

QUANTITATIVE COHESION COMPLEXITY MEASURE TO ENHANCING SOFTWARE QUALITY

Miss Pimvard Charoenporn

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information

Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2014
Copyright of Chulalongkorn University

การวัดความซับซ้อนของการท างานร่วมกันเชิงปริมาณภายในมอดูลเพ่ือเพ่ิมคุณภาพซอฟต์แวร์

นางสาวพิมวาสน์ เจริญพร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2557
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title QUANTITATIVE COHESION COMPLEXITY MEASURE
TO ENHANCING SOFTWARE QUALITY

By Miss Pimvard Charoenporn
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor Peraphon Sophatsathit, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

 Chairman

(Assistant Professor Saranya Maneeroj, Ph.D.)

 Thesis Advisor

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 External Examiner

(Associate Professor Arit Thammano, Ph.D.)

 iv

THAI ABSTRACT

พิมวาสน์ เจริญพร : การวัดความซับซ้อนของการท างานร่วมกันเชิงปริมาณภายในมอดูล
เพ่ือเพ่ิมคุณภาพซอฟต์แวร์ (QUANTITATIVE COHESION COMPLEXITY MEASURE TO
ENHANCING SOFTWARE QUALITY) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร.พีระพนธ์
โสพัศสถิตย,์ 64 หน้า.

วิทยานิพนธ์ฉบับนี้น าเสนอวิธีการวัดการท างานร่วมกันเชิงปริมาณภายในมอดูล สัมพันธ์
ขององค์ประกอบภายในมอดูลจะถูกวัดในรูปแบบของความซับซ้อนของการท างานร่วมกัน ประการ
แรกระบุสัมพันธ์ของตัวแปรโดยใช้กราฟพ่ึงพาตัวแปร ความซับซ้อนของการท างานร่วมกันถูกน ามา
วิเคราะห์และก าหนดเป็นสูตรคณิตศาสตร์ที่สอดคล้องกับค านิยามมาตราฐาน ความสัมพันธ์ของตัว
แปรที่น าวิเคราะห์ได้แก่ ตัวข้อมูล การเลือก และการวนซ้ า ทั้งนี้การวัดล าดับแบบดั้งเดิมสามารถ
ชี้แจงวัตถุประสงค์ในการแยกแยะความแตกต่างของการจัดหมวดหมู่การท างานร่วมกันการออกแบบ
สะท้อนให้เห็นถึงคุณภาพของซอฟต์แวร์ที่ต้องการ ผลลัพธ์ที่ได้จะช่วยให้นักพัฒนาออกแบบการ
ท างานร่วมกันภายในมอดูลที่ดีขึ้น

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2557

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5672604923 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: COHESION / COHESION COMPLEXITY / SOFTWARE QUALITY / DESIGN
COHESION

PIMVARD CHAROENPORN: QUANTITATIVE COHESION COMPLEXITY MEASURE
TO ENHANCING SOFTWARE QUALITY. ADVISOR: ASSOC. PROF. PERAPHON
SOPHATSATHIT, Ph.D., 64 pp.

This dissertation proposes a quantitative approach to measure module
cohesion. The relatedness of elements within a module is quantified in the form of
cohesion complexity. Firstly identify variable relatedness using variable dependence
graph. Cohesion complexity is then analyzed and mathematically formulated in
accordance with standard definitions. Variable relatedness being analyzed are data,
selection, and loop. As such, traditional ordinal measure can be objectively clarified
to distinguish the differences of design cohesion classification, reflecting the desired
software quality. The result so obtained will help developers achieve better cohesive
design of software

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2014

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

Though the following dissertation is an individual work but I would never
have been able to finish without the help, support, guidance and efforts from my
advisor, friends, and my family.

Firstly, I would like to thank my advisor, Dr. Peraphon Sophatsathit for his
excellent guidance, caring, patience, and providing me with an excellent
atmosphere. Without your pearls of wisdom, it would have been nearly
impossible to finish this dissertation. It was lucky that I had the chance of being
one of your students.

I would like to thank my committee members Dr. Saranya Maneeroj and
Dr. Arit Thammano for taking the time and effort to read and examine my
dissertation and for providing me with your inventive and enriching comments.

My very special thanks go to my parents whom I owe everything I am
today, my father and my mother, Supot and Pornthip Charoenporn. There is no
single day that you would never support and encourage me with your best wishes
and your love. You both are the most wonderful things that ever happened in my
life.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF TABLES ... 1

LIST OF FIGURES ... 1

CHAPTER 1 INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Problem statements... 2

1.3 Scope of the research .. 2

1.4 Contributions ... 2

1.5 Document organization ... 3

CHAPTER 2 LITERATURE REVIEW .. 4

CHAPTER 3 PROPOSED METHOD ... 13

3.1 Variable Dependence Graph... 14

3.2 Cohesion Complexity ... 19

3.3 Modified Cohesion Complexity .. 29

3.4 Module decomposition process .. 40

CHAPTER 4 EXPERIMENT ... 42

4.1 Experiments on Cc Measure ... 42

4.2 Experiments on Modified Cc Measure .. 44

4.3 Cohesion Complexity Measure Tool ... 50

 viii

 Page

4.4 Application of the CCM Tool .. 57

CHAPTER 5 DISCUSSION AND CONCLUSION .. 59

REFERENCES ... 61

VITA .. 64

LIST OF TABLES

Table 2.1 Associative principles of processing elements based on SMC cohesion 4

Table 2.2 Associative rules between two processing elements ... 9

Table 3.1 Dependencies of module Sum_and_Prod .. 28

Table 3.2 Variable and total complexity of module Sum_and_Prod 29

Table 3.3 Computation of Cc value using various scales .. 30

Table 3.4 Ranges of Cc measure between cohesion levels .. 40

Table 4.1 Results of module cohesion level and corresponding Cc value 43

Table 4.2 Results of modules in Tic Tac Toe and Cc assessment 43

Table 4.3 Results of modules in PHONEV2A and Cc assessment 44

Table 4.4 Results of module cohesion level and corresponding Cc value 45

Table 4.5 Results of modules in Tic Tac Toe and Cc assessment 45

Table 4.6 Results of modules in PHONEV2A and Cc assessment 46

Table 4.7 Results of Algorithm modules and Cc assessment ... 47

Table 4.8 Results of Cc and Fc assessments .. 48

LIST OF FIGURES

Figure 2.1 Decision tree for determining module cohesion .. 8

Figure 2.2 VDG of Sum1_and_Sum2 procedure ... 9

Figure 2.3 Algorithm for determining module cohesion ... 10

Figure 3.1 VDG of Sum1_or_Sum2 procedure .. 16

Figure 3.2 VDG of Prod1_and_Prod2 procedure .. 17

Figure 3.3 VDG of Sum_and_Prod procedure ... 18

Figure 3.4 VDG of Fibo_Avg procedure... 18

Figure 3.5 VDG of Sum procedure ... 19

Figure 3.6 Algorithm for determining cohesion complexity ... 20

Figure 3.7 Procedure of module Sum_and_Prod. ... 27

Figure 3.8 Graph of Cc computation using various scales .. 31

Figure 3.9 Algorithm for determining cohesion complexity ... 33

Figure 3.10 Variable dependence graph of module Sum_and_Prod 41

Figure 4.1 Screen capture of CCM on FindPhone program ... 50

Figure 4.2 Home screen ... 51

Figure 4.3 Input screen Of CCM ... 52

Figure 4.4 Variable list screen .. 53

Figure 4.5 Dependence screen .. 54

Figure 4.6 Dependence window .. 55

Figure 4.7 Result screen .. 56

Figure 4.8 Module decomposition for Avg_or_Range ... 58

CHAPTER 1 INTRODUCTION

1.1 Introduction

 High cohesion provides several desirable characteristics in software quality
such as maintainability, flexibility, portability, code readability, reusability, etc. Hence,
constructing a program concerns a number of aspects such as functional, behavioral,
and structural aspects. It is the last aspect encompassing the modular construct that
leads to module cohesion and module coupling of processing elements. The notion
of module cohesion was originally defined by Stevens, et al. [1] that it was the
strength of functional relatedness among the processing elements within a module.
The processing elements can be defined as many things such as statements or
output variables. Module cohesion is a measurement in ordinal scale, ranked into
seven levels, namely, functional, sequential, communicational, procedural, temporal,
logical, and coincidental cohesion, where functional is the highest (good) and
coincidental is the lowest (bad) module properties. Any module can be defined in
one of these seven levels. Several methods can be used to measure cohesion level
of a module. Unfortunately, the sheer cohesion measures will not suffice to yield
any discernable characteristics of similar or closely classified modules. Traditional
module cohesion measure may not be able to tell the differences between two
modules if they are classified in the same level. On the other hand, if they are in
close levels, saying that the higher cohesion is better may not be so sure. For
example, if two modules are classified as communicational and procedural cohesion,
saying that the former tends to be better in quality since it is higher ranked than the
latter is not accurate. This issue is the main consideration of this work and will be
subsequently elaborated.

There are many factors that affect the quality of software such as number of
variables, loops, and selections. Consequently, being classified at a particular level is
not good enough to determine the design quality of software. What decides a
distinguishable characteristic of software design quality is module complexity. The
issue of complexity involves many program design perspectives, for instance,
algorithm, data, model, and various intrinsic/extrinsic attributes, etc. At present, the
state-of-the-practice cannot cope with such involving issues, but merely offers a
limited framework for software designers to follow. The final decision still remains

2

the human call. Some research efforts are underway to improve such measures and
will be recounted in the next chapter.

This research introduces a quantitative measurement in software design
quality based on cohesion principle. It provides the same objectives as cohesion with
quantifiable measurement to differentiate levels of module relatedness. The
proposed method uses dependence relationships of all variables in the module to
understand and determine the best classification. The results of this proposed
measurement will help developers decide whether the designated module should
be further decomposed to improve the module design.

1.2 Problem statements

 This research attempts to work out the following questions:

1. How can traditional model cohesion measure be improved to arrive at a
quantitative yardstick?

2. How can each level of cohesion classification be objectively distinguished
from one another?

1.3 Scope of the research

 This research will confine the scope of investigation within the following
limits:

1. apply only to C language construct.
2. use small sample module having the size less than 50 LOC.

1.4 Contributions

 Some of the benefits precipitate from this work are as follows:

1. quantitative measure in numeric values to permit a discernable
distinction for individual module at a specific level of cohesion
classification.

2. Distinguishable differences between levels of cohesion classification.

3

1.5 Document organization

 This research is organized as follows. Chapter 2 recounts some of the relevant
related prior work. Chapter 3 describes the proposed method, along with algorithm
derivations of the supporting theorems. Chapter 4 describes the experiment
pertinent to the proposed approach. Some evaluation, benefits, final thoughts, and
future work are given in Chapter 5.

4

CHAPTER 2 LITERATURE REVIEW

 Stevens et al., defines module cohesion (𝑆𝑀𝐶 cohesion) as the strength of
functional relatedness among the processing elements within a module [1][2]. The
processing elements can be a statement, a group of statements, a data definition, or
a procedure call. There are seven levels of cohesion as shown in Table 2.1. The best
or the strongest is functional and the worst or weakest is coincidental cohesion.

Table 2.1 Associative principles of processing elements based on SMC cohesion

Cohesion Associative principles

Coincidental
Little or no meaningful relationship among the processing
elements

Logical
Processing elements of a module perform a set of related
functions, one of which is selected by the calling module
at the time of the invocation

Temporal
Processing elements of a module are executed within the
same limited period of time

Procedural
Processing elements share a common procedural unit. The
common procedural unit may be a loop or a decision
structure.

Communicational
Processing elements reference the same input data and/or
produce the same output data

Sequential
Processing elements are sequentially cohesive when the
output data or results from one processing element serve
as input data for the other processing element.

Functional
Processing elements of a module contribute to the
computation of a single specific result

 The following pseudocode samples are some designed modules that
represent level of cohesion measure.

5

Example2.1: Coincidental cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑪𝒐𝒎𝒑𝒖𝒕𝒆_𝑨_𝑩_𝑪(𝒊𝒏𝒕 𝒎,𝒏, 𝒐)
2. 𝐴 ≔ 𝑚 ∗ 2;

3 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛

4. 𝐵 ≔ 𝐵 + 𝐵;

5. 𝑖𝑓 o%3 = 0

6. 𝐶 ≔ 𝑜/3

𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝐴_𝐵_𝐶 procedure is considered as 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 cohesion. Notice
that there is no relationship among 𝐴 or 𝐵 or 𝐶. This procedure is a highly
undesirable design of the module having the lowest cohesion level.

Example2.2: Logical cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑪𝒖𝒕_𝑷𝒂𝒔𝒕𝒆_𝑪𝒐𝒑𝒚(𝒊𝒏𝒕 𝒇𝒍𝒂𝒈, 𝑺𝒕𝒓𝒊𝒏𝒈 𝑺)
2. 𝑖𝑓 flag = 1

3. 𝑐𝑢𝑡(𝑆);
4. 𝑒𝑙𝑠𝑒 𝑖𝑓 flag = 2

5. 𝑝𝑎𝑠𝑡𝑒(𝑆);

6. 𝑒𝑙𝑠𝑒 𝑖𝑓 flag = 3

7. 𝑐𝑜𝑝𝑦(𝑆);

𝐶𝑢𝑡_𝑃𝑎𝑠𝑡𝑒_𝐶𝑜𝑝𝑦 procedure is considered as 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion. The
processing elements in this procedure (cut, paste, copy) are in the same group of
operation, in this case is edit text operation. Only one of these operations will be
invoked for each operation call, depending on the value of 𝑓𝑙𝑎𝑔 variable. This is
also an undesirable module cohesion.

Example2.3: Temporal cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑹𝒆𝒔𝒆𝒕()
2. 𝑖𝑛𝑡 𝐴, 𝐵, 𝐶;
4. 𝐴 ≔ 0;

5. 𝐵 ≔ 1;
6. 𝐶 ∶= 2;

6

 𝑅𝑒𝑠𝑒𝑡 procedure is considered as 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 cohesion. This procedure is
similar to 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝐴_𝐵_𝐶 procedure that the elements in the module actually do
not have relationships among one another. They are merely put together under one
condition that they have to execute at the same time. This module still has low
cohesion level.

Example2.4: Procedural cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑪𝒐𝒎𝒑𝒖𝒕𝒆_𝑷_𝑸(𝒊𝒏𝒕 𝒏)
2. 𝑖𝑛𝑡 𝑃, 𝑄;

3 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛

4. 𝑃 ≔ 𝑃 + 𝑖;
5. 𝑄 ≔ 𝑄 ∗ 𝑖;
6. 𝑒𝑛𝑑 𝑓𝑜𝑟;

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑃_𝑄 procedure is considered as 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 cohesion. Processing
elements are executed in the same procedural unit, in this case is the 𝑓𝑜𝑟 loop.
𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 cohesion is a moderate cohesion level which yields acceptable design.

Example2.5: Communicational cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑹𝒂𝒏𝒅𝒐𝒎_𝑺𝒐𝒓𝒕(𝒊𝒏𝒕 [] 𝒂𝒓𝒓)
2. 𝑖𝑛𝑡 𝑅;

3 𝑅 ≔ 𝑟𝑎𝑛𝑑𝑜𝑚(arr);

4. 𝑖𝑛𝑡[]𝑆_𝑎𝑟𝑟𝑎𝑦;
5. 𝑆_𝑎𝑟𝑟𝑎𝑦 ≔ 𝑠𝑜𝑟𝑡(𝑎𝑟𝑟);

𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑜𝑟𝑡 procedure is considered as 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion. A
module will be considered as 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion when processing
elements of the module use same data or produce the same data. In this case, 𝑎𝑟𝑟
is used to compute 𝑅 and 𝑆_𝑎𝑟𝑟𝑎𝑦. 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion level is also an
acceptable design of the module.

7

Example2.6: Sequential cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒐𝒓𝒕_𝑹𝒂𝒏𝒈𝒆(𝒊𝒏𝒕 𝒏, 𝒊𝒏𝒕 [] 𝒂𝒓𝒓)
2. 𝑖𝑛𝑡[]𝑆_𝑎𝑟𝑟𝑎𝑦;
3. 𝑆_𝑎𝑟𝑟𝑎𝑦 ≔ 𝑠𝑜𝑟𝑡(𝑎𝑟𝑟);
4. 𝑖𝑛𝑡 𝑅𝑎𝑛𝑔𝑒;
5. 𝑅𝑎𝑛𝑔𝑒 ≔ 𝑆_𝑎𝑟𝑟𝑎𝑦[𝑛] − 𝑆_𝑎𝑟𝑟𝑎𝑦[1];

𝑆𝑜𝑟𝑡_𝑅𝑎𝑛𝑔𝑒 procedure is considered as 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 cohesion. One element
uses another element to compute itself. Referring to this procedure, Range uses
S_array to compute its value. This module cohesion is an acceptable design.

Example2.7: Functional cohesion

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑴𝒆𝒅𝒊𝒂𝒏(𝒊𝒏𝒕 𝒏, 𝒊𝒏𝒕 [] 𝑺_𝒂𝒓𝒓𝒂𝒚)
2. 𝑖𝑛𝑡 𝑀𝑒𝑑𝑖𝑎𝑛;
2. 𝑖𝑓(𝑛%2 = 0)

3. 𝑀𝑒𝑑𝑖𝑎𝑛 ≔ 𝑆_𝑎𝑟𝑟𝑎𝑦[𝑐𝑒𝑖𝑙(𝑛 2⁄)];

4. 𝑒𝑙𝑠𝑒

5. 𝑀𝑒𝑑𝑖𝑎𝑛 ≔
(𝑆_𝑎𝑟𝑟𝑎𝑦[𝑛 2⁄] + 𝑆_𝑎𝑟𝑟𝑎𝑦[(

𝑛
2⁄) + 1])

2
;

𝑀𝑒𝑑𝑖𝑎𝑛 procedure is considered as 𝑓𝑢𝑛𝑐𝑡𝑖𝑛𝑎𝑙 cohesion. This is the ideal
module cohesion or the most desirable cohesion level. The module is designed to
compute just only one problem.

To decide if a given module will fit any of the above associative principles,
Page-Jones has provided a decision tree that helps determine the cohesion level [3]
as shown in Fig. 2.1

8

Figure 2.1 Decision tree for determining module cohesion

In 𝑆𝑀𝐶, the concept of cohesion is emphasized at design-level rather than
coding, while Lakhotia defines terms of processing elements in a more specific way
yet suitable for programming practice. In Lakhotia’s work [4], output variables of a
module are treated as processing elements expressed in a directed graph called
Variable Dependence Graph (𝑉𝐷𝐺). The VDG is subsequently used as a basis to
determine the level of cohesion.

The example of Figure 2.2 illustrates a designed module and its
corresponding VDG. Nodes represent variables and edges represent dependencies.
The details of VDG will be further explained in the next chapter.

Example2.8: VDG of Sum1_and_Sum2 procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎𝟏_𝒂𝒏𝒅_𝑺𝒖𝒎𝟐(𝑛1, 𝑛2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;
𝑣𝑎𝑟 𝑠𝑢𝑚1, 𝑠𝑢𝑚2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟);

2. 𝑣𝑎𝑟 𝑖: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;

3. 𝑏𝑒𝑔𝑖𝑛

4. 𝑠𝑢𝑚1:= 0;

5. 𝑠𝑢𝑚2:= 0;

Yes

No

Data Control Flow Neither

Yes No Yes Yes No No

Can the module be considered to be doing one problem-related function?

What relates the activities within the module?

Is sequential
Important?

Is sequential
Important?

Are the activities in the same
general category?

Func. Sque. Comm. Proc. Temp. Logi. Coin.

9

6. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛1 𝑑𝑜

7. 𝑠𝑢𝑚1:= 𝑠𝑢𝑚1 + 𝑎𝑟𝑟[𝑖];

8. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛2 𝑑𝑜

9. 𝑠𝑢𝑚2:= 𝑠𝑢𝑚2 + 𝑎𝑟𝑟[𝑖];

10. 𝑒𝑛𝑑;

Figure 2.2 VDG of Sum1_and_Sum2 procedure
Nandigam [5] constructed a set of associative rules to describe each level of

cohesion as shown in Table 2.2.

Table 2.2 Associative rules between two processing elements

𝒊 Cohesion Associative rules
𝐴𝑅𝑖: 𝑉𝑎𝑟 × 𝑉𝑎𝑟 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

1 Coincidental ¬(˄ ∀𝑖,𝑖∈{2…5} 𝐴𝑅𝑖(𝑥, 𝑦))

2 Logical ∃𝑧 (𝑧
𝑆(∗,∗)
→ 𝑥 ˄ 𝑧

𝑆(∗,∗)
→ 𝑦)

3 Procedural ∃𝑧, 𝑛, 𝑘 (𝑧
𝐿(𝑛)
→ 𝑥˄𝑧

𝐿(𝑛)
→ 𝑦)˅ (𝑧

𝑆(𝑛,𝑘)
→ 𝑥˄𝑧

𝑆(𝑛,𝑘)
→ 𝑦)

4 Communicational ∃𝑧 (𝑧
𝐷
→ 𝑥 ˄ 𝑧

𝐷
→ 𝑦)˅ (𝑥

𝐷
→ 𝑧 ˄ 𝑦

𝐷
→ 𝑧)

5 Sequential 𝑥 → 𝑦 ˅ 𝑦 → 𝑥

In this Table, 𝑥 and 𝑦 represent output variables, 𝑧 is a common variable, 𝑛 is
the line number of loop or a selection statement in the module, and 𝑘 is a selected
branch. For functional cohesion, a module is considered to be functional if there is
only one output variable in the module. In this research, temporal cohesion is
omitted because static analysis of code cannot accommodate time-dependent
relationships among processing elements. Details on associative rules will be further
elaborated in Section III (A). The algorithm for determining the cohesion level is
shown in Fig. 2.3.

sum1

arr1 n1

L6 D

sum2

arr2 n2

L8 D

10

Algorithm-1 Compute-Module-Cohesion

Input: VDG of module M

Output: Cohesion of module M

begin

 𝑋 ← {output variables in 𝑀};

 if |𝑋| = 0 then 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← ′𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑′

 else if |𝑋| = 1 then 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← ′𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙′

 else begin

 cohesion_between_pairs ← {};

 for all 𝑥 and 𝑦 in 𝑋 and 𝑥 ≠ 𝑦 do begin

 cohesion_between_pairs ← cohesion_between_pairs ∪

 max{𝐶𝑖| 𝑖 ∈ {1…5}˄ 𝐴𝑅𝑖(𝑥, 𝑦) };

 end for;

 if (∀𝑖 𝑖 ∈ cohesion_between_pairs ˄ 𝑖 = 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙)

 then 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙;

 else

 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← min(cohesion_between_pairs − {𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙});

 end;

 end;

 return 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛

end Compute-Module-Cohesion

Figure 2.3 Algorithm for determining module cohesion

In this algorithm, a module will be considered as undefined cohesion if there
is no output variable in the module. If there is only one output, the module will be
considered as functional cohesion. A module will only be considered as coincidental
cohesion if all pairs of processing elements are coincidentally combined. For others
levels of cohesion, the minimum cohesion_between_pairs within processing
elements of the module will be used in the above algorithm, excluding coincidental
cohesion.

Three quantitative measures based on data-slice called Functional Cohesion
(𝐹𝐶), namely, Weak Functional Cohesion (𝑊𝐹𝐶), Strong Functional Cohesion (𝑆𝐹𝐶),
and Adhesiveness (𝐴) were introduced by Bieman and Ott [6] These measures give
the ratio of glue or superglue tokens to the total number of data tokens in the range
of [0, 1]. The data-slices are obtained from the data tokens like variables, constant

11

definitions, and references. Data tokens that are common to more than one data-
slice will be called glue tokens while data tokens that are common to every data-
slice are called superglue tokens. 𝑊𝐹𝐶 can be computed by using the ratio glue
tokens to the total data tokens and 𝑆𝐹𝐶 is the ratio of superglue tokens to total
data tokens in the module. The adhesiveness or 𝐴 is the ratio of the amount of
adhesiveness to the total possible adhesiveness.

Example2.9: Computation of FC Measure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅(sum prod avg
𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 1 1 1
𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦; 1 1 1
𝑣𝑎𝑟 𝑠𝑢𝑚, 1 1
𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 1
𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡 1 1
2. 𝑏𝑒𝑔𝑖𝑛
3. 𝑠𝑢𝑚:= 0 2 2
4. 𝑝𝑟𝑜𝑑:= 1; 2
5. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 3 3 3
6. 𝑠𝑢𝑚:= 𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 4 4
7 𝑝𝑟𝑜𝑑:= 𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖]; 4
8. 𝑒𝑛𝑑;
9. 𝑎𝑣𝑔 ≔

𝑠𝑢𝑚

𝑛
 3 3

10. 𝑒𝑛𝑑;

In the above exmaple2.9, glue tokens are highlighted in light and dark grey
representing the data tokens that are common to more than one data slice. The glue
tokens in the procedure is equal to 16. The superglue tokens have been highlighted
in dark grey which is 5. The measures of this module using 𝐹𝐶 Measure are shown
below.

12

𝑊𝐹𝐶 =
16

23
= 0.6957

𝑆𝐹𝐶 =
5

23
 = 0.2174

𝐴 =
(11 ∗ 2) + (5 ∗ 3)

23 ∗ 3
 = 0.5362

The measurements on 𝐹𝐶 measure of the same design could yield different values
depending on the implementation by the developers. For example, consider the
statements 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 + + and 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 + 1, data tokens on the
first and second statement are 2 and 3, respectively.

13

CHAPTER 3 PROPOSED METHOD

This chapter will describe the proposed method in detail. In the conventional
cohesion classification cannot differentiate the subtleties from the same or close
cohesion levels. In some cases, modules having the same cohesion level exhibit
different degree of complexity. In particular, the real effort of lowering cohesion for
design improvement may be higher than as-is situation since the module size is
different. This can be illustrated by the following sample pseudocode modules are
classified to be the same level of cohesion which are totally different
implementation and complexity.

Example3.1 Procedure: Sum_and_Prod

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;
𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦; 𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡)

2. 𝑏𝑒𝑔𝑖𝑛

3. 𝑠𝑢𝑚:= 0

4. 𝑝𝑟𝑜𝑑:= 1;

5. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛

6. 𝑠𝑢𝑚:= 𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖];

7 𝑝𝑟𝑜𝑑:= 𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖];

8. 𝑒𝑛𝑑;

9. 𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛

10. 𝑒𝑛𝑑;

The module 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 computes the value of summation, average, and
product of the given inputs, which is classified as communicational cohesion based
on 𝑆𝑀𝐶 classification method.

Example3.2 Procedure: Sum_and_Prod

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑨𝒗𝒈_𝒂𝒏𝒅_𝑺𝒅(𝑛, 𝑎𝑟𝑟);

2. 𝑏𝑒𝑔𝑖𝑛

3. 𝑠𝑢𝑚 ≔ 0;

4. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛

5. 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖];

14

6. 𝑒𝑛𝑑;

7. 𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
;

8. 𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑟 = 0;

9. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛

10. 𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑢𝑎𝑟𝑒 = 𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑢𝑎𝑟𝑒 + ((𝑎𝑟𝑟[𝑖] − 𝑎𝑣𝑔) ∗ (𝑎𝑟𝑟[𝑖] − 𝑎𝑣𝑔));

11. 𝑒𝑛𝑑;

12. 𝑠𝑑 = 𝑠𝑞𝑟 (
𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑢𝑎𝑟𝑒

𝑛
) ;

13. 𝑒𝑛𝑑;

The module 𝐴𝑣𝑔_𝑎𝑛𝑑_𝑆𝑑 computes the average and standard deviation of the given
inputs, which is also classified as communicational cohesion. Apparently, they are of
different sizes and complexities.

In the proposed method, a module will be considered in terms of 𝑉𝐷𝐺

whose output variables are considered as processing elements. Common variables
and output variables are extracted from a module and dependencies are added to
form a directed graph. This 𝑉𝐷𝐺 will be passed along Algorithm-1 to determine the
level of cohesion, which in turn will be used to compute cohesion complexity of the
module. Cohesion complexity is defined as the summation of dependency of each
variable, some of which are assigned proper weight to indicate their dependencies.
This process will be elucidated in the sections that follow.

3.1 Variable Dependence Graph

According to Lakhotia [4] , common variables and output variables are represented

as nodes, while their dependencies are represented as edges. Dependencies are
classified into two types, namely, data dependency and control dependency.
Control dependency is further classified into two sub-types, namely, loop-control
and data-control. The dependencies come from data and control flow analysis of
the module [7][8]. The following definitions are the original dependency definitions

used in this paper.

15

Definition 1: The control flow graph, or simply a flow graph, of a program is a
directed graph where the nodes correspond to the basic blocks of the program and
the edges represent potential transfer of control between two basic blocks [7][8].

Definition 2: A basic block is a group of statements such that no transfer occurs into
a group except to the first statement in that group, and once the first statement is
executed, all statements in the group are executed sequentially [8]. Definition 3: A

definition-use chain of variable 𝑥 is of the form < 𝑥, 𝑛1, 𝑛2 >, where statement 𝑛1
defines the variable 𝑥 and statement 𝑛2 uses the variable 𝑥, and there exists a path
in the flow graph from 𝑛1 to 𝑛2 which does not contain another definition of 𝑥.

Definition 4: A variable 𝑦 has data dependence on variable 𝑥, denoted 𝑥
𝐷
→ 𝑦, if

statement 𝑛1 defines 𝑥 and statement 𝑛2 defines 𝑦 and there is a definition-use
chain with respect to 𝑥 from 𝑛1 to 𝑛2.
Definition 5: A variable 𝑦 has control dependence on variable 𝑥 due to statement

𝑛1, denoted 𝑥
𝐶(𝑛)
→ 𝑦, if statement n contains a predicate that uses 𝑥 and the

execution of the statement that defines 𝑦 is dependent on the value of the
predicate in 𝑛.

Definition 6: A 𝑉𝐷𝐺 contains a data dependence edge from node 𝑥 to node 𝑦

labeled "𝐷" if 𝑥
𝐷
→ 𝑦

Definition 7: A 𝑉𝐷𝐺 contains a loop-control dependence edge from node 𝑥 to node

𝑦, labeled "𝐿(𝑛)" if 𝑥
𝐶(𝑛)
→ 𝑦, and 𝑛 is a loop statement such as a while or for

statement.

Definition 8: A 𝑉𝐷𝐺 contains a selection-control dependence edge from node 𝑥 to

node 𝑦 of the form "𝑆(𝑛, 𝑘)", if 𝑥
𝐶(𝑛)
→ 𝑦, and 𝑛 is an if or case statement and 𝑦 is

defined in the 𝑘𝑡ℎ branch.
𝑉𝐷𝐺 of module 𝑀 donated as (𝑉𝑀), 𝜗(𝑉𝑀) and 𝜀(𝑉𝑀) denote vertices and edges of
(𝑉𝑀), respectively. In principle, the vertices and edges are graphical forms of the set
of variables in module 𝑀, i.e., 𝜗(𝑉𝑀) set of variable in module 𝑀.

16

𝜀(𝑉𝑀) = {𝑒 |𝑒 = (𝑥
𝐷
→ 𝑦 ˅ 𝑥

𝐿(𝑛)
→ 𝑦 ˅ 𝑥

𝑆(𝑛,𝑘)
→ 𝑦) ˄ 𝑥 ≠ 𝑦}

These conventions of representation for each type of cohesion can be exemplified
by the following examples to demonstrate module design and their corresponding
𝑉𝐷𝐺s construct as follows.

Example3.3: VDG of Sum1_or_Sum2 procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎𝟏_𝒐𝒓_𝑺𝒖𝒎𝟐(𝑛1, 𝑛2, 𝑓𝑙𝑎𝑔: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;
𝑣𝑎𝑟 𝑠𝑢𝑚1, 𝑠𝑢𝑚2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟);

2. 𝑣𝑎𝑟 𝐼 ∶ 𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟;

3. 𝑏𝑒𝑔𝑖𝑛

4. 𝑠𝑢𝑚1:= 0;

5. 𝑠𝑢𝑚2:= 0;

6. 𝑖𝑓 𝑓𝑙𝑎𝑔 = 1

7. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛1 𝑑𝑜

8. 𝑠𝑢𝑚1:= 𝑠𝑢𝑚1 + 𝑎𝑟𝑟1;

9. 𝑒𝑙𝑠𝑒

10. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛2 𝑑𝑜

11. 𝑠𝑢𝑚2:= 𝑠𝑢𝑚2 + 𝑎𝑟𝑟2;

12. 𝑒𝑛𝑑

Figure 3.1 VDG of Sum1_or_Sum2 procedure

n1 arr1 flag n2 arr2

sum1 sum2

L7 L10 S(6,t) S(6,f) D D

17

Example3.4: VDG of Prod1_and_Prod2 procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑷𝒓𝒐𝒅𝟏_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅𝟐(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;

𝑣𝑎𝑟 𝑝𝑟𝑜𝑑1, 𝑝𝑟𝑜𝑑2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟);

2. 𝑣𝑎𝑟 𝑖: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;

3. 𝑏𝑒𝑔𝑖𝑛

4. 𝑝𝑟𝑜𝑑1:= 1;

5. 𝑝𝑟𝑜𝑑2:= 1;

6. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛

7. 𝑝𝑟𝑜𝑑1:= 𝑝𝑟𝑜𝑑1 ∗ 𝑎𝑟𝑟1[𝑖];

8. 𝑝𝑟𝑜𝑑2:= 𝑝𝑟𝑜𝑑2 ∗ 𝑎𝑟𝑟2[𝑖];

9. 𝑒𝑛𝑑;

10. 𝑒𝑛𝑑;

Figure 3.2 VDG of Prod1_and_Prod2 procedure

Example3.5: VDG of Sum_and_Prod procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;
 𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡

2. 𝑏𝑒𝑔𝑖𝑛

3. 𝑠𝑢𝑚:= 0

4. 𝑝𝑟𝑜𝑑:= 1;

5. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛

6. 𝑠𝑢𝑚:= 𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖];

7 𝑝𝑟𝑜𝑑:= 𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖];

8. 𝑒𝑛𝑑;

9. 𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛

10. 𝑒𝑛𝑑;

arr1 n arr2

prod2 prod1

L6 L6 D D

18

Figure 3.3 VDG of Sum_and_Prod procedure

Example3.6: VDG of Fibo_Avg procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑭𝒊𝒃𝒐_𝑨𝒗𝒈(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑣𝑎𝑟 𝑓𝑖𝑏_𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦; 𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡);

2. 𝑣𝑎𝑟 𝑠𝑢𝑚: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;

3. 𝑖: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;

4. 𝑏𝑒𝑔𝑖𝑛

5. 𝑓𝑖𝑏_𝑎𝑟𝑟[1]: = 1;

6. 𝑓𝑖𝑏_𝑎𝑟𝑟[2]: = 2;

7. 𝑓𝑜𝑟 𝑖: = 3 𝑡𝑜 𝑛

8. 𝑓𝑖𝑏_𝑎𝑟𝑟[𝑖]: = 𝑓𝑖𝑏_𝑎𝑟𝑟[𝑖 − 1] + 𝑓𝑖𝑏_𝑎𝑟𝑟[𝑖 − 2];

9. 𝑆𝑢𝑚(𝑛, 𝑓𝑖𝑏_𝑎𝑟𝑟, 𝑠𝑢𝑚);

10. 𝑎𝑣𝑔:= 𝑠𝑢𝑚/𝑛;

11. 𝑒𝑛𝑑;

Figure 3.4 VDG of Fibo_Avg procedure

n arr

avg

sum prod

L5 L5 D D

D

D

Sum

n

fib_arr

avg

D

D

D

L7

19

Example3.7: VDG of Sum procedure

𝟏. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦; 𝑣𝑎𝑟 𝑠𝑢𝑚: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟);

2. 𝑏𝑒𝑔𝑖𝑛

3. 𝑠𝑢𝑚:= 0;

4. 𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜

5. 𝑠𝑢𝑚:= 𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖];

6. 𝑒𝑛𝑑;

Figure 3.5 VDG of Sum procedure

3.2 Cohesion Complexity

In computations of cohesion complexity, dependency of each variable will be
considered. Complexity of a variable will be assigned the value 1 if the variable
depends on nothing. Otherwise, it will be assigned to sum of the number of
dependencies involved with the variables. Weights are also added to each type of
dependency to balance the complexity. The variable complexity is shown in (3.1).

𝑐 = 𝑤𝑑(𝑛) + 𝑤𝑠(𝑛)+𝑤𝑙(𝑛) (3.1)

where 𝑐 denotes variable complexity, 𝑛 denotes the number of dependencies
associated with the variables, 𝑤𝑑, 𝑤𝑠, and 𝑤𝑙 denote weights for data, selection, and
loop dependency, respectively. From the preliminary experiment, 𝑤𝑑 holds the
minimum value while 𝑤𝑙 holds the maximum value. It was found that choosing
prime factor to be the weight values yielded better discriminating power than any
arbitrary values. Thus, total variable complexity (𝑡𝑐) can be determined by (3.2),
where 𝑁 denotes the number of variables in the module.

𝑡𝑐 = ∑ 𝑐𝑖
𝑁
𝑖 (3.2)

n arr

sum

L4 D

20

Cohesion complexity (𝐶𝑐) is the value of total variable complexity bounded with
cohesion level as shown in (3.3)

 𝐶𝑐 = √𝑡𝑐
𝑎

 (3.3)

where 𝑎 denotes the cohesion level. The algorithm for computing cohesion
complexity is shown in Fig. 3.6.

Algorithm-2 Compute-Cohesion-Complexity

Input: VDG and Cohesion of Module M

Output: Cohesion_complexity of Module M

begin

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦 ← {𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙, 𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙,

 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙};

𝑡𝑐 = 0;

𝒇𝒐𝒓 𝑖 ← 1 𝒕𝒐 7 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏

 𝒊𝒇 (𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦𝑖) 𝒕𝒉𝒆𝒏

 𝑎 ← 𝑖;

 break;

end for;

𝑁 ← |𝜗(𝑉𝑀) |;

𝒇𝒐𝒓 𝑗 ← 1 𝒕𝒐 𝑁 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏

 𝒊𝒇 (𝑑𝑒𝑔−(𝜗𝑖) = 0) 𝒕𝒉𝒆𝒏

 𝑡𝑐 ← 𝑡𝑐 + 1;

 𝒆𝒍𝒔𝒆

 𝑡𝑐 ← 𝑡𝑐 + (𝑤𝑑(𝑑𝑒𝑔
−(𝜗𝑖)) + 𝑤𝑠(𝑑𝑒𝑔

−(𝜗𝑖))+𝑤𝑙(𝑑𝑒𝑔
−(𝜗𝑖)));

𝒆𝒏𝒅 𝒇𝒐𝒓;

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← √𝑡𝑐
𝑎

;

𝒓𝒆𝒕𝒖𝒓𝒏 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦;

𝒆𝒏𝒅;

Figure 3.6 Algorithm for determining cohesion complexity
The following examples demonstrate 𝐶𝑐 computation measure of each cohesion
level.

21

Example3.8: Cc computation for coincidental cohesion

Module cohesion: Coincidental (𝑎=1)
𝑐𝑛1 = 1

𝑐𝑎𝑟𝑟1 = 1

𝑐𝑠𝑢𝑚1 = 𝑤𝑑(𝑛𝑠𝑢𝑚1) + 𝑤𝑠(𝑛𝑠𝑢𝑚1)+𝑤𝑙(𝑛𝑠𝑢𝑚1)

= 7(2) + 0(2) + 3(2)

= 20

𝑐𝑛2 = 1

𝑐𝑎𝑟𝑟2 = 1

𝑐𝑠𝑢𝑚2 = 𝑤𝑑(𝑛𝑠𝑢𝑚2) + 𝑤𝑠(𝑛𝑠𝑢𝑚2)+𝑤𝑙(𝑛𝑠𝑢𝑚2)

= 7(2) + 0(2) + 3(2)

= 20

𝑡𝑐 = 𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2

= 1 + 1 + 20 + 1 + 1 + 20

= 44

𝐶𝑐 = √44
1

= 44

sum1

arr1 n1

L6 D

sum2

arr2 n2

L8 D

22

Example3.9: Cc computation for logical cohesion

Module cohesion: Logical (𝑎=2)
𝑐𝑛1 = 1

𝑐𝑎𝑟𝑟1 = 1

𝑐𝑓𝑙𝑎𝑔 = 1

𝑐𝑠𝑢𝑚1 = 𝑤𝑑(𝑛𝑠𝑢𝑚1) + 𝑤𝑠(𝑛𝑠𝑢𝑚1)+𝑤𝑙(𝑛𝑠𝑢𝑚1)

= 7(3) + 5(3) + 3(3)

= 45

𝑐𝑛2 = 1

𝑐𝑎𝑟𝑟2 = 1

𝑐𝑠𝑢𝑚2 = 𝑤𝑑(𝑛𝑠𝑢𝑚2) + 𝑤𝑠(𝑛𝑠𝑢𝑚2)+𝑤𝑙(𝑛𝑠𝑢𝑚2)

= 7(3) + 5(3) + 3(3)

= 45

𝑡𝑐 = 𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑓𝑙𝑎𝑔 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2

= 1 + 1 + 1 + 45 + 1 + 1 + 45

= 95

𝐶𝑐 = √95
2

= 9.7468

n1 arr1 flag n2 arr2

sum1 sum2

L7 L10 S(6,t) S(6,f) D D

23

Example3.10: Cc computation for procedural cohesion

Module cohesion: Procedural (𝑎=4)
𝑐𝑎𝑟𝑟1 = 1

𝑐𝑛 = 1

𝑐𝑎𝑟𝑟2 = 1

𝑐𝑝𝑟𝑜𝑑1 = 𝑤𝑑(𝑛𝑝𝑟𝑜𝑑1) + 𝑤𝑠(𝑛𝑝𝑟𝑜𝑑1)+𝑤𝑙(𝑛𝑝𝑟𝑜𝑑1)

= 7(2) + 0(2) + 3(2)

= 20

𝑐𝑝𝑟𝑜𝑑2 = 𝑤𝑑(𝑛𝑝𝑟𝑜𝑑2) + 𝑤𝑠(𝑛𝑝𝑟𝑜𝑑2)+𝑤𝑙(𝑛𝑝𝑟𝑜𝑑2)

= 7(2) + 0(2) + 3(2)

= 20

𝑡𝑐 = 𝑐𝑎𝑟𝑟1 + 𝑐𝑛 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑝𝑟𝑜𝑑1 + 𝑐𝑝𝑟𝑜𝑑2

= 1 + 1 + 1 + 20 + 20

= 43

𝐶𝑐 = √43
4

= 2.5607

arr1 n arr2

prod2 prod1

L6 L6 D D

24

Example3.11: Cc computation for communicational cohesion

Module cohesion: Communicational (𝑎=5)
𝑐𝑛 = 1

𝑐𝑎𝑟𝑟1 = 1

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛𝑠𝑢𝑚) + 𝑤𝑠(𝑛𝑠𝑢𝑚)+𝑤𝑙(𝑛𝑠𝑢𝑚)

= 7(2) + 0(5) + 3(2)

= 20

𝑐𝑝𝑟𝑜𝑑 = 𝑤𝑑(𝑛𝑝𝑟𝑜𝑑) + 𝑤𝑠(𝑛𝑝𝑟𝑜𝑑)+𝑤𝑙(𝑛𝑝𝑟𝑜𝑑)

= 7(2) + 0(5) + 3(2)

= 20

𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛𝑎𝑣𝑔) + 𝑤𝑠(𝑛𝑎𝑣𝑔)+𝑤𝑙(𝑛𝑎𝑣𝑔)

= 0(2) + 0(2) + 3(2)

= 6

𝑡𝑐 = 𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑 + 𝑐𝑎𝑣𝑔

= 1 + 1 + 20 + 20 + 6

= 48

𝐶𝑐 = √48
5

= 2.1689

n arr

avg

sum prod

L5 L5 D D

D

D

25

Example3.12: Cc computation for sequential cohesion

Module cohesion: Sequential (𝑎=6)
𝑐𝑛 = 1

𝑐𝑓𝑖𝑏_𝑎𝑟𝑟 = 𝑤𝑑(𝑛𝑓𝑖𝑏_𝑎𝑟𝑟) + 𝑤𝑠(𝑛𝑓𝑖𝑏_𝑎𝑟𝑟)+𝑤𝑙(𝑛𝑓𝑖𝑏_𝑎𝑟𝑟)

= 0(1) + 0(1) + 7(1)

= 7

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛𝑠𝑢𝑚) + 𝑤𝑠(𝑛𝑠𝑢𝑚)+𝑤𝑙(𝑛𝑠𝑢𝑚)

= 3(2) + 0(2) + 0(2)

= 6

𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛𝑎𝑣𝑔) + 𝑤𝑠(𝑛𝑎𝑣𝑔)+𝑤𝑙(𝑛𝑎𝑣𝑔)

= 3(1) + 0(2) + 0(2)

= 3

𝑡𝑐 = 𝑐𝑛 + 𝑐𝑓𝑖𝑏_𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑎𝑣𝑔

= 1 + 7 + 6 + 3

= 17

𝐶𝑐 = √17
6

= 1.6035

Sum

n

fib_arr

avg

D

D

D

L7

26

Example3.13: Cc computation for functional cohesion

Module cohesion: Functional (𝑎=7)
 𝑐𝑛 = 1

𝑐𝑎𝑟𝑟 = 1

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛𝑠𝑢𝑚) + 𝑤𝑠(𝑛𝑠𝑢𝑚)+𝑤𝑙(𝑛𝑠𝑢𝑚)

= 7(2) + 0(2) + 3(2)

= 20

𝑡𝑐 = 𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚

= 1 + 1 + 20

= 22

𝐶𝑐 = √22
7

= 1.5552

The cohesion complexity based on example 3.9 can be explained as follows.
𝑉𝐷𝐺 of 𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 contains five common variables and two output variables,
the relationship among processing elements matches the associative rule

∃𝑧 (𝑧
𝑆(∗,∗)
→ 𝑥 ˄ 𝑧

𝑆(∗,∗)
→ 𝑦) in Table 2.1 which is logical cohesion. Note that 𝑧 denotes

𝑓𝑙𝑎𝑔, 𝑥 denotes 𝑠𝑢𝑚1 and 𝑦 denotes s𝑢𝑚2. The relationships among 𝑧, 𝑥 and 𝑧, 𝑦
are 𝑆(6, 𝑡) and 𝑆(6, 𝑓), respectively. If a variable associates with a particular type of
dependency, the value of 𝑤𝑑, 𝑤𝑠, and 𝑤𝑙 will be set to the smallest prime factors 3,
5, and 7 for data, selection, and loop dependencies, respectively. Otherwise, they
are set to 0. Since there is no in-degree of nodes 𝑛1, 𝑎𝑟𝑟1, 𝑓𝑙𝑎𝑔, 𝑛2, and 𝑎𝑟𝑟2 in
the graph of example 3.9, each variable complexity of these variables is 1. However,
there are three in-degrees of 𝑠𝑢𝑚1 node and three in-degrees of 𝑠𝑢𝑚2 node, so 𝑛

n arr

sum

L4 D

27

in (3.1) for both 𝑠𝑢𝑚1 and 𝑠𝑢𝑚2 is 3. Hence, 𝑡𝑐 = 1 + 1 + 1 + 1 + 1 +
 (3(3) + 5(3) + 7(3)) + (3(3) + 5(3) + 7(3)) = 95. Since module
𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 is considered logical cohesion, the value of 𝑎 in (3) is 2, the
cohesion complexity of module 𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 is √952

= 9.7468

 To prove how the proposed cohesion complexity yields different 𝐶𝑐 values
for the same two modules having different cohesion levels, 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑
procedure in example 3.11 is selected and modified to use different variable sets,
hereafter referred to as the original and modified procedures as shown in Fig 3.7. The
variables participate in cohesion classification consideration are as follows: 𝑠𝑢𝑚,
𝑝𝑟𝑜𝑑, and 𝑎𝑣𝑔 designate output variables or processing elements, and 𝑛, 𝑎𝑟𝑟, 𝑎𝑟𝑟1,
and 𝑎𝑟𝑟2 designate common variables.

Original procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑

(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;

𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;

𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡)

2. 𝒃𝒆𝒈𝒊𝒏

3. 𝑠𝑢𝑚:= 0;

4. 𝑝𝑟𝑜𝑑:= 1;

5. 𝒇𝒐𝒓 𝑖: = 1 𝒕𝒐 𝑛 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏

6. 𝑠𝑢𝑚:= 𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖];

7 𝑝𝑟𝑜𝑑:= 𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖];

8. 𝒆𝒏𝒅;

9. 𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
;

10. 𝒆𝒏𝒅;

Modified procedure

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑

(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;

𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;

𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡)

2. 𝒃𝒆𝒈𝒊𝒏

3. 𝑠𝑢𝑚:= 0;

4. 𝑝𝑟𝑜𝑑:= 1;

5. 𝒇𝒐𝒓 𝑖: = 1 𝒕𝒐 𝑛 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏

6 𝑝𝑟𝑜𝑑:= 𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟1[𝑖];

7. 𝑠𝑢𝑚:= 𝑠𝑢𝑚 + 𝑎𝑟𝑟2[𝑖];

8. 𝒆𝒏𝒅;

9. 𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
;

10. 𝒆𝒏𝒅;

Figure 3.7 Procedure of module Sum_and_Prod.

28

Table 3.1 Dependencies of module Sum_and_Prod

Dependency 𝑫𝒊 Original procedure Modified procedure

𝐷1 𝑛
𝐿(5)
→ 𝑠𝑢𝑚 𝑛

𝐿(5)
→ 𝑠𝑢𝑚

𝐷2 𝑛
𝐿(5)
→ 𝑝𝑟𝑜𝑑 𝑛

𝐿(5)
→ 𝑝𝑟𝑜𝑑

𝐷3 𝑛
𝐷
→𝑎𝑣𝑔 𝑛

𝐷
→𝑎𝑣𝑔

𝐷4 𝑠𝑢𝑚
𝐷
→𝑎𝑣𝑔 𝑠𝑢𝑚

𝐷
→𝑎𝑣𝑔

𝐷5 𝑎𝑟𝑟
𝐷
→ 𝑠𝑢𝑚 𝑎𝑟𝑟2

𝐷
→ 𝑠𝑢𝑚

𝐷6 𝑎𝑟𝑟
𝐷
→𝑝𝑟𝑜𝑑 𝑎𝑟𝑟1

𝐷
→𝑝𝑟𝑜𝑑

 Table 3.1 lists the dependencies of 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 original and modified
procedures. In both procedures, they cannot be considered as 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 cohesion
because the number of processing elements is more than one. Using the association
rules in Table 2.1 and Algorithm-1, 𝐷1 and 𝐷2 of the original procedure match
associative rule 3 (𝑛

𝐿(5)
→ 𝑠𝑢𝑚 ˄ 𝑛

𝐿(5)
→ 𝑝𝑟𝑜𝑑), while 𝐷5 and 𝐷6 match associative rule

4 (𝑎𝑟𝑟
𝐷
→ 𝑠𝑢𝑚 ˄ 𝑎𝑟𝑟

𝐷
→ 𝑝𝑟𝑜𝑑). There are two qualified cohesion levels, namely,

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 and 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 for 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 procedure. Hence
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 is selected since it is the higher level. 𝐷4 matches associative rule
5 (𝑠𝑢𝑚

𝐷
→ 𝑎𝑣𝑔). D3 does not participate in Algorithm-1 and is not considered. The

overall assessment of the original module is therefore 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion
since it is lower than 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 cohesion of 𝐷4. Similarly, 𝐷1 and 𝐷2 of the modified
procedure match associative rule 3 (𝑛

𝐿(5)
→ 𝑠𝑢𝑚 ˄ 𝑛

𝐿(5)
→ 𝑝𝑟𝑜𝑑), and 𝐷4 matches

associative rule 5 (𝑠𝑢𝑚
𝐷
→ 𝑎𝑣𝑔). So the modified procedure is determined as

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 cohesion.

29

Table 3.2 Variable and total complexity of module Sum_and_Prod

Variable complexity (𝑐)
Original procedure Modified procedure

𝑐𝑛 = 0 𝑐𝑛 = 0

𝑐𝑎𝑟𝑟 = 0 𝑐𝑎𝑟𝑟1 = 0

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛1)+𝑤𝑙(𝑛1) 𝑐𝑎𝑟𝑟2 = 0

𝑐𝑝𝑟𝑜𝑑 = 𝑤𝑑(𝑛2)+𝑤𝑙(𝑛2) 𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛1)+𝑤𝑙(𝑛1)

𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛3) 𝑐𝑝𝑟𝑜𝑑 = 𝑤𝑑(𝑛2)+𝑤𝑙(𝑛2)

 𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛3)

Total variable complexity (𝑡𝑐)
𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑+𝑐𝑎𝑣𝑔 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑+𝑐𝑎𝑣𝑔

 In Table 3.2, the values of variable complexity (𝑐) in both procedures are the
same, so are total variable complexity (𝑡𝑐). Thus, the values of 𝑎 in the original and
modified modules are 𝑎1 and 𝑎2, respectively, where 𝑎1 > 𝑎2
(𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 > 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙). This yields √𝑡𝑐𝑎1

< √𝑡𝑐
𝑎2 .

3.3 Modified Cohesion Complexity

The range of 𝐶𝑐 values in the previous section 3.2 is quite high among the low
cohesion levels as the illustrating examples are somewhat contrasting. For example,
𝐶𝑐 value for the next-to of low cohesion levels like coincidental and logical module
cohesion are 44 and 9.7468, respectively, which gives the range of 34.2532. As such,
its applicability could be limited. An alternative approach is also proposed to reduce
the ranges between levels. The new modified 𝐶𝑐 measure is describes below.

If a variable does not depend on any variables, complexity of the variable is 0.1,
otherwise the complexity of the variable is the summation of dependence
complexity on other variables. That is,

𝑐 = ∑ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖
3
𝑖=1 (3.4)

and dependency complexity becomes

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 = 𝑎𝑑𝑡𝑖 × 𝑡𝑑 × 𝑑𝑤𝑖 (3.5)

30

where 𝑖 denotes dependency type 𝑖 = 1 or data dependence, 𝑖 = 2 or selection
dependence, and 𝑖 = 3 or loop dependence. 𝑎𝑑𝑡𝑖 denotes number of
associated dependency type 𝑖 of the variable. 𝑡𝑑 denotes number of total variables
on which the variable depends. 𝑑𝑤 denotes the weight for each type of
dependency. Thus, the total variable complexity 𝑡𝑐 is the summation of all variable
complexity plus 1, that is

𝑡𝑐 = 1 + ∑ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑛
𝑁
𝑛 (3.6)

where 𝑛 denotes variables in module 𝑀. The 𝐶𝑐 can be computed as

𝐶𝑐 = 𝑡𝑐0.𝑎 (3.7)

where 𝑎 denotes cohesion level (functional = 1, sequential = 2, …, coincidental = 7).

Many trial-and-error runs were tested to determine an appropriate scale for
the weight parameters in (3.7). Table 3.3 shows the results of 𝐶𝑐 values and 0.1
yielded the best range spreading.

Table 3.3 Computation of Cc value using various scales

Procedure 0.001 0.05 0.1 0.5 1 2
Sum1_and_Sum2 1.0334 2.3552 3.4229 9.5183 15.0269 24.4112

Percentage difference 1.8147 14.8487 13.4998 3.6726 1.6524 8.2380
Sum1_or_Sum2 1.0525 2.7659 3.9571 9.8812 14.7786 22.4002

Percentage difference 3.2304 41.3609 49.3038 63.6208 68.4348 72.2886
Prod1_and_Prod2 1.0185 1.6219 2.0061 3.5947 4.6649 6.2074

Percentage difference 0.2553 8.7058 13.0053 24.4053 29.0617 34.3670
Sum_and_Prod 1.0159 1.4807 1.7452 2.7174 3.3092 4.0741

Percentage difference 1.1714 22.4218 28.6214 40.5535 44.9837 48.6684
Fibo_Avg 1.0040 1.1487 1.2457 1.6154 1.8206 2.0913

Percentage difference 0.1594 5.8066 9.2719 19.9950 24.5249 29.5797
Sum 1.0024 1.0820 1.1302 1.2924 1.3741 1.4727

31

Figure 3.8 Graph of Cc computation using various scales

Fig 3.8. depicts 𝐶𝑐 plots of 6 sample modules arranged from coincidental
cohesion to functional cohesion. The graph shows that the scales at 2, 1, and 0.5
give very high ranges in low cohesion levels while the scales 0.05 and 0.001 give
undiscernable differentiation between the levels. It is apparent that, 0.1 gives the
best distinguishable the differences between the levels. The scales at 0.001, 0.05,
0.1, and 0.5 make the results of 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion greater than 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙
cohesion, this is because the examples are very small in term of size and the two
modules are very similar to each other. 𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 which determine as
𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion has more variable than 𝑆𝑢𝑚1_𝑎𝑛𝑑_𝑆𝑢𝑚2 which determine as
𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 cohesion and there are more relations among the variables in
𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 module, these are the reasons that cause 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 results
greater complexity than 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion. The total complexity (𝑡𝑐) of the scales at
1 and 2 are higher compares to the rests and when powered by 𝑎, 𝐶𝑐 of
𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 cohesion (𝑎 = 0.7) spreads a lot faster than 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion (𝑎 = 0.6)
eventhough 𝑡𝑐 for 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion is higher. However, this case rarely occurs in real
world implementation as shown in the next chapter 4 experiment, the results are
distinguishable and spread evenly.

0

10

20

30

40

50

60

2

1

0.5

0.1

0.05

0.001

32

Therefore, a standard score for each variable complexity is 0.1. To further
elaborate the expressiveness of the measures, additional terms are added to
compute variable complexity. 𝑎𝑑𝑡 tells exactly how many instances of dependency
involved with each variable, while 𝑡𝑑 is the 𝑛 value in the previous method. As for
weight factor, data dependence still has the smallest value, selection dependence
holds intermediate values, and loop dependence has the highest value. The
rationale has been described in Section 3.2.

The criteria for determining these weights are as follows. For a plain data
dependence where a variable does not depend on any variable, its weight is 0.1. If
the variable depends on other variables, the weight becomes 0.2. For selection
dependence, there must be at least one condition check. Thus, the weight is set to
0.3. For loop dependence, at least three condition checks are required. There are
initialization, termination, and increment-decrement. The weight is equal to
3 × 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 or 0.9. As 𝑡𝑐 is bounded by the new values raising to the
power of 0. 𝑎, the range of 𝐶𝑐 between low cohesion level becomes closer. This is
because the previous method 𝑡𝑐 is bounded 𝑎th root or in the other word 𝑡𝑐 is

bounded by the power of
1

𝑎
 which is hard to control the value since

1

𝑎
 is not linear.

A constant 1 is added to prevent the result of 𝑡𝑐 to the power of 0. 𝑎 which could
yield the value less than 1.

Algorithm-2 Compute-Cohesion-Complexity

Input: VDG and Cohesion of Module M

Output: Cohesion_complexity of Module M

begin

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦 ← {𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙, 𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙,

 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙};

𝑡𝑐 = 0;

𝒇𝒐𝒓 𝑖 ← 1 𝒕𝒐 7 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏

 𝒊𝒇 (𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦𝑖) 𝒕𝒉𝒆𝒏

 𝑎 ← 𝑖;

 break;

end for;

𝑁 ← |𝜗(𝑉𝑀) |;

33

𝒇𝒐𝒓 𝑗 ← 1 𝒕𝒐 𝑁 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏

 𝒊𝒇 (𝑑𝑒𝑔−(𝜗𝑖) = 0) 𝒕𝒉𝒆𝒏

 𝑡𝑐 ← 𝑡𝑐 + 0.1;

 𝒆𝒍𝒔𝒆

 𝑡𝑐 ← 𝑡𝑐 + ∑ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖
3
𝑖=1 ;

𝒆𝒏𝒅 𝒇𝒐𝒓;

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← √𝑡𝑐
𝑎

;

𝒓𝒆𝒕𝒖𝒓𝒏 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦;

𝒆𝒏𝒅;

Figure 3.9 Algorithm for determining cohesion complexity

The following examples demonstrate modified 𝐶𝑐 measure of each cohesion
level.

34

Example3.14: Modified Cc computation for coincidental cohesion

Module cohesion: Coincidental (𝑎 = 0.7)

𝑐𝑛1 = 0.1

𝑐𝑎𝑟𝑟1 = 0.1

𝑐𝑠𝑢𝑚1 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑐𝑛2 = 0.1

𝑐𝑎𝑟𝑟2 = 0.1

𝑐𝑠𝑢𝑚2 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑡𝑐 = 1 + (𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2)

= 1 + (0.1 + 0.1 + 2.2 + 0.1 + 0.1 + 2.2)

= 5.8

𝐶𝑐 = 5.80.7 = 3.4229

sum1

arr1 n1

L6 D

sum2

arr2 n2

L8 D

35

Example3.15: Modified Cc computation for logical cohesion

Module cohesion: Logical (𝑎 = 0.6)

𝑐𝑛1 = 0.1

𝑐𝑎𝑟𝑟1 = 0.1

𝑐𝑓𝑙𝑎𝑔 = 0.1

𝑐𝑠𝑢𝑚1 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (3)(0.2)] + [(1) (3)(0.3)] + [(1) (3)(0.9)]

= 4.2

𝑐𝑛2 = 0.1

𝑐𝑎𝑟𝑟2 = 0.1

𝑐𝑠𝑢𝑚2 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (3)(0.2)] + [(1) (3)(0.3)] + [(1) (3)(0.9)]

= 4.2

𝑡𝑐 = 1 + (𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑓𝑙𝑎𝑔 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2)

= 1 + (0.1 + 0.1 + 0.1 + 4.2 + 0.1 + 0.1 + 4.2)

= 9.9

𝐶𝑐 = 9.90.6 = 3.9571

n1 arr1 flag n2 arr2

sum1 sum2

L7 L10 S(6,t) S(6,f) D D

36

Example3.16: Modified Cc computation for procedural cohesion

Module cohesion: Procedural (𝑎 = 0.4)

𝑐𝑎𝑟𝑟1 = 0.1

𝑐𝑛 = 0.1

𝑐𝑎𝑟𝑟2 = 0.1

𝑐𝑝𝑟𝑜𝑑1 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑐𝑝𝑟𝑜𝑑2 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑡𝑐 = 1 + (𝑐𝑎𝑟𝑟1 + 𝑐𝑛 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑝𝑟𝑜𝑑1 + 𝑐𝑝𝑟𝑜𝑑2)

= 1 + (0.1 + 0.1 + 0.1 + 2.2 + 2.2)

= 5.7

𝐶𝑐 = 5.70.4 = 2.0061

arr1 n arr2

prod2 prod1

L6 L6 D D

37

Example3.17: Modified Cc computation for communicational cohesion

Module cohesion: Communicational (𝑎 = 0.3)

𝑐𝑛 = 0.1

𝑐𝑎𝑟𝑟1 = 0.1

𝑐𝑠𝑢𝑚 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑐𝑝𝑟𝑜𝑑 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑐𝑎𝑣𝑔 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(2) (2)(0.2)] + [(0) (0)(0.3)] + [(0) (0)(0.9)]

= 0.8

𝑡𝑐 = 1 + (𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑 + 𝑐𝑎𝑣𝑔)

= 1 + (0.1 + 0.1 + 2.2 + 2.2 + 0.8)

= 6.4

𝐶𝑐 = 6.40.3 = 1.7452

n arr

avg

sum prod

L5 L5 D D

D

D

38

Example3.18: Modified Cc computation for sequential cohesion

Module cohesion: Sequential (𝑎 = 0.2)

𝑐𝑛 = 0.1

𝑐𝑓𝑖𝑏_𝑎𝑟𝑟 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(0) (0)(0.2)] + [(0) (0)(0.3)] + [(1) (1)(0.9)]

= 0.9

𝑐𝑠𝑢𝑚 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(2) (2)(0.2)] + [(0) (0)(0.3)] + [(0) (0)(0.9)]

= 0.8

𝑐𝑎𝑣𝑔 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (1)(0.2)] + [(0) (0)(0.3)] + [(0) (0)(0.9)]

= 0.2

𝑡𝑐 = 1 + (𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑 + 𝑐𝑎𝑣𝑔)

= 1 + (0.1 + 0.9 + 0.8 + 0.2)

= 3

𝐶𝑐 = 30.2 = 1.2457

Sum

n

fib_arr

avg

D

D

D

L7

39

Example3.19: Modified Cc computation for functional cohesion

Module cohesion: Functional (𝑎 = 0.1)

𝑐𝑛 = 0.1

𝑐𝑎𝑟𝑟 = 0.1

𝑐𝑠𝑢𝑚 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)] + [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)]

= [(1) (2)(0.2)] + [(0) (0)(0.3)] + [(1) (2)(0.9)]

= 2.2

𝑡𝑐 = 1 + (𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚)

= 1 + (0.1 + 0.1 + 2.2)

= 3.4

𝐶𝑐 = 3.40.1 = 1.1302

n arr

sum

L4 D

40

 Table 3.4 shows the ranges between original 𝐶𝑐 measures and modified 𝐶𝑐
measures.

Table 3.4 Ranges of Cc measure between cohesion levels
Procedure Cc measure Modified Cc measure

Sum1_and_Sum2 44 3.4229
Range 34.2532 0.5342
Sum1_or_Sum2 9.7468 3.9571
Range 7.1861 1.951
Prod1_and_Prod2 2.5607 2.0061
Range 0.3918 0.2609
Sum_and_Prod 2.1689 1.7452
Range 0.5654 0.4995
Fibo_Avg 1.6035 1.2457
Range 0.0483 0.1155
Sum 1.5552 1.1302

3.4 Module decomposition process

In case the number of members in 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑝𝑎𝑖𝑟𝑠 is more than one
which means there is more than one type of cohesion involved, the lowest level will
be selected. Higher cohesion is still hidden inside the module. From the above
original 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 procedure which is classified as 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙
cohesion, it can be further decomposed to improve for higher cohesion construct [9].

Such an explicit decomposition is illustrated in Fig. 3.10.

41

Figure 3.10 Variable dependence graph of module Sum_and_Prod

There are two 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑝𝑎𝑖𝑟𝑠 in the original
𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 procedure, i.e., 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 and 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesions as
shown earlier. The module is decomposed into two blocks. The first block is
composed of 𝑛, 𝑎𝑟𝑟, 𝑠𝑢𝑚, and 𝑎𝑣𝑔, the two output variables form 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙
cohesion. The other module is composed of 𝑛, 𝑎𝑟𝑟, 𝑠𝑢𝑚 and 𝑝𝑟𝑜𝑑 that form
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion as they refer to the same input 𝑎𝑟𝑟. Cohesion
complexity of this module before decomposition is 1.7452 and after decomposition
for both blocks are 1.2287 and 1.6767. Thus, the modules are classified to be
sequential and communicational cohesion. Note that the lower the value, the higher
the cohesion level. In principle, modules are decomposed as finer grained as the
number of output variables found.

D

arr
n

sum prod

avg

D

D

D
L(5)

L(8)

42

CHAPTER 4 EXPERIMENT

In the experiment, both 𝐶𝑐 measure and modified method were tested with
module designs and real programs. Programs and module designs were translated
into 𝑉𝐷𝐺 before inputted to a Cohesion Complexity Measure tool or 𝐶𝐶𝑀. 𝐶𝐶𝑀
automatically computes 𝐶𝑐 value, cohesion between pairs, and module cohesion.
Results of the experiment are described in the sections that follow.

4.1 Experiments on Cc Measure

Two programs written in C from [10] and [11] and nine modules from [12] and
[13] were used. The first program is a “Tic Tac Toe” game and the second one is a
phone service called “PHONEV2A.” The former contains six modules and the latter
contains thirteen modules. Table 4.1 shows the results of independent module
cohesion level. The value of cohesion complexity indicates the degree by which
developers can objectively discriminate their design cohesion through the proposed
quantitative technique. Table 4.2 and 4.3 depict the results of all test programs
(whose name appears in column one) cohesion complexity with help of the 𝐶𝐶𝑀
tool. The second column shows type of cohesion found in the module. The third
column shows the resulting cohesion level of the module under investigation based
on Algorithm-1. The fourth column shows the resulting 𝐶𝑐 value which has been
demonstrated using 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 in Section 3.2. For 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 example,
there were three types of cohesion found, namely, coincidental, communicational,
and sequential, the resulting cohesion using Algorithm-1 turned out to be
communicational, having 𝐶𝑐 = 2.1689 by Eq (3.3).

43

Table 4.1 Results of module cohesion level and corresponding Cc value

Name Cohesion Found Module Cohesion
Cohesion

Complexity
Sum1_and_Sum2 Coincidental Coincidental 44
Sum1_or_Sum2 Logical Logical 9.7468
Prod1_and_Prod2 Procedural Procedural 2.5607

Sum_and_Prod
Coincidental
Communicational
Sequential

Communicational 2.1689

Fibo_Avg Sequential Sequential 1.6035
Sum Functional Functional 1.5552
Avg_or_Range Logical Logical 12.6491
Avg_and_SD Communicational Communicational 2.2974
SD_and_Var Sequential Sequential 1.8644

Table 4.2 Results of modules in Tic Tac Toe and Cc assessment

Name Cohesion Found
Module

Cohesion
Cohesion

Complexity
Showframe Coincidental Coincidental 11.0000
Showbox Undefined Undefined -
Putintobox Functional Functional 1.5112
Gotobox Undefined Undefined -
Navigate Functional Functional 1.3459
Checkforwin Functional Functional 1.2917
Boxesleft Functional Functional 1.2917

44

Table 4.3 Results of modules in PHONEV2A and Cc assessment

Name Cohesion Found
Module

Cohesion
Cohesion

Complexity
menu Functional Functional 1.000
chkstrdig Undefined Undefined -

DeleteEntry
Coincidental
Procedural
Sequential

Procedural 4.4238

FindPhone
Procedural
Sequential

Procedural 3.6109

FindRoom
Procedural
Sequential

Procedural 3.6109

GeTotalEntries Functional Functional 1.0000
ListAll Sequential Sequential 1.6189

SortAllEntries
Coincidental
Procedural
Sequential

Procedural 3.4879

AddEntry coincidental coincidental 9.0000
drawscreen undefined undefined -

exitmenu
Procedural
Sequential

Procedural 3.1137

LoadDB
Coincidental
Procedural

Procedural 3.6002

refreshscreen undefined undefined -

4.2 Experiments on Modified Cc Measure

In modified 𝐶𝑐 measure method, some algorithms in [11] which are written in C,
all previous input programs, and designed module are tested. The results of 𝐶𝑐
value are shown as follows:

45

Table 4.4 Results of module cohesion level and corresponding Cc value

Name Cohesion Found Module Cohesion
Cohesion

Complexity
Sum1_and_Sum2 Coincidental Coincidental 3.4229
Sum1_or_Sum2 Logical Logical 3.9571

Prod1_and_Prod2 Procedural Procedural 2.0061

Sum_and_Prod
Coincidental

Communicational
Sequential

Communicational 1.7452

Fibo_Avg Sequential Sequential 1.2457
Sum Functional Functional 1.1302

Avg_or_Range Logical Logical 5.7957
Avg_and_SD Communicational Communicational 1.9267
SD_and_Var Sequential Sequential 1.4404

Table 4.5 Results of modules in Tic Tac Toe and Cc assessment

Name Cohesion Found
Module

Cohesion
Cohesion

Complexity
Showframe Coincidental Coincidental 1.5672
Showbox Undefined Undefined -
Putintobox Functional Functional 1.0820
Gotobox Undefined Undefined -
Navigate Functional Functional 1.0481
Checkforwin Functional Functional 1.0342
Boxesleft Functional Functional 1.0342

46

Table 4.6 Results of modules in PHONEV2A and Cc assessment

Name Cohesion Found
Module

Cohesion
Cohesion

Complexity
menu Functional Functional 1.0184
chkstrdig Undefined Undefined -

DeleteEntry
Coincidental
Procedural
Sequential

Procedural 5.9013

FindPhone
Procedural
Sequential

Procedural 3.4181

FindRoom
Procedural
Sequential

Procedural 3.4181

GeTotalEntries Functional Functional 1.0096
ListAll Sequential Sequential 1.2106

SortAllEntries
Coincidental
Procedural
Sequential

Procedural 3.4307

AddEntry coincidental coincidental 1.5090
drawscreen undefined undefined -

exitmenu
Procedural
Sequential

Procedural 1.2697

LoadDB
Coincidental
Procedural

Procedural 3.0009

refreshscreen undefined undefined -

47

Table 4.7 Results of Algorithm modules and Cc assessment

Name Cohesion Found
Module

Cohesion
Cohesion

Complexity
inputa Functional Functional 1.0718
outputa Functional Functional 1.1792
swap Sequential Sequential 1.0986
dosearch Undefined Undefined -
getyear Functional Functional 1.0096
get_day_code Functional Functional 1.1722
get_leap_year Undefined Undefined -
print_calendar Functional Functional 1.3057

From the experiments of both methods, coincidental cohesion gives the
highest value and functional cohesion yields the lowest value. This is in concert with
standard classification. Notice that the same cohesion level can have different values
in cohesion complexity. This is because more complex programming modules have
higher values than the simple ones, despite the same cohesion classification. In the
program “PHONEV2A”, cohesion complexity of 𝐹𝑖𝑛𝑑𝑃ℎ𝑜𝑛𝑒 and 𝐹𝑖𝑛𝑑𝑅𝑜𝑜𝑚 module
are the same because the code are identical, but variable names are different which
result in more variables involved. Fig. 4.1 shows the variable dependency matrix and
the resulting cohesion complexity value of module 𝐹𝑖𝑛𝑑𝑃ℎ𝑜𝑛𝑒 computed by 𝐶𝐶𝑀
tool. However, cohesion complexities of some modules do not exist because They
cannot be classified the level of module cohesion since they have no output
variable, i.e., processing element. All modules in Table 4.8 were also tested against
the 𝐹𝐶 measure.

48

Table 4.8 Results of Cc and Fc assessments

Name
SMC

Cohesion
Cc Measure

Modified Cc
Measure

FC Measure

Sum1_and_Sum2 Coincidental 44 3.4229

WFC 0.28

SFC 0.28

A 0.28

Sum1_or_Sum2 Logical 9.7468 3.9571

WFC 0.384
6

SFC 0.384
6

A 0.384
6

Prod1_and_Prod2 Procedural 2.5607 2.0061

WFC 0.238
0

SFC 0.238
0

A 0.238
0

Sum_and_Prod
Communica
tional

2.1689 1.7452

WFC 0.695
7

SFC 0.217
4

A 0.536
2

49

Fibo_Avg Sequential 1.6035 1.2457

WFC 1

SFC 1

A 1

Sum Functional 1.5552 1.1302

WFC 0

SFC 1

A 0

Avg_or_Range Logical 12.6491 5.5887

WFC 0.333
3

SFC 0.333
3

A 0.333
3

Avg_and_SD
Communica
tional

2.2974 1.9267

WFC 0.321
4

SFC 0.321
4

A 0.321
4

SD_and_Var Sequential 1.8644 3.4229

WFC 1

SFC 1

A 1

50

Figure 4.1 Screen capture of CCM on FindPhone program

4.3 Cohesion Complexity Measure Tool

Cohesion Complexity Measure (𝐶𝐶𝑀) is a tool that computes 𝐶𝑐 value, module
cohesion, and cohesion between pairs. The tool is written in JAVA language running
on android platform. This application can also run on Windows by means of
emulators such as BlueStacks. 𝐶𝐶𝑀 is designed to use 𝑉𝐷𝐺 as its input. Users can
input the 𝑉𝐷𝐺 by using two alternative methods. First input the graph manually and
second input the graph via text file in a designated format.

51

Figure 4.2 Home screen
Fig 4.2 illustrates the home screen of 𝐶𝐶𝑀 tool where user can enter the

number of variables appears in the module. Then click the OK button, A window will
pop up with textbox to permit variable name input. If the variable is an output, click
the checkbox, otherwise, leave it blank. A sample input screen is shown in Fig 4.3.
The process repeats until all input variable names are entered. Click the Next button
to go to the variable list screen as shown in Fig 4.4. This screen allows the user to
make a final change to the variable list.

52

Figure 4.3 Input screen Of CCM

53

Figure 4.4 Variable list screen

54

Figure 4.5 Dependence screen
The next screen is the dependence screen to enter dependencies between variables.
There are 3 types of dependency, data, loop, and, selection dependence.

55

Figure 4.6 Dependence window
After selecting the type of variable dependence, a window pops up to add more
details relating to the dependence pair. In Fig 4.6, variable sum1 depends on n1 by
loop dependence at statement 7.

56

Figure 4.7 Result screen
When all the dependencies are added, 𝐶𝐶𝑀 will compute the result of module
analysis as shown in Fig 4.7. The result screen depicts dependence matrix between
variables, where output variables are highlighted in red. Other statistics such as
cohesion between pairs, module cohesion, common variables, processing elements,
and Cc value are also shown.

The alternative option to input the 𝑉𝐷𝐺 is to insert a text file that contains
information about the graph in a designated format. This text file is created at the
time the application is launched. The text file ccm_text is formatted as follows:

variable1, variable2, variable3,…, variablen;

variableX1 –dpd-> variableY1, variableX2 –dpd-> variableY2,

variableX3 –dpd-> variableY3, … ,variableXm –dpd-> variableYm;

The dpd is dependency for each dependence type, i.e. data, loop, and selection
labeled by D, L, and S, respectively. Loop and selection dependence must be
followed by the number of statements that the loop or selection occurs in the
source code.

57

The first statement contains all the variable, each of which is delimited by comma
(,). Output variables must be followed by an asterisk (*). The second statement
holds the dependence statement delimited by comma. Both statements terminated
by semicolons (;). Example 4.1 depicts the 𝑉𝐷𝐺 file format.

Example 4.1: VDG format

n1, arr1, flag, n2, arr2, sum1*, sum2*; n1 -L7-> sum1,

arr1 -D-> sum1, flag -S6true-> sum1, flag -S6false->

sum2, n2 -L10-> sum2, arr2 -D-> sum2;

4.4 Application of the CCM Tool

The implementation of 𝐶𝑐 computation and 𝐶𝐶𝑀 tool helps developers
determine whether any modules should be decomposed or not. For example, the
result of Avg_or_Range module in Table 4.4 is quite prominent compares with the
rests of module in the same program. The module gets 5.7957 score while the
others get less than 3.9 and mostly just above 1.0. Thus, module Avg_or_Range is the
first candidate that deserves developers’ attention. Since the cohesion of this
module is 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion and also only 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion found by cohesion
between pairs, no better cohesion type can be selected. Nevertheless, developers
can use the techique provided in Section 3.4. Since, module Avg_or_Range has no
other cohesion between pairs, the only way to decompose this module by
separating the output variables as shown in Fig 4.8

n1 arr1 flag n2 arr2

sum1 sum2

L7 L10 S(6,t) S(6,f) D D

58

Figure 4.8 Module decomposition for Avg_or_Range
After decomposition, the original module is divided into two modules having
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 cohesion with the 𝐶𝑐 values to be 1.1543 and 1.2113, respectively.

avg

sum min max

arr n

range

flag
S(2,t)

S(2,t)
S(2,f)

S(2,f) S(2,f)

D D D

L4 L12

L12

S(13,t) S(15,t)

avg

sum min max

arr n

range

flag
S(2,t)

S(2,t)
S(2,f)

S(2,f) S(2,f)

D D D

L4 L12

L12

S(13,t) S(15,t)

D

D

D

D

59

CHAPTER 5 DISCUSSION AND CONCLUSION

A module should encapsulate some well-defined, coherent piece of
functionality so that it is easy to maintain, reuse, and portable. This proposed
method has followed 𝑆𝑀𝐶 cohesion by adopting association rules, variable
dependence graph, and using output variables as processing elements [4] to
determine the level of cohesion. Such a quantification helps distinguish finer grained
of measure for the same level of cohesion in accordance with the de-facto cohesion
standard [2] Case in point, as 𝐶𝑐 method operates at design stage, developers can
decide to rectify modular flaws well in advance rather than prolonging the problem
till coding stage. Another benefit is that the 𝐹𝐶 measure could yield the same value
for different design characteristics and complexity. For example, in Table VIII,
procedure 𝐹𝑖𝑏𝑜_𝐴𝑣𝑔 and 𝑆𝐷_𝑎𝑛𝑑_𝑉𝑎𝑟 have the same result value for both 𝑆𝑀𝐶
cohesion and 𝐹𝐶 measure, but the 𝐶𝑐 values discern that 𝑆𝐷_𝑎𝑛𝑑_𝑉𝑎𝑟 is more
complex than 𝐹𝑖𝑏𝑜_𝐴𝑣𝑔.
 More comprehensive quantification schemes can be derived with the help of
elaborate 𝑉𝐷𝐺 construct and realized as a programming tool. The benefits of
cohesion complexity measure are several folds. First and foremost, quantitative
analysis infers more objective design level of software than traditional subjective
ordinal analysis. Software developers and maintainers can pinpoint the module in
question and make proper redesign, improvement, or corrective adjustment to
enhance software quality. Second, performance of software maintenance is efficient
and effective since the job can be better understood and carried out easier and.
Third, production of software can keep pace with the rapid technological innovation.
As a case in point, various modifications, feature enhancement, and bug fixes of
facebook [14] that have undergone world-wide test and used over the years could
have been performed with fewer efforts and more objective design decisions. All in
all, well design modules having less cohesion complexity ease software
development and maintenance effort which in turn will be conducive toward
software quality.

In this research, every 𝑉𝐷𝐺s were manually constructed. Thus, all sample
modules were confined to small programs. For medium to large programs, it would
be expedient if there is a supporting to convert source code tool to the 𝑉𝐷𝐺.
Thereby the output VDG can be further processed by the proposed CCM tool.

60

Alternatively, one can transform source module into VDG directly using some refine
language [15] having predefine rules and pattern matching.

REFERENCES

1. Stevens, W.P., G.J. Myers, and L.L. Constantine, Structured design. IBM
Systems Journal, 1974. 13(2): p. 115-139.

2. Yourdon, E. and L.L. Constantine, Structured Design. 1978: Yourdon Press.
3. Page-Jones, M., The practical guide to structured systems design: 2nd edition.

1988: Yourdon Press. 368.
4. Lakhotia, A., Rule-based approach to computing module cohesion, in

Proceedings of the 15th international conference on Software Engineering.
1993, IEEE Computer Society Press: Baltimore, Maryland, USA. p. 35-44.

5. Nandigam, J., A measure for module cohesion. 1995, University of
Southwestern Louisiana.

6. Bieman, J.M. and L.M. Ott, Measuring Functional Cohesion. IEEE Trans. Softw.
Eng., 1994. 20(8): p. 644-657.

7. Aho, A.V., R. Sethi, and J.D. Ullman, Compilers: principles, techniques, and
tools. 1986: Addison-Wesley Longman Publishing Co., Inc. 796.

8. Hecht, M.S., Flow Analysis of Computer Programs. 1977: Elsevier Science Inc.
232.

9. Lakhotia, A. and J.C. Deprez. Restructuring functions with low cohesion. in
Reverse Engineering, 1999. Proceedings. Sixth Working Conference on. 1999.

10. Game Programming in C - For Beginners. Available from:
http://www.codeproject.com/Articles/447332/Game-Programming-in-C-For-
Beginners.

11. Source code - Projects. April 1, 2014]; Available from:
http://www.cprogramming.com/source/phone.zip?action=Jump&LID=44.

12. Bieman, J.M. and B.-K. Kang, Measuring Design-Level Cohesion. IEEE Trans.
Softw. Eng., 1998. 24(2): p. 111-124.

13. Designed Modules. April 1, 2014]; Available from:
https://www.dropbox.com/s/y8902tb6or6s8j9/3_procedures.txt.

http://www.codeproject.com/Articles/447332/Game-Programming-in-C-For-Beginners
http://www.codeproject.com/Articles/447332/Game-Programming-in-C-For-Beginners
http://www.cprogramming.com/source/phone.zip?action=Jump&LID=44
http://www.dropbox.com/s/y8902tb6or6s8j9/3_procedures.txt

62

14. Facebook for Android Beta App Change History. April 1, 2014]; Available
from: https://www.facebook.com/notes/facebook-android-beta/facebook-for-
android-beta-app-change-history/190854467764586.

15. Kotik, G. and L. Markosian. Application of REFINE Language Tools to software
quality assurance. in Knowledge-Based Software Engineering Conference,
1994. Proceedings., Ninth. 1994.

http://www.facebook.com/notes/facebook-android-beta/facebook-for-android-beta-app-change-history/190854467764586
http://www.facebook.com/notes/facebook-android-beta/facebook-for-android-beta-app-change-history/190854467764586

APPENDIX

64

VITA

VITA

Pimvard Charoenporn was born in Bangkok, Thailand on 14 October 1990.
In 2012 received the B.S. in Computer Science from Chulalongkorn University.
Currently, studying for a M.S. in Computer Science, Chulalongkorn University. The
areas of interest are software engineering, data structures, and design and analysis
of algorithms.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Introduction
	1.2 Problem statements
	1.3 Scope of the research
	1.4 Contributions
	1.5 Document organization

	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 PROPOSED METHOD
	3.1 Variable Dependence Graph
	3.2 Cohesion Complexity
	3.3 Modified Cohesion Complexity
	3.4 Module decomposition process

	CHAPTER 4 EXPERIMENT
	4.1 Experiments on Cc Measure
	4.2 Experiments on Modified Cc Measure
	4.3 Cohesion Complexity Measure Tool
	4.4 Application of the CCM Tool

	CHAPTER 5 DISCUSSION AND CONCLUSION
	REFERENCES
	VITA

