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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

 High cohesion provides several desirable characteristics in software quality 
such as maintainability, flexibility, portability, code readability, reusability, etc. Hence, 
constructing a program concerns a number of aspects such as functional, behavioral, 
and structural aspects. It is the last aspect encompassing the modular construct that 
leads to module cohesion and module coupling of processing elements. The notion 
of module cohesion was originally defined by Stevens, et al. [1] that it was the 
strength of functional relatedness among the processing elements within a module. 
The processing elements can be defined as many things such as statements or 
output variables. Module cohesion is a measurement in ordinal scale, ranked into 
seven levels, namely, functional, sequential, communicational, procedural, temporal, 
logical, and coincidental cohesion, where functional is the highest (good) and 
coincidental is the lowest (bad) module properties. Any module can be defined in 
one of these seven levels. Several methods can be used to measure cohesion level 
of a module. Unfortunately, the sheer cohesion measures will not suffice to yield 
any discernable characteristics of similar or closely classified modules. Traditional 
module cohesion measure may not be able to tell the differences between two 
modules if they are classified in the same level. On the other hand, if they are in 
close levels, saying that the higher cohesion is better may not be so sure. For 
example, if two modules are classified as communicational and procedural cohesion, 
saying that the former tends to be better in quality since it is higher ranked than the 
latter is not accurate. This issue is the main consideration of this work and will be 
subsequently elaborated. 

There are many factors that affect the quality of software such as number of 
variables, loops, and selections. Consequently, being classified at a particular level is 
not good enough to determine the design quality of software. What decides a 
distinguishable characteristic of software design quality is module complexity. The 
issue of complexity involves many program design perspectives, for instance, 
algorithm, data, model, and various intrinsic/extrinsic attributes, etc. At present, the 
state-of-the-practice cannot cope with such involving issues, but merely offers a 
limited framework for software designers to follow. The final decision still remains 
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the human call. Some research efforts are underway to improve such measures and 
will be recounted in the next chapter. 

This research introduces a quantitative measurement in software design 
quality based on cohesion principle. It provides the same objectives as cohesion with 
quantifiable measurement to differentiate levels of module relatedness. The 
proposed method uses dependence relationships of all variables in the module to 
understand and determine the best classification. The results of this proposed 
measurement will help developers decide whether the designated module should 
be further decomposed to improve the module design. 

1.2 Problem statements 

 This research attempts to work out the following questions: 

1. How can traditional model cohesion measure be improved to arrive at a 
quantitative yardstick? 

2. How can each level of cohesion classification be objectively distinguished 
from one another? 

1.3 Scope of the research 

 This research will confine the scope of investigation within the following 
limits: 

1. apply only to C language construct. 
2. use small sample module having the size less than 50 LOC. 

1.4 Contributions 

 Some of the benefits precipitate from this work are as follows: 

1. quantitative measure in numeric values to permit a discernable 
distinction for individual module at a specific level of cohesion 
classification. 

2. Distinguishable differences between levels of cohesion classification. 
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1.5 Document organization 

 This research is organized as follows. Chapter 2 recounts some of the relevant 
related prior work. Chapter 3 describes the proposed method, along with algorithm 
derivations of the supporting theorems. Chapter 4 describes the experiment 
pertinent to the proposed approach. Some evaluation, benefits, final thoughts, and 
future work are given in Chapter 5. 
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CHAPTER 2 LITERATURE REVIEW 

 Stevens et al., defines module cohesion (𝑆𝑀𝐶 cohesion) as the strength of 
functional relatedness among the processing elements within a module [1][2]. The 
processing elements can be a statement, a group of statements, a data definition, or 
a procedure call. There are seven levels of cohesion as shown in Table 2.1. The best 
or the strongest is functional and the worst or weakest is coincidental cohesion. 
 
Table 2.1 Associative principles of processing elements based on SMC cohesion 

Cohesion Associative principles 

Coincidental 
Little or no meaningful relationship among the processing 
elements 

Logical 
Processing elements of a module perform a set of related 
functions, one of which is selected by the calling module 
at the time of the invocation 

Temporal 
Processing elements of a module are executed within the 
same limited period of time 

Procedural 
Processing elements share a common procedural unit. The 
common procedural unit may be a loop or a decision 
structure. 

Communicational 
Processing elements reference the same input data and/or 
produce the same output data 

Sequential 
Processing elements are sequentially cohesive when the 
output data or results from one processing element serve 
as input data for the other processing element. 

Functional 
Processing elements of a module contribute to the 
computation of a single specific result 

 

 The following pseudocode samples are some designed modules that 
represent level of cohesion measure. 
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Example2.1: Coincidental cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑪𝒐𝒎𝒑𝒖𝒕𝒆_𝑨_𝑩_𝑪(𝒊𝒏𝒕 𝒎,𝒏, 𝒐) 
2.   𝐴 ≔ 𝑚 ∗ 2; 

3   𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 

4.      𝐵 ≔ 𝐵 + 𝐵; 

5.   𝑖𝑓 o%3 = 0 

6.      𝐶 ≔ 𝑜/3 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝐴_𝐵_𝐶 procedure is considered as 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 cohesion. Notice 
that there is no relationship among 𝐴 or 𝐵 or 𝐶. This procedure is a highly 
undesirable design of the module having the lowest cohesion level. 

 

Example2.2: Logical cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑪𝒖𝒕_𝑷𝒂𝒔𝒕𝒆_𝑪𝒐𝒑𝒚(𝒊𝒏𝒕 𝒇𝒍𝒂𝒈, 𝑺𝒕𝒓𝒊𝒏𝒈 𝑺) 
2.   𝑖𝑓 flag = 1 

3.      𝑐𝑢𝑡(𝑆); 
4.   𝑒𝑙𝑠𝑒 𝑖𝑓 flag = 2 

5.      𝑝𝑎𝑠𝑡𝑒(𝑆); 

6.   𝑒𝑙𝑠𝑒 𝑖𝑓 flag = 3 

7.      𝑐𝑜𝑝𝑦(𝑆); 

𝐶𝑢𝑡_𝑃𝑎𝑠𝑡𝑒_𝐶𝑜𝑝𝑦 procedure is considered as 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion. The 
processing elements in this procedure (cut, paste, copy) are in the same group of 
operation, in this case is edit text operation. Only one of these operations will be 
invoked for each operation call, depending on the value of 𝑓𝑙𝑎𝑔 variable.  This is 
also an undesirable module cohesion. 

 

Example2.3: Temporal cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑹𝒆𝒔𝒆𝒕() 
2.   𝑖𝑛𝑡 𝐴, 𝐵, 𝐶; 
4.   𝐴 ≔ 0; 

5.   𝐵 ≔ 1; 
6.   𝐶 ∶= 2; 
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 𝑅𝑒𝑠𝑒𝑡 procedure is considered as 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 cohesion. This procedure is 
similar to 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝐴_𝐵_𝐶 procedure that the elements in the module actually do 
not have relationships among one another. They are merely put together under one 
condition that they have to execute at the same time. This module still has low 
cohesion level. 

 

Example2.4: Procedural cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑪𝒐𝒎𝒑𝒖𝒕𝒆_𝑷_𝑸(𝒊𝒏𝒕 𝒏) 
2.   𝑖𝑛𝑡 𝑃, 𝑄; 

3   𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 

4.      𝑃 ≔ 𝑃 + 𝑖; 
5.     𝑄 ≔ 𝑄 ∗ 𝑖; 
6.  𝑒𝑛𝑑 𝑓𝑜𝑟; 

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑃_𝑄 procedure is considered as 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 cohesion. Processing 
elements are executed in the same procedural unit, in this case is the 𝑓𝑜𝑟 loop. 
𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 cohesion is a moderate cohesion level which yields acceptable design. 

 

Example2.5: Communicational cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑹𝒂𝒏𝒅𝒐𝒎_𝑺𝒐𝒓𝒕(𝒊𝒏𝒕 [] 𝒂𝒓𝒓) 
2.   𝑖𝑛𝑡 𝑅; 

3   𝑅 ≔  𝑟𝑎𝑛𝑑𝑜𝑚(arr); 

4.  𝑖𝑛𝑡[]𝑆_𝑎𝑟𝑟𝑎𝑦; 
5.  𝑆_𝑎𝑟𝑟𝑎𝑦 ≔ 𝑠𝑜𝑟𝑡(𝑎𝑟𝑟);  

𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑜𝑟𝑡 procedure is considered as 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion. A 
module will be considered as 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion when processing 
elements of the module use same data or produce the same data. In this case, 𝑎𝑟𝑟 
is used to compute 𝑅 and 𝑆_𝑎𝑟𝑟𝑎𝑦. 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion level is also an 
acceptable design of the module. 
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Example2.6: Sequential cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒐𝒓𝒕_𝑹𝒂𝒏𝒈𝒆(𝒊𝒏𝒕 𝒏, 𝒊𝒏𝒕 [] 𝒂𝒓𝒓) 
2.  𝑖𝑛𝑡[]𝑆_𝑎𝑟𝑟𝑎𝑦; 
3.  𝑆_𝑎𝑟𝑟𝑎𝑦 ≔ 𝑠𝑜𝑟𝑡(𝑎𝑟𝑟); 
4.  𝑖𝑛𝑡 𝑅𝑎𝑛𝑔𝑒; 
5.  𝑅𝑎𝑛𝑔𝑒 ≔ 𝑆_𝑎𝑟𝑟𝑎𝑦[𝑛] − 𝑆_𝑎𝑟𝑟𝑎𝑦[1]; 

𝑆𝑜𝑟𝑡_𝑅𝑎𝑛𝑔𝑒 procedure is considered as 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 cohesion. One element 
uses another element to compute itself. Referring to this procedure, Range uses 
S_array to compute its value. This module cohesion is an acceptable design.  

 

Example2.7: Functional cohesion 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑴𝒆𝒅𝒊𝒂𝒏(𝒊𝒏𝒕 𝒏, 𝒊𝒏𝒕 [] 𝑺_𝒂𝒓𝒓𝒂𝒚) 
2. 𝑖𝑛𝑡 𝑀𝑒𝑑𝑖𝑎𝑛; 
2. 𝑖𝑓(𝑛%2 = 0) 

3.       𝑀𝑒𝑑𝑖𝑎𝑛 ≔ 𝑆_𝑎𝑟𝑟𝑎𝑦[𝑐𝑒𝑖𝑙(𝑛 2⁄ )]; 

4. 𝑒𝑙𝑠𝑒 

5.       𝑀𝑒𝑑𝑖𝑎𝑛 ≔
(𝑆_𝑎𝑟𝑟𝑎𝑦[𝑛 2⁄ ] + 𝑆_𝑎𝑟𝑟𝑎𝑦[(

𝑛
2⁄ ) + 1])

2
; 

𝑀𝑒𝑑𝑖𝑎𝑛 procedure is considered as 𝑓𝑢𝑛𝑐𝑡𝑖𝑛𝑎𝑙 cohesion. This is the ideal 
module cohesion or the most desirable cohesion level. The module is designed to 
compute just only one problem. 

To decide if a given module will fit any of the above associative principles, 
Page-Jones has provided a decision tree that helps determine the cohesion level [3] 
as shown in Fig. 2.1 
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Figure 2.1 Decision tree for determining module cohesion 
 

In 𝑆𝑀𝐶, the concept of cohesion is emphasized at design-level rather than 
coding, while Lakhotia defines terms of processing elements in a more specific way 
yet suitable for programming practice. In Lakhotia’s work [4], output variables of a 
module are treated as processing elements expressed in a directed graph called 
Variable Dependence Graph (𝑉𝐷𝐺). The VDG is subsequently used as a basis to 
determine the level of cohesion. 

The example of Figure 2.2 illustrates a designed module and its 
corresponding VDG. Nodes represent variables and edges represent dependencies. 
The details of VDG will be further explained in the next chapter. 
 

Example2.8: VDG of Sum1_and_Sum2 procedure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎𝟏_𝒂𝒏𝒅_𝑺𝒖𝒎𝟐(𝑛1, 𝑛2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  
𝑣𝑎𝑟 𝑠𝑢𝑚1, 𝑠𝑢𝑚2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟); 

2. 𝑣𝑎𝑟 𝑖: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 

3. 𝑏𝑒𝑔𝑖𝑛 

4.      𝑠𝑢𝑚1:=  0; 

5.     𝑠𝑢𝑚2:=  0; 

Yes 

No 

Data Control Flow Neither 

Yes No Yes Yes No No 

Can the module be considered to be doing one problem-related function? 

What relates the activities within the module? 

Is sequential 
Important? 

Is sequential 
Important? 

Are the activities in the same 
general category? 

Func. Sque. Comm. Proc. Temp. Logi. Coin. 
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6.      𝑓𝑜𝑟 𝑖: =  1 𝑡𝑜 𝑛1 𝑑𝑜 

7.           𝑠𝑢𝑚1:=  𝑠𝑢𝑚1 + 𝑎𝑟𝑟[𝑖]; 

8.      𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛2 𝑑𝑜 

9.           𝑠𝑢𝑚2:=  𝑠𝑢𝑚2 + 𝑎𝑟𝑟[𝑖]; 

10. 𝑒𝑛𝑑; 
 

 
 

Figure 2.2 VDG of Sum1_and_Sum2 procedure 
Nandigam [5] constructed a set of associative rules to describe each level of 

cohesion as shown in Table 2.2. 
 

Table 2.2 Associative rules between two processing elements 

𝒊 Cohesion Associative rules 
𝐴𝑅𝑖: 𝑉𝑎𝑟 × 𝑉𝑎𝑟 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 

1 Coincidental ¬(˄ ∀𝑖,𝑖∈{2…5} 𝐴𝑅𝑖(𝑥, 𝑦)) 

2 Logical ∃𝑧 (𝑧
𝑆(∗,∗)
→   𝑥 ˄  𝑧

𝑆(∗,∗)
→   𝑦) 

3 Procedural ∃𝑧, 𝑛, 𝑘 (𝑧
𝐿(𝑛)
→  𝑥˄𝑧

𝐿(𝑛)
→  𝑦)˅ (𝑧

𝑆(𝑛,𝑘)
→   𝑥˄𝑧

𝑆(𝑛,𝑘)
→   𝑦) 

4 Communicational ∃𝑧 (𝑧
𝐷
→ 𝑥 ˄ 𝑧

𝐷
→ 𝑦)˅ (𝑥

𝐷
→ 𝑧 ˄ 𝑦

𝐷
→ 𝑧) 

5 Sequential 𝑥 → 𝑦 ˅ 𝑦 → 𝑥 

 

In this Table, 𝑥 and 𝑦 represent output variables, 𝑧 is a common variable, 𝑛 is 
the line number of loop or a selection statement in the module, and 𝑘 is a selected 
branch. For functional cohesion, a module is considered to be functional if there is 
only one output variable in the module. In this research, temporal cohesion is 
omitted because static analysis of code cannot accommodate time-dependent 
relationships among processing elements. Details on associative rules will be further 
elaborated in Section III (A). The algorithm for determining the cohesion level is 
shown in Fig. 2.3. 

sum1 

arr1 n1 

L6 D 

sum2 

arr2 n2 

L8 D 
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Algorithm-1 Compute-Module-Cohesion 

Input: VDG of module M 

Output: Cohesion of module M 

begin 

 𝑋 ← {output variables in 𝑀}; 

 if  |𝑋| = 0 then 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← ′𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑′ 

   else if  |𝑋| = 1 then 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← ′𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙′ 

      else begin 

         cohesion_between_pairs ← {}; 

         for all 𝑥 and 𝑦 in 𝑋 and 𝑥 ≠ 𝑦 do begin 

            cohesion_between_pairs ← cohesion_between_pairs ∪  

            max{𝐶𝑖| 𝑖 ∈ {1…5}˄ 𝐴𝑅𝑖(𝑥, 𝑦) }; 

         end for; 

         if (∀𝑖 𝑖 ∈ cohesion_between_pairs ˄ 𝑖 = 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙)  

            then 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙; 

         else 

            𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ← min(cohesion_between_pairs − {𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙}); 

         end; 

      end; 

   return 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 

end Compute-Module-Cohesion 

Figure 2.3 Algorithm for determining module cohesion 
 

In this algorithm, a module will be considered as undefined cohesion if there 
is no output variable in the module. If there is only one output, the module will be 
considered as functional cohesion. A module will only be considered as coincidental 
cohesion if all pairs of processing elements are coincidentally combined. For others 
levels of cohesion, the minimum cohesion_between_pairs within processing 
elements of the module will be used in the above algorithm, excluding coincidental 
cohesion.  

Three quantitative measures based on data-slice called Functional Cohesion 
(𝐹𝐶), namely, Weak Functional Cohesion (𝑊𝐹𝐶), Strong Functional Cohesion (𝑆𝐹𝐶), 
and Adhesiveness (𝐴) were introduced by Bieman and Ott [6] These measures give 
the ratio of glue or superglue tokens to the total number of data tokens in the range 
of [0, 1]. The data-slices are obtained from the data tokens like variables, constant 
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definitions, and references. Data tokens that are common to more than one data-
slice will be called glue tokens while data tokens that are common to every data-
slice are called superglue tokens. 𝑊𝐹𝐶 can be computed by using the ratio glue 
tokens to the total data tokens and 𝑆𝐹𝐶 is the ratio of superglue tokens to total 
data tokens in the module. The adhesiveness or 𝐴 is the ratio of the amount of 
adhesiveness to the total possible adhesiveness. 
 

Example2.9: Computation of FC Measure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅( sum prod avg 
𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 1 1 1 
𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦; 1 1 1 
𝑣𝑎𝑟 𝑠𝑢𝑚, 1  1 
𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  1  
𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡 1  1 
2. 𝑏𝑒𝑔𝑖𝑛    
3.     𝑠𝑢𝑚:=  0 2  2 
4.     𝑝𝑟𝑜𝑑:=  1;  2  
5.     𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 3 3 3 
6.          𝑠𝑢𝑚:=  𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 4  4 
7           𝑝𝑟𝑜𝑑:=  𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖];  4  
8.     𝑒𝑛𝑑;    
9.     𝑎𝑣𝑔 ≔

𝑠𝑢𝑚

𝑛
 3  3 

10. 𝑒𝑛𝑑;    
 

In the above exmaple2.9, glue tokens are highlighted in light and dark grey 
representing the data tokens that are common to more than one data slice. The glue 
tokens in the procedure is equal to 16. The superglue tokens have been highlighted 
in dark grey which is 5. The measures of this module using 𝐹𝐶 Measure are shown 
below. 
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𝑊𝐹𝐶 =  
16

23
=  0.6957 

𝑆𝐹𝐶 =  
5

23
 =  0.2174 

𝐴 =  
(11 ∗ 2) + (5 ∗ 3)

23 ∗ 3
 =  0.5362 

The measurements on 𝐹𝐶 measure of the same design could yield different values 
depending on the implementation by the developers. For example, consider the 
statements 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 + + and 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 + 1, data tokens on the 
first and second statement are 2 and 3, respectively.  
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CHAPTER 3 PROPOSED METHOD 

This chapter will describe the proposed method in detail. In the conventional 
cohesion classification cannot differentiate the subtleties from the same or close 
cohesion levels. In some cases, modules having the same cohesion level exhibit 
different degree of complexity. In particular, the real effort of lowering cohesion for 
design improvement may be higher than as-is situation since the module size is 
different. This can be illustrated by the following sample pseudocode modules are 
classified to be the same level of cohesion which are totally different 
implementation and complexity. 

Example3.1 Procedure: Sum_and_Prod 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  
𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡) 

2. 𝑏𝑒𝑔𝑖𝑛 

3.     𝑠𝑢𝑚:=  0 

4.     𝑝𝑟𝑜𝑑:=  1; 

5.     𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 

6.          𝑠𝑢𝑚:=  𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 

7           𝑝𝑟𝑜𝑑:=  𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖]; 

8.     𝑒𝑛𝑑; 

9.     𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
 

10. 𝑒𝑛𝑑; 

 

The module 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 computes the value of summation, average, and 
product of the given inputs, which is classified as communicational cohesion based 
on 𝑆𝑀𝐶 classification method. 

 

Example3.2 Procedure: Sum_and_Prod 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑨𝒗𝒈_𝒂𝒏𝒅_𝑺𝒅(𝑛, 𝑎𝑟𝑟);  

2. 𝑏𝑒𝑔𝑖𝑛 

3.     𝑠𝑢𝑚 ≔  0; 

4.     𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 

5.          𝑠𝑢𝑚 ≔  𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 
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6.     𝑒𝑛𝑑; 

7.     𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
; 

8.     𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑟 = 0; 

9.     𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 

10.      𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑢𝑎𝑟𝑒 = 𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑢𝑎𝑟𝑒 + ( (𝑎𝑟𝑟[𝑖] − 𝑎𝑣𝑔) ∗ (𝑎𝑟𝑟[𝑖] − 𝑎𝑣𝑔)); 

11.   𝑒𝑛𝑑; 

12.     𝑠𝑑 = 𝑠𝑞𝑟 (
𝑠𝑢𝑚𝐷𝑖𝑓𝑓𝑆𝑞𝑢𝑎𝑟𝑒

𝑛
) ; 

13. 𝑒𝑛𝑑; 

 

The module 𝐴𝑣𝑔_𝑎𝑛𝑑_𝑆𝑑 computes the average and standard deviation of the given 
inputs, which is also classified as communicational cohesion. Apparently, they are of 
different sizes and complexities. 

 
In the proposed method, a module will be considered in terms of 𝑉𝐷𝐺 

whose output variables are considered as processing elements. Common variables 
and output variables are extracted from a module and dependencies are added to 
form a directed graph. This 𝑉𝐷𝐺 will be passed along Algorithm-1 to determine the 
level of cohesion, which in turn will be used to compute cohesion complexity of the 
module. Cohesion complexity is defined as the summation of dependency of each 
variable, some of which are assigned proper weight to indicate their dependencies. 
This process will be elucidated in the sections that follow.  

 

3.1 Variable Dependence Graph 

According to Lakhotia [4] , common variables and output variables are represented 

as nodes, while their dependencies are represented as edges. Dependencies are 
classified into two types, namely, data dependency and control dependency. 
Control dependency is further classified into two sub-types, namely, loop-control 
and data-control. The dependencies come from data and control flow analysis of 
the module [7][8]. The following definitions are the original dependency definitions 

used in this paper. 
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Definition 1: The control flow graph, or simply a flow graph, of a program is a 
directed graph where the nodes correspond to the basic blocks of the program and 
the edges represent potential transfer of control between two basic blocks [7][8]. 

Definition 2: A basic block is a group of statements such that no transfer occurs into 
a group except to the first statement in that group, and once the first statement is 
executed, all statements in the group are executed sequentially [8]. Definition 3: A 

definition-use chain of variable 𝑥 is of the form < 𝑥, 𝑛1, 𝑛2 >, where statement 𝑛1 
defines the variable 𝑥 and statement 𝑛2 uses the variable 𝑥, and there exists a path 
in the flow graph from 𝑛1 to 𝑛2 which does not contain another definition of 𝑥. 

Definition 4: A variable 𝑦 has data dependence on variable 𝑥, denoted 𝑥
𝐷
→ 𝑦, if 

statement 𝑛1 defines 𝑥 and statement 𝑛2 defines 𝑦 and there is a definition-use 
chain with respect to 𝑥 from 𝑛1 to 𝑛2. 
Definition 5: A variable 𝑦 has control dependence on variable 𝑥 due to statement 

𝑛1, denoted 𝑥 
𝐶(𝑛)
→  𝑦, if statement n contains a predicate that uses 𝑥 and the 

execution of the statement that defines 𝑦 is dependent on the value of the 
predicate in 𝑛. 

Definition 6: A 𝑉𝐷𝐺 contains a data dependence edge from node 𝑥 to node 𝑦 

labeled "𝐷" if 𝑥
𝐷
→ 𝑦 

Definition 7: A 𝑉𝐷𝐺 contains a loop-control dependence edge from node 𝑥 to node 

𝑦, labeled "𝐿(𝑛)" if  𝑥 
𝐶(𝑛)
→  𝑦, and 𝑛 is a loop statement such as a while or for 

statement. 

Definition 8: A 𝑉𝐷𝐺 contains a selection-control dependence edge from node 𝑥 to 

node 𝑦 of the form "𝑆(𝑛, 𝑘)", if  𝑥 
𝐶(𝑛)
→  𝑦, and 𝑛 is an if or case statement and 𝑦 is 

defined in the 𝑘𝑡ℎ branch. 
𝑉𝐷𝐺 of module 𝑀 donated as (𝑉𝑀), 𝜗(𝑉𝑀) and 𝜀(𝑉𝑀) denote vertices and edges of 
(𝑉𝑀), respectively. In principle, the vertices and edges are graphical forms of the set 
of variables in module 𝑀, i.e., 𝜗(𝑉𝑀)  set of variable in module 𝑀. 
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𝜀(𝑉𝑀)  =  {𝑒 |𝑒 =  (𝑥
𝐷
→ 𝑦 ˅ 𝑥

𝐿(𝑛)
→  𝑦 ˅ 𝑥

𝑆(𝑛,𝑘)
→   𝑦)  ˄ 𝑥 ≠ 𝑦} 

These conventions of representation for each type of cohesion can be exemplified 
by the following examples to demonstrate module design and their corresponding 
𝑉𝐷𝐺s construct as follows. 

 

Example3.3: VDG of Sum1_or_Sum2 procedure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎𝟏_𝒐𝒓_𝑺𝒖𝒎𝟐(𝑛1, 𝑛2, 𝑓𝑙𝑎𝑔: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  
𝑣𝑎𝑟 𝑠𝑢𝑚1, 𝑠𝑢𝑚2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟); 

2. 𝑣𝑎𝑟 𝐼 ∶  𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟; 

3. 𝑏𝑒𝑔𝑖𝑛 

4.      𝑠𝑢𝑚1:=  0; 

5.      𝑠𝑢𝑚2:=  0; 

6.      𝑖𝑓 𝑓𝑙𝑎𝑔 =  1 

7.          𝑓𝑜𝑟 𝑖: =  1 𝑡𝑜 𝑛1 𝑑𝑜 

8.               𝑠𝑢𝑚1:=  𝑠𝑢𝑚1 + 𝑎𝑟𝑟1; 

9.      𝑒𝑙𝑠𝑒 

10.       𝑓𝑜𝑟 𝑖: =  1 𝑡𝑜 𝑛2 𝑑𝑜 

11.           𝑠𝑢𝑚2:=  𝑠𝑢𝑚2 + 𝑎𝑟𝑟2; 

12. 𝑒𝑛𝑑 
 

 

 

Figure 3.1 VDG of Sum1_or_Sum2 procedure 
 

 

 

n1 arr1 flag n2 arr2 

sum1 sum2 

L7 L10 S(6,t) S(6,f) D D 
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Example3.4: VDG of Prod1_and_Prod2 procedure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑷𝒓𝒐𝒅𝟏_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅𝟐(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  

𝑣𝑎𝑟 𝑝𝑟𝑜𝑑1, 𝑝𝑟𝑜𝑑2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟); 

2. 𝑣𝑎𝑟 𝑖: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 

3. 𝑏𝑒𝑔𝑖𝑛 

4.      𝑝𝑟𝑜𝑑1:=  1; 

5.      𝑝𝑟𝑜𝑑2:=  1; 

6.      𝑓𝑜𝑟 𝑖: =  1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 

7.           𝑝𝑟𝑜𝑑1:=  𝑝𝑟𝑜𝑑1 ∗ 𝑎𝑟𝑟1[𝑖]; 

8.           𝑝𝑟𝑜𝑑2:=  𝑝𝑟𝑜𝑑2 ∗ 𝑎𝑟𝑟2[𝑖]; 

9.      𝑒𝑛𝑑; 

10. 𝑒𝑛𝑑; 

 

 
 

Figure 3.2 VDG of Prod1_and_Prod2 procedure 
 

Example3.5: VDG of Sum_and_Prod procedure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎_𝒂𝒏𝒅_𝑷𝒓𝒐𝒅(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦; 
 𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡 

2. 𝑏𝑒𝑔𝑖𝑛 

3.     𝑠𝑢𝑚:=  0 

4.     𝑝𝑟𝑜𝑑:=  1; 

5.     𝑓𝑜𝑟 𝑖: = 1 𝑡𝑜 𝑛 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 

6.          𝑠𝑢𝑚:=  𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 

7           𝑝𝑟𝑜𝑑:=  𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖]; 

8.     𝑒𝑛𝑑; 

9.     𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
 

10. 𝑒𝑛𝑑; 

arr1 n arr2 

prod2 prod1 

L6 L6 D D 
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Figure 3.3 VDG of Sum_and_Prod procedure 
 

Example3.6: VDG of Fibo_Avg procedure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑭𝒊𝒃𝒐_𝑨𝒗𝒈(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑣𝑎𝑟 𝑓𝑖𝑏_𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡); 

2. 𝑣𝑎𝑟 𝑠𝑢𝑚: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 

3. 𝑖: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 

4. 𝑏𝑒𝑔𝑖𝑛 

5.     𝑓𝑖𝑏_𝑎𝑟𝑟[1]: =  1; 

6.     𝑓𝑖𝑏_𝑎𝑟𝑟[2]: =  2; 

7.     𝑓𝑜𝑟 𝑖: =  3 𝑡𝑜 𝑛 

8.          𝑓𝑖𝑏_𝑎𝑟𝑟[𝑖]: =  𝑓𝑖𝑏_𝑎𝑟𝑟[𝑖 − 1] + 𝑓𝑖𝑏_𝑎𝑟𝑟[𝑖 − 2]; 

9.     𝑆𝑢𝑚(𝑛, 𝑓𝑖𝑏_𝑎𝑟𝑟, 𝑠𝑢𝑚); 

10.   𝑎𝑣𝑔:= 𝑠𝑢𝑚/𝑛; 

11. 𝑒𝑛𝑑; 
 

 

 

Figure 3.4 VDG of Fibo_Avg procedure 
 

n arr 

avg 

sum prod 

L5 L5 D D 

D 

D 

Sum 

n 

fib_arr 

 

avg 

D 

D 

D 

L7 
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Example3.7: VDG of Sum procedure 

𝟏. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑺𝒖𝒎(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  𝑣𝑎𝑟 𝑠𝑢𝑚: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟); 

2. 𝑏𝑒𝑔𝑖𝑛 

3.     𝑠𝑢𝑚:=  0; 

4.     𝑓𝑜𝑟 𝑖: =  1 𝑡𝑜 𝑛 𝑑𝑜 

5.          𝑠𝑢𝑚:=  𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 

6. 𝑒𝑛𝑑; 

 

 

Figure 3.5 VDG of Sum procedure 
 

3.2 Cohesion Complexity 

In computations of cohesion complexity, dependency of each variable will be 
considered. Complexity of a variable will be assigned the value 1 if the variable 
depends on nothing. Otherwise, it will be assigned to sum of the number of 
dependencies involved with the variables. Weights are also added to each type of 
dependency to balance the complexity. The variable complexity is shown in (3.1). 

𝑐 = 𝑤𝑑(𝑛) + 𝑤𝑠(𝑛)+𝑤𝑙(𝑛)     (3.1) 

where 𝑐 denotes variable complexity, 𝑛 denotes the number of dependencies 
associated with the variables, 𝑤𝑑, 𝑤𝑠, and 𝑤𝑙 denote weights for data, selection, and 
loop dependency, respectively. From the preliminary experiment, 𝑤𝑑 holds the 
minimum value while 𝑤𝑙 holds the maximum value. It was found that choosing 
prime factor to be the weight values yielded better discriminating power than any 
arbitrary values. Thus, total variable complexity (𝑡𝑐) can be determined by (3.2), 
where 𝑁 denotes the number of variables in the module. 

𝑡𝑐 =  ∑ 𝑐𝑖
𝑁
𝑖      (3.2) 

n arr 

sum 

L4 D 
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Cohesion complexity (𝐶𝑐) is the value of total variable complexity bounded with 
cohesion level as shown in (3.3) 

      𝐶𝑐 = √𝑡𝑐
𝑎

               (3.3) 

where 𝑎 denotes the cohesion level. The algorithm for computing cohesion 
complexity is shown in Fig. 3.6. 

Algorithm-2 Compute-Cohesion-Complexity 

Input: VDG and Cohesion of Module M 

Output: Cohesion_complexity of Module M 

begin 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦 ← {𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙, 𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙, 

                                      𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙}; 

𝑡𝑐 = 0; 

𝒇𝒐𝒓 𝑖 ← 1 𝒕𝒐 7 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏 

     𝒊𝒇 (𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦𝑖) 𝒕𝒉𝒆𝒏 

          𝑎 ← 𝑖; 

          break; 

end for; 

𝑁 ← |𝜗(𝑉𝑀) |; 

𝒇𝒐𝒓 𝑗 ← 1 𝒕𝒐 𝑁 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏  

     𝒊𝒇 (𝑑𝑒𝑔−(𝜗𝑖) = 0) 𝒕𝒉𝒆𝒏 

          𝑡𝑐 ← 𝑡𝑐 + 1; 

     𝒆𝒍𝒔𝒆 

          𝑡𝑐 ←  𝑡𝑐 + (𝑤𝑑(𝑑𝑒𝑔
−(𝜗𝑖)) + 𝑤𝑠(𝑑𝑒𝑔

−(𝜗𝑖))+𝑤𝑙(𝑑𝑒𝑔
−(𝜗𝑖))); 

𝒆𝒏𝒅 𝒇𝒐𝒓; 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← √𝑡𝑐
𝑎

; 

𝒓𝒆𝒕𝒖𝒓𝒏 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦; 

𝒆𝒏𝒅; 

Figure 3.6 Algorithm for determining cohesion complexity 
The following examples demonstrate 𝐶𝑐 computation measure of each cohesion 
level. 
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Example3.8: Cc computation for coincidental cohesion 

 
 

Module cohesion: Coincidental (𝑎=1) 
𝑐𝑛1 = 1 

𝑐𝑎𝑟𝑟1 = 1 

𝑐𝑠𝑢𝑚1 = 𝑤𝑑(𝑛𝑠𝑢𝑚1) + 𝑤𝑠(𝑛𝑠𝑢𝑚1)+𝑤𝑙(𝑛𝑠𝑢𝑚1) 

= 7(2) + 0(2) + 3(2) 

= 20 

𝑐𝑛2 = 1 

𝑐𝑎𝑟𝑟2 = 1 

𝑐𝑠𝑢𝑚2 = 𝑤𝑑(𝑛𝑠𝑢𝑚2) + 𝑤𝑠(𝑛𝑠𝑢𝑚2)+𝑤𝑙(𝑛𝑠𝑢𝑚2) 

= 7(2) + 0(2) + 3(2) 

= 20  

𝑡𝑐 = 𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2 

=  1 + 1 + 20 + 1 + 1 + 20 

=  44 

𝐶𝑐 =  √44
1

= 44  

 

 

 

 

sum1 

arr1 n1 

L6 D 

sum2 

arr2 n2 

L8 D 
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Example3.9: Cc computation for logical cohesion 

 
 

Module cohesion: Logical (𝑎=2)  
𝑐𝑛1 =  1 

𝑐𝑎𝑟𝑟1 =  1 

𝑐𝑓𝑙𝑎𝑔 =  1 

𝑐𝑠𝑢𝑚1 = 𝑤𝑑(𝑛𝑠𝑢𝑚1) + 𝑤𝑠(𝑛𝑠𝑢𝑚1)+𝑤𝑙(𝑛𝑠𝑢𝑚1) 

=  7(3) + 5(3) + 3(3) 

=  45 

𝑐𝑛2 =  1 

𝑐𝑎𝑟𝑟2 =  1 

𝑐𝑠𝑢𝑚2 = 𝑤𝑑(𝑛𝑠𝑢𝑚2) + 𝑤𝑠(𝑛𝑠𝑢𝑚2)+𝑤𝑙(𝑛𝑠𝑢𝑚2) 

=  7(3) + 5(3) + 3(3) 

=  45 

𝑡𝑐 = 𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑓𝑙𝑎𝑔 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2 

= 1 + 1 + 1 + 45 + 1 + 1 + 45 

= 95 

𝐶𝑐 = √95
2

= 9.7468 
 

 

 

n1 arr1 flag n2 arr2 

sum1 sum2 

L7 L10 S(6,t) S(6,f) D D 
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Example3.10: Cc computation for procedural cohesion 

 
 

Module cohesion: Procedural (𝑎=4) 
𝑐𝑎𝑟𝑟1 =  1 

𝑐𝑛 =  1 

𝑐𝑎𝑟𝑟2 =  1 

𝑐𝑝𝑟𝑜𝑑1 = 𝑤𝑑(𝑛𝑝𝑟𝑜𝑑1) + 𝑤𝑠(𝑛𝑝𝑟𝑜𝑑1)+𝑤𝑙(𝑛𝑝𝑟𝑜𝑑1) 

=  7(2) + 0(2) + 3(2) 

=  20 

𝑐𝑝𝑟𝑜𝑑2 = 𝑤𝑑(𝑛𝑝𝑟𝑜𝑑2) + 𝑤𝑠(𝑛𝑝𝑟𝑜𝑑2)+𝑤𝑙(𝑛𝑝𝑟𝑜𝑑2) 

=  7(2) + 0(2) + 3(2) 

=  20 

𝑡𝑐 = 𝑐𝑎𝑟𝑟1 + 𝑐𝑛 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑝𝑟𝑜𝑑1 + 𝑐𝑝𝑟𝑜𝑑2 

= 1 + 1 + 1 + 20 + 20 

= 43 

𝐶𝑐 = √43
4

= 2.5607 
 

 

 

 

 

arr1 n arr2 

prod2 prod1 

L6 L6 D D 
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Example3.11: Cc computation for communicational cohesion 

 
 
Module cohesion: Communicational (𝑎=5) 
𝑐𝑛 =  1 

𝑐𝑎𝑟𝑟1 =  1 

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛𝑠𝑢𝑚) + 𝑤𝑠(𝑛𝑠𝑢𝑚)+𝑤𝑙(𝑛𝑠𝑢𝑚) 

=  7(2) + 0(5) + 3(2) 

=  20 

𝑐𝑝𝑟𝑜𝑑 = 𝑤𝑑(𝑛𝑝𝑟𝑜𝑑) + 𝑤𝑠(𝑛𝑝𝑟𝑜𝑑)+𝑤𝑙(𝑛𝑝𝑟𝑜𝑑) 

=  7(2) + 0(5) + 3(2) 

=  20 

𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛𝑎𝑣𝑔) + 𝑤𝑠(𝑛𝑎𝑣𝑔)+𝑤𝑙(𝑛𝑎𝑣𝑔) 

=  0(2) + 0(2) + 3(2) 

=  6 

𝑡𝑐 = 𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑 + 𝑐𝑎𝑣𝑔 

= 1 + 1 + 20 + 20 + 6 

= 48 

𝐶𝑐 = √48
5

= 2.1689 
 

 

 

n arr 

avg 

sum prod 

L5 L5 D D 

D 

D 
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Example3.12: Cc computation for sequential cohesion 

 
 

Module cohesion: Sequential (𝑎=6)  
𝑐𝑛 =  1 

𝑐𝑓𝑖𝑏_𝑎𝑟𝑟 = 𝑤𝑑(𝑛𝑓𝑖𝑏_𝑎𝑟𝑟) + 𝑤𝑠(𝑛𝑓𝑖𝑏_𝑎𝑟𝑟)+𝑤𝑙(𝑛𝑓𝑖𝑏_𝑎𝑟𝑟) 

= 0(1) + 0(1) + 7(1) 

= 7 

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛𝑠𝑢𝑚) + 𝑤𝑠(𝑛𝑠𝑢𝑚)+𝑤𝑙(𝑛𝑠𝑢𝑚) 

=  3(2) + 0(2) + 0(2) 

=  6 

𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛𝑎𝑣𝑔) + 𝑤𝑠(𝑛𝑎𝑣𝑔)+𝑤𝑙(𝑛𝑎𝑣𝑔) 

=  3(1) + 0(2) + 0(2) 

=  3 

𝑡𝑐 = 𝑐𝑛 + 𝑐𝑓𝑖𝑏_𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑎𝑣𝑔 

= 1 + 7 + 6 + 3 

= 17 

𝐶𝑐 = √17
6

= 1.6035 
 
 

 

Sum 

n 

fib_arr 

 

avg 

D 

D 

D 

L7 
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Example3.13: Cc computation for functional cohesion 

 
 

Module cohesion: Functional (𝑎=7) 
 𝑐𝑛 = 1 

𝑐𝑎𝑟𝑟 = 1 

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛𝑠𝑢𝑚) + 𝑤𝑠(𝑛𝑠𝑢𝑚)+𝑤𝑙(𝑛𝑠𝑢𝑚) 

= 7(2) + 0(2) + 3(2) 

= 20 

𝑡𝑐 =  𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 

= 1 + 1 + 20 

= 22 

𝐶𝑐 = √22
7

= 1.5552 

 

The cohesion complexity based on example 3.9 can be explained as follows. 
𝑉𝐷𝐺 of 𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 contains five common variables and two output variables, 
the relationship among processing elements matches the associative rule 

∃𝑧 (𝑧
𝑆(∗,∗)
→   𝑥 ˄ 𝑧

𝑆(∗,∗)
→   𝑦) in Table 2.1 which is logical cohesion. Note that 𝑧 denotes 

𝑓𝑙𝑎𝑔, 𝑥 denotes 𝑠𝑢𝑚1 and 𝑦 denotes s𝑢𝑚2. The relationships among 𝑧, 𝑥 and 𝑧, 𝑦 
are 𝑆(6, 𝑡) and 𝑆(6, 𝑓), respectively. If a variable associates with a particular type of 
dependency, the value of 𝑤𝑑, 𝑤𝑠, and 𝑤𝑙 will be set to the smallest prime factors 3, 
5, and 7 for data, selection, and loop dependencies, respectively. Otherwise, they 
are set to 0. Since there is no in-degree of nodes 𝑛1, 𝑎𝑟𝑟1, 𝑓𝑙𝑎𝑔, 𝑛2, and 𝑎𝑟𝑟2 in 
the graph of example 3.9, each variable complexity of these variables is 1. However, 
there are three in-degrees of 𝑠𝑢𝑚1 node and three in-degrees of 𝑠𝑢𝑚2 node, so 𝑛 

n arr 

sum 

L4 D 
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in (3.1) for both 𝑠𝑢𝑚1 and 𝑠𝑢𝑚2 is 3. Hence, 𝑡𝑐 =  1 +  1 +  1 +  1 +  1 +
 (3(3)  +  5(3)  +  7(3))  + (3(3)  +  5(3)  +  7(3))  =  95. Since module 
𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 is considered logical cohesion, the value of 𝑎 in (3) is 2, the 
cohesion complexity of module 𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 is √952

= 9.7468 

 To prove how the proposed cohesion complexity yields different 𝐶𝑐 values 
for the same two modules having different cohesion levels, 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 
procedure in example 3.11 is selected and modified to use different variable sets, 
hereafter referred to as the original and modified procedures as shown in Fig 3.7. The 
variables participate in cohesion classification consideration are as follows: 𝑠𝑢𝑚, 
𝑝𝑟𝑜𝑑, and 𝑎𝑣𝑔 designate output variables or processing elements, and 𝑛, 𝑎𝑟𝑟, 𝑎𝑟𝑟1, 
and 𝑎𝑟𝑟2 designate common variables. 

Original procedure 

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 

(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  

𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  

𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡)   

2. 𝒃𝒆𝒈𝒊𝒏 

3.     𝑠𝑢𝑚:=  0; 

4.     𝑝𝑟𝑜𝑑:=  1; 

5.     𝒇𝒐𝒓 𝑖: = 1 𝒕𝒐 𝑛 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏 

6.          𝑠𝑢𝑚:=  𝑠𝑢𝑚 + 𝑎𝑟𝑟[𝑖]; 

7           𝑝𝑟𝑜𝑑:=  𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟[𝑖]; 

8.     𝒆𝒏𝒅; 

9.     𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
; 

10. 𝒆𝒏𝒅; 

Modified procedure  

1. 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 

(𝑛: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  𝑎𝑟𝑟1, 𝑎𝑟𝑟2: 𝑖𝑛𝑡_𝑎𝑟𝑟𝑎𝑦;  

𝑣𝑎𝑟 𝑠𝑢𝑚, 𝑝𝑟𝑜𝑑: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟;  

𝑣𝑎𝑟 𝑎𝑣𝑔: 𝑓𝑙𝑜𝑎𝑡)   

2. 𝒃𝒆𝒈𝒊𝒏 

3.     𝑠𝑢𝑚:=  0; 

4.     𝑝𝑟𝑜𝑑:=  1; 

5.     𝒇𝒐𝒓 𝑖: = 1 𝒕𝒐 𝑛 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏 

6          𝑝𝑟𝑜𝑑:=  𝑝𝑟𝑜𝑑 ∗ 𝑎𝑟𝑟1[𝑖]; 

7.         𝑠𝑢𝑚:=  𝑠𝑢𝑚 + 𝑎𝑟𝑟2[𝑖]; 

8.     𝒆𝒏𝒅; 

9.     𝑎𝑣𝑔 ≔
𝑠𝑢𝑚

𝑛
; 

10. 𝒆𝒏𝒅; 

Figure 3.7 Procedure of module Sum_and_Prod. 
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Table 3.1 Dependencies of module Sum_and_Prod 

Dependency 𝑫𝒊  Original procedure Modified procedure 

𝐷1 𝑛
𝐿(5)
→  𝑠𝑢𝑚 𝑛

𝐿(5)
→  𝑠𝑢𝑚 

𝐷2 𝑛
𝐿(5)
→  𝑝𝑟𝑜𝑑 𝑛

𝐿(5)
→  𝑝𝑟𝑜𝑑 

𝐷3 𝑛
𝐷
→𝑎𝑣𝑔 𝑛

𝐷
→𝑎𝑣𝑔 

𝐷4 𝑠𝑢𝑚
𝐷
→𝑎𝑣𝑔 𝑠𝑢𝑚

𝐷
→𝑎𝑣𝑔 

𝐷5 𝑎𝑟𝑟
𝐷
→ 𝑠𝑢𝑚 𝑎𝑟𝑟2

𝐷
→ 𝑠𝑢𝑚 

𝐷6 𝑎𝑟𝑟
𝐷
→𝑝𝑟𝑜𝑑 𝑎𝑟𝑟1

𝐷
→𝑝𝑟𝑜𝑑 

 

 Table 3.1 lists the dependencies of 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 original and modified 
procedures. In both procedures, they cannot be considered as 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 cohesion 
because the number of processing elements is more than one. Using the association 
rules in Table 2.1 and Algorithm-1, 𝐷1 and 𝐷2 of the original procedure match 
associative rule 3 (𝑛

𝐿(5)
→  𝑠𝑢𝑚 ˄ 𝑛

𝐿(5)
→  𝑝𝑟𝑜𝑑), while 𝐷5 and 𝐷6 match associative rule 

4 (𝑎𝑟𝑟
𝐷
→ 𝑠𝑢𝑚 ˄ 𝑎𝑟𝑟

𝐷
→ 𝑝𝑟𝑜𝑑). There are two qualified cohesion levels, namely, 

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 and 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 for 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 procedure. Hence 
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 is selected since it is the higher level. 𝐷4 matches associative rule 
5 (𝑠𝑢𝑚

𝐷
→ 𝑎𝑣𝑔). D3 does not participate in Algorithm-1 and is not considered. The 

overall assessment of the original module is therefore 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion 
since it is lower than 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 cohesion of 𝐷4. Similarly, 𝐷1 and 𝐷2 of the modified 
procedure match associative rule 3 (𝑛

𝐿(5)
→  𝑠𝑢𝑚 ˄ 𝑛

𝐿(5)
→  𝑝𝑟𝑜𝑑), and 𝐷4 matches 

associative rule 5 (𝑠𝑢𝑚
𝐷
→ 𝑎𝑣𝑔). So the modified procedure is determined as 

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙 cohesion. 
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Table 3.2 Variable and total complexity of module Sum_and_Prod 

Variable complexity (𝑐) 
Original procedure Modified procedure 

𝑐𝑛 =  0 𝑐𝑛 =  0 

𝑐𝑎𝑟𝑟 =  0 𝑐𝑎𝑟𝑟1 =  0 

𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛1)+𝑤𝑙(𝑛1) 𝑐𝑎𝑟𝑟2 =  0 

𝑐𝑝𝑟𝑜𝑑 = 𝑤𝑑(𝑛2)+𝑤𝑙(𝑛2) 𝑐𝑠𝑢𝑚 = 𝑤𝑑(𝑛1)+𝑤𝑙(𝑛1) 

𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛3) 𝑐𝑝𝑟𝑜𝑑 = 𝑤𝑑(𝑛2)+𝑤𝑙(𝑛2) 

 𝑐𝑎𝑣𝑔 = 𝑤𝑑(𝑛3) 

Total variable complexity (𝑡𝑐) 
𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑+𝑐𝑎𝑣𝑔 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑+𝑐𝑎𝑣𝑔 

 

 In Table 3.2, the values of variable complexity (𝑐) in both procedures are the 
same, so are total variable complexity (𝑡𝑐). Thus, the values of 𝑎 in the original and 
modified modules are 𝑎1 and 𝑎2, respectively, where 𝑎1  >  𝑎2 
(𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 >  𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙). This yields √𝑡𝑐𝑎1

< √𝑡𝑐
𝑎2 . 

 

3.3 Modified Cohesion Complexity 

The range of 𝐶𝑐 values in the previous section 3.2 is quite high among the low 
cohesion levels as the illustrating examples are somewhat contrasting. For example, 
𝐶𝑐 value for the next-to of low cohesion levels like coincidental and logical module 
cohesion are 44 and 9.7468, respectively, which gives the range of 34.2532. As such, 
its applicability could be limited. An alternative approach is also proposed to reduce 
the ranges between levels. The new modified 𝐶𝑐 measure is describes below. 

If a variable does not depend on any variables, complexity of the variable is 0.1, 
otherwise the complexity of the variable is the summation of dependence 
complexity on other variables. That is,  

𝑐 =  ∑ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 
3
𝑖=1             (3.4) 

and dependency complexity becomes 

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖  =  𝑎𝑑𝑡𝑖 × 𝑡𝑑 × 𝑑𝑤𝑖   (3.5) 
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where 𝑖 denotes dependency type 𝑖 =  1 or data dependence, 𝑖 =  2   or selection 
dependence, and 𝑖 =  3 or loop dependence. 𝑎𝑑𝑡𝑖  denotes number of 
associated dependency type 𝑖 of the variable. 𝑡𝑑 denotes number of total variables 
on which the variable depends. 𝑑𝑤 denotes the weight for each type of 
dependency. Thus, the total variable complexity 𝑡𝑐 is the summation of all variable 
complexity plus 1, that is  

𝑡𝑐 =  1 + ∑ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑛
𝑁
𝑛    (3.6) 

where 𝑛 denotes variables in module 𝑀. The 𝐶𝑐 can be computed as  

𝐶𝑐 = 𝑡𝑐0.𝑎     (3.7) 

where 𝑎 denotes cohesion level (functional = 1, sequential = 2, …, coincidental = 7).  

Many trial-and-error runs were tested to determine an appropriate scale for 
the weight parameters in (3.7). Table 3.3 shows the results of 𝐶𝑐 values and 0.1 
yielded the best range spreading. 

Table 3.3 Computation of Cc value using various scales 

Procedure 0.001 0.05 0.1 0.5 1 2 
Sum1_and_Sum2 1.0334 2.3552 3.4229 9.5183 15.0269 24.4112 

Percentage difference 1.8147 14.8487 13.4998 3.6726 1.6524 8.2380 
Sum1_or_Sum2 1.0525 2.7659 3.9571 9.8812 14.7786 22.4002 

Percentage difference 3.2304 41.3609 49.3038 63.6208 68.4348 72.2886 
Prod1_and_Prod2 1.0185 1.6219 2.0061 3.5947 4.6649 6.2074 

Percentage difference 0.2553 8.7058 13.0053 24.4053 29.0617 34.3670 
Sum_and_Prod 1.0159 1.4807 1.7452 2.7174 3.3092 4.0741 

Percentage difference 1.1714 22.4218 28.6214 40.5535 44.9837 48.6684 
Fibo_Avg 1.0040 1.1487 1.2457 1.6154 1.8206 2.0913 

Percentage difference 0.1594 5.8066 9.2719 19.9950 24.5249 29.5797 
Sum 1.0024 1.0820 1.1302 1.2924 1.3741 1.4727 
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Figure 3.8 Graph of Cc computation using various scales 
  

Fig 3.8. depicts 𝐶𝑐 plots of 6 sample modules arranged from coincidental 
cohesion to functional cohesion. The graph shows that the scales at 2, 1, and 0.5 
give very high ranges in low cohesion levels while the scales 0.05 and 0.001 give 
undiscernable differentiation between the levels. It is apparent that, 0.1 gives the 
best distinguishable the differences between the levels. The scales at 0.001, 0.05, 
0.1, and 0.5 make the results of 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion greater than 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 
cohesion, this is because the examples are very small in term of size and the two 
modules are very similar to each other. 𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2  which determine as 
𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion has more variable than 𝑆𝑢𝑚1_𝑎𝑛𝑑_𝑆𝑢𝑚2 which determine as 
𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 cohesion and there are more relations among the variables in 
𝑆𝑢𝑚1_𝑜𝑟_𝑆𝑢𝑚2 module, these are the reasons that cause 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 results 
greater complexity than 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion. The total complexity (𝑡𝑐) of the scales at 
1 and 2 are higher compares to the rests and when powered by 𝑎, 𝐶𝑐 of 
𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 cohesion (𝑎 = 0.7) spreads a lot faster than 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion (𝑎 = 0.6) 
eventhough 𝑡𝑐 for 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion is higher. However, this case rarely occurs in real 
world implementation as shown in the next chapter 4 experiment, the results are 
distinguishable and spread evenly. 
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Therefore, a standard score for each variable complexity is 0.1. To further 
elaborate the expressiveness of the measures, additional terms are added to 
compute variable complexity. 𝑎𝑑𝑡 tells exactly how many instances of dependency 
involved with each variable, while 𝑡𝑑 is the 𝑛 value in the previous method.   As for 
weight factor, data dependence still has the smallest value, selection dependence 
holds intermediate values, and loop dependence has the highest value. The 
rationale has been described in Section 3.2.  

The criteria for determining these weights are as follows. For a plain data 
dependence where a variable does not depend on any variable, its weight is 0.1. If 
the variable depends on other variables, the weight becomes 0.2. For selection 
dependence, there must be at least one condition check. Thus, the weight is set to 
0.3. For loop dependence, at least three condition checks are required. There are 
initialization, termination, and increment-decrement. The weight is equal to 
3 × 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 or 0.9. As 𝑡𝑐 is bounded by the new values raising to the 
power of 0. 𝑎, the range of 𝐶𝑐 between low cohesion level becomes closer. This is 
because the previous method 𝑡𝑐 is bounded 𝑎th root or in the other word 𝑡𝑐 is 

bounded by the power of 
1

𝑎
  which is hard to control the value since 

1

𝑎
 is not linear. 

A constant 1 is added to prevent the result of 𝑡𝑐 to the power of 0. 𝑎  which could 
yield the value less than 1. 

 

Algorithm-2 Compute-Cohesion-Complexity 

Input: VDG and Cohesion of Module M 

Output: Cohesion_complexity of Module M 

begin 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦 ← {𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙, 𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑎𝑙, 

                                      𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙}; 

𝑡𝑐 = 0; 

𝒇𝒐𝒓 𝑖 ← 1 𝒕𝒐 7 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏 

     𝒊𝒇 (𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝐴𝑟𝑟𝑎𝑦𝑖) 𝒕𝒉𝒆𝒏 

          𝑎 ← 𝑖; 

          break; 

end for; 

𝑁 ← |𝜗(𝑉𝑀) |; 
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𝒇𝒐𝒓 𝑗 ← 1 𝒕𝒐 𝑁 𝒅𝒐 𝒃𝒆𝒈𝒊𝒏  

     𝒊𝒇 (𝑑𝑒𝑔−(𝜗𝑖) = 0) 𝒕𝒉𝒆𝒏 

          𝑡𝑐 ← 𝑡𝑐 + 0.1; 

     𝒆𝒍𝒔𝒆 

          𝑡𝑐 ←  𝑡𝑐 + ∑ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 
3
𝑖=1 ; 

𝒆𝒏𝒅 𝒇𝒐𝒓; 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← √𝑡𝑐
𝑎

; 

𝒓𝒆𝒕𝒖𝒓𝒏 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦; 

𝒆𝒏𝒅; 

 

Figure 3.9 Algorithm for determining cohesion complexity 
 

The following examples demonstrate modified 𝐶𝑐 measure of each cohesion 
level. 
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Example3.14: Modified Cc computation for coincidental cohesion 

Module cohesion: Coincidental (𝑎 = 0.7) 

 

𝑐𝑛1 =  0.1 

𝑐𝑎𝑟𝑟1 =  0.1 

𝑐𝑠𝑢𝑚1 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑐𝑛2 =  0.1 

𝑐𝑎𝑟𝑟2 =  0.1 

𝑐𝑠𝑢𝑚2 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑡𝑐 = 1 + (𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2) 

= 1 + (0.1 + 0.1 + 2.2 + 0.1 + 0.1 + 2.2) 

= 5.8 

𝐶𝑐 =  5.80.7 = 3.4229 

 

 

 

sum1 

arr1 n1 

L6 D 

sum2 

arr2 n2 

L8 D 
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Example3.15: Modified Cc computation for logical cohesion 

Module cohesion: Logical (𝑎 = 0.6) 

 

𝑐𝑛1 =  0.1 

𝑐𝑎𝑟𝑟1 =  0.1 

𝑐𝑓𝑙𝑎𝑔 =  0.1 

𝑐𝑠𝑢𝑚1 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (3)(0.2)] + [(1) (3)(0.3)]  +  [(1) (3)(0.9)] 

=  4.2 

𝑐𝑛2 =  0.1 

𝑐𝑎𝑟𝑟2 =  0.1 

𝑐𝑠𝑢𝑚2 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (3)(0.2)] + [(1) (3)(0.3)]  +  [(1) (3)(0.9)] 

=  4.2 

𝑡𝑐 = 1 + (𝑐𝑛1 + 𝑐𝑎𝑟𝑟1 + 𝑐𝑓𝑙𝑎𝑔 + 𝑐𝑠𝑢𝑚1 + 𝑐𝑛2 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑠𝑢𝑚2) 

= 1 + (0.1 + 0.1 + 0.1 + 4.2 + 0.1 + 0.1 + 4.2) 

= 9.9 

𝐶𝑐 =  9.90.6 = 3.9571 

n1 arr1 flag n2 arr2 

sum1 sum2 

L7 L10 S(6,t) S(6,f) D D 
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Example3.16: Modified Cc computation for procedural cohesion 

Module cohesion: Procedural (𝑎 = 0.4) 

 

𝑐𝑎𝑟𝑟1 =  0.1 

𝑐𝑛 =  0.1 

𝑐𝑎𝑟𝑟2 =  0.1 

𝑐𝑝𝑟𝑜𝑑1 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑐𝑝𝑟𝑜𝑑2 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  + [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑡𝑐 = 1 + (𝑐𝑎𝑟𝑟1 + 𝑐𝑛 + 𝑐𝑎𝑟𝑟2 + 𝑐𝑝𝑟𝑜𝑑1 + 𝑐𝑝𝑟𝑜𝑑2) 

= 1 + (0.1 + 0.1 + 0.1 + 2.2 + 2.2) 

= 5.7 

𝐶𝑐 =  5.70.4 = 2.0061 

 

 

 

arr1 n arr2 

prod2 prod1 

L6 L6 D D 
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Example3.17: Modified Cc computation for communicational cohesion 

Module cohesion: Communicational (𝑎 = 0.3) 

 

𝑐𝑛 =  0.1 

𝑐𝑎𝑟𝑟1 =  0.1 

𝑐𝑠𝑢𝑚 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑐𝑝𝑟𝑜𝑑 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑐𝑎𝑣𝑔 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(2) (2)(0.2)] + [(0) (0)(0.3)]  +  [(0) (0)(0.9)] 

=  0.8 

𝑡𝑐 = 1 + (𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑 + 𝑐𝑎𝑣𝑔) 

= 1 + (0.1 + 0.1 + 2.2 + 2.2 + 0.8) 

= 6.4 

𝐶𝑐 =  6.40.3 = 1.7452 

n arr 

avg 

sum prod 

L5 L5 D D 

D 

D 
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Example3.18: Modified Cc computation for sequential cohesion 

Module cohesion: Sequential (𝑎 = 0.2) 

 

𝑐𝑛 =  0.1 

𝑐𝑓𝑖𝑏_𝑎𝑟𝑟 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(0) (0)(0.2)] + [(0) (0)(0.3)]  +  [(1) (1)(0.9)] 

=  0.9 

𝑐𝑠𝑢𝑚 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(2) (2)(0.2)] + [(0) (0)(0.3)]  +  [(0) (0)(0.9)] 

=  0.8 

𝑐𝑎𝑣𝑔 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (1)(0.2)] + [(0) (0)(0.3)]  +  [(0) (0)(0.9)] 

=  0.2 

𝑡𝑐 = 1 + (𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚 + 𝑐𝑝𝑟𝑜𝑑 + 𝑐𝑎𝑣𝑔) 

= 1 + (0.1 + 0.9 + 0.8 + 0.2) 

= 3 

𝐶𝑐 =  30.2 = 1.2457 

Sum 

n 

fib_arr 

 

avg 

D 

D 

D 

L7 
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Example3.19: Modified Cc computation for functional cohesion 

Module cohesion: Functional (𝑎 = 0.1) 

 

𝑐𝑛 =  0.1 

𝑐𝑎𝑟𝑟 =  0.1 

𝑐𝑠𝑢𝑚 = [𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ] + [𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦]  +  [𝑙𝑜𝑜𝑝 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦] 

= [(𝑎𝑑𝑡𝑑) (𝑡𝑑)(𝑤𝑑)] + [(𝑎𝑑𝑡𝑠) (𝑡𝑑)(𝑤𝑠)]  +  [(𝑎𝑑𝑡𝑙) (𝑡𝑑)(𝑤𝑙)] 

= [(1) (2)(0.2)] + [(0) (0)(0.3)]  +  [(1) (2)(0.9)] 

=  2.2 

𝑡𝑐 = 1 + (𝑐𝑛 + 𝑐𝑎𝑟𝑟 + 𝑐𝑠𝑢𝑚) 

= 1 + (0.1 + 0.1 + 2.2) 

= 3.4 

𝐶𝑐 =  3.40.1 = 1.1302 

 

 

 

 

 

 

 

 

 

n arr 

sum 

L4 D 
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 Table 3.4 shows the ranges between original 𝐶𝑐 measures and modified 𝐶𝑐 
measures. 

Table 3.4 Ranges of Cc measure between cohesion levels 
Procedure Cc measure Modified Cc measure 

Sum1_and_Sum2 44 3.4229 
Range 34.2532 0.5342 
Sum1_or_Sum2 9.7468 3.9571 
Range 7.1861 1.951 
Prod1_and_Prod2 2.5607 2.0061 
Range 0.3918 0.2609 
Sum_and_Prod 2.1689 1.7452 
Range 0.5654 0.4995 
Fibo_Avg 1.6035 1.2457 
Range 0.0483 0.1155 
Sum 1.5552 1.1302 

 

3.4 Module decomposition process 

In case the number of members in 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑝𝑎𝑖𝑟𝑠 is more than one 
which means there is more than one type of cohesion involved, the lowest level will 
be selected. Higher cohesion is still hidden inside the module. From the above 
original 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 procedure which is classified as 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 
cohesion, it can be further decomposed to improve for higher cohesion construct [9]. 

Such an explicit decomposition is illustrated in Fig. 3.10. 
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Figure 3.10 Variable dependence graph of module Sum_and_Prod 
 

There are two 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑝𝑎𝑖𝑟𝑠 in the original 
𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 procedure, i.e., 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 and 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesions as 
shown earlier. The module is decomposed into two blocks. The first block is 
composed of 𝑛, 𝑎𝑟𝑟, 𝑠𝑢𝑚, and 𝑎𝑣𝑔, the two output variables form 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 
cohesion. The other module is composed of 𝑛, 𝑎𝑟𝑟, 𝑠𝑢𝑚 and 𝑝𝑟𝑜𝑑 that form 
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 cohesion as they refer to the same input 𝑎𝑟𝑟. Cohesion 
complexity of this module before decomposition is 1.7452 and after decomposition 
for both blocks are 1.2287 and 1.6767. Thus, the modules are classified to be 
sequential and communicational cohesion. Note that the lower the value, the higher 
the cohesion level. In principle, modules are decomposed as finer grained as the 
number of output variables found. 

 

  

D 

arr 
n 

sum prod 

avg 

D 

D 

D 
L(5) 

L(8) 
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CHAPTER 4 EXPERIMENT 

In the experiment, both 𝐶𝑐 measure and modified method were tested with 
module designs and real programs. Programs and module designs were translated 
into 𝑉𝐷𝐺 before inputted to a Cohesion Complexity Measure tool or 𝐶𝐶𝑀. 𝐶𝐶𝑀 
automatically computes 𝐶𝑐 value, cohesion between pairs, and module cohesion. 
Results of the experiment are described in the sections that follow. 

4.1 Experiments on Cc Measure 

Two programs written in C from [10] and [11] and nine modules from [12] and 
[13] were used. The first program is a “Tic Tac Toe” game and the second one is a 
phone service called “PHONEV2A.” The former contains six modules and the latter 
contains thirteen modules. Table 4.1 shows the results of independent module 
cohesion level. The value of cohesion complexity indicates the degree by which 
developers can objectively discriminate their design cohesion through the proposed 
quantitative technique. Table 4.2 and 4.3 depict the results of all test programs 
(whose name appears in column one) cohesion complexity with help of the 𝐶𝐶𝑀 
tool. The second column shows type of cohesion found in the module. The third 
column shows the resulting cohesion level of the module under investigation based 
on Algorithm-1. The fourth column shows the resulting 𝐶𝑐 value which has been 
demonstrated using 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 in Section 3.2. For 𝑆𝑢𝑚_𝑎𝑛𝑑_𝑃𝑟𝑜𝑑 example, 
there were three types of cohesion found, namely, coincidental, communicational, 
and sequential, the resulting cohesion using Algorithm-1 turned out to be 
communicational, having 𝐶𝑐 =  2.1689 by Eq (3.3). 
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Table 4.1 Results of module cohesion level and corresponding Cc value 

Name Cohesion Found Module Cohesion 
Cohesion 

Complexity 
Sum1_and_Sum2 Coincidental Coincidental 44 
Sum1_or_Sum2 Logical Logical 9.7468 
Prod1_and_Prod2 Procedural Procedural 2.5607 

Sum_and_Prod 
Coincidental 
Communicational 
Sequential 

Communicational 2.1689 

Fibo_Avg Sequential Sequential 1.6035 
Sum Functional Functional 1.5552 
Avg_or_Range Logical Logical 12.6491 
Avg_and_SD Communicational Communicational 2.2974 
SD_and_Var Sequential Sequential 1.8644 

 

Table 4.2 Results of modules in Tic Tac Toe and Cc assessment 

Name Cohesion Found 
Module 

Cohesion 
Cohesion 

Complexity 
Showframe Coincidental Coincidental 11.0000 
Showbox Undefined Undefined - 
Putintobox Functional Functional 1.5112 
Gotobox Undefined Undefined - 
Navigate Functional Functional 1.3459 
Checkforwin Functional Functional 1.2917 
Boxesleft Functional Functional 1.2917 
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Table 4.3 Results of modules in PHONEV2A and Cc assessment 

Name Cohesion Found 
Module 

Cohesion 
Cohesion 

Complexity 
menu Functional Functional 1.000 
chkstrdig Undefined Undefined - 

DeleteEntry 
Coincidental 
Procedural 
Sequential 

Procedural 4.4238 

FindPhone 
Procedural 
Sequential 

Procedural 3.6109 

FindRoom 
Procedural 
Sequential 

Procedural 3.6109 

GeTotalEntries Functional Functional 1.0000 
ListAll Sequential Sequential 1.6189 

SortAllEntries 
Coincidental 
Procedural 
Sequential 

Procedural 3.4879 

AddEntry coincidental coincidental 9.0000 
drawscreen undefined undefined - 

exitmenu 
Procedural 
Sequential 

Procedural 3.1137 

LoadDB 
Coincidental 
Procedural 

Procedural 3.6002 

refreshscreen undefined undefined - 
 

4.2 Experiments on Modified Cc Measure 

In modified 𝐶𝑐 measure method, some algorithms in [11] which are written in C, 
all previous input programs, and designed module are tested. The results of 𝐶𝑐 
value are shown as follows: 
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Table 4.4 Results of module cohesion level and corresponding Cc value 

Name Cohesion Found Module Cohesion 
Cohesion 

Complexity 
Sum1_and_Sum2 Coincidental Coincidental 3.4229 
Sum1_or_Sum2 Logical Logical 3.9571 

Prod1_and_Prod2 Procedural Procedural 2.0061 

Sum_and_Prod 
Coincidental 

Communicational 
Sequential 

Communicational 1.7452 

Fibo_Avg Sequential Sequential 1.2457 
Sum Functional Functional 1.1302 

Avg_or_Range Logical Logical 5.7957 
Avg_and_SD Communicational Communicational 1.9267 
SD_and_Var Sequential Sequential 1.4404 

 

Table 4.5 Results of modules in Tic Tac Toe and Cc assessment 

Name Cohesion Found 
Module 

Cohesion 
Cohesion 

Complexity 
Showframe Coincidental Coincidental 1.5672 
Showbox Undefined Undefined - 
Putintobox Functional Functional 1.0820 
Gotobox Undefined Undefined - 
Navigate Functional Functional 1.0481 
Checkforwin Functional Functional 1.0342 
Boxesleft Functional Functional 1.0342 
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Table 4.6 Results of modules in PHONEV2A and Cc assessment 

Name Cohesion Found 
Module 

Cohesion 
Cohesion 

Complexity 
menu Functional Functional 1.0184 
chkstrdig Undefined Undefined - 

DeleteEntry 
Coincidental 
Procedural 
Sequential 

Procedural 5.9013 

FindPhone 
Procedural 
Sequential 

Procedural 3.4181 

FindRoom 
Procedural 
Sequential 

Procedural 3.4181 

GeTotalEntries Functional Functional 1.0096 
ListAll Sequential Sequential 1.2106 

SortAllEntries 
Coincidental 
Procedural 
Sequential 

Procedural 3.4307 

AddEntry coincidental coincidental 1.5090 
drawscreen undefined undefined - 

exitmenu 
Procedural 
Sequential 

Procedural 1.2697 

LoadDB 
Coincidental 
Procedural 

Procedural 3.0009 

refreshscreen undefined undefined - 
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Table 4.7 Results of Algorithm modules and Cc assessment 

Name Cohesion Found 
Module 

Cohesion 
Cohesion 

Complexity 
inputa Functional Functional 1.0718 
outputa Functional Functional 1.1792 
swap Sequential Sequential 1.0986 
dosearch Undefined Undefined - 
getyear Functional Functional 1.0096 
get_day_code Functional Functional 1.1722 
get_leap_year Undefined Undefined - 
print_calendar Functional Functional 1.3057 

 

From the experiments of both methods, coincidental cohesion gives the 
highest value and functional cohesion yields the lowest value. This is in concert with 
standard classification. Notice that the same cohesion level can have different values 
in cohesion complexity. This is because more complex programming modules have 
higher values than the simple ones, despite the same cohesion classification. In the 
program “PHONEV2A”, cohesion complexity of 𝐹𝑖𝑛𝑑𝑃ℎ𝑜𝑛𝑒 and 𝐹𝑖𝑛𝑑𝑅𝑜𝑜𝑚 module 
are the same because the code are identical, but variable names are different which 
result in more variables involved. Fig. 4.1 shows the variable dependency matrix and 
the resulting cohesion complexity value of module 𝐹𝑖𝑛𝑑𝑃ℎ𝑜𝑛𝑒 computed by 𝐶𝐶𝑀 
tool. However, cohesion complexities of some modules do not exist because They 
cannot be classified the level of module cohesion since they have no output 
variable, i.e., processing element. All modules in Table 4.8 were also tested against 
the 𝐹𝐶 measure. 
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Table 4.8 Results of Cc and Fc assessments 

Name 
SMC 

Cohesion 
Cc Measure 

Modified Cc 
Measure 

FC Measure 

Sum1_and_Sum2 Coincidental 44 3.4229 
 

WFC 0.28 

SFC 0.28 

A 0.28 

Sum1_or_Sum2 Logical 9.7468 3.9571 

WFC 0.384
6 

SFC 0.384
6 

A 0.384
6 

Prod1_and_Prod2 Procedural 2.5607 2.0061 

WFC 0.238
0 

SFC 0.238
0 

A 0.238
0 

Sum_and_Prod 
Communica
tional 

2.1689 1.7452 

WFC 0.695
7 

SFC 0.217
4 

A 0.536
2 
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Fibo_Avg Sequential 1.6035 1.2457 

WFC 1 

SFC 1 

A 1 

Sum Functional 1.5552 1.1302 

WFC 0 

SFC 1 

A 0 

Avg_or_Range Logical 12.6491 5.5887 

WFC 0.333
3 

SFC 0.333
3 

A 0.333
3 

Avg_and_SD 
Communica
tional 

2.2974 1.9267 

WFC 0.321
4 

SFC 0.321
4 

A 0.321
4 

SD_and_Var Sequential 1.8644 3.4229 

WFC 1 

SFC 1 

A 1 
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Figure 4.1 Screen capture of CCM on FindPhone program 
 

4.3 Cohesion Complexity Measure Tool 

Cohesion Complexity Measure (𝐶𝐶𝑀) is a tool that computes 𝐶𝑐 value, module 
cohesion, and cohesion between pairs. The tool is written in JAVA language running 
on android platform. This application can also run on Windows by means of 
emulators such as BlueStacks. 𝐶𝐶𝑀 is designed to use 𝑉𝐷𝐺 as its input. Users can 
input the 𝑉𝐷𝐺 by using two alternative methods. First input the graph manually and 
second input the graph via text file in a designated format. 
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Figure 4.2 Home screen 
Fig 4.2 illustrates the home screen of 𝐶𝐶𝑀 tool where user can enter the 

number of variables appears in the module. Then click the OK button, A window will 
pop up with textbox to permit variable name input. If the variable is an output, click 
the checkbox, otherwise, leave it blank. A sample input screen is shown in Fig 4.3. 
The process repeats until all input variable names are entered. Click the Next button 
to go to the variable list screen as shown in Fig 4.4. This screen allows the user to 
make a final change to the variable list. 
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Figure 4.3 Input screen Of CCM 
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Figure 4.4 Variable list screen 
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Figure 4.5 Dependence screen 
The next screen is the dependence screen to enter dependencies between variables. 
There are 3 types of dependency, data, loop, and, selection dependence.  
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Figure 4.6 Dependence window 
After selecting the type of variable dependence, a window pops up to add more 
details relating to the dependence pair. In Fig 4.6, variable sum1 depends on n1 by 
loop dependence at statement 7. 
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Figure 4.7 Result screen 
When all the dependencies are added, 𝐶𝐶𝑀 will compute the result of module 
analysis as shown in Fig 4.7. The result screen depicts dependence matrix between 
variables, where output variables are highlighted in red. Other statistics such as 
cohesion between pairs, module cohesion, common variables, processing elements, 
and Cc value are also shown. 

The alternative option to input the 𝑉𝐷𝐺 is to insert a text file that contains 
information about the graph in a designated format. This text file is created at the 
time the application is launched. The text file ccm_text is formatted as follows: 

variable1, variable2, variable3,…, variablen;  

variableX1 –dpd-> variableY1, variableX2 –dpd-> variableY2, 

variableX3 –dpd-> variableY3, … ,variableXm –dpd-> variableYm; 

The dpd is dependency for each dependence type, i.e. data, loop, and selection 
labeled by D, L, and S, respectively. Loop and selection dependence must be 
followed by the number of statements that the loop or selection occurs in the 
source code. 
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The first statement contains all the variable, each of which is delimited by comma 
(,). Output variables must be followed by an asterisk (*). The second statement 
holds the dependence statement delimited by comma. Both statements terminated 
by semicolons (;). Example 4.1 depicts the 𝑉𝐷𝐺 file format. 

Example 4.1: VDG format 

 

n1, arr1, flag, n2, arr2, sum1*, sum2*; n1 -L7-> sum1, 

arr1 -D-> sum1, flag -S6true-> sum1, flag -S6false-> 

sum2, n2 -L10-> sum2, arr2 -D-> sum2; 

 

4.4 Application of the CCM Tool 

The implementation of 𝐶𝑐 computation and 𝐶𝐶𝑀 tool helps developers 
determine whether any modules should be decomposed or not. For example, the 
result of Avg_or_Range module in Table 4.4 is quite prominent compares with the 
rests of module in the same program. The module gets 5.7957 score while the 
others get less than 3.9 and mostly just above 1.0. Thus, module Avg_or_Range is the 
first candidate that deserves developers’ attention. Since the cohesion of this 
module is 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion and also only 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 cohesion found by cohesion 
between pairs, no better cohesion type can be selected. Nevertheless, developers 
can use the techique provided in Section 3.4. Since, module Avg_or_Range has no 
other cohesion between pairs, the only way to decompose this module by 
separating the output variables as shown in Fig 4.8  

 

n1 arr1 flag n2 arr2 

sum1 sum2 

L7 L10 S(6,t) S(6,f) D D 
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Figure 4.8 Module decomposition for Avg_or_Range 
After decomposition, the original module is divided into two modules having 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 cohesion with the 𝐶𝑐 values to be 1.1543 and 1.2113, respectively. 
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CHAPTER 5 DISCUSSION AND CONCLUSION 

A module should encapsulate some well-defined, coherent piece of 
functionality so that it is easy to maintain, reuse, and portable. This proposed 
method has followed 𝑆𝑀𝐶 cohesion by adopting association rules, variable 
dependence graph, and using output variables as processing elements [4] to 
determine the level of cohesion. Such a quantification helps distinguish finer grained 
of measure for the same level of cohesion in accordance with the de-facto cohesion 
standard [2] Case in point, as 𝐶𝑐 method operates at design stage, developers can 
decide to rectify modular flaws well in advance rather than prolonging the problem 
till coding stage. Another benefit is that the 𝐹𝐶 measure could yield the same value 
for different design characteristics and complexity. For example, in Table VIII, 
procedure 𝐹𝑖𝑏𝑜_𝐴𝑣𝑔 and 𝑆𝐷_𝑎𝑛𝑑_𝑉𝑎𝑟 have the same result value for both 𝑆𝑀𝐶 
cohesion and 𝐹𝐶 measure, but the 𝐶𝑐 values discern that 𝑆𝐷_𝑎𝑛𝑑_𝑉𝑎𝑟 is more 
complex than 𝐹𝑖𝑏𝑜_𝐴𝑣𝑔. 
 More comprehensive quantification schemes can be derived with the help of 
elaborate 𝑉𝐷𝐺 construct and realized as a programming tool. The benefits of 
cohesion complexity measure are several folds. First and foremost, quantitative 
analysis infers more objective design level of software than traditional subjective 
ordinal analysis. Software developers and maintainers can pinpoint the module in 
question and make proper redesign, improvement, or corrective adjustment to 
enhance software quality. Second, performance of software maintenance is efficient 
and effective since the job can be better understood and carried out easier and. 
Third, production of software can keep pace with the rapid technological innovation. 
As a case in point, various modifications, feature enhancement, and bug fixes of 
facebook [14] that have undergone world-wide test and used over the years could 
have been performed with fewer efforts and more objective design decisions. All in 
all, well design modules having less cohesion complexity ease software 
development and maintenance effort which in turn will be conducive toward 
software quality.  

In this research, every 𝑉𝐷𝐺s were manually constructed. Thus, all sample 
modules were confined to small programs. For medium to large programs, it would 
be expedient if there is a supporting to convert source code tool to the 𝑉𝐷𝐺. 
Thereby the output VDG can be further processed by the proposed CCM tool. 
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Alternatively, one can transform source module into VDG directly using some refine 
language [15] having predefine rules and pattern matching.  
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