = (𝐿𝑡 − 𝐾1)+ − (𝐿𝑡 − 𝐾2)+, 𝑡 ≥ 0. 

 As shown in the equation above, the tranche loss process 𝑈[𝐾1,𝐾2] is underlying 

on the portfolio loss process 𝐿. To calculate any coupon premiums or the loss 

payment of the [𝐾1, 𝐾2] tranche, we need to model the portfolio loss process. The 

credit risk model is used to describe the probability of loss 𝑃(𝐿𝑡 = 𝑙) at any time 𝑡 

and construct the default correlations among underlying firms. For more information 

of CDO and CDS framework, it can be found in Appendix B. 
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2.2 Basic Concepts for The Intensity-Based Models 

In our research, we emphasize on the intensity-based models.  We use a Bottom-up 

approach to model the portfolio loss. The Bottom-up approach specifies each firm 𝑖’s 

stochastic intensity process 𝜆𝑖 to drive its indicator process 𝑁𝑖. The advantage of the 

intensity-based model using the Bottom-up approach is that it is flexible to modify 

dependencies among indicator processes 𝑁1, 𝑁2, … , 𝑁𝑛 through their default intensity 

processes 𝜆1,  𝜆2 … ,  𝜆𝑛. For the Bottom-up approach, the loss of the portfolio can be 

obtained by combining all underlying firms’ losses determined by their indicator 

processes 𝑁1, … , 𝑁𝑛. To enlarge an intuition about the portfolio loss distribution 

based on the Bottom-up approach, we write  

𝐸[(𝐿𝑡 − 𝐾1)+] = ∫ (𝑙 − 𝐾1)+𝑃(𝐿𝑡 = 𝑙)
∞

0

𝑑𝑙

= ∑ max (∑(1 − 𝑅𝑖)Θ𝑖𝐵
𝑖 − 𝐾1

𝑛

𝑖=1

, 0) 𝑃(𝑁(𝑡) = 𝐵)

𝐵∈{0 1}𝑛

. 

where the portfolio indicator process 𝑁 = (𝑁1, … , 𝑁𝑛) runs over {0 1}𝑛. According 

to the equation above, there is the need of the method used to implement the model to 

compute the loss distributions (calculate 𝑃(𝐿𝑡 = 𝑙) or 𝑃(𝑁(𝑡) = 𝐵)). One example of 

simple methods is the simulation of default times 𝜏1, … , 𝜏𝑛to determine their indicator 

processes 𝑁1, … , 𝑁𝑛.  

The default times 𝜏𝑖 could be considered as  

𝜏𝑖 = 𝑖𝑛𝑓 {𝑡 ≥ 0: ∫ 𝜆𝑖(𝑠)𝑑𝑠 ≥ ϵ�̃�

𝑡

0

} , 𝑖 = 1, … , 𝑛 , 

where 𝜆𝑖 is the intensity of the 𝑖th firm , ϵĩ is an independent standard exponential 

random variable. Any standard exponential random variable ϵ�̃� is simulated by 

generating a uniform random variable 𝑈𝑖 ∈ [0,1] and calculating ϵ�̃� = log (1 − 𝑈𝑖). To 

give a clear picture of the default time 𝜏𝑖, we solve it by generating a path of 

∫ 𝜆𝑖(𝑠)𝑑𝑠
𝑡

0
 and an exponential random ϵ�̃�. Then we set the firm 𝑖’s default time 𝜏𝑖 

equal to the minimum time 𝑡 ≥ 0 that makes ∫ 𝜆𝑖(𝑠)𝑑𝑠 ≥ ϵ�̃�
𝑡

0
.  

However, this method is not practiced in our research. The firm 𝑖’s default 

intensity 𝜆𝑖  is not a deterministic function but a stochastic process, and is also 

correlated to intensities of other firms. Moreover, simulated default times are bias 

because we need to discretize time to compute ∫ 𝜆𝑖(𝑠)𝑑𝑠
𝑡

0
. Hence we suggest another 

method that can simulate default times exactly in Chapter 4. 
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2.3 Review of Existing Models 

There are many existing models that have been proposed for credit risk pricing. Their 

main contribution is usually to propose the model than has capacity to generate fat-

tailed loss distribution, long-tailed loss distribution, or asymmetric loss distribution, 

which cannot be explained by the standard Gaussian Copula model.  

In this research, we study the intensity-based models. As stated before, this 

kind of the models can adjust default correlation in a portfolio via referenced default 

intensity processes. Generally, the processes that are generally used to drive default 

intensities are affine-jump diffusions which are the combination between a continuous 

process and a jump process. The basic affine-jump process 𝑋 that has the continuous 

component following the Cox-Ingersoll-Ross (CIR) process that incorporates with a 

jump process with parameters (𝑘, 𝜃, 𝜎, 𝜇, ℓ) solves 

𝑑𝑋(𝑡) = 𝑘(𝜃 − 𝑋(𝑡))𝑑𝑡 + 𝜎√𝑋(𝑡)𝑑𝑊(𝑡) + 𝑑𝐽(𝑡), 𝑡 ≥ 0 

where 𝑘 is the speed of adjustment, 𝜃 is the long-term mean, 𝜎 is volatility, 𝑊 is a 

Brownian motion, and  𝐽 is the jump process that has 𝜇 as the mean of exponential-

distributed jump sizes and ℓ as the Poisson arrival rate of jumps. It is widely known 

that the CIR process has the boundary condition 2𝑘𝜃 ≥ 𝜎2. As long as the boundary 

rule is not broken, simulated intensities are always positive. 

 

2.3.1 Duffie and Garleanu [3]’s Multi-Issuer Default Model  

In order to describe the structure of default dependency in underlying firm, Duffie and 

Garleanu [3] model the default intensity process of any firm 𝑖 to have systematic 

factors such sectorial risk factors and a global risk factor shared among other firms. 

Consider a 𝑛-firm portfolio. There are 𝑆 sectors which each firm particularly 

belongs to. The 𝑖th firm’s intensity process 𝜆𝑖 is adapted to the filtration Ϝ generated 

by the firm default processes, idiosyncratic risk factors 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, sectorial risk 

factors 𝑌𝑐(𝑖) , 𝑐(𝑖) ∈ {1, … , 𝑆} and a global risk factor 𝑍, where 𝑋𝑖, 𝑌𝑐(𝑖) and  𝑍 are 

supposed to be independent affine-jump processes sharing the same parameters 𝑘, 𝜎 

and 𝜇, having different long-term mean 𝜃𝑖 , 𝜃𝑐(𝑖), 𝜃𝑧 and jump arrival rate ℓ𝑖, ℓ𝑐(𝑖), ℓ𝑧 

respectively. Then 𝜆𝑖 is a basic affine-jump process with parameters (𝑘, 𝜃, 𝜎, 𝜇, ℓ), 

defined as 

𝜆𝑖(𝑡) = 𝑋𝑖(𝑡) +   𝑌𝑐(𝑖)(𝑡) + 𝑍(𝑡), 

where 𝜃 =  𝜃𝑖 + 𝜃𝑐(𝑖) +  𝜃𝑧 and ℓ = ℓ𝑖 + ℓ𝑐(𝑖) + ℓ𝑧. 

Duffie and Garleanu [3] assume that a portfolio is homogeneous, that is all 

firms’ intensity processes in the portfolio have the same model parameters. 
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2.3.2 Mortensen [1]’s Multi-Name Intensity Model 

He modifies Duffie and Garleanu [3]’s work to handle heterogeneous portfolios. Let Ϝ 

denote the filtration generated by the firm default processes, idiosyncratic risk 

factors 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, and a market risk factor 𝑌.  𝑋𝑖 and 𝑎𝑖𝑌 are supposed to be 

independent affine-jump processes with parameters (𝑘, 𝜃𝑖 , √𝑎𝑖𝜎, 𝑎𝑖𝜇, ℓ) and 

(𝑘, 𝑎𝑖𝜃𝑌 , √𝑎𝑖𝜎, 𝑎𝑖𝜇, ℓ) respectively, where ℓ = ℓ𝑖 + ℓ𝑦 .  

The 𝑖th firm’s intensity process 𝜆𝑖  takes the form 

𝜆𝑖(𝑡) = 𝑎𝑖𝑌(𝑡) + 𝑋𝑖(𝑡), 

where the parameter 𝑎𝑖 refers to the sensitivity of firm 𝑖 to the market factor 𝑌. It is 

implied that 𝜆𝑖 is an affine-jump process with parameters (𝑘, 𝑎𝑖𝜃𝑌 + 𝜃𝑖 , √𝑎𝑖𝜎, 𝑎𝑖𝜇, ℓ). 

In his paper, numerical results show that his jump-diffusion model based on 

only one market factor fits all index tranches well and outperforms the pure diffusion 

model, the Gaussian copula, the RPL Gaussian copula, and the Double-t copula. He 

assumes that CDO portfolios are heterogeneous and he observes that his model can 

price tranches of index from Markit iTraxx Europe Investment grade family in the 

case of homogeneous portfolios.  

 

2.3.3 Peng and Kou [2]’ Conditional Survival Model 

Peng and Kou [2] propose the new Conditional Survival (CS) Model to produce 

default clustering. Peng and Kou [2] consider that Duffie and Garleanu [3]'s the multi-

issuer default model cannot produce strong default correlation in spite of the fact that 

there are jumps or even simultaneous jumps in market factors shared among firms. 

Peng and Kou [2] illustrate that for the model of Duffie and Garleanu [3], once the 

jump in intensity of market factor occur, it just smoothly increases the cumulative 

intensity of market factor. As a result, the probability that the firm defaults is higher, 

though, several firms might not default simultaneously.  Consequently, Peng and Kou 

[2] propose the CS model that has dynamics of idiosyncratic factor 𝑋𝑖, and market 

factors 𝑀1, … , 𝑀𝐽  in terms of cumulative intensity processes (e.g.𝑋𝑖(𝑡) = ∫ 𝑥𝑖(𝑠)𝑑𝑠
𝑡

0
).  

Consider a portfolio of 𝑛 firms, Λ𝑖 is the cumulative intensity process of 

firm 𝑖, whose default time in this case is defined as 

𝜏𝑖 = 𝑖𝑛𝑓{𝑡 ≥ 0: Λ𝑖(𝑡) ≥ ϵ�̃�}, 1 ≤ 𝑖 ≤ 𝑛, 

where ϵ�̃� is an independent exponential random variable with mean 1.  

The 𝑖th firm’s cumulative intensity process Λ𝑖 is adapted to the filtration Ϝ 

generated by the firm default processes, cumulative market factors 𝑀𝑗 , 1 ≤ 𝑗 ≤ 𝐽, 

cumulative idiosyncratic factors 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, specified as 

Λ𝑖(𝑡) = ∑ 𝑎𝑖,𝑗𝑀𝑗(𝑡)

𝐽

𝑗=1

+ 𝑋𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑛, 𝑡 ≥ 0, 

where the factor loading 𝑎𝑖,𝑗 represents the sensitivity of firm 𝑖 to market factor 𝑗. The 

market factors 𝑀1, … , 𝑀𝐽 are allowed to be full of jump processes themselves, not 
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being part of intensity processes. Interestingly, Peng and Kou [2] don’t define 

particular distributions for idiosyncratic factors because their CS model can relate 

underlying firm’ conditional survival probability to the unconditional survival 

probability that is extracted from market data of that firm’s CDS spread without the 

need to simulate intensities of the idiosyncratic factors 𝑋1, 𝑋2, … , 𝑋𝑛. 

In numerical results of Peng and Kou [2], they use Polya processes and the 

integral of CIR processes to model market-factor cumulative intensities. The market 

factor’s Polya process 𝑀𝑗 can be viewed as the Poisson counting process that has a 

Gamma random variable as arrival rate of jumps. Peng and Kou [2] state that the 

jumps govern by the Polya process are positively increasingly correlated and then 

result in generating a strong degree of default dependency. In addition, they use 

integral of CIR processes to provide dynamic and describe dependency structure of 

defaults under normal situation.   

In their paper, their model with three market factors could fit tranche spreads 

of the iTraxx Europe 5-year Index on both March 14, 2008 and September 16, 2008 

really well. They choose CDO spreads on those dates in order to show that their 

model is efficient even in the financial crisis. Especially, 16th September 2008 is the 

day after the collapse of Fannie Mae and Freddy Mac, and Lehman Brother. However, 

there is a bit of trivia about their numerical results. Some part of their parameters of 

the cumulative CIR process that is used to drive one market factor is (𝑘, 𝜃, 𝜎) ≈

(0.0526, 0.1, 1.6837). The boundary condition 2𝑘𝜃 ≥ 𝜎2 of the CIR process is 

violated. Although they simulate intensities by generating Chi-square random variable 

and then summing them up to be the discrete integral. It is unpractically feasible 

because negative intensities are not allowed for the CIR process. 
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CHAPTER III  

OUR PROPOSED MODEL 
 

As mentioned in the introduction, our proposed model is primarily adjusted from the 

multi-issuer default model introduced by Duffie and Garleanu [3]. It also gets inspired 

from Mortensen [1]’s multi-name intensity model and Peng and Kou [2]’s conditional 

survival model. All models that we have referred are classified as the intensity-based 

models. The appeals of intensity-based models are their past success and flexibility. 

The intensity-based model is seen to be easily applied or extend such as adding more 

distributions. What makes our proposed model different from the others is the market 

factors that are allowed to be correlated. We are looking for parameters that increase 

the probability of joint default events or provide advantages to efficiently fitting 

particular CDO index tranche spreads. The results from Peng and Kou [2] imply that 

one market factor is not adequate to price CDOs under crisis situation. It is worth a try 

if making market factors correlated gains benefits.  

We will deliberately discuss more details about our proposed model and make 

comparisons with other models in the end of this chapter.  

 

3.1 Muticorrelated Market Factor Model 

Suppose that there are 𝑛 underlying reference firms in a portfolio. As mentioned 

before, we define 𝜏𝑖 as the time that the 𝑖th firm defaults in the portfolio, which is 

determined by the first time that its cox process jumps from 0 to 1 with the default 

intensity process 𝜆𝑖. We define firm 𝑖’s default intensity to have systematic or market 

factors shared among firms and its idiosyncratic factor. More specifically, the default 

correlations are modeled through market factors. The idiosyncratic factor represent 

individual firm’s particular risk. Denote 𝑚 as the number of market factors in the 

system, 𝑋1, 𝑋2, … , 𝑋𝑚 as market factors, and 𝑌𝑖 as the idiosyncratic factor of firm 𝑖. 

The 𝑖th firm’s intensity process is specified as 

𝜆𝑖(𝑡) = ∑ 𝛽𝑖,𝑗

𝑚

𝑗=1

𝑋𝑗(𝑡) + 𝑌𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑛, (1) 

where 𝛽𝑖,𝑗 is the market factor loading representing the sensitivity of the ith firm to 

market factor 𝑗, 1 ≤ 𝑗 ≤  𝑚. 

Let’s start with the systematic part. The 𝑗th market factor has dynamics 

𝑑𝑋𝑗(𝑡) = 𝑘𝑗 (𝜃𝑗 − 𝑋𝑗(𝑡)) 𝑑𝑡 + 𝜎𝑗𝑑𝑊𝑗(𝑡) + 𝑑𝑍𝑗(𝑡), (2) 

where 𝑘𝑗 is rate of mean-reversion, 𝜃𝑗  is long-term mean, 𝜎𝑗 is the volatility, 𝑊𝑗(𝑡) is 

a standard Brownian motion, and 𝑍𝑗  is jump process.  
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For the Brownian motions 𝑊1(𝑡), 𝑊2(𝑡), … , 𝑊𝑚(𝑡), they are assumed to be correlated 

such that 

𝑑𝑊𝑣(𝑡)𝑑𝑊𝑗(𝑡) = 𝜌𝑣𝑗𝑑𝑡, 1 ≤ 𝑣 ≤ 𝑚. (3) 

Brownian motions are allowed to be correlated among market factors because they 

provide dynamic dependence among market-factor processes. Moreover, these 

correlation parameters are meaningful. If market factors are negative correlated, the 

portfolio is more diversified. Conversely, the model that has positive correlation 

between market factors produces stronger default dependency. 

In addition, the jump processes 𝑍1, 𝑍2, … , 𝑍𝑚 are independently distributed. 

The Gamma-Poisson mixture processes are used to model jumps’ frequency of the 

jump processes 𝑍1, 𝑍2, … , 𝑍𝑚 whose jump sizes are exponential distributed. For the 

sake of clarity, we define 𝑍𝑗 , 1 ≤ 𝑗 ≤ 𝑚  as 

𝑍𝑗(𝑡) = ∑ Υ𝑛
𝑗

Π𝑗(𝑡)

𝑛=1

, (4) 

where Π𝑗(𝑡) is a counting Poisson process that has a arrival rate Λ𝑗 modeled by 

Gamma distribution with the shape parameter 𝛼𝑗 and the scaled parameter ℬ𝑗, and the 

jump sizes Υ1
j
, Υ2

j
… are exponentially distributed random variables with the mean 𝜇𝑗.  

We choose Gamma-Poisson mixture processes to model jumps because jump 

times are interdependent, which causes serial correlated defaults. The degree of serial 

correlation of any Gamma-Poisson mixture counting process Π𝑗  can be measured by 

cov (Πj(𝑡), Πj(𝑡 + ℎ) − Πj(𝑡)) = 𝛼𝑗ℬ𝑗2
ℎ𝑡. 

Unlike the Gamma-Poisson mixture process, the Poisson distribution has no capacity 

to produce jumps that are serial correlated. In addition, the Poisson process restricts 

that the variance are equal to the mean, but the variance of the Gamma-Poisson 

mixture process can be selected arbitrarily. As a result, the Gamma-Poisson mixture 

process has the ability to produce more shapes in the tails of the portfolio loss 

distribution.  

For the idiosyncratic factors 𝑌1, … , 𝑌𝑛, we consider them as errors, which is 

similar to Peng and Kou [2]. We will discuss this argument more in Chapter 5. 

As can be seen in the equation (1), the factor loadings 𝛽𝑖,𝑗 of market factor 

𝑗, 1 ≤ 𝑗 ≤ 𝑚 are varied across firm 𝑖, 1 ≤ 𝑖 ≤ 𝑛.  It implies that we cannot rely on 

factor loadings only to create default correlation. Moreover there would be 𝑛 × 𝑚 

factor loadings needed to be calibrated against just 5-6 tranches of the index if factor 

loadings were assumed to be the source of systematic risk. Schönbucher [6] mentions 

that “The number of parameters needed to describe the dependence structure of the 

defaults in the model should be limited, in particular it should not grow exponentially 

in the number of obligors” (p. 289). Thus the factor loadings are used to fit CDS 

curves of individual firm like Mortensen [1] and Peng and Kou [2]. The unobservable 
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parameters, for example, the correlations of Brownian motions and other parameters 

of market factors, are used to fit the CDO tranche spreads. 

 

3.2 Comparing with Existing Models 

We compare our proposed model with the models that have been reviewed in this 

paper. 

1. Our proposed model has the market factors that are allowed to be correlated, 

which doesn’t actually present in other literature. Peng and Kou [2] mention 

that their model supports this idea but they don’t show how to model them and 

use it to price correlated products. 

2. There is a jump process incorporated in every market factor. The arrival of 

jumps are governed by the Gamma-Poisson mixture process. Unlike our 

model, Peng and Kou [2] use this kind of distribution called Polya distribution 

to model jumps in terms of cumulative intensities. We assume that there is not 

much different between jump cumulative intensities and the intensities that 

have jump processes being part of them. If it is true, our model fits CDO 

tranche spreads well as Peng and Kou [2]’s CS model. Our model has ability 

to produce contagious defaults and is more dynamic due to random jump 

sizes. 

3. There are closed-form solutions such as survival (or default) probabilities that 

are derived from the Laplace transform function. Consequently, we can 

exactly compute the portfolio loss distribution whether by using a 

straightforwardly recursive method or a mimicking Markov chain method for 

simulating default times without time discretization.  
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CHAPTER IV  

SUGGESTED METHODS  

IN COMPUTING LOSS DISTRIBUTION 
 

To compute a portfolio loss distribution, we must know how to define the default 

times or the process counting defaulted firms in a portfolio. It is known that each 

firm’s default time is considered as the first time that its cox process or indicator 

process with a stochastic intensity jumps from 0 to 1. There are several ways to 

estimate default times such as Monte Carlo simulation and Semi-analytical transform 

techniques. The Monte Carlo simulation is easily used to simulate any random 

variables of any stochastic processes and discretize time to approximate expected 

values. However, simulation errors are large and it is very time consuming to compute 

cumulate intensities by time discretization. In this paper, two recommended methods 

are as follow: 

1. A recursive method. Define the process that counts the number of defaulted 

firms in a portfolio as 

ℕ(𝑡) = ∑ 𝑁𝑖(𝑡)

𝑛

𝑖=1

, 𝑡 ≥ 0. 

The method is used to recursively calculate the probability P(ℕ(𝑡) = 𝑙) based 

on the portfolio indicator process 𝑁 = (𝑁1, … , 𝑁𝑛) to compute the portfolio 

loss distribution. There is no default time identified. Hence, we need to 

assume that the defaults occur between coupon payment dates for pricing 

spreads of a CDO tranche. 

2. A Mimicking Markov Chain method. The edge of this method over a recursive 

method is that the defaulted firms and default times are acknowledged. The 

Mimicking Markov Chain method uses transition rate functions to determine 

default times in a portfolio. Underlying firms’ transition rate functions are 

straightforwardly computed using closed forms or numerical methods. There 

is no need to simulate default intensities and discretize time to estimate 

cumulative intensities. Therefore, it is useful for the process that has unknown 

distributions, for example, a cumulative terms of CIR process. 

 

Nevertheless, we can’t instantly use those suggested methods to implement 

our proposed model because market factors are correlated. To use those method, we 

have more works to do. We provide the Laplace transform function that can describe 

the structure of processes that are dependent. The Laplace transform function is used 

to find the solutions for suggested methods. In this chapter, we first present how to 

implement our proposed model using a recursive method and a Mimicking Markov 

chain method, and then finally show how to derive the Laplace transform function. 
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4.1  Recursive Method 

Suppose that underlying firms have the same recovery rate 𝑅 and notional principal Θ. 

The portfolio loss process satisfies 

𝐿𝑡 = (1 − 𝑅)Θ ∑ 𝑁𝑖(𝑡)

𝑛

𝑖=1

= (1 − 𝑅)Θℕ(𝑡), 𝑡 ≥ 0 

To compute the portfolio loss distribution, we specify 

𝑃(ℕ(𝑡) = 𝑙) = 𝐸[𝑃(ℕ(𝑡) = 𝑙|(𝑋(𝑠))𝑠≤𝑡)], 

where (𝑋(𝑠))𝑠≤𝑡  , 𝑋 = (𝑋1, … . , 𝑋𝑚) is the path of a vector of market factor processes 

that are correlated. We have to take the expectation on the conditional probability 

given the path of a vector of correlated-market-factor processes (𝑋(𝑠))𝑠≤𝑡 because all 

firms’ default intensity processes have market factors shared among them and most 

importantly market factors are correlated.  

 Before proceeding to the next step, let us introduce 𝑃𝑢(ℕ(𝑡) = 𝑣|(𝑋(𝑠))𝑠≤𝑡) 

as the probability that there are 𝑣 defaulted firms from 𝑢 firms that consists 

of 𝑢𝑡ℎ, (𝑢 − 1)𝑡ℎ, … , 2𝑛𝑑 , 1𝑠𝑡 firms given the path of a vector of correlated-market-

factor processes(𝑋(𝑠))𝑠≤𝑡. Let us define the conditional survival probability of 

firm 𝑖 given the path of a vector of correlated-market-factor processes (𝑋(𝑠))𝑠≤𝑡 as 

𝑃(𝜏𝑖 > 𝑡|(𝑋(𝑠))𝑠≤𝑡) = exp (− ∑ 𝛽𝑖,𝑗

𝑚

𝑗=1

∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0

) 𝐸 [exp (− ∫ 𝑌𝑖(𝑠)𝑑𝑠
𝑡

0

)]. (5) 

To compute the conditional loss distribution 𝑃(ℕ(𝑡) = 𝑙|(𝑋(𝑠))𝑠≤𝑡), we set 

𝑃(ℕ(𝑡) = 𝑙|(𝑋(𝑠))𝑠≤𝑡) = 𝑃𝑛(ℕ(𝑡) = 𝑙|(𝑋(𝑠))𝑠≤𝑡),        0 ≤ 𝑙 ≤ 𝑛. (6) 

According to Andersen [4], we can solve 𝑃𝑛(Ν𝑡 = 𝑙|(𝑋(𝑠))𝑠≤𝑡),   0 ≤ 𝑙 ≤ 𝑛, by 

following the steps below recursively. 

 
 

 

 

If 𝑢 = 0, 𝑃0(ℕ(𝑡) = 𝑣|(𝑋(𝑠))𝑠≤𝑡) = 1. 

Else if 𝑢 = 𝑣, 

𝑃𝑣(ℕ(𝑡) = 𝑣|(𝑋(𝑠))𝑠≤𝑡)

= 𝑃𝑣−1(ℕ(𝑡) = 𝑣 − 1|(𝑋(𝑠))𝑠≤𝑡)[1 − 𝑃(𝜏𝑣 > 𝑡|(𝑋(𝑠))𝑠≤𝑡)]. 

Else if 𝑣 = 0, 

 𝑃𝑢(ℕ(𝑡) = 0|(𝑋(𝑠))𝑠≤𝑡) = 𝑃𝑢−1(ℕ(𝑡) = 0|(𝑋(𝑠))𝑠≤𝑡)𝑃(𝜏𝑢 > 𝑡|(𝑋(𝑠))𝑠≤𝑡). 

Else if  0 < 𝑣 < 𝑢, 

𝑃𝑢(ℕ(𝑡) = 𝑣|(𝑋(𝑠))𝑠≤𝑡)

= 𝑃𝑢−1(ℕ(𝑡) = 𝑣 − 1|(𝑋(𝑠))𝑠≤𝑡)[1 − 𝑃(𝜏𝑢 > 𝑡|(𝑋(𝑠))𝑠≤𝑡)]

+ 𝑃𝑢−1(ℕ(𝑡) = 𝑣|(𝑋(𝑠))𝑠≤𝑡)𝑃(𝜏𝑢 > 𝑡|(𝑋(𝑠))𝑠≤𝑡). 
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However, the computation of the unconditional mass function of the loss 

becomes intensive when the number of assets in a portfolio is large. For example, 

CDX IG NA and Itraxx Europe have 125 firms in their portfolios. Assuming that the 

underlying reference firms are homogeneous, we let the portfolio loss follows 

Binomial distribution, which is specified as  

𝑃(ℕ(𝑡) = 𝑙|(𝑋(𝑠))𝑠≤𝑡)

= (
𝑛
𝑙

) (1 − 𝑃(𝜏 > 𝑡|(𝑋(𝑠))𝑠≤𝑡))
𝑙
(𝑃(𝜏 > 𝑡|(𝑋(𝑠))𝑠≤𝑡))

𝑛−𝑙
. 

(

(7) 

Modified the Euler-Maclaurin sums that is represented in Papageorgiou [7], the 

conditional loss distribution above can be rewritten as 

𝑃(ℕ(𝑡) = 𝑙|(𝑋(𝑠))𝑠≤𝑡)

= (
𝑛
𝑙

) ∑ (
𝑙
𝑖
) (−1)𝑙−𝑖

𝑙

𝑖=0

e−(𝑛−𝑖) ∑ 𝛽𝑗
𝑚
𝑗=1 ∫ 𝑋𝑗(𝑠)𝑑𝑠

𝑡
0 𝐸 [e− ∫ 𝑌(𝑠)𝑑𝑠

𝑡
0 ]

𝑛−𝑖

.. 

(

(8) 

Note that entire firms use the same factor loadings 𝛽1, 𝛽2, … , 𝛽𝑚 due to the assumption 

of the homogeneous portfolio. By taking expectation of the equation (8), its 

unconditional loss distribution becomes 

𝑃(ℕ(𝑡) = 𝑙) = (
𝑛
𝑙

) ∑ (
𝑙
𝑖
) (−1)𝑙−𝑖

𝑙

𝑖=0

𝐸 [e−(𝑛−𝑖) ∑ 𝛽𝑗
𝑚
𝑗=1 ∫ 𝑋𝑗(𝑠)𝑑𝑠

𝑡
0 ] 𝐸 [e− ∫ 𝑌(𝑠)𝑑𝑠

𝑡
0 ]

𝑛−𝑖

. (9) 

 The Laplace transform function is used to solve the closed-form solutions 

presented in this paper. We will discuss the Laplace transform function and how to 

derive it deeply in the end of this chapter. However, to get a grasp on how to apply the 

Laplace transform function, we represent 

𝐸 [exp (−(𝑛 − 𝑖) ∑ 𝛽𝑗

𝑚

𝑗=1

∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0

)] = 𝜙𝑥(𝑡, (𝑛 − 𝑖)(𝛽1, … , 𝛽𝑚), 0𝑚, 𝑋(0)), 

where 0𝑚 is a 𝑚-zero vector and the Laplace transform function 𝜙𝑥 is defined as 

𝜙𝑥(𝑇, 𝑢, 𝑧, 𝑋(0)) = 𝐸 [exp (− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑇

0

𝑚

𝑗=1

− ∑ 𝑧𝑗𝑋𝑗(𝑇)

𝑚

𝑗=1

) ]. 

In addition, the idiosyncratic factor is concerned as error, then we gain 

𝐸 [e− ∫ 𝑌(𝑠)𝑑𝑠
𝑡

0 ] = 1. 
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4.2  Mimicking Markov Chain Method 

Giesecke et al. [5] develop the simulation approach that is exact and efficient for a 

vector process. They construct the mimicking Markov chain 𝑀 = (𝑀1, … , 𝑀𝑛) ∈

{0,1}𝑛, which has the same property as the portfolio default indicator process 𝑁 =

(𝑁1, … , 𝑁𝑛) ∈ {0,1}𝑛, in its own filtration 𝔾 = (𝐺𝑡)𝑡≥0 generated by 𝑀. The 

filtration 𝔾 contains all information for each 𝑡 that is represented by the  𝜎-algebra 𝐺𝑡. 

The mimicking Markov chain 𝑀 is determined by the transition rate function ℎ(∙, 𝑀) 

instead of intensity process 𝜆.  

The transition rate function ℎ𝑖(𝑡, 𝐵) is the expectation of 𝜆𝑖(𝑡)𝐼(𝜏𝑖 > 𝑡) 

conditioning on the portfolio indicator 𝑁(𝑡) = 𝐵, which 𝐵 = (𝐵1, … , 𝐵𝑛) ∈ {0,1}𝑛, 

defined as 

ℎ𝑖(𝑡, 𝐵) = 𝐸(𝜆𝑖(𝑡)𝐼(𝜏𝑖 > 𝑡)|𝑁(𝑡) = 𝐵) . 

For our proposed model, the function of transition rate ℎ𝑖(𝑡, 𝐵) can be rewritten as 

ℎ𝑖(𝑡, 𝐵) = (1 − 𝐵𝑖) (∑ 𝛽𝑖,𝑗𝐸(𝑋𝑗(𝑡)|𝑁(𝑡) = 𝐵)

𝑚

𝑗=1

+ 𝐸(𝑌𝑖(𝑡)|𝜏𝑖 > 𝑡)). (10) 

However, when market factors are correlated we have to perform many steps to 

solve 𝐸(𝑋𝑗(𝑡)|𝑁(𝑡) = 𝐵).  By Bayes’ theorem and the law of iterated expectations, 

we obtain 

𝐸(𝑋𝑗(𝑡)|𝑁(𝑡) = 𝐵) =
𝐸 (𝑋𝑗(𝑡)𝐼(𝑁(𝑡) = 𝐵))

𝑃(𝑁𝑡 = 𝐵)
=

𝐸 (𝑋𝑗(𝑡)𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡))

𝐸(𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡))
. 

We will show how to find the explicit solutions of 𝐸(𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡)) 

and 𝐸 (𝑋𝑗(𝑡)𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡)). First of all the conditional probability at time t 

that the portfolio default indicator process 𝑁(𝑡) = 𝐵 given the path of a vector of 

correlated-market-factor processes (𝑋(𝑠))𝑠≤𝑡 is given by 

𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡) = ∏⌈𝐵𝑖 − (2𝐵𝑖 − 1)𝑃(𝜏𝑖 > 𝑡|(𝑋(𝑠))𝑠≤𝑡⌉

𝑛

𝑖=1

. 

Substituting (5) into the equation above, we have 

𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡)

= ∏ ⌈𝐵𝑗 − (2𝐵𝑗 − 1)e(− ∑ 𝛽𝑖,𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 )𝐸 [e(− ∫ 𝑌𝑖(𝑠)𝑑𝑠

𝑡
0 )]⌉

𝑛

𝑖=1

. 
 (11) 

The right hand side of the equation (11) can be in the expansion of 2𝑛 terms. Before 

getting lost in the trees, we will give identity to each term in the expansion of the 

equation (11), which is used to explain the explicit solution of the transition rate 

function  ℎ𝑖(𝑡, 𝐵).  

Let us denote by Α the array of 2𝑛 elements, each of them is assigned to a bit 

vector of length 𝑛 mapping to its based-2 index (e.g. Α0 = (0,0, … ,0,0), Α1 =
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(0,0, … ,0,1)). Each element 𝑘 of the array Α corresponds to term 𝑘 in the expansion 

formula (11). Let 𝜂𝑘(𝑡) be the coefficient of the 𝑘-th term of the expansion of the 

equation (11), defined as 

𝜂𝑘(𝑡) = ∏ ⌈(1 − Ak(𝑖))𝐵𝑖 + Ak(𝑖)(2𝐵𝑖 − 1)𝐸 [exp (− ∫ 𝑌𝑖(𝑠)𝑑𝑠
𝑡

0

)]⌉

𝑛

𝑖=1

. 

Let us introduce 𝑏𝑘,𝑗 as the factor loading for the 𝑘-th term to market factor 𝑗, given 

by 

𝑏𝑘,𝑗 = ∑ Ak(𝑖)(2𝐵𝑖 − 1)𝛽𝑖,𝑗

𝑛

𝑖=1
. 

Using the coefficients 𝜂𝑘(𝑡) and 𝑏𝑘,𝑗 for 𝑘, 0 ≤ 𝑘 ≤ 2𝑛−1, we can now represent the 

expansion of equation (11) as 

𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡) = ∑ 𝜂𝑘(𝑡)

2𝑛−1

𝑘=0

exp (− ∑ 𝑏𝑘,𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0

𝑚

𝑗=1

). 

Taking expectation on both sides of the equation above leaves 

𝐸[𝑃(𝑁(𝑡) = 𝐵|(𝑋(𝑠))𝑠≤𝑡)] = ∑ 𝜂𝑘(𝑡)

2𝑛−1

𝑘=0

E [exp (− ∑ 𝑏𝑘,𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0

𝑚

𝑗=1

)]

= ∑ 𝜂𝑘(𝑡)

2𝑛−1

𝑘=0

𝜙𝑥(𝑡, (𝑏𝑘,1, … , 𝑏𝑘,𝑚), 0𝑚, 𝑋(0)). 

(12) 

Note that 0𝑚 is denoted as a 𝑚-zero vector. As seen before, the Laplace transform 

function is given by 

𝜙𝑥(𝑇, 𝑢, 𝑧, 𝑋(0)) = 𝐸 [exp (− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑇

0

𝑚

𝑗=1

− ∑ 𝑧𝑗𝑋𝑗(𝑇)

𝑚

𝑗=1

) ]. 

Similar to Giesecke et al.[5], the explicit solution of the iterated expectation 

𝐸(𝑋𝑗(𝑡)𝑃(𝑁(𝑡) = 𝐵)|(𝑋(𝑠))𝑠≤𝑡) can be solved by taking the derivative of the 

equation (12) with respect to −𝑧𝑗, and then substituting 𝑧 = 0𝑚 

𝐸(𝑋𝑗(𝑡)𝑃(𝑁(𝑡) = 𝐵)|(𝑋(𝑠))𝑠≤𝑡)

= − ∑ 𝜂𝑘(𝑡)

2𝑛−1

𝑘=0

𝜕𝜙𝑥

𝜕𝑧𝑗
(𝑡, (𝑏𝑘,1, … , 𝑏𝑘,𝑚), 𝑧, 𝑋(0))|𝑧=0𝑚

. 
(13) 

It is unquestionable that the idiosyncratic factors 𝑌1, … , 𝑌𝑛 are independent distributed. 

We can write  

𝐸(𝑌𝑖(𝑡)|𝜏𝑖 > 𝑡) =
𝐸 (𝑌𝑖(𝑡)𝑃(𝜏𝑖 > 𝑡))

𝑃(𝜏𝑖 > 𝑡)
= −

𝜕𝜙𝑦

𝜕𝑧𝑖
(𝑡, 1, 𝑧𝑖 , 𝑌𝑖(0))|𝑧𝑖=0

𝜕𝜙𝑦(𝑡, 1,0, 𝑌𝑖(0))
 

(14) 

where the Laplace transform function of an idiosyncratic factor is given by 
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𝜙𝑦(𝑇, 𝑢𝑖, 𝑧𝑖 , 𝑌𝑖(0)) = 𝐸 [exp (−𝑢𝑖 ∫ 𝑌𝑖(𝑠)𝑑𝑠
𝑇

0

− 𝑧𝑖𝑌𝑖(𝑇))]. 

Substituting (12), (13), and (14) in the equation (10), we obtain 

ℎ𝑖(𝑡, 𝐵) = −

𝜕𝜙𝑦

𝜕𝑧𝑖
(𝑡, 1, 𝑧𝑖, 𝑌𝑖(0))|𝑧𝑖=0

𝜕𝜙𝑦(𝑡, 1,0, 𝑌𝑖(0))

− ∑ 𝛽𝑖,𝑗

∑ 𝜂𝑘(𝑡)2𝑛−1
𝑘=0

𝜕𝜙𝑥

𝜕𝑧𝑗
(𝑡, (𝑏𝑘,1, … , 𝑏𝑘,𝑚), 𝑧, 𝑋(0))|𝑧=0𝑚

∑ 𝜂𝑘(𝑡)2𝑛−1
.𝑘=0 𝜙𝑥(𝑡, (𝑏𝑘,1, … , 𝑏𝑘,𝑚), 0𝑚, 𝑋(0))

𝑚

𝑗=1

. 

 

In the filtration 𝔾, we denote 𝑇𝑘+1 as the time that 𝑀(𝑇𝑘) changes states 

to 𝑀(𝑇𝑘+1). Like Giesecke et al. [5], the process of the portfolio transition rate 

function 𝐻(𝑡, 𝑘) is given by 

𝐻(𝑡, 𝑘) = ∑ ℎ𝑖(𝑡, 𝑀(𝑇𝑘)),

𝑛

𝑖=1

 𝑇𝑘 ≤ 𝑡 < 𝑇𝑘+1, 𝑘 = 1,2, … 

Commonly, the brute-force simulation is a simple method used to generate the 

sequence of default times 𝑇1, 𝑇2, ..... The default time is  𝑇𝑘 determined by  

 𝑇𝑘 = 𝑖𝑛𝑓 {𝑡 ≥ 0: ∫ 𝐻(𝑠, 𝑘)𝑑𝑠 ≥ ϵk̃

𝑡

0

}, 

where ϵk̃ is an independent exponential random variable with mean 1. Then the firm 

that defaults is acknowledged with probability ℎ𝑖(𝑡, 𝑀(𝑇𝑘))/𝐻(𝑡, 𝑘), 𝑖 = 1,2, … , 𝑛. If 

the 𝑖𝑡ℎ firm defaults, the next mimicking Markov chain 𝑀(𝑇𝑘+1) is the updated 

version of the previous chain with 𝑀𝑖(𝑇𝑘) = 1. The computation stops when the 

default time of all firms in a portfolio are specified. By doing so, there is error from 

discretizing time for integration and it is computationally expensive. To avoid 

discretization error, we can use the thinning scheme.  

 

4.2.1 Thinning Scheme 

In Giesecke et al. [5], the thinning algorithm is applied to simulate the mimicking 

chain M by generating the firm defaults' identities and their default times. The 

advantage of this scheme is that there is no need for time scaling and discrete-time 

integration. 

First, we determine the appropriate value of the number of intervals ℳ for the 

intensity 𝐻(𝑡, 𝑘), next create a partition of the given interval [0, 𝑇] such that 0 ≤ 𝐿0 <

𝐿1 <. . . < 𝐿ℳ = 𝑇 to obtain a subinterval [𝐿𝑖, 𝐿𝑖−1] and then find the majorizing 

function 𝐻∗(𝑖, 𝑘) such that  

𝐻∗(𝑖, 𝑘) = sup{𝐻(𝑠, 𝑘): 𝐿𝑖−1 ≤ 𝑠 < 𝐿𝑖}, (15) 

where 𝑖 = 1, … , ℳ. After the exponentially distributed arrival time 𝑥, 𝑥 ∈ (𝐿𝑖−1, 𝐿𝑖) 

with intensity rate 𝐻∗(𝑖, 𝑘) is generated, 𝑥 is accepted with probability 𝐻(𝑥, 𝑘)/

𝐻∗(𝑖, 𝑘). 
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Laplace Transform Function 

We provide the Laplace transform function that is applied in the recursive method and 

the Mimicking Markov Chain method. Usually, the Laplace transform is used to 

explain the characteristic of any independent process such as an idiosyncratic factor, 

is defined as 

𝜙𝑦(𝑇, 𝑢𝑖, 𝑧𝑖, 𝑌𝑖(0)) = 𝐸 [exp (−𝑢𝑖 ∫ 𝑌𝑖(𝑠)𝑑𝑠
𝑇

0

− 𝑧𝑖𝑌𝑖(𝑇))]. (16) 

Similar to Giesecke et al. [5], the Laplace transform of the idiosyncratic factor 𝑌𝑖 only 

relates to the distribution of its own idiosyncratic factor 𝑌𝑖. In this research, we ignore 

the idiosyncratic factors 𝑌1, … . , 𝑌𝑛 because their values are assumingly small as errors 

analogous to Peng and Kou [2]. We concentrate on create default correlation through 

market factors.  

Nonetheless, the distribution of market factor 𝑋1(𝑡), 𝑋2(𝑡), . . , 𝑋𝑚(𝑡) cannot be 

transformed into their own characteristic functions because market factors are not 

independent. Alternatively, we describe the characteristics of the distributions of 

𝑋1(𝑡), 𝑋2(𝑡), . . , 𝑋𝑚(𝑡) through the sum ∑ 𝑋𝑗(𝑡)𝑚
𝑗=1 . We define the Laplace transform 

of a vector-valued market-factor process associated with their integrals as 

𝜙𝑥(𝑇, 𝑢, 𝑧, 𝑋(0)) = 𝐸 [exp (− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑇

0

𝑚

𝑗=1

− ∑ 𝑧𝑗𝑋𝑗(𝑇)

𝑚

𝑗=1

) ]. (17) 

Before solving the Laplace transform above, let us introduce 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋) as 

the exponentially-affine characteristic function conditioned on the vector of jump 

arrival rates Λ = (Λ1, Λ2, … , Λ𝑚), for all input (𝑡, 𝑢, 𝑧, Λ, 𝑥) ∈ [0, 𝑇] × ℝm × ℝm ×

[0, ∞]𝑚 × ℝ𝑚 where the constant vector 𝑢 = (𝑢1, … , 𝑢𝑚), the constant vector 𝑧 =

(𝑧1, … , 𝑧𝑚), the vector of initial values at time 𝑡 of market factors 𝑥 = (𝑥1, … , 𝑥𝑚).  

For a given value of Λ, let Ϝ = (ℱ𝑡)𝑡≥0  be the filtration generated by market 

factors 𝑋1, 𝑋2, … , 𝑋𝑚, which contains ℱ𝑡: =  σ{⋃ 𝑋𝑗(𝑠)𝑚
𝑗=1 , 0 ≤ s ≤ t}. 𝑃 is a risk 

neutral measure. By the Feynman-Kac approach, the characteristic function 

𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑥) has the stochastic representation 

𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑥) = E𝑡
𝑥 [exp (− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠

𝑇

𝑡

𝑚

𝑗=1

− ∑ 𝑧𝑗𝑋𝑗(𝑇)

𝑚

𝑗=1

) | Λ] (18) 

According the notation E𝑡
𝑥[· | Λ], it implies that the expectation is taken conditional on 

time 𝑡 information or the 𝑡-time filtration ℱ𝑡 with 𝑋(𝑡) = 𝑥, and the vector of jump 

arrival rates Λ.  

 A key idea in solving the Laplace transform function (17) is to make the 

connection to the characteristic function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) that is 

𝜙𝑥(𝑇, 𝑢, 𝑧, 𝑋(0)) = E[𝑓(0, 𝑢, 𝑧, Λ, 𝑋(0))]. 
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Our proposed model has jump arrival rates following Gamma distributions, not 

constant variables. Hence we first find the solution of the function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) 

that treats jump counting processes as Poisson processes conditioned on the arrival 

rate of jumps Λ. Then we find the expected value of the function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) 

unconditioned the jump arrival rates Λ considering that the jump counting processes 

are actually Gamma-Poisson mixture processes.  

Now, let’s start off by solving the characteristic function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)). To 

understand the equation (18) better, we rewrite the characteristic function 𝑓 and 

multiply both sides by 𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 , then have 

𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) = E𝑡

𝑥 [𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑇

0
𝑚
𝑗=1 𝑓(𝑇, 𝑢, 𝑧, Λ, 𝑋(𝑇))| Λ]. 

Thus 𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) is a martingale.  

Let us denote by 𝑄𝑗 the vector of length 𝑚 which has that the 𝑗𝑡ℎ  element is 

one and the rest of elements are zeros, Π𝑗(𝑡) a counting Poisson process of a jump 

process at time 𝑡 with Gamma distributed intensity Λ𝑗  with the shape parameter 𝛼𝑗 

and the scaled parameter ℬ𝑗. According to multivariable Ito’s formula for jump 

processes, we have 

𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))

= 𝑓(0, 𝑢, 𝑧, Λ, 𝑋(0)) + ∫ 𝑓𝑡(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))𝑑𝑠
𝑡

0

+ ∑ ∫ 𝑓𝑥𝑗
(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))

𝑡

0

𝑑 (𝑘𝑗 (𝜃𝑗 − 𝑋𝑗(𝑠)) 𝑑𝑠 + 𝜎𝑗𝑑𝑊𝑗(𝑠))

𝑚

𝑗=1

+
1

2
∑ ∑ ∫ 𝑓𝑥𝑗𝑥𝑣

(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))
𝑡

0

𝑚

𝑣=1

𝑚

𝑗=1

𝜌𝑗𝑣𝜎𝑗𝜎𝑣𝑑𝑠

+ ∑ ∫ ∫ [𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠) + 𝜀𝑗𝑄𝑗)
∞

0

𝑡

0

𝑚

𝐽=1

− 𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗𝑑Π𝑗(𝑠). 

Note that the jump sizes 𝜀1, 𝜀2, … , 𝜀𝑚 are generated from the probability density 

function of an exponential distribution 𝑔(𝜀𝑗; 𝜇𝑗) =
1

𝜇𝑗 exp (−
𝜀𝑗

𝜇𝑗) with their respective 

mean 𝜇𝑗, 1 ≤ 𝑗 ≤ 𝑚.  

In order to obtain the martingale part of the equality, we subtract the 

∑ ∫ [𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠) + 𝜀𝑗𝑄𝑗) − 𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗∞

0
𝑑(Λ𝑗𝑠)𝑚

𝑗=1  term 

from 𝑑Π𝑗(𝑠) and add it back to the corresponding 𝑑𝑠 term. We take the form 
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𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))

= 𝑓(0, 𝑢, 𝑧, Λ, 𝑋(0))

+ ∫ [𝑓𝑡(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠)) + ∑ 𝑓𝑥𝑗
(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))𝑘𝑗 (𝜃𝑗 − 𝑋𝑗(𝑠))

𝑚

𝑗=1

𝑡

0

+
1

2
∑ ∑ ∫ 𝑓𝑥𝑗𝑥𝑣

(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))
𝑡

0

𝑚

𝑣=1

𝑚

𝑗=1

𝜌𝑗𝑣𝜎𝑗𝜎𝑣

+ ∑ Λ𝑗 ∫ [𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠) + 𝜀𝑗𝑄𝑗)
∞

0

𝑚

𝑗=1

− 𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗] 𝑑𝑠

+ ∑ [∫ 𝑓𝑥𝑗
(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))

𝑡

0

𝑑 (𝜎𝑗𝑑𝑊𝑗(𝑠))

𝑚

𝑗=1

+ ∫ ∫ [𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠) + 𝜀𝑗𝑄𝑗)
∞

0

𝑡

0

− 𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑠))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗 𝑑(Π𝑗(𝑠) − Λ𝑗𝑠)], 

Hence, the stochastic differential equation of the characteristic function 𝑓 becomes 

𝑑𝑓 = [𝑓𝑡(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) + ∑ 𝑓𝑥𝑖
(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))𝑘𝑗 (𝜃𝑗 − 𝑋𝑗(𝑡))

𝑚

𝑖=1

+
1

2
∑ ∑ 𝑓𝑥𝑗𝑥𝑣

(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))𝜌𝑗𝑣𝜎𝑗𝜎𝑣

𝑚

𝑣=1

𝑚

𝑗=1

+ ∑ Λ𝑗 ∫ [𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡) + 𝜀𝑗𝑄𝑗)
∞

0

𝑚

𝑗=1

− 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗] 𝑑𝑡

+ ∑ [𝑓𝑥𝑗
(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))𝜎𝑗𝑑𝑊𝑗(𝑡)

𝑚

𝑗=1

+ ∫ [𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡) + 𝜀𝑗𝑄𝑗)
∞

0

− 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗 𝑑(Π𝑗(𝑡) − Λ𝑗𝑡)] . 
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By using the product rule, we obtain 

𝑑 (𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 𝑓)

= 𝑓𝑑𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 + 𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠

𝑡
0

𝑚
𝑗=1 𝑑𝑓

+ 𝑑𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 𝑑𝑓. 

Because 𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 𝑓 is a martingale, the dt term must be zero. The partial 

differential equation of 𝑒− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑡

0
𝑚
𝑗=1 𝑓 is 

0 = − (∑ 𝑢𝑗𝑋𝑗(𝑡)

𝑚

𝑗=1

) 𝑓 + 𝑓𝑡 + ∑ 𝑓𝑥𝑗
𝑘𝑗 (𝜃𝑗 − 𝑋𝑗(𝑡))

𝑚

𝑗=1

+
1

2
∑ ∑ 𝑓𝑥𝑗𝑥𝑣

𝜌𝑗𝑣𝜎𝑗𝜎𝑣

𝑚

𝑣=1

𝑚

𝑗=1

 

 + ∑ Λ𝑗 ∫ [𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑡) + 𝜀𝑗𝑄𝑗) − 𝑓(𝑠, 𝑢, 𝑧, Λ, 𝑋(𝑡))]𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗
∞

0

𝑚

𝑗=1

. 

We want to have the function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) in the affine form 

𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑥) = 𝑒𝑎(𝑇−𝑡,𝑢,𝑧)+∑ 𝑏𝑗(𝑇−𝑡,𝑢𝑗,𝑧𝑗)𝑋𝑗(𝑡)𝑚
𝑗=1 +∑ 𝑐𝑗(𝑇−𝑡,𝑢𝑗,𝑧𝑗)Λ𝑗𝑚

𝑗=1     (19) 

where 𝑎: [0, 𝑇] × ℝm × ℝm → ℝ, 𝑏𝑗: [0, 𝑇] × ℝ × ℝ → ℝ, and 𝑐𝑗: [0, 𝑇] × ℝ × ℝ →

ℝ with the initial conditions 𝑎(0, 𝑢, 𝑧) = 0,    𝑏𝑗(0, 𝑢𝑗 , 𝑧𝑗) = −𝑧𝑗 , 𝑐𝑗(0, 𝑢𝑗 , 𝑧𝑗) = 0, for 

1 ≤ 𝑗 ≤ 𝑚. In doing so, the affine-form function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋(𝑡)) (18) must satisfy 

the partial differential equation  

0 = − (∑ 𝑢𝑗𝑋𝑗(𝑡)

𝑚

𝑗=1

) −
𝜕𝑎(𝑇 − 𝑡, 𝑢, 𝑧)

𝜕(𝑇 − 𝑡)
− ∑

𝜕𝑏𝑗(𝑇 − 𝑡, 𝑢𝑗 , 𝑧𝑗)

𝜕(𝑇 − 𝑡)
𝑋𝑗(𝑡)

𝑚

𝑗=1

− ∑
𝜕𝑐𝑗(𝑇 − 𝑡, 𝑢𝑗 , 𝑧𝑗)

𝜕(𝑇 − 𝑡)
Λ𝑗

𝑚

𝑗=1

+ ∑ 𝑏𝑗(𝑇 − 𝑡, 𝑢𝑗 , 𝑧𝑗)𝑘𝑗 (𝜃𝑗 − 𝑋𝑗(𝑡))

𝑚

𝑗=1

+
1

2
∑ ∑ 𝜌𝑗𝑣𝜎𝑗𝜎𝑣𝑏𝑗(𝑇 − 𝑡, 𝑢𝑗 , 𝑧𝑗)𝑏𝑣(𝑇 − 𝑡, 𝑢𝑣, 𝑧𝑣)

𝑚

𝑣=1

𝑚

𝑗=1

+ ∑ Λ𝑗 ∫ [𝑒𝑏𝑗(𝑇−𝑡,𝑢𝑗,𝑧𝑗)𝜀𝑗
− 1] 𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗

∞

0

𝑚

𝑗=1

. 

Accordingly, the ordinary differential equations are 

𝜕𝑎(𝑠, 𝑢, 𝑧)

𝜕𝑠
= ∑ 𝑘𝑗  𝜃𝑗𝑏𝑗(𝑠, 𝑢𝑗 , 𝑧𝑗)

𝑚

𝑗=1

+
1

2
∑ ∑ 𝜌𝑗𝑣𝜎𝑗𝜎𝑣𝑏𝑗(𝑠, 𝑢𝑗 , 𝑧𝑗)𝑏𝑣(𝑠, 𝑢𝑣 , 𝑧𝑣)

𝑚

𝑣=1

𝑚

𝑗=1

, 

𝜕𝑏𝑗(𝑠, 𝑢𝑗 , 𝑧𝑗)

𝜕𝑠
= −𝑢𝑗 −  𝑘𝑗𝑏𝑗(𝑠, 𝑢𝑗 , 𝑧𝑗), 

𝜕𝑐𝑗(𝑠, 𝑢𝑗 , 𝑧𝑗)

𝜕𝑠
= ∫ [𝑒𝑏𝑗(𝑠,𝑢𝑗,𝑧𝑗)𝜀𝑗

− 1] 𝑔(𝜀𝑗; 𝜇𝑗)𝑑𝜀𝑗
∞

0

. 

The solutions of them can be found in Appendix A. 
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Here is a quick summary of the explicit solution of the Laplace transform 

function (17) 

𝜙𝑥(𝑇, 𝑢, 𝑧, 𝑋(0)) = E[𝑓(0, 𝑢, 𝑧, Λ, 𝑋(0))] 

 = 𝑒𝑎(𝑇,𝑢,𝑧)+∑ 𝑏𝑗(𝑇,𝑢𝑗,𝑧𝑗)𝑋𝑗(0)𝑚
𝑗=1 ∏ 𝐸 [𝑒𝑐𝑗(𝑇,𝑢𝑗,𝑧𝑗)Λj

]

𝑚

𝑗=1

. 

 = 𝑒𝑎(𝑇,𝑢,𝑧)+∑ 𝑏𝑗(𝑇,𝑢𝑗,𝑧𝑗)𝑋𝑗(0)𝑚
𝑗=1 ∏(1 − 𝑐𝑗(𝑇, 𝑢𝑗 , 𝑧𝑗)ℬ𝑗)

−𝛼𝑗
𝑚

𝑗=1

 

The moment generating function of the gamma distribution is given by 

𝐸 [𝑒𝑐Λ𝑗
] = ∫ 𝑒𝑐Λ𝑗

  𝑔(Λ𝑗; 𝛼𝑗 , ℬ𝑗)𝑑Λ𝑗
∞

0

= (1 − 𝑐ℬ𝑗)
−𝛼𝑗

, 

where the probability density function 𝑔(Λ𝑗; 𝛼𝑗 , ℬ𝑗) =
Λ𝑗𝛼𝑗−1

𝑒
−

Λ𝑗

ℬ𝑗

Γ(𝛼𝑗)ℬ𝑗𝛼 . 

 

According to the stochastic differential equation (2), it is possible to have 

negative market factors. However negative intensities are not allowed to happen in 

practice. To make it clear, we use the equation (2) for deriving the closed-form 

solution of the Laplace transform that we have stated in the introduction. In reality, 

market factors are assumed to be always positive in such a way that 

𝑋𝑗
+(𝑡) = max(𝑋𝑗(𝑡), 0)  at every time 𝑡 ≥ 0, 1 ≤ 𝑗 ≤ 𝑚. 

To be more accurate, the 𝑖th firm’s intensity process can be rewritten as 

𝜆𝑖(𝑡) = ∑ 𝛽𝑖,𝑗

𝑚

𝑗=1

𝑋𝑗
+(𝑡) + 𝑌𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑛. 

We need some constraints to prevent negative intensities in order to have the 

solutions we derive from the Laplace transform close to the real outcomes. In doing 

so, we select values of the any market factor 𝑗’s parameters that satisfy the two 

constraints. The first constraint is as follows: 

1 ≥ E [exp (− ∫ 𝑋𝑗(𝑣)𝑑𝑣
𝑠1

0

)] ≥ E [exp (− ∫ 𝑋𝑗(𝑣)𝑑𝑣
𝑠2

0

)] ≥. . .

≥ E [exp (− ∫ 𝑋𝑗(𝑣)𝑑𝑣
𝑡

0

)] ≥ 0 

where 0 ≤ 𝑠1 ≤ 𝑠2 ≤. . . ≤ 𝑡. 

The approach above also applies to the firm 𝑖’s idiosyncratic factor 𝑖 or any 

positive intensity process. In this thesis, the important thing to keep in mind is that 

market factors are correlated. It must include the second constraint: 

0 ≤ 𝐸 [exp (− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑇

0

𝑚

𝑗=1

− ∑ 𝑧𝑗𝑋𝑗(𝑇)

𝑚

𝑗=1

) ] ≤ 1, for any 𝑧𝑗 , 𝑢𝑗 ∈ ℝ+. 
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Unlike the first constraint, 𝐸 [exp (− ∑ 𝑢𝑗 ∫ 𝑋𝑗(𝑠)𝑑𝑠
𝑇

0
𝑚
𝑗=1 − ∑ 𝑧𝑗𝑋𝑗(𝑇)𝑚

𝑗=1 ) ] (a.k.a the 

Laplace transform we have derived) is not necessary to be decreasing with respect to 

time when parameters 𝑢𝑖 > 1, 𝑧𝑖 > 1, 1 ≤ 𝑖 ≤ 𝑚 plugged in the equation. 
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CHAPTER V  

NUMERICAL RESULTS 
 

In this chapter, we show how to calibrate our model to multi-name portfolios such as 

CDOs. The data and tools that are used for computation are stated later. Then we 

display numerical results of our model used to price the CDO index tranches. We also 

analyze the portfolio loss distributions that are implied from quoted market index 

tranches using our proposed model and make a comparison of performance with some 

models we have studied.   

 Our model is able to apply to both heterogeneous and homogeneous portfolios.  

We demonstrate them as follows: 

 For the homogeneous portfolio, every firm in a portfolio is assumed to have the 

same weight, notional principle and recovery rate. Restating the equation (1) 

𝜆𝑖(𝑡) = ∑ 𝛽𝑖,𝑗

𝑚

𝑗=1

𝑋𝑗(𝑡) + 𝑌𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑛. 

We set the market factor loading 𝛽𝑖,𝑗 of any firm 𝑖 to the market factor 𝑗 to be 1 

and ignore the idiosyncratic factor 𝑌. Each market factor has 7 parameters. We 

only use market factors’ parameters for fitting index tranches. More specifically, 

we find the calibrated parameters of market factors such as the rate of mean-

reversion 𝑘, the volatility 𝜎, the shape parameter 𝛼, the scaled parameter ℬ, the 

mean of jump size 𝜇, and the correlation parameter 𝜌 that reduces the Root Mean 

Square Error (RMSE) the most. The RMSE is given by  

RMSE = √
1

𝐾
∑ (

𝑠𝑘 −
(𝑠𝑘

𝑎 + 𝑠𝑘
𝑏)

2
𝑠𝑘

𝑎 − 𝑠𝑘
𝑏 )

2
𝐾

𝑘=1

 

where sk is the 𝑘-th credit index tranche spread of the model and sk
a,  sk

b are the 

ask and bid price of index tranche spread from the market, and 𝐾 is the number of 

index ranches. The long-term mean 𝜃 and the initial value of the market 

intensity 𝑋(0) are used to fit the CDO index spread. The CDO index spread can 

be view as the weighted mean of underlying CDS spreads, computed as the 

running spread of the 0-100% index tranche. 

  Due to the fact that the model has many parameters, there are many 

local solutions of parameter values.  It is hard to find the optimal solutions by 

using numerical methods alone. The optimal solutions are majorly led by initial 

value parameters. Thus we first initialize values of parameters and then use a 

numerical method such as Multivariate Newton’s Method to adjust them.  
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To initialize the model’s values of 𝑚 × 7 parameters, we perform as follows: 

1. It begins with setting based parameter values. 

2. We estimate the parameters of a jump component of the market factor 

(with large value of the scaled parameter of Gamma ℬ, the small value of 

Gamma’s shape parameter ℬ) that has the ability to create the high serial 

correlation of defaults. Increasing serial default correlation through jump 

parameters particularly results in increasing the senior and super senior 

tranche spreads, which doesn’t cause exaggeratedly upshifting in the 

prices of other tranches. Those jump process’s parameters have an 

immense impact on the extreme tail risk and therefore are adjusted to 

match quoted market spreads of the senior tranche and especially the 

super senior tranche.  

3. There are another kind of jump processes in market factors (with the small 

value of the scaled parameter of Gamma ℬ, the large value of Gamma’s 

shape parameter 𝛼) that can produce heavier and longer tail of the 

portfolio loss distribution with low serial default correlation. The 

parameters of that market factor’s jump process are used to fit the equity 

tranche and the mezzanine tranches. If the mean of jump size 𝜇 are too 

large, all index tranches are more likely to be exceedingly overestimated. 

Hence the calibrated jump size’s mean usually has a small value. 

Moreover, this jump process of the market factor doesn’t affect the spread 

of the super senior tranche.  

4. The rest of market factors’ parameters are used to fit the index tranches 

more accurately. Changing values of parameters of market factors such as 

the rates of mean-reversion has a considerable effect on many index 

tranches. As a result, we might have to recalibrate market factors’ jump 

process’s parameters. We also use the correlation parameters for 

specifically adjusting the equity tranche and the mezzanine 1 tranche. 

5. We continue revising market factors’ parameters according to step 2-4 

until the RMSE is acceptable. Each step of initialization has the reasons 

which will be illustrated later in the rest of this chapter. 

 For the heterogeneous portfolio, our proposed model can be calibrated by 

adopting Peng and Kou [2]’s calibration algorithm. Under the heterogeneous 

portfolio assumption, the model is calibrated to all index tranche market quotes, 

the CDO index spread including its referenced firms’ CDS spread all together.  

According to Peng and Kou [2]’s calibration algorithm, market factors’ 

parameters are considered as free parameters used to fit index tranches. The 

idiosyncratic factors are concerned as small error terms while market factor 

loadings can be estimated by using their optimization problem. Nonetheless, there 

are numerous parameters such as market factor loadings (about 𝑚 × 7 × 𝑛 

parameters, 𝑚 is the number of market factors in the system, 𝑛 is the number of 
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referenced firms in the index) to be gauged. Papageorgiou [7] argues that by 

doing so the model is over parameterized. Papageorgiou [7] uses the name 

grouping method to decrease the number of idiosyncratic factors and the results 

are more satisfied. However, we don’t show the results from the case of 

heterogeneous portfolios because the empirical results under the homogeneous 

portfolio assumption are satisfyingly acceptable. 

 

5.1  Data and Tools 

CDX NA IG and Itraxx Europe index are chosen to be calibrated on models. We 

consider those indices that mature in 5 years. CDX NA IG and Itraxx Europe are 

relied on 125 CDS indices of investment grade firms in North American and Europe 

respectively. Every series of CDX and Itraxx is released on every March and 

September. The recently issued index that has a 5-year maturity is regarded as the on-

the-run index. The on-the-run index is actively traded and then has no arbitrage. On 

the contrary, the off-the-run index is older and passively traded. There are the equity 

tranche, the mezzanine tranche, the senior tranche and the super senior tranche 

classified by the level of the portfolio loss, ranked from the riskiest to the safest. From 

series 1 to series 11, the equity tranche has different mechanism of pricing from the 

other tranches, paying an upfront cash with a 500-bps fixed running spread whereas 

the other tranches pay running spreads only. After the subprime crisis 2007-2008, 

other tranches have upfront fees with fixed running spreads. For instance, all index 

tranches of are quoted on upfront fees with a 100-bps fixed running spread for CDX 

NA IG series 12 to 14.  

As stated earlier in the introduction, we assume credit derivatives portfolios to 

be homogeneous. The prices of the CDS index and the index tranches that we choose 

are from Mortensen [1], Peng and Kou [2], Choi [8] and Bloomberg. The selected 

indexes from those literature are mostly on-the-run indexes. A recovery rate of any 

underlying reference firm is set to be 40%. For interest rates, we found that they can 

be assumed to be constant or bootstrapped from swap rates. The characteristics of 

interest rates don’t directly have an impact on the performance of the model in 

capturing the events of joint defaults. The important things are the model of default 

intensities and the method that is used to implement the model for computing the 

portfolio loss distribution.  

Papageorgiou [7] suggests that in order to reduce errors from calculating the 

large portfolio loss distribution which is based on the binomial distribution, the 

number of underlying reference firms should not be exceeded 30. However, we solve 

the big number issue by using the GNU MPFR library. It is an open source and 

supports C/C++ programming language for computations of high precision numbers. 

The computation time depends on the digit precision whose numbers are set.  When 

using the MPFR library, our program could compute spreads of the 125-firm CDO 

tranches faster than compared to simulation methods. 
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5.2  Results 

We price credit index tranche using our proposed model and then make a comparison 

between our proposed models themselves under following circumstances: 

 With and without correlation between market factors. 

 Two correlated market factors and three independent market factors.  

We set up the case studies above to investigate performance improvement of the 

correlated market factor model. The model is also compared with other models that 

are as follows: 

 Mortensen [1]’s Multi-Name Intensity Model. We want to verify that Gamma-

Poisson mixture processes outperform Poisson processes for modeling jumps 

in intensity processes. 

 Peng and Kou [2]’s Conditional Survival Model. We want to verify that our 

model that has jump processes being components of market factors is capable 

of joint default events, fat tails and tail dependence. There is no need to model 

jump processes as cumulative intensities like Peng and Kou [2]’s Conditional 

Survival model accordingly. If correct, our proposed model could price CDOs 

as well as theirs. 
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Test 1 

To examine the sensitivity of the portfolio loss distribution to market factors’ 

correlation, we establish the models that have the same parameter values of market 

factors with different correlation parameters. As shown in Figure 1, the correlation 

parameters are easy to understand. The more positive correlation between market 

factors the model has, the more dispersion of the portfolio loss distribution is. In 

contrast, the models with negative correlation parameters generate higher peak and 

thinner-tail distributions. 

 

 
Figure 1: The 5-year loss distribution of the 125-firm portfolio from three two-market-factor models. 

The models with the correlation parameters −1 (perfectly negative), -0.5, without correlation, and the 

correlation parameter -0.25, 1 (perfectly positive) are corresponded to the blue line, the green line, the 

black line, the yellow line, and the red line respectively. All models have the sets of the first market 

factor’ parameters (𝑘1 = 2, 𝜃1 = 0.005, 𝑋1(0) = 0.001, 𝜎1 = 0.0085, 𝑢1 = 0.5, 𝛼1 = 0.05, ℬ1 =

1) and (𝑘2 = 1, 𝜃2 = 0.0085, 𝑋2(0) = 0.0005, 𝜎2 = 0.0055, 𝑢2 = 0.05, 𝛼2 = 1, ℬ2 = 0.08) for 

the second market factor. The recovery rate is 40% and the interest rate is 5%. 

 

Let’s begin with calibrating our proposed model to CDX NA IG S2 5Y and 

CDX NA IG S5 5Y on August 23, 2004 and December 5, 2005 respectively. CDX 

NA IG S2 5Y was launched on March 23, 2004 and matured on June 22, 2009 with 

quarterly coupons.  CDX NA IG S4 5Y was launched on September 21, 2005 and 

matured on December 20, 2010. The interest rate and recovery rate are assumed to be 

5% and 35% respectively. The equity tranche has an upfront fee with a running spread 

of 500 bps while other tranches are quoted on running spreads without upfront fees. 

We choose those index series in order to compare our results to Mortensen [1]’s. Most 

importantly, we analyze the impact of the correlation between market factors on index 
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tranche spreads and study performance in pricing of three-independent-market-factor 

model. The calibrated parameters are represented in Table 1. 

 

Date 

(Series) 
Part 

Para-

meter 

2-factor model 3-independent-factor model 

Factor 1 Factor 2 Factor 1 Factor 2 Factor 3 

23/4/2004 

(CDX S2) 

Cont. 

𝑘 0.1000 1.3000 0.1000 1.3000 2.0000 

𝜃 0.0040 0.0042 0.0030 0.0035 0.0006 

𝑥0 0.0004 0.0006 0.0003 0.0005 0.0002 

𝜎 0.0008 0.0006 0.0006 0.0005 0.0004 

Jump 

𝑢 8.0000 0.0720 6.0000 0.0600 0.1000 

𝛼 0.0010 10.000 0.0010 10.000 1.0000 

Β 25.000 0.0100 25.000 0.0100 0.0300 

Correlation 𝜌 -1.0000  

5/12/2005 

(CDX S5) 

Cont. 

𝑘 0.6000 2.0000 0.6000 2.0000 1.5000 

𝜃 0.0030 0.0040 0.0030 0.0035 0.0004 

𝑥0 0.0020 0.0008 0.0020 0.0007 0.0002 

𝜎 0.0010 0.0048 0.0010 0.0042 0.0005 

Jump 

𝑢 1.0000 0.0168 1.0000 0.0147 0.0005 

𝛼 0.0016 0.0700 0.0016 0.0700 3.0000 

Β 2.0000 2.5000 2.9000 2.5000 0.2000 

Correlation 𝜌 -1.0000  
 

Table 1: Estimated parameters of our models on August 23, 2004 for CDX NA IG S2 5Y and 

December 5, 2005 for CDX NA IG S4 5Y. 

 

As can be seen in Table 2 and Table 3, the 2-correlated-market-factor model 

prices CDO tranche spread slightly better than the 2-uncorrelated-market-factor 

model. Although the correlation parameter is -1 or 1, the model still has two market 

factors if there are different jump processes. The results implies that the negative 

correlation parameter causes in decreasing the mezzanine 1 (3-7%) tranche spread 

while increasing the equity (0-3%) tranche spread. Even though the changes in the 

spreads of the equity (0-3%) tranche and the first mezzanine (3-7%) tranche are 

visually seen small in Table 3, they are considerably large when concerned with bid-

ask spread. Admittedly, it is feasible that adjusting some parameters can reproduce the 

outcome of the model that has correlated market factors. However several index 

tranches get affected while changing some values of parameters as the rates of mean-

reversion. Contrary to other parameters, the correlation parameter can be varied and 

has a particular influence on the equity tranche and the first mezzanine tranche 

without considerably affecting other index tranches.  
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Tranches % 

Source 

Market Bid/Ask Mortensen 

2-factor model 3-idp-

factor 

model 
Correlated Uncorrelated 

0-3 40.0% 2.0% 46.9% 39.4% 39.32% 40.11% 

3-7 312.5 15.0 340.2 318.3 319.29 349.83 

7-10 122.5 7.0 119.7 118.4 118.52 120.94 

10-15 42.5 7.0 61.9 45.0 45.0 42.61 

15-30 12.5 3.0 14.3 12.7 12.7 12.08 

RMSE  2.1 0.37 0.40 1.12 
 

Table 2: Comparison of the results of our models and the old results of Mortensen [1],and the CDX NA 

IG S2 5Y index tranche spreads on August 23, 2004. The equity (0-3%) tranche pays an upfront cash 

with 500-bps running spread. The other tranches are quoted on running coupons. 

 

Tranches% 

Source 

Market Bid/Ask Mortensen 

2-factor model 3-idp-

factor 

model 
Correlated Uncorrelated 

0-3 41.1% 0.8% 43.2% 40.96% 40.59% 41.07% 

3-7 117.5 6.8 125.9 122.02 127.42 121.04 

7-10 32.9 5.3 30.6 33.27 33.40 29.36 

10-15 15.8 3.0 21.3 15.85 15.88 14.53 

15-30 7.9 1.0 8.8 7.33 7.33 8.01 

RMSE  1.58 0.40 0.76 0.43 
 

Table 3: Comparison of the results of our models and the old results of Mortensen [1], and the CDX 

NA IG S2 5Y index tranche spreads on December 5, 2005. The equity (0-3%) tranche pays an upfront 

cash with 500-bps running spread. The other tranches are quoted on running coupons. 

 

Table 2 displays that the RMSE of the 3-uncorrelated-market-factor model is 

greater than the 2-factor model’s. Conversely, Table 3 shows that the prices of CDO 

tranches from the 3-indepenent-market-factor model are more accurate than the 

results of the 2-independent-market-factor model. We have to calibrate a set of 

parameters for one more market factor but obtain similar results. Consequently, the 

correlation parameter is more satisfied in the sense of convenience. The reason why 

the model that has three independent market factors is counterintuitively 

underachieving is that the two-correlated-market-factor model has already created the 

necessary shapes of the portfolio loss distribution. It is really hard to compete the 

model that has a small value of RMSE.  

Moreover, it is shown that our model can solve Mortensen [1]’s problem about 

overpricing equity (0-3%) tranche, the mezzanine 1 (3-7%) tranche, and the 

mezzanine 3 (10-15%) tranche in Table 2.  Likewise, Table 3 shows that our model 

fits the mezzanine 1 (3-7%) tranche better that the jump-diffusion model of [4]’s. The 



 

 

32 

RMSEs from August 23, 2004 and December 5, 2005 of our proposed model are 

smaller.  

Note that the results of Mortensen [1] based on the assumption that the index’s 

underlying reference firms are heterogeneous.’ jump-diffusion model has a market 

factor of 6 free parameters used to fit the index tranche and 7 × 𝑛 idiosyncratic 

parameters including the market factor loading calibrated to underlying CDSs. Thus 

there are 6 + 7 × 𝑛 estimated parameters. Mortensen [1] states that for iTraxx Europe 

the homogenous and heterogeneous portfolios yield similar outcomes, which doesn’t 

apply to CDX NA. He said that the heterogeneous portfolio assumption is more 

attainable for CDX NA. In spite of the assumption of homogenous portfolios, our 

model could price the CDX index’s tranche spreads with smaller RMSEs.  

 

Test 2 

Following Peng and Kou [2]’s footsteps, we calibrate our models to ITraxx Europe S8 

5Y on March 14, 2008 and iTraxx Europe S9 5Y on September 16, 2008, which are 

good examples to demonstrate market during financial crisis of 2008. The iTraxx 

Europe S8 5Y was released on September 20, 2007 and matured on December 20, 

2012. The iTraxx Europe S9 5Y was released on March 20, 2008, and matured on 

June 20, 2013. Both index series have 124 underlying firms rated as investment grade. 

There are numerous firms shared between those iTraxx series. Every firm is assumed 

to have a 40% recovery rate. The interest rates are extracted from Euro swap rates.  

To make sure that our proposed model literally outperforms the Mortensen [1]’s 

jump-diffusion model, we use Mortensen  [1]’s jump-diffusion model calibrated 

against those series under the same homogenous portfolio assumption. In this case, 

there are 6 parameters to be gauged, which all of them are treated as free parameters 

for matching spreads of the index tranches. 

For the jump-diffusion model, the values of parameters we obtain from 

calibration to iTraxx Europe S8 5Y on March 14, 2008 are  𝑘 = 0.02, 𝜃 =

 0.14,  𝜆0 =  0.003, 𝜎 = 0.0721, 𝜇 = 0.7, and ℓ = 0.025. Whereas the estimated of 

iTraxx Europe S9 5Y on September 16, 2008 are  𝑘 = 0.02, 𝜃 =  0.13,  𝜆0 =  0.003,

𝜎 = 0.0721, 𝜇 = 0.7, and ℓ = 0.02. For our proposed model, the estimated 

parameters are shown in Table 4. 

 

Date(Series) 𝑘 𝜃  𝑥0 𝜎 𝑢 𝛼 Β 𝜌 

14/3/2008 

(iTraxx S8) 

0.1 0.00750 0.00048 0.00060 30.0000 0.00800 550.000 
-1 

2 0.00440 0.00040 0.00400 0.12000 24.0000 0.00500 

16/9/2008 

(iTraxx S9) 

0.1 0.00250 0.00015 0.00050 1.00000 0.01000 37.0000 
1 

2 0.00500 0.00050 0.00500 0.10500 7.00000 0.02000 
 

Table 4: Estimated parameters of the two-correlated-market-factor model on March 14, 2008 for 

iTraxx Europe S8 5Y and September 16, 2008 for iTraxx Europe S9 5Y 
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As noted before, there are differently correlated market factors in the model if 

market factors have distinctive jump processes. The series 8 and series 9 of iTraxx 

Europe have a lot of underlying firms in common so their calibrated parameters have 

closely values. The correlation parameter 𝜌 = −1 is used to diverse the portfolio of 

iTraxx Europe S8 on March 14, 2008. For the iTraxx Europe S9 on September 16, 

2008, it is interpretable that the correlation parameter 𝜌 = 1 is used to disperse the 

portfolio loss distribution by increasing the equity tranche spread and decreasing the 

mezzanine tranche spread. 

 
Figure 2: The implied 5-year loss distribution for iTraxx Europe S8 5Y on March 14, 2008 of the two-

factor models with the different jump processes. 

 

With two market factors, our proposed model is flexible to fit index tranche 

spreads. The Gamma-Poisson mixture distribution offers two interesting shapes of the 

portfolio loss distribution. As can be seen in Figure 2, the green line demonstrates the 

intensity-based model incorporating with the jump process with the mean of 

exponential distributed jump sizes 𝜇 = 30, and the arrival rate of jumps driven by 

Gamma-Poisson mixture process with the shape parameter 𝛼 = 0.008 and the scaled 

parameter ℬ = 500. This kind of jump processes has high serial correlation and 

generates steeply increased probability of loss at the end of tail, sharpest peak and 

thinnest right tail of the probability of loss around 0-20 firms. The jump process with 

low serial correlation has the jump size’s mean 𝜇 = 0.12, and arrival of jump driven 

by Gamma-Poisson mixture process with the shape parameter 𝛼 = 24 and the scaled 

parameter ℬ = 0.005, represented by the red line. Between losses of 0-20 firm, the 

lower serial-correlated jump process creates a fatter right tail of the portfolio loss 

distribution. Corresponded by the blue line, the combination between those two jump 

processes produces the lowest peak of the portfolio loss distribution but has the 

capacity to generate both characteristics of fat-tailed distributions. The yellow line 

displays what would be expected from the bivariate drift-diffusion without jump 

processes. As shown in Figure 3, the default times that are driven by the model that 

has correlated market factors with jump processes are more clustering when compared 

with the model that has dependent market factors without jump processes. 
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Figure 3: The scatter plot of 50000 scenarios of the times of third 𝜏3, fourth 𝜏4, and fifth 𝜏5 defaults in 

a 125-firm portfolio that are simulated by using a Mimicking Markov chain method. The values of 

parameters are from calibration on March 14 2008 of iTraxx Europe series 8, which are shown in Table 

4. The red maker and the yellow maker respectively correspond to the model with and without jump 

processes. The means of the default times 𝜏3,  𝜏4, 𝜏5 which are generated by the model with jump 

processes are 3.5246, 4.2879 and 4.9934 years respectively. For the model without jumps in intensities, 

we obtain the averages of the default times 𝜏3,  𝜏4, 𝜏5 which respectively are 4.2648, 5.3537, and 

6.4013 years. 

 

 
Figure 4: The implied 5-year loss distribution of the two-correlated-market-factor model and the jump-

diffusion model from the Itraxx Europe S8 5Y index on March 14, 2008. 

 

 
Figure 5: The implied 5-year loss distribution of the two-correlated-market-factor model and the jump-

diffusion model from the itraxx Europe S9 5Y index on September 16, 2008 
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In Figure 4 and Figure 5, the 5-year loss distribution of the two-correlated-

market-factor model has a higher peak and fatter right tail of 5-year loss and is more 

leptokurtic than the jump-diffusion model’s loss distribution. The jump process with 

high exponential distributed jump size’s mean and the jump arrival rate distributed as 

Gamma that has low value of the shape parameter 𝛼 and high value of the scaled 

parameter ℬ has high serial correlation. As a result, it particularly helps to fit the 

senior and super senior tranche spread. It is shown by dramatically upward trend of 

the green line at the end of the right tail of 5-year loss distribution in Figure 4 and 

Figure 5. With large mean of jump size and jump’s arrival rate of the Poisson process, 

the model overestimates all CDO tranche spreads. No matter how many times we’ve 

tried to manipulate parameters values, the Poisson process could not reach the same 

level and curvature as the Gamma-Poisson mixture process has done in the tail. It is 

because the Poisson process has no ability to create serial correlation. 

 

Tranches % 

Source 

Market Bid/Ask 
Jump-diffusion model 

(Mortensen) 
Peng&Kou Our model 

0-3 51.4% 1.6% 50.07% 50.48% 51.9% 

3-6 649.0 24.3 668.65 691.14 658.9 

6-9 401.1 24.5 331.03 395.47 374.5 

9-12 255.3 19.8 237.00 261.23 249.5 

12-22 143.4 11.8 192.47 168.62 166.6 

22-100 69.9 2.9 59.88 66.96 68.0 

RMSE  2.57 1.24 0.98 
 

Table 5: Comparison of our empirical results of the jump-diffusion model and the 2-correlated factor 

model, and the old results of Peng and Kou [2], and the iTraxx Europe S8 5Y index tranche spreads on 

March 14, 2008. The equity (0-3%) tranche pays an upfront cash with 500-bps running spread. The 

other tranches are quoted on running coupons. 

 

Tranches % 

Source 

Market Bid/Ask 
Jump-diffusion model 

(Mortensen) 
Peng&Kou Our model 

0-3 45.98% 1.18% 46.40% 46.10% 46.93% 

3-6 618.25 14 588.52 630.49 627.94 

6-9 374.50 12.59 276.39 347.43 335.19 

9-12 215.16 10.55 191.96 217.43 211.39 

12-22 102.17 5.33 154.18 131.53 134.84 

22-100 58.81 2.58 47.99 52.18 53.78 

RMSE  5.52 2.66 2.95 
 

Table 6: Comparison of our empirical results from the jump-diffusion model and the 2-correlated factor 

model, the old results of Peng and Kou [2], and the iTraxx Europe S9 5Y index tranche spreads on 

September 16, 2008. The equity (0-3%) tranche pays an upfront cash with 500-bps running spread. The 

other tranches are quoted on running coupons. 
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After analyzing the implied portfolio loss distributions of the jump-diffusion 

model and our proposed model, we now examine performance of those models for 

pricing. Table 5 exhibits that the jump-diffusion model underprices the mezzanine 2 

(6-9%) tranche and the super senior (22-100%) tranche, overpricing the senior (12-

22%) tranche. The results of the jump-diffusion model in Table 6 show that the 

mezzanine 1 (3-6%) tranche, the mezzanine 2 (6-9%) tranche, and the super senior 

(22-100%) tranche are underestimated, while the senior (12-22%) tranche is 

overestimated significantly. In Table 5 and Table 6, our proposed model underprices 

the second mezzanine (6-9%) tranche and overprices the senior (12-22%) tranche 

exceeding their bid-ask spreads. However compared to the jump-diffusion model, our 

proposed has smaller RMSEs and perform better in pricing after all.  It is unarguable 

that our proposed model outperforms the jump-diffusion process because it has more 

free parameters to fit tranche spreads. Nevertheless, those free parameters are 

meaningless if they are not able to introduce different traits of distribution. 

Fortunately, Gamma-Poisson mixture processes can produce either high or low serial 

correlation of jumps in market factors. 

We also compare our proposed model with Peng and Kou [2]’s Conditional 

Survival (CS) Model. For clarification, we use the former results of Peng and Kou [2] 

to compare with our empirical results. Peng and Kou [2] assume that the portfolio is 

heterogeneous. They use the model that has three market factors which are in terms of 

cumulative intensities following the integral CIR process with 

parameters (𝑘1, 𝑥1(0), 𝜎1), two Polya processes (a.k.a Gamma-Poisson mixture 

processes) with parameters (𝛼1 , ℬ2) and (𝛼3 , ℬ3) to fit index tranches. While market 

factor loadings are calibrated to referenced CDSs of 𝑛 underlying firms. Hence there 

are 7 + 3 × 𝑛 estimated parameters.  

Peng and Kou [2]’s CS model and our proposed model obviously perform 

better than the jump-diffusion model with small RMSEs. Furthermore our proposed 

model has verified that it could imitate the past numerical results of Peng and Kou [2]. 

Thus why their model is successfully used to price CDO tranches is because of 

characteristics of Gamma-Poisson jump counting processes. When there is the large 

jump in cumulative term of intensities, infinities are likely to be boundless. 

Theoretically, it is unsatisfied to allow infinite intensities to happen.  
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Date  

(Series) 
Source 0-3% 3-7% 7-10% 10-15% 15-30% RMSE 0-100% 

19/7/2007 

(CDX S7) 

*Bloomberg 

Market 29.50% 90.25 19.93 9.65 3.41  43.15 

Bid/Ask 0.23% 2.00 1.42 1.19 0.87   

Model 29.75% 91.95 19.70 7.69 4.28 1.05 41.08 

14/3/2008 

(CDX S9) 

Market 67.92% 836.9 462.22 265.56 129.45  182 

Bid/Ask 0.56% 9.21 9.07 9.11 4.97   

Choi 67.77% 843.35 440.26 288.30 125.56 1.63 167.54 

Model 68.02% 840.96 444.45 279.10 129.49 1.12 160.23 

20/7/2008 

(CDX S10) 

 

Market 51.55% 447.32 240.75 124.01 66.66  115 

Bid/Ask 0.78% 7.37 6.5 4.75 3.37   

Choi 51.92% 459.27 226.01 139.51 51.56 2.78 102.64 

Model 51.84% 455.65 232.31 132.85 67.17 1.14 102.23 

16/9/2008 

(CDX S7) 

*Bloomberg 

Market 82.31% 1202.27 518.16 222.31 117.9  232.25 

Bid/Ask 4.401% 42 27.929 13.606 7.69   

Model 77.32% 1278.54 473.87 233.53 112.72 1.28 232.41 

16/10/2008 

(CDX S11) 

Market 71.50% 1297 676.67 209.34 66.50  173 

B/A 1.5% 50 26.67 11.33 10   

Choi 77.84% 1386.39 588.96 269.74 53.74 3.52 162.14 

Model 71.61% 1341.91 584.59 237.99 68.56 1.95 156.13 
 

Table 7: The fitting results of the two-correlated-market-factor on market tranche spreads for the CDX 

NA IG 5Y indexes between 2007-2008 and the past results of Choi [8]. The equity (0-3%) tranche pays 

an upfront cash with 500-bps running spread. The other tranches are quoted on running coupons. 

 

Additionally, our proposed model could price CDOs and its CDS index really 

well with small RMSEs as compared to the results of Choi [8]. Choi [8] uses the 

equity-credit intensity-Based model which is analogous to Mortensen [1]’s jump-

diffusion model. However there is trivial difference from Mortensen [1] that the CDO 

tranche spreads and the CDS spreads are also dependent on the stock market index 

such as the S&P 500 index. The link between the CDO and the S&P 500 index is 

formed through correlated Brownian motions of the jump-diffusion model’ market 

factor and the stock price model that has a stochastic variance process. According to 

Choi [8]’s backward problem, the jump-diffusion model’s parameters are first 

calibrated to market prices of the CDO and CDSs. Then relevant market factor’s 

calibrated parameters are plugged into Black-Scholes model in order to extract 

implied volatilities from S&P 500 options. Consequently, the CDO tranche spreads 

and CDS spreads obtained by using this approach are not affected by changes in the 

values of the Black-Scholes model’s parameters. Our empirical results from our 

model and the past results from Choi [8]  are shown in Table 7 and 8. Note that Choi 

[8] assumes that the CDO portfolios are heterogeneous. The CDS index spread from 

Choi [8] is the weighted average of all underlying CDS spreads. 
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Date  

(Series) 
Source 0-3% 3-7% 7-10% 10-15% 15-30% RMSE 0-100% 

8/7/2009 

(CDX S12) 

Market 64.00%  34.89% 16.73% 6.80% -0.83%  139.00 

Bid/Ask 0.52%  0.53% 0.63% 0.48% 0.25%   

Choi 66.67% 29.97% 15.73% 7.61% -0.94% 4.86 130.06 

Model 63.93% 33.34% 18.19% 8.31% -0.82% 2.18 127.70 

8/9/2009 

(CDX S12) 

Market 62.38%  27.31% 10.88% 5.21% -1.84%  121.00 

Bid/Ask 0.50%  0.50% 0.50% 0.50% 0.29%   

Choi 61.48%  20.77% 7.75% 1.27% -3.45% 7.83 108.33 

Model 62.37%  25.84% 12.70% 5.10% -1.61% 2.12 107.35 

8/12/2009 

(CDX S13) 

Market 53.42%  22.54% 8.57% 1.75% -2.44%  98.00 

Bid/Ask 1.00%  0.78% 0.62% 0.50% 0.40%   

Choi 54.74%  19.45% 9.05% 3.88% -1.26% 2.99 95.11 

Model 53.49% 20.52% 8.99% 2.53% -2.66% 1.40 84.36 

8/3/2010 

(CDX S13) 

Market 53.81%  19.75% 7.38% 0.88% -2.60%  89.00  

Bid/Ask 1.00%  1.00% 1.13% 0.75% 0.50%   

Choi 54.70%  17.92% 7.30% 2.19% -2.32% 1.22 86.65 

Model 53.80% 19.16% 7.75% 1.67% -2.91% 0.63 82.74 

8/6/2010 

(CDX S9) 

Market 52.95%  14.95% -1.61% 0.81% -1.48%  141.00  

Bid/Ask 0.52%  0.45% 0.43% 0.28% 0.09%   

Choi 52.27%  8.38% -3.62% 0.96% -1.98% 7.32 127.57 

Model 53.42% 13.06% -2.62% 0.96% -1.47% 2.47 147.78 

8/9/2010 

(CDX S9) 

Market 47.98%  7.23% -5.78% 1.53% -1.71%  118.00  

Bid/Ask 0.25%  0.25% 0.25% 0.26% 0.05%   

Choi 47.75%  5.25% -6.18% -1.03% -2.10% 5.10 110.28 

Model 47.56% 7.72% -5.14% 0.003% -1.78% 1.96 127.57 
 

Table 8: The fitting results of the two-correlated-market-factor on tranche spreads of the CDX NA IG 

5Y indexes between 2009-2010 and the past results of Choi [8]. The equity (0-3%) tranche, the first 

mezzanine (3-7%) tranche, and the second mezzanine (7-10%) tranche pay upfront cashes with 500-

bps running coupons. The other tranches are quoted upfront cashes with 100-bps running coupons. 
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CHAPTER VI  

CONCLUSION AND FURTHER WORK 

 
The purpose of the study is to propose the model that has the ability to create strong 

default dependency of underlying assets for pricing CDOs. In doing so, we model the 

default intensity processes of firms to have systematic or market factors shared among 

firms. We define the market factors’ processes to have two components which are a 

continuous process and a jump process. The continuous component follows the drift-

diffusion process. The jump process has the Gamma-Poisson mixture process as the 

jump counting process and the jump sizes are exponential distributed. There are two 

distinctive properties of our proposed model. First market factors can be correlated. 

Second, the arrival rates of jumps in market factor intensities are driven by Gamma-

Poisson Mixture process. 

 Unfortunately, correlation between Brownian motions is not substantial 

enough to construct fat-tailed distributions.  However it is economically meaningful. 

If market factors are positively correlated to each other, this yields in more dispersion 

of the portfolio loss distribution. This applies to the case of negative correlation 

among market factors as well but resulting in the reversed consequence. It is found to 

be helpful to use the correlation parameter to particularly adjust spreads the equity 

tranche and the first mezzanine tranche. 

 Empirical results show that the model that has two market factors has the 

potential to create effective shapes of the portfolio loss distribution. The two-market-

factor model has even good performance in fitting index tranches traded during the 

global financial crisis of 2008-2009. Incorporating three or more market factors in the 

model are somewhat better but not significantly improving in pricing. The time spent 

on calibration and computation is of course based on the number of model parameters. 

The market factors should be selective and have abilities to introduce different 

characteristics of distributions such as long tail, fat tail, and high serial correlation.  

 As the objective of the study, we compare our proposed model with the 

existing credit risk models. Mortensen [1] uses Poisson processes to model jumps in 

default intensities. The numerical results show that the Gamma-Poisson mixture 

processes outperform the Poisson processes. Compared to the Poisson process, the 

Gamma-Poisson mixture process has the ability to generate more shapes of the 

portfolio loss distribution and even high serial default correlation. For example, the 

jump process, which has independently exponential distributed jump sizes with the 

large mean and Gamma distributed arrival rates with a small value of the shape 

parameter and a large value of the scaled parameter, causes uprising in probability of 

loss at the end of tail. It is used to fit the senior tranche and super senior tranche 

spreads easily and doesn’t have any impact on other tranches. 
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 Peng and Kou [2] proposed the CS model that has market factors as 

cumulative intensities to generate default clustering. Unlike us, they use Polya 

(Gamma-Poisson mixture) processes to model jumps in term of cumulative 

intensities. Peng and Kou [2] states that jumps in intensities don’t result in producing 

simultaneous defaults. However our model that has the Gamma-Poisson mixture 

process modeling jumps’ frequency can price all index tranche spreads with small 

RMSEs like theirs. The results imply that the serial correlation in defaults that is 

generated by the Gamma-Poisson process of our model is strong enough. In addition, 

Peng and Kou [2]’s Conditional Survival Model is counterintuitive. Default intensities 

can be infinity and untraceable if intensities are allowed to have jumps in cumulative 

terms. 

 In conclusion, our model is efficient and dynamic enough to price all tranches 

of CDOs and its CDS index. We also show the way to implement our model using 

suggested methods: a Recursive method and Mimicking Markov chain method. 

 For further work, we plan to use our model applied to risk measure such as 

value at risk and expected shortfall. We also want to improve the calibration 

algorithm that is adequately fast and accessible to price sname CDS spread
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APPENDIX 

 

A    The Exponentially-Affine Characteristic Function 

The exponentially-affine characteristic function 𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋) has jumps distributed 

as Poisson with arrival rates Λ = {Λ𝑖, 1 ≤ 𝑖 ≤ 𝐽}, for all (𝑡, 𝑢, 𝑧, Λ , 𝑋) ∈ [0, 𝑇] ×
ℝm × ℝm × [0, ∞]𝑚 × ℝ𝑚 is written as 

𝑓(𝑡, 𝑢, 𝑧, Λ, 𝑋𝑡) = exp (𝑎(𝑇 − 𝑡, 𝑢, 𝑧)

+ ∑(𝑏𝑖(𝑇 − 𝑡, 𝑢𝑖 , 𝑧𝑖)𝑋𝑡
𝑖 + 𝑐𝑖(𝑇 − 𝑡, 𝑢𝑖 , 𝑧𝑖)Λi)

𝑚

𝑖=1

), 

where 

𝑎(𝑡, 𝑢, 𝑧) = − ∑ 𝜃𝑖 ((𝑒−𝑘𝑖𝑡 − 1) (−𝑧𝑖 +
𝑢𝑖

𝑘𝑖
) + 𝑡𝑢𝑖)

𝑚

𝑖=1

+
1

2
∑ ∑ [𝜌𝑖𝑗𝜎𝑖𝜎𝑗 (

𝑡𝑢𝑖𝑢𝑗

𝑘𝑖𝑘𝑗
+

1

𝑘𝑖

(𝑒−𝑘𝑖𝑡 − 1)
𝑢𝑗

𝑘𝑗
(−𝑧𝑖 +

𝑢𝑖

𝑘𝑖
)

𝑚

𝑗=1

𝑚

𝑖=1

+
1

𝑘𝑗
(𝑒−𝑘𝑗𝑡 − 1)

𝑢𝑖

𝑘𝑖
(−𝑧𝑗 +

𝑢𝑗

𝑘𝑗
)

−

(𝑒−(𝑘𝑖+𝑘𝑗)𝑡 − 1) (−𝑧𝑖 +
𝑢𝑖

𝑘𝑖
) (−𝑧𝑗 +

𝑢𝑗

𝑘𝑗
)

𝑘𝑖 +  𝑘𝑗
)] 

𝑏𝑖(𝑡, 𝑢𝑖 , 𝑧𝑖) = (−𝑧𝑖 +
𝑢𝑖

𝑘𝑖
) 𝑒−𝑘𝑖𝑡 −

𝑢𝑖

𝑘𝑖
, 

𝑐𝑖(𝑡, 𝑢𝑖 , 𝑧𝑖) =
1

1 +
𝜇𝑖𝑢
𝑘𝑖

(𝑡 +
1

𝑘𝑖
ln (

1 − 𝜇𝑖𝑏𝑖(𝑡, 𝑢𝑖 , 𝑧𝑖)

1 + 𝜇𝑖𝑧𝑖
)) − 𝑡. 
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B    CDS and CDO Framework 

For a CDS, there are two counterparties that enter to a contract which are a protection 

buyer (CDS buyer) and a protection seller (CDS seller). The premium leg corresponds 

the periodic payments 𝑆𝑡
𝑖 of the 𝑖th firm’s CDS that the protection buyer has to pay 

until the credit event happens, defined as 

𝑃𝐿𝑡
𝑖 = 𝑆𝑡

𝑖𝐸 [∑ exp (−𝑟(min{𝑇𝑗 , 𝜏𝑖} − 𝑡)) ∫ 𝐼(𝜏𝑖 > 𝑠)𝑑𝑠
𝑇𝑗

𝑇𝑗−1

𝑀

𝑗=1

], 

where 𝑀 is the number of coupon payment dates 𝑇1, 𝑇2, … , 𝑇𝑀. When the default 

event occurs, the protection seller covers the loss given firm 𝑖’s recovery rate 𝑅𝑖 for 

the protection buyer represented by the default leg. The default leg is specified as 

𝐷𝐿𝑡
𝑖 = 𝐸 [(1 − 𝑅𝑖) exp (−𝑟(𝜏𝑖 − 𝑡)) 𝐼(𝜏𝑖 ≤ 𝑇)]. 

Since the premium leg and the default leg have the equal value, the CDS spread of 

firm 𝑖 can be obtained by 𝑆𝑡
𝑖 =

𝐷𝐿𝑡
𝑖

𝑃𝐿𝑡
𝑖 . 

 Let us consider the CDO tranches with a reference credit pool of 𝑛 names. The 

loss process of a portfolio at time 𝑡 is defined as 

𝐿𝑡 = ∑(1 − 𝑅𝑖)Θ𝑖1𝜏𝑖≤𝑡

𝑛

𝑖=1

. 

𝑈𝑡
[𝐾1,𝐾2]

 is the process of loss of the tranche at time 𝑡 for the attachment point 𝐾1 and 

the detachment point 𝐾2, defined as follows 

𝑈[𝐾1,𝐾2](𝑡) = (𝐿𝑡 − 𝐾1)+ − (𝐿𝑡 − 𝐾2)+ 
 Like CDS mechanism, there are protection sellers (CDO buyers) and 

protection buyers (CDO sellers). The default leg refers to the present value of the sum 

of contingent payments upon default that protection sellers (CDO buyers) must pay as 

agreed. The default leg at time 𝑡 is specified as 

𝐷𝐿𝑡 = 𝐸 [∫ exp(−𝑟(𝑠 − 𝑡))
𝑇

𝑡

𝑑𝑈[𝐾1,𝐾2](𝑠)]. 

The premium leg is the sum of payments that the protection seller (CDO buyer) 

receives from the protection buyer (CDO seller). Let 𝑆𝑡
[𝐾1,𝐾2]

 denote the running 

spread of the CDO tranche, 𝐹 denote a fixed upfront fee. The premium payment at 

time 𝑡 is defined as 

𝑃𝐿𝑡 = 𝐹(𝐾2 − 𝐾1) + 𝑆𝑡
[𝐾1,𝐾2]

𝐸 [∑ exp (−𝑟(𝑇𝑗 − 𝑡))

𝑀

𝑗=1

(𝑇𝑗 − 𝑇𝑗−1) ∫
𝑂𝑠

[𝐾1,𝐾2]

𝑇𝑗 − 𝑇𝑗−1
𝑑𝑠

𝑇𝑗

𝑇𝑗−1

], 

where the national outstanding 𝑂𝑡
[𝐾1,𝐾2]

 is given by 

𝑂𝑡
[𝐾1,𝐾2]

= 𝐾2 − 𝐾1 − 𝑈[𝐾1,𝐾2](𝑡). 
 If default times are unknown, we assume that default occurring between 

coupon dates. This assumption is used in Peng and Kou [2] and Mortensen [1]. 
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C    Thinning Scheme Algorithm  

The algorithm of Thinning scheme is used to generate sequences 

of (𝑇𝑘, 𝐼𝑘)𝑘=1,2,..where the 𝑘th default time 𝑇𝑘 ≤ 𝑇 and the firm that defaults 𝐼𝑘 ≤ 𝑛, 

where 𝑛 is the number of underlying firms in a portfolio. Denote the number of 

intervals ℳ, the transition rate function ℎ(𝑡, 𝐵)  where 𝐵 = (𝐵1, … , 𝐵𝑛) ∈ {0,1}𝑛, the 

portfolio transition rate function 𝐻(𝑡, 𝑘), and the majoring intensity function 𝐻∗(𝑖, 𝑘) .  

Inputs are the current interval 𝑖 such that 𝑖 = {𝑖∗: 𝐿𝑖∗−1 ≤ 𝑡 < 𝐿𝑖∗}, the firms’ states 

vector M, the current time 𝑡, the number of the firms that have defaulted 𝑘, and the 

vector 𝑄𝑗 which has that the 𝑗𝑡ℎ  element is equal to one and the rest of elements are 

zero. First, we initialize t=0, k=0, T=0n, M=0n and i=1. Then we proceed as follows: 

1. Generate 𝑥~exponential random variable with the mean 𝐻∗(𝑖, 𝑘). 

2. If 𝑡 + 𝑥 < 𝐿𝑖 set  𝑡 ← 𝑡 + 𝑥 and if Tt  or 𝑖 > ℳ stop, else go to step 4. Else 

if 𝑡 + 𝑥 ≥ 𝐿𝑖, go to step 3. 

3. Set 𝑥 ← 𝐻∗(𝑖, 𝑘)(𝑡 + 𝑥 − 𝐿𝑖)/𝐻∗(𝑖 + 1, 𝑘), 𝑡 ← 𝐿𝑖, 𝑖 ← 𝑖 + 1. Go to step 2. 

4. Generate 𝜔2~𝑟𝑎𝑛𝑑𝑜𝑚[0,1]. 

If 𝜔2 ≤ 𝐻(𝑡, 𝑘)/𝐻∗(𝑖, 𝑘), set 𝑇𝑘 ← 𝑡 and go to step 5. Otherwise, go to 1. 

5. Define the defaulted firm 𝐽 by drawing from the pool of survival firms. Each 

firm 𝑗, 1 ≤ 𝑗 ≤ 𝑛 has the probability being selected as 
ℎ𝑗(𝑡,𝑀𝑇𝑘)

𝐻(𝑡,𝑘)
 . 

Then set 𝐼𝑘 = 𝐽, 𝑀𝑇𝑘+1
= 𝑀𝑇𝑘

+ 𝑄𝑗, and 𝑘 = 𝑘 + 1. Return to step 1. 

 



 

 

45 

 

 

 

 
VITA 
 

VITA 
 

Supalak Phetcharat was born on December 1, 1989. In 2012, she 

graduated a Bachelor of Engineering (B.Eng.) in Computer Engineering from the 

Faculty of Engineering, Chulalongkorn University and continued studying a 

master's degree in financial engineering at the Department of Banking and 

Finance, Faculty of Commerce and Accountancy, Chulalongkorn University. 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	1.1  Problem Review
	1.2  Contributions and Study Objectives

	CHAPTER II BACKGROUND
	2.1 CDO Pricing
	2.2 Basic Concepts for The Intensity-Based Models
	2.3 Review of Existing Models

	CHAPTER III  OUR PROPOSED MODEL
	3.1 Muticorrelated Market Factor Model
	3.2 Comparing with Existing Models

	CHAPTER IV  SUGGESTED METHODS  IN COMPUTING LOSS DISTRIBUTION
	4.1  Recursive Method
	4.2  Mimicking Markov Chain Method

	CHAPTER V  NUMERICAL RESULTS
	5.1  Data and Tools
	5.2  Results

	CHAPTER VI  CONCLUSION AND FURTHER WORK
	REFERENCES
	A    The Exponentially-Affine Characteristic Function
	B    CDS and CDO Framework
	C    Thinning Scheme Algorithm

	VITA

