THE SEGMENTATION OF A URINARY BLADDER AREA FOR AIDING THE PLANNING OF THE CERVICAL CANCER TREATMENT BY BRACHYTHERAPY

Miss Patnaree Wongjaroenkit

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุหาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Biomedical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University การหาพื้นที่กระเพาะปัสสาวะเพื่อช่วยวางแผนรักษามะเร็งปากมดลูกด้วยวิธีใส่แร่

นางสาวพัฒน์นรี วงค์เจริญกิจ

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมชีวเวช คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

หัวข้อวิทยานิพนธ์	การหาพื้นที่กระเพาะปัสสาวะเพื่อช่วยวางแผนรักษา
	มะเร็งปากมดลูกด้วยวิธีใส่แร่
โดย	นางสาวพัฒน์นรี วงค์เจริญกิจ
สาขาวิชา	วิศวกรรมชีวเวช
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.สุพัฒนา เอื้อทวีเกียรติ
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ผู้ช่วยศาสตราจารย์ นายแพทย์ชลเกียรติ ขอประเสริฐ

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

.....คณบดีคณะวิศวกรรมศาสตร์

(ศาสตราจารย์ ดร.บัณฑิต เอื้ออาภรณ์)

คณะกรรมการสอบวิทยานิพนธ์

_____ประธานกรรมการ

(รองศาสตราจารย์ ดร.มานะ ศรียุทธศักดิ์)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร.สุพัฒนา เอื้อทวีเกียรติ)

_____อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(ผู้ช่วยศาสตราจารย์ นายแพทย์ชลเกียรติ ขอประเสริฐ)

____กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.ชาญชัย ปลื้มปิติวิริยะเวช)

.....กรรมการภายนอกมหาวิทยาลัย

(ดร.ปาริฉัตร เสริมวุฒิสาร)

พัฒน์นรี วงค์เจริญกิจ : การหาพื้นที่กระเพาะปัสสาวะเพื่อช่วยวางแผนรักษามะเร็งปากมดลูกด้วยวิธีใส่ แร่ (THE SEGMENTATION OF A URINARY BLADDER AREA FOR AIDING THE PLANNING OF THE CERVICAL CANCER TREATMENT BY BRACHYTHERAPY) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.สุ พัฒนา เอื้อทวีเกียรติ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. นพ.ชลเกียรติ ขอประเสริฐ, 149 หน้า.

มะเร็งปากมดลูกเป็นมะเร็งที่มีอุบัติการณ์เกิดเป็นอันดับที่ 2 ของสตรีไทย วิธีรักษามาตรฐานวิธีหนึ่ง ้สำหรับมะเร็งปากมดลูกคือการใส่แร่ ซึ่งจะใส่เม็ดสารกัมมันตภาพรังสีผ่านแท่งนำแร่ทางช่องคลอดของผู้ป่วย ใน ้ประเทศไทย รังสีแพทย์ผู้ทำการรักษาเป็นผู้กำหนดตำแหน่งมะเร็ง กระเพาะปัสสาวะ และลำไส้ใหญ่ ขั้นตอนนี้เป็น ้ขั้นตอนที่ใช้เวลามาก และก่อให้เกิดความเหนื่อยล้า ในวิทยานิพนธ์ฉบับนี้ จึงขอนำเสนอกรรมวิธีการแบ่งพื้นที่ กระเพาะปัสสาวะเพื่อช่วยวางแผนรักษามะเร็งปากมดลูกด้วยวิธีใส่แร่ กรรมวิธีที่นำเสนอเริ่มจากกรรมวิธีการแบ่ง พื้นที่ภายในกระเพาะปัสสาวะ ซึ่งลักษณะของภาพพื้นที่ภายในของกระเพาะปัสสาวะของวิธีใส่แร่และงานทางรังสี ้วินิจฉัยจะแตกต่างกันในแง่ความสว่างที่ไม่คงที่ และขอบเขตอาจไม่เด่นชัดทั้งหมด ลักษณะของภาพที่แตกต่างกันนี้ ้ส่งผลให้กรรมวิธีการตัดแบ่งภาพทั่วไปให้ผลการตัดแบ่งที่ไม่ถูกต้อง ค่าเฉลี่ยความสว่างเฉพาะพื้นที่เล็กๆถูกนำมาใช้ เพื่อลดผลของการกระจายค่าความสว่างไม่สม่ำเสมอ และขอบเขตที่ไม่เด่นชัด เนื่องจากพื้นที่ภายในกระเพาะ ้ปัสสาวะสว่างกว่าผนังกระเพาะปัสสาวะมาก วิธีเลเวลเซตที่ใช้ผลต่างของค่าเฉลี่ยความสว่างแบบมีทิศทางที่นำเสนอ กำหนดให้เส้นเลเวลที่ศูนย์หยุดที่บริเวณที่มีค่าเฉลี่ยความสว่างของพื้นที่เล็กๆสูงกว่าภายนอกเท่านั้น เมื่อทราบ ้ขอบเขตของพื้นที่ภายในกระเพาะปัสสาวะแล้วจะหาขอบของกระเพาะปัสสาวะต่อไป เนื่องจากขอบส่วนมากของ กระเพาะปัสสาวะไม่เด่นชัด และความหนาของกระเพาะปัสสาวะไม่ได้เท่ากันทุกบริเวณ ดังนั้นกรรมวิธีทั่วไปที่หา ขอบกระเพาะปัสสาวะโดยสร้างผลลัพธ์จากการค้นหาจุดภาพที่เป็นขอบและตั้งสมมติฐานว่าความหนาผนังกระเพาะ ปัสสาวะเท่ากันตลอดจะให้ผลไม่ดีนัก ในวิทยานิพนธ์ฉบับนี้ได้เลียนแบบการทำงานของรังสีแพทย์ เริ่มจากการหา ้จุดภาพที่มีลักษณะเป็นขอบเด่นชัด ในกรณีที่ไม่พบขอบที่ชัดเจนจะใช้รูปร่างพื้นที่ภายในกระเพาะปัสสาวะ และ ความหนาของผนังเข้ามาร่วมพิจารณา อย่างไรก็ตามความหนาของผนังกระเพาะปัสสาวะระหว่างกระเพาะปัสสาวะ และช่องคลอดจะบางกว่าบริเวณอื่นๆ จึงกำหนดค่าความหนาในการพิจารณา 2 ค่า และเพิ่มความราบเรียบด้วย ้วงจรกรองซาวิสกี้-โกเลย์ อันดับที่ 1 กรรมวิธีที่นำเสนอถูกนำไปทดสอบเปรียบเทียบกับกรรมวิธีเลเวลเซตที่ใช้ทิศ ของเกรเดียนต์แบบคู่ และกรรมวิธีของ Ma และ คณะ ผลการทดลองกับภาพจำนวน 100 ภาพแสดงให้เห็นว่า กรรมวิธีที่นำเสนอให้ผลการหาขอบที่ใกล้เคียงกับผลการกำหนดขอบเขตจากผู้เชี่ยวชาญมากที่สุด และเส้นขอบที่ได้ ้ยังให้ผลลู่เข้าในทุกกรณี ขณะที่กรรมวิธีอื่นๆเส้นขอบที่ได้จะไม่ลู่เข้าในบางกรณี นอกจากนี้กรรมวิธีที่นำเสนอยังใช้ งานได้ง่ายกว่ากรรมวิธีอื่น ในเรื่องการกำหนดพารามิเตอร์ที่ไม่ต้องละเอียดมากในแต่ละสไลด์ด้วย

สาขาวิชา วิศวกรรมชีวเวช ปีการศึกษา 2557

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	
ลายมือชื่อ อ.ที่ปรึกษาร่วม	

5670479421 : MAJOR BIOMEDICAL ENGINEERING

KEYWORDS: BRACHYTHERAPY / LEVEL SET METHOD / BLADDER SEGMENTATION / MEAN INTENSITY DIFFERENCE

PATNAREE WONGJAROENKIT: THE SEGMENTATION OF A URINARY BLADDER AREA FOR AIDING THE PLANNING OF THE CERVICAL CANCER TREATMENT BY BRACHYTHERAPY. ADVISOR: ASST. PROF.SUPATANA AUETHAVEKIAT, Ph.D., CO-ADVISOR: ASST. PROF.CHONLAKIET KHORPRASERT, M.D., 149 pp.

Cervical cancer is the second most common cancer in Thai female. One of the standard treatments is brachytherapy. In brachytherapy, radioactive seeds are inserted into the patient's vagina. In Thailand, the performing radiology oncologist manually defines the location of cancer, urinary bladder and large intestine. The manual process takes time and tolls. In this thesis, we propose the segmentation method to locate the patient's urinary bladder for the brachytherapy. The bladder lumen is first located. In contrast to the one in diagnostic imaging, the lumen in brachytherapy is inhomogeneous and may partially contain an ambiguous boundary. With conventional segmentation methods, different image characteristic leads to inaccurate segmentation. The local intensity mean is used to suppress the effect of the intensity inhomogeneity and the ambiguous boundary. Since the lumen is far brighter than the wall, the proposed method, namely directional local mean difference level set method, has the zero-level contour converged to the region whose local intensity mean inside is higher than the mean outside. After the lumen has been located, the boundary of the bladder is detected. Since the boundary is mostly ambiguous, and the wall thickness is not even, conventional methods, whose result is based on the edge detection and the assumption of the even wall thickness, perform poorly. In this thesis, the procedure of the oncologist is imitated. First, the distinct edge is detected, and if it is not available, the shape of the lumen and the wall thickness are used. Since the wall between bladder and vagina is thinner, two thickness thresholds are utilized. The bladder's boundary is then smoothed by first-order Savitzky-Golay filter. The proposed method was compared with coupled directional level set and the method proposed by Ma et.al. The experiment on 100 images demonstrated that this proposed method provided the most similar result to the one by the expert oncologist. It was also converged in every case, while the others failed in some cases. Furthermore, contrary to the other two, it did not require a fine parameter tuning.

Field of Study:	Biomedical Engineering	Student's Signature
Academic Year:	2014	Advisor's Signature
		Co-Advisor's Signature

กิตติกรรมประกาศ

้วิทยานิพนธ์ฉบับนี้สำเร็จได้ด้วยความอนุเคราะห์จากบุคคลที่เกี่ยวข้องหลายท่าน ซึ่งผู้มี พระคุณท่านแรกที่ข้าพเจ้าใคร่ขอกราบขอบพระคุณคือ ผู้ช่วยศาสตราจารย์ ดร.สุพัฒนา เอื้อทวี เกียรติ อาจารย์ที่ปรึกษาของข้าพเจ้า ผู้ให้ความรู้ คำแนะนำ ความช่วยเหลือในการทำวิทยานิพนธ์ ตลอดจนตรวจทานความถูกต้องเรียบร้อยด้วยความเอาใจใส่อย่างเต็มที่เสมอมา เพื่อให้ ้วิทยานิพนธ์ฉบับนี้มีความสมบูรณ์ ท่านที่สองคือ ผู้ช่วยศาสตราจารย์ นพ.ชลเกียรติ ขอประเสริฐ ้อาจารย์ที่ปรึกษาร่วม ผู้ให้คำปรึกษาและข้อมูลทางด้านการแพทย์ที่มีประโยชน์ต่อวิทยานิพนธ์ รวมถึงนายสรจรส อุณห์ศิริ และพี่ๆ บุคลากรในสาขารังสีรักษาและมะเร็งวิทยา ฝ่ายรังสีวิทยา โรงพยาบาลจุฬาลงกรณ์ที่เอื้อเฟื้อเวลาและสถานที่ในการศึกษาข้อมูล ขอขอบคุณ รอง ศาสตราจารย์ ดร.มานะ ศรียุทธศักดิ์ ประธานกรรมการสอบวิทยานิพนธ์และประธาน คณะกรรมการบริหารหลักสูตรสหสาขาวิชาวิศวกรรมชีวเวช ที่ได้ส่งเสริมและพัฒนา สภาพแวดล้อมในห้องหลักสูตรสหสาขาวิชาวิศวกรรมชีวเวชให้เอื้อต่อการศึกษา ผู้ช่วย ศาสตราจารย์ ดร.ชาญชัย ปลื้มปิติวิริยะเวช และดร.ปาริฉัตร เสริมวุฒิสาร กรรมการสอบ ้วิทยานิพนธ์ ผู้ซึ่งสละเวลาอันมีค่ามาร่วมฟังการนำเสนอและให้คำแนะนำเพิ่มเติมแก่ข้าพเจ้า ้นอกจากนี้ ข้าพเจ้าขอขอบคุณ นางสาวสุวิชญา สุวรรณวิมลกุล และนายวีระ สอิ้ง ที่ให้คำแนะนำ และความช่วยเหลือในการทำวิทยานิพนธ์แก่ข้าพเจ้าด้วยดีเสมอมา และขอขอบคุณ นาย ธนกฤต สินเปรม และ นางสาว พัชรี ก๋งอุบล เจ้าหน้าที่ผู้ให้ข้อมูลและอำนวยความสะดวกในด้านการ ดำเนินเอกสารต่างๆ

ขอขอบคุณ คุณครูโรงเรียนอนุบาลลำพูน โรงเรียนสาธิตมหาวิทยาลัยเซียงใหม่ และ อาจารย์สาขาวิชารังสีเทคนิค คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ทุกท่านที่ไม่ได้กล่าว นาม ที่ช่วยประสิทธิ์ประสาทวิชาความรู้อันมีค่าให้ข้าพเจ้าได้มีความรู้ความสามารถดังเช่นทุกวันนี้

สุดท้ายนี้ข้าพเจ้าขอขอบพระคุณ คุณพ่อพิษณุ วงค์เจริญกิจ และคุณแม่จุไรรัตน์ วงค์ เจริญกิจ และคนในครอบครัวของข้าพเจ้าทุกท่าน ผู้ที่อยู่เบื้องหลังความสำเร็จของข้าพเจ้า เป็น กำลังใจ ดูแลเอาใจใส่ ตลอดจนการสนับสนุนในทุกๆ ด้านที่เอื้อต่อความก้าวหน้าของวิทยานิพนธ์ ขอขอบคุณเพื่อนๆพี่ๆทุกท่านที่ให้ความช่วยเหลือและกำลังใจแก่ข้าพเจ้าเสมอมา

สารบญ	สารบัญ
-------	--------

หา	น้ำ
บทคัดย่อภาษาไทย	. 9
บทคัดย่อภาษาอังกฤษ	. จ
กิตติกรรมประกาศ	. ฉ
สารบัญ	. V
สารบัญรูปภาพ	ល្ង
สารบัญตาราง	. มู
บทที่ 1 บทนำ	. 1
1.1 ความสำคัญและเหตุผล	. 1
1.2 วัตถุประสงค์ของงานวิจัย	. 3
1.3 ขอบเขตของงานวิจัย	. 3
1.4 ขั้นตอนและวิธีการดำเนินงาน	. 4
1.5 ประโยชน์ที่คาดว่าจะได้รับ	. 4
บทที่ 2 ทฤษฎีที่เกี่ยวข้อง	. 5
2.1 โรคมะเร็งปากมดลูกและวิธีการรักษาด้วยการใส่แร่	. 5
2.2 ข้อมูลภาพเอ็มอาร์ไอ	. 6
2.3 กรรมวิธีการแบ่งภาพด้วยวิธีเลเวลเซต	. 7
2.4 กรรมวิธีการแบ่งภาพกระเพาะปัสสาวะด้วยเลเวลเซตในภาพเอ็มอาร์ไอ1	12
2.4.1 การหาขอบด้านในของผนังกระเพาะปัสสาวะ1	12
2.4.2 การหาขอบด้านนอกของผนังกระเพาะปัสสาวะ	14
2.5 วงจรกรองซาวิสกี้-โกเลย์ (Savitzky-Golay Filter)1	17
บทที่ 3 กรรมวิธีที่นำเสนอ	20
3.1 กรรมวิธีหาขอบด้านในของผนังกระเพาะปัสสาวะ	20

		หน้า
3.1.1	l หลักการของวิธีเลเวลเซตที่ใช้ผลต่างของค่าเฉลี่ยความสว่างแบบมีทิศทาง	22
3.1.2	2 วิธีเลเวลเซตที่ใช้ผลต่างของค่าเฉลี่ยความสว่างแบบมีทิศทาง	23
3.1.3	3 การปรับเส้นขอบเริ่มต้นในชุดภาพ	25
3.2 กรรม	วิธีหาขอบด้านนอกของผนังกระเพาะปัสสาวะ	
3.2.1	l หลักการของวิธีการหาขอบด้านนอกของผนังกระเพาะปัสสาวะ	27
3.2.2	2 กรรมวิธีการหาขอบด้านนอก	27
บทที่ 4	ผลการทดลอง	
4.1 ข้อมูล	ลภาพที่ใช้ในการทดลอง	
4.2 เกณฑ	ท์การประเมินประสิทธิภาพ	
4.3 การเ	lระเมินประสิทธิภาพการแบ่งส่วนผนังด้านในของกระเพาะปัสสาวะ	
4.3.1	I การเลือกพารามิเตอร์ที่เหมาะสมสำหรับกรรมวิธี DLMD-LS	
	4.3.1.1 ผลของขนาดวินโดว์	
	4.3.1.2 การขยายจุดภาพ	
4.3.2	2 การหาค่าพารามิเตอร์ที่เหมาะสมในการเปรียบเทียบประสิทธิภาพ	
4.3.3	3 การเปรียบเทียบประสิทธิภาพการตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะ	
4.4 การเ	lระเมินประสิทธิภาพการแบ่งส่วนผนังด้านนอกของกระเพาะปัสสาวะ	45
4.4.1	l การเลือกพารามิเตอร์ที่เหมาะสมสำหรับกรรมวิธีที่นำเสนอ	45
	4.4.1.1 ขีดจำกัดเกรเดียนต์ความสว่างสำหรับขอบนอกของผนังกระเพาะปัสส	าวะ 45
	4.4.1.2 จำนวนข้อมูลและอันดับฟังก์ชันพหุนามของวงจรกรองซาวิสกี-โกเลย์	
4.4.2	2 การหาค่าพารามิเตอร์สำหรับชุดภาพที่ใช้ในการเปรียบเทียบประสิทธิภาพ	50
4.4.3	3 การเปรียบเทียบประสิทธิภาพการตัดแบ่งผนังด้านนอกของกระเพาะปัสสาวะ .	54
บทที่ 5	บทสรุป	61
5.1 สรุปเ	งลการทดลอง	61

	หน้า
5.2 ข้อดีของกรรมวิธีที่นำเสนอ	63
5.3 ข้อจำกัดของกรรมวิธีที่นำเสนอ	64
5.4 ข้อเสนอแนะ	64
รายการอ้างอิง	65
ภาคผนวก ก ผลการตัดแบ่งกระเพาะปัสสาวะ	69
ภาคผนวก ข ผลลัพธ์การประเมินทางสถิติ แยกแต่ละสไลด์	89
ประวัติผู้เขียนวิทยานิพนธ์	149

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญรูปภาพ

รูปที่ 2.1 ตัวอย่างภาพเอ็มอาร์ไออุ้งเชิงกราน	7
รูปที่ 2.2 ตัวอย่างเส้นขอบ Г บนภาพกระเพาะปัสสาวะ	8
รูปที่ 2.3 สายสวนปัสสาวะและอุปกรณ์นำแร่ที่ปรากฏในพื้นที่ภายในกระเพาะปัสสาวะ	10
รูปที่ 2.4 รูปร่างของกระเพาะปัสสาวะที่แตกต่างกัน	10
รูปที่ 3.1 ความสว่างภายในกระเพาะปัสสาวะ	21
รูปที่ 3.2 ผลลัพธ์ของการหาขอบในของผนังกระเพาะปัสสาวะในรูปที่ 3.1(ข)	21
รูปที่ 3.3 รูปร่างกระเพาะปัสสาวะที่แตกต่างในแต่ละสไลด์จากชุดภาพเดียวกัน	22
รูปที่ 3.4 การหยุดของ Γ จาก $g(\cdot)$ ของกรรมวิธี DLMD-LS	24
ร ูปที่ 3.5 ผลการแบ่งส่วนภาพ ด้วยกรรมวิธี DLMD-LS	24
รูปที่ 3.6 เส้นขอบเริ่มต้น	25
รูปที่ 3.7 ผลการหาขอบด้านในของผนังกระเพาะปัสสาวะผิดพลาด เนื่องจากเส้นขอบเริ่มต้น	26
รงไขี่ 3.8 แลการหาของเด้างเงอกเข้งกระเพาะปัสสาวะด้ายกรรงเวิรี DI MD-I S	20
รงไท้ 3.0 ของเอ้างปังเของขนังกระเพาะปัสสาวะที่มีอักษณะบ้านหว่ง	20
307 3.7 0007 12 τ $307 3.7$ 0007 12 τ 75197 310 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21
รงไท่ 4 1 สไลด์ที่ใช้เพื่อหาพาราบิเตอร์ที่ดีที่สุดของกรรบวิถีต่างๆ ใบแต่ละชุดภาพ	2)
รูปที่ 4.2 แผนภาพแสดงพื้นที่ TP. FP. TN และ FN	
รูปที่ 4.3 ข้อมูลที่ใช้ในการหาขนาดวินโดว์และจำนวนจุดภาพที่ควรขยายในกรรมวิธี DLMD-L	.S 34
รูปที่ 4.4 ขอบที่ได้จากการแบ่งส่วนภาพด้วยวินโดว์ขนาดต่างๆ	36
รูปที่ 4.5 ผลจากการขยายเส้นขอบ г ขนาดต่างๆ	38
รูปที่ 4.6 ผลกระทบจากการเปลี่ยนค่า $lpha,\lambda$ และ μ ในกรรมวิธี DLMD-LS	39
รูปที่ 4.7 ผลการแบ่งส่วนภาพที่กำหนดจำนวนรอบวนซ้ำที่แตกต่างกัน	41

รูปที่ 4.8 ผลการแบ่งส่วนภาพ กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่าง สม่ำเสมอและขอบชัดเจน
รูปที่ 4.9 ผลการแบ่งส่วนภาพ กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างไม่ สม่ำเสมอ แต่ขอบชัดเจน
รูปที่ 4.10 ผลการแบ่งส่วนภาพ กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่าง สม่ำเสมอ แต่ขอบไม่ชัดเจน
รูปที่ 4.11 ขอบนอกของผนังกระเพาะปัสสาวะที่ได้จากการกำหนดค่าเกรเดียนต์ความสว่าง 46
รูปที่ 4.12 ผลลัพธ์จากฟังก์ชันอันดับที่ 1 ของวงจรกรองซาวิสกี-โกเลย์
รูปที่ 4.13 ผลลัพธ์จากการทำให้ขอบราบเรียบด้วยวงจรกรองซาวิสกี-โกเลย์ที่ประมาณฟังก์ชัน พหุนามจาก ข้อมูลจำนวน 17 ข้อมูล
รูปที่ 4.14 ผลการแบ่งส่วนภาพ ที่กำหนดจำนวนรอบวนซ้ำที่แตกต่างกันของกรรมวิธี CDLS
รูปที่ 4.15 ตัวอย่างผลการแบ่งส่วนภาพ กรณีขอบด้านนอกของกระเพาะปัสสาวะชัดเจน
รูปที่ 4.16 ตัวอย่างผลการแบ่งส่วนภาพกรณีขอบด้านนอกของกระเพาะปัสสาวะไม่ชัดเจน
รูปที่ 4.17 ตัวอย่างผลการแบ่งส่วนภาพ (รูปที่ 4.16) ด้วยกรรมวิธี Ma และคณะ
รูปที่ 4.18 ตัวอย่างผลการแบ่งส่วนภาพ (รูปที่ 4.16) ด้วยกรรมวิธี CDLS ที่จำนวนรอบการวนซ้ำ . 58
รูปที่ 4.19 ผลของการปรับจำนวนรอบในการหาขอบด้านนอกของกระเพาะปัสสาวะด้วย
กรรมวิธี CDLS
รูปที่ 4.20 ตัวอย่างผลการแบ่งส่วน กรณีมีฟองอากาศภายในช่องท้อง

สารบัญตาราง

ทารางที่ 4.1 ค่าเฉลี่ยประสิทธิภาพของกรรมวิธี DLMD-LS เมื่อวินโดว์ขนาด 3×3 5×5 และ 7×7 จุดภาพ ตามลำดับ
ตารางที่ 4.2 ค่าเฉลี่ยประสิทธิภาพของกรรมวิธี DLMD-LS เมื่อใช้วินโดว์ขนาด 5×5 จุดภาพและ ขยายพื้นที่จากเส้นขอบออกไป 1 2 3 และ 4 จุดภาพ ตามลำดับ
ุตารางที่ 4.3 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการตัดแบ่งภาพในรูปที่ 4.1 ด้วยกรรมวิธี DLMD- _S
ุตารางที่ 4.4 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการตัดแบ่งภาพในรูปที่ 4.1 ด้วยกรรมวิธี CDLS เละ GlobalWt
ุตารางที่ 4.5 ค่าเฉลี่ยแสดงประสิทธิภาพของกรรมวิธี CDLS, GlobalWt และ DLMD-LS เมื่อตัด เบ่งภาพในรูปที่ 4.1
ตารางที่ 4.6 ค่าเฉลี่ยแสดงประสิทธิภาพของกรรมวิธี CDLS, GlobalWt และ DLMD-LS เพื่อตัด แบ่งภาพในรูปที่นอกเหนือจากรูปที่ 4.1
ตารางที่ 4.7 ค่าเฉลี่ยแสดงประสิทธิภาพของกรรมวิธีหาขอบด้านนอก เมื่อ <i>T</i> _{intensity} มีค่า 10 20 เละ 30 ตามลำดับ
ุตารางที่ 4.8 ค่าเฉลี่ยประสิทธิภาพของวงจรกรองซาวิสกี-โกเลย์ เมื่อเปลี่ยนจำนวนข้อมูลที่ใช้ใน การประมาณฟังก์ชันพหุนามและอันดับฟังก์ชันพหุนาม
ุศารางที่ 4.9 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการหาขอบด้านนอกในรูปที่ 4.1 ของกรรมวิธีที่ นำเสนอ51
ุตารางที่ 4.10 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการหาขอบด้านนอกกระเพาะปัสสาวะในรูปที่ 1.1
ตารางที่ 4.11 ค่าพารามิเตอร์สำหรับการหาขอบด้านนอกกระเพาะปัสสาวะในรูปที่ 4.1ของ ารรมวิธี Ma และคณะ
ตารางที่ 4.12 ค่าเฉลี่ยแสดงประสิทธิภาพสำหรับการหาขอบด้านนอกของกรรมวิธี CDLS ารรมวิธีของ Ma และคณะ และกรรมวิธีที่นำเสนอ53

ตารางที่	4.13 ค่าเฉลี่ยแสดงประสิทธิภาพสำหรับการหาขอบด้านนอกของกรรมวิธี CDLS	
กรรมวิธี	Ma และคณะ และกรรมวิธีที่นำเสนอ	55

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 1 บทนำ

1.1 ความสำคัญและเหตุผล

จากข้อมูลสถิติในปี พ.ศ. 2556 ของสำนักงานวิจัยมะเร็งนานาชาติ (International Agency for Research on Cancer; IARC) องค์การอนามัย พบว่า มะเร็งปากมดลูก (Cervical Cancer) เป็นมะเร็งที่มีอุบัติการณ์ (Age-Standardized Incidence Rate, ASR) ในสตรีทั่วโลกเป็นอันดับที่ 3 รองจากมะเร็งเต้านม (Breast Cancer) และมะเร็งลำไส้ใหญ่และทวารหนัก (Colorectal Cancer) โดยพบผู้ป่วยใหม่ปีละประมาณ 528,000 คน[1]

จากสถิติของสถาบันมะเร็งแห่งชาติ ในปี พ.ศ. 2555 มีแนวโน้มไปในทิศทางเดียวกัน กล่าวคือ มะเร็งปากมดลูกมีอุบัติการณ์เกิดประมาณ 18.1 รายต่อประชากรหญิง 100,000 คนต่อปี ซึ่งเป็นอันดับที่ 2 (14.39%) รองจากมะเร็งเต้านม (39.74%) เป็นที่น่าสังเกตว่าอายุของผู้ป่วย มีแนวโน้มลดลง ขณะที่จำนวนผู้ป่วยเพิ่มสูงขึ้น ซึ่งในจำนวนครึ่งหนึ่งของผู้ป่วยที่พบเสียชีวิต เนื่องจาก เข้ารับการรักษาในระยะที่มะเร็งลุกลามแล้ว ซึ่งโอกาสในการรักษาหายขาดลดลง[2]

วิธีการรักษามะเร็งปากมดลูก มีหลายวิธีขึ้นอยู่กับระยะและความรุนแรงของรอยโรคเป็น สำคัญ วิธีรักษา ได้แก่ การผ่าตัด (Surgical Treatment) รังสีรักษา (Radiation Therapy) เคมีบำบัด (Chemotherapy) และการรักษาร่วม (Combined Treatment) ซึ่งเป็นการให้เคมีบำบัดพร้อมกับ รังสีรักษา (Concurrent Chemoradiation) การรักษาร่วมเป็นวิธีที่นิยมใช้ในการรักษามะเร็งระยะ ลุกลามมากที่สุด และคิดเป็น 20.88% ของการรักษาทั้งหมด[2] เนื่องจากการให้ยาเคมีบำบัดร่วมกับ การรักษาแบบอื่นจะเพิ่มประสิทธิภาพของการรักษามากขึ้น

การรักษาด้วยรังสีรักษา แบ่งได้เป็น 2 วิธี ได้แก่ การฉายแสงจากภายนอก (External Radiation) ซึ่งจะฉายรังสีครอบคลุมอุ้งเชิงกรานและต่อมน้ำเหลืองในอุ้งเชิงกราน และการใส่แร่ (Brachytherapy) ซึ่งจะใส่เม็ดสารกัมมันตภาพรังสีผ่านแท่งนำแร่ทางช่องคลอด รังสีจากเม็ดสาร กัมมันตรังสีมีอำนาจทะลุทะลวงสูงและเข้าไปทำลายรวมถึงควบคุมเซลล์หรือองค์ประกอบของเซลล์ที่ มีการแบ่งตัวเร็วทำให้สิ่งแวดล้อมทั้งภายในและภายนอกเซลล์มีสภาวะไม่เหมาะสมในการเจริญเติบโต ของเซลล์ เซลล์จึงหยุดการเจริญเติบโตและถูกทำลายต่อไป

ตามแนวทางปฏิบัติของประเทศไทย รังสีแพทย์จะเป็นผู้กำหนดขอบเขตของมะเร็งและ อวัยวะอื่นๆที่อยู่ในบริเวณที่ได้รับผลกระทบจากการฉายรังสี ซึ่งในที่นี้คือ กระเพาะปัสสาวะและลำไส้ ใหญ่ เพื่อทำการกำหนดและควบคุมปริมาณรังสีที่กระเพาะปัสสาวะและลำไส้ใหญ่ได้รับไม่เกินระดับ ขีดแบ่ง (Threshold Value) ของค่าตามมาตรฐานของสมาคมรังสีรักษาสากล (American Brachytherapy Society; ABS) ซึ่งรังสีแพทย์จะต้องทำการกำหนดขอบเขตในทุกๆภาพที่มีการ ปรากฏของช่องคลอด กระเพาะปัสสาวะและลำไส้ใหญ่ โดยข้อมูลของคนไข้ 1 คนจะมีภาพที่ต้อง กำหนดขอบเขตอย่างน้อย 10 ภาพขึ้นไป ถึงแม้ว่าการกำหนดขอบเขตด้วยรังสีแพทย์ จะได้ข้อมูลที่มี ความถูกต้อง แต่จะเห็นได้ว่าจำนวนภาพที่รังสีแพทย์ต้องทำการกำหนดขอบเขตมีจำนวนมาก จึงเป็น ขั้นตอนที่เสียเวลาและใช้แรงงานมาก อาจทำให้เกิดการเหนื่อยล้า หากต้องกำหนดขอบเขตภาพ จำนวนมากและติดต่อกันเป็นเวลานาน

การแบ่งส่วนภาพ (Image Segmentation) เป็นกระบวนการพื้นฐานของการประมวลผล ภาพ (Image Processing) โดยมีวัตถุประสงค์ในการแยกองค์ประกอบที่สนใจออกจากองค์ประกอบ อื่นๆของภาพ เพื่อการวิเคราะห์และนำไปประมวลผลต่อไป การแบ่งส่วนภาพที่นิยมมีหลายวิธี เช่น การใช้ขีดค่าแบ่ง (Thresholding)[3-5] วิธีการเติบโตของบริเวณ (Region Growing)[6-8] วิธีแอคทีฟ คอนทัวร์ (Active Contour)[9, 10] วิธีเลเวลเซต (Level Set)[11, 12] เป็นต้น โดยการแบ่งส่วนภาพ มีความเกี่ยวข้องกับงานหลายด้าน รวมไปถึงทางด้านการแพทย์ เนื่องจากข้อมูล 1 ชุดภาพทาง การแพทย์ประกอบด้วยข้อมูลภาพหลายสไลด์ เมื่อนำกระบวนการแบ่งส่วนมาช่วยในการวิเคราะห์ ภาพหรือบริเวณที่ต้องการ จะช่วยให้กระบวนการทำงานเป็นไปอย่างสะดวกและรวดเร็วมากยิ่งขึ้น ทั้งยังช่วยลดภาระและความเหนื่อยล้าของแพทย์และบุคลากรที่เกี่ยวข้อง

วิธีเลเวตเซตเป็นวิธีหนึ่งที่ได้รับความนิยมในการแบ่งภาพทางการแพทย์ เนื่องจากสามารถ แบ่งพื้นที่ที่มีโครงสร้างซับซ้อน (Complex Topology) ง่ายในการนำข้อมูลของสิ่งที่ต้องการตัดแบ่ง มาช่วยเพิ่มความถูกต้องในการแบ่งภาพ และทนทานต่อสัญญาณรบกวนได้ในระดับหนึ่ง กรรมวิธี เลเวลเซตที่นิยมแบ่งได้เป็น 2 กลุ่มใหญ่ๆตามลักษณะฟังก์ชันที่ใช้ในการตัดแบ่งภาพดังนี้ ฟังก์ชันที่ อ้างอิงจากค่าเกรเดียนต์[13-16] และฟังก์ชันที่อ้างอิงจากค่าเฉลี่ยความสว่างของพื้นที่ หรือฟังก์ชัน ของ Chan และ Vese[17-19]

การนำลักษณะของอวัยวะที่ต้องการตัดแบ่งมารวมในการตัดแบ่งภาพสามารถเพิ่มความ ถูกต้องของการตัดแบ่งภาพได้ เช่น ลักษณะการกระจายตัวของความสว่างในกระเพาะปัสสาวะถูก นำมาใช้ใน[13] ความหนาของผนังกระเพาะปัสสาวะถูกนำมาใช้เพื่อประกอบการหาขอบด้านนอกของ ผนังกระเพาะปัสสาวะใน[17, 19] รูปร่างของอวัยวะ (Prior Shape) ถูกนำมาใช้ใน[14, 20, 21] การนำโมเดลทางสถิติเข้ามาช่วยค้นหาขอบของผนังกระเพาะปัสสาวะใน[18]

วิทยานิพนธ์ฉบับนี้นำเสนอกรรมวิธีการหาขอบเขตผนังกระเพาะปัสสาวะในภาพเอ็มอาร์ไอที่ ใช้ในการใส่แร่ จากการวิเคราะห์พบว่าขอบด้านนอกของผนังกระเพาะปัสสาวะ ส่วนมากมีความสว่าง แตกต่างกับอวัยวะอื่นไม่ชัดเจน ส่งผลให้วิธีการหาขอบของผนังกระเพาะปัสสาวะที่อ้างอิงจากค่า เกรเดียนต์ความสว่างอย่างเดียวมีโอกาสผิดพลาดได้สูง จึงดัดแปลงฟังก์ชันของ Chan และ Vese ให้พิจารณาเฉพาะความสว่างของพื้นที่แคบๆรอบเส้นเลเวลศูนย์ (Zero-level Contour)[17, 19] นอกจากนี้ ยังมีการนำฟังก์ชันที่อ้างอิงจากค่าเกรเดียนต์มาดัดแปลงเป็นฟังก์ชันที่อ้างอิงจาก ผลต่างกับความสว่างเฉลี่ย[17] ซึ่งกรรมวิธีนี้อาจพิจารณาเป็นการผสานฟังก์ชันที่อ้างอิงจากค่า เกรเดียนต์เข้ากับฟังก์ชันของ Chan และ Vese ได้

วิธีการที่ถูกนำเสนอก่อนหน้านี้ เป็นวิธีที่ถูกออกแบบมาเพื่อแบ่งกระเพาะปัสสาวะ ในงาน วินิจฉัยมะเร็งกระเพาะปัสสาวะจึงไม่ได้นำลักษณะของภาพเอ็มอาร์ไอในงานใส่แร่เพื่อรักษามะเร็ง ปากมดลูกต่อไปนี้เข้ามาประกอบในการออกแบบ

- ความไม่ชัดเจนของขอบผนังกระเพาะปัสสาวะในภาพที่ไม่ได้ถ่ายตามแนวแกนมาตรฐาน (Para-axial)
- ความหนาของผนังกระเพาะปัสสาวะที่ผิดเพี้ยน เนื่องจากเป็นภาพที่ไม่ได้ถ่ายใน แนวตั้งฉากกับอวัยวะ
- ความหนาของผนังกระเพาะปัสสาวะที่แตกต่างกันบริเวณด้านหน้า(Anterior) และ ด้านหลัง (Posterior) อันเนื่องจากการบีบอัดของแท่งน้ำแร่และสำลีในช่องคลอด

จากผลการละเลยลักษณะดังกล่าวนี้ ส่งผลให้ประสิทธิภาพของกรรมวิธีที่เสนอมาก่อนหน้านี้ ได้ผลไม่ดีนัก หัวข้อของวิทยานิพนธ์ฉบับนี้ จึงขอนำเสนอวิธีการแบ่งพื้นที่แบบอัตโนมัติสำหรับการหา พื้นที่กระเพาะปัสสาวะสำหรับชุดภาพเอ็มอาร์ไอที่ใช้ในการวางแผนการรักษาด้วยการใส่แร่ สาเหตุที่ ไม่นำการแบ่งพื้นที่อัตโนมัติมาใช้กับการหาพื้นที่ของลำไส้ใหญ่ เนื่องจากลำไส้ใหญ่มีรูปร่างไม่แน่ชัด และขอบขาดความชัดเจน ส่งผลให้การหาพื้นที่ด้วยวิธีการตัดแบ่งอัตโนมัติให้ผลผิดพลาดสูง

1.2 วัตถุประสงค์ของงานวิจัย การงารถไม่หาวิทยาลัย

- เพื่อออกแบบกรรมวิธีเลเวลเซตแบบใหม่ที่สามารถหาพื้นที่ภายในกระเพาะปัสสาวะที่ทน ต่อการเปลี่ยนแปลงความสว่างภายในกระเพาะปัสสาวะและมีขอบไม่ชัดเจนได้
- 2. เพื่อพัฒนากรรมวิธีเลเวลเซตที่สามารถหาพื้นที่ผนังกระเพาะปัสสาวะที่มีขอบไม่ชัดเจน
- เพื่อออกแบบกรรมวิธีเลเวลเซตแบบใหม่ที่สามารถหากระเพาะปัสสาวะแบบกึ่งอัตโนมัติ สำหรับการวางแผนรักษามะเร็งปากมดลูกด้วยวิธีใส่แร่

1.3 ขอบเขตของงานวิจัย

- กรรมวิธีที่น้ำเสนอใช้หาพื้นที่ของกระเพาะปัสสาวะภายในภาพเอ็มอาร์ไอแบบ T2 weighted สำหรับการวางแผนรักษามะเร็งปากมดลูกด้วยวิธีใส่แร่ จากเครื่องสร้างภาพ เอ็มอาร์ไอที่มีความเข้มสนามแม่เหล็กอย่างต่ำ 1.5 เทสลา
- 2. กรรมวิธีที่น้ำเสนอเป็นการประมวลผลแบบไม่ได้ผลทันที (Off-Line)

- เปรียบเทียบผลของกรรมวิธีที่น้ำเสนอ โดยสร้างผลลัพธ์มาตรฐานจากการแบ่งพื้นที่ของ ผู้เชี่ยวชาญ 1 ท่านต่อ 1 ภาพ
- 4. กรรมวิธีที่น้ำเสนอใช้กับภาพที่เห็นรูปร่างกระเพาะปัสสาวะเป็นพื้นที่เดียว

1.4 ขั้นตอนและวิธีการดำเนินงาน

- ศึกษางานวิจัยที่เกี่ยวข้องกับการแบ่งส่วนกระเพาะปัสสาวะด้วยเลเวลเซต โดยศึกษาข้อดี และข้อจำกัดของแต่ละกรรมวิธี
- 2. ออกแบบกรรมวิธีที่เหมาะสมกับภาพเอ็มอาร์ไอที่ใช้สำหรับการวางแผนรักษามะเร็ง ปากมดลูกด้วยวิธีใส่แร่ โดยคำนึงถึงข้อมูลภาพที่แตกต่างจากงานวิจัยอื่นๆ
- 3. ทดลองกรรมวิธีที่นำเสนอโดยเปรียบเทียบจากผลของกรรมวิธีอื่นและผลลัพธ์มาตรฐาน
- 4. รวบรวมและสรุปผลการทดลอง เพื่อเขียนบทความงานประชุมวิชาการและวิทยานิพนธ์

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- ได้กรรมวิธีหาพื้นที่ภายในกระเพาะปัสสาวะที่ทนต่อการเปลี่ยนแปลงตามความสว่าง ภายในกระเพาะปัสสาวะและอาจมีขอบไม่ชัดเจน
- 2. ได้กรรมวิธีหาพื้นที่ผนังกระเพาะปัสสาวะที่มีขอบไม่ชัดเจน
- ได้กรรมวิธีหากระเพาะปัสสาวะแบบกึ่งอัตโนมัติ สำหรับการวางแผนรักษามะเร็งปาก มดลูกด้วยวิธีใส่แร่

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

เพื่อให้การศึกษาและพัฒนาอัลกอริทึมของวิทยานิพนธ์เป็นไปอย่างมีประสิทธิภาพ จึงขอแบ่ง การอธิบายหลักการและทฤษฎีที่เกี่ยวข้องเป็น 5 หัวข้อ ได้แก่ โรคมะเร็งปากมดลูกและวิธีการรักษา ด้วยการใส่แร่ (ตอนที่ 2.1) ข้อมูลภาพเอ็มอาร์ไอ (ตอนที่ 2.2) การตัดแบ่งภาพด้วยวิธีเลเวลเซตทั่วไป (ตอนที่ 2.3) การนำเลเวลเซตมาใช้แบ่งกระเพาะปัสสาวะในภาพเอ็มอาร์ไอ (ตอนที่ 2.4) และวงจร กรองซาวิสกี้-โกเลย์ (Savitzky-Golay Filter) (ตอนที่ 2.5) ซึ่งจะช่วยให้เกิดความเข้าใจ สามารถ ประยุกต์ใช้ข้อมูลอย่างถูกต้องและเหมาะสม อันจะนำไปสู่การบรรลุวัตถุประสงค์ที่ได้กำหนดไว้ใน วิทยานิพนธ์

2.1 โรคมะเร็งปากมดลูกและวิธีการรักษาด้วยการใส่แร่

โรคมะเร็งปากมดลูก เป็นโรคมะเร็งทางนรีเวชที่มีอุบัติการณ์การเกิดสูง ซึ่งสาเหตุหลักเกิด จากเชื้อไวรัส Human Papilloma Virus (HPV) ที่เกี่ยวข้องกับพฤติกรรมการมีเพศสัมพันธ์ รวมไปถึง การติดเชื้อโรคทางเพศสัมพันธ์ด้วย ในระยะที่ร่างกายได้รับเชื้อไวรัสจะส่งผลให้เซลล์ ที่ปากมดลูกเกิด การเปลี่ยนแปลง โดยระยะนี้อาจใช้เวลานานถึง 10 ปี เรียกว่า "ระยะก่อนมะเร็ง" ในระยะนี้จะไม่ แสดงอาการใดๆ และทราบได้จากการตรวจด้วยแปปสเมียร์ (Pap Smear)เท่านั้น ซึ่งผู้ป่วยส่วนมาก มักละเลยในการตรวจคัดกรองเบื้องต้นและมารับการรักษาเมื่อเริ่มมีอาการผิดปกติ ซึ่งหมายความว่า มะเร็งได้เข้าสู่ระยะลุกลามแล้ว

ในการรักษามะเร็งปากมดลูกระยะลุกลาม แพทย์จะเป็นผู้ประเมินอาการ ความรุนแรงของ พยาธิสภาพของรอยโรค อายุ ความต้องการมีบุตร สุขภาพหรือโรคประจำตัว และโรคทางนรีเวชที่เป็น เพื่อกำหนดขั้นตอนการรักษาให้แก่ผู้ป่วย วิธีการรักษามะเร็งมีดังนี้ การผ่าตัด การใช้รังสีรักษา การให้ เคมีบำบัด หรือนำหลายวิธีมารักษาร่วมกัน เช่น รังสีรักษาร่วมกับเคมีบำบัด การให้เคมีบำบัดก่อน ผ่าตัด การผ่าตัดร่วมกับรังสีรักษา เป็นต้น

- การผ่าตัด เป็นการรักษากรณีที่รอยโรคยังจำกัดบริเวณปากมดลูก ซึ่งส่วนใหญ่เป็นมะเร็ง
 ระยะ I และในบางรายเป็นระยะ II อย่างไรก็ตาม การผ่าตัดมักกระทำในผู้ป่วยอายุ
 น้อยที่มีความเสี่ยงต่อการดมยาสลบและการผ่าตัดต่ำ
- เคมีบำบัด เป็นการรักษากรณีที่รอยโรคเข้าสู่ระยะลุกลามมาก หรือกรณีที่มะเร็งกลับมา
 เป็นซ้ำ (Recurrence) และไม่สามารถรักษาได้ด้วยวิธีการอื่นๆ

- รังสีรักษา สามารถให้การรักษาในผู้ป่วยทุกรายและทุกระยะของโรค เนื่องจากครอบคลุม บริเวณกว้างไม่เฉพาะบริเวณมดลูกเท่านั้น แต่ครอบคลุมถึงต่อมน้ำเหลืองต่างๆในบริเวณ อุ้งเชิงกรานที่อาจมีการกระจายของมะเร็งด้วย ซึ่งประกอบด้วย
 - O การฉายแสงจากภายนอก (External Radiation) โดยจะฉายรังสีบริเวณอุ้งเชิง กราน (Pelvic Radiation) และครอบคลุมไปถึงต่อมน้ำเหลืองในอุ้งเชิงกราน เพื่อทำลายเซลล์มะเร็งที่อาจกระจายเข้าสู่เนื้อเยื่ออื่นๆและต่อมน้ำเหลือง
 - O การใส่แร่ (Brachytherapy) โดยจะใส่เม็ดกัมมันตภาพรังสีเข้าทางช่องคลอด เพื่อให้เม็ดกัมมันตรังสีที่ให้รังสีความเข้มสูงอยู่ใกล้กับมะเร็ง อย่างไรก็ตามต้อง ควบคุมปริมาณรังสีที่อวัยวะข้างเคียงจะได้รับให้อยู่ในขอบเขตที่เหมาะสม

2.2 ข้อมูลภาพเอ็มอาร์ไอ

การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก (Magnetic Resonance Imaging; MRI) เป็นเทคนิค การสร้างภาพที่อาศัยคุณสมบัติความเป็นแม่เหล็กของไฮโดรเจนอะตอมในโมเลกุลของน้ำซึ่งเป็น องค์ประกอบหลักของร่างกาย ภาพที่ได้จากการตรวจด้วยเทคนิคนี้จะแสดงความแตกต่างของเนื้อเยื่อ ได้ดีกว่าการตรวจด้วยวิธีอื่นๆ ทั้งนี้การกำหนดลำดับพัลส์ (Pulse Sequence) และชนิดของเนื้อเยื่อ ในพื้นที่ที่สนใจ (Region of Interest) เป็นปัจจัยสำคัญที่ทำให้ความเข้มของสัญญาณแตกต่างกัน ปรากฏเป็นค่าความสว่างบนภาพที่แตกต่างกันด้วย โดยเทคนิคการสร้างภาพเอ็มอาร์ไอที่นิยมมี 2 วิธี ได้แก่ การสร้างภาพที่เน้นน้ำหนักของ T1 (T1 weighted image) และ T2 (T2 weighted image)

T1 weighted เป็นเทคนิคที่แสดงรายละเอียดกายวิภาคของอวัยวะต่างๆได้ชัดเจน ดังแสดง ในรูปที่ 2.1(ก) บริเวณที่มีน้ำเป็นองค์ประกอบจะมีความเข้มของสัญญาณต่ำ (ความสว่างน้อย) แต่ใน เทคนิค T2 weighted บริเวณที่มีน้ำเป็นองค์ประกอบจะมีความเข้มของสัญญาณสูง (ความสว่างมาก) ซึ่งจะแสดงพยาธิสภาพของโรคได้ชัดเจนกว่า เนื่องจากเนื้อเยื่อที่มีการกลายเป็นโรค มักมีลักษณะของ น้ำ น้ำหนอง เลือด เข้าไปเป็นส่วนประกอบด้วย ดังแสดงในรูปที่ 2.1(ข)

ในขั้นตอนการวางแผนรังสีรักษา จะใช้ภาพจากเทคนิค T2 weighted โดยภาพเอ็มอาร์ไอจะ ถูกถ่ายในขณะที่ผู้ป่วยมีแท่งนำแร่สอดภายในช่องคลอด เพื่อให้รังสีแพทย์และนักฟิสิกส์การแพทย์ทำ การกำหนดตำแหน่งของเม็ดแร่ โดยอาศัยขอบเขตก้อนมะเร็ง และอวัยวะข้างเคียงของผู้ป่วย เพื่อ คำนวณปริมาณรังสีที่เพียงพอในการทำลายเซลล์มะเร็ง และไม่มากจนส่งผลกระทบกับอวัยวะ ข้างเคียง

จากจุดประสงค์ที่ต่างกันของการวินิจฉัยและการรักษา ประกอบกับวิธีการและเครื่องมือที่ใช้ ทำให้ภาพเอ็มอาร์ไอที่ได้แตกต่างกัน ซึ่งภาพเอ็มอาร์ไอที่ใช้ในการใส่แร่ มีรายละเอียดดังนี้

- เป็นการถ่ายภาพตามแกนของแท่งน้ำแร่ (Tandem) หรือเรียกว่าแกน Para-axial ส่งผลให้ ภาพขอบผนังกระเพาะปัสสาวะทั้งด้านในและด้านนอกไม่คมชัด
- มีการใส่สำลีเข้าไปในช่องคลอดเพื่อป้องกันการเคลื่อนที่ของแท่งนำแร่ ส่งผลให้มีการบีบอัด ภายในพื้นที่ระหว่างช่องคลอดและกระเพาะปัสสาวะ ทำให้ขอบด้านนอกของผนังกระเพาะ ปัสสาวะในบริเวณด้านหลัง (Posterior) ขาดหายไปในภาพ หรือปรากฏไม่ชัดเจน
- มีการใส่สายสวนปัสสาวะ (Urinary Catheter) ทำให้ความสว่างภายในพื้นที่กระเพาปัสสาวะ มีการเปลี่ยนแปลง

2.3 กรรมวิธีการแบ่งภาพด้วยวิธีเลเวลเซต

วิธีเลเวลเซต เป็นกรรมวิธีที่นิยมใช้สำหรับการแบ่งส่วนภาพทางการแพทย์ เนื่องจากสามารถ ตัดแบ่งพื้นที่ที่มีโครงสร้างซับซ้อนได้ดี ซึ่งสอดคล้องกับลักษณะพยาธิสภาพที่เกิดกับอวัยวะในร่างกาย ที่มีรูปร่างซับซ้อนและหลากหลาย จากการสืบค้นวรรณกรรมยังพบว่าวิธีเลเวตเซตเป็นวิธีการแบ่ง พื้นที่กระเพาะปัสสาวะที่นิยมวิธีหนึ่ง [13-15, 17-19]

รูปที่ 2.2 ตัวอย่างเส้นขอบ Γ (สีแดง) บนภาพกระเพาะปัสสาวะ $arphi(\mathbf{x})$ บนเส้นขอบ Γ มีค่าเป็นศูนย์ ขณะที่ $arphi(\mathbf{x})$ ภายในและภายนอกเส้นขอบ มีค่าบวกและลบ ตามลำดับ

วิธีเลเวลเซต จะแสดงพื้นที่ในภาพด้วยค่าเลเวล และกำหนดให้ขอบของวัตถุเป็นค่าเลเวลที่ ศูนย์ พื้นที่ภายในและภายนอก จะมีค่าเลเวลที่เครื่องหมายตรงข้ามกัน กล่าวคือ ถ้าข้างในเป็นค่าบวก แล้ว ข้างนอกจะเป็นค่าลบ การตัดแบ่งส่วนภาพด้วยวิธีเลเวลเซตจะเริ่มจากการกำหนดฟังก์ชันค่า (Cost Function) ที่ให้ค่าต่ำสุด เมื่อขอบของพื้นที่ที่ต้องการมีค่าเลเวลเป็นศูนย์ทั้งหมด และเมื่อได้ ฟังก์ชันแล้ว การหาขอบคือการออปติไมซ์ฟังก์ชั่นค่า และขอบของพื้นที่ก็คือ เส้นคอนทัวร์เลเวลที่ศูนย์ (Zero Level Contour) ซึ่งในรายงานฉบับนี้แทนด้วย Γ

ฟังก์ชันที่ถูกนำมาใช้แสดงค่าเลเวลในการตัดแบ่งส่วนภาพคือฟังก์ชันระยะแบบมีเครื่องหมาย (Signed Distance Function) และแทนด้วย $\varphi(\mathbf{x})$ หรือ φ ฟังก์ชัน $\varphi(\mathbf{x})$ มีขนาดเท่ากับระยะจาก จุด **x** ไปหาขอบที่ใกล้ที่สุด สำหรับในงานนี้เรากำหนดให้ $\varphi(\mathbf{x})$ มีค่าบวกเมื่ออยู่ภายในวัตถุ และมีค่า ลบเมื่ออยู่ภายนอก แสดงดังรูปที่ 2.2

ฟังก์ชันค่าของวิธีเลเวลเซต แบ่งออกได้เป็น 2 ประเภทใหญ่ๆ ดังนี้

ฟังก์ชันค่าที่อ้างอิงจากเกรเดียนต์ของค่าความสว่าง (Intensity Gradient) [13-16]
 ฟังก์ชันนี้เขียนได้หลายรูปแบบ โดยมีลักษณะที่สำคัญคือ จะมีค่าต่ำเมื่อเส้นขอบ Γอยู่
 บริเวณที่มีเกรเดียนต์ความสว่างสูง ในวิทยานิพนธ์นี้ใช้ฟังก์ชันที่มีรูปแบบดังนี้

$$J(\varphi, \mathbf{x}) = \int_{\text{entire image}} F(\mathbf{x}, \varphi, \nabla \varphi) d\mathbf{x}$$
(2.1)

ເມື່ອ
$$F(\mathbf{x}, \varphi, \nabla \varphi) = \lambda g(\nabla I) \delta(\varphi) |\nabla \varphi| + \alpha g(\nabla I) (1 - H(\varphi))$$
 (2.2)

เมื่อ λ และ lpha คือ ค่าคงที่

- $I(\cdot)$ คือ ค่าความสว่างของจุดภาพ
- $g\left(\cdot
 ight)$ คือ ฟังก์ชันที่เข้าสู่ 0 เมื่ออินพุทมีค่ามาก
- $\delta(\cdot)$ คือ ฟังก์ชันเดลต้า (Delta Function)

 $H\left(\cdot
ight)$ คือ ค่าฟังก์ชันขั้นบันไดของเฮฟวีไซด์ (Heaviside's Unit Step Function)

ซึ่งนิยามเป็น

$$H(\varphi) = \begin{cases} 1 & ; \quad \varphi > 0 \\ 0 & ; \quad \varphi < 0 \end{cases}$$
(2.3)

ตัวอย่าง ของฟังก์ชัน $g(\cdot)$ ได้แก่ $rac{1}{1+\left\|
abla G_{\sigma} st I
ight\|^{p}}$ โดย p คือค่าที่ผู้ใช้กำหนด [16]

ในการเขียนโปรแกรม ฟังก์ชัน $\delta(\cdot)$ จะถูกเปลี่ยนนิยามให้มีค่าเท่ากับหนึ่ง เมื่ออินพุทมีขนาด น้อยกว่าค่าหนึ่ง แทนที่จะมีค่าเท่ากับหนึ่งเฉพาะเมื่ออินพุทเท่ากับศูนย์และเป็นศูนย์ในกรณีอื่นๆ ตามนิยามที่แท้จริงของฟังก์ชันเดลต้า

2. ฟังก์ชันค่าที่อ้างอิงค่าเฉลี่ยของพื้นที่หรือฟังก์ชันค่าแบบ Chan และ Vese [17]

ฟังก์ชันค่าแบบ Chan และ Vese เขียนได้โดยเปลี่ยนนิยามของ $F(\mathbf{x}, \varphi, \nabla \varphi)$ ในสมการที่ (2.2) เป็นสมการต่อไปนี้

$$F(\mathbf{x}, \varphi, \nabla \varphi) = \lambda_1 \left(I(\mathbf{x}) - C_1 \right)^2 H(\varphi) + \lambda_2 \left(I(\mathbf{x}) - C_2 \right)^2 \left(1 - H(\varphi) \right) + \mu \delta_E(\varphi) |\nabla \varphi| + \upsilon H(\varphi)$$
(2.4)

เมื่อ $\lambda_1, \lambda_2, \mu, \upsilon$ คือ ค่าคงที่

 C_1 และ C_2 คือ ค่าความสว่างเฉลี่ยของพื้นที่ภายในและภายนอก Γ

 $\delta_{E}(\cdot)$ คือ ฟังก์ชันเดลต้า (Delta Function) ซึ่ง Chan และ Vese เสนอให้ใช้ ฟังก์ชันต่อไปนี้ [22]

$$\delta_{E}(\varphi) = \frac{\partial}{\partial \varphi} \frac{1}{2} \left(1 + \frac{2}{\pi} \tan^{-1} \left(\frac{\varphi}{\varepsilon} \right) \right)$$
(2.5)

เมื่อ *E* >0 และเป็นค่าเล็กๆ

การปรับค่าเลเวลด้วยฟังก์ชัน *F*(**x**, *φ*, *∇φ*) ตามสมการที่ (2.2) จะคงคุณสมบัติของวิธี เลเวลเซตที่สามารถแตกคอนทัวร์เป็นขอบของวัตถุจำนวนมากกว่าหนึ่งชิ้น และยังสามารถรวมพื้นที่ กลับมาได้ แต่โดยทั่วไปการปรับค่าจะกระทำในทิศเดียว กล่าวคือ Γ จะขยายออกหรือหดเข้าเท่านั้น ข้อจำกัดของการใช้สมการที่ (2.2) คือมีการอ้างอิงกับเกรเดียนต์ของค่าความสว่าง จึงทำให้ฟังก์ชันนี้ ไม่ทนทานต่อสัญญาณรบกวน

รูปที่ 2.3 สายสวนปัสสาวะ(สีแดง) และอุปกรณ์นำแร่(สีเหลือง) ที่ปรากฏในพื้นที่ภายในกระเพาะปัสสาวะ

รูปที่ 2.4 รูปร่างของกระเพาะปัสสาวะที่แตกต่างกัน

การปรับค่าเลเวลด้วยฟังก์ชัน $F(\mathbf{x}, \varphi, \nabla \varphi)$ ตามสมการที่ (2.4) นั้น ทิศการเปลี่ยนแปลง คอนทัวร์จะเป็นไปอย่างอัตโนมัติและทนทานต่อสัญญาณรบกวน เนื่องจากสมการอาศัยค่าเฉลี่ย แต่ ทว่าสมการนี้ตั้งอยู่ในสมมติฐานที่ว่าในภาพต้องมีค่าความสว่างเพียงสองกลุ่มใหญ่ๆ และแต่ละความ สว่าง แสดงถึงบริเวณต่างกัน ทว่าในภาพเอ็มอาร์ไอของงานรังสีรักษามะเร็งปากมดลูกมีความสว่างซึ่ง แบ่งออกได้เป็นสามกลุ่มใหญ่ และในส่วนของกระเพาะปัสสาวะจะมีความสว่างได้หลายแบบ ดังแสดง ในรูปที่ 2.3 ซึ่งแสดงให้เห็นว่ากระเพาะปัสสาวะมีบริเวณสีเทาปนกับสีขาวและมีสีดำจากสายสวน ปัสสาวะปรากฏอยู่ ซึ่งกรรมวิธีหนึ่งที่ช่วยแก้ปัญหาในกรณีที่วัตถุมีหลายพื้นที่ความสว่างคือ การสร้าง โมเดลวัตถุ (Prior Shape) [20, 21] แต่ทว่ากระเพาะปัสสาวะมีรูปร่างเปลี่ยนแปลงได้ทั้งจากปริมาณ ปัสสาวะขณะนั้นและลักษณะกายภาพที่แตกต่างกันของผู้ป่วย (ดังรูปที่ 2.4) ดังนั้นจึงไม่สามารถหา โมเดลวัตถุมาช่วยได้ อีกกรรมวิธีหนึ่งที่ทำได้ คือการเขียนฟังก์ชัน φ ขึ้นมาหลายๆตัวเพื่อใช้เป็น ตัวแทนของขอบหลายๆวัตถุ[11] แต่ในงานของเราต้องการเฉพาะกระเพาะปัสสาวะเพียงวัตถุเดียว จึง เป็นการเพิ่มความยุ่งยากมากเกินไป

จากสาเหตุดังกล่าวเบื้องต้น ทำให้การตัดแบ่งกระเพาะปัสสาวะ นิยมใช้การปรับค่าเลเวลที่ อ้างอิงจากค่าเกรเดียนต์ความสว่าง (สมการที่ (2.2)) และอาจเพิ่มพจน์ที่ 1 และ 2 ในปริพันธ์ (Integration) ของสมการที่ (2.4) เข้าไปเพื่อเพิ่มความทนทานต่อสัญญาณรบกวน การออปติไมซ์ เพื่อหา φ ที่ทำให้ฟังก์ชันในสมการที่ (2.2) มีค่าต่ำสุดนั้น ต้องอาศัยแคลคูลัส ของการแปรผัน (Calculus of Variation) ซึ่งสรุปได้ว่า $\varphi(\mathbf{x})$ ที่ทำให้ $J(\varphi, \mathbf{x})$ มีค่าต่ำสุด จะเป็นไป ตามสมการต่อไปนี้ [23]

$$\frac{\partial}{\partial x_1} \left(\frac{\partial F}{\partial \varphi_1} \right) + \frac{\partial}{\partial x_2} \left(\frac{\partial F}{\partial \varphi_2} \right) - \frac{\partial F}{\partial \varphi} = 0$$
(2.6)
IND $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ use $\varphi_k = \frac{\partial \varphi}{\partial x_k}$

และ $\frac{\partial \varphi}{\partial t}(\mathbf{x})$ ถูกนิยามเป็นด้านซ้ายของสมการที่ (2.6) หากใช้ $J(\varphi, \mathbf{x})$ ตามสมการที่ (2.2) แล้ว จะคำนวณได้เป็น

$$\frac{\partial \varphi(\mathbf{x})}{\partial t} = \lambda \delta(\varphi) div \left(g\left(\nabla I\right) \frac{\nabla \varphi}{|\nabla \varphi|} \right) + \alpha g\left(\nabla I\right) \delta(\varphi)$$
(2.7)

เมื่อ $div(\cdot)$ คือการหาไดเวอร์เจนท์ (Divergence)

จากนิยามของ $\varphi(\mathbf{x})$ พบว่า $|\nabla \varphi(\mathbf{x})|$ ควรมีค่าประมาณ 1 แต่ทว่าการปรับค่า $\varphi(\mathbf{x})$ ตาม สมการที่ (2.7) ไม่มีการควบคุมให้ $|\nabla \varphi(\mathbf{x})|$ เป็น 1 ส่งผลให้เมื่อทำการปรับค่า $\varphi(\mathbf{x})$ ไปในระยะหนึ่ง แล้ว $|\nabla \varphi(\mathbf{x})|$ จะมีค่าต่างจาก 1 มากและทำให้การปรับค่า $\varphi(\mathbf{x})$ ผิดเพี้ยน ดังนั้นต้องมีการคำนวณ ค่า $\varphi(\mathbf{x})$ จาก Γ ใหม่เป็นระยะๆ (Re-Initialization) ซึ่งความถี่ของการคำนวณค่า $\varphi(\mathbf{x})$ ใหม่นั้น จะต้องมีมากพอเพื่อให้การตัดแบ่งภาพมีประสิทธิภาพ แต่ถ้ามากเกินไปก็จะทำให้ใช้เวลาการตัดภาพ นาน เพื่อตัดปัญหาเรื่องการหาความถี่ในการคำนวณค่า $\varphi(\mathbf{x})$ ใหม่ที่เหมาะสม Li และคณะ[16] ได้ เสนอกรรมวิธีที่ไม่จำเป็นต้องคำนวณ $\varphi(\mathbf{x})$ ใหม่ โดยการเพิ่มพจน์เรกุลาไรเซชัน (Regularization Term) เข้าไป พจน์ที่เพิ่มนี้จะมีค่าเป็นศูนย์หาก $|\nabla \varphi(\mathbf{x})| = 1$ และมีค่าเพิ่มตามความต่างระหว่าง $|\nabla \varphi(\mathbf{x})|$ กับ 1 ฟังก์ชันค่าที่เพิ่มพจน์เรกุลาไรเซชันเข้าไป สามารถเขียนได้เป็น

$$F(\varphi, \mathbf{x}) = \lambda g(\nabla I) \delta(\varphi) |\nabla \varphi| + \alpha g(\nabla I) (1 - H(\varphi)) + \mu p(\nabla \varphi)$$
(2.8)

เมื่อ $p(\cdot)$ มีนิยามดังนี้ [16]

$$p(s) = \frac{1}{2}(s-1)^2$$
(2.9)

อาศัยแคลคูลัสของการแปรผัน สามารถหาการเปลี่ยนแปลงของ $arphi(\mathbf{x})$ ได้ดังนี้

$$\frac{\partial \varphi(\mathbf{x})}{\partial t} = \lambda \delta(\varphi) div \left(g\left(\nabla I\right) \frac{\nabla \varphi}{|\nabla \varphi|} \right) + \alpha g\left(\nabla I\right) \delta(\varphi) + \mu div \left(d_p\left(\nabla \varphi\right) \nabla \varphi \right)$$
(2.10)

เมื่อ $d_{p}\left(\cdot
ight)$ มีนิยามดังนี้

$$d_{p}(s) = \frac{1}{s} \frac{dp(s)}{ds}$$
(2.11)

2.4 กรรมวิธีการแบ่งภาพกระเพาะปัสสาวะด้วยเลเวลเซตในภาพเอ็มอาร์ไอ

เนื่องจากขอบด้านนอกของผนังกระเพาะปัสสาวะมีขอบเขตไม่ชัดเจน ดังนั้นกรรมวิธีการหา พื้นที่กระเพาะปัสสาวะจึงเริ่มจากการหาขอบด้านในของผนังกระเพาะปัสสาวะ และนำรูปร่างของ ขอบด้านในมาใช้อ้างอิงเป็นรูปร่างของขอบด้านนอกต่อไป[13, 14, 17, 19] ในการทบทวน วรรณกรรม จึงแบ่งกรรมวิธีออกเป็น 2 ตอนคือ การหาขอบด้านในของผนังกระเพาะปัสสาวะ (ตอนที่ 2.4.1) และการหาขอบด้านนอกของผนังกระเพาะปัสสาวะ (ตอนที่ 2.4.2)

2.4.1 การหาขอบด้านในของผนังกระเพาะปัสสาวะ

โดยทั่วไปกรรมวิธีการแบ่งภาพกระเพาะปัสสาวะ พื้นที่ภายใน (Lumen) จะเป็นพื้นที่ที่ใช้ อ้างอิงเพื่อหาพื้นที่กระเพาะปัสสาวะทั้งหมด ดังนั้นการหาพื้นที่ภายในหรือขอบด้านในของผนัง กระเพาะปัสสาวะจึงต้องมีความแม่นยำสูง การหาพื้นที่ภายในกระเพาะปัสสาวะมีหลากหลายกรรมวิธี เช่น Duan และคณะ[19] เสนอวิธีหาเส้นขอบภายในของภาพ T1 weighted ที่พื้นที่ภายในกระเพาะ ปัสสาวะและพื้นที่ภายนอกมีความสว่างแยกกันเป็นสองกลุ่มชัดเจนและได้เลือกใช้ฟังก์ชันค่าของ Chan และ Vese โดยกำหนดพื้นที่การคำนวณเป็นแถบแคบๆแทนที่จะใช้ข้อมูลทั้งภาพ ทว่าพื้นที่ ภายในกระเพาะปัสสาวะของภาพรังสีรักษา อาจมีสายสวนปัสสาวะปรากฏอยู่หรือมีบริเวณสีเทาปน กับสีขาว ดังรูปที่ 2.3 กล่าวคือ พื้นที่ภายในมีความสว่างหลายกลุ่มและแต่ละกลุ่มไม่ได้บอกลักษณะที่ เฉพาะ จึงไม่เหมาะในการใช้ฟังก์ชันค่าของ Chan และ Vese Chi และคณะ[18] เสนอให้หาขอบของ ผนังด้านในโดยปรับฟังก์ชัน $g(\cdot)$ ให้เป็นฟังก์ชันของตัววัดความไม่สมมาตรของลักษณะเฉพาะ (Feature Asymmetry Measurement; FA) [15] โดยเอาตัววัด FA มาแทนที่ค่าเกรเดียนต์ของ ความสว่าง

นอกจากงานของ Chi และคณะแล้ว เราพบว่าการเปลี่ยนฟังก์ชัน $g(\cdot)$ เพื่อให้การหาขอบของ ผนังด้านในมีประสิทธิภาพมากยิ่งขึ้นยังพบในงานของ Qin และคณะ[13] ที่เสนอกรรมวิธี Coupled Directional Level Set (CDLS) ซึ่งปรับค่า $g(\cdot)$ ในฟังก์ชันค่าที่อ้างอิงจากเกรเดียนต์ให้ขึ้นกับทิศ ของเกรเดียนต์ความสว่างด้วย กล่าวคือ พื้นที่ภายในกระเพาะปัสสาวะมีความสว่างมากกว่าบริเวณ ผนังกระเพาะปัสสาวะ ดังนั้นเส้นขอบของพื้นที่ภายในจะมีเกรเดียนต์ความสว่างในทิศพุ่งเข้าหา กระเพาะปัสสาวะ เส้นขอบ Γ จึงควรวางตัวอยู่ในบริเวณที่มีเกรเดียนต์สูงและมีทิศพุ่งเข้า ทั้งนี้เรา สามารถวิเคราะห์ทิศว่าพุ่งเข้าหรือออกจากในกระเพาะปัสสาวะ โดยพิจารณาจากทิศเกรเดียนต์ของ $\varphi(\mathbf{x})$ ได้ จากนิยาม $\varphi(\mathbf{x})$ ที่มีค่าบวกภายในและลบภายนอก Γ ส่งผลให้เกรเดียนต์ของ $\varphi(\mathbf{x})$ มีทิศ พุ่งเข้าพื้นที่ที่ล้อมโดย Γ เสมอ Qin และคณะจึงกำหนด $g(\cdot)$ สำหรับขอบด้านในเป็น

$$g(I_{g}, \varphi) = \frac{1}{1 + H(\nabla(G_{\sigma} * I) \cdot \nabla\varphi) \|\nabla(G_{\sigma} * I)\|^{2}}$$
(2.12)

เมื่อ G คือ ตัวกรองเกาส์เซียน (Gaussian Filter) ที่มีค่าเบี่ยงเบนมาตรฐานคือ Qin และคณะ[14] ได้ปรับปรุงกรรมวิธี CDLS ให้ทนทานต่อความสว่างที่ไม่สม่ำเสมอ โดย เพิ่มข้อมูลรูปร่างกระเพาะปัสสาวะเข้ามาในสมการที่ (2.8) กรรมวิธีนี้กำหนดรูปร่างกระเพาะ ปัสสาวะขึ้นมาภายใต้สมมุติฐานที่ว่ากระเพาะปัสสาวะในสไลด์ติดกันมีลักษณะคล้ายคลึงกันและ จะต้องมีอย่างน้อย 1 สไลด์ใน 1 ชุดภาพที่สามารถหาพื้นที่ภายในได้ถูกต้องโดยไม่ต้องอาศัยข้อมูล รูปร่าง พจน์ของรูปร่าง (Shape Term) ที่เพิ่มเข้าไปในฟังก์ชันค่า (สมการที่ (2.8)) นิยามดังนี้

$$E_{shape}\left(\varphi\right) = \int_{\text{entire image}} \left(H\left(\varphi\right) - H\left(\varphi_{s}\right)\right)^{2} d\mathbf{x}$$
(2.13)

เมื่อ φ และ φ_s คือ $\varphi(\mathbf{x})$ ของภาพในสไลด์ปัจจุบันและสไลด์ที่อยู่ติดกัน ตามลำดับ

เมื่อเพิ่มพจน์ของรูปร่างตามสมการที่ (2.13) เข้าไปในสมการที่ (2.8) แล้ว ^{_____} สามารถ คำนวณได้เป็น

$$\begin{aligned} \frac{\partial \varphi}{\partial t} &= \mu div \Big(d_p \left(\left| \nabla \varphi \right| \right) \nabla \varphi \Big) + \lambda \delta \left(\varphi \right) div \left(g \left(\nabla I \right) \frac{\nabla \varphi}{\left| \nabla \varphi \right|} \right) \\ &- \alpha g \left(\nabla I \right) \delta \left(\varphi \right) - 2\gamma \delta \left(\varphi \right) \left(H \left(\varphi \right) - H \left(\varphi_s \right) \right) \end{aligned} \tag{2.14}$$
เมื่อ γ คือ ค่าคงตัวที่ผู้ใช้กำหนด

จากตัวอย่างชุดภาพที่ได้มา พบว่าในบางชุดภาพเราไม่สามารถหาภาพที่มีขอบเขตชัดเจนได้ แม้แต่ภาพเดียวทำให้ไม่สามารถสร้าง $\varphi_{s}\left(\cdot
ight)$ ได้

นอกจากงานของ Chi และคณะ และ Qin และคณะแล้ว การปรับฟังก์ชัน_{*g*}(.) เพื่อใช้ในการ หาขอบในของผนังกระเพาะปัสสาวะ ยังพบในงานของ Ma และคณะ[17] ซึ่งออกแบบฟังก์ชัน_{*g*}(.) ภายใต้สมมุติฐานที่ว่าการกระจายความสว่างภายในกระเพาะปัสสาวะเป็นแบบเกาส์เซียน (Gaussian) ที่มีค่าความสว่างเฉลี่ยและค่าเบี่ยงเบนมาตรฐานเท่ากันทุกบริเวณ และนิยาม_{*g*}(.) ด้วยสมการต่อไปนี้

$$g(I) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(I-\mu)^2}{2\sigma^2}\right)$$
(2.15)

เมื่อ μ และ σ คือ ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานที่คำนวณจากความสว่าง ภายใน Γ ตามลำดับ

ในทางปฏิบัติ กระเพาะปัสสาวะในภาพเอ็มอาร์ไอ ประเภท T2 weighted อาจมีการกระจาย ตัวความสว่างที่แตกต่างกันมากในแต่ละบริเวณดังแสดงในรูปที่ 2.4(ข) พื้นที่ที่ความสว่างมีการ เปลี่ยนแปลงมากกว่าพื้นที่บริเวณอื่นส่งผลให้การแบ่งพื้นที่ด้วยฟังก์ชันนี้ผิดพลาด จากการทดลอง เบื้องต้นยังพบว่า ฟังก์ชันจะลู่ออก (Diverge) ได้ง่าย ทำให้ปรับค่าพารามิเตอร์ μและ σที่เหมาะสม ได้ยาก

2.4.2 การหาขอบด้านนอกของผนังกระเพาะปัสสาวะ

เมื่อได้ขอบด้านในของผนังกระเพาะปัสสาวะแล้ว การหาขอบด้านนอกของกระเพาะปัสสาวะ จะอ้างอิงผลของการหาขอบด้านในของกระเพาะปัสสาวะ โดย Duan และคณะ[19] เสนอกรรมวิธี การประมาณขอบด้านนอกของผนังกระเพาะปัสสาวะจากการใช้ฟังก์ชันค่าที่จะหยุดการเคลื่อนที่ของ Γ จากเกรเดียนต์ของภาพและเพิ่มพจน์ควบคุมให้เส้นขอบสามารถขยายตัวได้เฉพาะบริเวณแคบๆ รอบผนังด้านในเท่านั้น หลังจากนั้นจะนำผลที่ได้ทั้งหมดมาปรับแก้ให้ถูกต้องมากยิ่งขึ้น ด้วยกรรมวิธี ทางสถิติผ่านกฎของเบย์ (Bayes'law) ทั้งนี้กรรมวิธีของ Duan และคณะ ใช้ข้อมูลภาพที่หาขอบด้าน นอกผนังกระเพาะปัสสาวะได้ง่ายกว่าภาพในงานใส่แร่ เนื่องจากเป็นการแบ่งพื้นที่กระเพาะปัสสาวะ จากภาพ T1 weighted ที่แสดงลักษณะขอบด้านนอกของผนังกระเพาะปัสสาวะได้ชัดเจนกว่าภาพ T2 weighted

Chi และคณะ[15] พิจารณาว่าผนังกระเพาะปัสสาวะในภาพ T1 weighted มีค่าความสว่าง อยู่ในช่วงเดียวกัน และแตกต่างจากบริเวณรอบผนัง จึงเสนอกรรมวิธีตัดแบ่งภาพที่พิจารณาหาขอบ ด้านในของกระเพาะปัสสาวะจากภาพ T2 weighted และขอบด้านนอกจากภาพ T1 weighted ทั้งนี้ การเคลื่อนที่ของขอบด้านนอกจะขึ้นกับค่าตัววัด FA ใน $_{\mathcal{S}}(\cdot)$ เช่นเดียวกับขอบด้านใน และมีการนำ ระยะจากขอบด้านในถึงขอบด้านนอกเข้ามาร่วมพิจารณา กล่าวคือขอบด้านนอกกับขอบด้านในไม่ ควรอยู่ห่างเกินความหนาของกระเพาะปัสสาวะ ดังนั้น $_{\mathcal{S}}(\cdot)$ จะลู่เข้าสู่ศูนย์เมื่อขอบด้านนอกเคลื่อน ออกห่างจากขอบด้านในเกินความหนา

Qin และคณะ[13] หาขอบด้านนอกของกระเพาะปัสสาวะจากภาพ T2 weighted ด้วย กรรมวิธีรูปแบบเดียวกับการหาขอบด้านใน โดยปรับให้ _{*g*}(·) ลู่เข้าสู่ศูนย์ เมื่อความสว่างภายในน้อย กว่าภายนอก เนื่องจากความสว่างของผนังกระเพาะปัสสาวะน้อยกว่าเนื้อเยื่อที่อยู่เลยขอบด้านนอก ของกระเพาะปัสสาวะ ซึ่งขอบด้านนอกจะมีเกรเดียนต์ความสว่างในทิศพุ่งออกจากกระเพาะปัสสาวะ เส้นขอบΓ จึงควรวางตัวอยู่ในบริเวณที่มีเกรเดียนต์สูงและมีทิศพุ่งออก ในทำนองเดียวกับการหาขอบ ด้านใน _S(.) สำหรับขอบด้านนอกสามารถนิยามได้ดังนี้

$$g(I,\varphi) = \frac{1}{1 + \left(1 - H\left(\nabla(G_{\sigma} * I) \cdot \nabla\varphi\right)\right) \left\|\nabla(G_{\sigma} * I)\right\|^{2}}$$
(2.16)

ภาพ T2 weighted จะแสดงลักษณะขอบด้านนอกของผนังกระเพาะปัสสาวะไม่ชัดเจน ดังนั้นนอกจากการปรับแก้ $_{\mathcal{S}}(\cdot)$ แล้ว Qin และคณะ จึงเพิ่มขั้นตอนการปรับแก้เส้นขอบทั้งสองพร้อม กัน โดยปรับ $\varphi(\mathbf{x})$ ของเส้นขอบด้านในและด้านนอก โดยเพิ่มพจน์ในลักษณะของฟังก์ชันค่าของ Chan และ Vese เข้าไปเฉพาะบริเวณผนังกระเพาะปัสสาวะและควบคุมความหนาผ่านเครื่องหมาย ของพารามิเตอร์ α'_1 , β'_1 , α'_2 , β'_2 ดังนี้

$$\frac{\partial \varphi_{in}(\mathbf{x})}{\partial t} = \mu div \Big(d_{p} (\nabla \varphi_{in}) \nabla \varphi_{in} \Big) + \lambda \delta(\varphi_{in}) div \Big(g \big(|\nabla I| \big) \frac{\nabla \varphi_{in}}{|\nabla \varphi_{in}|} \Big)$$

$$+ \alpha_{1}' g \big(|\nabla I| \big) \delta(\varphi_{in}) H(\varphi_{out}) + \beta_{1}' g \big(|\nabla I| \big) (I - \overline{C})^{2} \delta(\varphi_{in}) H(\varphi_{out})$$

$$\frac{\partial \varphi_{out}(\mathbf{x})}{\partial t} = \mu div \Big(d_{p} (\nabla \varphi_{out}) \nabla \varphi_{out} \Big) + \lambda \delta(\varphi_{out}) div \Big(g \big(|\nabla I| \big) \frac{\nabla \varphi_{out}}{|\nabla \varphi_{out}|} \Big)$$

$$- \alpha_{2}' g \big(|\nabla I| \big) \delta(\varphi_{out}) \big(1 - H(\varphi_{in}) \big) - \beta_{2}' g \big(|\nabla I| \big) (I - \overline{C})^{2} \delta(\varphi_{out}) \big(1 - H(\varphi_{in}) \big)$$

$$\frac{d}{d} \varphi_{in}(\cdot) \| dz \varphi_{out}(\cdot) \| dz \varphi_$$

c คือ ค่าเฉลี่ยความสว่างของบริเวณระหว่างขอบด้านในและด้านนอก
 a'₁, *β*'₁, *a*'₂, *β*'₂ คือ ค่าที่มีนิยาม ดังนี้

$$\alpha' = V(\mathbf{x}) \cdot \alpha \tag{2.19}$$

และ

$$\beta' = V(\mathbf{x}) \cdot \beta \tag{2.20}$$

โดย $V(\mathbf{x}) = 1$ เมื่อระยะห่างระหว่าง $\varphi_{in}(\mathbf{x})$ และ $\varphi_{out}(\mathbf{x})$ ไม่เกินจากระยะที่กำหนดและ $V(\mathbf{x}) = -1$ เมื่อระยะห่างระหว่าง $\varphi_{in}(\mathbf{x})$ และ $\varphi_{out}(\mathbf{x})$ เกินจากระยะที่กำหนด

ระยะที่กำหนดให้ใช้เป็นเกณฑ์เปลี่ยนเครื่องหมายของ $lpha_1',\ eta_1',\ lpha_2'$ และ eta_2' อ้างอิงจาก ความหนาของผนังกระเพาะปัสสาวะ สำหรับระยะระหว่างขอบด้านในและขอบด้านนอกถูกประมาณ จากผลต่างระหว่าง $\varphi_{_{in}}(\mathbf{x})$ และ $\varphi_{_{out}}(\mathbf{x})$ โดยคิดเฉพาะ \mathbf{x} ที่อยู่ระหว่างขอบด้านในกับขอบด้านนอก เท่านั้น

อย่างไรก็ตามภาพเอ็มอาร์ไอ ประเภท T2 weighted อาจมีขอบด้านนอกที่ไม่ชัดเจนจนไม่ สามารถตัดแบ่งด้วยวิธี Qin และคณะ[14] ได้ เนื่องจากขอบด้านนอกจะเคลื่อนที่ไปยังบริเวณอวัยวะ ข้างเคียง จึงได้เพิ่มพจน์ของรูปร่างกระเพาะปัสสาวะในสไลด์ที่ติดกันเข้าไปในทำนองเดียวกันกับการ หาขอบด้านใน

Ma และคณะ[17] เสนอกรรมวิธีหาขอบด้านนอกกระเพาะปัสสาวะ โดยอ้างอิงจากฟังก์ชัน ค่าของ Chan และ Vese แต่คำนวณเฉพาะบริเวณแคบๆรอบขอบด้านใน และเพิ่มพจน์ที่ควบคุม ระยะห่างระหว่างขอบด้านนอกและขอบด้านในขึ้นมา กล่าวคือ $\varphi(\mathbf{x})$ ของขอบด้านนอกจะถูกปรับ ด้วยฟังก์ชันดังนี้

$$\frac{\partial \varphi(\mathbf{x})}{\partial t} = \mu div \left(\frac{\nabla \varphi}{|\nabla \varphi|} \right) - \lambda_1 \left(I(\mathbf{x}) - c_1^* \right)^2 + \lambda_2 \left(I(\mathbf{x}) - c_2 \right)^2 + S(\mathbf{x}) (\nabla \varphi) \quad (2.21)$$

เมื่อ c_1^* คือ ค่าเฉลี่ยความสว่างภายในกระเพาะปัสสาวะที่กำหนดโดยผู้ใช้

- c2 คือ ค่าเฉลี่ยความสว่างของบริเวณภายนอกขอบด้านนอกเฉพาะบริเวณที่
 อยู่นอก Γ ไปไม่เกินพื้นที่ที่กำหนดไว้
- S(x) คือ ฟังก์ชันที่ควบคุมระยะระหว่างขอบด้านในและขอบด้านนอก และ นิยามดังนี้

$$S(\mathbf{x}) = \frac{1 + \xi \kappa_0}{\left(D(\mathbf{x}, \Gamma_{\text{inside}}) - r\right)^2 + \varepsilon} \cdot \overrightarrow{\mathbf{n}_0}$$
(2.22)

เมื่อ
$$\kappa_0$$
คือ ค่าความโค้ง (Curvature) ของ φ ξ คือ ค่าคงตัว $\vec{\mathbf{n}}_0$ คือ ทิศตั้งฉากที่พุ่งออกจากขอบด้านใน (Γ_{inside}) $D(\mathbf{x}, \Gamma_{\text{inside}})$ คือ ระยะระหว่าง \mathbf{x} กับ Γ_{inside} r คือ ความหนาของกระเพาะปัสสาวะในหน่วย จุดภาพ (pixel) ε คือ ค่าคงตัวบวกที่เพิ่มเข้ามา เพื่อป้องกันการหารแล้วได้ค่าศูนย์

สังเกตได้ว่า $S(\mathbf{x})$ จะมีค่าลดลงเมื่อระยะระหว่าง \mathbf{x} กับขอบด้านในมีค่าต่างจากความหนา ของกระเพาะปัสสาวะมากขึ้นและมีค่าสูงสุดเพื่อไม่ให้เส้นขอบ Γ ขยายเพิ่มขึ้นเมื่อ $D(\mathbf{x}, \Gamma_{\text{inside}})$ เท่ากับ r จึงส่งผลให้ระยะที่เส้นขอบ Γ เคลื่อนที่ได้สูงสุดคือ r สำหรับการเขียนโปรแกรมจริง ค่า ε ในสมการที่ (2.22) ไม่ควรเป็นค่าเล็กมาก เนื่องจากจะ ทำให้พจน์ $S(\mathbf{x})$ มีค่าสูงที่ $D(\mathbf{x}, \Gamma_{\text{inside}}) = r$ และค่า ϕ ที่ได้เกิดการลู่ออก (Diverge)

จากกรรมวิธีที่ได้ค้นคว้ามา พบว่าในการหากระเพาะปัสสาวะส่วนมากอาศัยข้อมูลความหนา ของผนังกระเพาะปัสสาวะร่วมกับการเปลี่ยนแปลงความสว่าง ทั้งนี้ทุกกรรมวิธีจะพิจารณาให้ความ หนาของผนังกระเพาะปัสสาวะเป็นค่าคงที่ ความถูกต้องของกรรมวิธีเหล่านี้ จึงขึ้นกับความถูกต้องใน การกำหนดค่าความหนาของผนังกระเพาะปัสสาวะเทียบกับความหนาจริงของผนัง ทั้งนี้ความหนา ของผนังคำนวณได้จากขนาดของผลบวกระหว่าง *φ* สำหรับขอบด้านในและขอบด้านนอก

2.5 วงจรกรองซาวิสกี้-โกเลย์ (Savitzky-Golay Filter)

วงจรกรองซาวิสกี้-โกเลย์ เป็นวงจรกรองที่เพิ่มความราบเรียบให้กับสัญญาณ โดยประมาณค่า ของสัญญาณด้วยฟังก์ชันพหุนาม (Polynomial) วงจรกรองนี้ต่างจากการประมาณฟังก์ชันทั่วไปที่ ประมาณจากทุกค่าของข้อมูลมาเป็นการประมาณในช่วงแคบๆ หลักการทำงานของวงจรกรองซา วิสกี้-โกเลย์คือ การหาฟังก์ชันพหุนามที่มีความผิดพลาดกำลังสองกับสัญญาณจำนวน 2m+1 ข้อมูล น้อยที่สุด และนำฟังก์ชันพหุนามที่ได้ไปประมาณค่าของสัญญาณที่ตำแหน่งกึ่งกลางของสัญญาณ 2m+1ข้อมูลนั้น ทั้งนี้อันดับของพหุนามต้องไม่มากกว่า 2m+1 และถ้าเท่ากับ 2m+1 จะได้ เส้นกราฟที่ผ่านทุกข้อมูลและไม่เพิ่มความราบเรียบให้กับข้อมูล

ขั้นตอนการทำงานของวงจรกรองซาวิสกี้-โกเลย์อันดับที่n ในการประมาณค่าสัญญาณตัวที่ $p\left(x_{p}
ight)$ มีดังนี้

1) หาสัมประสิทธิ์ a_i ของฟังก์ชันพหุนาม $\sum_{i=0}^n a_i j^i$ ที่ทำให้สมการที่ (2.23) มีค่าต่ำสุด

$$Err = \sum_{j=-m}^{m} \left\{ x_{p+j} - \sum_{i=0}^{n} a_i j^i \right\}^2$$
(2.23)

สังเกตได้ว่า j คืออันดับจากตำแหน่ง p ไปหาตำแหน่งที่ต้องการประมาณค่า

2) ผลของการนำสัญญาณผ่านวงจรกรองซาวิสกี้-โกเลย์ ได้สัญญาณที่ตำแหน่ง $pig(x_{\scriptscriptstyle P}ig)$ มีค่า ดังนี้

$$x_{p} = \sum_{i=0}^{n} a_{i} \left(0\right)^{i} = a_{0}$$
(2.24)

การหาค่าสัมประสิทธิ์ a_i จากสมการที่ (2.23) ทำได้โดยเริ่มจากการกำหนดอนุพันธ์ย่อย เทียบแต่ละสัมประสิทธิ์ a_i ให้เป็นศูนย์ และจัดรูปเป็นการแก้ระบบสมการเชิงเส้นดังนี้

$$\frac{\partial Err}{\partial a_k} = \sum_{j=-m}^m \left[2 \left(x_{p+j} - \sum_{i=0}^n a_i j^i \right) \cdot \left(-j^k \right) \right]$$
$$0 = \left(-2 \right) \sum_{j=-m}^m \left(j^k \cdot \left(x_{p+j} - \sum_{i=0}^n a_i j^i \right) \right)$$
$$\sum_{i=0}^n \sum_{j=-m}^m j^{i+k} a_i = \sum_{j=-m}^m j^k x_{p+j}$$
(2.25)

กำหนดให้

$$\mathbf{a}^{T} = \begin{bmatrix} a_{0} \ a_{1} \dots a_{n} \end{bmatrix}$$

$$x_{p}^{T} = \begin{bmatrix} x_{p-m} \ x_{p-m+1} \dots x_{p} \dots x_{p+m-1} \ x_{p+m} \end{bmatrix}$$
(2.28)

อาศัยนิยามตามสมการที่ (2.26) (2.27) และ (2.28) เราสามารถเขียนสมการที่ (2.25) ใน รูปการคูณเมทริกซ์ ได้ดังนี้

$$\left\{\Gamma\Gamma^{T}\right\}_{row=k} \mathbf{a} = \left\{\Gamma\right\}_{row=k} \mathbf{x}_{p}$$
(2.29)

เมื่อ $\left\{\cdot
ight\}_{row=k}$ คือ แถวที่ k ของเมทริกซ์

เมื่อเรียงสมการที่ (2.25) จากk=0 ไปถึง *n* เป็นระบบสมการเชิงเส้นแล้ว ระบบสมการนี้ สามารถเขียนในรูปแบบสมการเมทริกซ์ได้ดังนี้

$$\left(\Gamma\Gamma^{T}\right)\mathbf{a} = \Gamma\mathbf{x}_{p} \tag{2.30}$$

จากสมการที่ (2.30) หาค่า**a** ได้ดังนี้

$$\mathbf{a} = \left(\Gamma\Gamma^{T}\right)^{-1}\Gamma\mathbf{x}_{p} \tag{2.31}$$

สังเกตว่าค่าสมาชิกในเมทริกซ์ Γ ตามสมการที่ (2.25) เป็นค่าคงที่ไม่ขึ้นกับสัญญาณ **x**_p ดังนั้นจึงสามารถคำนวณ (ΓΓ^T)⁻¹ Γ ไว้ล่วงหน้า ส่งผลให้การกรองด้วยวงจรกรองซาวิสกี้-โกเลย์ เป็น เสมือนการคูณเมทริกซ์ค่าคงที่กับสัญญาณซึ่งประมวลได้รวดเร็ว

ในกรณีที่ต้องการทำให้เส้นขอบของวงปิดราบเรียบนั้น ทำได้โดยการสร้างสัญญาณให้เป็น รูปแบบวนลูป (Cyclic) กล่าวคือ หาก ${f x}$ เป็นสัญญาณที่มีความยาว q แล้ว กำหนดให้

$$x_{p} = \begin{cases} x_{p+q} & ; -q+1 \le p \le 0 \\ x_{p} & ; 1 \le p \le q \\ x_{p-q} & ; q+1 \le p \le 2q \end{cases}$$
(2.32)

บทที่ 3 กรรมวิธีที่นำเสนอ

วัตถุประสงค์ของวิทยานิพนธ์ฉบับนี้ คือการหาพื้นที่กระเพาะปัสสาวะในภาพเอ็มอาร์ไอเพื่อ ช่วยวางแผนรักษามะเร็งปากมดลูกด้วยการใส่แร่ จากการทบทวนวรรณกรรมในบทที่ 2 ร่วมกับการ วิเคราะห์ภาพเอ็มอาร์ไอ พบว่ามีแนวคิดบางส่วนที่สามารถนำมาประยุกต์ใช้ในวิทยานิพนธ์ฉบับนี้ได้ แต่ไม่สามารถนำมาใช้ได้ทั้งหมด เนื่องจากกรรมวิธีที่กล่าวมาในบทที่ 2 [13-15, 17-19] มีจุดประสงค์ เพื่อช่วยวางแผนรักษามะเร็งกระเพาะปัสสาวะ ซึ่งขอบเขตกระเพาะปัสสาวะชัดเจน เนื่องจากเป็น ภาพตามแนวแกนมาตรฐาน (แนวแกนตั้งฉากกับอวัยวะที่ต้องการตรวจ เพื่อให้อวัยวะที่สนใจอยู่ กึ่งกลางภาพและแสดงรายละเอียดมากที่สุด) จึงไม่ได้คำนึงถึงความไม่ชัดเจนที่เกิดในภาพแนวแกนไม่ มาตรฐาน การเพี้ยนของความหนาของผนังกระเพาะปัสสาวะที่เกิดจากการถ่ายภาพในแนวแกนไม่ตั้ง ฉาก การบีบอัดของกระเพาะปัสสาวะจากแท่งนำแร่และสำลี และบริเวณภายในกระเพาปัสสาวะ (Lumen) มีการกระจายตัวความสว่างที่อาจไม่คงที่ ดังนั้นวิธีที่นำเสนอมาก่อนหน้านี้ จึงไม่เหมาะสมที่ จะนำมาใช้ในภาพเอ็มอาร์ไอที่ใช้ในงานรังสีรักษามะเร็งปากมดลูก ซึ่งเป็นภาพตามแนวแกนแท่งนำแร่ ไม่ได้เป็นภาพตามแกนมาตรฐานและมีการกระจายตัวความสว่างภายในกระเพาะปัสสาวะไม่ จำเป็นต้องคงที่

ภาพเอ็มอาร์ไอที่ใช้ในงานรังสีรักษานี้เป็นประเภท T2 weighted ความสว่างของผนัง กระเพาะปัสสาวะและเนื้อเยื่อข้างเคียงมีลักษณะใกล้เคียงกัน ส่งผลให้ขอบเขตของกระเพาะปัสสาวะ ไม่ชัดเจน หรือหายไปในบางบริเวณ ในทำนองเดียวกับวิธีที่ถูกนำเสนอมาโดยนักวิจัยก่อนหน้านี้ การ หาขอบด้านนอกของผนังกระเพาะปัสสาวะจะอ้างอิงรูปร่างของขอบด้านใน ดังนั้นความถูกต้องของ ขอบด้านใน จึงส่งผลกระทบกับการหาขอบด้านนอกด้วย สำหรับวิทยานิพนธ์ฉบับนี้ จะนำเสนอทั้งใน วิธีการหาขอบด้านใน (ตอนที่ 3.1) และขอบด้านนอกของผนังกระเพาะปัสสาวะ (ตอนที่ 3.2)

3.1 กรรมวิธีหาขอบด้านในของผนังกระเพาะปัสสาวะ

จากการศึกษาภาพเอ็มอาร์ไอที่ใช้ในงานรังสีรักษามะเร็งปากมดลูก พบว่าความสว่างภายใน กระเพาะปัสสาวะมีทั้งแบบการกระจายตัวสม่ำเสมอ (รูปที่ 3.1(ก)) และไม่สม่ำเสมอ (รูปที่ 3.1(ข)) จากรูปที่ 3.1(ข) สังเกตได้ว่าความสว่างบางส่วนของกระเพาะปัสสาวะมีการกระจายตัวที่ใกล้เคียงกัน (ภายในวงสีน้ำเงิน) ในรูปแบบเดียวกับรูปที่ 3.1(ก) แต่มีบางบริเวณที่การกระจายตัวความสว่าง แตกต่างกันมาก (ภายในวงสีแดง) ส่งผลให้การหาเส้นขอบด้วยกรรมวิธี CDLS[13] และกรรมวิธีของ Ma และคณะ[17] ได้ผลลัพธ์ที่ไม่ถูกต้อง ดังแสดงในรูปที่ 3.2(ก) และรูปที่ 3.2(ข) ตามลำดับ

รูปที่ 3.1 ความสว่างภายในกระเพาะปัสสาวะ (ก) แบบกระจายความสว่างสม่ำเสมอ (ข) แบบกระจายความสว่าง ไม่สม่ำเสมอ ดังเช่น พื้นที่ภายในวงสีแดง ซึ่งมีการกระจายความสว่างกว้างกว่าพื้นที่ภายในวงสีน้ำเงิน

รูปที่ 3.2 ผลลัพธ์ของการหาขอบในของผนังกระเพาะปัสสาวะในรูปที่ 3.1(ข) ด้วย (ก) กรรมวิธี CDLS (ข) กรรมวิธีของ Ma และคณะ (แสดงด้วยเส้นสีแดง)

วิธีหนึ่งที่สามารถลดผลกระทบของการกระจายตัวความสว่างที่ไม่สม่ำเสมอได้คือการใช้ข้อมูล รูปร่างเข้ามาเกี่ยวข้อง ทว่ารูปร่างของกระเพาะปัสสาวะเปลี่ยนไปตามกายวิภาคเฉพาะบุคคลและ ปริมาณปัสสาวะในขณะนั้น และถึงแม้เป็นคนไข้คนเดียวกัน ภาพที่ได้ในแต่ละสไลด์ของชุดภาพหนึ่งมี รูปร่างกระเพาะปัสสาวะที่แตกต่างกันได้ ดังแสดงในรูปที่ 3.3 ดังนั้นจึงไม่สามารถหาลักษณะกลางมา เป็นแม่แบบ (Template) ได้ Qin และคณะ[14] จึงได้นำเสนอให้นำรูปร่างกระเพาะปัสสาวะในสไลด์ ที่ติดกันมาเป็นแม่แบบภายใต้สมมุติฐานที่ว่าจะต้องมีสไลด์ที่สามารถหาพื้นที่ภายในของกระเพาะ ปัสสาวะได้ถูกต้องอย่างน้อย 1 สไลด์ในชุดภาพ แต่ในทางปฏิบัติ มีบางชุดภาพที่กระเพาะปัสสาวะมี การกระจายตัวความสว่างภายในไม่คงที่ทุกสไลด์ ทำให้ไม่สามารถใช้วิธีที่นำเสนอก่อนหน้านี้หาพื้นที่ กระเพาะปัสสาวะได้ถูกต้องแม้แต่สไลด์เดียว

รูปที่ 3.3 รูปร่างกระเพาะปัสสาวะที่แตกต่างในแต่ละสไลด์จากชุดภาพเดียวกัน

เพื่อแก้ปัญหาดังกล่าวข้างต้น วิทยานิพนธ์ฉบับนี้จึงเสนอวิธี "เลเวลเซตที่ใช้ผลต่างของ ค่าเฉลี่ยความสว่างแบบมีทิศทาง" (Directional Local Mean Difference Level Set Method; DLMD-LS) โดยกรรมวิธีนี้หาพื้นที่ด้านในของกระเพาะปัสสาวะโดยอ้างอิงจากการกระจายค่าความ สว่างอย่างเดียว ส่งผลให้รูปร่างกระเพาะปัสสาวะสามารถเปลี่ยนแปลงได้

3.1.1 หลักการของวิธีเลเวลเซตที่ใช้ผลต่างของค่าเฉลี่ยความสว่างแบบมีทิศทาง

ความสว่างที่ไม่สม่ำเสมอภายในกระเพาะปัสสาวะสามารถพิจารณาเป็นผลของสัญญาณ รบกวนได้ สัญญาณรบกวนส่งผลให้ขนาดเกรเดียนต์ของค่าความสว่างมีค่ามาก จึงไม่เหมาะสมที่จะ กำหนดค่า $_{\mathcal{S}}(\cdot)$ เป็นฟังก์ชันของเกรเดียนต์ของความสว่างดังเช่นในกรรมวิธี CDLS [13] ในทาง กลับกันความสว่างภายในมีการกระจายตัวไม่คงที่ การพิจารณา $_{\mathcal{S}}(\cdot)$ เป็นฟังก์ชันความสว่างเฉลี่ยของ ทั้งพื้นที่ ดังเช่นในกรรมวิธีของ Ma และคณะ[17] เป็นการตั้งสมมุติฐานที่ไม่สอดคล้องกับลักษณะ ภาพ

วิธีหนึ่งที่ใช้ลดผลกระทบของสัญญาณรบกวนได้ คือการหาค่าเฉลี่ยความสว่างแต่ให้ใช้เป็น ค่าเฉลี่ยของพื้นที่เล็กๆบริเวณจุดภาพ (Pixel) ที่สนใจเท่านั้นแทนที่จะใช้ค่าเฉลี่ยของทั้งพื้นที่ ดังเช่น กรรมวิธีของ Ma และคณะ[17] เพื่อลดปัญหาการกระจายค่าความสว่างที่ไม่สม่ำเสมอในบริเวณ ภายในกระเพาะปัสสาวะ

ภาพเอ็มอาร์ไอประเภท T2 weight มีลักษณะความสว่างของพื้นที่ภายในกระเพาะปัสสาวะ ผนังกระเพาะปัสสาวะและเนื้อเยื่อรอบๆที่ค่อนข้างแน่นอน กล่าวคือ พื้นที่ภายในกระเพาะปัสสาวะมี ความสว่างสูงสุดขณะที่ผนังกระเพาะปัสสาวะมีความสว่างต่ำสุด จึงสามารถนำมาใช้กำหนดตำแหน่ง ของขอบด้านในของผนังกระเพาะปัสสาวะเป็นบริเวณที่พื้นที่ภายในมีความสว่างเฉลี่ยสูงกว่าพื้นที่ ภายนอกด้วย

3.1.2 วิธีเลเวลเซตที่ใช้ผลต่างของค่าเฉลี่ยความสว่างแบบมีทิศทาง

อ้างจากหลักการในตอนที่ 3.1.1 เราสามารถพิจารณาขนาดฟังก์ชัน _g(·) เป็นฟังก์ชันที่มีค่า ต่ำสุด เมื่อความสว่างเฉลี่ยของพื้นที่ภายในและพื้นที่ภายนอกต่างกันมาก สำหรับการกำหนดให้ _g(·) มีค่าต่ำสุดเฉพาะบริเวณที่พื้นที่ด้านในสว่างกว่าด้านนอกสามารถทำได้ในลักษณะเดียวกับกรรมวิธี CDLS แต่ให้พิจารณาเป็นผลต่างค่าเฉลี่ยความสว่างแทนที่จะพิจารณาทิศโดยอ้างอิงจากค่า $abla(G_{\sigma}*I)\cdot
abla\phi$

ฟังก์ชั้น $g(\cdot)$ ของวิธี DLMD-LS สามารถเขียนได้ตามสมการที่ (3.1)

$$g(\mathbf{x}) = H(\Psi(\mathbf{x}))\exp\left(-\frac{\Psi(\mathbf{x})}{2\sigma^2}\right)^2 + \left(1 - H(\Psi(\mathbf{x}))\right)$$
(3.1)

เมื่อ σ^2 คือ พารามิเตอร์ที่ผู้ใช้กำหนด โดยมีค่าขึ้นกับสัญญาณรบกวนของ ภาพนั้นๆ

Ψ(x) คือ ฟังก์ชันที่นิยามตามสมการที่ (3.2)

$$\Psi(\mathbf{x}) = \mu_{in}(\mathbf{x}) - \mu_{out}(\mathbf{x})$$
(3.2)

เมื่อ $\mu_{in}(\mathbf{x})$ และ $\mu_{out}(\mathbf{x})$ คือค่าเฉลี่ยของความสว่างของพื้นที่ภายในและพื้นที่ ภายนอก Γ ตามลำดับ ทั้งนี้คำนวณค่าเฉลี่ยความสว่างเฉพาะภายในวินโดว์ขนาด $n \times n$ จุดภาพ ที่มี **x** เป็นจุดศูนย์กลางเท่านั้น

ฟังก์ชัน $_{\mathcal{S}}(\cdot)$ ตามสมการที่ (3.1) มีสมบัติที่อนุญาตให้ Γ เคลื่อนที่ในบริเวณที่มีสัญญาณ รบกวนพื้นที่เล็กๆ และหยุดบริเวณผนังกระเพาะปัสสาวะ ซึ่งสมบัตินี้สามารถอธิบายโดยอ้างอิงจากรูป ที่ 3.4 ได้ดังนี้ รูปที่ 3.4(ก) และ รูปที่ 3.4(ข) แสดงภาพจำลองอย่างง่าย กรณี Γ อยู่ใกล้ผนังกระเพาะ ปัสสาวะ (พื้นที่สีดำขนาดใหญ่) และกรณี Γ อยู่บริเวณที่มีการกระจายตัวความสว่างไม่คงที่ (พื้นที่สีดำ ขนาดเล็ก) ตามลำดับ กำหนดให้จุดภาพสีขาว และสีดำมีความสว่างที่ 255 และ 0 ตามลำดับ และใช้ วินโดว์ขนาด 5×5 จุดภาพ ในการคำนวณความสว่างเฉลี่ย เส้นหนาในรูปแสดงเส้น Γ ค่า μ_m และ μ_{out} ที่ตำแหน่ง \mathbf{x}_1 ในรูปที่ 3.4(ก) มีค่า 255 และ 128 ตามลำดับ ขณะที่ μ_m และ μ_{out} ที่ตำแหน่ง \mathbf{x}_2 ในรูปที่ 3.4(ข) มีค่า 255 และ 230 ตามลำดับ จะเห็นได้ว่า ในกรณีที่ Γ ใกล้ผนังกระเพาะปัสสาวะ ความแตกต่างของ μ_m และ μ_{out} มีค่า 128 (50% ของช่วงความสว่าง) ขณะที่หาก Γ ใกล้บริเวณการ กระจายตัวไม่คงที่ ความแตกต่างของ μ_m และ μ_{out} มีค่าเพียง 25 (9.8% ของช่วงความสว่าง) เนื่องจากความแตกต่างของ μ_m และ μ_{out} ในรูปที่ 3.4(ก) และ รูปที่ 3.4(ข) มีค่าต่างกันมาก จึงเป็น การง่ายที่จะกำหนด σ^2 ใน $_{\mathcal{N}$ ที่ทำให้ $_{\mathcal{S}}(\cdot)$ เข้าสู่ศูนย์ (Γ หยุดการขยายตัว) เมื่อ Γ ใกล้ผนัง กระเพาะปัสสาวะในรูปที่ 3.4(ก) และ $_{\mathcal{S}}(\cdot)$ มีค่าไม่เข้าสู่ศูนย์ (Γ ขยายตัว) เมื่ออยู่บริเวณการกระจาย ความสว่างไม่คงที่ ในรูปที่ 3.4(ข)
ในกรรมวิธี DLMD-LS จึงต้องมีการขยายเส้นขอบอยู่เล็กน้อย เพื่อให้ผลลัพธ์ที่ถูกต้องมากขึ้น ดังรูปที่ 3.5 ซึ่งเมื่อขยายเส้นขอบที่ได้จาก Γ เมื่อใช้วินโดว์ขนาด 5×5 จุดภาพ (รูปที่ 3.5(ก)) ออกไป 1 จุดภาพแล้ว แสดงดังรูปที่ 3.5(ข) พบว่าเส้นขอบจะแนบชิดผนังด้านในกระเพาะปัสสาวะมากขึ้น สำหรับระยะที่จำเป็นต้องขยายจะพิจารณาจากการทดลองในหัวข้อที่ 4.3.1.2

เราสามารถสรุปขั้นตอนการทำงานของ DLMD-LS ได้ดังนี้

- (1) การแบ่งภาพด้วยกรรมวิธีเลเวลเซตตามสมการที่ (2.9) โดยเปลี่ยนนิยาม $_{\mathcal{S}}(\cdot)$ เป็นตาม สมการที่ (3.1)
- (2) การขยายเส้นขอบออกไป m จุดภาพ โดย m ขึ้นกับขนาดของวินโดว์

รูปที่ 3.4 การหยุดของ Γ จาก $g(\cdot)$ ของกรรมวิธี DLMD-LS เมื่อ Γ แสดงด้วยเส้นหนา (ก) เมื่อ Γ เข้าใกล้ผนังกระเพาะปัสสาวะ (ข)เมื่อ Γ เข้าใกล้พื้นที่ที่มีการกระจายความสว่างไม่คงที่

รูปที่ 3.5 ผลการแบ่งส่วนภาพ (แสดงด้วยเส้นสีแดง) ด้วยกรรมวิธี DLMD-LS (ก) ทันทีหลังจากที่ Γ หยุดการเปลี่ยนแปลง (ข) หลังการขยายขนาด Γ ไป 1 จุดภาพ

3.1.3 การปรับเส้นขอบเริ่มต้นในชุดภาพ

ในวิธีเลเวลเซตที่ใช้ $_{\mathcal{S}}(\cdot)$ แบบอ้างอิงค่าเกรเดียนต์นั้น การเคลื่อนที่ของเส้นขอบจะถูก กำหนดให้มีทิศทางเดียวคือขยายออกหรือหดเข้าเท่านั้น จากลักษณะภาพและความง่ายในการกำหนด เส้นขอบเริ่มต้น จึงเลือกให้เส้นขอบมีการเคลื่อนที่แบบขยายออก โดยกำหนดเส้นขอบเริ่มต้นเป็นวง ปิดวางอยู่กึ่งกลางพื้นที่ภายในกระเพาะปัสสาวะ แสดงดังรูปที่ 3.6(ข) อย่างไรก็ตามใน 1 ชุดภาพเอ็ม อาร์ไอประกอบด้วยภาพหลายสไลด์ หากให้ผู้ใช้กำหนดเส้นขอบเริ่มต้นเองทุกสไลด์จะเสียเวลามาก ดังนั้นในกรรมวิธีที่นำเสนอจะให้ผู้ใช้กำหนดเส้นขอบเริ่มต้นที่สไลด์กลางของชุดภาพ (สไลด์ที่ j) เท่านั้น เนื่องจากสไลด์กลางของชุดภาพเป็นภาพที่ชัดเจน ถึงแม้ว่าใน 1 ชุดภาพลักษณะกระเพาะ ปัสสาวะจะไม่เหมือนกันทุกสไลด์ แต่ในสไลด์ที่ติดกันยังมีความคล้ายกันอยู่มาก ดังนั้นจึงเริ่มกำหนด ตำแหน่งเริ่มต้นจากสไลด์กลาง โดยเส้นขอบเริ่มต้นของสไลด์ที่อยู่ถัดจากสไลด์กึ่งกลาง (สไลด์ที่ j-1หรือ j+1) คือผลลัพธ์จากการแบ่งส่วนภาพของสไลด์กลางที่ถูกย่อส่วนลง 30% แสดงดังรูปที่ 3.6(ก) และ(ค) ตามลำดับ

จากแกนการตัดภาพและลักษณะการวางตัวของกระเพาะปัสสาวะ พบว่าใน 1 ชุดภาพ ตำแหน่งของกระเพาะปัสสาวะในทุกๆสไลด์จะเขยิบขึ้นด้านบนเล็กน้อย กล่าวคือเคลื่อนที่จาก ด้านหน้าถึงด้านหลัง การที่กระเพาะปัสสาวะไม่ได้อยู่ที่ตำแหน่งเดียวกันตลอดทุกสไลด์ส่งผลให้ต้อง กำหนดเส้นขอบเริ่มต้นของแต่ละสไลด์ที่ตำแหน่งต่างกัน กล่าวคือให้จุดศูนย์กลางของเส้นขอบเริ่มต้น ของสไลด์ก่อนสไลด์กลาง (สไลด์ที่ $j - k, k \in I^+$) เลื่อนไปทางด้านล่าง(ด้านหลัง) ในทางกลับกันหาก เป็นสไลด์หลังสไลด์กลาง (สไลด์ที่ $j + k, k \in I^+$) จะกำหนดให้เลื่อนขึ้นทางด้านบน(ด้านหน้า) โดยจะ เลื่อนจุดศูนย์กลางของเส้นขอบเริ่มต้นครั้งละ 1 จุดภาพ ทุกๆ 2 สไลด์ หากไม่ทำการเขยิบจุด ศูนย์กลางตามลักษณะการวางตัวที่เปลี่ยนแปลงแล้ว อาจพบเส้นขอบเริ่มต้นที่เลยออกนอกบริเวณ ภายในกระเพาะปัสสาวะ ดังรูปที่ 3.7(ก) ซึ่งทำให้ผลการแบ่งส่วนผิดพลาด ดังรูปที่ 3.7(ข)

รูปที่ 3.6 เส้นขอบเริ่มต้น (เส้นสีแดง) (ก) สไลด์ j-1 จากการย่อขนาดของผลการแบ่งส่วนภาพที่สไลด์ j (ข) เส้นขอบเริ่มต้นที่ผู้ใช้กำหนดในสไลด์ j (ค) สไลด์ j+1จากการย่อขนาดของผลการแบ่งส่วนภาพที่สไลด์ j

รูปที่ 3.7 ผลการหาขอบด้านในของผนังกระเพาะปัสสาวะผิดพลาด เนื่องจากเส้นขอบเริ่มต้นครอบคลุมทั้ง บริเวณภายในและผนังกระเพาะปัสสาวะ (ก) เส้นขอบเริ่มต้น (เส้นสีแดง) (ข) ผลการหาขอบในของผนังกระเพาะปัสสาวะ (เส้นสีแดง)

3.2 กรรมวิธีหาขอบด้านนอกของผนังกระเพาะปัสสาวะ

ผนังกระเพาะปัสสาวะและเนื้อเยื่อข้างเคียงในภาพเอ็มอาร์ไอ แบบ T2 weighted มีความ สว่างใกล้เคียงกันมากในบางพื้นที่ เช่น บริเวณระหว่างกระเพาะปัสสาวะและช่องคลอด (วงสีแดงใน รูปที่ 3.8(ก)) ส่งผลให้การหาขอบด้านนอกของผนังกระเพาะปัสสาวะด้วยการปรับกรรมวิธี DLMD-LS ในรูปแบบเดียวกับ CDLS ที่ให้เส้นขอบหยุดเมื่อมีขอบชัดเจนบริเวณที่ความสว่างภายใน (ผนัง กระเพาะปัสสาวะ) น้อยกว่าภายนอก (เนื้อเยื่อโดยรอบ) เป็นวิธีที่ไม่มีประสิทธิภาพ ดังแสดงผลการหา ขอบด้วยวิธี DLMD-LS ในรูปที่ 3.8(ข) ซึ่งเส้นขอบล้ำไปในบริเวณช่องคลอดและเนื้อเยื่ออื่นๆข้างเคียง ทั้งนี้เส้นขอบที่แสดงเป็นเส้นขอบที่หยุดจากจำนวนรอบที่กำหนด มิได้เกิดจากการลู่เข้าสู่ศูนย์ของ ฟังก์ชัน ₈(.)

รูปที่ 3.8 ผลการหาขอบด้านนอกผนังกระเพาะปัสสาวะด้วยกรรมวิธี DLMD-LS (ก) พื้นที่ระหว่างกระเพาะปัสสาวะและช่องคลอด (วงสีแดง) (ข) ผลการแบ่งส่วนเพื่อหาขอบด้านนอกของผนังกระเพาะปัสสาวะ (เส้นสีเหลือง)

3.2.1 หลักการของวิธีการหาขอบด้านนอกของผนังกระเพาะปัสสาวะ

กรรมวิธีหาขอบด้านนอกของผนังกระเพาะปัสสาวะในวิทยานิพนธ์นี้อ้างอิงจากแนวปฏิบัติ ของรังสีแพทย์ กล่าวคือ เริ่มพิจารณาจากบริเวณรอบผนังด้านนอกกระเพาะปัสสาวะ ว่ามีส่วนที่เห็น ขอบชัดเจน ร่วมกับการประมาณบริเวณที่เห็นขอบไม่ชัดเจนโดยอ้างอิงจากรูปร่างของผนังด้านในของ กระเพาะปัสสาวะ และความหนาของกระเพาะปัสสาวะตามสรีระของคนไข้ โดยเส้นขอบที่ได้ควรมี ความราบเรียบ ไม่หักบิดงอไปมา

สำหรับความหนาของกระเพาะปัสสาวะนั้น เมื่อพิจารณาลักษณะของผนังกระเพาะปัสสาวะ ในงานรังสีรักษามะเร็งปากมดลูก พบว่าความหนาของกระเพาะปัสสาวะมีค่าต่างจากความหนาปกติ โดยค่าที่แตกต่างกันนี้ขึ้นกับระยะหรือช่วงเวลาการรักษาของผู้ป่วย และความหนาไม่ได้เท่ากันทุก บริเวณ กล่าวคือความหนาระหว่างกระเพาะปัสสาวะกับช่องคลอดมีค่าน้อยกว่าบริเวณอื่น เนื่องจาก ถูกบีบอัดโดยสำลีและแท่งนำแร่ ดังนั้นความหนาของกระเพาะปัสสาวะในกรรมวิธีที่นำเสนอ จึงเป็น ค่าที่ผู้ใช้เปลี่ยนแปลงได้ และมีความหนาที่ใช้พิจารณาแยกเป็น 2 บริเวณ คือบริเวณด้านหน้าและ ด้านหลัง

3.2.2 กรรมวิธีการหาขอบด้านนอก

ผนังกระเพาะปัสสาวะด้านในบางส่วน อาจมีลักษณะเว้าแหว่ง เป็นพื้นที่แคบๆ เช่น พื้นที่ ภายในวงสีแดงของรูปที่ 3.9 แต่ลักษณะของผนังกระเพาะปัสสาวะด้านนอกไม่มีลักษณะการเว้าเข้า เช่นนี้ ดังนั้นเพื่อป้องกันความผิดพลาดในการหาขอบด้านนอก จึงต้องกำจัดขอบด้านในของกระเพาะ ปัสสาวะในรูปแบบนี้ออกจากการพิจารณาก่อนที่จะหาจุดภาพที่น่าจะเป็นขอบด้านนอกจากตำแหน่ง ของจุดภาพขอบด้านใน และทำให้เส้นขอบราบเรียบด้วยวงจรกรองซาวิสกี-โกเลย์ (Savitzky-Golay) ขั้นตอนการทำงานทั้งหมดสามารถสรุปได้ดังนี้

รูปที่ 3.9 ขอบด้านในของผนังกระเพาะปัสสาวะที่มีลักษณะเว้าแหว่ง (วงสีแดง)

อินพุท (Input) : $\Gamma_{\rm inner}$: เส้นขอบของผนังกระเพาะปัสสาวะด้านใน

- \mathbf{x}_{i} : ตำแหน่งของจุดภาพที่ i บน Γ_{inner} (i = 1, 2, ... m)
- m : จำนวนจุดภาพบน Γ_{inner}
- ϕ_{inner} : ค่าของฟังก์ชันระยะแบบมีเครื่องหมายของ Γ_{inner}
- $T_{
 m anterior}$: ความหนาสูงสุดของผนังกระเพาะปัสสาวะด้านหน้า
- T_{posterior} : ความหนาสูงสุดของผนังกระเพาะปัสสาวะด้านหลัง
- T_{intensity}: ขนาดเกรเดียนต์ความสว่างต่ำสุดที่แสดงขอบด้านนอกของผนัง กระเพาะปัสสาวะ
- เอาท์พุท (Output) : **y**_i : ตำแหน่งของจุดภาพที่ i ที่ใช้สร้างเส้นขอบ Γ_{outer} Γ_{outer} : เส้นขอบของผนังกระเพาะปัสสาวะด้านนอก
 - 1) คำนวณทิศขนาน (Tangent) กับ Γ_{inner} ที่ \mathbf{x}_i จากค่าเกรเดียนต์ของตำแหน่งของ จุดภาพและแสดงทิศขนานด้วยเวกเตอร์ขนาดหนึ่งหน่วย (Unit Vector) \mathbf{t}_i ดังนี้

$$\mathbf{t}_{i} = (t_{ix}, t_{iy}) = \begin{cases} \frac{\mathbf{x}_{i+1} - \mathbf{x}_{i}}{\|\mathbf{x}_{i+1} - \mathbf{x}_{i}\|} & ; i \neq m \\ \frac{\mathbf{x}_{1} - \mathbf{x}_{m}}{\|\mathbf{x}_{1} - \mathbf{x}_{m}\|} & ; i = m \end{cases}$$
(3.3)

คำนวณทิศตั้งฉาก (Normal) กับ Γ_{inner} และพุ่งออกจากกระเพาะปัสสาวะที่ตำแหน่ง x_i
 โดยหาก x_i เรียงตัวในทิศทวนเข็มนาฬิกาแล้ว เวกเตอร์ขนาดหนึ่งหน่วยแสดงทิศตั้งฉาก
 และพุ่งออก (n_i) สามารถคำนวณได้จาก t_i ดังนี้

$$\mathbf{n}_{\mathbf{i}} = \left(n_{ix}, n_{iy}\right) = \left(t_{iy}, -t_{ix}\right) \tag{3.4}$$

3) หากเส้นที่ลากจาก \mathbf{x}_i ไป $\mathbf{x}_i + (2T_{\text{posterior}} + 1)\mathbf{n}_i$ ผ่านบริเวณที่มีเครื่องหมายของ $\boldsymbol{\phi}_{\text{inner}}$ ทั้งบวก(อยู่ภายนอก Γ_{inner}) และลบ(อยู่ภายใน Γ_{inner}) แสดงว่า \mathbf{x}_i อยู่บริเวณเว้าเข้าเป็น ทางแคบๆให้ตัดตำแหน่ง \mathbf{x}_i ออกจากการหาขอบด้านนอก กล่าวคือไม่นำ \mathbf{x}_i ไป คำนวณในขั้นตอนที่เหลือ

รูปที่ 3.10 การกำหนดระยะ $T_{
m distance}$ เป็น 2 ค่า โดยให้ช่วงบน 10% ใช้ $T_{
m anterior}$ และช่วงล่างที่เหลือใช้ $T_{
m posterior}$

4) สำหรับทุก \mathbf{x}_i ที่เหลือจากขั้นตอนที่ 3 ให้หาขอบนอกรอบ \mathbf{x}_i ดังวิธีต่อไปนี้

4.1) กำหนดให้ *k* =1

4.2) กำหนดให้ระยะที่ขอบด้านนอกอยู่ห่างจาก x_i มากที่สุดคือ T_{distance} ซึ่งคำนวณได้
 ดังนี้ (รูปที่ 3.10)

(i) $T_{\text{distance}} = T_{\text{anterior}}$ เมื่อ \mathbf{x}_{i} อยู่ในช่วงด้านหน้า 10% ของกระเพาะปัสสาวะ(ii) $T_{\text{distance}} = T_{\text{posterior}}$ เมื่อ \mathbf{x}_{i} อยู่บริเวณอื่นของกระเพาะปัสสาวะ

4.3) ถ้าค่าเกรเดียนต์ความสว่างที่ตำแหน่ง $\mathbf{x}_{i} + k \cdot \mathbf{n}_{i}$ มีค่ามากกว่า $T_{intensity}$ ให้

 $\mathbf{y}_{i} = \mathbf{x}_{i} + k \cdot \mathbf{n}_{i}$ และจบการหาขอบด้านนอกรอบ \mathbf{x}_{i}

4.4) เพิ่มค่า *k* ไป 1

4.5) ถ้า k มากกว่า T_{distance} ให้ $\mathbf{y}_{\text{i}} = \mathbf{x}_{\text{i}} + \begin{bmatrix} 0.7 \cdot T_{\text{distance}} \end{bmatrix} \mathbf{n}_{\text{i}}$ และจบการหาขอบด้าน นอกรอบ \mathbf{x}_{i} มิฉะนั้นกลับไปขั้นตอนที่ 4.3)

- 5) เนื่องจากขอบด้านนอกในบางภาพเป็นช่องอากาศทำให้มีความหนาเป็นค่า T_{anterior} ติดกันเป็นจำนวนมาก ดังนั้นหากบริเวณด้านหน้ามีความหนาเป็นค่า T_{anterior} เกิน ครึ่งหนึ่งของความกว้างกระเพาะปัสสาวะและคิดเป็นปริมาณมากกว่า 40% ของจุดภาพ ในช่วง 10% ของด้านหน้าของกระเพาะปัสสาวะแล้วให้ทุกจุดที่อยู่ระหว่างบริเวณที่มี ความหนา T_{anterior} เป็น T_{anterior} ทั้งหมด มิฉะนั้นถือว่าจุดที่มีความหนา T_{anterior} เป็นค่าที่ ผิดพลาดให้ตัดทิ้ง
- 6) ทำให้เส้นขอบ Γ_{outer} ที่ได้ราบเรียบมากขึ้นด้วยการนำตำแหน่ง y_i ผ่านวงจรกรอง ซาวิสกี-โกเลย์ อันดับที่ 1 ที่ใช้ความยาวข้อมูล 17 จุดภาพในการสร้างฟังก์ชันพหุนาม

บทที่ 4

ผลการทดลอง

บทนี้นำเสนอการทดลองเพื่อประเมินประสิทธิภาพการแบ่งส่วนกระเพาะปัสสาวะตาม กรรมวิธีที่นำเสนอในบทที่ 3 โดยจะแบ่งเป็น 4 หัวข้อคือ ข้อมูลภาพที่ใช้ในการทดลอง (ตอนที่ 4.1) เกณฑ์ที่ใช้เปรียบเทียบประเมินประสิทธิภาพ (ตอนที่ 4.2) การประเมินประสิทธิภาพการแบ่งส่วนผนัง ด้านในของกระเพาะปัสสาวะ (ตอนที่ 4.3) และผนังด้านนอกของกระเพาะปัสสาวะ (ตอนที่ 4.4) วิธีที่ นำเสนอในวิทยานิพนธ์นี้จะถูกนำมาเปรียบเทียบกับกรรมวิธีเลเวตเซตแบบมีทิศทาง (Coupled Directional Level Set; CDLS)[13] และกรรมวิธีของ Ma และคณะ [17]

กรรมวิธีทั้งหมดถูกเขียนด้วยโปรแกรม MATLAB 7.12.0. บนคอมพิวเตอร์ที่ใช้ ระบบปฏิบัติการ Microsoft Window 7.0 มี CPU คือ Intel Core2 Quad 2.83 GHz และมี หน่วยความจำขนาด 4.0 GB

4.1 ข้อมูลภาพที่ใช้ในการทดลอง

ข้อมูลภาพที่ใช้ในการทดลองเป็นภาพเอ็มอาร์ไอ T2 weighted บริเวณอุ้งเชิงกรานของ ผู้ป่วยที่ได้รับการรักษามะเร็งปากมดลูกด้วยการใส่แร่ ภายใต้การดูแลของสาขารังสีรักษาและมะเร็ง วิทยา ฝ่ายรังสีวิทยา โรงพยาบาลจุฬาลงกรณ์ จำนวน 10 คน คนละ 10 สไลด์ติดกัน โดยทุกสไลด์ แสดงลักษณะกระเพาะปัสสาวะชัดเจนและมีเพียง 1 บริเวณ สไลด์ทุกสไลด์มีขนาด 256×256 จุดภาพ แต่ละจุดภาพมีขนาด 0.7×0.7 ตารางมิลลิเมตร ถ่ายจากเครื่องเอ็มอาร์ไอ ยี่ห้อ GE Signa HDxt ความเข้มสนามแม่เหล็ก 1.5 เทสลา

หากผู้ใช้ต้องหาค่าพารามิเตอร์ของแต่ละกรรมวิธีให้กับทุกสไลด์ในแต่ละชุดภาพนั้นจะใช้เวลา สูง ซึ่งในทางปฏิบัติแล้วเวลาที่ใช้หาค่าพารามิเตอร์อาจจะสูงกว่าเวลาที่รังสีแพทย์ใช้ในการตัดแบ่ง ภาพ ดังนั้นเพื่อลดเวลาที่ใช้ในการหาค่าพารามิเตอร์ที่เหมาะสม จึงควรกำหนดค่าพารามิเตอร์จาก สไลด์ที่เป็นตัวแทนของชุดข้อมูลเพียงไม่กี่สไลด์ ในการทดลองนี้จึงแบ่งสไลด์ของแต่ละชุดภาพเป็น 2 ส่วนคือ ส่วนที่หนึ่งใช้เพื่อหาค่าพารามิเตอร์ที่ดีที่สุดสำหรับกรรมวิธีการตัดแบ่งภาพแบบต่างๆจำนวน 2 สไลด์ (รูปที่ 4.1) และส่วนที่สองใช้เพื่อวิเคราะห์ประสิทธิผลการตัดแบ่งภาพด้วยพารามิเตอร์จาก ส่วนที่หนึ่งจำนวน 8 สไลด์

รูปที่ 4.1 สไลด์ที่ใช้เพื่อหาพารามิเตอร์ที่ดีที่สุดของกรรมวิธีต่างๆ ในแต่ละชุดภาพ (ก) ข้อมูลชุดที่ 1 (ข) ข้อมูลชุดที่ 2 (ค) ข้อมูลชุดที่ 3 (ง) ข้อมูลชุดที่ 4 (จ) ข้อมูลชุดที่ 5 (ฉ) ข้อมูลชุดที่ 6 (ช) ข้อมูลชุดที่ 7 (ซ) ข้อมูลชุดที่ 8 (ณ) ข้อมูลชุดที่ 9 และ (ญ) ข้อมูลชุดที่ 10

4.2 เกณฑ์การประเมินประสิทธิภาพ

ผลลัพธ์จากการกำหนดขอบเขตของผู้เชี่ยวชาญหรือรังสีแพทย์ถือเป็นผลลัพธ์มาตรฐาน (Gold Standard) และถูกนำมาเปรียบเทียบทั้งในเชิงปริมาณ (Quantitative) และเชิงคุณภาพ (Qualitative) การเปรียบเทียบเชิงปริมาณจะเปรียบเทียบโดยอ้างอิงค่าทางสถิติ 3 ค่า ดังนี้

ร**ูปที่ 4.2** แผนภาพแสดงพื้นที่ TP (True Positive) (สีส้ม), FP (False Positive) (สีเหลือง), FN (False Negative) (สีชมพู) และ TN (True Negative) (สีขาว)

 ค่าความไว (Sensitivity) คือสัดส่วนระหว่างพื้นที่ที่ (2) ในรูปที่ 4.2 เทียบกับพื้นที่ภายใน เส้นขอบที่ผู้เชี่ยวชาญกำหนด(พื้นที่ที่ (2) และ (3) ในรูปที่ 4.2) กล่าวคือ ผลลัพธ์ที่ได้ ครอบคลุมบริเวณได้ครบถ้วนหรือไม่ ค่าความไวสามารถนิยามเป็นสมการได้ดังนี้

$$Sensitivity = \frac{\#\text{TP}}{(\#\text{TP} + \#\text{FN})}$$
(4.1)

เมื่อ #TP และ #FN คือ จำนวนจุดภาพที่ผู้เชี่ยวชาญกำหนดสอดคล้องกับนิยามพื้นที่ ภายในเส้นขอบ Γ ที่ได้จากกรรมวิธีอัตโนมัติและที่ขัดแย้งกับนิยาม พื้นที่ภายนอกเส้นขอบ Γ ตามลำดับ

 ค่าความเที่ยง (Positive Predictive Value ;PPV) สามารถอธิบายได้โดยอาศัยรูปที่ 4.2
 เช่นเดียวกับค่าความไว กล่าวคือค่าความเที่ยงเป็นสัดส่วนระหว่างพื้นที่ที่ (2) เทียบกับ พื้นที่ภายในเส้นขอบจากกรรมวิธีอัตโนมัติ (พื้นที่ (1) และ(2)) กล่าวคือ ผลลัพธ์ที่ได้มี ความถูกต้องเพียงใด ค่าความเที่ยงสามารถนิยามเป็นสมการได้ดังนี้

$$PPV = \frac{\#\text{TP}}{(\#\text{TP} + \#\text{FP})} \tag{4.2}$$

เมื่อ #FP คือ จำนวนจุดภาพที่ผู้เชี่ยวชาญกำหนดขัดแย้งกับนิยามพื้นที่ภายใน Γ

 ค่าสัมประสิทธิ์ความคล้ายคลึงของไดซ์ (Dice Similarity Coefficient ;DSC) สามารถ อธิบายในทำนองเดียวกับ 2 ค่าข้างต้น โดยอาศัยรูปที่ 4.2 ได้ว่า DSC คือสัดส่วนระหว่าง พื้นที่ที่ (2) เทียบกับพื้นที่เฉลี่ยของพื้นที่ที่ได้จากกรรมวิธีที่นำเสนอและที่ได้จาก ผู้เชี่ยวชาญ ซึ่งพื้นที่ที่ (2) ครอบคลุมพื้นที่ส่วนใหญ่ของพื้นที่ของกรรมวิธีที่นำเสนอและ ผู้เชี่ยวชาญได้มากก็ยิ่งทำให้ค่านี้เข้าใกล้ 1 มากขึ้น จึงอาจจะพิจารณาว่าค่า DSC คือ ค่าที่อ้างอิงทั้งค่าความไวและค่าความเที่ยง ค่า DSC สามารถนิยามเป็นสมการได้ดังนี้

$$DSC = \frac{2|A_{segment} \cap A_{gold}|}{|A_{gold}| + |A_{segment}|}$$
(4.3)

เมื่อ $A_{segment}$ และ A_{gold} คือ พื้นที่ภายในที่ได้จากการแบ่งส่วนอัตโนมัติและผลลัพธ์ มาตรฐาน ตามลำดับ |•| คือ จำนวนจุดภาพ

การเปรียบเทียบเชิงคุณภาพนั้นจะพิจารณาความเหมือนของรูปร่างที่ได้จากกรรมวิธีอัตโนมัติ เทียบกับผลลัพธ์มาตรฐานด้วยสายตา

4.3 การประเมินประสิทธิภาพการแบ่งส่วนผนังด้านในของกระเพาะปัสสาวะ

หัวข้อนี้จะแบ่งการทดลองออกเป็น 3 ส่วนดังนี้ การทดลองหาขนาดวินโดว์ และจำนวน จุดภาพที่ต้องขยายให้เหมาะสม (หัวข้อที่ 4.3.1) การหาค่าพารามิเตอร์ที่เหมาะสมสำหรับสไลด์ในรูป ที่ 4.1(หัวข้อที่ 4.3.2) และการเปรียบเทียบการตัดแบ่งส่วนผนังด้านในกระเพาะปัสสาวะด้วย พารามิเตอร์ในหัวข้อที่ 4.3.2 (หัวข้อที่ 4.3.3)

4.3.1 การเลือกพารามิเตอร์ที่เหมาะสมสำหรับกรรมวิธี DLMD-LS

เพื่อให้ผลที่ได้จากการเลือกพารามิเตอร์เป็นผลที่ใช้ได้ทั่วไป สามารถกำหนดเป็นค่าคงที่ สำหรับชุดภาพที่นอกเหนือจาก 10 ชุดภาพในการทดลอง จึงเลือกข้อมูลเพื่อหาพารามิเตอร์ของ กรรมวิธี DLMD-LS เป็นข้อมูลที่ไม่อยู่ใน 10 ชุดภาพมาร่วมด้วยจำนวน 5 สไลด์ (รูปที่ 4.3(ข) (ง) (จ) (ช) และ(ญ)) และข้อมูลที่อยู่ใน 10 ชุดภาพจำนวน 4 สไลด์ (รูปที่ 4.3(ก) (ค) (ฉ) และ(ซ))

สไลด์ที่เลือกมา (รูปที่ 4.3) สามารถแบ่งได้เป็น 4 กรณี ดังนี้

 กรณีที่ 1 พื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างสม่ำเสมอและขอบ ชัดเจน (รูปที่ 4.3(ก) และ(ข))

- กรณีที่ 2 พื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างสม่ำเสมอและขอบไม่ ชัดเจน (รูปที่ 4.3(ค) และ(จ))
- กรณีที่ 3 พื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างไม่สม่ำเสมอและขอบ
 ชัดเจน (รูปที่ 4.3(ฉ) และ(ช))
- กรณีที่ 4 พื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างไม่สม่ำเสมอและขอบไม่
 ชัดเจน (รูปที่ 4.3(ซ) และ(ญ))

รูปที่ 4.3 ข้อมูลที่ใช้ในการหาขนาดวินโดว์และจำนวนจุดภาพที่ควรขยายในกรรมวิธี DLMD-LS (ก-ข) กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างสม่ำเสมอและขอบชัดเจน (ค-จ) กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างสม่ำเสมอและขอบไม่ชัดเจน (ฉ-ช) กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างไม่สม่ำเสมอและขอบชัดเจน (ซ-ญ) กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างไม่สม่ำเสมอและขอบไม่ชัดเจน

(ଖ)

(ຄູ)

ขนาดของวินโดว์	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย
3×3	0.854	0.967	0.901
5×5	0.865	0.991	0.921
7×7	0.796	0.999	0.880

<u>ตารางที่ 4.1 ค่าเฉลี่ยประสิทธิภาพของกรรมวิธี DLMD-LS เมื่อวินโดว์ขนาด 3×3 5×5 และ 7×7 จุดภาพ</u>

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

4.3.1.1 ผลของขนาดวินโดว์

ในการทดลองนี้ ทดลองเปลี่ยนขนาดวินโดว์ที่ใช้คำนวณค่าความสว่างเฉลี่ยเป็น 3 ขนาด คือ 3×3 5×5 และ 7×7 จุดภาพและเพื่อให้เห็นรูปร่างของผลลัพธ์ที่ชัดเจน จึงยังไม่ขยายจุดภาพในการ ทดลองนี้ กำหนดให้ค่าคงที่ μ, λ และ α ในสมการที่ (2.10) เป็น 0.2, 3 และ -4 ตามลำดับ

จากตารางที่ 4.1 แสดงผลการประเมินผลลัพธ์จากการตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะ ของกรรมวิธี DLMD-LS ที่วินโดว์ขนาดต่างๆ พบว่าการแบ่งส่วนด้วยวินโดว์ขนาด 5×5 จุดภาพ มีประสิทธิภาพโดยรวมดีที่สุด กล่าวคือ ค่าทางสถิติที่ได้มีค่าดีกว่าการแบ่งส่วนด้วยวินโดว์ขนาด 3×3 จุดภาพในทุกกรณี และเมื่อเทียบกับการแบ่งส่วนด้วยวินโดว์ขนาด 7×7 จุดภาพแล้ว ค่าความไวมีค่า มากกว่ากรณี 7×7 จุดภาพอยู่ 0.069 หรือคิดเป็นได้พื้นที่ภายในกระเพาะปัสสาวะเพิ่มขึ้น 6.9% แต่ สูญเสียค่า PPV ไปเพียง 0.008 หรือคิดเป็นพื้นที่ภายในกระเพาะปัสสาวะที่ได้จากกรรมวิธีอัตโนมัติ ผิดพลาดเพิ่มขึ้นเพียง 0.8% และสังเกตได้เพิ่มเติมจากค่า DSC ที่การแบ่งส่วนด้วยวินโดว์ขนาด 5×5 จุดภาพจะมีค่ามากกว่า

นอกจากพิจารณาค่าทางสถิติแล้ว เพื่อให้ผลลัพธ์มีรูปร่างที่ถูกต้องจึงต้องวิเคราะห์ผลลัพธ์ที่ ได้ทางสายตาร่วมด้วย เนื่องจากค่าความไวสามารถเพิ่มได้จากการขยายจุดภาพ แต่หากรูปร่างที่ได้ ผิดเพี้ยนแล้ว การขยายจุดภาพจะยิ่งเพิ่มความผิดเพี้ยน รวมไปถึงลักษณะรูปร่างที่ผิดเพี้ยนจะทำให้ การหาขอบด้านนอกของกระเพาะปัสสาวะผิดพลาดได้

รูปที่ 4.4 แสดงตัวอย่างผลการตัดแบ่งภาพด้วยวินโดว์ขนาดต่างๆกัน พบว่าผลลัพธ์ที่ได้จาก วินโดว์ขนาด 3×3 จุดภาพ มีลักษณะไม่ราบเรียบ (Irregular) ดังรูปที่ 4.4(ก) และในบางกรณีผลลัพธ์ ที่ได้จะครอบคลุมเกินกว่าพื้นที่จริง ดังรูปที่ 4.4(ข) ในขณะที่ผลลัพธ์จากวินโดว์ขนาด 7×7 จุดภาพ มี ลักษณะค่อนข้างราบเรียบ ดังรูปที่ 4.4(ฉ) แต่บางครั้งจะหยุดก่อนถึงขอบจริงมากเกินไป ดังรูปที่ 4.4 (จ) ได้ จากรูปที่ 4.4 พบว่า ผลลัพธ์ที่ได้จากวินโดว์ขนาด 5×5 จุดภาพให้ผลที่ดีที่สุด ทั้งในแง่การแบ่ง พื้นที่ได้ใกล้เคียงกับขอบจริงและความราบเรียบของ Γ ดังรูปที่ 4.4(ค) และ(ง)

รูปที่ 4.4 ขอบที่ได้จากการแบ่งส่วนภาพด้วยวินโดว์ขนาดต่างๆ (ก-ข) ผลการตัดแบ่งของผู้เชี่ยวชาญ ผลการตัดแบ่งด้วยวินโดว์ขนาด (ค-ง) 3×3, (จ-ฉ) 5×5 และ(ช-ซ) 7×7 จุดภาพ

4.3.1.2 การขยายจุดภาพ

เนื่องจากกรรมวิธี DLMD-LS จะได้ขอบที่เล็กกว่าขอบจริงเล็กน้อย (หัวข้อที่ 3.1.2) และ จำนวนจุดภาพที่ขยายขึ้นกับขนาดของวินโดว์ ดังนั้นในการทดลองนี้ จะคำนวณจำนวนจุดภาพที่ต้อง ขยายออกจากเส้นขอบ Γ ที่ได้เมื่อใช้วินโดว์ขนาด 5×5 จุดภาพ ตารางที่ 4.2 แสดงผลการประเมินผล ลัพธ์เมื่อทดลองขยายเส้นขอบ Γ ออกไปจำนวน 1 2 3 และ 4 จุดภาพ

ตารางที่	4.2 ค่าเฉลี่ยประสิทธิภาพของกรรมวิธี DLMD-LS เมื่อใช้วินโดว์ขนาด 5×5 จดภาพแเ	<u>ละขยายพื้นที่จากเส้น</u>
	ขอบออกไป 1 2 3 และ 4 จดภาพ ตามลำดับ	

จำนวนจุดภาพที่ขยาย	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย
1	0.889	0.988	0.933
2	0.941	0.956	0.946
3	0.966	0.903	0.932
4	0.978	0.861	0.914

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

ตารางที่ 4.2 แสดงให้เห็นว่าการขยายเส้นขอบไป 3 และ 4 จุดภาพให้ค่าความไวที่สูง แต่มี ค่า PPV ที่ต่ำ กล่าวคือเส้นขอบที่ได้ขยายเกินเข้าไปในพื้นที่ของผนังกระเพาะปัสสาวะ ในขณะที่การ ขยายเส้นขอบ 1 จุดภาพให้ค่า PPV สูง แต่ค่าความไวต่ำ กล่าวคือขอบที่ได้จากการขยาย 1 จุดภาพ ยังคงอยู่ภายในพื้นที่ของกระเพาะปัสสาวะ ไม่แนบชิดกับขอบจริง เมื่อพิจารณาผลจากการขยายเส้น ขอบ 2 จุดภาพ พบว่าค่าที่ได้มีค่าความไวและค่า PPV ที่เหมาะสมที่สุด กล่าวคือ มีความไวสูงกว่าการ ขยายเส้นขอบ 1 จุดภาพ 0.052 ขณะที่สูญเสียค่า PPV ไปเพียง 0.032 และเมื่อเทียบกับการขยาย เส้นขอบออกไป 3 จุดภาพ พบว่าจะสูญเสียค่าความไวไปเพียง 0.025 แต่ค่า PPV สูงกว่า 0.053 และ สังเกตได้ว่าค่า DSC ที่ได้มีค่าสูงที่สุด

เพื่อความสมบูรณ์ของการประเมินผล จึงพิจารณาผลลัพธ์ที่ได้ทางสายตาร่วมด้วย รูปที่ 4.5 แสดงผลของเส้นขอบที่ได้จากการขยายเส้นขอบออกไป 1 2 3 และ 4 จุดภาพ พบว่าเส้นขอบจากการ ขยาย 3 และ 4 จุดภาพ ซึ่งคำนวณเป็นระยะที่ 2.11 และ 2.81 มิลลิเมตรตามลำดับ จะเกินเข้าไปใน ผนังของกระเพาะปัสสาวะ แสดงดังรูปที่ 4.5(ค) และ(ง) ตามลำดับ ในขณะที่เส้นขอบจากการขยาย ออกไปเพียง 1 จุดภาพ ยังไม่แนบชิดกับขอบจริง (รูปที่ 4.5(ก)) การขยายเส้นขอบที่ 2 จุดภาพ (รูปที่ 4.5(ข)) ได้ขอบที่ใกล้กับขอบจริงมากที่สุด จึงกำหนดให้ระยะการขยายออกไปอีก 2 จุดภาพ

ร**ูปที่ 4.5** ผลจากการขยายเส้นขอบ Г ขนาดต่างๆ (ก) ผลการตัดแบ่งของผู้เชี่ยวชาญ ผลการขยายเส้นขอบ (ข) 1 จุดภาพ (ค) 2 จุดภาพ (ง) 3 จุดภาพ และ (จ) 4 จุดภาพ ตามลำดับ

หาลงกรณ์มหาวิทยาลัย

4.3.2 การหาค่าพารามิเตอร์ที่เหมาะสมในการเปรียบเทียบประสิทธิภาพ

จากการทดลองตัดแบ่งพื้นที่ภายในกระเพาปัสสาวะของรูปที่ 4.1 พบว่ากรรมวิธี DLMD-LS ที่นำเสนอได้รับผลกระทบจากการปรับค่า α , λ และ μ ค่อนข้างต่ำ กล่าวคือเราสามารถกำหนดค่า α , λ และ μ ในช่วงกว้างๆและได้ผลลัพธ์ใกล้เคียงกัน ดังแสดงในรูปที่ 4.6 ดังนั้นเพื่อความสะดวก จึงกำหนดค่า α , λ และ μ เดียวกับการทดลองในหัวข้อที่ 4.3.1 สำหรับ σ^2 นั้น พบว่าภาพที่ใช้ ทดลองมีความไม่ราบเรียบของความสว่างที่ใกล้เคียงกัน และสามารถกำหนด σ^2 เป็น 25 ได้ทุกกรณี นอกจากนี้แล้วยังพบว่ากรรมวิธี DLMD-LS ให้ผลลู่เข้าหาขอบจริงทุกกรณี จึงสามารถกำหนดค่า วนรอบซ้ำสูงเพื่อให้มั่นใจว่าขอบที่ได้เคลื่อนที่ไปถึงขอบจริงแล้ว สรุปได้ดังตารางที่ 4.3 ขณะที่กรรมวิธี CDLS และกรรมวิธีของ Ma และคณะ (ในที่นี้เรียก GlobalWt) จะทดลองปรับเปลี่ยนค่าเพื่อให้ได้ผล ที่ดีที่สุดและสรุปไว้ในตารางที่ 4.4

รูปที่ 4.6 ผลกระทบจากการเปลี่ยนค่า α , λ และ μ ในกรรมวิธี DLMD-LS เมื่อกำหนดค่า $\alpha = -4$ และ $\mu = 0.2$ (ก) $\lambda = 2$ (ข) $\lambda = 3$ (ค) $\lambda = 4$ เมื่อกำหนดค่า $\lambda = 3$ และ $\mu = 0.2$ (ง) $\alpha = -3$ (จ) $\alpha = -4$ (ฉ) $\alpha = -5$ เมื่อกำหนดค่า $\alpha = -4$ และ $\lambda = 3$ (ซ) $\mu = 0.1$ (ซ) $\mu = 0.15$ (ญ) $\mu = 0.2$

ตารางที่ 4.3 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการตัดแบ่งภาพในรูปที่ 4.1 ด้วยกรรมวิธี DLMD-LS

α	λ	μ	σ^2	จำนวนรอบวนซ้ำ	
-4	3	0.2	25	600	

800000			กรรม	เวิธี CDI	_S	กรรมวิธี GlobalWt			
(นาวจูนู มีผูญภูมิ	ត				ຈຳนวน				ຈຳนวน
(สเสขาท)	α	λ	μ	รอบวนซ้ำ	α	λ	δ	รอบวนซ้ำ
~ 19 1 1 (o)	1	-4	1	0.2	600	-4	1	1	350
ู่ U /I 4.1(∩)	10	-4	1	0.2	600	-4	2	5	450
~ 100 1 (0)	1	-4	1	0.2	400	-4	2	1	350
รูปท 4.1(ฃ)	10	-4	1	0.2	600	-4	1	5	500
~ 10 1 (0)	1	-4	1	0.2	600	-4	1	5	600
รูปท 4.1(ฅ)	10	-4	1	0.2	450	-4	1	5	500
~ d d 1 (a)	1	-4	1	0.2	450	-4	1	5	300
ู่ 101 4.1(ง)	10	-4	1	0.2	600	-4	1	5	550
entre 1 1(0)	1	-4	-1	0.2	600	-4	1	5	550
ู่3ู∪ท 4.1(ง)	10	-4	1	0.2	600	-4	1	5	450
~ 19 4 1(2)	1	-4	1	0.2	600	-4	1	5	450
่ 3∪ท 4.1(น)	10	-4	1	0.2	600	-4	1	5	450
~ 1 (M	1	-4	\$1	0.2	600	-4	1	5	300
ลูบท 4.1(บ)	10	-4	1	0.2	600	-4	1	5	300
รงไข้ 1 1(ส)	1	-4	พาลง	0.2	600	-4	1	1	450
3011 4.1(0)	10	-4	1	0.2	400	-4	1	5	250
5 1 1 ())	1	-4	1	0.2	600	-4	1	1	450
រូប។ 4.1(រដ)	10	-4	1	0.2	600	-4	1	5	250
ระเพิ่ / 1(ณ)	1	-4	1	0.2	600	-4	1	1	350
a∪n +.1(0)	10	-4	1	0.2	600	-4	1	1	450

ตารางที่ 4.4 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการตัดแบ่งภาพในรูปที่ 4.1 ด้วยกรรมวิธี CDLS และ GlobalWt

-1												1
ตารางที่ 4.5 ค	่าเฉลีย	แสดงประ	เสิทธิภาพ	ของกรรม	วิธี CDLS.	Glo	balWt แก่	ละ DL	MD-LS	5 เมื่อตั้เ	ดแบ่งรปจ่	กี้ 4.1
											9	

กรรมวิธี	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย
CDLS	0.977	0.978	0.975
GlobalWt	0.977	0.883	0.926
DLMD-LS	0.968	0.964	0.964

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

ผลการตัดแบ่งภาพในรูปที่ 4.1 ด้วยค่าพารามิเตอร์ในตารางที่ 4.3 และตารางที่ 4.4 แสดงใน ตารางที่ 4.5 จากตาราง พบว่า กรรมวิธี CDLS ให้ผลลัพธ์ที่ดีที่สุดในทุกกรณี แต่เมื่อพิจารณาจาก ค่าพารามิเตอร์แล้ว พบว่าผลที่ดีในบางสไลด์เป็นผลจากการควบคุมจำนวนรอบวนซ้ำ(Iteration) ที่ใช้ ปรับค่า φ เนื่องจากเส้นขอบ Γ ยังไม่ลู่เข้าหาตำแหน่งจริงที่ฟังก์ชันค่าต่ำสุด ดังนั้นเมื่อทำการ ปรับเปลี่ยนจำนวนรอบวนซ้ำแม้เพียงเล็กน้อย ผลลัพธ์ที่ได้จะเกิดความผิดเพี้ยนทันที (รูปที่ 4.7(ข-ง)) ขณะที่กรรมวิธี DLMD-LS (รูปที่ 4.7(จ-ช)) ไม่เป็นเช่นนั้น ซึ่งแสดงให้เห็นว่ากรรมวิธีที่นำเสนอมี ประสิทธิภาพมากกว่า เมื่อเปรียบเทียบระหว่างกรรมวิธี DLMD-LS และ GlobalWt แล้วพบว่าค่า PPV และค่า DSC ของกรรมวิธี DLMD-LS สูงกว่า ขณะที่ค่าความไวต่างกันเพียงเล็กน้อย จึงสรุปได้ว่ากรรมวิธี DLMD-LS มีประสิทธิภาพโดยรวมดีกว่า

4.3.3 การเปรียบเทียบประสิทธิภาพการตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะ

เมื่อนำค่าพารามิเตอร์ที่ได้ในหัวข้อที่ 4.3.2 ตัดแบ่งสไลด์ที่เหลือ 80 สไลด์ได้ผลการประเมิน ทางสถิติ ดังตารางที่ 4.6 ทั้งนี้พารามิเตอร์ของกรรมวิธี CDLS และ GlobalWt มี 2 ชุดต่อ 1 ชุดภาพ จึงได้ผลลัพธ์ 2 ชุดต่อ 1 สไลด์ ซึ่งในการทดลองจะเลือกใช้ผลลัพธ์ที่ดีกว่ามาแสดง

จากตารางที่ 4.6 แสดงให้เห็นว่าผลการแบ่งส่วนจากทุกกรรมวิธีมีค่าความไวที่ใกล้เคียงกัน แต่เมื่อวิเคราะห์ร่วมกับค่า PPV พบว่ากรรมวิธี GlobalWt มีค่าความไวสูงแต่ค่า PPV ต่ำ แสดงว่า กรรมวิธีนี้มีการตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะผิดพลาด เนื่องจากผลลัพธ์ที่ได้มีบริเวณผนัง กระเพาะปัสสาวะเข้ามาปะปนด้วย ในขณะที่กรรมวิธี CDLS และ DLMD-LS ให้ค่าความไวและค่า PPV ที่สูง แสดงถึงผลลัพธ์ที่ได้มีพื้นที่ครอบคลุมพื้นที่ภายในกระเพาะปัสสาวะใกล้เคียงกับผลลัพธ์ มาตรฐาน เมื่อพิจารณาค่า DSC พบว่าไปในทิศทางเดียวกับการวิเคราะห์ก่อนหน้านี้ ที่แสดงว่า กรรมวิธี CDLS และ DLMD-LS ตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะได้ผลใกล้เคียงกับผลลัพธ์ มาตรฐานมากที่สุด

อย่างไรก็ตาม ค่าทางสถิติทำให้เชื่อได้ว่ากรรมวิธี CDLS และ DLMD-LS ให้ผลการตัดแบ่ง ค่าที่ไม่แตกต่างกัน จึงได้ประเมินผลทางด้านสายตาร่วมด้วย พบว่าในกรณีที่พื้นที่ภายในกระเพาะ ปัสสาวะมีการกระจายความสว่างสม่ำเสมอและขอบชัดเจน ผลลัพธ์จากกรรมวิธี CDLS และ DLMD-LS ให้ผลลัพธ์ที่ดีใกล้เคียงกัน ในขณะที่ผลลัพธ์จากกรรมวิธี GlobalWt ยังพบข้อผิดพลาดเล็กน้อย ดัง รูปที่ 4.8(ค) ซึ่งสอดคล้องกับค่าทางสถิติที่ว่า กรรมวิธี GlobalWt ให้ผลด้อยกว่ากรรมวิธีอื่น

ในกรณีที่พื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างไม่สม่ำเสมอแต่มีขอบชัดเจน กรรมวิธี GlobalWt จะพิจารณาพื้นที่เหล่านี้เป็นคนละพื้นที่ โดยอ้างอิงจากค่าความสว่างที่แตกต่าง กัน ส่งผลให้ได้พื้นที่ไม่ครบ แสดงดังรูปที่ 4.9(ค) ในขณะที่กรรมวิธี CDLS และ DLMD-LS ยังสามารถ แบ่งพื้นที่ได้ค่อนข้างดี แสดงดังรูปที่ 4.9(ข) และ(ง) ตามลำดับ

ในกรณีที่บริเวณขอบภายในกระเพาะปัสสาวะไม่ชัดเจน ซึ่งเกิดจากแนวการตัดภาพใน รูปแบบ Para-axial ซึ่งพบได้บ่อยบริเวณส่วนต้นและปลายกระเพาะปัสสาวะ พบว่ากรรมวิธี CDLS และ GlobalWt ให้ผลลัพธ์ที่ผิดพลาด แสดงดังรูปที่ 4.10(ข) และ(ค) ตามลำดับ โดยผลลัพธ์ที่ได้เลย ออกจากเส้นขอบผนังด้านในของกระเพาะปัสสาวะ ในขณะที่กรรมวิธี DLMD-LS ที่นำเสนอสามารถ หาขอบพื้นที่ภายในกระเพาะปัสสาวะได้ค่อนข้างดี ไม่มีพื้นที่ผนังกระเพาะปัสสาวะแทรกเข้ามา นอกจากนี้แล้วยังพบว่ารูปร่างของพื้นที่ภายในกระเพาะปัสสาวะที่ได้ ยังมีรูปร่างที่ใกล้เคียงกับรูปร่าง มาตรฐานด้วย

จากการทดลอง สรุปได้ว่ากรรมวิธี DLMD-LS เป็นกรรมวิธีที่หาพื้นที่ภายในกระเพาะ ปัสสาวะได้ถูกต้อง มีรูปร่างใกล้เคียงกับพื้นที่ภายในกระเพาะปัสสาวะและเหมาะสมกับภาพกระเพาะ ปัสสาวะที่มีความหลากหลาย ดังที่พบในการวางแผนการรักษาด้วยการใส่แร่และสามารถใช้เป็นข้อมูล เพื่อหาผนังด้านนอกของกระเพาะปัสสาวะต่อไปได้

<u>ตารางที่ 4.6 ค่าเฉลี่ยแสดงประสิทธิภาพของกรรมวิธี CDLS, GlobalWt และ DLMD-LS เพื่อตัดแบ่งภาพในรูปที่</u> นอกเหนือจากรูปที่ 4.1

กรรมวิธี	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย		
CDLS	0.984	0.974	0.978		
GlobalWt	0.975	0.895	0.931		
DLMD-LS	0.964	0.995	0.979		

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

รูปที่ 4.8 ผลการแบ่งส่วนภาพ กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างสม่ำเสมอ และขอบชัดเจนด้วย (ก) ผู้เชี่ยวชาญ (ข) กรรมวิธี CDLS (ค) กรรมวิธี GlobalWt และ (ง) กรรมวิธี DLMD-LS

รูปที่ 4.10 ผลการแบ่งส่วนภาพ กรณีพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างสม่ำเสมอ แต่ขอบ ไม่ชัดเจนด้วย (ก) ผู้เชี่ยวชาญ (ข) กรรมวิธี CDLS (ค) กรรมวิธี GlobalWt และ(ง) กรรมวิธี DLMD-LS

4.4 การประเมินประสิทธิภาพการแบ่งส่วนผนังด้านนอกของกระเพาะปัสสาวะ

หัวข้อนี้จะแบ่งการทดลองออกเป็น 3 ส่วนคือ การทดลองเพื่อหาค่าพารามิเตอร์ที่เหมาะสม สำหรับกรรมวิธีที่นำเสนอ (หัวข้อที่ 4.4.1) การทดลองเพื่อหาค่าพารามิเตอร์เพื่อหาผนังด้านนอกของ ชุดข้อมูลที่ทดลอง (หัวข้อที่ 4.4.2) และการเปรียบเทียบการตัดแบ่งผนังด้านนอกของกระเพาะ ปัสสาวะ (หัวข้อที่ 4.4.3)

4.4.1 การเลือกพารามิเตอร์ที่เหมาะสมสำหรับกรรมวิธีที่นำเสนอ

เพื่อให้ผลที่ได้สามารถใช้ได้ทั่วไปและอาศัยเหตุผลเดียวกับที่กล่าวไปแล้วในหัวข้อที่ 4.3.1 จึง เลือกชุดข้อมูลเดียวกันกับข้อมูลในหัวข้อที่ 4.3.1 และแสดงในรูปที่ 4.3

ในหัวข้อนี้จะแบ่งการหาพารามิเตอร์เป็น 2 ส่วน คือ การหาค่าขีดจำกัดเกรเดียนต์ความสว่าง (*T*_{intensity}) (หัวข้อที่ 4.4.1.1) และการหาค่าพารามิเตอร์สำหรับวงจรกรองซาวิสกี-โกเลย์ (หัวข้อที่ 4.4.1.2)

4.4.1.1 ขีดจำกัดเกรเดียนต์ความสว่างสำหรับขอบนอกของผนังกระเพาะปัสสาวะ

ในการทดลองนี้ ทดลองเปลี่ยน $T_{\text{intensity}}$ ที่ใช้ในหัวข้อที่ 3.2.2 เป็น 3 ขนาด คือ 10 20 และ 30 และเส้นขอบที่ได้เป็นเส้นขอบก่อนจะเพิ่มความราบเรียบด้วยวงจรกรองซาวิสกี-โกเลย์

T_{distance} เป็นค่าที่ขึ้นกับความหนาของผนังกระเพาะปัสสาวะ และเปลี่ยนแปลงตามสรีระของ
 ผู้ป่วยและระยะเวลาที่ได้รับการรักษา จึงมีการปรับค่าให้เหมาะสมตามแต่ละชุดภาพดังนี้ รูปที่ 4.3(ช)
 และ(ซ) มีผนังส่วนบนที่หนากว่าปกติจึงกำหนดให้ T_{anterior} เป็น 14 จุดภาพและ T_{posterior} เป็น 5
 จุดภาพ ขณะที่สำหรับรูปอื่นๆกำหนดให้ T_{anterior} เป็น 7 จุดภาพและ T_{posterior} เป็น 5 จุดภาพ

ขนาดเกรเดียนต์	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย		
10	0.885	0.968	0.915		
20	0.905	0.948	0.916		
30	0.905	0.932	0.909		

ตารางที่ 4.7 ค่าเฉลี่ยแสดงประสิทธิภาพของกรรมวิธีหาขอบด้านนอก เมื่อ T_{intensity} มีค่า 10 20 และ 30

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

ตารางที่ 4.7 แสดงผลของ $T_{\text{intensity}}$ กับผลลัพธ์ที่ได้ พบว่าค่า $T_{\text{intensity}}$ ที่ 10 ให้ค่า PPV สูง แต่มี ค่าความไวต่ำ กล่าวคือเส้นขอบด้านนอกที่ได้ ยังอยู่ในพื้นที่ผนังกระเพาะปัสสาวะ ไม่แนบชิดกับขอบ จริง ในขณะที่ค่า $T_{\text{intensity}}$ เท่ากับ 20 และ 30 ให้ผลที่ไม่ต่างกันมาก กล่าวคือเส้นขอบด้านนอกที่ได้ ใกล้เคียงกับขอบจริง แต่เมื่อพิจารณาค่าสถิติที่ได้แล้ว พบว่าค่า $T_{\text{intensity}}$ เท่ากับ 20 ให้ค่า PPV ดีกว่าที่ ค่า $T_{\text{intensity}}$ เท่ากับ 30 แต่ได้ค่าความไวเฉลี่ยเท่ากัน จึงสรุปได้ว่าค่า $T_{\text{intensity}}$ เท่ากับ 20 ดีกว่า 30 แต่ ไม่สามารถระบุได้ว่าค่า $T_{\text{intensity}}$ ที่ 10 หรือ 20 ดีกว่ากัน

เมื่อพิจารณาผลลัพธ์ที่ได้ทางสายตาร่วมด้วย พบว่า เส้นขอบที่ได้จาก $T_{\text{intensity}}$ เท่ากับ 10 มี ลักษณะไม่ราบเรียบมากกว่าที่ $T_{\text{intensity}}$ เท่ากับ 20 ดังตัวอย่างในรูปที่ 4.11 กล่าวคือ ผลของ $T_{\text{intensity}}$ เท่ากับ 10 จะหยุดเมื่อพบการเปลี่ยนแปลงค่าความสว่างเพียงเล็กน้อย สังเกตได้ชัดเจนจากพื้นที่ ระหว่างกระเพาะปัสสาวะและช่องคลอด ในขณะที่เส้นขอบที่ได้จาก $T_{\text{intensity}}$ ที่ 20 และ 30 ดังรูปที่ 4.11(ค)และ(ง) มีความราบเรียบที่มากกว่า ในทางปฏิบัติ ผู้เชี่ยวชาญจะวาดเส้นขอบให้ราบเรียบและ เมื่อ $T_{\text{intensity}}$ เท่ากับ 20 มีผลลัพธ์ของค่าทางสถิติดีกว่าที่ $T_{\text{intensity}}$ เท่ากับ 30 จึงเลือกใช้ค่า $T_{\text{intensity}}$ เท่ากับ 20 สำหรับการกำหนดขีดจำกัดค่าเกรเดียนต์ความสว่างผนังด้านนอกของกระเพาะปัสสาวะ

รูปที่ 4.11 ขอบนอกของผนังกระเพาะปัสสาวะที่ได้จาก (ก) ผู้เชี่ยวชาญ และเส้นขอบที่ได้จากการ กำหนดขนาดเกรเดียนต์ความสว่างที่ (ข) 10 (ค) 20 และ (ง) 30

4.4.1.2 จำนวนข้อมูลและอันดับฟังก์ชันพหุนามของวงจรกรองซาวิสกี-โกเลย์

เมื่อได้ข้อมูลขอบด้านนอกของกระเพาะปัสสาวะแล้ว กรรมวิธีที่นำเสนอจะเพิ่มความ ราบเรียบของเส้นขอบที่ได้โดยใช้วงจรกรองซาวิสกี-โกเลย์ ซึ่งมีพารามิเตอร์ที่ต้องทำการเลือก 2 ค่า คือจำนวนของข้อมูลที่ใช้ประมาณฟังก์ชันพหุนามและอันดับของฟังก์ชันพหุนาม ในการทดลองนี้จะ ทดลองเปลี่ยนจำนวนข้อมูลที่ใช้ 5 แบบ คือ 13 15 17 19 และ 21 ข้อมูล โดยแต่ละชุดข้อมูลจะ ทดลองกับอันดับของฟังก์ชันพนุนาม 3 อันดับ คือ อันดับที่ 1 2 และ 3 ตารางที่ 4.8 แสดงผลการ ประเมินผลลัพธ์เมื่อทดลองเปลี่ยนพารามิเตอร์ที่ใช้ในการผ่านวงจรกรองชาวิสกี-โกเลย์ทั้งหมด

พารามิเต	อร์ของ		ч 		
วงจรกรองซาวิสกี-โกเลย์		ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย	
จำนวนข้อมูล	อันดับที่				
	1	0.891	0.958	0.913	
13	2	0.902	0.950	0.916	
	3	0.902	0.950	0.916	
	1	0.888	0.959	0.912	
15	2	0.901	0.950	0.916	
	3	0.901	0.950	0.916	
	1	0.885	0.961	0.911	
17	2	0.900	0.951	0.916	
	3	0.900	0.951	0.916	
	1	0.882	0.962	0.910	
19	2	0.899	0.952	0.915	
	3	0.899	0.951	0.915	
21	1	0.878	0.963	0.908	
	2	0.898	0.952	0.915	
	3	0.898	0.952	0.915	

ตารางที่ 4.8 ค่าเฉลี่ยประสิทธิภาพของวงจรกรองซาวิสกี-โกเลย์ เมื่อเปลี่ยนจำนวนข้อมูลที่ใช้ในการประมาณ <u>ฟังก์ชันพหุนามและอันดับฟังก์ชันพหุนาม</u>

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

ตารางที่ 4.8 แสดงให้เห็นว่าผลจากการเปลี่ยนจำนวนข้อมูลและอันดับฟังก์ชันพหุนามนั้น ส่งผลกระทบต่อค่าสถิติน้อยมาก ทั้งค่าความไว ค่า PPV และค่า DSC เมื่อสังเกตที่อันดับฟังก์ชันพหุ นามอันดับเดียวกัน แต่เปลี่ยนจำนวนข้อมูล ค่าสถิติทั้งสามให้ผลลัพธ์ใกล้เคียงกัน โดยค่าความ แตกต่างกันของความไว อยู่ในช่วงน้อยกว่า 0.015 หรือได้พื้นที่ภายในกระเพาะปัสสาวะแตกต่างกัน น้อยกว่า 1.5% ขณะที่มีค่า PPV ต่างกันน้อยกว่า 0.005 หรือได้พื้นที่ที่ถูกต้องเทียบกับพื้นที่ที่ได้ ทั้งหมดต่างกันน้อยกว่า 0.5% และส่งผลให้ค่า DSC ต่างกันเพียงเล็กน้อยเท่านั้น

เนื่องจากผลกระทบของค่าทางสถิติมีน้อยมาก จึงได้ประเมินผลทางสายตาร่วมด้วย พบว่า การเลือกข้อมูลจำนวน 13 15 17 19 และ 21 ข้อมูล ที่ผ่านวงจรกรอง ให้ผลลัพธ์ใกล้เคียงกันมาก (รูปที่ 4.12(ค) ถึง(ซ)) อาจกล่าวได้ว่าการเลือกข้อมูลในช่วง 13-21 ข้อมูล ไม่ส่งผลให้เกิดความ แตกต่าง ในขณะที่เส้นขอบจากการเปลี่ยนอันดับฟังก์ชันพหุนามให้ผลลัพธ์ที่แตกต่างกัน กล่าวคือเส้น ขอบจากฟังก์ชันอันดับที่ 1 มีลักษณะราบเรียบ (รูปที่ 4.13(ค)) มากกว่าผลลัพธ์จากฟังก์ชันอันดับที่ 2 (รูปที่ 4.13(ง)) และอันดับที่ 3 (รูปที่ 4.13(จ)) สาเหตุที่วงจรกรองอันดับที่ 1 ได้ผลดีที่สุดเนื่องจาก ฟังก์ชันอันดับที่ 1 เป็นฟังก์ชันเส้นตรง จึงหักงอเพื่อเข้าหาตำแหน่งขอบด้านนอกที่ได้จากขั้นตอนที่ 4 และ 5 ในหัวข้อที่ 3.2.2ได้น้อยกว่าฟังก์ชันอันดับที่ 2 และ3 ที่เป็นฟังก์ชันพาราโบลาและคิวบิก (Cubic) ตามลำดับ แต่ความแตกต่างนี้ เมื่อนำมาคำนวณเป็นตัวเลขจะแสดงความแตกต่างเพียง เล็กน้อยเพียงไม่กี่จุดภาพ ทำให้ค่าทางสถิติไม่แสดงความแตกต่างชัดเจนเท่าการประเมินทางสายตา

จากผลการทดลอง จึงสรุปได้ว่าฟังก์ชันพหุนามอันดับที่ 1 ช่วยให้เส้นขอบมีความราบเรียบ และให้ผลลัพธ์ใกล้เคียงกับผลลัพธ์มาตรฐานมากที่สุด จึงเลือกใช้ฟังก์ชันพหุนามอันดับที่ 1

รูปที่ 4.12 ผลลัพธ์จากฟังก์ชันอันดับที่ 1 ของวงจรกรองซาวิสกี-โกเลย์ (ก) ผลการตัดแบ่งของผู้เชี่ยวชาญ (ข) เส้นขอบก่อนผ่านวงจรกรอง และเส้นขอบหลังผ่านวงจรกรองที่ใช้จำนวนข้อมูล (ค) 13 (ง) 15 (จ) 17 (ฉ) 19 และ (ช) 21 ข้อมูล

รูปที่ 4.13 ผลลัพธ์จากการทำให้ขอบราบเรียบด้วยวงจรกรองซ[ุ]าวิสกี-โกเลย์ที่ประมาณฟังก์ชันพหุนามจาก ข้อมูลจำนวน 17 ข้อมูล (ก) ผลการตัดแบ่งของผู้เชี่ยวชาญ (ข) เส้นขอบก่อนผ่านวงจรกรอง เส้นขอบหลังผ่านวงจรกรอง (ค) อันดับที่ 1 (ง) อันดับที่ 2 และ (จ) อันดับที่ 3

4.4.2 การหาค่าพารามิเตอร์สำหรับชุดภาพที่ใช้ในการเปรียบเทียบประสิทธิภาพ

ในหัวข้อนี้ จะทดลองหาค่าพารามิเตอร์ที่เหมาะสมที่สุดในการหาขอบด้านนอกของผนัง กระเพาะปัสสาวะในรูปที่ 4.1 จากการทดลอง พบว่าความหนาของผนังกระเพาะปัสสาวะในแต่ละชุด ภาพไม่แตกต่างกันมากนัก T_{anterior} และ T_{posterior} เป็นค่าที่อ้างอิงจากความหนา ดังนั้นจึงสามารถ เลือกใช้พารามิเตอร์เพียงชุดเดียวสำหรับกรรมวิธีที่นำเสนอกับทุกชุดภาพ ดังแสดงในตารางที่ 4.9 ขณะที่กรรมวิธี CDLS และกรรมวิธีของ Ma และคณะจะทำการทดลองเพื่อหาค่าพารามิเตอร์สำหรับ แต่ละชุดภาพที่ดีที่สุดและได้ค่าดังแสดงในตารางที่ 4.10 และตารางที่ 4.11 ตามลำดับ ผลการหาขอบด้านนอกผนังกระเพาะปัสสาวะในรูปที่ 4.1 ด้วยค่าพารามิเตอร์ในตารางที่ 4.9 ตารางที่ 4.10 และตารางที่ 4.11 แสดงในตารางที่ 4.12 พบว่า กรรมวิธีของ Ma และคณะให้ค่าความ ไวที่ต่ำที่สุด แต่ให้ค่า PPV ที่ดีที่สุด กล่าวคือ เส้นขอบที่ได้ยังอยู่ในพื้นที่ผนังกระเพาะปัสสาวะ ไม่แนบ ชิดกับขอบด้านนอกที่แท้จริง อย่างไรก็ตามความไวเฉลี่ยที่ได้มีค่าต่ำกว่ากรรมวิธีอื่นอย่างเห็นได้ชัด ขณะที่ค่า PPV เฉลี่ยใกล้เคียงกับกรรมวิธีอื่น จึงสามารถสรุปได้ว่ากรรมวิธีของ Ma และคณะ มี ประสิทธิภาพต่ำสุดหากพิจารณาจากค่าเฉลี่ยทางสถิติ

สำหรับผลจากกรรมวิธี CDLS และกรรมวิธีที่นำเสนอพบว่าค่า PPV ใกล้เคียงกัน แต่ค่าความ ไวเฉลี่ยของกรรมวิธี CDLS ดีกว่ากรรมวิธีที่นำเสนอเล็กน้อย ส่งผลให้ค่า DSC ของกรรมวิธี CDLS สูง กว่ากรรมวิธีที่นำเสนอ แต่เมื่อพิจารณาจากค่าพารามิเตอร์แล้ว พบว่าผลลัพธ์ที่ดีของกรรมวิธี CDLS ในบางสไลด์เป็นผลจากการควบคุมจำนวนรอบวนซ้ำ(Iteration) ซึ่งเป็นลักษณะเช่นเดียวกับการหา ขอบด้านใน (หัวข้อที่ 4.3.2) กล่าวคือเส้นขอบ Γ ไม่ลู่เข้าหาตำแหน่งขอบที่แท้จริงทั้งนี้มีสาเหตุจาก ลักษณะขอบด้านนอกของกระเพาะปัสสาวะมีขอบไม่ชัดเจน ทำให้การปรับเปลี่ยนจำนวนรอบเพียง เล็กน้อยทำให้เกิดความผิดเพี้ยนได้ ดังแสดงในรูปที่ 4.14 ซึ่งพบว่าเส้นขอบที่ได้จะค่อยๆเคลื่อนเข้าไป หาบริเวณช่องคลอด ในขณะที่กรรมวิธีที่นำเสนอไม่มีการวนรอบซ้ำ จึงไม่มีปัญหาการที่เส้นขอบ เคลื่อนที่เลยจากตำแหน่งที่ได้

<u>ตารางที่ 4.9 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการหาขอบด้านนอกในรูปที่ 4.1 ของกรรมวิธีที่นำเสนอ</u> <u>เมื่อ 1 จุดภาพ แสดงความหนา 0.7031 มิลลิเมตร</u>

ความหนาสูงสุดของผนังด้านนอกของกระเพาะปัสสาวะ (จุดภาพ)							
ด้านหน้า $\left(T_{ ext{anterior}} ight)$	ด้านหลัง $\left(T_{ m posterior} ight)$						
15	7						

		กรรมวิธี CDLS								
ชุดข้อมูล		พาร	ามิเตอ	ร์สำหรั	ับสมการที่	พารามิเตอร์สำหรับสมการที่				
				(2.13)			(2.16)	และ (2.1	7)	
(สไลด์ที่)					ລຳນານ		$\Gamma_{\rm inner}$	Γ_{outer}	ຈຳนวน	
		α	λ	μ	รอบวนซ้ำ	λ	$lpha_1',eta_1'$	$lpha_2',eta_2'$	รอบวน ซ้ำ	
รษญี่ 1 1(ก)	1	-0.5	1	0.2	50	1	-0.1	0.1	50	
30/1 4.1(1)	10	-0.5	1	0.2	50	1	-0.1	0.1	50	
รรปที่ 1 1(ด)	1	-0.5	1	0.2	200	1	-0.1	0.1	50	
งับที่ 1 .1(0) ข	10	-0.5	1	0.2	50	1	-0.1	0.1	50	
59/90 1 1(@)	1	-0.5	1	0.2	50	1	-0.1	0.1	50	
3011 4.1(ri)	10	-0.5	1	0.2	50	1	-0.1	0.1	50	
59/90 (1 1(9)	1	-0.5	1	0.2	50	1	-0.1	0.1	50	
30/1 4.1(N)	10	-0.5	1	0.2	50	1	-0.1	0.1	50	
59/90 1 1(2)	1	-0.5	1	0.2	70	1	-0.2	0.2	50	
3011 4.1(1)	10	-0.5	1	0.2	90	1	-0.2	0.2	50	
59/90 4 1(2)	1	-0.5	จุ น าล	0.2	100	118	-0.2	0.2	50	
រូប// 4.1(น/	10	-0.5	1	0.2	150	1	Y -0.2	0.2	50	
59 190 A 1 (63)	1	-0.5	1	0.2	50	1	-0.1	0.1	50	
30/14.1(0)	10	-0.5	1	0.2	50	1	-0.1	0.1	50	
รง ญี่ 1 1 (๗)	1	-0.5	1	0.2	50	1	-0.1	0.1	50	
3011 4.1(0)	10	-0.5	1	0.2	50	1	-0.1	0.1	50	
51/0 1 1(21)	1	-0.5	1	0.2	50	1	-0.1	0.1	50	
30 M ↔.1/6k)	10	-0.5	1	0.2	70	1	-0.1	0.1	50	
54/90 / 1(01)	1	-0.5	1	0.2	100	1	-0.1	0.1	50	
ู สูบท 4.1(เป็)	10	-0.5	1	0.2	200	1	-0.1	0.1	50	

<u>ตารางที่ 4.10 ค่าพารามิเตอร์ที่เหมาะสมสำหรับการหาขอบด้านนอกกระเพาะปัสสาวะในรูปที่ 4.1 ด้วยกรรมวิธี</u>

<u>CDLS</u>

ชุดข้อมูล		พารามิเตอร์ในสมการที่ (2.20)		
(สไลด์ที่)		μ	λ	จำนวนรอบวนซ้ำ
รูปที่ 4.1(ก)	1	1	1	50
	10	1	1	50
รูปที่ 4.1(ข)	1	1	1	250
	10	1	1	70
รูปที่ 4.1(ค)	1	1	1	50
	10	1	1	50
รูปที่ 4.1(ง)	1	1	1	50
	10	1	1	70
รูปที่ 4.1(จ)	1	1	1	70
	10	0.5	1	75
รูปที่ 4.1(ฉ)	1	0.5	1	110
	10	0.5	1	110
รูปที่ 4.1(ซ)	1	0.5	1	50
	10	0.5	1	50
รูปที่ 4.1(ซ)	1	0.5	1	50
	10	กรณ์มหาวิท	ยาลัย _ุ	70
รูปที่ 4.1(ณ)	GH ₁ LALO	NGKOPN UN	VERSITY	50
	10	0.5	1	80
รูปที่ 4.1(ญ)	1	1	1	100
	10	1	1	100

ตารางที่ 4.11 ค่าพารามิเตอร์สำหรับการหาขอบด้านนอกกระเพาะปัสสาวะในรูปที่ 4.1 ของกรรมวิธี Ma และคณะ

<u>ตารางที่ 4.12 ค่าเฉลี่ยแสดงประสิทธิภาพสำหรับการหาขอบด้านนอกของกรรมวิธี CDLS กรรมวิธีของ Ma และ</u>

<u>คณะ และกรรมวิธีที่นำเสนอ</u>

กรรมวิธี	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย
CDLS	0.946	0.968	0.955
Ma และคณะ	0.885	0.986	0.926
Proposed Method	0.921	0.971	0.940

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

รูปที่ 4.14 ผลการแบ่งส่วนภาพ (แสดงด้วยเส้นสีเหลือง) ที่กำหนดจำนวนรอบวนซ้ำที่แตกต่างกันของ กรรมวิธี CDLS (ก) ผลการแบ่งส่วนของผู้เชี่ยวชาญ ผลลัพธ์ของกรรมวิธี CDLS เมื่อกำหนดจำนวนรอบวนซ้ำเป็น (ข) 30 รอบ (ค) 50 รอบ (ง) 70 รอบ

4.4.3 การเปรียบเทียบประสิทธิภาพการตัดแบ่งผนังด้านนอกของกระเพาะปัสสาวะ

ในการประเมินประสิทธิภาพผลลัพธ์ที่ได้จากกรรมวิธีการหาขอบด้านนอกของผนังกระเพาะ ปัสสาวะ จะนำค่าพารามิเตอร์ที่ได้ในหัวข้อที่ 4.4.2 มาตัดแบ่งสไลด์ที่เหลือ 80 สไลด์และได้ผลการ ประเมินค่าทางสถิติ ดังตารางที่ 4.13 ทั้งนี้ค่าพารามิเตอร์สำหรับกรรมวิธี CDLS และกรรมวิธีของ Ma และคณะ มี 2 ชุดต่อ 1 ชุดภาพ จึงได้ผลลัพธ์ 2 ชุดต่อ 1 สไลด์ ซึ่งในการทดลองนี้จะเลือกใช้ค่าที่ ดีกว่า

จากตารางที่ 4.13 แสดงให้เห็นว่า ผลการหาขอบด้านนอกด้วยกรรมวิธี Ma และคณะ ให้ค่า ความไวต่ำที่สุด และมีค่า PPV สูงที่สุด แสดงว่ากรรมวิธีนี้หาเส้นขอบด้านนอกของกระเพาะปัสสาวะ ครอบคลุมพื้นที่ไม่ครบทั้งกระเพาะปัสสาวะ ซึ่งเมื่อพิจารณาเพิ่มเติมทางสายตาร่วมด้วย พบว่าเส้น ขอบที่ได้จากกรรมวิธี Ma และคณะหยุดก่อนถึงขอบด้านนอกของผนังกระเพาะปัสสาวะ และเส้น ขอบที่ได้ห่างจากบริเวณภายในกระเพาะปัสสาวะค่อนข้างคงที่โดยไม่ขึ้นกับการเปลี่ยนแปลงความ สว่าง (รูปที่ 4.15(ค) และรูปที่ 4.16(ค)) สาเหตุนี้เกิดจากการที่เส้นขอบหยุดตามความหนาของผนัง กระเพาะปัสสาวะที่กำหนดในสมการที่ (2.22) ซึ่งในการทดลองให้มีค่าเท่ากับความหนาทั่วไปของ กระเพาะปัสสาวะในผู้ป่วยที่รับการรักษาด้วยการใส่แร่ คือมีค่าประมาณ 5 มิลลิเมตร หรือคิดเป็น 7 จุดภาพ ดังนั้นเมื่อเปลี่ยนค่าความหนาผนังกระเพาะปัสสาวะในสมการที่ (2.22) ไปจะพบว่าเส้นขอบ จะหยุดห่างจากพื้นที่ด้านในแปรตามความหนาที่กำหนดดังแสดงในรูปที่ 4.17

ตารางที่ 4.13 ยังแสดงให้เห็นว่ากรรมวิธี CDLS และกรรมวิธีที่นำเสนอให้ค่าทางสถิติที่ ใกล้เคียงกัน แต่จากการพิจารณาเพิ่มทางสายตา พบว่าผลจากกรรมวิธี CDLS จะหยุดเคลื่อนที่บริเวณ ขอบด้านนอกที่มีค่าความสว่างแตกต่างกันชัดเจน ดังรูปที่ 4.15(ข) ในกรณีที่ขอบด้านนอกมีค่าความ สว่างไม่ชัดเจน ดังรูปที่ 4.16(ข) การหยุดของเส้นขอบเกิดจากการกำหนดจำนวนรอบวนซ้ำ เนื่องจาก ฟังก์ชันค่าของกรรมวิธีนี้จะไม่ลู่เข้าสู่ศูนย์หากค่าความสว่างไม่แตกต่างกันมากพอ ดังแสดงในรูปที่ 4.18 ซึ่งในทางปฏิบัติการกำหนดรอบวนซ้ำในทุกๆสไลด์เป็นขั้นตอนที่เสียเวลามาก ในขณะที่กรรมวิธี ที่นำเสนอ สามารถตัดแบ่งพื้นที่กระเพาะปัสสาวะได้ใกล้เคียงกับผลลัพธ์มาตรฐาน ทั้งในกรณีที่ขอบ ชัดเจนและไม่ชัดเจน โดยไม่มีการกำหนดจำนวนรอบวนซ้ำ ดังรูปที่ 4.15(ง) และรูปที่ 4.16(ง)

ในการปฏิบัติจริง เราไม่สามารถกำหนดค่าพารามิเตอร์แยกสำหรับแต่ละภาพในชุดภาพได้ ดังนั้นในการกำหนดการวนรอบซ้ำเพียง 1–2 ค่าสำหรับ 1 ชุดภาพนั้นส่งผลให้การตัดแบ่งภาพวิธี CDLS อาจให้ผลลัพธ์ที่ไม่เหมาะสมแม้ในกรณีที่เส้นขอบจะชัดเจน ดังตัวอย่างรูปที่ 4.19 เมื่อกำหนด จำนวนรอบ วนซ้ำเท่ากับ 70 รอบสำหรับชุดภาพที่ 10 ตามค่าในตารางที่ 4.11นั้น พบว่าเส้นขอบที่ ได้ในสไลด์ที่ 8 ยังไม่แนบชิดกับเส้นขอบจริงเนื่องจาก เส้นขอบหยุดก่อนจะถึงขอบที่แท้จริง ดังรูปที่ 4.19(ก) ในขณะที่เส้นขอบที่ได้ในสไลด์ที่ 5 มีลักษณะค่อนข้างดี ดังรูปที่ 4.19(ข) เมื่อเพิ่มจำนวนรอ บวนซ้ำเป็น 300 รอบแล้วพบว่าเส้นขอบที่ได้สำหรับสไลด์ที่ 8 ใกล้เคียงกับผลลัพธ์มาตรฐานมาก ยิ่งขึ้น ดังรูปที่ 4.19(ค) แต่เส้นขอบที่เคยเหมาะสมในสไลด์ที่ 5 กลับเคลื่อนจากขอบของผนังกระเพาะ ปัสสาวะเข้าไปบริเวณช่องคลอด ดังรูปที่ 4.19(ง)

99210119491901181960							
กรรมวิธี	ความไวเฉลี่ย	PPV เฉลี่ย	DSC เฉลี่ย				
CDLS	0.958	0.966	0.961				
Ma และคณะ	0.929	0.982	0.952				
Proposed Method	0.957	0.970	0.962				

ตารางที่ 4.13 ค่าเฉลี่ยแสดงประสิทธิภาพสำหรับการหาขอบด้านนอกของกรรมวิธี CDLS กรรมวิธี Ma และคณะ และกรรมวิธีที่นำเสนอ

ตัวหนาแสดงค่าที่มีประสิทธิภาพสูงที่สุด

ในผู้ป่วยบางราย อาจพบฟองอากาศอยู่ภายในช่องท้อง ส่งผลให้บริเวณรอยต่อระหว่าง กระเพาะปัสสาวะและเนื้อเยื่อข้างเคียงด้านหน้าไม่ชัดเจน โดยความหนาที่เกิดขึ้นอาจมีหรือไม่มีการ เปลี่ยนแปลง ประกอบกับความหนาระหว่างช่องคลอดและกระเพาะปัสสาวะมีค่าน้อยกว่าบริเวณอื่น เป็นผลมาจากแท่งนำแร่ที่สอดในช่องคลอด ทำให้ความหนาของผนังกระเพาะปัสสาวะไม่เท่ากันทุก บริเวณ แสดงดังรูปที่ 4.20 ผลลัพธ์จากกรรมวิธี CDLS จะให้ผลที่ผิดพลาด เส้นขอบที่ได้จะเคลื่อนที่ เข้าไปในฟองอากาศและช่องคลอด ดังรูปที่ 4.20(ข) ในขณะที่กรรมวิธีของ Ma และคณะ ที่สามารถ กำหนดความหนาของผนังกระเพาะปัสสาวะเพียงค่าเดียว เส้นขอบที่ได้ก็จะผิดเพี้ยนเช่นกัน กล่าวคือ ถ้ากำหนดความหนาของผนังกระเพาะปัสสาวะที่ 7 จุดภาพ เส้นขอบด้านหน้าที่ได้จะหยุดเคลื่อนที่ ก่อนเจอขอบจริง เส้นขอบไม่แนบซิดกับขอบที่แท้จริง ดังรูปที่ 4.20(ค) แต่ถ้ากำหนดความหนาของ ผนังกระเพาะปัสสาวะที่ 9 จุดภาพ เส้นขอบด้านบนที่ได้จะแนบซิดกับขอบที่แก้จริง แต่เส้นขอบ ด้านหลังจะเคลื่อนที่เลยจากขอบจริง ดังรูปที่ 4.20(ง) ในขณะที่เส้นขอบที่ได้จากกรรมวิธีที่นำเสนอ จะแนบซิดกับขอบที่แท้จริงได้ถูกต้องและเหมาะสมมากกว่ากรรมวิธี CDLS และกรรมวิธีของ Ma และ คณะ ดังรูปที่ 4.20)

จากการทดลอง สามารถสรุปได้ว่ากรรมวิธีที่นำเสนอสามารถตัดแบ่งด้านนอกของผนัง กระเพาะปัสสาวะได้ถูกต้องทั้งกรณีที่มีขอบชัดเจน และไม่ชัดเจน รวมไปถึงการกำหนดค่าพารามิเตอร์ สามารถทำได้ง่าย ค่าที่ใช้อ้างอิงกับสรีระของผู้ป่วย ไม่จำเป็นต้องปรับพารามิเตอร์อย่างละเอียด สำหรับแต่ละสไลด์เพื่อให้ได้ผลที่เหมาะสมดังเช่นในกรรมวิธี CDLS และกรรมวิธีของ Ma และคณะ รวมไปถึงผลลัพธ์ที่ได้มีความราบเรียบ ใกล้เคียงกับการตัดแบ่งจากผู้เชี่ยวชาญมากที่สุด

Chulalongkorn University

รูปที่ 4.15 ตัวอย่างผลการแบ่งส่วนภาพ กรณีขอบด้านนอกของกระเพาะปัสสาวะชัดเจนด้วย (ก) ผู้เชี่ยวชาญ (ข) กรรมวิธี CDLS (ค) กรรมวิธี Ma และคณะและ (ง) กรรมวิธีที่นำเสนอ

รูปที่ 4.16 ตัวอย่างผลการแบ่งส่วนภาพกรณีขอบด้านนอกของกระเพาะปัสสาวะไม่ชัดเจนด้วย (ก) ผู้เชี่ยวชาญ (ข) กรรมวิธี CDLS (ค) กรรมวิธี Ma และคณะ และ (ง) กรรมวิธีที่นำเสนอ

ร**ูปที่ 4.17** ตัวอย่างผลการแบ่งส่วนภาพ (รูปที่ 4.16) ด้วยกรรมวิธี Ma และคณะ กำหนดความหนาของผนังกระเพาะปัสสาวะที่ (ก) 5 จุดภาพ (ข) 7 จุดภาพ และ (ค) 9 จุดภาพ

รูปที่ 4.18 ตัวอย่างผลการแบ่งส่วนภาพ (รูปที่ 4.16) ด้วยกรรมวิธี CDLS ที่จำนวนรอบการวนซ้ำที่ (ก) 70 รอบ (ข) 100 รอบ

รูปที่ 4.19 ผลของการปรับจำนวนรอบในการหาขอบด้านนอกของกระเพาะปัสสาวะด้วยกรรมวิธี CDLS ผลลัพธ์มาตรฐานของ (ก) สไลด์ที่ 8 และ (ข) สไลด์ที่ 5

ผลลัพธ์ของกรรมวิธี CDLS เมื่อกำหนดจำนวนรอบเท่ากับ 70 ของ (ค) สไลด์ที่ 8 และ (ง) สไลด์ที่ 5 ผลลัพธ์ของกรรมวิธี CDLS เมื่อกำหนดจำนวนรอบเท่ากับ 300 ของ (จ) สไลด์ที่ 8 และ (ฉ) สไลด์ที่ 5

รูปที่ 4.20 ตัวอย่างผลการแบ่งส่วน กรณีมีฟองอากาศภายในช่องท้อง ด้วย (ก) ผู้เชี่ยวชาญ (ข) กรรมวิธี CDLS (ค) กรรมวิธี Ma และคณะ กำหนดความหนาที่ 7 จุดภาพ (ง) กรรมวิธี Ma และคณะ กำหนดความหนาที่ 9 จุดภาพ และ (จ) กรรมวิธีที่นำเสนอ

5.1 สรุปผลการทดลอง

วิทยานิพนธ์ฉบับนี้นำเสนอกรรมวิธีการหาพื้นที่กระเพาะปัสสาวะในภาพเอ็มอาร์ไอ แบบ T2 weighted เพื่อช่วยวางแผนการรักษามะเร็งปากมดลูกด้วยวิธีใส่แร่ โดยภาพเอ็มอาร์ไอที่ใช้วาง แผนการรักษานี้มีข้อแตกต่างจากภาพเอ็มอาร์ไอสำหรับการวินิจฉัยทั่วไป คือ ความไม่ชัดเจนของผนัง ด้านในบางส่วนและผนังด้านนอกเกือบทั้งหมดของกระเพาะปัสสาวะ เนื่องจากเป็นภาพตามแนวแกน ไม่มาตรฐาน ส่งผลให้ความหนาของผนังกระเพาะปัสสาวะผิดเพี้ยนจากค่าทั่วไป ความหนาผนัง กระเพาะปัสสาวะบริเวณด้านหน้าและด้านหลังแตกต่างกัน อันเนื่องจากการบีบอัดของแท่งนำแร่และ สำลีในช่องคลอด ในการหาพื้นที่กระเพาะปัสสาวะโดยทั่วไปและที่ใช้ในงานวิทยานิพนธ์นี้ ประกอบด้วย 2 กรรมวิธี คือ การแบ่งพื้นที่ภายในกระเพาะปัสสาวะและการหาขอบด้านนอกของผนัง กระเพาะปัสสาวะ ซึ่งทั้งสองกรรมวิธีนี้ทดลองกับภาพเอ็มอาร์ไอ 10 ชุดภาพ ชุดภาพละ 10 สไลด์ ทำ การประเมินผลลัพธ์เทียบกับผลลัพธ์มาตรฐานจากการกำหนดขอบเขตโดยรังสีแพทย์ พร้อมทั้ง เปรียบเทียบประสิทธิภาพกับกรรมวิธี CDLS[13] และกรรมวิธีของ Ma และคณะ[17] ผ่านค่าทางสถิติ 3 ค่า คือ ค่าความไว ค่า PPV และค่า DSC และพิจารณาผลลัพธ์ผ่านทางสายตาร่วมด้วย

โดยทั่วไปกรรมวิธีการหาพื้นที่ภายในกระเพาะปัสสาวะเป็นขั้นตอนที่มีความสำคัญมาก เนื่องจากผลลัพธ์ที่ได้จากขั้นตอนนี้ จะใช้เป็นข้อมูลอ้างอิงในการหาพื้นที่กระเพาะปัสสาวะทั้งหมด โดยการแบ่งส่วนด้วยกรรมวิธีเลเวลเซต เป็นกรรมวิธีที่ได้รับความนิยมกับภาพทางการแพทย์ เนื่องจากสามารถแบ่งพื้นที่ที่มีรูปร่างซับซ้อนและหลากหลายได้ดี ซึ่งกรรมวิธีเลเวลเซตถูกนิยามได้ หลายรูปแบบ เช่น Qin และคณะ[13] เสนอ "กรรมวิธี Coupled Directional Level Set (CDLS)" ที่ปรับฟังก์ชันค่าอ้างอิงจากขนาดเกรเดียนต์และทิศเกรเดียนต์ความสว่าง ซึ่งให้ผลลัพธ์ที่ดีเมื่อขอบ ผนังด้านในชัดเจน ในขณะที่ Ma และคณะ[17] ที่ในวิทยานิพนธ์นี้ขอเรียกเป็น "กรรมวิธี GlobalWt" ที่ปรับฟังก์ชันค่าอ้างอิงจากค่าความสว่างเฉลี่ย ภายใต้ข้อจำกัดที่ว่าการกระจายความสว่างภายใน กระเพาะปัสสาวะต้องมีค่าความสว่างเฉลี่ยและค่าเบี่ยงเบนมาตรฐานเท่ากันทุกบริเวณ ซึ่งการปรับ ฟังก์ชันค่าทั้งสองแบบให้ผลลัพธ์ที่ดีกับภาพลักษณะแตกต่างกัน อย่างไรก็ตามลักษณะกระเพาะ ปัสสาวะในภาพเอ็มอาร์ไอนี้ อาจพบทั้งพื้นที่ภายในกระเพาะปัสสาวะมีการกระจายความสว่างที่ แตกต่างกันมากในแต่ละบริเวณหรือขอบไม่ชัดเจน เพื่อแก้ปัญหาการตัดแบ่งภาพลักษณะที่ก่อนามา ขอเสนอ "กรรมวิธีเลเวลเซตที่ใช้ผลต่างของค่าเฉลี่ยความสว่างแบบมีทิศทาง (Directional Local Mean Difference Level Set Method; DLMD-LS)" ที่ปรับฟังก์ชันค่าอ้างอิงทิศเกรเดียนต์ความ สว่างและผลต่างของค่าความสว่างเฉลี่ยที่พิจารณาเป็นพื้นที่เล็กๆ

จากการทดลองกรรมวิธี DLMD-LS เปรียบเทียบกับกรรมวิธี CDLS และกรรมวิธี GlobalWt แล้ว พบว่ากรรมวิธี DLMD-LS สามารถแบ่งพื้นที่ภายในกระเพาะปัสสาวะได้ถูกต้องทั้งลักษณะพื้นที่ ที่มีการกระจายค่าความสว่างสม่ำเสมอและไม่สม่ำเสมอ ตลอดจนขอบผนังด้านในที่ชัดเจนและไม่ ชัดเจนด้วย กล่าวคือ กรรมวิธี DLMD-LS มีประสิทธิภาพมากกว่ากรรมวิธี CDLS และ GlobalWt และทนต่อสัญญาณรบกวนได้ดีกว่า ขณะที่กรรมวิธี CDLS และ GlobalWt ประสบปัญหาต่อไปนี้

- เมื่อกรรมวิธี GlobalWt เจอลักษณะภาพที่มีการกระจายค่าความสว่างภายในกระเพาะ ปัสสาวะไม่สม่ำเสมอ จะให้ผลการตัดแบ่งผิดเพี้ยนค่อยข้างมาก เนื่องจากกรรมวิธีนี้ พิจารณาตามค่าความสว่างเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของพื้นที่ภายใน
- กรรมวิธี CDLS และกรรมวิธี GlobalWt ให้ผลการตัดแบ่งพื้นที่ผิดพลาด เมื่อขอบด้าน ในกระเพาะปัสสาวะไม่ชัดเจน ฟังก์ชันค่าของกรรมวิธีทั้งสองจะไม่ลู่เข้าสู่ศูนย์ เนื่องจาก ฟังก์ชันค่าของกรรมวิธี CDLS ไม่พบทิศของเกรเดียนต์ที่แสดงถึงการเปลี่ยนแปลงความ สว่างบริเวณขอบอย่างที่ควรจะเป็น และฟังก์ชันค่าของกรรมวิธี GlobalWt ไม่พบความ แตกต่างของค่าความสว่างเฉลี่ยระหว่างพื้นที่สองพื้นที่
- เพื่อให้ได้ผลการตัดแบ่งพื้นที่ที่ถูกต้อง กรรมวิธี CDLS และกรรมวิธี GlobalWt ต้อง กำหนดค่าพารามิเตอร์ใหม่เกือบทุกสไลด์ๆ ไม่สามารถใช้ค่าพารามิเตอร์ชุดเดียวกันกับ ทั้งชุดภาพได้ และในบางสไลด์ต้องควบคุมที่จำนวนรอบวนซ้ำที่ใช้ปรับค่า *φ* แสดงให้ เห็นว่าเส้นขอบที่ได้ยังไม่ลู่เข้าหาตำแหน่งจริงที่ฟังก์ชันค่าต่ำสุด

เมื่อพิจารณาลักษณะขอบด้านนอกรอบๆกระเพาะปัสสาวะ พบว่ามีทั้งบริเวณที่ขอบชัดเจน และไม่ชัดเจน และความหนาของกระเพาะปัสสาวะไม่เท่ากันทุกบริเวณ กล่าวคือความหนาระหว่าง กระเพาะปัสสาวะกับช่องคลอดมีค่าน้อยกว่าบริเวณอื่น เนื่องจากถูกบีบอัดโดยสำลีและแท่งนำแร่ จากข้อมูลข้างต้น จึงขอเสนอกรรมวิธีหาขอบด้านนอกกระเพาะปัสสาวะโดยอ้างอิงจากแนวปฏิบัติ ของรังสีแพทย์ ที่พิจารณาขอบด้านนอกจากลักษณะขอบด้านใน และประมาณค่าในบริเวณที่ขอบไม่ ชัดเจนจากขอบที่ชัดเจน รวมไปถึงการกำหนดเส้นขอบที่ราบเรียบ โดยจะคำนวณหาตำแหน่งที่มีขอบ ค่อนข้างชัดเจนตามแนวตั้งฉากที่พุ่งออกจากเส้นขอบในและมีค่าเกรเดียนต์ความสว่างสูงกว่าค่าที่ กำหนด $(T_{\rm intensity})$ ทั้งนี้หากไม่พบตำแหน่งที่มีค่าเกรเดียนต์สูงแล้ว จะเลือกใช้ค่าความหนาของผนัง กระเพาะปัสสาวะที่ผู้ใช้กำหนดแทน หลังจากนั้นจะเพิ่มความราบเรียบด้วยวงจรกรองซาวิสกี-โกเลย์ อันดับที่ 1

จากการทดลอง กรรมวิธีที่นำเสนอเปรียบเทียบกับกรรมวิธี CDLS และกรรมวิธีของ Ma และ คณะ พบว่ากรรมวิธีที่นำเสนอไม่จำเป็นต้องปรับค่าพารามิเตอร์โดยละเอียดและให้ผลการตัดแบ่ง พื้นที่กระเพาะปัสสาวะที่ถูกต้องเหมาะสม ในขณะที่กรรมวิธี CDLS และกรรมวิธีของ Ma และคณะ ประสบปัญหาดังต่อไปนี้

- การหยุดเคลื่อนที่ของเส้นขอบด้านนอกจากกรรมวิธีของ Ma และคณะแปรผันตามความ หนาของผนังกระเพาะปัสสาวะที่กำหนด โดยไม่คำนึงถึงการเปลี่ยนแปลงค่าความสว่าง และ กำหนดความหนาของผนังกระเพาะปัสสาวะได้เพียงค่าเดียว เมื่อพิจารณา พบว่า ขอบด้านนอกที่แท้จริงมีความหนาไม่เท่ากันทุกด้าน การกำหนดค่าความหนาเพียงค่า เดียว ส่งผลให้เส้นขอบที่ได้เลยเข้าไปในบริเวณระหว่างช่องคลอดและผนังกระเพาะ ปัสสาวะที่มีความหนาน้อยกว่าบริเวณอื่น เนื่องจากการถูกบีบอัดของแท่งนำแร่ หรือเส้น ขอบด้านนอกที่ได้ไม่แนบชิดกับเส้นขอบจริงทางด้านบนเมื่อกำหนดให้ความหนาน้อยลง จากค่าปกติ
- ในกรณีที่ขอบนอกไม่ชัดเจน ฟังก์ชันค่าของกรรมวิธี่ CDLS จะไม่ลู่เข้าสู่ศูนย์ เนื่องจาก ความแตกต่างของค่าความสว่างไม่มากพอ การหยุดของเส้นขอบที่ได้ เกิดจากการ กำหนดจำนวนรอบวนซ้ำ

5.2 ข้อดีของกรรมวิธีที่นำเสนอ

- กรรมวิธีที่นำเสนอ สามารถหาเส้นขอบด้านในและด้านนอกของกระเพาะปัสสาวะได้ แม่นยำและสะดวกในการใช้งานเนื่องจากไม่จำเป็นต้องปรับค่าพารามิเตอร์อย่างละเอียด สามารถใช้พารามิเตอร์ค่าเดียวกับหลายชุดภาพได้
- การตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะ ด้วยกรรมวิธี DLMD-LS ทนต่อสัญญาณ รบกวนที่เกิดจากการเก็บภาพและขั้นตอนการรักษาด้วยการใส่แร่ได้ดี สังเกตจากผลลัพธ์ ที่ได้จากการตัดแบ่งพื้นที่ภายในกระเพาะปัสสาวะมีความถูกต้องมาก ใช้ได้กับภาพหลาย รูปแบบ ทั้งที่มีขอบด้านในชัดเจนและไม่ชัดเจน และพื้นที่ภายในกระเพาะปัสสาวะที่มี การกระจายค่าความสว่างที่สม่ำเสมอและไม่สม่ำเสมอ

 การหาเส้นขอบด้านนอกของผนังกระเพาะปัสสาวะ ด้วยกรรมวิธีที่นำเสนอ จะแบ่งการ กำหนดความหนาเป็น 2 ส่วน ตามลักษณะของภาพเอ็มอาร์ไอจากการใส่แร่ ซึ่งเมื่อแบ่ง การพิจารณาแล้ว จะได้เส้นขอบที่มีความถูกต้องมากยิ่งขึ้น นอกจากนี้แล้ว พารามิเตอร์ ที่กำหนดอ้างอิงได้จากลักษณะทางกายภาพ (ความหนาของผนังกระเพาะปัสสาวะ) ทำ ให้ผู้ใช้งานสามารถกำหนดได้ง่าย

5.3 ข้อจำกัดของกรรมวิธีที่นำเสนอ

- ในกรณีที่กายวิภาคของผนังกระเพาะปัสสาวะของผู้ป่วยไม่เป็นไปตามปกติ อาจจะเกิด การหาขอบด้านนอกของผนังกระเพาะปัสสาวะไม่สัมพันธ์กับลักษณะกายวิภาคจริง
- ในการหาขอบด้านนอกของกระเพาะปัสสาวะ ไม่มีการตรวจสอบความสัมพันธ์ของ ผลลัพธ์ที่ได้กับสไลด์ข้างเคียงเพื่อเพิ่มความถูกต้องของการหาขอบด้านนอกของของผนัง กระเพาะปัสสาวะมากยิ่งขึ้น

5.4 ข้อเสนอแนะ

- ในทางปฏิบัติ การกำหนดขอบเขตของกระเพาะปัสสาวะไม่ได้กระทำโดยรังสีแพทย์ท่าน เดียวเสมอไป และในการกำหนดของแต่ละท่าน ยังมีความแตกต่างกันบ้าง ดังนั้น ควรมี ระบบเรียนรู้ด้วยตนเอง (Reinforced learning) เข้ามาเรียนรู้ลักษณะการตัดแบ่งที่ แตกต่างกันของรังสีแพทย์แต่ละคน
- ในกรรมวิธีนี้ ต้องใช้ข้อมูลขอบด้านในที่ถูกต้องเพื่อหาขอบด้านนอกของสไลด์เดียวกัน ซึ่งสามารถช่วยให้หาขอบด้านนอกได้ดีเมื่อขอบด้านในซึ่งเป็นเส้นขอบเริ่มต้นตัดแบ่งได้ ถูกต้อง แต่ในกรณีภาพบริเวณส่วนต้นและส่วนปลายกระเพาะปัสสาวะที่อาจมีขอบด้าน ในไม่ชัดเจน อาจทำให้กรรมวิธีการนี้ไม่ได้ผล จึงควรนำข้อมูลของสไลด์ข้างเคียงเข้ามา ช่วยในการหาขอบสำหรับสไลด์บริเวณปลายกระเพาะปัสสาวะด้วย

รายการอ้างอิง

- [1] International Agency for Research on Cancer, "Latest world cancer statistics Global cancer burden rises to 14.1 million new cases in 2012," 2013.
- [2] N. c. institute, *HOSPITAL BASED CANCER REGISTRY ANNUAL REPORT* 2012. Thailand: Information Technology Division, National Cancer Institude, 2012.
- [3] N. M. Saad, S. A. R. Abu-Bakar, S. Muda, and M. Mokji, "Segmentation of brain lesions in diffusion-weighted MRI using thresholding technique," in *Signal and Image Processing Applications (ICSIPA)*, 2011 *IEEE International Conference on*, 2011, pp. 249-254.
- [4] A. Sharifah Lailee Syed, H. Hambali, and N. Jamil, "An accurate thresholdingbased segmentation technique for natural images," in *Humanities, Science and Engineering Research (SHUSER),* 2012 *IEEE Symposium on,* 2012, pp. 919-922.
- [5] A. Sheeba and S. Manikandan, "Image segmentation using bi-level thresholding," in *Electronics and Communication Systems (ICECS)*, 2 0 1 4 *International Conference on*, 2014, pp. 1-5.
- [6] B. Senthilkumar, G. Umamaheswari, and J. Karthik, "A novel region growing segmentation algorithm for the detection of breast cancer," in *Computational Intelligence and Computing Research (ICCIC)*, 2 0 1 0 *IEEE International Conference on*, 2010, pp. 1-4.
- [7] L. Song, Y. Lv, B. Yang, and Y. Wang, "Segmentation of breast masses using adaptive region growing," in *Strategic Technology (IFOST)*, 2013 8 th *International Forum on*, 2013, pp. 77-81.
- [8] O. P. Verma, M. Hanmandlu, S. Susan, M. Kulkarni, and P. K. Jain, "A Simple Single Seeded Region Growing Algorithm for Color Image Segmentation using Adaptive Thresholding," in *Communication Systems and Network Technologies* (CSNT), 2011 International Conference on, 2011, pp. 500-503.
- [9] C. Yun-Jen, P. Van-Truong, T. Thi-Thao, and S. Kuo-Kai, "Evaluation of active contour on medical inhomogeneous image segmentation," in *Computer*

Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on, 2010, pp. 311-314.

- [10] H. Yousefi, M. Fatehi, M. Amian, and R. A. Zoroofi, "A fully automated segmentation of radius bone based on active contour in wrist MRI data set," in *Biomedical Engineering (ICBME)*, 2013 20th Iranian Conference on, 2013, pp. 42-47.
- [11] L. Chunming, H. Rui, D. Zhaohua, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, "A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities With Application to MRI," *Image Processing, IEEE Transactions* on, vol. 20, pp. 2007-2016, 2011.
- [12] L. Changyang, W. Xiuying, S. Eberl, M. Fulham, Y. Yong, C. Jinhu, et al., "A Likelihood and Local Constraint Level Set Model for Liver Tumor Segmentation from CT Volumes," *Biomedical Engineering, IEEE Transactions on*, vol. 60, pp. 2967-2977, 2013.
- [13] Q. Xianjing, L. Yang, L. Hongbing, L. Xuelong, and Y. Pingkun, "Coupled Directional Level Set for MR Image Segmentation," in *Machine Learning and Applications (ICMLA)*, 2012 11th International Conference on, 2012, pp. 185-190.
- [14] X. Qin, X. Li, Y. Liu, H. Lu, and P. Yan, "Adaptive Shape Prior Constrained Level Sets for Bladder MR Image Segmentation," *Biomedical and Health Informatics, IEEE Journal of,* vol. PP, pp. 1-1, 2013.
- [15] J. W. Chi, M. Brady, N. R. Moore, and J. A. Schnabel, "Segmentation of the bladder wall using coupled level set methods," in *Biomedical Imaging: From Nano to Macro,* 2011 *IEEE International Symposium on*, 2011, pp. 1653-1656.
- [16] L. Chunming, X. Chenyang, G. Changfeng, and M. D. Fox, "Distance Regularized Level Set Evolution and Its Application to Image Segmentation," *Image Processing, IEEE Transactions on*, vol. 19, pp. 3243-3254, 2010.
- [17] Z. Ma, R. Jorge, T. Mascarenhas, and J. S. Tavares, "Novel Approach to Segment the Inner and Outer Boundaries of the Bladder Wall in T2-Weighted Magnetic Resonance Images," *Annals of Biomedical Engineering*, vol. 39, pp. 2287-2297, 2011/08/01 2011.

- [18] D. Chaijie, Y. Kehong, L. Fanghua, X. Ping, L. Guoqing, and L. Zhengrong, "Volume-Based Features for Detection of Bladder Wall Abnormal Regions via MR Cystography," *Biomedical Engineering, IEEE Transactions on*, vol. 58, pp. 2506-2512, 2011.
- [19] D. Chaijie, L. Zhengrong, B. Shangliang, Z. Hongbin, W. Su, Z. Guangxiang, et al.,
 "A Coupled Level Set Framework for Bladder Wall Segmentation With Application to MR Cystography," *Medical Imaging, IEEE Transactions on,* vol. 29, pp. 903-915, 2010.
- [20] S. Tae-O-Sot, S. Auethavekiat, and S. Jitapunkul, "Shape Based Segmentation by Level Set Method for Medical Objects Containing Two Regions," in *Image Processing*, 2006 *IEEE International Conference on*, 2006, pp. 1929-1932.
- [21] S. Tae-o-sot, S. Jitapunkul, and S. Auethavekiat, "Shape-Based Object Segmentation with Simultaneous Intensity Adjustment," in *Computer and Robot Vision,* 2006. *The 3rd Canadian Conference on*, 2006, pp. 56-56.
- [22] S. Osher, *Level Set Method and Dynamic Implicit Surfaces*. United States of American: Speinger-Verlag New York, 2002.
- [23] B. v. Brunt, *The Calculus of Variations* Springer-Verlag New York, 2003.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ก ผลการตัดแบ่งกระเพาะปัสสาวะ

<u>ตารางที่ ก-1</u> ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 1 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-1(ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 1 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดง</u> ขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*<u>ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ</u> กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก- 2 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 2 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดง</u> ขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 2 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดง</u> ขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ

<u>ตารางที่ ก-3 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 3 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ</u> ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-3ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 3 ด้วยกรรมวิธีต่างๆ เมื่อเส้น</u> สีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ

<u>ตารางที่ ก-4 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 4 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ</u> ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-4ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 4 ด้วยกรรมวิธีต่างๆ</u> เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ

<u>ตารางที่ ก-5 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 5 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ</u> ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-5ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 5 ด้วยกรรมวิธีต่างๆ</u> เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ

<u>ตารางที่ ก-6 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 6 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ</u> ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-6ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 6 ด้วยกรรมวิธีต่างๆ</u> เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-7</u> ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 7 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดง ขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-7ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 7 ด้วยกรรมวิธีต่างๆ</u> เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ

<u>ตารางที่ ก-8 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 8 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ</u> ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-8ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 8 ด้วยกรรมวิธีต่างๆ</u> เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*<u>ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ</u> กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-9 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 9 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดงขอบ</u> ด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-9ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 9 ด้วยกรรมวิธีต่างๆ</u> เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-10 ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 10 ด้วยกรรมวิธีต่างๆ เมื่อเส้นสีแดงแสดง</u> ขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

<u>ตารางที่ ก-10ตารางที่ ก- 2 (ต่อ) ผลการตัดแบ่งกระเพาะปัสสาวะชุดภาพที่ 10 ด้วยกรรมวิธี</u> ต่างๆ เมื่อเส้นสีแดงแสดงขอบด้านใน และเส้นสีเหลืองแสดงขอบด้านนอก

*ผลลัพธ์การตัดแบ่งเส้นขอบด้านในด้วยกรรมวิธี DLMD-LS เป็นเส้นขอบเริ่มต้นในการหาขอบด้านนอกของกรรมวิธี CDLS และ กรรมวิธีของ Ma และคณะ

ภาคผนวก ข ผลลัพธ์การประเมินทางสถิติ แยกแต่ละสไลด์

Slida		INNER		OUTER		
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.971	0.971		0.887	0.725	0.783 TP=4170, FN=1154
	TP=3276,	TP=3276,	0.921	TP=4723,	TP=3861,	
1	FN=98	FN=98	U.031	FN=601	FN=1463	
Ţ	0.971	0.993	FN=601	0.925	0.725	
	TP=3276,	TP=3351,		TP=4925,	TP=3861,	
	FN=98	FN=23		FN=399	FN=1463	
	0.983	0.998		0.931	0.814	
	TP=4022,	TP=4083,	0.964	TP=5548,	TP=4854,	0 077
2	FN=68	FN=7	0.004 TD-3887	FN=414	FN=1108	U.077
2	0.983	1	ENI-611	0.949	0.814	FN=736
	TP=4022,	TP=4090,	FN=611	TP=5657,	TP=4854,	
	FN=68	FN=0	13665	FN=305	FN=1108	
	0.983	0.961	0.867 TP=4127, FN=631	0.943	0.837	0.906 TP=5615, FN=580
	TP=4345,	TP=4248,		TP=5839,	TP=5185,	
3	FN=77	FN=174		FN=356	FN=1010	
	0.983	0.995		0.964	0.837	
	TP=4345,	TP=4401,		TP=5970,	TP=5185,	
	FN=77	FN=21		FN=225	FN=1010	
	0.976	0.946	0.905	0.974	0.92	0.967 TP=5952, FN=203
	TP=4703,	TP=4559,		TP=5997,	TP=5664,	
4	FN=117	FN=261	TP=4575	FN=158	FN=491	
	0.976	0.99	EN=538	0.982	0.92	
	TP=4703,	TP=4771,	111 330	TP=6042,	TP=5664,	
	FN=117	FN=49		FN=113	FN=491	
	0.977	0.994		0.965	0.914	
	TP=4911,	TP=4993,	0.955	TP=6089,	TP=5765,	0.979 TP=6174, FN=133
5	FN=114	FN=32	TP=4797	FN=218	FN=542	
5	0.977	0.996	EN=228	0.972	0.914	
	TP=4911,	TP=5004,	220	TP=6131,	TP=5765,	
	FN=114	FN=21		FN=176	FN=542	

ตารางที่ ข-1 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 1

Slide		INNER			OUTER	
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.997 TP=4537, FN=15 0.997 TP=4537, FN=15 0.987 TP=4530, FN=60 0.987 TP=4530, FN=60	1 TP=4552, FN=0 1 TP=4552, FN=0 1 TP=4590, FN=0 1 TP=4590, FN=0	0.926 TP=4427, FN=354 0.928 TP=4373, FN=339	0.974 TP=5751, FN=153 0.983 TP=5803, FN=101 0.969 TP=5731, FN=185 0.98 TP=5796, FN=120	0.922 TP=5441, FN=463 0.922 TP=5441, FN=463 0.912 TP=5395, FN=521 0.912 TP=5395, FN=521	0.983 TP=5806, FN=98 0.982 TP=5812, FN=104
8	0.988 TP=4270, FN=53 0.988 TP=4270, FN=53	1 TP=4323, FN=0 1 TP=4323, FN=0	0.93 TP=4171, FN=312	0.965 TP=5564, FN=200 0.968 TP=5577, FN=187	0.88 TP=5072, FN=692 0.88 TP=5072, FN=692	0.973 TP=5609, FN=155
9	0.971 TP=3681, FN=111 0.971 TP=3681, FN=111	1 TP=3792, FN=0 1 TP=3792, FN=0	0.938 TP=3557, FN=235	0.952 TP=4856, FN=244 0.958 TP=4886, FN=214	0.864 TP=4408, FN=692 0.864 TP=4408, FN=692	0.959 TP=4890, FN=210
10	0.962 TP=3073, FN=123 0.962 TP=3073, FN=123	1 TP=3196, FN=0 1 TP=3196, FN=0	0.895 TP=2862, FN=334	0.967 TP=4457, FN=153 0.984 TP=4535, FN=75	0.803 TP=3703, FN=907 0.803 TP=3703, FN=907	0.918 TP=4230, FN=380

ตารางที่ ข-1 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 1

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.945	0.859		0.945	0.997	
	TP=3276,	TP=3276,	0.007	TP=4723,	TP=3861,	0.982
4	FP=192	FP=538	0.997	FP=275	FP=10	
1	0.945	0.789	FP=10	0.935	0.997	IP=4170,
	TP=3276,	TP=3351,		TP=4925,	TP=3861,	FP=78
	FP=192	FP=897		FP=342	FP=10	
	0.942	0.866		0.958	0.998	
	TP=4022,	TP=4083,	0.000	TP=5548,	TP=4854,	0.000
	FP=247	FP=632	0.999	FP=241	FP=11	0.989 TP=5226, FP=58
2	0.942	0.822	TP=3887,	0.949	0.998	
	TP=4022,	TP=4090,	FP=3	TP=5657,	TP=4854,	
	FP=247	FP=883		FP=306	FP=11	
	0.974	0.905	0.996 TP=4127, FP=16	0.97	0.997	0.989 TP=5615, FP=63
	TP=4345,	TP=4248,		TP=5839,	TP=5185,	
_	FP=116	FP=444		FP=181	FP=15	
د	0.974	0.869		0.959	0.997	
	TP=4345,	TP=4401,		TP=5970,	TP=5185,	
	FP=116	FP=662		FP=254	FP=15	
	0.977	0.908	1 TP=4575,	0.94	0.988	0.973 TP=5952, FP=164
	TP=4703,	TP=4559,		TP=5997,	TP=5664,	
4	FP=111	FP=462		FP=380	FP=70	
4	0.977	0.873		0.931	0.988	
	TP=4703,	TP=4771,	FP=Z	TP=6042,	TP=5664,	
	FP=111	FP=691		FP=450	FP=70	
	0.991	0.924		0.941	0.986	0.967 TP=6174, FP=211
	TP=4911,	TP=4993,	0.007	TP=6089,	TP=5765,	
E	FP=43	FP=411	0.997 TD-4707	FP=381	FP=84	
5	0.991	0.899	ED_16	0.933	0.986	
	TP=4911,	TP=5004,	1 - 10	TP=6131,	TP=5765,	
	FP=43	FP=563		FP=440	FP=84	

ตารางที่ ข-2 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 1

Slido		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.97 TP=4537, FP=142 0.97 TP=4537, FP=142 0.978 TP=4530, FP=103 0.978	0.881 TP=4552, FP=615 0.858 TP=4552, FP=756 0.891 TP=4590, FP=562 0.869	0.996 TP=4427, FP=18 0.997 TP=4373, FP=12	0.944 TP=5751, FP=339 0.933 TP=5803, FP=418 0.946 TP=5731, FP=326 0.938	0.991 TP=5441, FP=51 0.991 TP=5441, FP=51 0.995 TP=5395, FP=28 0.995	0.972 TP=5806, FP=170 0.974 TP=5812, FP=153
	TP=4530, FP=103 0.986 TP=4270, FP=61	TP=4590, FP=692 0.892 TP=4323, FP=521	1 TP=4171, FP=2	TP=5796, FP=382 0.978 TP=5564, FP=127	TP=5395, FP=28 0.999 TP=5072, FP=4	0.99 TP=5609, FP=59
0	0.986 TP=4270, FP=61	0.875 TP=4323, FP=620		0.968 TP=5577, FP=187	0.999 TP=5072, FP=4	
9	0.994 TP=3681, FP=22 0.994 TP=3681, FP=22	0.894 TP=3792, FP=451 0.872 TP=3792, FP=556	0.999 TP=3557, FP=3	0.953 TP=4856, FP=239 0.936 TP=4886, FP=335	1 TP=4408, FP=1 1 TP=4408, FP=1	0.973 TP=4890, FP=137
10	0.996 TP=3073, FP=13 0.996 TP=3073, FP=13	0.883 TP=3196, FP=423 0.85 TP=3196, FP=563	1 TP=2862, FP=0	0.983 TP=4457, FP=78 0.961 TP=4535, FP=184	1 TP=3703, FP=0 1 TP=3703, FP=0	0.996 TP=4230, FP=19

ตารางที่ ข-2 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 1

		INNER			OUTER	
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่ นำเสนอ
1	0.958 TP=3276, FP=192, FN=98 0.958 TP=3276, FP=192, FN=98	0.912 TP=3276, FP=538, FN=98 0.879 TP=3351, FP=897, FN=23	0.906 TP=2945, FP=10, FN=601	0.915 TP=4723, FP=275, FN=601 0.93 TP=4925, FP=342, FN=399	0.84 TP=3861, FP=10, FN=1463 0.84 TP=3861, FP=10, FN=1463	0.871 TP=4170, FP=78, FN=1154
2	0.962 TP=4022, FP=247, FN=68 0.962 TP=4022, FP=247, FN=68	0.927 TP=4083, FP=632, FN=7 0.903 TP=4090, FP=883, FN=0	0.927 TP=3887, FP=3, FN=611	0.944 TP=5548, FP=241, FN=414 0.949 TP=5657, FP=306, FN=305	0.897 TP=4854, FP=11, FN=1108 0.897 TP=4854, FP=11, FN=1108	0.929 TP=5226, FP=58, FN=736
3	0.978 TP=4345, FP=116, FN=77 0.978 TP=4345, FP=116, FN=77	0.932 TP=4248, FP=444, FN=174 0.928 TP=4401, FP=662, FN=21	0.927 TP=4127, FP=16, FN=631	0.956 TP=5839, FP=181, FN=356 0.961 TP=5970, FP=254, FN=225	0.91 TP=5185, FP=15, FN=1010 0.91 TP=5185, FP=15, FN=1010	0.946 TP=5615, FP=63, FN=580
4	0.976 TP=4703, FP=111, FN=117 0.976 TP=4703, FP=111, FN=117	0.927 TP=4559, FP=462, FN=261 0.928 TP=4771, FP=691, FN=49	TP=4575, FP=2, FN=538	0.957 TP=5997, FP=380, FN=158 0.955 TP=6042, FP=450, FN=113	0.953 TP=5664, FP=70, FN=491 0.953 TP=5664, FP=70, FN=491	0.97 TP=5952, FP=164, FN=203
5	0.984 TP=4911, FP=43, FN=114 0.984 TP=4911, FP=43, FN=114	0.958 TP=4993, FP=411, FN=32 0.945 TP=5004, FP=563, FN=21	0.975 TP=4797, FP=16, FN=228	0.953 TP=6089, FP=381, FN=218 0.952 TP=6131, FP=440, FN=176	0.949 TP=5765, FP=84, FN=542 0.949 TP=5765, FP=84, FN=542	0.973 TP=6174, FP=211, FN=133

ตารางที่ ข-3 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 1

Slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.983 TP=4537, FP=142, FN=15 0.983 TP=4537, FP=142, FN=15	0.937 TP=4552, FP=615, FN=0 0.923 TP=4552, FP=756, FN=0	0.96 TP=4427, FP=18, FN=354	0.959 TP=5751, FP=339, FN=153 0.957 TP=5803, FP=418, FN=101	0.955 TP=5441, FP=51, FN=463 0.955 TP=5441, FP=51, FN=463	0.977 TP=5806, FP=170, FN=98
7	0.982 TP=4530, FP=103, FN=60 0.982 TP=4530, FP=103, FN=60	0.942 TP=4590, FP=562, FN=0 0.93 TP=4590, FP=692, FN=0	0.961 TP=4373, FP=12, FN=339	0.957 TP=5731, FP=326, FN=185 0.958 TP=5796, FP=382, FN=120	0.952 TP=5395, FP=28, FN=521 0.952 TP=5395, FP=28, FN=521	0.978 TP=5812, FP=153, FN=104
8	0.987 TP=4270, FP=61, FN=53 0.987 TP=4270, FP=61, FN=53	0.943 TP=4323, FP=521, FN=0 0.933 TP=4323, FP=620, FN=0	0.964 TP=4171, FP=2, FN=312	0.971 TP=5564, FP=127, FN=200 0.968 TP=5577, FP=187, FN=187	0.936 TP=5072, FP=4, FN=692 0.936 TP=5072, FP=4, FN=692	0.981 TP=5609, FP=59, FN=155
9	0.982 TP=3681, FP=22, FN=111 0.982 TP=3681, FP=22, FN=111	0.944 TP=3792, FP=451, FN=0 0.932 TP=3792, FP=556, FN=0	0.968 TP=3557, FP=3, FN=235	0.953 TP=4856, FP=239, FN=244 0.947 TP=4886, FP=335, FN=214	0.927 TP=4408, FP=1, FN=692 0.927 TP=4408, FP=1, FN=692	0.966 TP=4890, FP=137, FN=210
10	0.978 TP=3073, FP=13, FN=123 0.978 TP=3073, FP=13, FN=123	0.938 TP=3196, FP=423, FN=0 0.919 TP=3196, FP=563, FN=0	0.945 TP=2862, FP=0, FN=334	0.975 TP=4457, FP=78, FN=153 0.972 TP=4535, FP=184, FN=75	0.891 TP=3703, FP=0, FN=907 0.891 TP=3703, FP=0, FN=907	0.955 TP=4230, FP=19, FN=380

ตารางที่ ข-3 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 1

Clinto		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.989 TP=7970, FN=90 0.989 TP=7070	0.999 TP=8052, FN=8 0.983 TP=7022	0.97 TP=7820, FN=240	1 TP=9180, FN=1 1 TP=0181	0.992 TP=9110, FN=71 0.992 TP=9110	0.999 TP=9170, FN=11
	FN=90	FN=138		FN=0	FN=71	
2	0.997 TP=8232, FN=25 0.997 TP=8232, FN=25	1 TP=8257, FN=0 1 TP=8257, FN=0	0.988 TP=8155, FN=102	0.998 TP=9684, FN=16 0.999 TP=9686, FN=14	0.995 TP=9651, FN=49 0.995 TP=9652, FN=48	0.998 TP=9679, FN=21
3	0.993 TP=8354, FN=56 0.993 TP=8354, FN=56	1 TP=8410, FN=0 1 TP=8410, FN=0	0.972 TP=8176, FN=234	0.993 TP=9729, FN=70 0.994 TP=9738, FN=61	0.982 TP=9626, FN=173 0.983 TP=9629, FN=170	0.995 TP=9747, FN=52
4	0.992 TP=8458, FN=67 0.992 TP=8458, FN=67	1 TP=8525, FN=0 0.999 TP=8517, FN=8	0.975 TP=8313, FN=212	0.998 TP=9800, FN=22 0.998 TP=9805, FN=17	0.992 TP=9746, FN=76 0.992 TP=9747, FN=75	0.998 TP=9803, FN=19
5	0.989 TP=8481, FN=93 0.989 TP=8481, FN=93	1 TP=8574, FN=0 1 TP=8574, FN=0	0.982 TP=8416, FN=158	0.997 TP=9799, FN=27 0.998 TP=9806, FN=20	0.994 TP=9766, FN=60 0.994 TP=9766, FN=60	0.997 TP=9800, FN=26

ตารางที่ ข-4 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 2
Slido		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.991 TP=8156, FN=71 0.991 TP=8156, FN=71 0.991 TP=7975, FN=72 0.991 TP=7975,	1 TP=8227, FN=0 1 TP=8227, FN=0 1 TP=8047, FN=0 1 TP=8045,	0.976 TP=8028, FN=199 0.972 TP=7822, FN=225	0.997 TP=9528, FN=33 0.997 TP=9535, FN=26 0.995 TP=9253, FN=42 0.996 TP=9260,	0.993 TP=9496, FN=65 0.993 TP=9496, FN=65 0.989 TP=9190, FN=105 0.989 TP=9191,	0.992 TP=9486, FN=75 0.995 TP=9247, FN=48
8	FN=72 0.997 TP=7598, FN=25 0.997 TP=7598, FN=25	TP=7623, FN=0 1 TP=7623, FN=0	0.99 TP=7545, FN=78	FN=35 0.997 TP=8876, FN=26 0.997 TP=8879, FN=23	FN=104 0.996 TP=8867, FN=35 0.996 TP=8867, FN=35	0.997 TP=8875, FN=27
9	0.983 TP=7143, FN=123 0.983 TP=7143, FN=123	1 TP=7266, FN=0 1 TP=7266, FN=0	0.96 TP=6975, FN=291	0.997 TP=8339, FN=23 0.998 TP=8342, FN=20	0.995 TP=8321, FN=41 0.995 TP=8321, FN=41	0.997 TP=8336, FN=26
10	0.98 TP=6447, FN=132 0.98 TP=6447, FN=132	1 TP=6579, FN=0 1 TP=6579, FN=0	0.954 TP=6277, FN=302	0.997 TP=7725, FN=24 0.998 TP=7732, FN=17	0.986 TP=7637, FN=112 0.986 TP=7638, FN=111	0.998 TP=7730, FN=19

ตารางที่ ข-4 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 2

Clide		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.988 TP=7970, FP=96 0.988 TP=7970, FP=96	0.911 TP=8052, FP=785 0.924 TP=7922, FP=652	0.996 TP=7820, FP=29	0.94 TP=9180, FP=583 0.924 TP=9181, FP=757	0.968 TP=9110, FP=298 0.968 TP=9110, FP=300	0.948 TP=9170, FP=501
2	0.98 TP=8232, FP=170 0.98 TP=8232, FP=170	0.897 TP=8257, FP=950 0.908 TP=8257, FP=839	0.994 TP=8155, FP=46	0.96 TP=9684, FP=401 0.945 TP=9686, FP=560	0.98 TP=9651, FP=194 0.98 TP=9652, FP=195	0.967 TP=9679, FP=331
3	0.992 TP=8354, FP=69 0.992 TP=8354, FP=69	0.892 TP=8410, FP=1013 0.916 TP=8410, FP=773	0.999 TP=8176, FP=12	0.96 TP=9729, FP=402 0.945 TP=9738, FP=562	0.978 TP=9626, FP=218 0.978 TP=9629, FP=218	0.961 TP=9747, FP=395
4	0.989 TP=8458, FP=97 0.989 TP=8458, FP=97	0.902 TP=8525, FP=925 0.921 TP=8517, FP=729	0.997 TP=8313, FP=24	0.948 TP=9800, FP=539 0.931 TP=9805, FP=727	0.966 TP=9746, FP=346 0.965 TP=9747, FP=350	0.959 TP=9803, FP=419
5	0.989 TP=8481, FP=95 0.989 TP=8481, FP=95	0.902 TP=8574, FP=930 0.919 TP=8574, FP=759	0.996 TP=8416, FP=35	0.943 TP=9799, FP=593 0.926 TP=9806, FP=779	0.956 TP=9766, FP=452 0.955 TP=9766, FP=457	0.961 TP=9800, FP=398

ตารางที่ ข-5 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 2

Slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.988 TP=8156, FP=102 0.988 TP=8156, FP=102 0.993 TP=7975, FP=60 0.993 TP=7975, FP=60	0.897 TP=8227, FP=942 0.919 TP=8227, FP=728 0.903 TP=8047, FP=863 0.924 TP=8045, FP=664	0.995 TP=8028, FP=39 1 TP=7822, FP=3	0.956 TP=9528, FP=435 0.938 TP=9535, FP=627 0.958 TP=9253, FP=409 0.945 TP=9260, FP=537	0.97 TP=9496, FP=293 0.97 TP=9496, FP=298 0.963 TP=9190, FP=349 0.963 TP=9191, FP=350	0.974 TP=9486, FP=258 0.967 TP=9247, FP=312
8	0.98 TP=7598, FP=158 0.98 TP=7598, FP=158	0.876 TP=7623, FP=1077 0.898 TP=7623, FP=866	0.994 TP=7545, FP=48	0.961 TP=8876, FP=364 0.955 TP=8879, FP=420	0.953 TP=8867, FP=440 0.953 TP=8867, FP=441	0.955 TP=8875, FP=422
9	0.989 TP=7143, FP=77 0.989 TP=7143, FP=77	0.863 TP=7266, FP=1153 0.908 TP=7266, FP=733	0.998 TP=6975, FP=16	0.96 TP=8339, FP=344 0.951 TP=8342, FP=428	0.966 TP=8321, FP=290 0.966 TP=8321, FP=290	0.952 TP=8336, FP=424
10	0.988 TP=6447, FP=79 0.988 TP=6447, FP=79	0.897 TP=6579, FP=757 0.916 TP=6579, FP=605	0.997 TP=6277, FP=17	0.967 TP=7725, FP=261 0.96 TP=7732, FP=324	0.976 TP=7637, FP=188 0.976 TP=7638, FP=188	0.964 TP=7730, FP=288

ตารางที่ ข-5 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 2

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.988 TP=7970, FP=96, FN=90	0.953 TP=8052, FP=785, FN=8	0.983	0.969 TP=9180, FP=583, FN=1	0.98 TP=9110, FP=298, FN=71	0.973
1	0.988 TP=7970, FP=96, FN=90	0.953 TP=7922, FP=652, FN=138	TP=7820, FP=29, FN=240	0.96 TP=9181, FP=757, FN=0	0.98 TP=9110, FP=300, FN=71	TP=9170, FP=501, FN=11
2	0.988 TP=8232, FP=170, FN=25 0.988 TP=8232, FP=170, FN=25	0.946 TP=8257, FP=950, FN=0 0.952 TP=8257, FP=839, FN=0	0.991 TP=8155, FP=46, FN=102	0.979 TP=9684, FP=401, FN=16 0.971 TP=9686, FP=560, FN=14	0.988 TP=9651, FP=194, FN=49 0.988 TP=9652, FP=195, FN=48	0.982 TP=9679, FP=331, FN=21
3	0.993 TP=8354, FP=69, FN=56 0.993 TP=8354, FP=69, FN=56	0.943 TP=8410, FP=1013, FN=0 0.956 TP=8410, FP=773, FN=0	0.985 TP=8176, FP=12, FN=234	0.976 TP=9729, FP=402, FN=70 0.969 TP=9738, FP=562, FN=61	0.98 TP=9626, FP=218, FN=173 0.98 TP=9629, FP=218, FN=170	0.978 TP=9747, FP=395, FN=52
4	0.99 TP=8458, FP=97, FN=67 0.99 TP=8458, FP=97, FN=67	0.949 TP=8525, FP=925, FN=0 0.959 TP=8517, FP=729, FN=8	0.986 TP=8313, FP=24, FN=212	0.972 TP=9800, FP=539, FN=22 0.963 TP=9805, FP=727, FN=17	0.979 TP=9746, FP=346, FN=76 0.979 TP=9747, FP=350, FN=75	0.978 TP=9803, FP=419, FN=19
5	0.989 TP=8481, FP=95, FN=93 0.989 TP=8481, FP=95, FN=93	0.949 TP=8574, FP=930, FN=0 0.958 TP=8574, FP=759, FN=0	0.989 TP=8416, FP=35, FN=158	0.969 TP=9799, FP=593, FN=27 0.961 TP=9806, FP=779, FN=20	0.974 TP=9766, FP=452, FN=60 0.974 TP=9766, FP=457, FN=60	0.979 TP=9800, FP=398, FN=26

ตารางที่ ข-6 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 2

Slide		INNER		OUTER			
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ	
6	0.99 TP=8156, FP=102, FN=71 0.99 TP=8156, FP=102, FN=71	0.946 TP=8227, FP=942, FN=0 0.958 TP=8227, FP=728, FN=0	0.985 TP=8028, FP=39, FN=199	0.976 TP=9528, FP=435, FN=33 0.967 TP=9535, FP=627, FN=26	0.981 TP=9496, FP=293, FN=65 0.981 TP=9496, FP=298, FN=65	0.983 TP=9486, FP=258, FN=75	
7	0.992 TP=7975, FP=60, FN=72 0.992 TP=7975, FP=60, FN=72	0.949 TP=8047, FP=863, FN=0 0.96 TP=8045, FP=664, FN=2	0.986 TP=7822, FP=3, FN=225	0.976 TP=9253, FP=409, FN=42 0.97 TP=9260, FP=537, FN=35	0.976 TP=9190, FP=349, FN=105 0.976 TP=9191, FP=350, FN=104	0.981 TP=9247, FP=312, FN=48	
8	0.988 TP=7598, FP=158, FN=25 0.988 TP=7598, FP=158, FN=25	0.934 TP=7623, FP=1077, FN=0 0.946 TP=7623, FP=866, FN=0	0.992 TP=7545, FP=48, FN=78	0.979 TP=8876, FP=364, FN=26 0.976 TP=8879, FP=420, FN=23	0.974 TP=8867, FP=440, FN=35 0.974 TP=8867, FP=441, FN=35	0.975 TP=8875, FP=422, FN=27	
9	0.986 TP=7143, FP=77, FN=123 0.986 TP=7143, FP=77, FN=123	0.926 TP=7266, FP=1153, FN=0 0.952 TP=7266, FP=733, FN=0	0.978 TP=6975, FP=16, FN=291	0.978 TP=8339, FP=344, FN=23 0.974 TP=8342, FP=428, FN=20	0.98 TP=8321, FP=290, FN=41 0.98 TP=8321, FP=290, FN=41	0.974 TP=8336, FP=424, FN=26	
10	0.984 TP=6447, FP=79, FN=132 0.984 TP=6447, FP=79, FN=132	0.946 TP=6579, FP=757, FN=0 0.956 TP=6579, FP=605, FN=0	0.975 TP=6277, FP=17, FN=302	0.982 TP=7725, FP=261, FN=24 0.978 TP=7732, FP=324, FN=17	0.981 TP=7637, FP=188, FN=112 0.981 TP=7638, FP=188, FN=111	0.981 TP=7730, FP=288, FN=19	

ตารางที่ ข-6 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 2

Clide		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.906 TP=2209, FN=228 0.906 TP=2209, FN=228 0.926 TP=3203,	1 TP=2437, FN=0 1 TP=2437, FN=0 1 TP=3459,	0.8 TP=1950, FN=487	0.922 TP=3416, FN=289 0.945 TP=3503, FN=202 0.938 TP=4510,	0.735 TP=2723, FN=982 0.735 TP=2723, FN=982 0.801 TP=3852,	0.779 TP=2885, FN=820
2	FN=256 0.926 TP=3203, FN=256	FN=0 1 TP=3459, FN=0	0.853 TP=2950, FN=509	FN=300 0.967 TP=4649, FN=161	FN=958 0.801 TP=3852, FN=958	TP=4129, FN=681
3	0.932 TP=4110, FN=301 0.932 TP=4110, FN=301	0.999 TP=4405, FN=6 0.999 TP=4405, FN=6	0.863 TP=3808, FN=603	0.968 TP=5581, FN=185 0.98 TP=5650, FN=116	0.85 TP=4903, FN=863 0.85 TP=4903, FN=863	0.896 TP=5169, FN=597
4	0.99 TP=5270, FN=54 0.99 TP=5270, FN=54	1 TP=5324, FN=0 1 TP=5324, FN=0	0.932 TP=4960, FN=364	0.945 TP=6770, FN=396 0.955 TP=6846, FN=320	0.874 TP=6262, FN=904 0.874 TP=6262, FN=904	0.916 TP=6567, FN=599
5	0.962 TP=5575, FN=223 0.962 TP=5575, FN=223	0.999 TP=5793, FN=5 0.999 TP=5793, FN=5	0.931 TP=5399, FN=399	0.96 TP=7031, FN=290 0.965 TP=7065, FN=256	0.925 TP=6770, FN=551 0.925 TP=6770, FN=551	0.954 TP=6985, FN=336

ตารางที่ ข-7 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>3</u>

Slide		INNER		OUTER		
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.966 TP=6009, FN=214 0.966 TP=6009, FN=214 0.97 TP=6149, FN=193 0.97 TP=6149, FN=103	1 TP=6223, FN=0 1 TP=6223, FN=0 1 TP=6342, FN=0 1 TP=6342, FN=0	0.933 TP=5809, FN=414 0.939 TP=5952, FN=390	0.97 TP=7550, FN=235 0.981 TP=7638, FN=147 0.956 TP=7629, FN=352 0.962 TP=7677, FN=304	0.932 TP=7259, FN=526 0.932 TP=7259, FN=526 0.933 TP=7450, FN=531 0.933 TP=7450, FN=531	0.97 TP=7554, FN=231 0.963 TP=7686, FN=295
8	0.969 TP=5890, FN=189 0.969 TP=5890, FN=189	1 TP=6079, FN=0 1 TP=6079, FN=0	0.944 TP=5738, FN=341	0.959 TP=7280, FN=310 0.965 TP=7327, FN=263	0.942 TP=7152, FN=438 0.942 TP=7152, FN=438	0.977 TP=7417, FN=173
9	0.982 TP=5826, FN=108 0.982 TP=5826, FN=108	1 TP=5934, FN=0 1 TP=5934, FN=0	0.95 TP=5638, FN=296	0.975 TP=7212, FN=182 0.981 TP=7257, FN=137	0.949 TP=7020, FN=374 0.949 TP=7020, FN=374	0.982 TP=7264, FN=130
10	0.971 TP=5218, FN=157 0.971 TP=5218, FN=157	0.998 TP=5366, FN=9 0.998 TP=5366, FN=9	0.934 TP=5020, FN=355	0.965 TP=6839, FN=249 0.978 TP=6933, FN=155	0.917 TP=6502, FN=586 0.917 TP=6502, FN=586	0.946 TP=6705, FN=383

ตารางที่ ข-7(ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>3</u>

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.996	0.872		0.989	1	
	TP=2209,	TP=2437,	1	TP=3416,	TP=2723,	
	FP=9	FP=357		FP=38	FP=0	1
1	0.996	0.872	TP=1950,	0.971	1	TP=2885, FP=0
	TP=2209,	TP=2437,	FP=0	TP=3503,	TP=2723,	
	FP=9	FP=357		FP=106	FP=0	
	0.999	0.911		0.981	1	
	TP=3203,	TP=3459,	St. 124	TP=4510,	TP=3852,	
	FP=3	FP=339	1 TD 2050	FP=86	FP=0	0.999
2	0.999	0.911	TP=2950,	0.97	1	TP=4129, FP=4
	TP=3203,	TP=3459,	FP=U	TP=4649,	TP=3852,	
	FP=3	FP=339		FP=145	FP=0	
	1	0.933		0.988	0.999	
	TP=4110,	TP=4405,		TP=5581,	TP=4903,	0.007
	FP=1	FP=318	TP=3808, FP=0	FP=66	FP=3	0.996
3	1	0.933		0.978	0.999	TP=5169,
	TP=4110,	TP=4405,		TP=5650,	TP=4903,	FP=19
	FP=1	FP=318		FP=130	FP=3	
	0.991	0.868		0.988	0.995	
	TP=5270,	TP=5324,	กรณ์มหาวิ	TP=6770,	TP=6262,	0.001
	FP=48	FP=810	0.999	FP=81	FP=34	0.991
4	0.991	0.868	TP=4960,	0.981	0.995	IP=6567,
	TP=5270,	TP=5324,	FP=6	TP=6846,	TP=6262,	FP=57
	FP=48	FP=810		FP=130	FP=34	
	1	0.918		0.986	0.99	
	TP=5575,	TP=5793,		TP=7031,	TP=6770,	0.007
-	FP=2	FP=517	1 TD 5200	FP=97	FP=68	0.987
5	1	0.918	TP=5399,	0.984	0.99	TP=6985,
	TP=5575,	TP=5793,	FP=U	TP=7065,	TP=6770,	FF=90
	FP=2	FP=517		FP=115	FP=68	

ตารางที่ ข-8 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>3</u>

Slido		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.999 TP=6009, FP=6 0.999 TP=6009, FP=6	0.928 TP=6223, FP=482 0.928 TP=6223, FP=482	1 TP=5809, FP=0	0.98 TP=7550, FP=153 0.975 TP=7638, FP=195	0.991 TP=7259, FP=69 0.991 TP=7259, FP=69	0.991 TP=7554, FP=69
7	1 TP=6149, FP=3 1 TP=6149, FP=3	0.931 TP=6342, FP=470 0.931 TP=6342, FP=470	1 TP=5952, FP=2	0.962 TP=7629, FP=301 0.951 TP=7677, FP=396	0.986 TP=7450, FP=105 0.986 TP=7450, FP=105	0.985 TP=7686, FP=114
8	0.998 TP=5890, FP=12 0.998 TP=5890, FP=12	0.919 TP=6079, FP=534 0.919 TP=6079, FP=534	0.999 TP=5738, FP=3	0.962 TP=7280, FP=286 0.956 TP=7327, FP=335	0.976 TP=7152, FP=173 0.976 TP=7152, FP=173	0.978 TP=7417, FP=170
9	0.995 TP=5826, FP=28 0.995 TP=5826, FP=28	0.912 TP=5934, FP=576 0.912 TP=5934, FP=576	0.999 TP=5638, FP=4	0.959 TP=7212, FP=305 0.95 TP=7257, FP=384	0.971 TP=7020, FP=207 0.971 TP=7020, FP=207	0.971 TP=7264, FP=215
10	0.992 TP=5218, FP=40 0.992 TP=5218, FP=40	0.905 TP=5366, FP=564 0.905 TP=5366, FP=564	0.999 TP=5020, FP=4	0.974 TP=6839, FP=185 0.965 TP=6933, FP=250	0.993 TP=6502, FP=46 0.993 TP=6502, FP=46	0.989 TP=6705, FP=77

ตารางที่ ข-8 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>3</u>

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่น้ำเสนอ
1	0.949 TP=2209, FP=9, FN=228 0.949 TP=2209, FP=9, FN=228	0.932 TP=2437, FP=357, FN=0 0.932 TP=2437, FP=357, FN=0	0.889 TP=1950, FP=0, FN=487	0.954 TP=3416, FP=38, FN=289 0.958 TP=3503, FP=106, FN=202	0.847 TP=2723, FP=0, FN=982 0.847 TP=2723, FP=0, FN=982	0.876 TP=2885, FP=0, FN=820
2	0.961 TP=3203, FP=3, FN=256 0.961 TP=3203, FP=3, FN=256	0.953 TP=3459, FP=339, FN=0 0.953 TP=3459, FP=339, FN=0	0.921 TP=2950, FP=0, FN=509	0.959 TP=4510, FP=86, FN=300 0.968 TP=4649, FP=145, FN=161	0.889 TP=3852, FP=0, FN=958 0.889 TP=3852, FP=0, FN=958	0.923 TP=4129, FP=4, FN=681
3	0.965 TP=4110, FP=1, FN=301 0.965 TP=4110, FP=1, FN=301	0.965 TP=4405, FP=318, FN=6 0.965 TP=4405, FP=318, FN=6	0.927 TP=3808, FP=0, FN=603	0.978 TP=5581, FP=66, FN=185 0.979 TP=5650, FP=130, FN=116	0.919 TP=4903, FP=3, FN=863 0.919 TP=4903, FP=3, FN=863	0.944 TP=5169, FP=19, FN=597
4	0.99 TP=5270, FP=48, FN=54 0.99 TP=5270, FP=48, FN=54	0.929 TP=5324, FP=810, FN=0 0.929 TP=5324, FP=810, FN=0	0.964 TP=4960, FP=6, FN=364	0.966 TP=6770, FP=81, FN=396 0.968 TP=6846, FP=130, FN=320	0.93 TP=6262, FP=34, FN=904 0.93 TP=6262, FP=34, FN=904	0.952 TP=6567, FP=57, FN=599
5	0.98 TP=5575, FP=2, FN=223 0.98 TP=5575, FP=2, FN=223	0.957 TP=5793, FP=517, FN=5 0.957 TP=5793, FP=517, FN=5	0.964 TP=5399, FP=0, FN=399	0.973 TP=7031, FP=97, FN=290 0.974 TP=7065, FP=115, FN=256	0.956 TP=6770, FP=68, FN=551 0.956 TP=6770, FP=68, FN=551	0.97 TP=6985, FP=90, FN=336

ตารางที่ ข-9 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 3

Slide		INNER		OUTER			
Side	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ	
6	0.982 TP=6009, FP=6, FN=214 0.982 TP=6009, FP=6, FN=214	0.963 TP=6223, FP=482, FN=0 0.963 TP=6223, FP=482, FN=0	0.966 TP=5809, FP=0, FN=414	0.975 TP=7550, FP=153, FN=235 0.978 TP=7638, FP=195, FN=147	0.961 TP=7259, FP=69, FN=526 0.961 TP=7259, FP=69, FN=526	0.981 TP=7554, FP=69, FN=231	
7	0.984 TP=6149, FP=3, FN=193 0.984 TP=6149, FP=3, FN=193	0.964 TP=6342, FP=470, FN=0 0.964 TP=6342, FP=470, FN=0	0.968 TP=5952, FP=2, FN=390	0.959 TP=7629, FP=301, FN=352 0.956 TP=7677, FP=396, FN=304	0.959 TP=7450, FP=105, FN=531 0.959 TP=7450, FP=105, FN=531	0.974 TP=7686, FP=114, FN=295	
8	0.983 TP=5890, FP=12, FN=189 0.983 TP=5890, FP=12, FN=189	0.958 TP=6079, FP=534, FN=0 0.958 TP=6079, FP=534, FN=0	0.971 TP=5738, FP=3, FN=341	0.961 TP=7280, FP=286, FN=310 0.961 TP=7327, FP=335, FN=263	0.959 TP=7152, FP=173, FN=438 0.959 TP=7152, FP=173, FN=438	0.977 TP=7417, FP=170, FN=173	
9	0.988 TP=5826, FP=28, FN=108 0.988 TP=5826, FP=28, FN=108	0.954 TP=5934, FP=576, FN=0 0.954 TP=5934, FP=576, FN=0	0.974 TP=5638, FP=4, FN=296	0.967 TP=7212, FP=305, FN=182 0.965 TP=7257, FP=384, FN=137	0.96 TP=7020, FP=207, FN=374 0.96 TP=7020, FP=207, FN=374	0.977 TP=7264, FP=215, FN=130	
10	0.981 TP=5218, FP=40, FN=157 0.981 TP=5218, FP=40, FN=157	0.949 TP=5366, FP=564, FN=9 0.949 TP=5366, FP=564, FN=9	0.965 TP=5020, FP=4, FN=355	0.969 TP=6839, FP=185, FN=249 0.972 TP=6933, FP=250, FN=155	0.954 TP=6502, FP=46, FN=586 0.954 TP=6502, FP=46, FN=586	0.967 TP=6705, FP=77, FN=383	

ตารางที่ ข-9 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>3</u>

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่น้ำเสนอ
	0.994	0.949		0.998	0.997	
	TP=8296,	TP=7922,	0.082	TP=9347,	TP=9336,	0.000
1	FN=54	FN=428	U.903	FN=17	FN=28	0.999 TD 0252
1	0.994	0.949	TP=0200,	0.998	0.997	TP=9555,
	TP=8296,	TP=7922,	FIN=142	TP=9347,	TP=9336,	FIN=11
	FN=54	FN=428		FN=17	FN=28	
	0.992	0.914		0.997	0.993	
	TP=8044,	TP=7409,	0.981	TP=9064,	TP=9032,	0.000
2	FN=64	FN=699		FN=29	FN=61	0.998
2	0.992	0.914	TP=7951,	0.997	0.993	TP=9074, FN=19
	TP=8044,	TP=7409,	FIN=157	TP=9064,	TP=9032,	
	FN=64	FN=699	1/1.3	FN=29	FN=61	
	0.995	0.915		1	0.999	
	TP=8211,	TP=7551,	0.08	TP=9096,	TP=9092,	
2	FN=45	FN=705	0.98 TP=8090,	FN=3	FN=7	1
5	0.995	0.915		1	0.999	TP=9098, FN=1
	TP=8211,	TP=7551,	FN=100	TP=9096,	TP=9092,	
	FN=45	FN=705		FN=3	FN=7	
	0.99	0.866		0.999	0.996	
	TP=8004,	TP=7002,	0.076	TP=9008,	TP=8985,	0.008
4	FN=80	FN=1082	U.970	FN=11	FN=34	0.990 TD 0000
4	0.99	0.866	TP=7000,	0.999	0.996	IP=9000,
	TP=8004,	TP=7002,	FIN=190	TP=9008,	TP=8985,	FIN=19
	FN=80	FN=1082		FN=11	FN=34	
	0.984	0.838		0.994	0.995	
	TP=8106,	TP=6902,	0.074	TP=9259,	TP=9274,	0.006
F	FN=128	FN=1332	U.974	FN=57	FN=42	0.990 TD_0270
5	0.984	0.838	ENI-212	0.994	0.995	ENI-27
	TP=8106,	TP=6902,	FIN=213	TP=9259,	TP=9274,	
	FN=128	FN=1332		FN=57	FN=42	

<u>ตารางที่ ข-10 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 4</u>

Slido		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.988 TP=7928, FN=98 0.988 TP=7928, FN=98 0.983 TP=8128, FN=142 0.983 TP=8128,	0.835 TP=6699, FN=1327 0.835 TP=6699, FN=1327 0.83 TP=6860, FN=1410 0.83 TP=6860,	0.981 TP=7876, FN=150 0.978 TP=8091, FN=179	0.998 TP=9021, FN=17 0.998 TP=9021, FN=17 0.997 TP=9317, FN=29 0.997 TP=9317,	1 TP=9034, FN=4 1 TP=9034, FN=4 0.999 TP=9341, FN=5 0.999 TP=9341,	0.994 TP=8985, FN=53 0.988 TP=9235, FN=111
8	FN=142 0.983 TP=7933, FN=138 0.983 TP=7933, FN=138	FN=1410 0.842 TP=6799, FN=1272 0.842 TP=6799, FN=1272	0.975 TP=7871, FN=200	FN=29 0.999 TP=9022, FN=8 0.999 TP=9022, FN=8	FN=5 0.999 TP=9024, FN=6 0.999 TP=9024, FN=6	0.994 TP=8972, FN=58
9	0.988 TP=7835, FN=94 0.988 TP=7835, FN=94	0.849 TP=6730, FN=1199 0.849 TP=6730, FN=1199	0.979 TP=7760, FN=169	0.997 TP=8958, FN=25 0.997 TP=8958, FN=25	0.997 TP=8952, FN=31 0.997 TP=8952, FN=31	0.992 TP=8913, FN=70
10	0.989 TP=7227, FN=77 0.989 TP=7227, FN=77	0.845 TP=6175, FN=1129 0.845 TP=6175, FN=1129	0.981 TP=7168, FN=136	0.999 TP=8316, FN=5 0.999 TP=8316, FN=5	0.998 TP=8302, FN=19 0.998 TP=8302, FN=19	0.998 TP=8302, FN=19

<u>ตารางที่ ข-10 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 4</u>

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.981	0.923		0.961	0.949	
	TP=8296,	TP=7922,	0.001	TP=9347,	TP=9336,	0.04
1	FP=158	FP=664	TD-8208	FP=377	FP=500	0.94 TD=0353
1	0.981	0.923	FD-74	0.961	0.949	FD_504
	TP=8296,	TP=7922,	FF=74	TP=9347,	TP=9336,	17-394
	FP=158	FP=664		FP=377	FP=500	
	0.98	0.909		0.955	0.943	
	TP=8044,	TP=7409,	0.002	TP=9064,	TP=9032,	0.025
2	FP=167	=167 FP=745 0.995	FP=426	FP=544	0.935 TD 0074	
2	0.98	0.909	FP=7951, FP=54	0.955	0.943	FP=634
	TP=8044,	TP=7409,		TP=9064,	TP=9032,	
	FP=167	FP=745		FP=426	FP=544	
	0.986	0.905		0.942	0.936	
	TP=8211,	TP=7551,	0.007	TP=9096,	TP=9092,	0.804
2	FP=113	FP=792	0.997 TP=8090,	FP=559	FP=619	TP=9098
5	0.986	0.905		0.942	0.936	TP=9090,
	TP=8211,	TP=7551,	IF-ZZ	TP=9096,	TP=9092,	11-1005
	FP=113	FP=792		FP=559	FP=619	
	0.989	0.904		0.953	0.944	
	TP=8004,	TP=7002,	0.007	TP=9008,	TP=8985,	0.010
4	FP=87	FP=741	0.997 TD_7004	FP=441	FP=530	0.919
4	0.989	0.904	TP=7000,	0.953	0.944	TP=9000,
	TP=8004,	TP=7002,	FP=Z5	TP=9008,	TP=8985,	FP=794
	FP=87	FP=741		FP=441	FP=530	
	0.99	0.925		0.962	0.956	
	TP=8106,	TP=6902,	0.000	TP=9259,	TP=9274,	0.052
F	FP=78	FP=563	0.998 TD_9021	FP=370	FP=422	U.955
5	0.99	0.925	TP=0UZI,	0.962	0.956	TP=9279,
	TP=8106,	TP=6902,	LL=1A	TP=9259,	TP=9274,	FF=430
	FP=78	FP=563		FP=370	FP=422	

ตารางที่ ข-11 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 4

Slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.988 TP=7928, FP=93 0.988 TP=7928, FP=93 0.994 TP=8128, FP=53 0.994 TP=8128, FP=53	0.925 TP=6699, FP=547 0.925 TP=6699, FP=547 0.942 TP=6860, FP=422 0.942 TP=6860, FP=422	0.996 TP=7876, FP=35 0.998 TP=8091, FP=17	0.959 TP=9021, FP=382 0.959 TP=9021, FP=382 0.969 TP=9317, FP=295 0.969 TP=9317, FP=295	0.944 TP=9034, FP=540 0.944 TP=9034, FP=540 0.953 TP=9341, FP=456 0.953 TP=9341, FP=456	0.943 TP=8985, FP=541 0.967 TP=9235, FP=314
8	0.991 TP=7933, FP=74 0.991 TP=7933, FP=74	0.94 TP=6799, FP=434 0.94 TP=6799, FP=434	0.997 TP=7871, FP=24	0.962 TP=9022, FP=354 0.962 TP=9022, FP=354	0.943 TP=9024, FP=548 0.943 TP=9024, FP=548	0.965 TP=8972, FP=321
9	0.992 TP=7835, FP=63 0.992 TP=7835, FP=63	0.936 TP=6730, FP=457 0.936 TP=6730, FP=457	0.999 TP=7760, FP=11	0.962 TP=8958, FP=350 0.962 TP=8958, FP=350	0.948 TP=8952, FP=488 0.948 TP=8952, FP=488	0.953 TP=8913, FP=436
10	0.979 TP=7227, FP=156 0.979 TP=7227, FP=156	0.934 TP=6175, FP=439 0.934 TP=6175, FP=439	0.992 TP=7168, FP=61	0.949 TP=8316, FP=447 0.949 TP=8316, FP=447	0.94 TP=8302, FP=534 0.94 TP=8302, FP=534	0.931 TP=8302, FP=616

<u>ตารางที่ ข-11 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 4</u>

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่น้ำเสนอ
	0.987 TP=8296	0.936 TP=7922	0.987	0.979 TP=9347	0.973 TP=9336	
	FP=158, FN=54	FP=664, FN=428	TP=8208,	FP=377, FN=17	FP=500, FN=28	0.969
1	0.987	0.936	FP=74,	0.979	0.973	TP=9353,
	TP=8296,	TP=7922,	FN=142	TP=9347,	TP=9336,	FP=594, FN=11
	FP=158, FN=54	FP=664, FN=428		FP=377, FN=17	FP=500, FN=28	
	0.986	0.911		0.976	0.968	
	TP=8044,	TP=7409,	0.987	TP=9064,	TP=9032,	0.045
_	FP=167, FN=64	FP=745, FN=699	TP=7951,	FP=426, FN=29	FP=544, FN=61	U.965
2	0.986	0.911	FP=54,	0.976	0.968	TP=9074,
	TP=8044,	TP=7409,	FN=157	TP=9064,	TP=9032,	FP=034, FN=19
	FP=167, FN=64	FP=745, FN=699		FP=426, FN=29	FP=544, FN=61	
	0.99	0.91		0.97	0.967	
	TP=8211,	TP=7551,	0.989	TP=9096,	TP=9092,	0.044
2	FP=113, FN=45	FP=792, FN=705	TP=8090,	FP=559, FN=3	FP=619, FN=7	0.944 TD 0008
5	0.99	0.91	FP=22,	0.97	0.967	ED-1083 EN-1
	TP=8211,	TP=7551,	FN=166	TP=9096,	TP=9092,	17-1005,110-1
	FP=113, FN=45	FP=792, FN=705		FP=559, FN=3	FP=619, FN=7	
	0.99	0.885		0.976	0.97	
	TP=8004,	TP=7002,	0.986	TP=9008,	TP=8985,	0.057
4	FP=87, FN=80	FP=741, FN=1082	TP=7886,	FP=441, FN=11	FP=530, FN=34	0.957 TD-0000
4	0.99	0.885	FP=23,	0.976	0.97	EP-704 EN-10
	TP=8004,	TP=7002,	FN=198	TP=9008,	TP=8985,	FF-194, FN-19
	FP=87, FN=80	FP=741, FN=1082		FP=441, FN=11	FP=530, FN=34	
	0.987	0.879		0.977	0.976	
	TP=8106,	TP=6902,	0.986	TP=9259,	TP=9274,	0.074
5	FP=78, FN=128	FP=563, FN=1332	TP=8021,	FP=370, FN=57	FP=422, FN=42	U.974
5	0.987	0.879	FP=19,	0.977	0.976	ED-456 ENI-37
	TP=8106,	TP=6902,	FN=213	TP=9259,	TP=9274,	11-430,114-37
	FP=78, FN=128	FP=563, FN=1332		FP=370, FN=57	FP=422, FN=42	

ตารางที่ ข-12 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 4

		INNER			OUTER	
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่ นำเสนอ
6	0.988 TP=7928, FP=93, FN=98 0.988 TP=7928, FP=93, FN=98	0.877 TP=6699, FP=547, FN=1327 0.877 TP=6699, FP=547, FN=1327	0.988 TP=7876, FP=35, FN=150	0.978 TP=9021, FP=382, FN=17 0.978 TP=9021, FP=382, FN=17	0.971 TP=9034, FP=540, FN=4 0.971 TP=9034, FP=540, FN=4	0.968 TP=8985, FP=541, FN=53
7	0.988 TP=8128, FP=53, FN=142 0.988 TP=8128, FP=53, FN=142	0.882 TP=6860, FP=422, FN=1410 0.882 TP=6860, FP=422, FN=1410	0.988 TP=8091, FP=17, FN=179	0.983 TP=9317, FP=295, FN=29 0.983 TP=9317, FP=295, FN=29	0.976 TP=9341, FP=456, FN=5 0.976 TP=9341, FP=456, FN=5	0.978 TP=9235, FP=314, FN=111
8	0.987 TP=7933, FP=74, FN=138 0.987 TP=7933, FP=74, FN=138	0.889 TP=6799, FP=434, FN=1272 0.889 TP=6799, FP=434, FN=1272	0.986 TP=7871, FP=24, FN=200	0.98 TP=9022, FP=354, FN=8 0.98 TP=9022, FP=354, FN=8	0.97 TP=9024, FP=548, FN=6 0.97 TP=9024, FP=548, FN=6	0.979 TP=8972, FP=321, FN=58
9	0.99 TP=7835, FP=63, FN=94 0.99 TP=7835, FP=63, FN=94	0.89 TP=6730, FP=457, FN=1199 0.89 TP=6730, FP=457, FN=1199	0.989 TP=7760, FP=11, FN=169	0.979 TP=8958, FP=350, FN=25 0.979 TP=8958, FP=350, FN=25	0.972 TP=8952, FP=488, FN=31 0.972 TP=8952, FP=488, FN=31	0.972 TP=8913, FP=436, FN=70
10	0.984 TP=7227, FP=156, FN=77 0.984 TP=7227, FP=156, FN=77	0.887 TP=6175, FP=439, FN=1129 0.887 TP=6175, FP=439, FN=1129	0.986 TP=7168, FP=61, FN=136	0.974 TP=8316, FP=447, FN=5 0.974 TP=8316, FP=447, FN=5	0.968 TP=8302, FP=534, FN=19 0.968 TP=8302, FP=534, FN=19	0.963 TP=8302, FP=616, FN=19

ตารางที่ ข-12 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 4

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.99 TP=11951, FN=116 0.988	0.982 TP=11849, FN=218 0.923	0.984 TP=11868, FN=199	0.985 TP=13501, FN=201 0.985	0.984 TP=13488, FN=214 0.987	0.993 TP=13604, FN=98
	TP=11918, FN=149	TP=11143, FN=924		TP=13501, FN=201	TP=13521, FN=181	
2	0.986 TP=12197, FN=173 0.982 TP=12152, FN=218	0.978 TP=12093, FN=277 0.906 TP=11203, FN=1167	0.979 TP=12105, FN=265	0.994 TP=13607, FN=83 0.994 TP=13607, FN=83	0.99 TP=13548, FN=142 0.991 TP=13561, FN=129	0.993 TP=13596, FN=94
3	0.983 TP=12057, FN=207 0.981 TP=12030, FN=234	0.984 TP=12063, FN=201 0.859 TP=10534, FN=1730	0.977 TP=11982, FN=282	0.994 TP=13565, FN=83 0.994 TP=13565, FN=83	0.99 TP=13508, FN=140 0.991 TP=13521, FN=127	0.995 TP=13581, FN=67
4	0.99 TP=11803, FN=122 0.987 TP=11773, FN=152	0.988 TP=11781, FN=144 0.885 TP=10549, FN=1376	0.983 TP=11726, FN=199	0.992 TP=13256, FN=110 0.992 TP=13256, FN=110	0.99 TP=13235, FN=131 0.992 TP=13256, FN=110	0.991 TP=13249, FN=117
5	0.988 TP=11372, FN=142 0.983 TP=11318, FN=196	0.978 TP=11264, FN=250 0.874 TP=10066, FN=1448	0.977 TP=11254, FN=260	0.989 TP=12854, FN=144 0.989 TP=12854, FN=144	0.988 TP=12847, FN=151 0.99 TP=12869, FN=129	0.993 TP=12912, FN=86

ตารางที่ ข-13 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 5

Slide		INNER		OUTER		
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.989 TP=10696, FN=118 0.985 TP=10652, FN=162 0.985 TP=9881, FN=151 0.978 TP=9816,	1 TP=10814, FN=0 0.915 TP=9895, FN=919 0.998 TP=10008, FN=24 0.884 TP=8871,	0.975 TP=10543, FN=271 0.971 TP=9739, FN=293	0.989 TP=12187, FN=133 0.989 TP=12187, FN=133 0.982 TP=11496, FN=211 0.982 TP=11496,	0.986 TP=12150, FN=170 0.988 TP=12171, FN=149 0.972 TP=11376, FN=331 0.975 TP=11411,	0.993 TP=12231, FN=89 0.989 TP=11575, FN=132
8	FN=216 0.977 TP=8861, FN=210 0.967 TP=8769, FN=302	FN=1161 0.969 TP=8794, FN=277 0.861 TP=7811, FN=1260	0.954 TP=8650, FN=421	FN=211 0.981 TP=10322, FN=196 0.981 TP=10322, FN=196	FN=296 0.971 TP=10218, FN=300 0.975 TP=10252, FN=266	0.988 TP=10397, FN=121
9	0.978 TP=7768, FN=171 0.971 TP=7705, FN=234	0.985 TP=7822, FN=117 0.884 TP=7016, FN=923	0.948 TP=7528, FN=411	0.987 TP=9104, FN=116 0.987 TP=9104, FN=116	0.978 TP=9019, FN=201 0.98 TP=9038, FN=182	0.99 TP=9125, FN=95
10	0.982 TP=6479, FN=120 0.971 TP=6406, FN=193	0.976 TP=6441, FN=158 0.884 TP=5834, FN=765	0.951 TP=6276, FN=323	0.98 TP=7769, FN=157 0.98 TP=7769, FN=157	0.961 TP=7618, FN=308 0.964 TP=7642, FN=284	0.982 TP=7782, FN=144

ตารางที่ ข-13 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 5

Clide		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.989 TP=11951, FP=129 0.993	0.93 TP=11849, FP=887 0.971	0.994 TP=11868, FP=73	0.981 TP=13501, FP=260 0.981	0.976 TP=13488, FP=337 0.972	0.976 TP=13604, FP=338
	TP=11918, FP=87	TP=11143, FP=328		TP=13501, FP=260	TP=13521, FP=388	
2	0.997 TP=12197, FP=40 0.999 TP=12152, FP=14	0.929 TP=12093, FP=923 0.978 TP=11203, FP=250	0.999 TP=12105, FP=18	0.978 TP=13607, FP=302 0.978 TP=13607, FP=302	0.966 TP=13548, FP=476 0.962 TP=13561, FP=537	0.972 TP=13596, FP=396
3	0.996 TP=12057, FP=45 0.997 TP=12030, FP=34	0.944 TP=12063, FP=709 0.985 TP=10534, FP=158	0.999 TP=11982, FP=11	0.983 TP=13565, FP=231 0.983 TP=13565, FP=231	0.97 TP=13508, FP=414 0.965 TP=13521, FP=491	0.98 TP=13581, FP=284
4	0.993 TP=11803, FP=80 0.995 TP=11773, FP=64	0.933 TP=11781, FP=840 0.976 TP=10549, FP=259	0.997 TP=11726, FP=30	0.978 TP=13256, FP=299 0.978 TP=13256, FP=299	0.966 TP=13235, FP=462 0.962 TP=13256, FP=526	0.971 TP=13249, FP=402
5	0.994 TP=11372, FP=63 0.997 TP=11318, FP=37	0.934 TP=11264, FP=798 0.98 TP=10066, FP=204	0.998 TP=11254, FP=25	0.976 TP=12854, FP=310 0.976 TP=12854, FP=310	0.969 TP=12847, FP=405 0.965 TP=12869, FP=471	0.977 TP=12912, FP=304

ตารางที่ ข-14 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>5</u>

Slido		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.995 TP=10696, FP=52 0.997 TP=10652, FP=32	0.922 TP=10814, FP=914 0.974 TP=9895, FP=265	0.999 TP=10543, FP=12	0.98 TP=12187, FP=245 0.98 TP=12187, FP=245	0.979 TP=12150, FP=266 0.974 TP=12171, FP=321	0.973 TP=12231, FP=345
7	0.994 TP=9881, FP=56 0.996 TP=9816, FP=37	0.932 TP=10008, FP=731 0.978 TP=8871, FP=202	0.999 TP=9739, FP=5	0.986 TP=11496, FP=159 0.986 TP=11496, FP=159	0.986 TP=11376, FP=157 0.984 TP=11411, FP=190	0.983 TP=11575, FP=201
8	0.997 TP=8861, FP=28 0.999 TP=8769, FP=8	0.944 TP=8794, FP=520 0.98 TP=7811, FP=163	1 TP=8650, FP=4	0.981 TP=10322, FP=197 0.981 TP=10322, FP=197	0.982 TP=10218, FP=183 0.98 TP=10252, FP=213	0.974 TP=10397, FP=281
9	0.997 TP=7768, FP=25 0.998 TP=7705, FP=14	0.929 TP=7822, FP=595 0.966 TP=7016, FP=246	TP=7528, FP=3	0.973 TP=9104, FP=254 0.973 TP=9104, FP=254	0.977 TP=9019, FP=210 0.973 TP=9038, FP=254	0.96 TP=9125, FP=385
10	0.986 TP=6479, FP=89 0.991 TP=6406, FP=59	0.896 TP=6441, FP=744 0.945 TP=5834, FP=340	0.995 TP=6276, FP=30	0.965 TP=7769, FP=279 0.965 TP=7769, FP=279	0.97 TP=7618, FP=235 0.965 TP=7642, FP=278	0.954 TP=7782, FP=379

<u>ตารางที่ ข-14 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 5</u>

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.99 TP=11951, FP=129, FN=116	0.955 TP=11849, FP=887, FN=218	0.989 TP=11868, FP=73,	0.983 TP=13501, FP=260, FN=201	0.98 TP=13488, FP=337, FN=214	0.984 TP=13604,
	0.99 TP=11918, FP=87, FN=149	0.947 TP=11143, FP=328, FN=924	FN=199	0.983 TP=13501, FP=260, FN=201	0.979 TP=13521, FP=388, FN=181	FP=338, FN=98
2	0.991 0.953 TP=12197, TP=12093, FP=40, FN=173 FP=923, FN=277 0.901 0.941	0.986 TP=13607, FP=302, FN=83	0.978 TP=13548, FP=476, FN=142	0.982 TP=13596,		
	TP=12152, FP=14, FN=218	TP=11203, FP=250, FN=1167	FN=265	TP=13607, FP=302, FN=83	TP=13561, FP=537, FN=129	FP=396, FN=94
3	0.99 TP=12057, FP=45, FN=207	0.964 TP=12063, FP=709, FN=201	0.988 TP=11982, FP=11, FN=282	0.989 TP=13565, FP=231, FN=83	0.98 TP=13508, FP=414, FN=140	0.987 TP=13581, FP=284, FN=67
	0.989 TP=12030, FP=34, FN=234	0.918 TP=10534, FP=158, FN=1730		0.989 TP=13565, FP=231, FN=83	0.978 TP=13521, FP=491, FN=127	
4	0.992 TP=11803, FP=80, FN=122 0.991 TP=11773, FP=64, FN=152	0.96 TP=11781, FP=840, FN=144 0.928 TP=10549, FP=259, FN=1376	0.99 TP=11726, FP=30, FN=199	0.985 TP=13256, FP=299, FN=110 0.985 TP=13256, FP=299, FN=110	0.978 TP=13235, FP=462, FN=131 0.977 TP=13256, FP=526, FN=110	0.981 TP=13249, FP=402, FN=117
5	0.991 TP=11372, FP=63, FN=142 0.99 TP=11318, FP=37, FN=196	0.956 TP=11264, FP=798, FN=250 0.924 TP=10066, FP=204, FN=1448	0.987 TP=11254, FP=25, FN=260	0.983 TP=12854, FP=310, FN=144 0.983 TP=12854, FP=310, FN=144	0.979 TP=12847, FP=405, FN=151 0.977 TP=12869, FP=471, FN=129	0.985 TP=12912, FP=304, FN=86

ตารางที่ ข-15 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>5</u>

slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.992 TP=10696, FP=52, FN=118 0.991 TP=10652, FP=32, FN=162 0.99 TP=9881, FP=56, FN=151 0.987 TP=9816,	0.959 TP=10814, FP=914, FN=0 0.944 TP=9895, FP=265, FN=919 0.964 TP=10008, FP=731, FN=24 0.929 TP=8871,	0.987 TP=10543, FP=12, FN=271 0.985 TP=9739, FP=5, FN=293	0.985 TP=12187, FP=245, FN=133 0.985 TP=12187, FP=245, FN=133 0.984 TP=11496, FP=159, FN=211 0.984 TP=11496,	0.982 TP=12150, FP=266, FN=170 0.981 TP=12171, FP=321, FN=149 0.979 TP=11376, FP=157, FN=331 0.979 TP=11411,	0.983 TP=12231, FP=345, FN=89 0.986 TP=11575, FP=201, FN=132
	FP=37, FN=216	FP=202, FN=1161		FP=159, FN=211	FP=190, FN=296	
8	0.987 TP=8861, FP=28, FN=210 0.983 TP=8769, FP=8, FN=302	0.957 TP=8794, FP=520, FN=277 0.917 TP=7811, FP=163, FN=1260	0.976 TP=8650, FP=4, FN=421	0.981 TP=10322, FP=197, FN=196 0.981 TP=10322, FP=197, FN=196	0.977 TP=10218, FP=183, FN=300 0.977 TP=10252, FP=213, FN=266	0.981 TP=10397, FP=281, FN=121
9	0.988 TP=7768, FP=25, FN=171 0.984 TP=7705, FP=14, FN=234	0.956 TP=7822, FP=595, FN=117 0.923 TP=7016, FP=246, FN=923	TP=7528, FP=3, FN=411	0.98 TP=9104, FP=254, FN=116 0.98 TP=9104, FP=254, FN=116	0.978 TP=9019, FP=210, FN=201 0.976 TP=9038, FP=254, FN=182	0.974 TP=9125, FP=385, FN=95
10	0.984 TP=6479, FP=89, FN=120 0.981 TP=6406, FP=59, FN=193	0.935 TP=6441, FP=744, FN=158 0.913 TP=5834, FP=340, FN=765	0.973 TP=6276, FP=30, FN=323	0.973 TP=7769, FP=279, FN=157 0.973 TP=7769, FP=279, FN=157	0.966 TP=7618, FP=235, FN=308 0.965 TP=7642, FP=278, FN=284	0.967 TP=7782, FP=379, FN=144

ตารางที่ ข-15 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ <u>5</u>

Clide		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.97 TP=7643, FN=238 0.97 TP=7643, FN=238 0.973 TP=8954,	0.978 TP=7709, FN=172 0.986 TP=7772, FN=109 0.958 TP=8811,	0.909 TP=7292, FN=733	0.957 TP=8819, FN=392 0.957 TP=8819, FN=392 0.983 TP=10056,	0.938 TP=8638, FN=573 0.938 TP=8638, FN=573 0.971 TP=9938,	0.966 TP=8894, FN=317 0.99
2	FN=244 0.973 TP=8954, FN=244	FN=387 0.994 TP=9143, FN=55	TP=8614, FN=584	FN=178 0.983 TP=10056, FN=178	FN=296 0.971 TP=9938, FN=296	TP=10130, FN=104
3	0.99 TP=9892, FN=104 0.99 TP=9892, FN=104	0.999 TP=9987, FN=9 1 TP=9996, FN=0	0.969 TP=9691, FN=305	0.989 TP=11124, FN=123 0.989 TP=11124, FN=123	0.985 TP=11073, FN=174 0.985 TP=11073, FN=174	0.996 TP=11200, FN=47
4	0.987 TP=10578, FN=134 0.987 TP=10578, FN=134	0.979 TP=10482, FN=230 0.999 TP=10703, FN=9	0.982 TP=10516, FN=196	0.991 TP=11781, FN=102 0.991 TP=11781, FN=102	0.99 TP=11763, FN=120 0.99 TP=11763, FN=120	0.999 TP=11868, FN=15
5	0.986 TP=10236, FN=146 0.986 TP=10236, FN=146	0.999 TP=10373, FN=9 1 TP=10382, FN=0	0.978 TP=10149, FN=233	0.985 TP=11483, FN=169 0.985 TP=11483, FN=169	0.982 TP=11440, FN=212 0.982 TP=11440, FN=212	0.991 TP=11549, FN=103

<u>ตารางที่ ข-16 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 6</u>

Slido		INNER		OUTER		
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.985 TP=10219, FN=153 0.985 TP=10219, FN=153 0.986	0.99 TP=10270, FN=102 1 TP=10372, FN=0 1	0.972 TP=10080, FN=292	0.99 TP=11468, FN=115 0.99 TP=11468, FN=115 0.995	0.985 TP=11408, FN=175 0.985 TP=11408, FN=175 0.984	0.994 TP=11516, FN=67
7	TP=9929, FN=145 0.986 TP=9929, FN=145	TP=10074, FN=0 1 TP=10074, FN=0	0.963 TP=9799, FN=376	TP=11186, FN=54 0.995 TP=11186, FN=54	TP=11055, FN=185 0.984 TP=11055, FN=185	0.996 TP=11191, FN=49
8	0.99 TP=9140, FN=94 0.99 TP=9140, FN=94	1 TP=9234, FN=0 1 TP=9234, FN=0	0.98 TP=9052, FN=182	0.993 TP=10431, FN=76 0.993 TP=10431, FN=76	0.984 TP=10341, FN=166 0.984 TP=10341, FN=166	0.999 TP=10501, FN=6
9	0.981 TP=8715, FN=169 0.981 TP=8715, FN=169	1 TP=8881, FN=3 1 TP=8884, FN=0	0.964 TP=8563, FN=321	0.99 TP=9945, FN=104 0.99 TP=9945, FN=104	0.98 TP=9847, FN=202 0.98 TP=9847, FN=202	0.998 TP=10027, FN=22
10	0.985 TP=7993, FN=119 0.985 TP=7993, FN=119	1 TP=8112, FN=0 1 TP=8112, FN=0	0.956 TP=7759, FN=353	0.972 TP=9209, FN=264 0.972 TP=9209, FN=264	0.959 TP=9084, FN=389 0.959 TP=9084, FN=389	0.989 TP=9372, FN=101

ตารางที่ ข-16 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 6

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.978	0.934		0.986	0.992	0.08
	TP=7643,	TP=7709,	0.008	TP=8819,	TP=8638,	
1	FP=169	FP=546	0.770 TD-7202	FP=127	FP=70	U.90
1	0.978	0.889	ED_12	0.986	0.992	ED_192
	TP=7643,	TP=7772,	FP=15	TP=8819,	TP=8638,	FF=105
	FP=169	FP=971		FP=127	FP=70	
	0.996	0.973		0.976	0.984	
	TP=8954,	TP=8811,	0.000	TP=10056,	TP=9938,	0.069
2	FP=32	FP=242	U.999	FP=251	FP=162	U.968
	0.996	0.949	TP=0014,	0.976	0.984	FP=335
	TP=8954,	TP=9143,	FF=9	TP=10056,	TP=9938,	
	FP=32	FP=491	1/684	FP=251	FP=162	
	0.994	0.947		0.983	0.982	
	TP=9892,	TP=9987,	0.008	TP=11124,	TP=11073,	0.076
2	FP=58	FP=561	TP=9691,	FP=193	FP=206	U.970
5	0.994	0.918		0.983	0.982	ED-270
	TP=9892,	TP=9996,	1 - 21	TP=11124,	TP=11073,	11-219
	FP=58	FP=895		FP=193	FP=206	
	0.989	0.95		0.972	0.969	
	TP=10578,	TP=10482,	0.004	TP=11781,	TP=11763,	0.064
4	FP=121	FP=553	0.994 TD-10516	FP=337	FP=374	0.964
4	0.989	0.924	ED_62	0.972	0.969	ED-445
	TP=10578,	TP=10703,	FP=03	TP=11781,	TP=11763,	FP=445
	FP=121	FP=876		FP=337	FP=374	
	0.994	0.953		0.975	0.973	
	TP=10236,	TP=10373,	0.007	TP=11483,	TP=11440,	0.072
F	FP=58	FP=515	U.997 TD-10140	FP=297	FP=319	U.975
5	0.994	0.926	ED-22	0.975	0.973	TP=11549,
	TP=10236,	TP=10382,	FF=JZ	TP=11483,	TP=11440,	FF=210
	FP=58	FP=825		FP=297	FP=319	

ตารางที่ ข-17 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 6

Slide		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.995 TP=10219, FP=54 0.995 TP=10219, FP=54	0.951 TP=10270, FP=534 0.92 TP=10372, FP=901	0.997 TP=10080, FP=29	0.98 TP=11468, FP=239 0.98 TP=11468, FP=239	0.973 TP=11408, FP=319 0.973 TP=11408, FP=319	0.977 TP=11516, FP=267
7	0.988 TP=9929, FP=120 0.988 TP=9929, FP=120	0.938 TP=10074, FP=663 0.909 TP=10074, FP=1010	1 TP=9799, FP=3	0.972 TP=11186, FP=318 0.972 TP=11186, FP=318	0.966 TP=11055, FP=384 0.966 TP=11055, FP=384	0.967 TP=11191, FP=378
8	0.983 TP=9140, FP=157 0.983 TP=9140, FP=157	0.921 TP=9234, FP=790 0.88 TP=9234, FP=1261	0.995 TP=9052, FP=44	0.974 TP=10431, FP=277 0.974 TP=10431, FP=277	0.967 TP=10341, FP=351 0.967 TP=10341, FP=351	0.949 TP=10501, FP=560
9	0.995 TP=8715, FP=48 0.995 TP=8715, FP=48	0.949 TP=8881, FP=473 0.922 TP=8884, FP=754	0.999 TP=8563, FP=10	0.974 TP=9945, FP=268 0.974 TP=9945, FP=268	0.969 TP=9847, FP=319 0.969 TP=9847, FP=319	0.959 TP=10027, FP=432
10	0.995 TP=7993, FP=41 0.995 TP=7993, FP=41	0.943 TP=8112, FP=494 0.915 TP=8112, FP=754	0.999 TP=7759, FP=8	0.976 TP=9209, FP=225 0.976 TP=9209, FP=225	0.979 TP=9084, FP=193 0.979 TP=9084, FP=193	0.965 TP=9372, FP=340

<u>ตารางที่ ข-17 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 6</u>

cl: da		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.974 TP=7643, FP=169, FN=238 0.974 TP=7643, FP=169, FN=238	0.956 TP=7709, FP=546, FN=172 0.935 TP=7772, FP=971, FN=109	0.951 TP=7292, FP=13, FN=733	0.971 TP=8819, FP=127, FN=392 0.971 TP=8819, FP=127, FN=392	0.964 TP=8638, FP=70, FN=573 0.964 TP=8638, FP=70, FN=573	0.973 TP=8894, FP=183, FN=317
2	0.985 TP=8954, FP=32, FN=244 0.985 TP=8954, FP=32, FN=244	0.966 TP=8811, FP=242, FN=387 0.971 TP=9143, FP=491, FN=55	0.967 TP=8614, FP=9, FN=584	0.979 TP=10056, FP=251, FN=178 0.979 TP=10056, FP=251, FN=178	0.977 TP=9938, FP=162, FN=296 0.977 TP=9938, FP=162, FN=296	0.979 TP=10130, FP=335, FN=104
3	0.992 TP=9892, FP=58, FN=104 0.992 TP=9892, FP=58, FN=104	0.972 TP=9987, FP=561, FN=9 0.957 TP=9996, FP=895, FN=0	0.983 TP=9691, FP=21, FN=305	0.986 TP=11124, FP=193, FN=123 0.986 TP=11124, FP=193, FN=123	0.983 TP=11073, FP=206, FN=174 0.983 TP=11073, FP=206, FN=174	0.986 TP=11200, FP=279, FN=47
4	0.988 TP=10578, FP=121, FN=134 0.988 TP=10578, FP=121, FN=134	0.964 TP=10482, FP=553, FN=230 0.96 TP=10703, FP=876, FN=9	0.988 TP=10516, FP=63, FN=196	0.982 TP=11781, FP=337, FN=102 0.982 TP=11781, FP=337, FN=102	0.979 TP=11763, FP=374, FN=120 0.979 TP=11763, FP=374, FN=120	0.981 TP=11868, FP=445, FN=15
5	0.99 TP=10236, FP=58, FN=146 0.99 TP=10236, FP=58, FN=146	0.975 TP=10373, FP=515, FN=9 0.962 TP=10382, FP=825, FN=0	0.987 TP=10149, FP=32, FN=233	0.98 TP=11483, FP=297, FN=169 0.98 TP=11483, FP=297, FN=169	0.977 TP=11440, FP=319, FN=212 0.977 TP=11440, FP=319, FN=212	0.982 TP=11549, FP=318, FN=103

ตารางที่ ข-18 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 6

Slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.99 TP=10219, FP=54, FN=153 0.99 TP=10219, FP=54, FN=153 0.987 TP=9929, FP=120, FN=145	0.97 TP=10270, FP=534, FN=102 0.958 TP=10372, FP=901, FN=0 0.968 TP=10074, FP=663, FN=0	0.984 TP=10080, FP=29, FN=292 0.981	0.985 TP=11468, FP=239, FN=115 0.985 TP=11468, FP=239, FN=115 0.984 TP=11186, FP=318, FN=54	0.979 TP=11408, FP=319, FN=175 0.979 TP=11408, FP=319, FN=175 0.975 TP=11055, FP=384, FN=185	0.986 TP=11516, FP=267, FN=67 0.981
7	0.987 TP=9929, FP=120, FN=145	0.952 TP=10074, FP=1010, FN=0	FP=3, FN=376	0.984 TP=11186, FP=318, FN=54	0.975 TP=11055, FP=384, FN=185	FP=378, FN=49
8	0.986 TP=9140, FP=157, FN=94 0.986 TP=9140, FP=157, FN=94	0.959 TP=9234, FP=790, FN=0 0.936 TP=9234, FP=1261, FN=0	0.988 TP=9052, FP=44, FN=182	0.983 TP=10431, FP=277, FN=76 0.983 TP=10431, FP=277, FN=76	0.976 TP=10341, FP=351, FN=166 0.976 TP=10341, FP=351, FN=166	0.974 TP=10501, FP=560, FN=6
9	0.988 TP=8715, FP=48, FN=169 0.988 TP=8715, FP=48, FN=169	0.974 TP=8881, FP=473, FN=3 0.959 TP=8884, FP=754, FN=0	TP=8563, FP=10, FN=321	0.982 TP=9945, FP=268, FN=104 0.982 TP=9945, FP=268, FN=104	0.974 TP=9847, FP=319, FN=202 0.974 TP=9847, FP=319, FN=202	0.978 TP=10027, FP=432, FN=22
10	0.99 TP=7993, FP=41, FN=119 0.99 TP=7993, FP=41, FN=119	0.97 TP=8112, FP=494, FN=0 0.956 TP=8112, FP=754, FN=0	0.977 TP=7759, FP=8, FN=353	0.974 TP=9209, FP=225, FN=264 0.974 TP=9209, FP=225, FN=264	0.969 TP=9084, FP=193, FN=389 0.969 TP=9084, FP=193, FN=389	0.977 TP=9372, FP=340, FN=101

ตารางที่ ข-18 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 6

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.961 TP=2443, FN=99	0.999 TP=2540, FN=2	0.708 TP=1800,	0.769 TP=4238, FN=1274	0.502 TP=2767, FN=2745	0.486 TP=2679,
	0.879 TP=2234, FN=308	1 TP=2542, FN=0	FN=742	0.473 TP=2606, FN=2906	0.469 TP=2587, FN=2925	FN=2833
2	0.964 TP=3728, FN=141 0.948 TP=3666, FN=203	1 TP=3868, FN=1 1 TP=3869, FN=0	0.909 TP=3517, FN=352	0.838 TP=5489, FN=1060 0.707 TP=4632, FN=1917	0.72 TP=4714, FN=1835 0.69 TP=4521, FN=2028	0.727 TP=4758, FN=1791
3	0.971 TP=4468, FN=133 0.956 TP=4400, FN=201	0.999 TP=4596, FN=5 0.999 TP=4596, FN=5	0.923 TP=4249, FN=352	0.829 TP=6269, FN=1291 0.728 TP=5500, FN=2060	0.728 TP=5506, FN=2054 0.705 TP=5327, FN=2233	0.745 TP=5634, FN=1926
4	0.972 TP=4864, FN=139 0.958 TP=4793, FN=210	1 TP=5003, FN=0 1 TP=5003, FN=0	0.932 TP=4665, FN=338	0.865 TP=6927, FN=1083 0.752 TP=6027, FN=1983	0.77 TP=6169, FN=1841 0.733 TP=5869, FN=2141	0.776 TP=6217, FN=1793
5	0.993 TP=5038, FN=34 0.989 TP=5017, FN=55	1 TP=5071, FN=1 1 TP=5072, FN=0	0.972 TP=4929, FN=143	0.869 TP=7288, FN=1099 0.766 TP=6428, FN=1959	0.821 TP=6888, FN=1499 0.763 TP=6398, FN=1989	0.798 TP=6689, FN=1698

ตารางที่ ข-19 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 7

Slide		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.99 TP=5238, FN=52 0.986 TP=5217, FN=73 0.99 TP=5458, FN=53 0.987 TP=5442, FN=5442,	0.959 TP=5071, FN=219 1 TP=5290, FN=0 0.972 TP=5355, FN=156 1 TP=5511, FN=0	0.971 TP=5135, FN=155 0.972 TP=5354, FN=157	0.856 TP=7455, FN=1251 0.768 TP=6684, FN=2022 0.848 TP=7620, FN=1365 0.776 TP=6968, FN=2017	0.827 TP=7203, FN=1503 0.766 TP=6665, FN=2041 0.834 TP=7493, FN=1492 0.769 TP=6911, FN=2074	0.788 TP=6860, FN=1846 0.804 TP=7221, FN=1764
8	0.995 TP=5262, FN=29 0.992 TP=5247, FN=44	0.946 TP=5003, FN=288 0.995 TP=5262, FN=29	0.984 TP=5205, FN=86	0.824 TP=7285, FN=1556 0.771 TP=6813, FN=2028	0.832 TP=7352, FN=1489 0.772 TP=6829, FN=2012	0.82 TP=7249, FN=1592
9	0.991 TP=5138, FN=47 0.987 TP=5119, FN=66	0.988 TP=5121, FN=64 1 TP=5185, FN=0	0.974 TP=5049, FN=136	0.847 TP=7101, FN=1283 0.781 TP=6550, FN=1834	0.847 TP=7098, FN=1286 0.786 TP=6588, FN=1796	0.839 TP=7034, FN=1350
10	0.991 TP=4797, FN=43 0.985 TP=4769, FN=71	0.932 TP=4511, FN=329 0.989 TP=4786, FN=54	0.971 TP=4699, FN=141	0.865 TP=6754, FN=1052 0.787 TP=6147, FN=1659	0.848 TP=6621, FN=1185 0.788 TP=6153, FN=1653	0.833 TP=6501, FN=1305

ตารางที่ ข-19 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 7

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.447	0.733		1	1	
	TP=2443,	TP=2540,	1	TP=4238,	TP=2767,	
1	FP=3022	FP=925		FP=0	FP=0	1
	0.956	0.505	TP=1000,	1	1	TP=2679, FP=0
	TP=2234,	TP=2542,	FP=0	TP=2606,	TP=2587,	
	FP=102	FP=2490		FP=0	FP=0	
	0.993	0.899		1	1	
	TP=3728,	TP=3868,	1 TP=3517, – FP=0	TP=5489,	TP=4714,	
	FP=27	FP=435		FP=1	FP=0	1
2	0.998	0.888		1	1	TP=4758, FP=0
	TP=3666,	TP=3869,		TP=4632,	TP=4521,	
	FP=6	FP=487		FP=0	FP=0	
	0.992	0.897		0.996	1	
	TP=4468,	TP=4596,		TP=6269,	TP=5506,	
_	FP=37	FP=527	TP=4249,	FP=24	FP=0	1
3	0.996	0.873		1	1	TP=5634, FP=0
	TP=4400,	TP=4596,	FP=1	TP=5500,	TP=5327,	
	FP=18	FP=666		FP=0	FP=0	
	0.994	0.904		0.973	0.999	
	TP=4864,	TP=5003,	15019913	TP=6927,	TP=6169,	
4	FP=31	FP=529	0.999	FP=189	FP=6	1
4	0.997	0.882	TP=4665,	1	1	TP=6217, FP=0
	TP=4793,	TP=5003,	FP=3	TP=6027,	TP=5869,	
	FP=15	FP=667		FP=0	FP=0	
	0.973	0.874		0.951	0.997	
	TP=5038,	TP=5071,	0.000	TP=7288,	TP=6888,	
_	FP=141	FP=731	0.992	FP=373	FP=23	1
5	0.983	0.842	TP=4929,	1	1	TP=6689, FP=0
	TP=5017,	TP=5072,	FF=30	TP=6428,	TP=6398,	
	FP=89	FP=955		FP=0	FP=0	

ตารางที่ ข-20 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 7

Slido		INNER			OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ	
6	0.971 TP=5238, FP=159 0.977 TP=5217, FP=121 0.977 TP=5458, FP=129 0.985 TP=5442, EP=83	0.882 TP=5071, FP=680 0.852 TP=5290, FP=921 0.893 TP=5355, FP=640 0.871 TP=5511, FP=818	0.99 TP=5135, FP=50 0.993 TP=5354, FP=37	0.985 TP=7455, FP=117 1 TP=6684, FP=0 0.975 TP=7620, FP=198 1 TP=6968, EP=0	0.996 TP=7203, FP=26 1 TP=6665, FP=0 0.997 TP=7493, FP=25 1 TP=6911, ED=0	1 TP=6860, FP=0 1 TP=7221, FP=1	
8	0.959 TP=5262, FP=227 0.966 TP=5247, FP=186	0.874 TP=5003, FP=723 0.859 TP=5262, FP=864	0.977 TP=5205, FP=123	0.968 TP=7285, FP=240 1 TP=6813, FP=0	0.998 TP=7352, FP=18 1 TP=6829, FP=0	0.991 TP=7249, FP=68	
9	0.975 TP=5138, FP=134 0.98 TP=5119, FP=107	0.88 TP=5121, FP=699 0.855 TP=5185, FP=878	0.989 TP=5049, FP=55	0.967 TP=7101, FP=243 1 TP=6550, FP=0	0.999 TP=7098, FP=6 1 TP=6588, FP=0	0.979 TP=7034, FP=153	
10	0.981 TP=4797, FP=94 0.987 TP=4769, FP=62	0.886 TP=4511, FP=580 0.875 TP=4786, FP=685	0.996 TP=4699, FP=19	0.965 TP=6754, FP=244 1 TP=6147, FP=0	0.998 TP=6621, FP=12 1 TP=6153, FP=0	0.998 TP=6501, FP=12	

<u>ตารางที่ ข-20 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 7</u>

cl: .l.		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.61 TP=2443, FP=3022, FN=99 0.916	0.846 TP=2540, FP=925, FN=2	0.829 TP=1800, FP=0, FN=742	0.869 TP=4238, FP=0, FN=1274	0.668 TP=2767, FP=0, FN=2745	0.654 TP=2679, FP=0, FN=2833
	TP=2234, FP=102, FN=308	TP=2542, FP=2490, FN=0	111-142	TP=2606, FP=0, FN=2906	TP=2587, FP=0, FN=2925	
2	0.978 TP=3728, FP=27, FN=141	0.947 TP=3868, FP=435, FN=1	0.952 TP=3517_FP=0	0.912 TP=5489, FP=1, FN=1060	0.837 TP=4714, FP=0, FN=1835	0.842
2	0.972 TP=3666, FP=6, FN=203	0.941 TP=3869, FP=487, FN=0	FN=352	0.829 TP=4632, FP=0, FN=1917	0.817 TP=4521, FP=0, FN=2028	FN=1791
3	0.981 TP=4468, FP=37, FN=133	0.945 TP=4596, FP=527, FN=5	0.96 TP=4249, FP=1,	0.905 TP=6269, FP=24, FN=1291	0.843 TP=5506, FP=0, FN=2054	0.854 TP=5634, FP=0,
	0.976 TP=4400, FP=18, FN=201	0.932 TP=4596, FP=666, FN=5	FN=352	0.842 TP=5500, FP=0, FN=2060	0.827 TP=5327, FP=0, FN=2233	FN=1926
4	0.983 TP=4864, FP=31, FN=139	0.95 TP=5003, FP=529, FN=0	0.965 TP=4665, FP=3,	0.916 TP=6927, FP=189, FN=1083	0.87 TP=6169, FP=6, FN=1841	0.874 TP=6217, FP=0,
	0.977 TP=4793, FP=15, FN=210	0.938 TP=5003, FP=667, FN=0	FN=338	0.859 TP=6027, FP=0, FN=1983	0.846 TP=5869, FP=0, FN=2141	FN=1793
5	0.983 TP=5038, FP=141, FN=34	0.933 TP=5071, FP=731, FN=1	0.982 TP=4929,	0.908 TP=7288, FP=373, FN=1099	0.901 TP=6888, FP=23, FN=1499	0.887 TP=6689, FP=0, EN=1608
	TP=5017, FP=89, FN=55	TP=5072, FP=955, FN=0	ı r=J0, FN=145	TP=6428, FP=0, FN=1959	0.005 TP=6398, FP=0, FN=1989	111-1090

ตารางที่ ข-21 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 7

Slide		INNER			OUTER	
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.98 TP=5238, FP=159, FN=52 0.982 TP=5217,	0.919 TP=5071, FP=680, FN=219 0.92 TP=5290,	0.98 TP=5135, FP=50, FN=155	0.916 TP=7455, FP=117, FN=1251 0.869 TP=6684, FP=0,	0.904 TP=7203, FP=26, FN=1503 0.867 TP=6665, FP=0,	0.881 TP=6860, FP=0, FN=1846
7	PP=121, FN=73 0.984 TP=5458, FP=129, FN=53 0.986 TP=5442, FD=82, FN=60	0.931 TP=5355, FP=640, FN=156 0.931 TP=5511,	0.982 TP=5354, FP=37, FN=157	FN=2022 0.907 TP=7620, FP=198, FN=1365 0.874 TP=6968, FP=0,	FN=2041 0.908 TP=7493, FP=25, FN=1492 0.87 TP=6911, FP=0,	0.891 TP=7221, FP=1, FN=1764
8	0.976 TP=5262, FP=227, FN=29 0.979 TP=5247, FP=186, FN=44	0.908 TP=5003, FP=723, FN=288 0.922 TP=5262, FP=864, FN=29	0.98 TP=5205, FP=123, FN=86	0.89 TP=7285, FP=240, FN=1556 0.87 TP=6813, FP=0, FN=2028	0.907 TP=7352, FP=18, FN=1489 0.872 TP=6829, FP=0, FN=2012	0.897 TP=7249, FP=68, FN=1592
9	0.983 TP=5138, FP=134, FN=47 0.983 TP=5119, FP=107, FN=66	0.931 TP=5121, FP=699, FN=64 0.922 TP=5185, FP=878, FN=0	0.981 TP=5049, FP=55, FN=136	0.903 TP=7101, FP=243, FN=1283 0.877 TP=6550, FP=0, FN=1834	0.917 TP=7098, FP=6, FN=1286 0.88 TP=6588, FP=0, FN=1796	0.903 TP=7034, FP=153, FN=1350
10	0.986 TP=4797, FP=94, FN=43 0.986 TP=4769, FP=62, FN=71	0.908 TP=4511, FP=580, FN=329 0.928 TP=4786, FP=685, FN=54	0.983 TP=4699, FP=19, FN=141	0.912 TP=6754, FP=244, FN=1052 0.881 TP=6147, FP=0, FN=1659	0.917 TP=6621, FP=12, FN=1185 0.882 TP=6153, FP=0, FN=1653	0.908 TP=6501, FP=12, FN=1305

ตารางที่ ข-21 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 7

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.991 TP=9996, FN=90 0.988	0.951 TP=9591, FN=495 0.903	0.974 TP=9828, EN=258	0.972 TP=11810, FN=344 0.972	0.964 TP=11720, FN=434 0.964	0.98 TP=11905, EN-249
	TP=9964, FN=122	TP=9110, FN=976	111-250	TP=11810, FN=344	TP=11720, FN=434	111-249
2	0.994 TP=10422, FN=62 0.992 TP=10395, FN=89	0.959 TP=10059, FN=425 0.921 TP=9661, FN=823	0.982 TP=10294, FN=190	0.944 TP=12455, FN=740 0.944 TP=12455, FN=740	0.933 TP=12310, FN=885 0.933 TP=12310, FN=885	0.955 TP=12604, FN=591
3	0.993 TP=10372, FN=70 0.992 TP=10356, FN=86	0.935 TP=9761, FN=681 0.885 TP=9246, FN=1196	0.983 TP=10263, FN=179	0.941 TP=12371, FN=776 0.941 TP=12371, FN=776	0.939 TP=12342, FN=805 0.939 TP=12342, FN=805	0.949 TP=12470, FN=677
4	0.986 TP=10552, FN=149 0.984 TP=10527, FN=174	0.936 TP=10021, FN=680 0.891 TP=9539, FN=1162	0.974 TP=10418, FN=283	0.935 TP=12362, FN=866 0.935 TP=12362, FN=866	0.94 TP=12432, FN=796 0.94 TP=12432, FN=796	0.942 TP=12464, FN=764
5	0.975 TP=10384, FN=267 0.969 TP=10319, FN=332	0.948 TP=10096, FN=555 0.908 TP=9667, FN=984	0.953 TP=10148, FN=503	0.923 TP=12232, FN=1014 0.923 TP=12232, FN=1014	0.919 TP=12177, FN=1069 0.919 TP=12177, FN=1069	0.931 TP=12331, FN=915

<u>ตารางที่ ข-22</u> ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 8
Slido		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.977 TP=9748, FN=226 0.972 TP=9694, FN=280 0.978 TP=8851, FN=195 0.97 TP=8776, FN=270	0.966 TP=9633, FN=341 0.925 TP=9221, FN=753 0.922 TP=8343, FN=703 0.877 TP=7935, FN=1111	0.956 TP=9531, FN=443 0.942 TP=8525, FN=521	0.939 TP=11617, FN=750 0.939 TP=11617, FN=750 0.902 TP=10615, FN=1151 0.902 TP=10615, FN=1151	0.927 TP=11460, FN=907 0.927 TP=11460, FN=907 0.886 TP=10422, FN=1344 0.886 TP=10422, FN=1344	0.951 TP=11757, FN=610 0.917 TP=10784, FN=982
8	0.987 TP=7753, FN=106 0.981 TP=7707, FN=152	0.951 TP=7474, FN=385 0.906 TP=7119, FN=740	0.955 TP=7502, FN=357	0.883 TP=9444, FN=1253 0.883 TP=9444, FN=1253	0.863 TP=9227, FN=1470 0.863 TP=9227, FN=1470	0.903 TP=9662, FN=1035
9	0.989 TP=6322, FN=68 0.985 TP=6297, FN=93	0.989 TP=6319, FN=71 0.957 TP=6114, FN=276	0.949 TP=6236, FN=334	0.861 TP=7891, FN=1269 0.861 TP=7891, FN=1269	0.842 TP=7714, FN=1446 0.842 TP=7714, FN=1446	0.876 TP=8023, FN=1137
10	0.99 TP=5060, FN=52 0.982 TP=5021, FN=91	1 TP=5110, FN=2 0.97 TP=4957, FN=155	0.941 TP=4808, FN=304	0.83 TP=6355, FN=1299 0.83 TP=6355, FN=1299	0.811 TP=6204, FN=1450 0.811 TP=6204, FN=1450	0.853 TP=6529, FN=1125

<u>ตารางที่ ข-22 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 8</u>

Clinto		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.99 TP=9996, EP-105	0.914 TP=9591, EP-897	0.998	0.993 TP=11810, EP-88	0.997 TP=11720, EP-39	0.967
1	0.992 TP=9964, FP=82	0.931 TP=9110, FP=678	TP=9828, FP=22	0.993 TP=11810, FP=88	0.997 TP=11720, FP=39	TP=11905, FP=400
2	0.979 TP=10422, FP=222 0.984 TP=10395, FP=164	0.899 TP=10059, FP=1133 0.921 TP=9661, FP=830	0.992 TP=10294, FP=84	0.999 TP=12455, FP=15 0.999 TP=12455, FP=15	1 TP=12310, FP=1 1 TP=12310, FP=1	0.985 TP=12604, FP=192
3	0.98 TP=10372, FP=215 0.984 TP=10356, FP=172	0.908 TP=9761, FP=989 0.923 TP=9246, FP=772	0.992 TP=10263, FP=82	0.999 TP=12371, FP=15 0.999 TP=12371, FP=15	1 TP=12342, FP=3 1 TP=12342, FP=3	0.986 TP=12470, FP=181
4	0.992 TP=10552, FP=90 0.993 TP=10527, FP=70	0.922 TP=10021, FP=842 0.944 TP=9539, FP=561	0.996 TP=10418, FP=39	0.997 TP=12362, FP=39 0.997 TP=12362, FP=39	0.999 TP=12432, FP=13 0.999 TP=12432, FP=13	0.98 TP=12464, FP=250
5	0.993 TP=10384, FP=73 0.995 TP=10319, FP=57	0.934 TP=10096, FP=712 0.946 TP=9667, FP=556	0.997 TP=10148, FP=30	1 TP=12232, FP=4 1 TP=12232, FP=4	1 TP=12177, FP=3 1 TP=12177, FP=3	0.991 TP=12331, FP=111

<u>ตารางที่ ข-23 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 8</u>

Slido		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.986 TP=9748, FP=140 0.989 TP=9694, FP=111 0.986 TP=8851, FP=130 0.988 TP=8776	0.924 TP=9633, FP=788 0.938 TP=9221, FP=606 0.916 TP=8343, FP=766 0.932 TP=7935	0.995 TP=9531, FP=49 0.994 TP=8525, FP=50	0.998 TP=11617, FP=19 0.998 TP=11617, FP=19 1 TP=10615, FP=0 1 TP=10615	1 TP=11460, FP=4 1 TP=11460, FP=4 1 TP=10422, FP=0 1 TP=10422	0.929 TP=11757, FP=898 0.999 TP=10784, FP=12
	FP=105	FP=580		FP=0	FP=0	
8	0.979 TP=7753, FP=166 0.984 TP=7707, FP=124	0.887 TP=7474, FP=948 0.908 TP=7119, FP=721	0.992 TP=7502, FP=57	1 TP=9444, FP=3 1 TP=9444, FP=3	1 TP=9227, FP=0 1 TP=9227, FP=0	0.929 TP=9662, FP=736
9	0.962 TP=6322, FP=253 0.969 TP=6297, FP=200	0.81 TP=6319, FP=1478 0.858 TP=6114, FP=1014	0.997 TP=6236, FP=21	0.999 TP=7891, FP=9 0.999 TP=7891, FP=9	0.998 TP=7714, FP=18 0.998 TP=7714, FP=18	0.999 TP=8023, FP=10
10	0.942 TP=5060, FP=314 0.97 TP=5021, FP=156	0.759 TP=5110, FP=1624 0.833 TP=4957, FP=991	0.991 TP=4808, FP=43	1 TP=6355, FP=0 1 TP=6355, FP=0	1 TP=6204, FP=0 1 TP=6204, FP=0	0.994 TP=6529, FP=39

<u>ตารางที่ ข-23 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 8</u>

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.99 TP=9996, FP=105, FN=90	0.932 TP=9591, FP=897, FN=495	0.986 TP=9828,	0.982 TP=11810, FP=88, FN=344	0.98 TP=11720, FP=39, FN=434	0.973
-	0.99 TP=9964, FP=82, FN=122	0.917 TP=9110, FP=678, FN=976	FP=22, FN=258	0.982 TP=11810, FP=88, FN=344	0.98 TP=11720, FP=39, FN=434	FP=400, FN=249
2	0.987 TP=10422, FP=222, FN=62 0.988 TP=10395, FP=164, FN=89	0.928 TP=10059, FP=1133, FN=425 0.921 TP=9661, FP=830, FN=823	0.987 TP=10294, FP=84, FN=190	0.971 TP=12455, FP=15, FN=740 0.971 TP=12455, FP=15, FN=740	0.965 TP=12310, FP=1, FN=885 0.965 TP=12310, FP=1, FN=885	0.97 TP=12604, FP=192, FN=591
3	0.986 TP=10372, FP=215, FN=70 0.988 TP=10356, FP=172, FN=86	0.921 TP=9761, FP=989, FN=681 0.904 TP=9246, FP=772, FN=1196	0.987 TP=10263, FP=82, FN=179	0.969 TP=12371, FP=15, FN=776 0.969 TP=12371, FP=15, FN=776	0.968 TP=12342, FP=3, FN=805 0.968 TP=12342, FP=3, FN=805	0.967 TP=12470, FP=181, FN=677
4	0.989 TP=10552, FP=90, FN=149 0.989 TP=10527, FP=70, FN=174	0.929 TP=10021, FP=842, FN=680 0.917 TP=9539, FP=561, FN=1162	0.985 TP=10418, FP=39, FN=283	0.965 TP=12362, FP=39, FN=866 0.965 TP=12362, FP=39, FN=866	0.968 TP=12432, FP=13, FN=796 0.968 TP=12432, FP=13, FN=796	0.961 TP=12464, FP=250, FN=764
5	0.984 TP=10384, FP=73, FN=267 0.981 TP=10319, FP=57, FN=332	0.941 TP=10096, FP=712, FN=555 0.926 TP=9667, FP=556, FN=984	0.974 TP=10148, FP=30, FN=503	0.96 TP=12232, FP=4, FN=1014 0.96 TP=12232, FP=4, FN=1014	0.958 TP=12177, FP=3, FN=1069 0.958 TP=12177, FP=3, FN=1069	0.96 TP=12331, FP=111, FN=915

ตารางที่ ข-24 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 8

		INNER			OUTER	
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่ นำเสนอ
6	0.982 TP=9748, FP=140, FN=226 0.98 TP=9694, FP=111, FN=280 0.982 TP=8851, FP=130, FN=195 0.979	0.945 TP=9633, FP=788, FN=341 0.931 TP=9221, FP=606, FN=753 0.919 TP=8343, FP=766, FN=703 0.904	0.975 TP=9531, FP=49, FN=443 0.968 TP=8525, FP=50,	0.968 TP=11617, FP=19, FN=750 0.968 TP=11617, FP=19, FN=750 0.949 TP=10615, FP=0, FN=1151 0.949	0.962 TP=11460, FP=4, FN=907 0.962 TP=11460, FP=4, FN=907 0.939 TP=10422, FP=0, FN=1344 0.939	0.94 TP=11757, FP=898, FN=610 0.956 TP=10784, FP=12,
	TP=8776, FP=105, FN=270 0.983 TP=7753,	FN=1111 0.918 TP=7474, FP=948,	FN=521	TP=10615, FP=0, FN=1151 0.938 TP=9444, FP=3,	TP=10422, FP=0, FN=1344 0.926 TP=9227, FP=0,	FN=982
8	FP=166, FN=106 0.982 TP=7707, FP=124, FN=152	FN=385 0.907 TP=7119, FP=721, FN=740	TP=7502, FP=57, FN=357	FN=1253 0.938 TP=9444, FP=3, FN=1253	FN=1470 0.926 TP=9227, FP=0, FN=1470	TP=9662, FP=736, FN=1035
9	0.975 TP=6322, FP=253, FN=68	0.891 TP=6319, FP=1478, FN=71	0.972 TP=6236,	0.925 TP=7891, FP=9, FN=1269	0.913 TP=7714, FP=18, FN=1446	0.933 TP=8023,
9	0.977 TP=6297, FP=200, FN=93	0.905 TP=6114, FP=1014, FN=276	FP=21, FN=334	0.925 TP=7891, FP=9, FN=1269	0.913 TP=7714, FP=18, FN=1446	FP=10, FN=1137
10	0.965 TP=5060, FP=314, FN=52 0.976 TP=5021, FP=156, FN=91	0.863 TP=5110, FP=1624, FN=2 0.896 TP=4957, FP=991, FN=155	0.965 TP=4808, FP=43, FN=304	0.907 TP=6355, FP=0, FN=1299 0.907 TP=6355, FP=0, FN=1299	0.895 TP=6204, FP=0, FN=1450 0.895 TP=6204, FP=0, FN=1450	0.918 TP=6529, FP=39, FN=1125

<u>ตารางที่ ข-24 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 8</u>

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.984 TP=6802, FN=110 0.984 TP=6802, FN=110 0.99 TP=7608, FN=74	0.996 TP=6884, FN=28 0.837 TP=5785, FN=1127 1 TP=7682, FN=0	0.965 TP=6673, FN=239 0.977	0.973 TP=8214, FN=229 0.978 TP=8259, FN=184 0.986 TP=9058, FN=132	0.98 TP=8278, FN=165 0.964 TP=8136, FN=307 0.986 TP=9060, FN=130	0.983 TP=8296, FN=147 0.983
2	0.99 TP=7608, FN=74	0.921 TP=7074, FN=608	TP=7507, FN=175	0.994 TP=9136, FN=54	0.973 TP=8941, FN=249	TP=9032, FN=158
3	0.994 TP=7808, FN=45 0.994 TP=7808, FN=45	1 TP=7853, FN=0 0.921 TP=7231, FN=622	0.987 TP=7753, FN=100	0.989 TP=9234, FN=99 0.994 TP=9274, FN=59	0.989 TP=9232, FN=101 0.977 TP=9122, FN=211	0.985 TP=9190, FN=143
4	0.992 TP=7885, FN=66 0.992 TP=7885, FN=66	1 TP=7951, FN=0 0.971 TP=7724, FN=227	0.979 TP=7785, FN=166	0.989 TP=9316, FN=100 0.995 TP=9368, FN=48	0.986 TP=9283, FN=133 0.974 TP=9169, FN=247	0.995 TP=9373, FN=43
5	0.996 TP=7823, FN=29 0.996 TP=7823, FN=29	1 TP=7852, FN=0 0.881 TP=6915, FN=937	0.991 TP=7782, FN=70	0.985 TP=9303, FN=143 0.992 TP=9371, FN=75	0.985 TP=9302, FN=144 0.969 TP=9151, FN=295	0.99 TP=9353, FN=93

<u>ตารางที่ ข-25</u> ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 9</u>

Slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.996 TP=7340, FN=30 0.996 TP=7340, FN=30 0.984 TP=7204, FN=116 0.984 TP=7204, FN=116	1 TP=7370, FN=0 0.897 TP=6610, FN=760 1 TP=7320, FN=0 0.949 TP=6948, FN= 272	0.966 TP=7118, FN=252 0.943 TP=6902, FN=418	0.992 TP=8709, FN=73 0.994 TP=8731, FN=51 0.997 TP=8308, FN=24 0.998 TP=8319, FN=12	0.981 TP=8613, FN=169 0.966 TP=8485, FN=297 0.988 TP=8231, FN=101 0.976 TP=8132, FN=200	0.993 TP=8723, FN=59 0.997 TP=8305, FN=27
8	0.994 TP=6287, FN=39 0.994 TP=6287, FN=39	1 TP=6326, FN=0 0.96 TP=6071, FN=255	0.963 TP=6095, FN=231	0.989 TP=7535, FN=84 0.997 TP=7596, FN=23	0.984 TP=7494, FN=125 0.968 TP=7373, FN=246	0.994 TP=7574, FN=45
9	0.999 TP=4973, FN=6 0.999 TP=4973, FN=6	1 TP=4979, FN=0 0.981 TP=4886, FN=93	0.954 TP=4749, FN=230	0.966 TP=6083, FN=211 0.99 TP=6234, FN=60	0.956 TP=6020, FN=274 0.93 TP=5856, FN=438	0.975 TP=6135, FN=159
10	0.995 TP=3612, FN=18 0.995 TP=3612, FN=18	1 TP=3630, FN=0 0.991 TP=3597, FN=33	0.929 TP=3373, FN=257	0.944 TP=4420, FN=260 0.977 TP=4571, FN=109	0.946 TP=4426, FN=254 0.916 TP=4286, FN=394	0.951 TP=4451, FN=229

ตารางที่ ข-25 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 9

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
	0.977	0.879		0.971	0.969	
	TP=6802,	TP=6884,	0.004	TP=8214,	TP=8278,	0.054
1	FP=159	FP=947	0.904	FP=244	FP=263	U.934
	0.977	0.933	TP=0075,	0.951	0.985	TP=0290,
	TP=6802,	TP=5785,	FP=110	TP=8259,	TP=8136,	FP=401
	FP=159	FP=416		FP=421	FP=120	
	0.974	0.831		0.981	0.966	
	TP=7608,	TP=7682,	0.000	TP=9058,	TP=9060,	0.044
2	FP=201	FP=1566	U.989	FP=179	FP=323	0.966
2	0.974	0.942	TP=7507,	0.967	0.985	TP=9032, FP=318
	TP=7608,	TP=7074,	CQ=AJ	TP=9136,	TP=8941,	
	FP=201	FP=439		FP=310	FP=138	
	0.976	0.847		0.98	0.967	
	TP=7808,	TP=7853,	0.000	TP=9234,	TP=9232,	0.070
2	FP=191	FP=1418	0.989 TP=7753,	FP=188	FP=315	0.979
5	0.976	0.952		0.965	0.987	TP=9190,
	TP=7808,	TP=7231,	FF=00	TP=9274,	TP=9122,	FF=199
	FP=191	FP=368		FP=339	FP=120	
	0.83	0.775		0.974	0.96	
	TP=7885,	TP=7951,	0.082	TP=9316,	TP=9283,	0.05
4	FP=1619	FP=2312	U.903	FP=249	FP=384	U.95
4	0.83	0.927	ED_127	0.961	0.979	ED-406
	TP=7885,	TP=7724,	FF=137	TP=9368,	TP=9169,	FP=490
	FP=1619	FP=609		FP=385	FP=196	
	0.943	0.844		0.984	0.967	
	TP=7823,	TP=7852,	0.007	TP=9303,	TP=9302,	0.07
F	FP=470	FP=1453	U.980 TD_7792	FP=150	FP=314	U.97
5	0.943	0.938	ED_112	0.97	0.982	ED-200
	TP=7823,	TP=6915,	FF=113	TP=9371,	TP=9151,	FF=290
	FP=470	FP=457		FP=290	FP=163	

ตารางที่ ข-26 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 9

Slide		INNER		OUTER		
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.965 TP=7340, FP=264 0.965 TP=7340, FP=264 0.982 TP=7204, FP=130 0.982 TP=7204, FP=7204,	0.826 TP=7370, FP=1555 0.934 TP=6610, FP=467 0.793 TP=7320, FP=1913 0.952 TP=6948, FP=242	0.989 TP=7118, FP=82 0.998 TP=6902, FP=14	0.978 TP=8709, FP=195 0.967 TP=8731, FP=299 0.969 TP=8308, FP=264 0.941 TP=8319, FP=204	0.969 TP=8613, FP=278 0.987 TP=8485, FP=110 0.963 TP=8231, FP=315 0.984 TP=8132, FP=415	0.959 TP=8723, FP=372 0.94 TP=8305, FP=532
8	0.642 TP=6287, FP=3505 0.642 TP=6287, FP=3505	0.702 TP=6326, FP=2687 0.896 TP=6071, FP=704	0.987 TP=6095, FP=82	0.971 TP=7535, FP=228 0.933 TP=7596, FP=547	0.971 TP=7494, FP=221 0.988 TP=7373, FP=86	0.943 TP=7574, FP=461
9	0.619 TP=4973, FP=3067 0.619 TP=4973, FP=3067	0.678 TP=4979, FP=2360 0.876 TP=4886, FP=691	0.993 TP=4749, FP=32	0.977 TP=6083, FP=144 0.934 TP=6234, FP=442	0.978 TP=6020, FP=137 0.988 TP=5856, FP=69	0.97 TP=6135, FP=191
10	0.572 TP=3612, FP=2700 0.572 TP=3612, FP=2700	0.588 TP=3630, FP=2542 0.826 TP=3597, FP=759	0.979 TP=3373, FP=73	0.964 TP=4420, FP=167 0.922 TP=4571, FP=387	0.968 TP=4426, FP=148 0.981 TP=4286, FP=85	0.945 TP=4451, FP=258

<u>ตารางที่ ข-26 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 9</u>

Cliste		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.981 TP=6802, FP=159, FN=110 0.981 TP=6802, FP=159, FN=110	0.934 TP=6884, FP=947, FN=28 0.882 TP=5785, FP=416, EN=1127	0.975 TP=6673, FP=110, FN=239	0.972 TP=8214, FP=244, FN=229 0.965 TP=8259, FP=421, FN=184	0.975 TP=8278, FP=263, FN=165 0.974 TP=8136, FP=120, FN=307	0.968 TP=8296, FP=401, FN=147
2	0.982 TP=7608, FP=201, FN=74 0.982 TP=7608, FP=201, FN=74	0.908 TP=7682, FP=1566, FN=0 0.931 TP=7074, FP=439, FN=608	0.983 TP=7507, FP=83, FN=175	0.983 TP=9058, FP=179, FN=132 0.98 TP=9136, FP=310, FN=54	0.976 TP=9060, FP=323, FN=130 0.979 TP=8941, FP=138, FN=249	0.974 TP=9032, FP=318, FN=158
3	0.985 TP=7808, FP=191, FN=45 0.985 TP=7808, FP=191, FN=45	0.917 TP=7853, FP=1418, FN=0 0.936 TP=7231, FP=368, FN=622	0.988 TP=7753, FP=86, FN=100	0.985 TP=9234, FP=188, FN=99 0.979 TP=9274, FP=339, FN=59	0.978 TP=9232, FP=315, FN=101 0.982 TP=9122, FP=120, FN=211	0.982 TP=9190, FP=199, FN=143
4	0.903 TP=7885, FP=1619, FN=66 0.903 TP=7885, FP=1619, FN=66	0.873 TP=7951, FP=2312, FN=0 0.949 TP=7724, FP=609, FN=227	0.981 TP=7785, FP=137, FN=166	0.982 TP=9316, FP=249, FN=100 0.977 TP=9368, FP=385, FN=48	0.973 TP=9283, FP=384, FN=133 0.976 TP=9169, FP=196, FN=247	0.972 TP=9373, FP=496, FN=43
5	0.969 TP=7823, FP=470, FN=29 0.969 TP=7823, FP=470, FN=29	0.915 TP=7852, FP=1453, FN=0 0.908 TP=6915, FP=457, FN=937	0.988 TP=7782, FP=113, FN=70	0.984 TP=9303, FP=150, FN=143 0.981 TP=9371, FP=290, FN=75	0.976 TP=9302, FP=314, FN=144 0.976 TP=9151, FP=163, FN=295	0.98 TP=9353, FP=290, FN=93

ตารางที่ ข-27 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 9

Slide		INNER		OUTER			
Slide	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ	
6	0.98 TP=7340, FP=264, FN=30 0.98 TP=7340, FP=264, FN=30	0.905 TP=7370, FP=1555, FN=0 0.915 TP=6610, FP=467, FN=760	0.977 TP=7118, FP=82, FN=252	0.985 TP=8709, FP=195, FN=73 0.98 TP=8731, FP=299, FN=51	0.975 TP=8613, FP=278, FN=169 0.977 TP=8485, FP=110, FN=297	0.976 TP=8723, FP=372, FN=59	
7	0.983 TP=7204, FP=130, FN=116 0.983 TP=7204, FP=130, FN=116	0.884 TP=7320, FP=1913, FN=0 0.951 TP=6948, FP=348, FN=372	0.97 TP=6902, FP=14, FN=418	0.983 TP=8308, FP=264, FN=24 0.969 TP=8319, FP=526, FN=13	0.975 TP=8231, FP=315, FN=101 0.98 TP=8132, FP=135, FN=200	0.967 TP=8305, FP=532, FN=27	
8	0.78 TP=6287, FP=3505, FN=39 0.78 TP=6287, FP=3505, FN=39	0.825 TP=6326, FP=2687, FN=0 0.927 TP=6071, FP=704, FN=255	0.975 TP=6095, FP=82, FN=231	0.98 TP=7535, FP=228, FN=84 0.964 TP=7596, FP=547, FN=23	0.977 TP=7494, FP=221, FN=125 0.978 TP=7373, FP=86, FN=246	0.968 TP=7574, FP=461, FN=45	
9	0.764 TP=4973, FP=3067, FN=6 0.764 TP=4973, FP=3067, FN=6	0.808 TP=4979, FP=2360, FN=0 0.926 TP=4886, FP=691, FN=93	0.973 TP=4749, FP=32, FN=230	0.972 TP=6083, FP=144, FN=211 0.961 TP=6234, FP=442, FN=60	0.967 TP=6020, FP=137, FN=274 0.959 TP=5856, FP=69, FN=438	0.972 TP=6135, FP=191, FN=159	
10	0.727 TP=3612, FP=2700, FN=18 0.727	0.741 TP=3630, FP=2542, FN=0 0.901	0.953 TP=3373, FP=73, FN=257	0.954 TP=4420, FP=167, FN=260 0.949	0.957 TP=4426, FP=148, FN=254 0.947	0.948 TP=4451, FP=258, FN=229	
	TP=3612, FP=2700, FN=18	TP=3597, FP=759, FN=33		TP=4571, FP=387, FN=109	TP=4286, FP=85, FN=394		

ตารางที่ ข-27 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 9

Clida		INNER			OUTER	
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.996 TP=8532, FN=31 0.996	0.992 TP=8491, FN=72 1	0.988 TP=8458,	0.985 TP=9865, FN=154 0.985	0.989 TP=9910, FN=109 0.991	0.988 TP=9901,
	TP=8529, FN=34	TP=8563, FN=0	FN=105	TP=9865, FN=154	TP=9931, FN=88	FN=118
2	0.99 TP=9140, FN=93 0.99 TP=9137, FN=96	0.987 TP=9114, FN=119 1 TP=9233, FN=0	0.985 TP=9093, FN=140	0.998 TP=10118, FN=20 0.998 TP=10118, FN=20	0.997 TP=10108, FN=30 0.998 TP=10113, FN=25	0.997 TP=10107, FN=31
3	0.99 TP=9484, FN=100 0.989 TP=9476, FN=108	0.971 TP=9309, FN=275 1 TP=9584, FN=0	0.985 TP=9442, FN=142	0.998 TP=10548, FN=19 0.998 TP=10548, FN=19	0.996 TP=10529, FN=38 0.997 TP=10533, FN=34	0.996 TP=10524, FN=43
4	0.991 TP=9607, FN=92 0.99 TP=9605, FN=94	0.979 TP=9493, FN=206 1 TP=9699, FN=0	0.989 TP=9589, FN=110	0.997 TP=10620, FN=33 0.997 TP=10620, FN=33	0.998 TP=10628, FN=25 0.998 TP=10632, FN=21	0.997 TP=10622, FN=31
5	0.992 TP=9617, FN=80 0.992 TP=9617, FN=80	0.958 TP=9292, FN=405 1 TP=9697, FN=0	0.993 TP=9632, FN=65	0.999 TP=10804, FN=15 0.999 TP=10804, FN=15	1 TP=10819, FN=0 1 TP=10819, FN=0	0.996 TP=10774, FN=45

<u>ตารางที่ ข-28 ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 10</u>

Slide	INNER			OUTER		
	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.996 TP=9486, FN=36 0.995 TP=9479, FN=43	0.98 TP=9328, FN=194 1 TP=9522, FN=0	0.989 TP=9416, FN=106	0.999 TP=10555, FN=10 0.999 TP=10555, FN=10	0.997 TP=10531, FN=34 0.997 TP=10537, FN=28	0.997 TP=10529, FN=36
7	0.996 TP=9118, FN=34 0.996 TP=9112, FN=40	0.945 TP=8648, FN=504 1 TP=9152, FN=0	0.993 TP=9088, FN=64	0.998 TP=10331, FN=23 0.998 TP=10331, FN=23	0.992 TP=10268, FN=86 0.992 TP=10275, FN=79	0.998 TP=10330, FN=24
8	0.997 TP=8607, FN=23 0.997 TP=8601, FN=29	0.95 TP=8199, FN=431 1 TP=8630, FN=0	0.988 TP=8523, FN=107	0.995 TP=9814, FN=47 0.995 TP=9814, FN=47	0.99 TP=9763, FN=98 0.992 TP=9779, FN=82	0.998 TP=9843, FN=18
9	0.996 TP=7843, FN=30 0.995 TP=7837, FN=36	0.901 TP=7090, FN=783 0.997 TP=7847, FN=26	0.986 TP=7762, FN=111	0.99 TP=9234, FN=91 0.99 TP=9234, FN=91	0.986 TP=9195, FN=130 0.989 TP=9222, FN=103	0.998 TP=9303, FN=22
10	0.993 TP=7015, FN=53 0.99 TP=7000, FN=68	0.832 TP=5884, FN=1184 0.985 TP=6961, FN=107	0.978 TP=6914, FN=154	0.99 TP=8345, FN=86 0.99 TP=8345, FN=86	0.984 TP=8292, FN=139 0.987 TP=8321, FN=110	0.996 TP=8396, FN=35

<u>ตารางที่ ข-28 (ต่อ) ความไวที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 10</u>

Clida	INNER			OUTER		
Suce	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
1	0.884 TP=8532, FP=1121 0.983	0.873 TP=8491, FP=1234 0.638	0.993 TP=8458, FP=59	0.987 TP=9865, FP=130 0.987	0.985 TP=9910, FP=151 0.98	0.975 TP=9901, FP=255
	TP=8529, FP=151	TP=8563, FP=4859		TP=9865, FP=130	TP=9931, FP=200	
2	0.949 TP=9140, FP=489 0.989 TP=9137, FP=100	0.897 TP=9114, FP=1048 0.663 TP=9233, FP=4692	0.995 TP=9093, FP=46	0.962 TP=10118, FP=404 0.962 TP=10118, FP=404	0.939 TP=10108, FP=652 0.933 TP=10113, FP=721	0.952 TP=10107, FP=510
3	0.994 TP=9484, FP=57 0.995 TP=9476, FP=49	0.934 TP=9309, FP=655 0.717 TP=9584, FP=3785	0.996 TP=9442, FP=36	0.973 TP=10548, FP=298 0.973 TP=10548, FP=298	0.948 TP=10529, FP=580 0.942 TP=10533, FP=647	0.967 TP=10524, FP=363
4	0.99 TP=9607, FP=95 0.991 TP=9605, FP=88	0.931 TP=9493, FP=705 0.689 TP=9699, FP=4378	0.992 TP=9589, FP=73	0.966 TP=10620, FP=377 0.966 TP=10620, FP=377	0.936 TP=10628, FP=724 0.93 TP=10632, FP=801	0.959 TP=10622, FP=452
5	0.987 TP=9617, FP=131 0.987 TP=9617, FP=128	0.923 TP=9292, FP=779 0.694 TP=9697, FP=4275	0.99 TP=9632, FP=94	0.975 TP=10804, FP=278 0.975 TP=10804, FP=278	0.948 TP=10819, FP=589 0.942 TP=10819, FP=672	0.965 TP=10774, FP=396

ตารางที่ ข-29 ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 10

Slide	INNER			OUTER		
	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.985 TP=9486, FP=148 0.988 TP=9479, FP=115 0.979 TP=9118, FP=199 0.981 TP=9112,	0.932 TP=9328, FP=680 0.716 TP=9522, FP=3778 0.941 TP=8648, FP=538 0.744 TP=9152,	0.993 TP=9416, FP=66 0.991 TP=9088, FP=87	0.958 TP=10555, FP=459 0.958 TP=10555, FP=459 0.962 TP=10331, FP=413 0.962 TP=10331,	0.944 TP=10531, FP=626 0.938 TP=10537, FP=692 0.946 TP=10268, FP=586 0.941 TP=10275,	0.95 TP=10529, FP=551 0.955 TP=10330, FP=492
8	0.97 TP=8607, FP=268 0.982 TP=8601, FP=156	PP=3130 0.935 TP=8199, FP=566 0.764 TP=8630, FP=2668	0.99 TP=8523, FP=90	0.957 TP=9814, FP=437 0.957 TP=9814, FP=437	0.946 TP=9763, FP=561 0.94 TP=9779, FP=629	0.946 TP=9843, FP=566
9	0.972 TP=7843, FP=224 0.976 TP=7837, FP=191	0.929 TP=7090, FP=538 0.817 TP=7847, FP=1760	0.986 TP=7762, FP=112	0.97 TP=9234, FP=289 0.97 TP=9234, FP=289	0.958 TP=9195, FP=400 0.952 TP=9222, FP=464	0.962 TP=9303, FP=364
10	0.969 TP=7015, FP=223 0.975 TP=7000, FP=179	0.919 TP=5884, FP=516 0.837 TP=6961, FP=1357	0.99 TP=6914, FP=69	0.967 TP=8345, FP=281 0.967 TP=8345, FP=281	0.957 TP=8292, FP=374 0.952 TP=8321, FP=420	0.954 TP=8396, FP=401

ตารางที่ ข-29 (ต่อ) ค่าความเที่ยงที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 10

cl: .l.	INNER			OUTER			
Sude	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ	
1	0.937 TP=8532, FP=1121, FN=31 0.989 TP=8520	0.929 TP=8491, FP=1234, FN=72 0.779 TP=8563	0.99 TP=8458, FP=59, FN=105	0.986 TP=9865, FP=130, FN=154 0.986 TP=9865,	0.987 TP=9910, FP=151, FN=109 0.986 TP=0031	0.982 TP=9901, FP=255, FN=118	
	FP=151, FN=34	FP=4859, FN=0		FP=130, FN=154	FP=200, FN=88		
2	0.969 TP=9140, FP=489, FN=93	0.94 TP=9114, FP=1048, FN=119	0.99 TP=9093,	0.979 TP=10118, FP=404, FN=20	0.967 TP=10108, FP=652, FN=30	0.974 TP=10107,	
	0.989 TP=9137, FP=100, FN=96	0.797 TP=9233, FP=4692, FN=0	FP=46, FN=140	0.979 TP=10118, FP=404, FN=20	0.964 TP=10113, FP=721, FN=25	FP=510, FN=31	
3	0.992 TP=9484, FP=57, FN=100	0.952 TP=9309, FP=655, FN=275	0.991 TP=9442,	0.985 TP=10548, FP=298, FN=19	0.971 TP=10529, FP=580, FN=38	0.981 TP=10524,	
	0.992 TP=9476, FP=49, FN=108	0.835 TP=9584, FP=3785, FN=0	FP=36, FN=142	0.985 TP=10548, FP=298, FN=19	0.969 TP=10533, FP=647, FN=34	FP=363, FN=43	
4	0.99 TP=9607, FP=95, FN=92	0.954 TP=9493, FP=705, FN=206	ngkorn Ui 0.991 tp=9589,	TP=10620, FP=377, FN=33	0.966 TP=10628, FP=724, FN=25	0.978 TP=10622,	
	0.991 TP=9605, FP=88, FN=94	0.816 TP=9699, FP=4378, FN=0	FP=73, FN=110	0.981 TP=10620, FP=377, FN=33	0.963 TP=10632, FP=801, FN=21	FP=452, FN=31	
5	0.989 TP=9617, FP=131, FN=80 0.989	0.94 TP=9292, FP=779, FN=405 0.819	0.992 TP=9632, FP=94, FN=65	0.987 TP=10804, FP=278, FN=15 0.987	0.974 TP=10819, FP=589, FN=0 0.97	0.98 TP=10774, FP=396, FN=45	
	TP=9617, FP=128, FN=80	TP=9697, FP=4275, FN=0		TP=10804, FP=278, FN=15	TP=10819, FP=672, FN=0		

ตารางที่ ข-30 ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 10

Slide	INNER			OUTER		
	CDLS	GlobalWt	DLMD-LS	CDLS	Ma และคณะ	กรรมวิธีที่นำเสนอ
6	0.99 TP=9486, FP=148, FN=36 0.992 TP=9479, FP=115, FN=43 0.987	0.955 TP=9328, FP=680, FN=194 0.834 TP=9522, FP=3778, FN=0 0.943	0.991 TP=9416, FP=66, FN=106	0.978 TP=10555, FP=459, FN=10 0.978 TP=10555, FP=459, FN=10 0.979	0.97 TP=10531, FP=626, FN=34 0.967 TP=10537, FP=692, FN=28 0.968	0.973 TP=10529, FP=551, FN=36
7	TP=9118, FP=199, FN=34 0.988 TP=9112, FP=179, FN=40	TP=8648, FP=538, FN=504 0.853 TP=9152, FP=3150, FN=0	0.992 TP=9088, FP=87, FN=64	TP=10331, FP=413, FN=23 0.979 TP=10331, FP=413, FN=23	TP=10268, FP=586, FN=86 0.966 TP=10275, FP=648, FN=79	0.976 TP=10330, FP=492, FN=24
8	0.983 TP=8607, FP=268, FN=23 0.989 TP=8601, FP=156, FN=29	0.943 TP=8199, FP=566, FN=431 0.866 TP=8630, FP=2668, FN=0	0.989 TP=8523, FP=90, FN=107	0.976 TP=9814, FP=437, FN=47 0.976 TP=9814, FP=437, FN=47	0.967 TP=9763, FP=561, FN=98 0.965 TP=9779, FP=629, FN=82	0.971 TP=9843, FP=566, FN=18
9	0.984 TP=7843, FP=224, FN=30 0.986 TP=7837, FP=191, FN=36	0.915 TP=7090, FP=538, FN=783 0.898 TP=7847, FP=1760, FN=26	0.986 TP=7762, FP=112, FN=111	0.98 TP=9234, FP=289, FN=91 0.98 TP=9234, FP=289, FN=91	0.972 TP=9195, FP=400, FN=130 0.97 TP=9222, FP=464, FN=103	0.98 TP=9303, FP=364, FN=22
10	0.981 TP=7015, FP=223, FN=53	0.874 TP=5884, FP=516, FN=1184 0.905	0.984 TP=6914, FP=69, FN=154	0.978 TP=8345, FP=281, FN=86	0.97 TP=8292, FP=374, FN=139 0.969	0.975 TP=8396, FP=401, FN=35
	TP=7000, FP=179, FN=68	TP=6961, FP=1357, FN=107		TP=8345, FP=281, FN=86	TP=8321, FP=420, FN=110	

ตารางที่ ข-30 (ต่อ) ค่า DSC ที่คำนวณได้จากผลลัพธ์การตัดแบ่งภาพอัตโนมัติของชุดภาพที่ 10

ประวัติผู้เขียนวิทยานิพนธ์

นางสาวพัฒน์นรี วงค์เจริญกิจ เกิดวันอังคารที่ 5 ธันวาคม พ.ศ.2532 ที่จังหวัดเชียงใหม่ สำเร็จการศึกษาระดับปริญญาวิทยาศาสตร์บัณฑิต สาขาวิชารังสีเทคนิค คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ ในปีการศึกษา 2554 และเข้าศึกษาต่อในหลักสูตรวิทยาศาสตร์มหาบัณฑิต สาขาวิชาวิศวกรรมชีวเวช(สหสาขาวิชา) คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปี การศึกษา 2556

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University