การทดสอบความต้านทานทางไฟฟ้าของซีเมนต์เชื่อมยึดทางทันตกรรมโดยวิธีการวัดอิมพีแดนซ์และ หาความสัมพันธ์ระหว่างจำนวนรูพรุนและการละลายน้ำ

นางสาวญาณินี โกไศยกานนท์

CHULALONGKORN UNIVERSITY

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมประดิษฐ์ ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ELECTRICAL RESISTANCE OF DENTAL LUTING CEMENTS INVESTIGATED BY IMPEDANCE METHODOLOGY RELATED TO THEIR POROSITIES AND SOLUBILITY

Miss Yaninee Kosaiyakanon

จุฬาลงกรณมหาวิทยาลัย Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Prosthodontics Department of Prosthodontics Faculty of Dentistry Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

Thesis Title	ELECTRICAL	RESISTANCE	OF DEN	TAL LUTING
	CEMENTS	INVESTIGATED) BY	IMPEDANCE
	METHODOLC	OGY RELATED	to their	POROSITIES
	AND SOLUBI	LITY		
Ву	Miss Yaninee	Kosaiyakanon	I	
Field of Study	Prosthodont	ics		
Thesis Advisor	Assistant Pro	fessor Viritpon	Srimanee	pong, Ph.D.
Thesis Co-Advisor	Associate Pro	ofessor Mana S	Friyudthsal	k, P.Eng.

Accepted by the Faculty of Dentistry, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

_____Dean of the Faculty of Dentistry

(Assistant Professor Suchit Poolthong, Ph.D.)

THESIS COMMITTEE

Chairman

(Assistant Professor Orapin Komin, Ph.D.)

(Assistant Professor Viritpon Srimaneepong, Ph.D.)

_____Thesis Co-Advisor

(Associate Professor Mana Sriyudthsak, P.Eng.)

Examiner

(Associate Professor Chairat Wiwatwarrapan)

External Examiner

(Assistant Professor Vanthana Sattabanasuk, Ph.D.)

ญาณินี โกไศยกานนท์ : การทดสอบความต้านทานทางไฟฟ้าของซีเมนต์เชื่อมยึดทางทันตก รรมโดยวิธีการวัดอิมพีแดนซ์และหาความสัมพันธ์ระหว่างจำนวนรูพรุนและการละลายน้ำ (ELECTRICAL RESISTANCE OF DENTAL LUTING CEMENTS INVESTIGATED BY IMPEDANCE METHODOLOGY RELATED TO THEIR POROSITIES AND SOLUBILITY) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ทพ. ดร.วิริทธิ์พล ศรีมณีพงศ์, อ.ที่ปรึกษาวิทยานิพนธ์ ร่วม: รศ. ดร.มานะ ศรียุทธศักดิ์, 63 หน้า.

ความต้านทานทางไฟฟ้าเป็นคุณสมบัติทางกายภาพของซีเมนต์ทางทันตกรรม การศึกษา ้ส่วนใหญ่เกี่ยวกับซีเมนต์ทางทันตกรรมมุ่งเน้นไปในเรื่องของสมบัติเชิงกล การละลาย และการเชื่อม ้ยึด มีการศึกษาเพียงไม่กึ่งานที่ให้ความสนใจเกี่ยวกับความเป็นฉนวนของซีเมนต์ทางทันตกรรมจึงเป็น ที่มาของการศึกษาครั้งนี้ โดยการศึกษานี้จะใช้ซีเมนต์ทางทันตกรรม 5 ชนิด คือ ซิงค์ฟอสเฟต (Hybond) กลาสไอโอโนเมอร์ (Fuji II) โพลีเมอร์ซีเมนต์ (Rely X Unicem, Rely-XTM U-100 และ Superbond C&B) ชิ้นงานทั้งหมดจะถูกนำไปวัดจำนวนรูพรุนโดยเครื่องไมโครคอมพิวเทตโทโมกราฟ ฟี่ (Micro computed tomography) หลังจากนั้นจะนำมาวัดความต้านทานทางไฟฟ้าโดยวิธี อิมพีแดนซ์ น้ำหนักของชิ้นงานจะถูกชั่งก่อนและหลังการวัดค่าความต้านทานไฟฟ้าเพื่อหาการละลาย ของซีเมนต์ทางทันตกรรม นำข้อมูลที่ได้มาวิเคราะห์ทางสถิติด้วยการวิเคราะห์ความแตกต่างโดยค่า t (independent t-test) และวิเคราะห์ความแปรปรวนทางเดียว (one-way ANOVA) ผลการทดลอง พบว่า ค่าความต้านทานของกลุ่มโพลีเมอร์ซีเมนต์มีค่าสูงกว่า 2000 x10⁶ โอห์ม ขณะที่กลุ่มซิงค์ ฟอสเฟตและกลาสไอโอโนเมอร์ซีเมนต์มีค่า 0.017×10⁶ และ 0.003×10⁶ โอห์ม ตามลำดับ ้นอกจากนี้ พบว่า จำนวนรูพรุนของ Superbond C&B มีค่าสูงสุดและแตกต่างจากกลุ่มอื่นอย่างมี นัยสำคัญ ขณะที่การละลายน้ำจะพบในกลุ่มซิงค์ฟอสเฟตและกลาสไอโอโนเมอร์เท่านั้น โดยเมื่อนำค่า ้ความต้านทานไฟฟ้า จำนวนรูพรุน และการละลายน้ำมาหาความสัมพันธ์ทางสถิติพบว่าค่าความ ต้านทานไฟฟ้าไม่สัมพันธ์กับจำนวนรูพรุนและการละลายน้ำ จึงสรุปได้ว่า ค่าความต้านทานไฟฟ้า ขึ้นกับส่วนประกอบทางเคมีและปฏิกริยาแข็งตัวของซีเมนต์แต่ละชนิดและอาจขึ้นกับลักษณะการ เชื่อมต่อทางกายภาพของรูภายในวัตถุ

ภาควิชา	ทันตกรรมประดิษฐ์	ลายมือชื่อนิสิต
สาขาวิชา	ทันตกรรมประดิษฐ์	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2557	ลายมือชื่อ อ.ที่ปรึกษาร่วม

5575804532 : MAJOR PROSTHODONTICS

KEYWORDS: RESISTANCE / DENTAL LUTING CEMENTS / POROSITY / SOLUBILITY / IMPEDANCE METHODOLOGY

YANINEE KOSAIYAKANON: ELECTRICAL RESISTANCE OF DENTAL LUTING CEMENTS INVESTIGATED BY IMPEDANCE METHODOLOGY RELATED TO THEIR POROSITIES AND SOLUBILITY. ADVISOR: ASST. PROF. VIRITPON SRIMANEEPONG, Ph.D., CO-ADVISOR: ASSOC. PROF. MANA SRIYUDTHSAK, P.Eng., 63 pp.

The electrical resistance property of dental cement is one of important physical properties. Most previous studies aimed to investigate the mechanical properties, solubility and especially bonding property. Few studied on physical property of electrical insulation of dental cement. Therefore, investigating the electrical resistance of dental luting cements and the relation among the electrical resistance, the porosities and the solubility of dental luting cements are interesting to study. Five types of dental luting cements were used including Hybond, Fuji II, Rely-X Unicem, Rely-XTM U-100 and Superbond C&B. The electrical resistance of dental luting cements was then investigated by the impedance methodology. The porosities of all specimens were observed by micro CT scan before impedance test. The solubility of luting cement was calculated from weight of specimens before and after impedance test. All data was statistically analyzed with independent ttest and one-way ANOVA at p-value of 0.05. It was found that the electrical resistance of resin luting cements including both types of Rely-X and Superbond C&B is higher than 2000 $\times 10^{6} \Omega$. However, the electrical resistance of zinc phosphate cements were higher than glass ionomer cements, 0.017×10^6 and 0.003×10^6 , respectively. Additionally, the mean porosity of Superbond C&B was significantly higher than the other four types of luting cements. Both zinc phosphate and glass ionomer cements showed the solubility but were not significant. This study also found no correlation among the electrical resistance, the porosities and the solubility regardless of dental luting cements. Within the limitation of this study, it can be concluded that electrical resistance of dental luting cement is related to the chemical composition and setting reaction but do not relate to amount of porosity and degree of solubility. The electrical resistance related to the pores inside the dental luting cements.

Department: Prosthodontics Field of Study: Prosthodontics Academic Year: 2014

Student's Signature	
Advisor's Signature	
Co-Advisor's Signature	

ACKNOWLEDGEMENTS

This research paper was made possible through the help and support from many people. I especially would like to acknowledge my gratitude toward the following advisors and contributors:

First, I would like to thank Associate Professor Mana Sriyudthsak, P. Eng. and Assistant Professor Viritpon Srimaneepong, Ph.D. and their great efforts in advising me and for the caring concern they showed me.

Second, I would like to thank Faculty of Dentistry, Chulalongkorn University for research fund.

Finally, I would like to thank my family for their support and encouragement.

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

CONTENTS

F	Page
THAI ABSTRACT	.iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	.vi
CONTENTS	vii
LIST OF FIGURES	X
LIST OF TABLES	.xi
CHAPTER I INTRODUCTION	. 1
Background and rationale	. 1
Objective	.2
Hypothesis	. 2
Scope of the research	.3
Limitation	.3
Conceptual framework	.4
Keywords	. 5
Expected benefits	. 5
CHAPTER II LITERATURE REVIEW	.6
The definition, signs and symptoms, etiologies and epidermiologies of dentin hypersensitivity	6
Theories of dentin hypersensitivity	. 6
Corrosion	. 6
The hypothesis of pain due to electrolytic action (galvanism)	. 8
Biologic effects of oral galvanism	10
The types of dental luting cements	10

Page

Impedance methodology	14
Electrical potential of a metallic restoration or EPR	15
Porosity measurements	15
CHAPTER III METHODOLOGY	17
Target population	17
Sample	17
Instruments	20
Sample preparation and investigation of porosity	20
Impedance test for Electrical resistance	21
The solubility of the dental luting cements	22
Statistical analysis	23
CHAPTER IV RESULTS	24
Results of porosity	24
Results of electrical resistance	26
Results of solubility.	
CHAPTER V DISCUSSION AND CONCLUSION	
Discussion	
The property of the electrical resistance	
The porosity of dental luting cements	
The solubility of dental luting cements	
The correlation among electrical resistance, porosity and solubility	
Conclusions	
REFERENCES	

	Page
VITA	. 63

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University ix

LIST OF FIGURES

Figure 1 The schematic of single electrode	9
Figure 2 The schematic of Electrodes remaining separated	9
Figure 3 The schematic of Electrodes remaining in contact	. 10
Figure 4 The schematic of Electrodes with intermittent contacts.	. 10
Figure 5 The impedance methodology	. 14
Figure 6 The schematic of electrical potential of a metallic restoration	. 15
Figure 7 The specimen size	. 21
Figure 8 Micro computed tomography (Skyscan 1173 Micro-CT, Belgium)	. 21
Figure 9 Schematic diagram of electrical equivalent circuit setup	. 22
Figure 10 The 'Sartorius BP110S' digital scaler (Sartorius; Germany)	. 22
Figure 11 The porosities of zinc phosphate, glass ionomer and 3 types of resin cement. a) Hybond, b) Fuji II, c) Rely-X Unicem, d) Rely-X [™] U-100 and e) Superbond C&B	. 25
Figure 12 The mean values of electrical resistance of Hybond and Fujii II at	
day0, day1, day3, day7, day14, day21 and day30	28
Figure 13 The correlation between electrical resistance at day0 and porosities of dental luting cements	. 31
Figure 14 The correlation between electrical resistance at day30 and solubility of dental luting cements	. 31
Figure 15 The conductive pathway	. 35

LIST OF TABLES

Table 1 Comparison of E.M.F.'s in millivolts
Table 2 Reactions and typical properties of dental luting cements
Table 3 Composition of the dental luting cements used in this study
Table 4 The porosity of dental luting cements in this study
Table 5 The means of the electrical resistance of dental luting cements from
day0 to day3027
Table 6 The solubility of dental luting cements in this study
Table 7 The correlation among the mean electrical resistance on day30, the
porosity and the solubility.
Table 8 The result of percent porosities of dental luting cements
Table 9 The result of electrical resistance of dental luting cement at day $0, 1, 3$
7 14 21 and 20
7, 14, 21 and 30
Table 10 The mean electrical resistances of glass ionomer cement
Table 11 The electrical registrance of Poly X Unicom Poly X TM U 100 and
Table II The electrical resistance of Nety-X Oniceth, Nety-X O-100 and
Superbond C&B
Table 12 The electrical register as of Dely, Y TM Unicom
Table 12 The electrical resistance of Rely- X Onicem
Table 12 The electrical resistance of Rety- X Onicem
Table 12 The electrical resistance of Rety- X Onicem
Table 12 The electrical resistance of Rety- X Onicem
Table 12 The electrical resistance of Rety- X Onicem

CHAPTER I

INTRODUCTION

Background and rationale

Dentin hypersensitivity sometimes could be an annoyance for both patient and practitioner due to non-specific and multi-factorial etiology, which it is not fully understood. This problem is not dental pathology but commonly happens. Dentine hypersensitivity could be defined as sharp shooting localized pain in response to stimuli such as temperature, evaporation (air blow), osmotic, tactile (mechanic), and chemical stimuli like acid or sweets (2, 3). The etiologies of the dentine hypersensitivity may come from tooth brushing, periodontal diseases, caries, tooth wear, prosthodontics treatments or even from oral galvanism (4). The mechanism of the dentine hypersensitivity can be explained by the hydrodynamic theory (5-8), however, this could not be applied to the phenomenon of oral galvanism (9). Even though occurrence of oral galvanism might be less than other kinds of tooth hypersensitivity, it still occasionally happens in dental practice. Pain caused from oral galvanism is thought to be induced by short-circuit resulting from different potential between dissimilar metals when come to contact or from eating utensils or dental prostheses. This leads patients have an experience of pain (or hypersensitivity). The first report of oral galvanism appeared in 1754, by Sulzer (10). Galvanism is a kind of electrochemical reaction, therefore, it sometimes cause some burning or tingling sensation in some patients apart from hypersensitivity (11, 12). Electrogalvanism or galvanic currents has long been recognized as a potential source of discomfort for patients. It is known that when two different metallic materials with different potentials contact each other, the cell is short-circuited and the current flow would occur. Consequently, the ion capable of conducting electricity can migrate through margins of restorations to dentin and stimulate the pulpal tissue leading galvanic pain. Some studies have claimed that large current might flow through metallic restorations (13). Oral galvanism found in patients who had dissimilar metal restorations were reported (14, 15). From the perspective, dental cement is thought

to be insulator to impede ionic conduction. This would prevent the galvanic current and lessen the possibility of hypersensitivity (15). The dental cement is classified into two types including water-based and polymer-based dental cements. The electrical resistance property of dental cement is one of important physical properties. Most previous studies aimed to investigate the mechanical properties, solubility and especially bonding property (16-19). Few studied on physical property of electrical insulation of dental cement (20, 21). The impedance methodology has been used to measure the dentin permeability (22), the microleakage of composite resin (23) and the insulation of three luting cements including glass ionomer, resin modified-glass ionomer and calcium silicate cement (24). Therefore in this study, the different kinds of water-based and polymer-based dental cements used as luting agents are selected and the electrical resistance property of these dental luting cements is investigated by the impedance method. This property is also observed in relation to their porosities and solubility of dental luting cements.

Objective

To investigate the electrical resistance of dental luting cements and the relation among the electrical resistance, the porosities and the solubility of dental luting cements.

มื้ดเยงแระเหต่ดเรมอเ

Hypothesis

hulalongkorn University

Null hypothesis 1 (Ho1): the electrical resistance of dental luting cements are not different at 95% confident level.

Alternative hypothesis 1 (H_{a1}): the electrical resistance of dental luting cements are different at 95% confident level.

Null hypothesis 2 (H₀₂): the correlation between electrical resistance and porosity of dental luting cements are not different at 95% confident level.

Alternative hypothesis 2 (H_a₂): the correlation between electrical resistance and porosity of dental luting cements are different at 95% confident level.

Null hypothesis 3 (H_{03}): the solubility of dental luting cements are not different at 95% confident level.

Alternative hypothesis 3 (H_{a3}): the solubility of dental luting cements are different at 95% confident level.

Null hypothesis 4 (H_{04}): the electrical resistance, the porosity and the solubility are correlation.

Alternative Hypothesis 4 (H_{a4}): the electrical resistance, the porosity and the solubility are not correlation.

Scope of the research

- 1. The mixed cements are prepared as the manufacturer's description.
- 2. This research is an in vitro study.
- 3. Five types of dental luting cements including Hybond, Fuji II, Rely-X Unicem, Rely-X[™]U-100 and Superbond C&B.
- 4. Electrical resistance is measured in wet condition.
- 5. The micro-CT is used to measure the porosity.

Limitation

The diameter and thickness of specimen is 12mm x 1mm. The specimens are designed to the fracture resistance as recommended ISO 4049 and the previous study. Potassium chloride (KCl) 0.1 M is the electrolyte because this electrolyte is ionized 100% at 20°C. The study divides into the measurement of porosity of dental luting cements, the electrical resistance of dental luting cements and the solubility of dental luting cements. All data are compared the different and find out the correlation of porosity, electrical resistance and solubility among the dental luting cements.

Keywords

Dental luting cements Solubility Porosity Resistance Impedance methodology

Expected benefits

1. To be able to use the luting cement to reduce the possibility of dentine hypersensitivity for galvanism.

2. To understand which components of dental luting cements perform as the insulating property. To improve its property of the commercial luting cement

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER II

LITERATURE REVIEW

The definition, signs and symptoms, etiologies and epidermiologies of dentin hypersensitivity

Nowadays, many patients suffer from dentin hypersensitivity. The definition of dentin hypersensitivity is the loss of enamel bring about to the exposed dentin, characterized by short or transient sharp pain arising from exposed dentin in response to an array of stimuli (25).

The etiologies are caries, periodontal disease, tooth wear, recession, prosthodontics restorations (3). Dentin hypersensitivity is triggered from thermal, evaporation, tactile, osmotic (26) and galvanism (9).

Theories of dentin hypersensitivity (27)

1. Dentinal receptor mechanism: odontoblasts and processes are the receptors of the mechanism.

2. The nerves are the pain receptors, which are in the pulp not the dentin.

2.1 Hydrodynamic mechanism: the triggers contact the dentin, cause the dentinal fluid movement. This movement activate the nerve axons which innervate with the odontoblast processes in the predentin layer (5).

2.2 Modulation of nerves impulses by polypeptides: the triggers contact the dentin then odontoblasts release polypeptides (kinin and substances P) to modulate the nerve axon in the pulp.

Corrosion (1)

The corrosion is the electrochemical reaction of the metal which occurs in the different environment such as rough metal surface, pH of food and the amounts of electrolyte. These factors affect to the corroded metal and reduce the strength. Types of corrosion are divided into 1. Chemical corrosion: this corrosion is the reaction between metal and nonmetal which is occurred by oxidation, halogenation or sulfurization. No liquid are involved in this type or called " dry corrosion"

2. Electrolytic or electrochemical corrosion or wet corrosion: the water or electrolyte are involved in type. The reactions of electrochemical corrosion are described as

Oxidation reaction: the anode reduced the electron as the equation.

(1) $M^0 \longrightarrow M^+ + e^-$

Reduction reaction: the cathode oxidized the electron from the anode as the equation.

(2) $M^{+} + e^{-} \longrightarrow M^{0}$ $2H^{+} + 2e^{-} \longrightarrow H_{2}$ $2H_{2}O + O_{2} + 4e^{-} \longrightarrow 4(OH)^{-}$

The electrochemical corrosion is divided into

2.1 galvanic corrosion or dissimilar metals: this corrosion occurs when the dissimilar metals are in contact. This combination of dissimilar metals produces electrogalvanism or galvanic currents. The electron will be released to the oral fluid which brings to the pain or galvanic shock. For example, the insertion of the gold crown with the existing amalgam restoration on the opposing tooth leading to tingling and burning sensation. Furthermore, single metal can produce galvanic currents because the electrolytes are different.

2.2 stress corrosion: this type of corrosion occurs where the rough surface of metal presents. For example, insertion of removable partial denture causes the stress at the wire. This area contact to oral fluid brings about to corrosion.

2.3 concentration cell corrosion or crevice corrosion: This situation occurs when there are the variations of the electrolytes in oral fluids. For example, the different concentration of oxygen presents between the occlusal surface and the deep pit of restoration. The upper surface performs the cathode while the lower one is the anode then the electron movement occurs in this area.

Mostly, the electrochemical corrosion do not find alone. It must be accompanied by two or more. To prevent corrosion, it may change the metal restoration to the nonmetallic restoration or similar metal such as noble-noble restoration or resin composite filling, respectively. Apply varnish (silver nitrate precipitates on the electrode alters the electromotive force of alloy and alters the potential (13) or polishing the restoration surface should be done to reduce corrosion.

The hypothesis of pain due to electrolytic action (galvanism)

Mumford (9) interested in the factors which affected to the electromotive force (E.M.F.) in the oral cavity. The investigation of electrodes (22 gold-17 gold, 22 gold-amalgam and 17 gold-amalgam) and electrolytes (saliva, blood and serum) was observed. They believed that the dentinal fluid is produced from blood serum. The resultant of E.M.F. depends on type of electrolytes, electrodes and body temperature but not depends on the distance of electrodes and cross sectional of dentinal tubule. If the different electrodes remain the E.M.F. is high as shown in Table 1.

 Table 1
 Comparison of E.M.F.'s in millivolts (9)

Electrolyte	22 old and amalgam	17 gold and amalgam	22 gold and 17 gold
Saliva	470	575	119
Serum	470	545	120
Blood	412	464	40

When the electrodes are in contact, the short circuit occurs giving a current. The electromotive force (E.M.F.) of electrodes, saliva and electrolytes in dentin and pulp are developed. The tooth endures 0.5-50 microamperes, the larger current flows along the dentinal tubules and causes pain. E.M.F. occurs around the electrodes then pass through the dentinal tubule by dentinal fluid to stimulate the nerve directly. This current could cause a brief sharp pain (9).

The conditions of oral environment which cause galvanism are (12).

1. Single electrode (Figure 1). E.M.F. of this group causes from the difference between electromotive of saliva and bone fluid. This causes the ion across the boundary between two electrolytes. The E.M.F. of this is small and unobvious to cause pain or explain that single metal restoration produces galvanic currents due to the different oxygen or electrolytes in oral fluid.

Figure 1 The schematic of single electrode (13).

2. Electrodes remaining separated (Figure 2). The dissimilar metal restorations are in the same arch but not contact each other. In this case, electromotive of saliva is equal to electromotive of bone fluid so the pain causes from the different electrodes. This pain seems unlikely because the resistance of gingiva presents to fall the E.M.F.

Figure 2 The schematic of Electrodes remaining separated (13).

3. Electrodes remaining in contact (Figure 3). The dissimilar metal restorations are in contact to the adjacent teeth. This condition was proved by Meyer R. which separate the adjacent teeth with elastic band and then change amalgam to resin composite cause the pain disappeared (28).

Figure 3 The schematic of Electrodes remaining in contact (13).

4. Electrodes with intermittent contacts (Figure 4). This case causes pain mostly because the short circuit occurs between two electrodes. The dissimilar metal restorations are in contact to the opposing teeth.

Figure 4 The schematic of Electrodes with intermittent contacts (13).

Biologic effects of oral galvanism (14)

If the density of electrical current is more than 1.3 μ A/mm³. This current activate the nervous system directly affect to muscles and glands. The symptoms are usually burning mouth, oral pain and tingling, salty taste and leukoplakia (shown at the soft tissue near the metallic restoration or called "electrogalvanic white lesion")

The types of dental luting cements (29)

1. Water-based cements: zinc phosphate, zinc polycarboxylate, glass ionomer, resin-modified glass ionomer

Zinc phosphate cement is composed of zinc oxide and phosphoric acid. The setting reaction is acid-base reaction. The newly formed zinc phosphate composes of the hydrated zinc phosphate and matrix when the set cement is porous and soluble.

Zinc polycarboxylate is formed by zinc oxide and polyacrylic acid. The set cement has cores of zinc oxide within zinc polyacrylic matrix binding to the unreacted zinc oxide. The present of stannous fluoride and magnesium oxide increases the solubility of cement.

Glass ionomer is composed by silica, alumina, calcium fluoride (CaF2), sodium fluoride (NaF) and/or aluminum phosphate (AlPO4). The liquid is polyacrylic acid. The setting reaction is acid-base reaction. The calcium ion which is hydrolyzed in the final setting can bind to the tooth structure and some fluoride will prevent the occurrence of carious lesion.

Resin-modified glass ionomer is composed of the acid-base and polymerization reaction. The powder is fluoroaluminosilicate like conventional glass ionomer. The liquid contains polyacrylic acid, 2-hydroxyethyl methacrylate (HEMA) and water. The setting reaction is divided into two phases. First, the initial is caused from light-cured or self-cured polymerization. The final setting is acid-base reaction which is slower than the conventional glass ionomer because the water presents lower.

2. Polymer-based cements: the organic matrix contains dimethacrylate monomers and high molecular weight molecules of monomers for example bisphenol-A glycidyl dimethacrylate (Bis-GMA), urethane dimethacrylate (UDMA) and ethoxylated Bis-GMA (Bis-EMA). These oligomers combine with ethylene glycol dimethacrylates (DEGDMA) and ethylene glycol trimethacrylates (TEGDMA) to achieve the high degree of conversion. The fillers vary from 30%-60% by volume. These fillers contain silanated glasses. The size ranges from 0.5µm to 8µm. Pigments and opacifiers are present in the paste. The resin cements are divided as recommendation of ISO into class1-self cured materials, class2-light cured materials and class3- dual cured materials. The setting reaction is polymerization. The sorption and solubility is much lower than the water-based cements.

1) Class 1-self cured: This is no waste time to prepare. No intermediate bonding process. Some adhesive resin cements contain 4-methacryloxyethyl-trimellitic anhydride (4-META), methylmethacrylate (MMA) and trin-butylborane (TBB) or 10-methacryloyoxydecyl dihydrogen phosphate (MDP) combines with phosphoric acid ester with Bis-GMA.

2) Class 2-light cured: this type is initiated by the photo-initiators like camphoquinone to access the cement will be fully cured.

3) Class 3-dual-cured: these combine with light-cured and self-cured which the practitioners will not worry about the light penetration into the inaccessible area.

3. Oil-based cements: zinc oxide noneugenol and eugenol

The powder is zinc oxide and the liquid is eugenol or oil of clove. This cement is widely used for temporary cement.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	-	0				
Cement	Setting time	Film thickness	Compressive	Bond strength	Setting reaction	
		(mh)	strength (MPa)	to dentin (MPa)		
Zinc phosphate	5.5	25	20	I	Acid-base	
Zinc polycarboxylate	6	25	70	I	Acid-base	
Glass ionomer	7	25	70	I	Acid-base	
Resin cement	2-4	40	180-265	18-30	Polymerization	
Zinc oxide eugenol	4-10	I	2-14	0	1	
Zinc oxide noneugenol	4-10	I	2.7-4.8	0	1	

 Table 2
 Reactions and typical properties of dental luting cements (1).

The previous studies interested in mechanical and biological properties. The one study which investigated in the insulation of three luting cements (24). This recommended the impedance methodology to measure the resistance of dental luting cements.

Impedance methodology

The measurement of electrochemical reaction are widely used in engineering by electrical conductivity, diffusion and permeability of Portland cement (30). This study found out that the electrical conductivity depended on porosity of specimen. The principle of impedance methodology is the two electrodes soak in the electrolyte and the circuit connects to frequency response analyzer, potentiostat or insulation tester (Figure 5). In this present time, the impedance method is applied to the dentistry for measurement the microleakage of composite resin (23) and dentin permeability (31). The advantages are

- 1. Non-destructive technique
- 2. The value detects immediately because the ionic conduction occurs easily.
- 3. No disturbance of the dentin's charge
- 4. The potential can specify as a requirement.

The disadvantage is that could not imitate like the oral environment.

Figure 5 The impedance methodology

Electrical potential of a metallic restoration or EPR

The former method to measure the electric current in oral cavity directly. The probe (Ag/AgCl) is covered by wax to protect the gold tip with the electrolyte. This tip contacts to the metallic restoration and the other one soaks in the saliva as the reference (Figure 6). The voltmeter indicates the potential of metallic restoration. The average potential is between the metal and saliva. The advantages are the average potential of metal and suits for in vivo study. The disadvantages are

- 1. Patient suffers from the activated area.
- 2. Isolating area is difficult.
- 3. The potential depends on the threshold of patient.
- 4. Thin oxide layer on the metallic restoration causes poor electrical currents.

Figure 6 The schematic of electrical potential of a metallic restoration a, probe; b,

tested alloy; c, reference electrode.

Porosity measurements (32)

1. Gas sorption: this method is widely used for micropore and mesopore sizes. The specimen is evacuated for degassing in order to remove moisture. After that, the evacuated specimen will be transferred to the sorption chamber and then is pressed with the pressure to absorb the gas. Until the saturated stage, the gas is desorbed, then the absorbed gas in the specimen is recorded in term of distribution curves.

2. Liquid intrusion: the same manner as gas sorption but changing the gas to liquid or called "mercury porosimetry" this method is suitable for analyzing the pore size 4nm to 60μ m.

3. Microscopy: this method require the thin cross-sections of specimen as much as possible for optical or electron microscopy. The result is reported by the software analyzing program and gives the two dimensional image. The mesopores are suitable for this method.

4. Light, x-ray, and neutron scattering: this technique requires no pretreatment of the specimen contrast to the gas sorption technique. The advantage is non-destructive method which specimen will not be damaged. The pore size, which is between 1-1000 nm can be analyzed. Micro computed tomography (micro-CT) is one of this technique which x-ray is used for scattering. The image is transported into three dimensions. There are two systems of micro-CT. First, the x-ray source and background rotated around the object. The other is the x-ray source and background are settled and the object rotates.

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

CHAPTER III

METHODOLOGY

Target population

Water-based and polymer-based dental luting cements

Sample

- Water-based cement: zinc phosphate (Hybond, Shofu Incorporation, Japan) 10 specimens, glass ionomer (Fuji II, GC Corporation, Japan) 10 specimens.
- Polymer-based cement: Dual cured resin cement (Rely- X Unicem and Rely-X[™]U-100, 3M ESPE, USA) 20 specimens and self-cured resin cement (Superbond C&B, Sunmedical, Japan) 10 specimens.

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

Material	Powder	Liquid	Manufacturer
Hybond	Zinc oxide,	Phosphoric	Shofu
(Zinc phosphate	Magnesium oxide	acid:water 2:1	Incorporation,
cement)			Japan
Lot number			
071301			
Fuji II	Fluoroaluminosilicate	40%-50%	GC Corporation,
(Glass Ionomer	glass	polyacrylic acid,	Japan
cement)		Tartaric acid,	
Lot number	s hidd	Itaconic, maleic or	
1309201		tricarboxylic acids	
Rely–X [™]	Alkaline (basic)	Methacrylate,	3M ESPE, USA
Unicem	fillers, Silanate	Triethylene glycol	
(Automix resin	fillers, Initiator	dimethacrylate	
cement)	components and	(TEGDMA),	
Lot number	pigments	Bisphenol A	
530044		diglycidyl	
	41.400	methacrylate (Bis-	
	S.	GMA), Initiator	
		components and	
	จุหาลงกรณ์มห	Stabilizers	

 Table 3 Composition of the dental luting cements used in this study

CHULALONGKORN UNIVERSITY

Material	Powder	Liquid	Manufacturer
Rely-X U-100	Glass powder, Silane	Methacrylate,	3M ESPE, USA
(Hand-mix	treated silica, Sodium	Triethylene glycol	
resin cement)	persulfate, Cupric	dimethacrylate	
Lot number	acetate and Calcium	(TEGDMA), Bisphenol	
530252	hydroxide	A diglycidyl	
		methacrylate (Bis-	
		GMA), Initiator	
		components and	
		Stabilizers	
Superbond	Polymethylmethacrylate	Tri-n-butyl borane	Sun Medical,
C&B	(PMMA) and pigments	(ТВВ),	Japan
(Self-cured	<i>Z</i> ///	Acetone	
resin cement)		4-	
Lot number		methacryloyloxyethyl	
KF1 2014-02		trimellitate anhydride	
		(4-META)	
		and methyl	
	8	methacrylate (MMA)	
	จุหาลงกรณ์มหา	โทยาลัย	
		NIVEDEITY	

 Table 3
 Composition of the dental luting cements used in this study (continued)

Instruments

- 1. Spatula and glass slab
- 2. PTFE mold
- 3. Plastic wrap
- 4. Light cure unit
- 5. Amalgamator
- 6. Digital insulation tester (MY4O, Yokogawa, Japan)
- 7. Micro computed tomography (Skyscan 1173 Micro-CT, Belgium)
- 8. Digital scaler 'Sartorius BP110S' (Sartorius, Germany)
- 9. Carbon electrodes
- 10. Incubator
- 11. Pipette
- 12. Dental luting cements (zinc phosphate: Hybond, Shofu Incorporation, Japan, glass ionomer: Fuji II, GC Corporation, Japan, resin cements: Rely- X Unicem and Rely-XTMU-100, 3M ESPE, USA, Superbond C&B, Sunmedical, Japan)
- 13. 0.1 M potassium chloride

Sample preparation and investigation of porosity

Ten disk specimens of each dental luting cement were prepared in a PTFE mold with the size of 12 mm in diameter and 1 mm thick This method is modified from ISO 4049 (33) and their manufacturer's instructions. Before impedance test, all specimens were weighed and investigated for percentage of porosity using micro computed tomography (Skyscan 1173 Micro-CT, Belgium). The system consisted of a sealed x-ray tube operated at 50 kilovolt and the x-ray source made power of 40 watt. An object manipulation was used to move the specimen in two dimension and with rotational movement. Then raw data was investigated by 3D reconstruction to evaluate the porosity. The measurement was carried out with 30 micron per slide and 669 slides per one specimen. All specimens were calculated into percentage of porosity.

Figure 7 The specimen size 12 mm in diameter and 1 mm thick

Figure 8 Micro computed tomography (Skyscan 1173 Micro-CT, Belgium)

Impedance test for Electrical resistance

Each specimen was secured with O-ring between two electrochemical chambers of which had a hole 10 mm in diameter. Each chamber contained 0.1 molar potassium chloride solution and ionized 100% at 37°C following the recommendation of National Institute of Standards Technology (NIST). The carbon electrodes in both chambers were connected to the digital insulation tester (MY4O, Yokogawa, Japan). The schematic diagram of experimental setup is shown in Figure 9. The insulation tester was operated under voltage of 125 volt for the water-based cements and 1,000 volt for the polymer-based cements. The electrical resistance of dental luting cement was measured in term of impedance value.

Figure 9 Schematic diagram of electrical equivalent circuit setup

The solubility of the dental luting cements

Before impedance test, all specimens were weighed as a mass (m1) using the 'Sartorius BP110S' digital scaler (Sartorius; Germany). After impedance test, the tested specimens were weighed as a mass (m2) after reconditioning in a desiccator and incubator at 37° C modified from ISO4049:2009. (REF) The solubility (Wsl) was calculated as the following equation:

 $W_{sl} = (m_1 - m_2)/V$

When W_{sl} is the solubility in water (µg/mm³), m₁ is the mass (µg), prior to immersion, m₂ is the mass (µg), after immersion; V is the volume of the specimens (mm³).

Chulalongkorn University

Figure 10 The 'Sartorius BP110S' digital scaler (Sartorius; Germany).

Statistical analysis

SPSS statistical analysis software (SPSS Statistics Version 20, Cary, USA Copyright IBM Corporation) was used to analyze the data. Independent T-test with comparison was used to analyze electrical resistance between Zinc Phosphate and Glass Ionomer cements. The relationship among electrical resistance, porosities and solubility of all groups were analyzed using one-way analysis of variance (ANOVA) followed by Spearman correlation. Significance level was set at $\mathbf{\alpha}$ =0.05.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER IV

RESULTS

Results of porosity

For characteristic of porosity, it was found that among cements in this study, Superbond C&B had the highest mean percentage of porosities (Table 4). The samples of photos of porosity of each dental luting cements were shown in Figure 11.

Table 4	The porosity	v of dental	luting cement	s in this	study.
---------	--------------	-------------	---------------	-----------	--------

Materials	Mean of porosities [%] [s.d.]		
Zinc phosphate	40.59 [15.98]		
Glass ionomer	47.73 [4.68]		
Rely-X Unicem	41.19 [9.01]		
Rely-X [™] U-100	39.49 [7.46]		
Superbond C&B	76.59* [6.58]		

* Significant differences ($\mathbf{\Omega}$ =0.05)

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University a. Hybond

Figure 11 The porosities of zinc phosphate, glass ionomer and 3 types of resin cement.

a) Hybond, b) Fuji II, c) Rely-X Unicem, d) Rely-X[™] U-100 and e) Superbond C&B
Results of electrical resistance

This study showed that the mean values of electrical resistance of zinc phosphate cement was significantly higher than those of electrical resistance of glass ionomer cement ($\mathbf{\Omega}$ <0.05). Both of the values of electrical resistance of zinc phosphate and glass ionomer dramatically decreased and became less than 10% of the initial value within 1 day. However, this gradually decreased to less than 1% of the initial value after 30 days (as shown in Table 5 and Figure 12). Figure 2 also shows the tendency of decreased electrical resistance for both cement types. On the other hand, the electrical resistance of resin cements including Rely-X Unicem, Rely-XTM U-100 and Superbond C&B, were higher than limitation of measurement (2000x10⁶ $\mathbf{\Omega}$).

จุฬาสงกรณมหาวทยาลย Chulalongkorn University

[]	Superbond C&B	>2000	>2000	>2000	>2000	>2000	>2000	>2000
nce [s.d.] [x10 $^{\circ}\Omega$	Rely-X TM U-100	>2000	>2000	>2000	>2000	>2000	>2000	>2000
Electrical Resista	Rely-X Unicem	>2000	>2000	>2000	>2000	>2000	>2000	>2000
Means of	Glass ionomer	0.439 [0.196]	0.044 [0.082]	0.011 [0.004]	0.006 [0.002]	0.005 [0.002]	0.004 [0.001]	0.004 [0.001]
	Zinc phosphate	3.244 [2.873]	0.046 [0.028]	0.027 [0.018]	0.018 [0.008]	0.016 [0.008]	0.016 [0.006]	0.017 [0.008]
Day		0	1	б	7	14	21	30

30
УE.
ð
0
) t
\leq
da
ç
5
fr
S
Ę
é
E D
Ŭ
g
÷
Ĩ
f
e L
ō
of
رە دە
ğ
aL
st
esi.
F
al
9.
Ð
ĕ
Ð
Ð
ţ
Ð
S
Ű
ВЗ
É
<u>م</u>
Ľ,
\vdash
S
Ð
þ
ש

Note: The insulation tester (MY4O) has a maximum measuring limit at 2000x 10^6 $\Omega.$

Results of solubility

In an aspect of solubility, zinc phosphate (Hybond) and glass ionomer cements (Fuji II) exhibited higher solubility than the other three groups of polymerbased cements (Rely-X Unicem, Rely- X^{TM} U-100 and Superbond C&B), but they showed no statistically significant difference (Table 6). The correlation is displayed on Table 7.

> จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

this
⊒.
cements
luting
dental
of
ne solubility
È
able 6

	Mean of solubility	[s.d.] [µg/mm ³]	394.904 [391.258]	298.089 [222.126]	0	0	0
	Mean of weight loss	[s.d.] [g]	0.030 [0.030]	0.030 [0.020]	I	I	
tudy.	Mean of weight after	[s.d.] [g]	0.990 [0.080]	0.640 [0.040]	0.790 [0.030]	0.660 [0.020]	0.560 [0.020]
al luting cements in this s	Mean of weight before	[s.d.] [g]	1.020 [0.080]	0.660 [0.040]	0.790 [0.030]	0.660 [0.020]	0.560 [0.020]
6 The solubility of denta	Materials		Zinc phosphate	Glass ionomer	Rely-X Unicem	Rely TM U-100	Superbond C&B
Table							

- = unchanging of weight after immersion

Table 7 The correlation among the mean electrical resistance and the porosity on day0, the electrical resistance

-and the s * Significant differences ($\mathbf{\Omega}$ =0.05)

The correlation between electrical resistance and porosities of dental luting cements were shown in Figure 13. Additionally, no correlation could be found between the electrical resistance and porosities on day0. Furthermore, the electrical resistance and solubility of each type of cements did not correlated on day30 except for glass ionomer (Figure 14).

Figure 13 The correlation between electrical resistance and porosities of dental luting cements on day0

Figure 14 The correlation between electrical resistance and solubility of dental luting cements on day30

CHAPTER V

DISCUSSION AND CONCLUSION

Discussion

The property of the electrical resistance

Between water-based and polymer-based cements in the present study, it is found that the solubility of zinc phosphate and glass ionomer could be measured unlike polymer-based cement groups. However, this does not mean that the latter groups show no weight loss because this study was observed only 30 days. For property of electrical resistance, it was found that the polymer-based luting cements showed much higher electrical resistance than water-based luting cements. This finding could be the reason of different chemical composition and setting reaction. Zinc phosphate and glass ionomer cements are acid-base setting reaction typed cement while the setting reaction of polymer-based cement is polymerization. After setting reaction of zinc phosphate cement, there will be some free acid left on the surface of the cement. The remaining free acid of zinc phosphate would increase the electrical conductivity. This will contribute to lower resistance. While, Calcium ion in glass ionomer was hydrolyzed in the final setting (34). This Calcium ion dissolved in the electrolyte so the increasing of the electrical conductivity could be detected. This conformed to the previous study which found that the electrical conductivity depended on the amount of the electron from the acid-base reaction (35). In addition, the mean electrical resistance of zinc phosphate cement was higher than glass ionomer, regardless of date of measurement. In the final setting of both cements, zinc ion from zinc phosphate cement and calcium ion from glass ionomer cement were released in the solution. When comparing standard standard potential (E⁰) of zinc ion ($E_{Zn}^{0}^{+}$ = -0.76) and E⁰ of calcium ion ($E_{Ca}^{0}^{2+}$ = -2.87), it found that E⁰_{Ca}²⁺ was higher than $E_{Zn}^{0}^{+}$. Therefore, glass ionomer cement could provide more electrical conductivity than zinc phosphate cement. Among polymer-based (resin) cements, Rely-X Unicem and Rely-XTM U-100 were dual cured and self-adhesive resin cement. Both of them have similar basic composition but are different in mixing manipulation. For setting reaction of these resin cements, there was not any free radical in the termination phase of polymerization. It becomes the densely cross-linkage polymer (36). The same as Superbond C&B is self -cured and total etch resin cement. This cement was initiated by chemical initiator. When the polymerization of polymerbased cement completes, the polymerized structure will have less solubility. The complexity of polymerization could be a hurdle for electrolyte to penetrate and led to higher electrical resistance of polymer-based cements than water-based cements. In addition, different mixing technique (between Rely-X Unicem and Rely-XTMU-100) was aimed to be observed in this study. It was found that the mixing technique did not affect the amount of porosity and solubility. This could not apply to the manipulation technique of Superbond C&B which have powder and liquid.

The porosity of dental luting cements

To compare the porosity among all dental luting cements, the present study showed that Superbond C&B had the highest porosity and differed from the others significantly. The results of this study was confirmed by Malkoc MA. et al (37), who also demonstrated that Superbond C&B had the highest porosity. They claimed that hand mixing technique caused air inclusion the material easily, while the automatic mixing avoided these inclusions. In this study, Superbond C&B, Rely-X U100, Hybond and Fuji II were hand mixing technique but the preparation of cement was different. Due to the difference in preparation resulted in the percentage of porosity.

The solubility of dental luting cements

The result of solubility of dental luting cements showed that solubility of zinc phosphate and glass ionomer were higher than polymer-based cement. This conformed to the study by Ghanim A (38), which explained the solubility of waterbased cements correlated to the microviods. Water would diffuse to these pores and then reacted with hydrophilic groups of polar molecules in the material to dissolve the water-based cements. Saleem M. and Ulhaq I. (39) found that glass ionomer was more soluble than zinc phosphate at lower pH values because glass ionomer was hydrolysed easily. This finding confirms that the pH values affect to the solubility but the present study found that the solubility of zinc phosphate and glass ionomer were not different because this in vitro study was static solubility and did not simulate the pH and temperature changes like the oral cavity. Yoshida K., Tanagawa M and Atsuta M.(40) claimed that the solubility of zinc phosphate was higher than glass ionomer because zinc and magnesium were leached from zinc phosphate easier than aluminium and silicon from glass ionomer. No matter the results of the solubility are, the solubility will affect the mechanical properties of dental luting cements therefore, the practitioners should be aware. While the solubility of polymer-based cements could not be detected in this study. This could be due to the final setting of polymer-based cement did not present the pendant hydroxyl groups to form hydrogen bond with water and had densely cross-linking so the water could not dissolve (17). But there was one study claimed that the factors which affected to the solubility of polymer-based cement depended on the monomer conversion rate, residual monomer, resin matrix and a lower rate of polymerization (41). Even though, the polymer-based cement had less soluble than water-based cement, the voids or porosities must be avoided to reduce the occurrence of solubility because the oxygen trapped in the voids inhibited polymerization (17).

The correlation among electrical resistance, porosity and solubility

There was no correlation between the electrical resistance, porosity and solubility of dental luting cements except in the last day of experiment that electrical resistance of glass ionomer correlated to the solubility. This implies that the electrical resistance of dental luting cements depended on the composition and reaction of setting cement regardless of amount of porosities. The conductive model could be explained why the electrical resistances do not relate to the porosity as shown in Figure 13. The result showed that no correlation between the value of electrical resistance and the porosity of dental luting cements. It might be 3 pathways of the penetration of the electrolyte as shown in Figure 15. First, there were many porosities but the values of electrical resistance were high. This condition happened because there were many porosities but these were little connected way. So the electrolyte could not penetrate the samples, the values of the electrical resistance were high like Superbond C&B (Figure 15A). Second, there were less porosities and the values of electrical resistance were low. These porosities connected very well so the values of the electrical resistance were low as shown in Hybond and Fuji II (Figure 15B). Third, there was a few porosities and the values of the electrical resistance were high. There were less porosities and did not connect. So the electrolyte penetrated hardly then the values of electrical resistance were high as shown in Rely-X Unicem and Rely X^{TM} U-100 (Figure 15C). In the Table 7 showed that the electrical resistance of glass ionomer correlated with the solubility on the last day and the solubility of Hybond and Fuji II were not different in this study. There were some studies which found out that the solubility of glass ionomer was greater (39). Some found that the solubility of zinc phosphate was more (40). The factors which affected to the results were time of dissolution, the type and pH of media. Even though, the correlation among the electrical resistance, porosity and solubility do not relate, the mixing technique must be caution because if there were many porosities at the marginal restoration which exposed to oral fluids (29). The oral fluids would penetrate through these porosities to react with hydrophilic groups of dental luting cements, the water solubility occurred, leading to the marginal leakage. Furthermore, the electrical resistance decreased with the increasing time except polymer-based cements so the patient could percept the hypersensitivity from galvanic by this pathway (9).

A. Superbond C&B B. Hybond, Fuji II

Figure 15 The conductive pathway

Conclusions

Mean electrical resistance of zinc phosphate cement was significantly higher than that of glass ionomer cement while all polymer-based luting cements show very high electrical resistance but could not be measured due to over limitation of measurement. Within the limitation of this study, it can be concluded that electrical resistance of dental luting cement related to chemical composition and setting reaction but do not relate to amount of porosity and degree of solubility. Model of pore connection were proposed to explain the relation of electrical resistance and porosity. It is believe that the connectivity of pore may play an important role to the electrical resistance than the density of pore. Moreover, the decreasing of electrical resistance was opposed to the increasing time except polymer-based cement.

REFERENCES

1. Ralph W. Skinner's science of dental material. 9th ed. Philadelphia: W.B.Saunders company; 1982.

2. Pashley DH. Dentin Hypersensitivity: Consensus-Based Recommendations for the Diagnosis and Management of Dentin. Dentistry India. 2010;4(2):1-6.

3. Porto IC, Andrade AK, Montes MA. Diagnosis and treatment of dentinal hypersensitivity. J Oral Sci. 2009;51(3):323-32.

4. Addy M, Pearce N. Aetiological, predisposing and environmental factors in dentine hypersensitivity. Arch Oral Biol. 1994;39 Suppl:33s-8s.

5. Brannstrom M. Sensitivity of dentine. Oral Sur Oral Med Oral Pathol. 1966;21(4):517-26.

6. Brannstrom M. The hydrodynamic theory of dentinal pain: sensation in preparations, caries, and the dentinal crack syndrome. J Endod. 1986;12(10):453-7.

7. Pashley DH. Mechanisms of dentin sensitivity. Dent Clin North Am. 1990;34(3):449-73.

8. Pashley DH. Dentin permeability, dentin sensitivity, and treatment through tubule occlusion. J Endod. 1986;12(10):465-74.

9. Mumford JM. Electrolytic action in the mouth and its relationship to pain. J Dent Res. 1957;36(4):632-40.

10. Sulzer M. Recherche sur l'origine des sentiments agreable et desagreable. Troisieme partie: Des plaisirs des sens.Histoirc de l'Academie des Sciences et Belles Lettres de Berlin (Annee 1752). In Handbuch der Physiologic der Niederen Sinne. LBd. . Leipzig, Germany: Thieme. 1926:378.

11. Meyer RD. Intraoral galvanic corrosion: Literature review and case report. Intraoral galvanic corrosion: Literature review and case report. 1993;69:141.

12. Senia E, Bales D. Dental pain of galvanic origin: report of case. J Endod. 1977;3:280-2.

13. Watson JF, Wolcott RB. A method for the control of galvanism. J Prosthet Dent. 1976;35(3):279-82.

14. American dental association status report on the occurrence of galvanic corrosion in the mouth and its potential effects. Council on Dental Materials, Instruments, and Equipment. J Am Dent Assoc. 1987;115(5):783-7.

15. Sutow EJ, Maillet WA, Taylor JC, Hall GC. In vivo galvanic currents of intermittently contacting dental amalgam and other metallic restorations. Dent Mater. 2004;20(9):823-31.

16. Filiz K. Water Sorption and Solubility of Different Luting and Restorative Dental Cements. Turk J Med Sci. 2007;37:47-55.

17. Gerdolle DA, Mortier E, Jacquot B, Panighi MM. Water sorption and water solubility of current luting cements: an in vitro study. Quintessence Int. 2008;39(3):e107-14.

18. Sita RD, Rama K.A., Venkata, R.A., Raju M. A Review of Conventional and Contemporary Luting Agents Used in Dentistry . J Mat Sci Eng. 2014;2:28-35.

19. Macorra JC, Pradies G. Conventional and adhesive luting cements. Clin Oral Investig. 2002;6(4):198-204.

20. Wiegman-Ho L, Ketelaar JA. The rate of setting of zinc polycarboxylate dental cements investigated by an electric conductance method. J Dent Res. 1983;62(2):105-8.

21. Tay WM, Braden M. Dielectric properties of glass ionomer cements. J Dent Res. 1981;60(7):1311-4.

22. Outhwaite WC, McKenzie DM, Pashley DH. A versatile split-chamber device for studying dentin permeability. J Dent Res. 1974;53(6):1503.

23. Pradelle-Plasse N, Wenger F, Picard B, Colon P. Evaluation of microleakage of composite resin restorations by an electrochemical technique: the impedance methodology. Dent Mater. 2004;20(5):425-34.

24. Villat C, Tran XV, Pradelle-Plasse N, Ponthiaux P, Wenger F, Grosgogeat B, et al. Impedance methodology: A new way to characterize the setting reaction of dental cements. Dent Mater. 2010;26(12):1127-32.

25. Harlan J. Dentin hypersensitivity. The journal of evidensed-based dental practice. 2012;12(3):220-8.

26. Alessandra BB, Daphne CB, Carlos RT, Alexandre LB, Ana LM, Claudic AC. Dentin hypersensitivity-etiology, treatment possibilities and other related factors: a literature review. World journal of dentistry. 2012;3(1):60-7.

27. Dowell P, Addy M, Dummer P. Dentine hypersensitivity: aetiology, differential diagnosis and management. Br Dent J. 1985;158(3):92-6.

28. Meyer RD, Meyer J, Taloumis LJ. Intraoral galvanic corrosion: literature review and case report. J Prosthet Dent. 1993;69(2):141-3.

29. Ronald L, John M. Craig's Restorative Dental Materials. 13th ed. Philadelphia: Elsevier Mosby; 2012.

30. McCarter WJ, Starrs G, Chrisp TM. Electrical conductivity, diffusion and permeability of Portland cement-based mortars. Cement and concrete research. 2000;30:1395-400.

31. Pradelle-Plasse N, Wenger F, Colon P. Effect of conditioners on dentin permeability using an impedance method. Journal of dentistry. 2002;30(5-6):251-7.

32. Elton N. Characterization of materials. 2nd ed: John Willy and Sons, Inc.; 2003.
1-9 p.

33. Standard I. Dentistry--Polymer-based restorative materials. the International Organization for Standardization 4049. 2009(4).

34. Shigeru K, Tatsuya I, Benji F. Glass ionomer dental cement -the materials and their clinical use-. Tokyo: Ishiyaku EuroAmerica,Inc.; 1993.

35. Wilson AD, Kent BE. Dental silicate cements. v. electrical conductivity. J Dent Res. 1968;47(3):463-70.

36. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):3757-85.

37. Malkoc MA, Sevimay M, Tatar I, Celik HH. Micro-CT detection and characterization of porosity in luting cements. J Prosthodont. 2015:1-9.

38. Ghanim A. Water sorption and water solubility of different commercially available dental cements. Med J Baby. 2010;7(4):1-10.

39. Saleem M, Ulhaq I. Comparison of solubility of zinc phosphate and glass ionomer cement in artisaliva of varying pH values (invitro study). Parkistan Oral and Dental Journal. 2011;31:233-6.

40. Yoshida K, Tanagawa M, Atsuta M. In-vitro solubility of three types of resin and conventional luting cements. Journal of oral rehabilitation. 1998;25(4):285-91.

41. Mortier E, Gerdolle DA, Jacquot B, Panighi MM. Importance of water sorption and solubility studies for couple bonding agent--resin-based filling material. Operative dentistry. 2004;29(6):669-76.

Type of					
sample	Zinc	Glass	Rely X	Rely X^{TM}	Superbond
	Phosphate	lonomer	Unicem	U-100	C&B
No. sample					
1	46.78	48.17	48.67	28.83	76.62
2	29.27	47.05	49.02	48.47	86.19
3	33.87	53.67	44.17	31.85	78.97
4	52.69	36.22	38.56	43.27	79.03
5	73.29	51.81	36.80	44.11	78.67
6	45.15	48.94	55.48	43.84	76.72
7	12.40	47.91	25.84	38.21	77.05
8	35.67	50.16	36.73	34.65	78.65
9	35.13 🥒	47.81	45.44	31.76	60.18
10	41.71	45.59	31.20	49.96	73.84
Mean	40.60	47.73	41.19	39.50	76.59

 Table 8 The result of percent porosities of dental luting cements.

40

Table 9 The result of electrical resistance of dental luting cement at day0, 1, 3, 7, 14, 21 and 30.

No. specimen	1	2	3	4	5	6	7	ω	6	10
Time [day] Mean [x10 ⁶ Ω]										
0	1.871	0.103	7.16	7.68	5.84	1.565	3.518	0.572	0.0725	4.06
1	0.0125	0.0618	0.0765	0.0753	0.0305	0.0164	0.0899	0.0463	0.0229	0.023
60	0.0113	0.0274	0.025	0.0377	0.0208	0.013	0.0698	0.0368	0.0125	0.0134
7	0.011	0.0218	0.0165	0.0245	0.0145	0.0115	0.0282	0.0324	0.011	0.0121
14	0.0078	0.0169	0.0122	0.022	0.0106	0.0122	0.0183	0.034	0.012	0.0091
21	0.0083	0.0235	0.0109	0.0258	0.0099	0.0143	0.0214	0.02	0.012	0.0107
30	0.0099	0.027	0.0111	0.0288	0.0094	0.0135	0.0219	0.025	0.012	0.0114

1. The mean electrical resistances of zinc phosphate cement

	10			0.601	0.2763	0.0055	0.0049	0.0042	0.0031	0.0026
	6			0.629	0.0313	0.0169	0.0085	0.0072	0.0048	0.0043
	8			0.394	0.02	0.0129	0.0072	0.005	0.0043	0.004
	7			0.427	0.0125	0.0101	0.0044	0.0039	0.0034	0.004
	9			0.3153	0.0116	0.0057	0.0049	0.0031	0.003	0.003
	5			0.643	0.0134	0.0098	0.0058	0.0043	0.0036	0.0027
er cemen	4			0.647	0.0248	0.0123	0.0073	0.0056	0.005	0.0047
ass ionom	З			0.1602	0.0164	0.0077	0.0046	0.0037	0.0052	0.0046
ances of g	7			0.1202	0.0208	0.0155	0.0097	0.0088	0.0049	0.0048
rical resist	1			0.45	0.0175	0.0112	0.0059	0.005	0.0045	0.0037
e mean elect		Mean	$[\times 10^6 \Omega]$							
Table 10 The	No.specimen	Time [day]		0		3	7	14	21	30

. cement	
ionomer	
of elass)
ances c	
l resista	
lectrica	
mean e	
The r	
ole 10	

	10			>2000	>2000	>2000	>2000	>2000	>2000	>2000
	6			>2000	>2000	>2000	>2000	>2000	>2000	>2000
	ω			>2000	>2000	>2000	>2000	>2000	>2000	>2000
C&B	7			>2000	>2000	>2000	>2000	>2000	>2000	>2000
uperbond	6			>2000	>2000	>2000	>2000	>2000	>2000	>2000
-100 and S	5			>2000	>2000	>2000	>2000	>2000	>2000	>2000
ely-X ^{IM} U-	4			>2000	>2000	>2000	>2000	>2000	>2000	>2000
Unicem, R	3			>2000	>2000	>2000	>2000	>2000	>2000	>2000
of Rely-X	2			>2000	>2000	>2000	>2000	>2000	>2000	>2000
esistance o	Ţ			>2000	>2000	>2000	>2000	>2000	>2000	>2000
electrical re		Mean	$[\times 10^{6}\Omega]$							
Table 11 The	No.specimen	Time [day]		0	1	3	2	14	21	30

^M U-100 and Superbond C&B
Ē×.
Rely
Ë.
nice
Ď
Rely-X
e of
ance
sist
al re
trica
elec
he
رب اب
able

No.specimen		-	2	3	4	5	9	7	Ø	6	10
Time [day]	Mean $[x10^{\circ} \Omega]$										
0		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
1		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
2		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
14		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
21		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
30		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
			-								

^A Unicem
É∕
Rely- >
of
resistance
electrical
<b>12</b> The
Table

Table 13 The	electrical re	esistance o	f Superbo	nd C&B							
No.specimen		-	2	33	4	J	6	7	ω	6	10
Time [day]	Mean										
	$[\times 10^{6}\Omega]$										
0		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
1		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
3		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
7		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
14		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
21		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
30		>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000

C&B
oerbond
of Sul
resistance
electrical
3 The
able 1

**Table 14** The result of weight before immersion, weight after immersion and thesolubility of dental luting cements

	1. The weight	before im	mersion,	the weigh	t after	immersion	and the	e solubi	lity
of zind	c phosphate								

No.specimen	Weight before	Weight after	Weight loss [g]	Solubility
	immersion [g]	immersion [g]		[µg/mm ³ ]
1	0.980	0.910	0.070	891.720
2	1.020	1.000	0.020	254.777
3	1.020	0.980	0.040	509.554
4	0.930	0.920	0.010	127.389
5	0.910	0.900	0.010	127.389
6	0.940	0.920	0.020	254.777
7	1.060	1.050	0.010	127.389
8	1.160	1.150	0.010	127.389
9	1.080	1.060 ER	SITY 0.020	254.777
10	1.090	0.990	0.10	1273.853

No.specimen	Weight before	Weight after	Weight loss [g]	Solubility
	immersion [g]	immersion [g]		[µg/mm ³ ]
1	0.65	0.644	0.006	76.433
2	0.62	0.608	0.012	152.866
3	0.64	0.598	0.042	535.032
4	0.76	0.728	0.032	407.643
5	0.68	0.628	0.052	662.420
6	0.64	0.638	0.002	25.478
7	0.67	0.638	0.032	407.643
8	0.61	0.588	0.022	280.255
9	0.67	0.638	0.032	407.643
10	0.65	0.648	0.002	25.478

2. The weight before immersion, the weight after immersion and the solubility of glass ionomer

CHULALONGKORN UNIVERSITY

No.specimen	Weight before	Weight after	Weight loss [g]	Solubility
	immersion [g]	immersion [g]		[µg/mm ³ ]
1	0.790	0.790	0	0
2	0.790	0.790	0	0
3	0.810	0.810	0	0
4	0.830	0.830	0	0
5	0.820	0.820	0	0
6	0.810	0.810	0	0
7	0.790	0.790	0	0
8	0.750	0.750	0	0
9	0.780	0.780	0	0
10	0.720	0.720	0	0

3. The weight before immersion, the weight after immersion and the solubility of Rely-X  $^{\rm TM}$  Unicem

No.specimen	Weight before	Weight after	Weight loss [g]	Solubility
	immersion [g]	immersion [g]		[µg/mm ³ ]
1	0.670	0.670	0	0
2	0.670	0.670	0	0
3	0.670	0.670	0	0
4	0.640	0.640	0	0
5	0.680	0.680	0	0
6	0.680	0.680	0	0
7	0.670	0.670	0	0
8	0.640	0.640	0	0
9	0.630	0.630	0	0
10	0.620	0.620	0	0

4. The weight before immersion, the weight after immersion and the solubility of Rely-X U100

No.specimen	Weight before	Weight after	Weight loss [g]	Solubility
	immersion [g]	immersion [g]		[µg/mm ³ ]
1	0.570	0.570	0	0
2	0.570	0.570	0	0
3	0.580	0.580	0	0
4	0.530	0.530	0	0
5	0.610	0.610	0	0
6	0.560	0.560	0	0
7	0.560	0.560	0	0
8	0.540	0.540	0	0
9	0.540	0.540	0	0
10	0.580	0.580	0	0

5. The weight before immersion, the weight after immersion and the solubility of Superbond C&B

 Table 15
 The result of statistics of electrical resistance, porosity and solubility

1. Comparison of electrical resistance between zinc phosphate and glass ionomer

		G	Toup Statis	Sucs	
	group	Ν	Mean	Std.	Std. Error
				Deviation	Mean
resistan	1	10	3.244150	2.8725008	.9083645
ceday0	2	10	.438670	.1955555	.0618401

•

## Independent t-test

		Lever	ne's			t	-test for Equ	ality of Mear	าร	
		Test	for							
		Equali	ty of							
		Variar	nces							
		F	Sig.	t	df	Sig.	Mean	Std. Error	95% Co	onfidence
						(2-	Difference	Difference	Interva	al of the
						tailed)			Diffe	rence
									Lower	Upper
	Equal									
	variances	27.824	.000	3.081	18	.006	2.8054800	.9104671	.8926597	4.7183003
	assumed									
o	Equal									
0	variances			2 0 0 1	0.002	012	2 0054000	0104671	7407400	1 96 221 09
	not			5.061	9.065	.015	2.0034000	.9104071	.1401402	4.0022190
	assumed									

## 2. Comparison of porosity among five groups of dental luting cement

## Report

porosity					
grou	Mean	Ν	Std.		
р			Deviation		
1	40.5962320	10	15.97960250		
2	47.7337710	10	4.67835788		
3	41.1910140	10	9.00675883		
4	39.4964570	10	7.46454203		
5	76.5914810	10	6.57883162		
Total	49.1217910	50	16.88110322		

### ANOVA

porosity					
	Sum of	df	Mean	F	Sig.
	Squares		Square		
Between	0047 200	4	2461 950	26.014	000
Groups	9847.599	4	2401.850	20.914	.000
Within Groups	4116.212	45	91.471		
Total	13963.611	49			

จหาลงกรณ์มหาวิทยาลัย

## Multiple Comparisons

Dependent Variable: porosity

Tukey HSD

(I) group	(J) group	Mean	Std. Error	Sig.	95% Confidence Interval	
		Difference (I-J)			Lower Bound	Upper Bound
	2	-7.13753900	4.27718060	.463	-19.2909337	5.0158557
1	3	59478200	4.27718060	1.000	-12.7481767	11.5586127
Ţ	4	1.09977500	4.27718060	.999	-11.0536197	13.2531697
	5	-35.99524900*	4.27718060	.000	-48.1486437	-23.8418543
	1	7.13753900	4.27718060	.463	-5.0158557	19.2909337
2	3	6.54275700	4.27718060	.549	-5.6106377	18.6961517
2	4	8.23731400	4.27718060	.319	-3.9160807	20.3907087
	5	-28.85771000 [*]	4.27718060	.000	-41.0111047	-16.7043153
	1	.59478200	4.27718060	1.000	-11.5586127	12.7481767
2	2	-6.54275700	4.27718060	.549	-18.6961517	5.6106377
5	4	1.69455700	4.27718060	.995	-10.4588377	13.8479517
	5	-35.40046700*	4.27718060	.000	-47.5538617	-23.2470723
	1	-1.09977500	4.27718060	.999	-13.2531697	11.0536197
4	2	-8.23731400	4.27718060	.319	-20.3907087	3.9160807
4	3	-1.69455700	4.27718060	.995	-13.8479517	10.4588377
	5	-37.09502400 [*]	4.27718060	.000	-49.2484187	-24.9416293
	1	35.99524900 [*]	4.27718060	.000	23.8418543	48.1486437
F	2	28.85771000 [*]	4.27718060	.000	16.7043153	41.0111047
5	3	35.40046700*	4.27718060	.000	23.2470723	47.5538617
	4	37.09502400 [*]	4.27718060	.000	24.9416293	49.2484187

*. The mean difference is significant at the 0.05 level.

Porosity

Tukey HSD					
group	Ν	Subset for alpha = 0.05			
		1	2		
4	10	39.4964570			
1	10	40.5962320			
3	10	41.1910140			
2	10	47.7337710			
5	10		76.5914810		
Sig.		.319	1.000		

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 10.000.

3. Mean and s.d. of weight before immersion in 5 groups of dental luting cements

Report					
w1				10	
group	Mean	Ν	Std.	ยาลัย	
			Deviation	<b>VERSIT</b>	
1	1019000.000	10	80201.1360		
2	659000.000	10	41753.2434		
3	789000.000	10	33149.4930		
4	657000.000	10	22135.9436		
5	564000.000	10	23664.3191		
Total	737600.000	50	165326.6402		

4. Mean and s.d. of weight after immersion in zinc phosphate and glass ionomer (the weight of polymer-based cements did not change)

w2			
group	Mean	Ν	Std.
			Deviation
1	000000 000	10	
T	988000.000	10	80663.9118
1 2	988000.000 635600.000	10 10	80663.9118 38410.6467

Report

5. Mean and s.d. of weight loss in zinc phosphate and glass ionomer

Report					
w3					
group	Mean	Ν	Std.		
			Deviation		
1	31000.000	10	30713.7320		
2	23400.000	10	17436.8703	~	
Total	27200.000	20	24618.3500	1	

าลงกรณ์มหาวิทยาลั

6. Mean and s.d. of solubility in zinc phosphate and glass ionomer

Report

solubility

group	Mean	Ν	Std.
			Deviation
1	394.904410	10	391.2577312
2	298.089160	10	222.1257386
Total	346.496785	20	313.6095517

		Leve	ene'			t	test for E	quality of N	Means	
		s Te	est							
		fc	r							
		Equa	ality							
		0	f							
		Varia	anc							
		e	S			6				
		F	Sig	t	df	Sig.	Mean	Std. Error	95% Coi	nfidence
						(2-	Differen	Differenc	Interva	l of the
						taile	се	е	Differ	rence
						d)			Lower	Upper
solubil	Equal varian ces assum ed	1.9 26	.18 2	.68 0	18	.505	96.8152 500	142.2752 459	- 202.0939 499	395.7244 499
ity	Equal varian ces not assum ed			.68 0	14.2 56	.507	96.8152 500	142.2752 459	- 207.8223 265	401.4528 265

7. Comparison of solubility between zinc phosphate and glass ionomer

Independent Samples Test

8. Correlation between electrical resistance day 0 and porosity

# Zinc phosphate

		Correlations		
			resistanceday0	porosity
		Correlation Coefficient	1.000	.014
	resistanceday0	Sig. (2-tailed)		.955
Spearman's		Ν	20	20
rho	porosity	Correlation Coefficient	.014	1.000
		Sig. (2-tailed)	.955	
		Ν	20	50

Glass ionomer

## Correlations

			resistanceday0	porosity
		Correlation	1 000	245
	· · · · · · · · · · · · · · · · · · ·	Coefficient	1.000	345
	resistanceday0	Sig. (2-tailed)		.328
Spearman's		Ν	10	10
rho	porosity	Correlation	245	1.000
		Coefficient	545	
		Sig. (2-tailed)	.328	
		Ν	10	10

9. Correlation between electrical resistance day0 and solubility

Zinc phosphate

		concations		
			resistanceday 0	solubility
			Ű	
Spearman's rho		Correlation Coefficient	1.000	.153
	resistancedayu	Sig. (2-tailed)		.520
		Ν	20	20
	solubility	Correlation Coefficient	.153	1.000
		Sig. (2-tailed)	.520	
		Ν	20	20

Correlations

Glass ionomer

## Correlations

			resistanceday0	solubility
		Correlation	1.000	200
	resistanceday0	Coefficient		.289
		Sig. (2-tailed)		.418
Spearman's		Ν	10	10
rho	solubility	Correlation Coefficient	.289	1.000
		Sig. (2-tailed)	.418	
		Ν	10	10

10. Correlation between electrical resistance day7 and solubility

Zinc phosphate

		Correlations		
			resistanceday 0	solubility
	resistanceday7	Correlation Coefficient	1.000	108
		Sig. (2-tailed)		.652
Spearman's		Ν	20	20
rho	solubility	Correlation Coefficient	108	1.000
		Sig. (2-tailed)	.652	
		Ν	20	20

Glass ionomer

## Correlations

			resistanceday0	solubility
Spearman's rho	resistanceday7	Correlation Coefficient	1.000	062
		Sig. (2-tailed)		.865
		Ν	10	10
	solubility	Correlation Coefficient	062	1.000
		Sig. (2-tailed)	.865	
		Ν	10	10

11. Correlation between electrical resistance day30 and solubility

Zinc phosphate

		Correlations		
			solubility	resistanceday30
	solubility	Correlation Coefficient	1.000	.194
		Sig. (2-tailed)		.412
Spearman's		Ν	20	20
rho	resistanceday30	Correlation Coefficient	.194	1.000
		Sig. (2-tailed)	.412	
		Ν	20	20

Glass ionomer

## Correlations

			solubility	resistanceday30
Spearman's rho	solubility	Correlation	1 000	765
		Coefficient	1.000	.705
		Sig. (2-tailed)		.010***
		Ν	10	10
	resistanceday30	Correlation	765	1 000
		Coefficient	.105	1.000
		Sig. (2-tailed)	.010 ^{**}	
		Ν	10	10

**. Correlation is significant at the 0.01 level (2-tailed).

12. Correlation between electrical resistance day 30 and porosity Zinc phosphate

Correlations				
			resistanceday30	porosity
	resistanceday	Correlation Coefficient	1.000	325
30	30	Sig. (2-tailed)		.162
Spearma		Ν	20	20
n's rho	porosity	Correlation Coefficient	325	1.000
		Sig. (2-tailed)	.162	
		Ν	20	50

Glass ionomer

		Correlations		
			resistanceday30	porosity
Spearman's rho	resistanceday 30	Correlation Coefficient	1.000	.109
		Sig. (2-tailed)		.763
		Ν	10	10
	porosity	Correlation Coefficient	.109	1.000
		Sig. (2-tailed)	.763	
		Ν	10	10

## 61
13. Correlation between porosity and solubility Zinc phosphate

Correlations							
			resistanceday30	porosity			
Spearman's rho	resistanceday30	Correlation Coefficient	1.000	325			
		Sig. (2- tailed)		.162			
		Ν	20	20			
	porosity	Correlation Coefficient	325	1.000			
		Sig. (2- tailed)	.162				
		Ν	20	50			
		// // // Walls Villa					

Glass ionomer

## Correlations

			solubility	porosity
	solubility	Correlation Coefficient	1.000	.382
		Sig. (2-tailed)		.277
Spearman's		Ν	10	10
rho	porosity	Correlation Coefficient	.382	1.000
		Sig. (2-tailed)	.277	
		Ν	10	10

## VITA

Miss Yaninee Kosaiyakanon was born on Tuesday 14th June 1983 in Yala, Thailand. She has the one younger brother, Thun Kosaiyakanon. She graduated the degree of Doctor of Dental Surgery (D.D.S.) from Faculty of Dentistry, Thammasat University in 2009. After that, she has worked as a dentist at Dental department, Maharaj Hospital (Government hospital at Nakon si Thammarat province, Thailand) for 3 years. Then she is permitted to attend the course of Master of Science in Prosthodontics, Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University.



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University