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 หลายครัง้ท่ีการได้มาซึง่พืน้ผิววตัถมีุความไม่สมบรูณ์ เน่ืองจากข้อจํากดัทางด้านเทคนิค

ต่างๆ วิทยานิพนธ์ฉบบันีไ้ด้นําเสนออลักอริทึมในการเติมพืน้ผิววตัถใุห้สมบรูณ์โดยใช้บริบทของ

พืน้ผิวท่ีมีอยู่แล้วจากตัวอย่าง งานวิจัยทางด้านการเติมพืน้ผิววัตถุฉบับก่อนๆ ยังไม่สามารถ

รองรับวตัถุท่ีมีลกัษณะพืน้ผิวท่ีมีลวดลายซํา้กันแบบสม่ําเสมอหรือไกล้เคียงได้ดี เป้าหมายของ

งานวิจัยชิน้นีค้ือ การสงัเคราะห์พืน้ผิวให้กับวตัถุท่ีมีรู โดยพืน้ผิวท่ีสงัเคราะห์จะต้องมีลกัษณะ

บริบทของพืน้ผิวเหมือนกบัลกัษณะของพืน้โดยรอบรู งานวิจยัชิน้นีส้ามารถรองรับวตัถท่ีุพืน้ผิวมี

ลวดลายแบบสมํ่าเสมอ แบบไม่สม่ําเสมอ หรือแบบสุม่ได้ งานวิจยัได้ใช้หลกัการแยกรายละเอียด

วตัถเุพ่ือแยกวตัถอุอกเป็นสองสว่น คือ สว่นความละเอียดตํ่ากบัสว่นความละเอียดสงู สว่นความ

ละเอียดตํ่าจะถกูเติมเต็มแบบเรียบ ส่วนความละเอียดสงูจะถกูทําการแปลงลาปลาเชี่ยนและถกู

เตมิเตม็ด้วยวิธีการสงัเคราะห์เชิงตวัอย่าง ระบบพิกดัลาปลาเช่ียนเป็นการเก็บข้อมลูเส้นปกติและ

ความโค้งของแต่ละจดุบนพืน้ผิววตัถ ุและจะถกูใช้เป็นลายเซ็นต์ของพืน้ผิวในการตรวจสอบการ

เหมือนกันของส่วนของพืน้ผิว หลงัจากส่วนของวตัถุทัง้สองส่วนได้ถูกเติมเต็มแล้ว จะถูกนํามา

รวมกนัในระบบพิกดัลาปลาเช่ียน และทําการแปลงกลบัเพ่ือสร้างพืน้ผิวท่ีสมบรูณ์ อลักอริทึมของ

งานวิจยัฉบบันีไ้ด้ทําการทดลองกบัพืน้ผิวแบบเรียบ พืน้ผิวแบบโค้ง ท่ีมีลกัษณะลวดลายพืน้ผิวทกุ

รูปแบบ ผลการทดลองแสดงให้เห็ว่า รูสามารถถูกเติมให้เต็มด้วยพืน้ผิวสงัเคราะห์ท่ีมีลกัษณะ

ลวดลายเหมือนกบัพืน้ผิวต้นฉบบัโดยรอบรู โดยรอยตอ่ระหวา่งพืน้ผิวเดมิกบัพืน้ผิวสงัเคราะห์ไม่มี

ให้ปรากฏ 
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CHAPTER  I 

INTRODUCTION 

1.1 Background and Statement of Problems 

In recent years, we have seen widely spread use of 3D model 
acquisition systems.  The 3D scanning techniques are becoming to go beyond 
professional projects to mass public usages.  However, the acquired surface usually 
incomplete due to many reasons such as noise, limited viewpoints, self-occlusion, and 
technological constrains. The incompleteness of the surface or holes is needed to be 
filled before the further use of the acquired model. Furthermore, some model editing 
operation such as cutting and pasting introduce holes to the model and thus these 
holes need to be filled automatically.  In order for 3D scanning systems to be widely 
available to the consumer, robust and easy-to-use surface completion methods need to 
be developed for the users. 

Surfaces can be categorized into smooth surfaces and non-smooth 
surfaces.   Smooth surfaces are surfaces with low geometric variations.  There are no 
geometric details or relief information on the surfaces.  On the other hand, non-smooth 
surfaces exhibits relief information or geometric patterns on the surfaces.  In this work, 
the relief patterns of non-smooth surfaces are classified as near-regular patterns, 
irregular patterns and stochastic patterns (Figure 1.1).   

Near-regular patterns are patterns that obviously have repetition of the 
geometric elements.  The repetition may have some distortions or offsets.  Irregular 
patterns are patterns that have some geometric structures.  The structures look similar 
to each other but they are not the replications of each other.  Stochastic patterns are 
patterns that do not exhibit geometric structures.  However, stochastic patterns have 
some statistical distribution of geometric properties.  

The definition of a hole is subjective to the user’s view.  Usually, the 
user selects a part of the surface to perform surface completion.  In this work, a hole is 
defined as a closed cycle of boundary edges [1].  In some cases, a hole may have isles 
on it.  The isles are the fragment of the surface.     
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Figure 1.1: An example of near-regular, irregular and stochastic relief patterns. 
  

Researches on surface completion can be divided into two groups.   

The first group [2-4] fills hole on the model smoothly (Figure 1.2 (b)).  
These methods usually rely on boundary conditions or algorithms based on diffusion 
process to fill the hole. However, for surfaces that have geometric detail, it can be 
easily noticed that the filled surface is not consistence with the surrounding surface.  
Thus, the users have to painstakingly edit the filled surface to make it match the 
surrounding surface. 

As a matter of fact, the second group [5-12] try to analyze the geometric 
or surface’s relief information available in the input surface and transfer this features to 
the hole’s surface (Figure 1.2 (c)).  These context-based methods attempt to produce 
the hole’s surface that has similar geometric detail as the input surface.  Unfortunately, 
analyzing relief pattern and transferring it to the hole’s surface is not trivial.  Usually, 
most of the previous works [8-12] can handle patterns that are stochastic.  However, 
relief patterns that contain near-regular or irregular structures are still a challenging 
problem.        
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Figure 1.2: Smooth surface completion (b) and Context-based surface completion (c) of 
the input surface (a). 

 

This work presents a method for completing the mesh surfaces that 
contain near-regular, irregular or stochastic relief patterns.  The algorithm is designed to 
analyze and extract these features from the input mesh and fill it to the hole.  In 
addition, the algorithm attempts to construct the hole’s surface with overall structure that 
is similar to the input surface. 

This research is built on the two ideas, multi-resolution decomposition of 
meshes and example-based synthesis.  

The multi-resolution decomposition [13] views the surface as compose of 
low-frequency part which represents the overall surface structure and high-frequency 
part which represents the geometric surface detail.  This view, in many ways, reflects 
the human observation on object shapes.  The technique is used extensively in model 
editing process [14].  Artists can edit one part without disturbing the other part. 
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This research decomposes the surface into two parts, the coarse mesh 

and the relief mesh.   First, the hole of the coarse mesh is smoothly filled.  Then, the 
relief pattern is transferred to this hole.  This is to ensure that both the structure of the 
filled hole and the relief pattern on the hole are consistent with the input surfaces. 

The example-based synthesis framework [15-16] is originated from the 
2D texture synthesis field.  It is used to synthesis a new texture that has visual similarity 
with the input texture but is larger in size.  Similarity is defined by the color difference 
between neighborhoods of the two pixels.  The value of each output pixel is determined 
by comparing its spatial neighborhood with all pixels’ neighborhoods of the input texture. 
The input pixel with the most similar neighborhood will be assigned to the 
corresponding output pixel.  The results [17] of example-based synthesis are pleasing.   
They contain visual correspondence as presented in the input textures. 

This research adapts the idea of the example-based framework to 
transfer the relief pattern to the smoothly filled hole.  However, for the mesh domain, 
some important aspects need to be solved. First, mesh topologies do not align regularly 
in uniform grid style as in images.  Meshes that are similar in shape may differ in 
topology considerably making the comparison between the two vertices’ neighborhoods 
impossible.  Second, surface similarity metric or surface signature is still an ongoing 
research.  Usually, works on surface signature [8,10] measure only the overall likeness 
of the surfaces’ shapes.  Thus, they are not accurate enough to use in the example-
based framework. 

This research proposed the use of Laplacian coordinate as the 
representation for the coarse mesh and the relief mesh. Laplacian coordinate represents 
the curvature and normal of each point on the surface instead of the position.  Thus, it 
looks promising to use as a surface signature for similarity test.  The merging of the 
smoothly filled hole and the relief pattern is also done in Laplacian space.  

1.2 Objectives of Study 

The objective of this study is to propose an algorithm to fill the hole on 
mesh surfaces.  The filled surface will contains the geometric surface detail or relief 
detail as presented in the existing surface.  In addition, this study also proposes the 
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Laplacian based surface signature to compare the similarity between two surface 
patches.  

1.3 Scopes of Study 

1  The proposed algorithm can accept arbitrary 2-mainfold oriented 
surface mesh models.   

2  The input models must compose of regular polygons, otherwise the 
input models have to be remeshed before use.  

3  The input hole is defined as a single closed loop of boundary 
vertices.  The algorithm does not accept hole with isles or 
disconnected hole boundary. 

4  The input models should contain near-regular, irregular or stochastic 
relief details in order to guide the algorithm. 

1.4 Research Procedures 

1  Research and study previous works on mesh processing and surface 
completion.  Analysis the advantages and disadvantages of each 
works. 

2  Design the algorithm using divide and conquer technique. 

3  The process of the algorithm is divided into many steps 

a. Finding the offset regions 

b. Performing mesh smoothing 

c. Completing coarse mesh 

d. Computing Laplacian coordinate 

e. Computing mesh parameterization 

f. Transferring relief pattern 

g. Computing inverse Laplacian transform. 

4  Implement the algorithm. 
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5  Set up the experimentation with various test cases. 

6  Test, improve and correct the algorithm. 

7  Analysis and evaluate the proposed algorithm.  

8  Do the conclusion, suggestions and plan the future work 

1.5 Expected Benefits 

1  The proposed method performs surface completion for general mesh 
models.  The filled surfaces contain relief detail similar to the existing 
surface.  Thus, the proposed method can save a considerable 
amount of time in the model acquisition process. 

1.6 Thesis Structure 

This thesis has five chapters namely - introduction, theoretical 
background and related works, the proposed method, experimental results, summary 
and future works. 

Chapter 2 gives a brief description of the mesh definition, curvature 
definition, mesh representation and Laplacian representation framework.  Related works 
on surface completion and example-based synthesis are also discussed.  Chapter 3 
presents the proposed algorithm.  The algorithm can be divided into four parts – mesh 
decomposition, coarse mesh completion, relief mesh completion and combining of 
coarse mesh and relief mesh.  In chapter 4, the algorithm is tested with various test 
cases and parameter settings. The results and the limitations of the algorithm are 
demonstrated.  Thesis summary and future works are presented in chapter 5.  



CHAPTER  II 

THEORETICAL BACKGROUND AND RELATED WORKS 

2.1 Theoretical Background 

2.1.1 Mesh Definition  

In this work, 3D models are represented with polygon meshes.  Although 
there are other model representation such as spline surfaces, subdivision surfaces and 
implicit surfaces, mesh representation can approximate wide range of surfaces and 
does not have the continuity constrain as the other surfaces.  Mesh representation is 
simple, robust and flexible surface representation.  There are many algorithms [18-20] 
that convert other surface representations to mesh. 

This research is also restricted mesh representation to compose of only 
triangles.  Since triangle is the only polygon that can guarantee its vertices to be on the 
same plane.  Triangle requires less time to manipulate than other type of polygons and 
can be directly processed by graphics hardware.  Other polygon types can be converted 
to triangle with the use of triangulation algorithms [21-22]. 

Some properties of the triangle mesh are defined as followed: 

For every vertex v, the valence of a vertex is defined as the number of 
neighborhood vertex that has direct edge to it. 

Triangle is isotropic if its shape is close to equilateral triangle.  For 
example, the long thin triangle has low isotropic value. 

Mesh has uniform distribution if the mesh elements are evenly spread 
across the entire model.   

Mesh topology is the interconnection pattern of edges and vertices. 

The interior edge is an edge that is share by two triangles.   

The boundary edge is an edge that connects to only one triangle.   

The interior vertex is a vertex that is connected only by interior edge.   

The boundary vertex is a vertex that has one or more boundary edge.  
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A vertex in a triangle mesh is regular if its valence is 6 for interior 

vertices or 4 for boundary vertices. 

A surface is a 2-manifold if it is everywhere locally homeomorphic to a 
disk.   

 

 

 

 

 

Figure 2.1: An example of triangle mesh with some topology definitions. 
 
 
 
 
 

 
 

Figure 2.2: (Left) Mesh with low isotropic triangles and (Right) mesh with high isotropic 
triangles. 

 

2.1.2 Curvature Definition  

This section shows the curvature definition on surfaces.  Curvature plays 
an important role on mesh processing and surface analysis.  The applications are such 
as mesh smoothing, mesh parameterization, mesh editing and mesh deformation.    
Curvatures are the basis local properties of the surfaces.  The definitions are defined for 
continuous surface.  For discrete surfaces such as meshes, approximation formulas are 
required.  
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Let a continuous surface 3RS ⊂ be given in parametric form as 
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In mesh representation, normal vector of a polygon is usually computed 

from the cross product between two polygon’s edges.
 

The first fundamental form of x is   
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Let  vu bxaxt += be a unit vector in the tangent plane at P, represented 
as Tbat ),(= (Figure 2.3) 

Normal curvature in direction t  can be expressed as 

tIt
tIIttk T

T

n =)(  

Principal curvatures are used to define the curvature at each point on 
the surface and do not have to depend on the chosen direction t .  Principal curvatures 
are minimal curvature and maximal curvature.   
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Minimal curvature is defined as  

)(minmin1 tkkk nt
==  

Maximal curvature is defined as 

)(maxmax2 tkkk nt
==

 
 

 

 

 

 

 

 

Figure 2.3:  At point p of the surface x, the normal vector n and tangent vector t are 
perpendicular to each other.  The dash line shows the intersection of surface x and the 
tangent plane defined by vector n and t.  The normal curvature is defined for each point 

and for each direction t.    

 

Beside principal curvatures, there are two other types of curvature, 
Gaussian and Mean curvature, which are defined using minimal and maximal curvature. 

Gaussian curvature is defined as equation (1) and Mean curvature is 
defined as equation (2). 

21kkK =              (1)  

                           (2)
 

 

Mean curvature can be approximated for each point on mesh using 
Laplacian operator as presented in section 2.1.4.1. 

2
21 kkH +
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Figure 2.4: The visualization of the Mean curvature of the horse model and the 
armadillo model.  The blue color indicates the positive mean curvature value or surface 
with convex curvature.  The red color indicates the negative mean curvature value or 

surface with concave curvature.  The green color indicates planar surface. 

 

2.1.3 Mesh Representation  

For efficiency in computation, the Half-edge data structure is used in 
geometry processing.  Then, it is converted to Indexed face representation that is more 
suitable for the rendering pipeline.   

2.1.3.1 Indexed Face 

Indexed face represents meshes by the used of vertex list and face list.  
Vertex list stores the vertices position while the face list stores the mesh triangle (face) 
vertices by using indexes number on the vertex list.  The drawback of the indexed face 
representation is that it does not store the neighborhood information of each vertex 
explicitly.  Thus, the neighborhood query operation of a vertex is O(n), where n is the 
number of vertex on mesh. 

2.1.3.2 Half-Edge Data Structure 

Half-Edge representation stores each edge twice [23-24].  Each half-
edge stores a link to the vertex it points to, the next half-edge, its opposite half-edge 



12 

 
and its adjacent face.  Although Half-Edge use more memory than Indexed face, this 
structure can perform neighborhood query such as 1-ring in O(1).  As a matter of fact, it 
is used extensively in mesh processing field. 

 

 
 
 
 
 
 

Figure 2.5: The references stores by a half-edge. 
 

2.1.4 Laplacian Representation  

2.1.4.1 Laplacian Coordinate and Laplacian Operator  

Laplacian operator is defined as the divergence of the gradient and can 
be written as the sum of second partial derivatives [25]. 

∑ ∂
∂

=∇=Δ
i ix

ffdivf 2

2

    
(3) 

For a given function f defined on a manifold surface S the Laplacian-
Beltrami is defined as  

fdivf SSS ∇=Δ      (4) 

Applied to the coordinate function x  of the surface the Laplacian-
Beltrami operator evaluates to the mean curvature normal 

HnxS 2−=Δ      (5) 
Thus, Laplacian representation encodes mean curvature multiply by 

normal vector of each point on the surface.  
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For discrete Laplacian-Beltrami operator, it can be approximated by 

Graph Laplacian or Geometric Mesh Laplacian. 

Graph Laplacian [26] is defined as 

∑
∈

−=Δ==
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d
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(6) 

where id is the number of immediate neighbor of vertex i .  δ  is called 
Laplacian coordinate.  Laplacian coordinate is defined by the used of surface differential 
properties therefore it also called differential coordinates.   

Geometric Mesh Laplacian [27] is defined as 
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))(cot(cot
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jiijij

i
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(7) 

where 
iΩ  is the area of the Voronoi cell constructed around the faces of 

vertex i .  In this research, iΩ  is equal to one-third of the area summation of all the 
faces around vertex i .  )(iN  are the neighborhood vertex of i .  ijα  and ijβ  are the two 
angles the opposite to the edge ij . 

 

 

 

 

 

 

Figure 2.6: The angles and the Voronoi cell (shaded area) used for the Geometric Mesh 
Laplacian computation.   

 

Graph Laplacian considers only the mesh’s topological information while 
Geometric Mesh Laplacian also considers geometric information such as surface area 
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and angle.  As a result, Geometric Mesh Laplacian produces more accurate Laplacian 
coordinate than Graph Laplacian method.   

2.1.4.2 Laplacian Transform  

Laplacian transform is the transformation from absolute coordinate which 
are Cartesian coordinate to Laplacian coordinate that represent local shape of the 
surface.  The transformation can be represented in the matrix form [28].   

Let },...,{ 1 nvvV =  be the set of vertices in absolute Cartesian 
coordinate.  

}{ iδ=Δ  be the set of vertices in Laplacian coordinate.   

A matrix L can be constructed such that LV=Δ , that is )( ii vL=δ .  
Matrix L can be viewed as the adjacency matrix of a graph of mesh.  The dimension of 
the matrix L is nxn , where n  is the number of mesh’s vertices. 

For Graph Laplacian, the matrix can be defined as 

 

 

 

 

For Geometric Mesh Laplacian, the matrix can be defined as 
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E is the set of edges of mesh.  The matrix is used to multiply each 

component (x, y, z) of Cartesian coordinate separately zyx LzLyLx δδδ === ,, .  

2.1.4.3 Inverse Laplacian Transform  

One property of the Laplacian coordinate is that it is translation invariant.  
Matrix L has rank = n-1 therefore its invert matrix cannot be computed.   

To reconstruct the Cartesian coordinate, a position is assigned to a 
vertex in the matrix to get a full rank system and therefore has the unique solution [28].  
The inverse Laplacian transform thus required solving a linear system of equation. 

∑
∈

−==
i

i
Nj

jdiii vvvL 1)(δ
   

(8) 

In practical application, such as model editing, the Cartesian coordinates 
are assigned to more than one vertex.  These vertices are called anchor vertices.  They 
act as hard constrains for the solver.    

Let },...,2,1{ mC =  be the set of indices of those vertices that were 
assigned spatial coordinates Cicv ii ∈= , .   

This additional constrain makes the linear system over-determine.  
However, one can solve for a unique solution in the least-square sense. [29] 

( )2)(minarg Δ−′=′
′

VLV
v     

(9)
 

Additional rows of anchor vertices are added to the matrix L .  For each 
of these rows, the column which its index is the anchor vertex’s index has the value of 
1 and 0 otherwise.  This modified matrix is denoted as matrix L~ .   

Also, the set of vertices in Laplacian coordinate, }{ iδ=Δ  , has to be 
modified as set b to include the assigned spatial coordinates },...,,{ 1 mccb Δ= . 

Thus the linear system LV=Δ now becomes bVL =~ .  To solve the 
least-square problem, the linear system bVL =~ can be written in normal equation form 
as bLVLL TT ~)~~( = .  LLT ~~

 is positive definite and sparse.  This research uses a direct 
method called Cholesky factorization [30-32] to solver for this linear system.   
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Figure 2.7: The components of the linear system bVL =~  use in the Inverse Laplacian 
transform. 

2.1.4.4 Features of Laplacian Coordinate 

The most important features of the Laplacian coordinate is that it stores 
local information of Mean Curvature and Normal vector of each vertex.  These are the 
local geometric properties of surface.  Therefore, Laplacian representation can better 
reflect the local shape of the surface than the use of Cartesian representation. 

The absolute coordinate reconstruction by linear least-squares method 
smoothly distributes the error across the domain.  This feature is an advantage when 
perform mesh editing operation because distortion error is not dominant in some 
specific points on the surface. 

Laplacian transform is translation invariant [29]. 

)())(( VLVTL =     (10) 
Inverse Laplacian transform also has the rotational property of 

    ))(())(( 11 Δ=Δ −− LRRL    (11) 
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T  is the translation matrix and R  is the rotation matrix. 

2.2 Related Works 

Surface completion can be broadly divided into two categories: one that 
does not consider contextual surface information and the other one that fill the hole with 
the available geometrical detail.  

Since, the proposed algorithm of this thesis performs mesh smoothing 
and mesh parameterization.  The related works of these methods are also presented in 
this part.  

2.2.1 Smooth Surface Completion 

Many authors proposed methods to smoothly fill the incomplete 
surfaces.  Notably, Liepa [1] presents a method that can fill the hole smoothly and the 
filled surface preserved the overall structure of the model.  The author use dynamic 
algorithm to fill the hole with subject to minimizing surface area.   

Liepa’s algorithm can be divided into three step namely – hole 
triangulation, mesh refinement [33] and fairing. 

First, Hole triangulation finds a triangulation of the polygon that is 
defined by the hole boundary.  The algorithm computes the triangulation that yields 
minimum triangulated surface area.  In addition, the algorithm minimizes dihedral angles 
of all adjacent triangles in the triangulated surface.    

The triangulated surface is refined so that the triangles in the 
triangulated surface are uniform and have the same size as the triangles in the offset 
region.  Mesh refinement interactively splits long edges, collapse short edges, flips 
edges and relaxes vertices until the average edges length of the triangulated surface is 
equal to the edges length of the offset surface [34]. 

 Finally, fairing is performs on the refined mesh [35].  Fairing is the 
method that minimizes surface curvature.  The total curvature of a surface S  can be 
expressed as the area integral of the sum of squared principal curvatures [36]. 
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With the use of Variational calculus, the solution that minimizes principal 
curvatures can be written in the form of Bi-Laplacian equation. 

02 =Δ x      (13) 

where  x  are the vertices positions. 

Davis et al.[2] use the diffusion process to fill the hole. This method 
performs voxelization of the model and the cell is classified as inside, outside or on the 
surface boundary. Xie et al. [4] and Sharf et al.[3] solve the problem of surface 
reconstruction from point clouds by the use of active contour base method. The 
minimization technique is used to propagate the active contour to fit the given point 
clouds as much as possible. These methods can handle hole with small fragment and 
unconnected hole. However, the filled surface is smooth and lack of geometric details. 
For a large hole, the visual perception can be distracting. They also have to convert the 
model to volumetric representation which required computational time and memory 
consumption. 

 

 

 

 

 

 

 
Figure 2.8: Smooth surface completion from [1].  The algorithm initially performs hole 

triangulation (middle) and follows by mesh refinement (right).  
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Figure 2.9: Volumetric based method [2] voxelizes the model and perform surface 
diffusion to fill the holes.   

 
 
 
 
 
 
 
 
 
 
 

Figure 2.10: Active contour method [4] voxelizes the model and expand contours to fit 
the available surfaces.  The surfaces of the expanded contours are used as the filled 

surfaces.  
 

2.2.2 Surface Completion with Contextual Information 

Many authors also consider contextual information when perform surface 
completion.  Schnabel et al.[5] use primitives as the guidance for surface completion. 
They first fit the model with the predefined primitives and extended the primitives shape 
to fill the holes. Their works apply well for CAD model. Desbrun et al.[6] perform surface 
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completion using model database. Their methods search the database to find surface 
patches to fill the holes. The database has to contain the stock models that similar to 
the one it try to complete.  

 

 

 

 

 

 

Figure 2.11: Primitives guidance method [5] finds the registration of the primitives to fit a 
given model. 

 
 
 
 
 
 
 
 
 

Figure 2.12:  The pipeline of the Example-based 3D scan completion [6]. 
 

Shaft et al.[8] proposes an example-base method to do context filling of 
holes. They fill the missing surface iteratively from coarse to fine level using an octree. 
They use the signed distance vectors of grid corners as the surface signature for 
surface similarity test.  The signature is a rough estimation of surface patterns which 
many not apply with near-regular or irregular pattern.  Breckon et al.[7,11] also fills the 
hole from the available surface of the model. The method first fit the whole model with a 
primitive, such as a plane, sphere or cylinder. Then, the primitive is used as a base 
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surface to sample the vertex displacement vectors from the original surface. The vertex 
displacement vectors are used as surface signature to search for the similarity. This 
method may have difficulty with non-height field surfaces which cannot be represented 
by the vertex displacement vectors and the surface with steep surface detail can 
produce high distortion result from sampling. Bendels et al.[9] also use the vertex 
displacement vectors as in Breckon et al. However, instead of fitting the whole model to 
a primitive, they iteratively perform multi-level surface completion.  

 

 

 

 

 

 

 

Figure 2.13: Context-based surface completion [8] fills the hole hierarchically.   
 
 
 
 
 
 
 
 
 
 

Figure 2.14: Breckon et al. [7] uses displacement vectors as the surface signature.   
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Park et al.[10] present a method to do surface completion that preserves 

both shape and appearance. They use grid to divide the surface into patches and do 
parameterization on each patch. For each patch, the six signatures of average, 
maximum and minimum of principle curvatures are used to perform shape similarity test.  
Although they use curvatures as signatures, the six statistic information of curvature can 
only represent the overall patch curvature but not the geometric context of the surface. 
In addition, by pasting the whole patch to a hole, the quality on the hole boundary can 
be noticeably different from other parts of the filling surface even with the use of surface 
blending.  

 

 
 
 
 
 

Figure 2.15: In iterative surface completion [9], The coarse filling is used as the guide 
for the more detail filling.  

 
 
 
 
 
 
 
 
 
 

Figure 2.16: Park et al. [10] perform patches parameterizations and use patch-based 
synthesis framework on the planar surface.  
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All of the above methods have shown impressive results but do not truly 

use signatures that can reflect the local properties of the surface. Thus, especially for 
near-regular or regular relief patterns, it is arguable that the result surfaces from the 
similarity query are the best candidate to fill the hole. Furthermore, for a large hole, the 
filled area should also preserve the overall surface structure of the model. The example-
based method that fill small patch by patch lacks the knowledge of the higher view of 
the surface structure. 

2.2.3 Example-based Texture Synthesis 

Example-based texture synthesis creates texture at any size without 
visible repetition by using the fixed-size texture as input.  The example-based method 
can be broadly divided into two type of algorithm namely pixel-based and patch-based 
synthesis.  In pixel-based synthesis [16-17], the value of each output pixel is determined 
by comparing its spatial neighborhood with all neighborhoods in the input texture. The 
input pixel with the most similar neighborhood will be assigned to the corresponding 
output pixel.  In contrast, patch-based synthesis [37-40] iteratively copies the whole 
texture patch to the target area instead of a single pixel at a time.  However, patch-
based synthesis has to solve the problem of overlapped, possibly conflict, region when 
copying patches.  Example-based techniques also used in other applications such as 
image inpainting [41-42] to fill the missing background image.    

 

 

 

 

 

 

 

 

Figure 2.17: Pixel-based texture synthesis [43]. 
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Figure 2.18: The comparison between pixel-based and patch-based method [43]. 

2.2.4 Example-based Texture Synthesis on Surfaces 

Another group of works focus on synthesis texture on 3D surfaces.  
Texture synthesis directly on the surface is more challenging since it is not easy to 
specify the orientation and neighborhood information on surfaces.  Approaches to tackle 
these problems are to densely populate surface with points and treat them like pixels 
[15], unfold the mesh onto the plane and perform synthesis in 2D [44] or treat triangles 
like patches, and find per-vertex (u, v) coordinates [45].  

 

 

 

 

 

 
Figure 2.19: Texture synthesis directly on the surfaces [15]. 

 

This thesis uses example-based framework to transfer relief pattern to 
the smoothly filled hole.  Orientation and neighborhood definition of each point on 
surfaces are also the problem that is needed to be addressed in the thesis.  Densely 
populate points [15] looks promising but may be too burden to use in the mesh domain. 
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2.2.5 Geometric Synthesis 

Geometric synthesis constructs novel surfaces based on example 
surfaces. Volumetric geometric creation [46] uses the detail surface from the given 
examples and places that detail to the target surface. Mesh quilting [47] uses example 
surface patches to stitch together over the surface of the target mesh. These approach 
synthesis new geometries by way of copy-and-paste method.  This thesis takes a 
different approach by trying to extract the geometric detail from the given surface and 
fuse it with the smoothly filled hole. 

 

 
 
 
 
 
 
 
 
 

Figure 2.20: Mesh quilting stitches the exemplar meshes together and places them on 
the target surfaces [47].   

2.2.6 Mesh smoothing 

Mesh smoothing is a tool in geometric processing.  The goals of mesh 
smoothing are denoising and generating fair surfaces.  Surface denoising is the method 
to remove high frequency noise of the surface.  Fair surfaces are the surfaces that 
satisfy some aesthetic requirement [48].  Usually, fair surfaces are defined by some 
energy function such as curvature function [36].  Mesh smoothing can be view as 
performing ideal low-pass filter on the surface [49].   
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Curvature flow [50] uses diffusion process to perform mesh smoothing.  

The area with high curvature is diffuse to the area with low curvature.  It is a powerful 
and widely used tool to perform mesh smoothing [49].     

Diffusion process of the function f is defined as linear diffusion equation 

2
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where λ is the rate of diffusion. 

In Curvature flow, where f  is defined as surface x , the rate of change 
of the function over time should be proportional to the curvature of the surface.  The 
right hand side of the equation is the Laplacian operator. 
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The Laplacian operator can be described as 
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where ix  is the vertex position, )( ixN  is the set of neighborhood 
vertices, ijw is the weight.  The weight can be defined as follows. 

Scale-dependent weight [51] is defined as 

ij
ij e

w 1
=

     
(17) 

where ije  is the edge that connect vertex i and vertex j.  

Curvature normal weight [50] is defined as  

jjijw βα cotcot +=
     (18) 

where jα  and jβ  are the angles opposite the edge in the two triangles 

that share the edge ije .  Curvature normal weight is a better approximation of Laplacian 
than Scale-dependent weight. 
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Diffusion process can sometime smooth out the existing features of the 

surfaces such as sharp edges and corners.  Anisotropic diffusion [52] can alleviate 
these problems by perform diffusion anisotropically.   Data dependent function is used 
to guide the flow of anisotropic diffusion.  Bilateral filter [53-54] is feature-preserving 
filtering technique.  The spatial distance and local variation of normals is taken into 
account while smoothing.    

2.2.7 Mesh parameterization 

Mesh parameterization is the method to compute one-to-one mapping 
between two surfaces with similar topology [55].  The squared planar surface can be 
parameterized by the parameter u  and v  which have the ranges of zero to one.   

When mapping arbitrary 2-mainfold surface with planar surface, the 
distortion is unavoidable.  The mapping can cause distortion in length, angle and area.  
The parameterization algorithms are designed to minimize the distortion as much as 
possible.   

Let ),,( zyxp =  be the points of a given surface and let ),( vuu =  be 
the parameter points of squared planar surface.  The goal is to find the mapping 

)(, ii pgug = .   

 First, for boundary vertices Bi Vp ∈  theirs corresponding parameter 
points iu  are set as the boundary values.  Usually, one of the components of 
parameter points has the value of zero. 

This research uses affine combination method or barycentric map to find 
the mapping g .  In this approach, each interior parameter point is an affine combination 
of its neighbors [55-56]. 
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ijλ is called barycentric coordinates of ip  which can be formulated by 
the normalization.   
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Using the Mean value coordinates [57], ijω  can be defined as  
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The notations in of the above equation are described in Figure 2.21. 

 

 

 

 

 

 

 
Figure 2.21: The notations of angles and lengths used in Mean value coordinates. 

 

The linear system of barycentric coordinates can be over-determined.  
Therefore, least-square method is used to find the solution for the system. 

The fixing of boundary may not need to be square.  The free-boundary 
parameterization [58] can give less distorted mappings.  The shape of the boundary is 
not limited to convex shape.  These methods perform distortion analysis on the given 
surfaces and then minimize the distortion. 

 Planar parameterization can only handle surface with disk topology.  
Thus for models with high genus, segmentation are performs on the models first [59-
60].  Each part that has disk shape topology is then parameterized individually. 



CHAPTER  III 

METHODS 

3.1 Overviews  

This work represents the 3D surfaces with polygon meshes.  The input 
of the algorithm is a mesh with a hole.  The mesh must be regular, uniform and 
composed of isotropic triangles.  The fairing method can be applied if the input mesh 
does not have the specific qualities.  If the model contains many holes, each hole is 
filled independently, one hole at a time.  The overview of the algorithm is shown in 
Figure 3.1 and its corresponding pseudocode in Figure 3.2.  

The process of the algorithm is to smoothly fill the hole first and then 
extract the relief pattern from the surrounding surface and transfer it to the filled hole.  
The challenges of this work are on how to extract the relief pattern, how to represent it 
and how to transfer it to the smoothly filled hole. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The high-level algorithm pipeline. 
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As discussed in the previous works, the example-based framework has 

proven itself to be successful in filling textures.  It looks promising to use this framework 
for transferring relief pattern.  However, in order for example-based method to be 
successful, it needs a signature that reflect the pattern and a signature that is defined 
spatially on the given exemplar.  

The key idea of the algorithm is to use multi-resolution decomposition to 
extract the relief pattern and to use Laplacian coordinate to represent it.  Laplacian 
coordinate defines the local geometric properties, which are normal and curvature, of 
each surface point.  The surface signature can be defined for each vertex using the 
Laplacian coordinate of neighborhood vertices.  In this way, this Laplacian signature can 
be used with the example-based framework to transfer the relief pattern to the smoothly 
filled surface. 

 

 

 

 

 

 

 

Figure 3.2: Pseudocode of the algorithm. 
 

For an input surface O , the offset region around the hole boundary is 
computed to use as a relief pattern exemplar. The offset region should have the area at 
least four to five time larger than the hole area.  Specifically, the region must cover the 
relief pattern.   

In computing the offset region, user defines the offset radius.  The offset 
radius is the distance from the hole boundary to the offset boundary.  The algorithm 
starts by setting the distance of each vertex on the hole boundary to be the value of 
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zero.  Then, Dijkstra’s algorithm is used to assign the distance to the others vertices 
that are connected with the hole boundary vertices.  The distance is the accumulated 
edge length measured from the hole boundary.  The assigned vertices are tagged as 
visited and are put into queue.  The algorithm dequeues those vertices and explores the 
unvisited vertices in the breadth first search manner until the offset radius distance is 
reached.  Polygons which contain vertices that have the distances less than the offset 
radius are in the offset region.  The other polygons outside the offset region are not 
used in the computation.  The edges that are shared by the polygons of the offset 
region and the polygons outside the offset region are used as the offset boundary. 

MeshO is divided into two regions: region holeO.  which is the region that 
is needed to be filled and is now empty and region offsetO.  which is the offset region 
around the hole boundary (Figure 3.1).    Other meshes that are constructed further in 
the algorithm are composed of the hole part and the offset part.  The surface part 
outside the offset region is not use in the surface completion algorithm.  Meshes with 
subscript L are represented in Laplacian coordinate.  Those that do not are represented 
in Cartesian coordinate.   

The algorithm performs mesh smoothing on mesh O  and obtain the 
coarse mesh S  as the result (step1, in Figure 3.2).  This mesh, S , is smoothly filled 
(step 2, in Figure 3.2).  Mesh O  and mesh S  are transformed into Laplacian coordinate 
using Geometric Mesh Laplacian which result in mesh LO  and mesh LS respectively 
(step 3-4, in Figure 3.2).   Mesh LS  and mesh LO  have the same mesh topology as in 
mesh S  and mesh O  but instead of storing vertex position, they store Laplacian 
coordinate. 

The relief mesh, LR , is obtained by subtracting LO with LS  (step 5, in 
Figure 3.2).  The hole’s region of the relief mesh, holeRL .. , is filled using the relief 
example from the offset region, offsetRL ..  (step 6, in Figure 3.2).  Finally, the coarse 
mesh holeSL ..  and relief mesh holeRL ..  are combine to reconstruct the completely filled 
mesh holeO.  (step 7, in Figure 3.2). 
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3.2 Multi-resolution Decomposition on Mesh 

Multi-resolution decomposition views surface as compose of low-
frequency and high-frequency information.  The low-frequency part is interpreted as the 
coarse mesh and high-frequency part as the relief mesh.  The coarse mesh is the 
overall surface structure while the relief mesh contains the geometric detail of the 
surface.   Each level of detail is filled separately using different algorithm.  The filled 
surfaces of each resolution are then combined together to form the final filled surface.  
In this way, the filled surface can preserve both the surface structure and surface 
contextual detail.         

Usually, the coarse mesh is obtained by perform mesh smoothing and 
the relief mesh is computed using normal displacement method.  Normal displacement 
[61-62] uses the normal of the base surface or coarse surface to sample the original 
surface in order to get the displacement vectors.  The normal displacement can be 
written as     

iiii nhbp ⋅+=     (23) 

where ip is the vertex position of the original surface, ib  is the vertex 
position of the base surface, in  is the normal vector of that vertex and ih  is the 
displacement value in the direction of in  and is used to represent relief information. (see 
Figure 3.3) 

 

 

 

 

 

Figure 3.3: Relief extraction using Normal displacement method. 

 

The problem of this method is that the surface has to be representable 
by a height field function.  Otherwise, the relief mesh does not have a one-to-one 
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mapping with the base mesh.  Depend on the geometry of the base mesh, sampling the 
original mesh can introduce distortion in geometric information.  The distortion is high at 
the steep area of the surface.   Due to undersampling artifact, the neighbor 
displacement vectors can have discontinuity even though the original surface is 
connected. 

In this research, Laplacian representation is proposed to use with the 
multi-resolution decomposition.  Laplacian coordinate does not suffer from the sampling 
problem as in the Normal displacement method and can be used to represent any 2-
manifold surfaces.  The high frequency detail is represented as the difference between 
the Laplacian coordinate of the original surface and the Laplacian coordinate of the 
coarse detail surface (step 3-5, in Figure 3.2).   

LLL SOR −=     (24) 
As stated in the chapter 2, Laplacian coordinate is equal to mean 

curvature normal. 

HnxS 2−=Δ
    (25) 

Actually, Laplacian coordinate is an ambiguous representation of the 
mean curvature normal.  The mean curvature, H , is positive when the shape in convex 
and negative when the shape in concave.  Thus, for the two points that have opposite 
normal vector direction and different mean curvature sign are equal in term of Laplacian 
representation.  

 

 

 

 

Figure 3.4: An example which Laplacian representation can be ambiguous.   
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In representing the relief mesh, LR cannot be used directly as the relief 

mesh since its Laplacian coordinate, δ , is still in the world coordinate.  The Laplacian of 
the relief mesh has to be defined relatively to the coarse mesh.  Since, this research 
views original mesh as compose of relief mesh and coarse mesh.  The Laplacian 
coordinate ,δ , of each vertex of LR has to be transformed to tangent space of the 
corresponding vertex of the coarse mesh.  For each vertex, the three axis of the 
tangent space can be defined using the normal vector, the binormal vector and the 
tangent vector of that vertex.  The normal vector of the coarse mesh is readily available.  
However, mesh parameterization is needed to compute the binormal vector and the 
tangent vector. 

For a given vertex on the coarse mesh S , let TNB ,, be the normal 
vector, tangent vector and binormal vector of that vertex respectively, 

The matrix  TWT →   that used to transform Laplacian coordinate from 
world space to tangent space can be defined as 
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The transformation can be compute as follow.  
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LR is now ready to be used to represent the relief mesh.  The ambiguous 
on mean curvature normal representation can now be resolved.  In tangent space, if the 

yδ  component is negative then the mean curvature is negative (concave) and vice 
versa. 
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Figure 3.5: The local axis is defined for each vertex of the coarse mesh.  

 

Figure 3.6 (b, e) shows the normal component of the Laplacian 
representations.  The green color represents the normal vectors that have the same 
direction as the normal vectors of the coarse mesh, while the blue color represents the 
normal vectors that have the opposite direction with the normal vectors of the coarse 
mesh.  Figure 3.6 (c, f) shows the mean curvature component of the Laplacian 
representations.  The blue color indicates the positive curvature.  The red color 
indicates the negative curvature.  The green color indicates the zero curvature.      

Laplacian coordinate is used in the relief mesh completion phase as the 
shape signature since it can handle any 2-manifold surfaces and reflects the surface 
geometrical information.  It also does not introduce sampling artifact such as 
discontinuity, distortion and non-uniform sampling.  The definition of the Laplacian 
surface signature to use with example-based framework is discussed in section 3.5.1. 
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Figure 3.6: The visualization of the Laplacian representation. 

3.3 Coarse Mesh Completion  

The coarse mesh offsetS.  is obtained by performing mesh smoothing. 
This research uses Curvature flow to do mesh smoothing [50] on offsetO. .   

This research uses Curvature normal weight on interior vertices and 
uses Scale-dependent weight for hole boundary vertices, since Curvature normal weight 
cannot be defined for boundary vertices.   

In addition, the neighborhood vertices used to compute Scale-dependent 
weight are limited to vertices that are on the hole boundary.  Otherwise, the boundary 
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vertices will be heavily pulled by the interior vertices due to the imbalance distribution of 
the neighborhood vertices. 

 

 

 

 

 

 

 

 

Figure 3.7: The hole boundary is rounder due to effect of mesh smoothing. 
 

Explicit Euler integration method or Finite differences method is used to 
solve the differential equation.  This can be computed by the iterative algorithm using 
the update rule 

)( oldoldnew PLPP λ+←     (27) 

where  P  is the vertex position.  The update rule is computed for each 
x, y, z coordinate separately. 

Mesh smoothing alternates the shape of the hole boundary considerably 
(Figure 3.7).  This seems to be problematic at first as the shape of the filled hole is not 
match the shape of the original hole boundary.  However, with the use of Laplacian 
representation, holeOL .  can be reconstructed by choosing the anchor vertices to be the 
positions of the original hole boundary.  The reconstructed holeO.  fuses seamlessly with 
the offsetO. .  The least-square solver attempts to reconstruct the Cartesian coordinate 
while preserve the mean curvature normal of each point as much as possible.  The 
geometric distortion that may happen is distributed over the surface and hence 
unnoticeable.  For Laplacian reconstruction, altering the hole boundary or keep the 
boundary intact makes no difference, since the anchor points needed to be set anyway. 
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On the other hand, if the hole boundary is fix when performing mesh 

smoothing (Figure 3.8), holeS.  computed from the coarse mesh completion will not be 
smooth and it will not reflect the coarse resolution of the original surface.  The result will 
have a downside effect on the relief mesh extraction. 

 

 
 
 
 
 
 

Figure 3.8: Fixing the hole boundary produces bumpy coarse mesh on the hole region. 
 

From the mesh smoothing results in Figure 3.7, the faces around the 
hole boundary are lager than the interior faces, because Scale-dependent weight only 
uses boundary vertices as the neighborhood.  This problem can be alleviated by 
performing tangential relaxation on the coarse mesh offsetS.  (Figure 3.9).  Tangential 
relaxation is the method to make the faces more uniform by repositioning vertices.  In 
tangential relaxation, the vertices can move only in the direction of its tangent vectors.  
This constrain preserves the direction of normal vectors of vertices.   

 

 

 

 

 

 

Figure 3.9: Tangential relaxation adjusts the areas of the polygons to make them more 
uniform. 
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This research use Liepa’s algorithm [1] to perform coarse mesh 

completion.  The algorithm performs hole triangulation, mesh refinement and fairing.  
Liepa’s algorithm is used in coarse mesh completion because it can produce smooth 
filling surface with minimize surface area and surface dihedral angle.   

In the fairing step, the Bi-Laplacian equation is needed to be solved. 

02 =Δ x      (28) 

In this research, the discretization method is used to replace differential 
operator with the divided different operator. 
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where )(iN  are the neighborhood vertex of i .  n  is the number of 
neighborhood vertex of i . 

The Bi-Laplacian system is solved using forward Euler integration 
methods.  The region holeS.  is now available. 

 

 
 
 
 
 
 
 

 
Figure 3.10: Smooth surface completion using Liepa’s method, (left) hole triangulation, 

(middle) mesh refinement, (right) fairing. 
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3.4 Computing Mesh Parameterization 

As introduced in section 3.2, mesh parameterization is needed to 
defined binormal vectors and tangent vectors for computing  gentLR tan, .  The Laplacian 
signature that is used with the example-based framework also requires surface 
parameterization to consistently defined the orientation of each surface point. 

This research computes the mapping between squared planar surface 
and the surface of mesh O .  This mapping can also be used with mesh S  and mesh 
R , since both have the same mesh topology as mesh O .   

This research uses barycentric map to construct parameterization.  The 
mapping is then used to define the binormal vectors and tangent vectors for each vertex 
points on the coarse mesh.  The result parameterization of barycentric map technique is 
close to the conformal mapping, the mapping which preserves angle distortion.  Thus, 
conformal mapping can consistently define the local axis over the surface.  The 
distortion in length can be negligible in computing local axis.    

In Figure 3.11, (a-c) are the input surfaces and (d-f) are the result 
parameterizations respectively.  The results in Figure 3.11 have high stretching near the 
boundary region.  This is because the solver tries to preserve the angles of vertices as 
much as possible.  In the image (g) of Figure 3.11, the u, v parameter [0,0] and [1,1] 
are mapped with the corner of the square mesh.  The result parameterization has little 
distortion.  In contrast with the image (h), the u, v parameter [0,0] and [1,1] are mapped 
at the center of the edge.  This setting is the hard case for the mapping and causes 
highly stretching in the mapping.  However, in the center region, the angle is still finely 
preserved.   

Although there is some distortion in the mapping, this is not going to be 
an issue, since this research only uses parameterization for defining the binormal 
direction and the tangent direction for each point on the surface.   
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Figure 3.11: The results of mesh parameterization.   
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3.5 Relief Mesh Completion  

The example-based framework is used to fill the region holeRL .. .  The 
region offsetRL ..  is used as the exemplar.  The relief information of holeRL ..  is still empty 
since the hole region is only smoothly fill and have no relief information.  The Laplacian 
coordinates of every vertices in holeRL ..  have value of zero.  The relief pattern encoded 
in Laplacian coordinate from the offset region are used to transferred to holeRL .. .  The 
pseudocode is presented in Figure 3.12.   

This research uses pixel-based synthesis [16] approach by transferring 
the Laplacian coordinate of the hole region to the offset region vertex by vertex.  The 
patch-based synthesis can have an issue with the differences in mesh topology 
between holeRL ..  and offsetRL .. .  If the mesh topologies of the two regions are different, 
Laplacian coordinates cannot be copied directly from one region to the other.  In 
addition, patch-based synthesis can complicate the surface signature definition since the 
shape and the area of each patch may vary from each other. 

 

 

 

 

 

 

 

 

 

Figure 3.12: The pesudocode for relief mesh completion.  

 

Let OV  be the set of vertices of offsetRL .. , oV  is an element in OV . 

Let HV  be the set of vertices of holeRL .. , hV  is an element in HV . 



43 

 
For each vertex in offsetRL .. , oV , its Laplacian signature )( oVξ  is computed 

from the collection of Laplacian coordinates of the sampling points in the neighborhood 
region of vertex oV .  (section 3.5.1).  

The algorithm starts at the vertex on the boundary of holeRL .. .  It then 
visits other vertices of  HV  in spiral fashion.  The last visited vertex is the one located at 
the center of the hole region.  The vertex visiting is implemented using queue and 
breadth first search algorithm.  By visiting vertices in this manner, many neighborhood 
vertices around hV  will already have the Laplacian coordinates assigned and can be 
used to compute the Laplacian signature for the vertex hV .  If there are too few 
neighborhood vertices to use in computing the Laplacian signature, the Laplacian 
signature may not reflect the characteristic of the relief pattern of a surface patch.    

 

 

 
 
 
 
 
 

 
Figure 3.13: The vertices in holeRL ..  are visited in spiral fashion, started from the hole 

boundary. 
 

For each vertex in holeRL .. , hV , the algorithm searches for the oV  that 
have the best matching Laplacian signature (section 3.5.2).  The Laplacian coordinate 
of oV  is transferred to hV  using matrix WTT →  (section 3.5.3). 

The algorithm terminates when all vertices in HV  are visited and have 
received the Laplacian coordinate from OV . 

 

 

  
offsetRL ..

holeRL ..
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3.5.1 Computing Laplacian Signatures 

The surface signature is used to compare the visual similarity between 
two patches of surface that are equivalent in surface areas.  In this research, the 
surface signature that can be defined for every vertex on the surface is needed to use 
with the example-based framework. 

Defining a signature on surface introduces many problems that are not 
found in texture.  Vertices may not have an equal number of neighborhoods.  Vertices 
may not uniformly distribute on the surface.  These are the problems of irregularity of 
mesh topologies.  Furthermore, surface is non-planar like texture.   

In this research, for any given vertex, iV , Laplacian surface signature 
)( iVξ  is defined as the collection of tangent space Laplacian coordinates n−1δ  of the 

sampling points in the neighborhood region of vertex iV .   

{ }niV δδδξ ,...,,)( 21=      (31) 
where n  is the number of sampling point. 

Laplacian coordinate is used because it can be defined on each point of 
the surface.  It also represents the geometric properties of each point, the curvature and 
normal, which define the visual characteristic of a surface. 

The neighborhood region of vertex iV , )( iVN , is a squared region center 
at iV .  The dimension of this region is discretized so that it is defined by the odd integer 
values, such as 5x5, 7x7.  The dimensional unit is defined to be the inverse of the 
square root of the number of vertices in the mesh.  Thus, for a mesh with fairly uniform 
polygons areas, the dimensional unit is approximately equal to the average edge length 
of a mesh.   

The sampling points are sampled uniformly in grid-based style around a 
given vertex iV  with the step size equal to the dimensional unit.  For example, the 7x7 
region has 48 sampling points or 48 components (Vertex iV  is not used as the sampling 
point).   The Laplacian coordinate of each sampling point is interpolated from the 
Laplacian coordinate of the k-nearest vertices around that sampling point.  The k-
nearest vertices are weighted according to the inverse squared distance of the sampling 
point.   
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Figure 3.14: The 5x5 sampling points with 3-nearest neighbors. 
 

In averaging the Laplacian coordinates, the mean curvature component, 
H , and the normal vector component, n , of the Laplacian coordinate are averaged 
separately.  Before averaging normal vector, if yδ  is negative, it is inverted.  This is 
needed due to the ambiguity of the Laplacian representation.  The average mean 
curvature is then multiplied to the average normal vector.    

Using Laplacian coordinates from the sampling points instead of vertices 
can solve the irregularity problem of mesh topologies.  The sampling is also done 
directly on the surface, thus there is no sampling artifact as presented in normal 
displacement sampling.    

In the regions around the mesh boundary, some sampling points may 
not be defined because they are out of bound and will not be included in the signature.  
In addition, sampling points around the unvisited hV  are not included in the signature 
since they do not have the relief information from the offset region.  Thus, Laplacian 
surface signature of each vertex hV  can have different number of components.  

The size of this region can be set by the user and uses for every vertex 
on the mesh.  In practice, the neighborhood size should larger than the geometric 
feature of the surface, so that it can contain enough information of the relief pattern.     
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Figure 3.15: The red sampling points which are in the hole region or outside the offset 
region are not used to compute for the surface signature.  Only the green sampling 

points are used to compute for the surface signature. 
 

3.5.2 Comparing Laplacian Signatures 

Two Laplacian signatures are comparable if they have the same number 
of components.  The comparison is done to determine how the two patches are similar 
visually to each other.  Two components from the different signatures with the same 
index are compared to each other one-to-one.   

This research defines three types of distance metric to compare two 
Laplacian signatures.  Laplacian coordinate represents mean curvature, H , multiply by 
unit normal vector nr , nH r*=δ . 

Given two Laplacian signatures  

{ } ]..1[;)( nkV iki == δξ  and { } ]..1[;)( nkV jkj == δξ  
where n  is the number of sampling points in neighborhood region. 

The first metric considers only the normal vector component of the 
Laplacian coordinate.  The normal distance metric is defined as 
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The second metric considers only the mean curvature component of the 
Laplacian coordinate and is defined as 
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The third metric considers both components of the Laplacian coordinate 
and is defined as 

HnnH DistwDistwDist *)1(* −+= rr
   (34) 

where w is the weight.  

Curvature and normal component are independent to each other.  Thus, 
they can be compared separately.   

This research uses uniform weight for all components in the signature.  
The far-off sampling points from iV   will receive the same weight as the sampling points 
near iV .  Each sampling point is equally important in determine the visual similarity of a 
surface patch.  If, however, the weight is assigned differently according to the radius 
from iV , the result comparison will be the same as comparing two signatures with 
smaller neighborhood size. 

Finding the best matching )( jVξ  for all given )( iVξ  of the hole region 
is done in a brute force style thus result in quadratic time complexity.  This part can be 
speed up by using acceleration structure such as k-d tree to store all the signatures of 
the offset region and then use this tree to compare with the signature from the hole 
region.  This adaptation can result in )log( nnO  complexity.  However, the comparison 
may not be done fairly for each component of the signature.  The components near the 
root node would have more influence than the components near the leaf nodes.    

3.5.3 Transferring Laplacian coordinate  

When transferring the Laplacian coordinate of oV  to hV  , the different in 
transformed space has to be considered.  Laplacian coordinate of oV  is in tangent 
space.  However, Laplacian coordinate in world space is needed in the Cartesian 
coordinate reconstruction stage (section 3.6). 

For a given vertex on the coarse mesh holeS. , let TNB ,, be the normal 
vector, tangent vector and binormal vector of that vertex respectively, 
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The matrix  WTT →   that used to transform Laplacian coordinate from 

tangent space to world space can be defined as 
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Figure 3.16: When transferring Laplacian coordinate, a transformation to world space is 
required. 

 

3.6 Combining Coarse Mesh and Relief Mesh 

The Laplacian coordinate of mesh holeRL ..  and holeSL ..  are combined to 
obtain holeOL .. .  Mesh holeO.  is reconstructed from mesh holeOL ..  using inverse Laplacian 
transformation.  The boundary vertices are used as anchor points.  The corresponding 
Cartesian coordinate of the boundary vertices of mesh O  are assigned to these anchor 
points.  Thus, the algorithm does not alter the original surface at all.  This feature can 
be important for some applications that have to maintain the original surface data.   
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Figure 3.17: Vertices on the hole boundary are used as the anchor points. 

 

The curvature of mesh holeRL ..  and holeSL ..   are blended smoothly in 
the Laplacian coordinate space.  In addition, reconstruction by least-square minimization 
method distributes the distortion error all over the filling surface hence make the error 
(from minimization) hardly be noticeable.  This is in contrast with the Normal 
displacement method which the discontinuity of displacement vectors cannot be blended 
easily in Cartesian coordinate.   

 

 

 

 

 

 

 

 

 

Figure 3.18: The triangles around the hole boundary are heavily pulled by the anchor 
points in the Inverse Laplacian transform. 
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Triangles around the boundary of holeO.  can be compressed because of 

the anchor points constrain (Figure 3.18).  This problem can be solved by performing 
tangential relaxation on mesh holeO. (Figure 3.19).   

 

 

 

 

 

 

 

 

 

Figure 3.19: Tangential relaxation is used to solve the compression of vertices problem. 
 

3.7 Computational complexity 

The process of the algorithm can be divided into many steps.  These 
steps, in computational order, are finding the offset regions, performing mesh 
smoothing, completing coarse mesh, computing Laplacian coordinate, computing mesh 
parameterization, transferring relief pattern and computing inverse Laplacian transform.  
Let n  be the number of vertices of the hole region and the offset region.   

Meshes used in this research are represented using Half-edge data 
structure.  This structure can perform vertex neighborhood query in )1(O . 

This research uses Dijkstra’s algorithm to compute the offset regions.  
The part has linear time complexity )(nO .  

Mesh smoothing is performed using Finite differences method.  The 
method is an iterative process.  The number of iteration can be set by the user.  From 
the experiment, 10 – 15 iteration is enough to smooth out the relief part of the mesh.  
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Each iteration has linear time complexity.  Thus, mesh smoothing also has linear time 
complexity )(nO .  

Coarse mesh completion can be divided into three steps, hole 
triangulation, mesh refinement and fairing.  The inputs for the triangulation step are the 
set of the vertex of the hole boundary.  The size of this set can be approximated by 

n .  The triangulation step uses dynamic programming to compute the minimal area 
triangulation.  The running time is )()( 5.13

nOnO = .  Mesh refinement and fairing are 
iterative processes.  In each iteration, the algorithm has linear time complexity.    

Laplacian transform can be done in linear time complexity )(nO . 

Mesh parameterization requires solving linear system from the least-
square method.  The matrix is sparse and Cholesky factorization is used in the 
computation.  This solver has linear complexity in the number of non-zeros element of 
the matrix.  Since, the number of non-zeros element of the matrix is )(nO .  Mesh 
parameterization has linear time complexity )(nO . 

The most time consuming part of the algorithm is in the relief transferring 
part.  First, the k-d tree is constructed to be used for the k-nearest neighbors search.  
The k-d tree construction has )log( nnO  complexity.  The Laplacian signatures of all the 
vertices in the exemplar region is computed with the complexity of )log( ncnO , where c  
is the number of sampling point.  From the experiments, the regions size of 11x11 is 
usually enough to analyze the relief pattern.  Thus, c  is constant.  The nlog  term is the 
complexity of the k-nearest search.  In transferring relief, each vertex of is holeRL ..  
compared with the vertex of offsetRL ..  .  The complexity for all comparisons is )( 2cnO .  
The complexity of the relief transferring part is )( 2nO . 

Inverse Laplacian transform requires solving linear system from the 
least-square method.  The matrix of this linear system is different from that used in 
mesh parameterization but it is also sparse.  Cholesky factorization is also used as the 
solver.  The complexity is )(nO . 

Thus, the whole process has quadratic complexity.  



CHAPTER  IV 

EXPERIMENTAL RESULTS 

4.1 Implementation 

The algorithm is implemented using Visual C++ and DirectX 9.0.  This 
research uses Half-edge data structure from OpenMesh library [63] for mesh 
representations.  This research also uses linear system solver from TAUCS library [32] 
when computing mesh parameterization and inverse Laplacian transformation.  
Cholesky factorization method is used for the computations since it is faster and require 
lower memory than other methods such as Iterative solver or Multigrid solver [49].  The 
Cholesky factorization method has linear complexity in the number of non-zeros element 
of the matrix.  Since the matrices are sparse, the Compressed sparse column (CSC) is 
used for matrix representations [64].  CSC representation can reduce the memory 
consumption from )( 2nO  to )(nO  where n  is the number of vertex.  In Laplacian 
signature computation, this research uses ANN library [65] for the k-nearest 
neighborhood search.  Euclidean distance is used to determine the closeness of the 
neighborhood.  This research uses geometric deviation and normal deviation from 
PolyMeCo software [66] for mesh comparison.            

4.2 Experiment and Results 

The experimental setup is consisted of three parts.  In the first part, the 
algorithm is tested with planar surfaces inputs.  On this part, the inputs are test with 
variation in parameters of Laplacian signature distance matrices, neighborhoods 
sampling size and the number of nearest neighbor.  The results are shown with their 
corresponding Laplacian signatures.  The planar surfaces are used because it is easier 
to verify the quality of the transferred pattern of planar surfaces than that of arbitrary 
surfaces.  The goal of this part is to determine how well the relief pattern are transferred 
from the offset region by these parametric setting.   

In the second part, the algorithm is tested with curve surface inputs.  In 
this part, the coarse meshes, the relief meshes and the filled meshes are presented 
side by side.  The goal of this part is to test the features of coarse meshes computation 
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and the extraction of relief meshes.  It is also designed to determine how result meshes 
depend on the quality of coarse meshes computation.  

In the third part, the algorithm is tested with the scanned surfaces inputs.  
The inputs are scanned from real-world objects as oppose to the first part and the 
second part where the inputs are generated using model authoring tools.  The goal of 
this part is to determine how well the algorithm can handle these real-world data.           

In the first part of the experiments, surfaces in Figure 4.1 – 4.4 are 
tested with different Laplacian signature distance metrics.  nDist r  and HDist can be 
viewed as nHDist r

 with the weight setting to one and zero respectively as in the 
equation. 

HnnH DistwDistwDist *)1(* −+= rr  

From Figure 4.1 – 4.4, the images (b) use distance metric nDist r  or 

nHDist r
 with the weight of value one.  The images (d) use distance metric  HDist  or 

nHDist r
 with the weight setting to zero.  The images (f) use distance metric nHDist r

 
with the weight setting to 0.5.  

From Figure 4.1 – 4.4, it can be concluded that the quality of the results 
does not depend on the distance metrics of the Laplacian signature.  The visualizations 
of the Laplacian signature review that normal vector component and mean curvature 
component have some correspondence with each other.  If the two points have the 
similar value of normal vector component, they are also likely to have the similar mean 
curvature component value.  All patterns in the experiment, near-regular pattern (Figure 
4.1 – 4.2), irregular pattern (Figure 4.3) and stochastic pattern (Figure 4.4) exhibit these 
type of relationship.  For irregular pattern of the input surface in Figure 4.3, the relief 
patterns on the hole regions are slightly different from each others.  These differences 
come from the irregularity nature of the surfaces. 

Surfaces in Figure 4.5 – 4.8 are tested with different neighborhood size.  
The images (a) in Figure 4.5 – 4.8 show the input meshes with known relief patterns.  
The relief patterns are visualize as height maps using gray scale images.  For near-
regular surface of Figure 4.5, the small neighborhood size of 7x7 (30% of the relief 
pattern size) and 11x11 (70% of the relief pattern size) fails to capture the relief pattern 



54 

 
of the inputs surface.  This surface requires the neighborhood size of at least 13x13 
(100% of the relief pattern size) in order to faithfully capture the relief detail.  The near-
regular surface in figure 4.6 also has some difficulties with the neighborhood size of 7x7 
and 11x11.  The reconstructed relief patterns contain some bumps.  In contrast with the 
surfaces in figure 4.7 – 4.8, irregular and stochastic patterns can be detected and 
reconstructed with small neighborhood size of 7x7.  The bigger neighborhood sizes of 
11x11 or 13x13 do not increase visual appearance quality of the results.      

Surfaces in Figure 4.9 – 4.11 are tested with different k-nearest neighbor 
points.  The numbers of points, k, used as nearest neighbor are three, six and nine.  
The bigger k value means that more points are used to average the Laplacian 
coordinate of a sampling point.  This process is equivalent to smoothing the relief 
pattern.  From the figure 4.9 – 4.11, it can be concluded that the different of k value do 
not have an effect on the quality of the results.     
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Figure 4.1: Surface completions using different distance metric in Laplacian signature 
comparison. 

 

In Figure 4.1, (a) is the input mesh with near-regular relief pattern.  The 
distance metric of the result surface (b), (d) and (f) are nDist r , HDist  and nHDist r  
respectively.  The relief completion using only normal vector components is shown in 
(c).  The relief completion using only mean curvature components is shown in (e).  The 
relief completion using both components is shown in (g-h).   
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Figure 4.2: Surface completions using different distance metric in Laplacian signature 
comparison. 

 

In Figure 4.2, (a) is t input mesh with near-regular relief pattern.  The 
distance metric of the result surface (b), (d) and (f) are nDist r , HDist  and nHDist r  
respectively.  The relief completion using only normal vector components is shown in 
(c).  The relief completion using only mean curvature components is shown in (e).  The 
relief completion using both components is shown in (g-h).   
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Figure 4.3: Surface completions using different distance metric in Laplacian signature 
comparison. 

 

In Figure 4.3, (a) is the input mesh with irregular relief pattern.  The 
distance metric of the result surface (b), (d) and (f) are nDist r , HDist  and nHDist r  
respectively.  The relief completion using only normal vector components is shown in 
(c).  The relief completion using only mean curvature components is shown in (e).  The 
relief completion using both components is shown in (g-h).   



58 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Surface completions using different distance metric in Laplacian signature 
comparison. 

 

In Figure 4.4, (a) is the input mesh with stochastic relief pattern.  The 
distance metric of the result surface (b), (d) and (f) are nDist r , HDist  and nHDist r  
respectively.  The relief completion using only normal vector components is shown in 
(c).  The relief completion using only mean curvature components is shown in (e).  The 
relief completion using both components is shown in (g-h).   
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Figure 4.5: Surface completions using different neighborhood size. 
 

In Figure 4.5, (a) is the input mesh with near-regular relief pattern.  The 
neighborhood size of 7x7 (30% of the relief pattern size) is used for the surface 
completion, shown in (b), with the corresponding Laplacian signature, show in (c).  The 
neighborhood size of 11x11 (70% of the relief pattern size) is used for the surface 
completion, shown in (d), with the corresponding Laplacian signature, show in (e).  The 
neighborhood size of 13x13 (100% of the relief pattern size) is used for the surface 
completion, shown in (f), with the corresponding Laplacian signature, show in (g).   

 

Relief Pattern 
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Figure 4.6: Surface completions using different neighborhood size. 

 

In Figure 4.6, (a) is the input mesh with near-regular relief pattern.  The 
neighborhood size of 7x7 (30% of the relief pattern size) is used for the surface 
completion, shown in (b), with the corresponding Laplacian signature, show in (c).  The 
neighborhood size of 11x11 (70% of the relief pattern size) is used for the surface 
completion, shown in (d), with the corresponding Laplacian signature, show in (e).  The 
neighborhood size of 13x13 (100% of the relief pattern size) is used for the surface 
completion, shown in (f), with the corresponding Laplacian signature, show in (g). 

  

Relief Pattern 
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Figure 4.7: Surface completions using different neighborhood size. 
 

In Figure 4.7, (a) is the input mesh with irregular relief pattern.  The 
neighborhood size of 7x7 (30% of the relief pattern size) is used for the surface 
completion, shown in (b), with the corresponding Laplacian signature, show in (c).  The 
neighborhood size of 11x11 (70% of the relief pattern size) is used for the surface 
completion, shown in (d), with the corresponding Laplacian signature, show in (e).  The 
neighborhood size of 13x13 (100% of the relief pattern size) is used for the surface 
completion, shown in (f), with the corresponding Laplacian signature, show in (g). 

 

 

Relief Pattern 
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Figure 4.8: Surface completions using different neighborhood size. 
 

In Figure 4.8, (a) is the input mesh with stochastic relief pattern.  The 
neighborhood size of 7x7 (30% of the relief pattern size) is used for the surface 
completion, shown in (b), with the corresponding Laplacian signature, show in (c).  The 
neighborhood size of 11x11 (70% of the relief pattern size) is used for the surface 
completion, shown in (d), with the corresponding Laplacian signature, show in (e).  The 
neighborhood size of 13x13 (100% of the relief pattern size) is used for the surface 
completion, shown in (f), with the corresponding Laplacian signature, show in (g). 

 

Relief Pattern 
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Figure 4.9: Surface completions using different k-nearest neighbor points. 
 

In Figure 4.9, (a) is the input mesh with near-regular relief pattern.  The 
three nearest neighbor points is used for the surface completion, shown in (b), with the 
corresponding Laplacian signature, show in (c).  The six nearest neighbor points is used 
for the surface completion, shown in (d), with the corresponding Laplacian signature, 
show in (e).  The nine nearest neighbor points is used for the surface completion, 
shown in (f), with the corresponding Laplacian signature, show in (g). 
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Figure 4.10: Surface completions using different k-nearest neighbor points. 
 

In Figure 4.10, (a) is the input mesh with irregular relief pattern.  The 
three nearest neighbor points is used for the surface completion, shown in (b), with the 
corresponding Laplacian signature, show in (c).  The six nearest neighbor points is used 
for the surface completion, shown in (d), with the corresponding Laplacian signature, 
show in (e).  The nine nearest neighbor points is used for the surface completion, 
shown in (f), with the corresponding Laplacian signature, show in (g). 
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Figure 4.11: Surface completions using different k-nearest neighbor points. 
 

In Figure 4.11, (a) is the input mesh with stochastic relief pattern.  The 
three nearest neighbor points is used for the surface completion, shown in (b), with the 
corresponding Laplacian signature, show in (c).  The six nearest neighbor points is used 
for the surface completion, shown in (d), with the corresponding Laplacian signature, 
show in (e).  The nine nearest neighbor points is used for the surface completion, 
shown in (f), with the corresponding Laplacian signature, show in (g). 
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The second part of the experiment tests the surfaces that are non-

planar.  This part tests the quality of the coarse mesh and the relief patterns.  In Figure 
4.12, the relief patterns on the input surface (a) contain some distortion due to the 
curvature of the surface.  The relief patterns on the curve surface are harder to extract 
than the relief patterns on the planar surfaces.  Thus, the extracted relief pattern (c) is 
not as regular as the patterns in figure 4.5.  In addition, there is high level of noise on 
the relief pattern.  This is because the height of the relief pattern is very low compare to 
the coarse surface (b).  The reconstructed surface (d) does not capture the relief 
pattern of the input surface.       

In figure 4.13, the relief pattern (c) contains low level of noise.  The relief 
pattern clearly stands out from the coarse mesh.  Thus, the algorithm can successfully 
filled the relief information to the hole region and can successfully reconstruct the 
surface (d).  

In figure 4.14, the input surface (a) is very rough.  The relief pattern is 
stochastic.  The coarse mesh (b) is computed using 15 iteration of mesh smoothness.  
The result coarse mesh still looks bumpy.  However, the reconstructed surface (d) looks 
promising because of the stochastic nature of the pattern. 

The surface in figure 4.15 contains convex and concave curvatures.  
The algorithm can produce satisfying result coarse mesh (b).  The relief pattern is 
clearly visible and contains low level of noise (c).  Thus, the surface can be filled with 
relief pattern successfully (d).   

It can be conclude that the relief patterns of curve surfaces must be 
clearly distinct from the underlying coarse mesh in order for the relief extraction to be 
successful.  The curvature of the surface can distort the regularity of the patterns 
making it hard to detect the patterns.   
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Figure 4.12: Surface completions on a curve surface. 
 

In Figure 4.12, (a) is the input mesh with near-regular relief pattern.  (b) 
is the coarse mesh completion.  (c) is the relief mesh represented in Laplacian 
coordinate.  The relief pattern is extracted from the offset region and is transferred to 
the hole region.  (d) is the reconstructed surface using Inverse Laplacian transformation.   
The neighborhood size of 15x15 is used in the computation. 
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Figure 4.13: Surface completions on a curve surface. 
 

In Figure 4.13, (a) is the input mesh with near-regular relief pattern.  (b) 
is the coarse mesh completion.  (c) is the relief mesh represented in Laplacian 
coordinate.  The relief pattern is extracted from the offset region and is transferred to 
the hole region.  (d) is the reconstructed surface using Inverse Laplacian transformation.  
The neighborhood size of 15x15 is used in the computation.   
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Figure 4.14: Surface completions on a curve surface. 
 

In Figure 4.14, (a) is the input mesh with stochastic relief pattern.  (b) is 
the coarse mesh completion.  (c) is the relief mesh represented in Laplacian coordinate.  
The relief pattern is extracted from the offset region and is transferred to the hole 
region.  (d) is the reconstructed surface using Inverse Laplacian transformation.  The 
neighborhood size of 11x11 is used in the computation. 
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Figure 4.15: Surface completions on a curve surface. 
 

In Figure 4.15, (a) is the input mesh with irregular relief pattern.  (b) is 
the coarse mesh completion.  (c) is the relief mesh represented in Laplacian coordinate.  
The relief pattern is extracted from the offset region and is transferred to the hole 
region.  (d) is the reconstructed surface using Inverse Laplacian transformation.  The 
neighborhood size of 11x11 is used in the computation. 
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In the third part, the algorithm is tested with the scanned surfaces inputs.  

Only the normal vector component of the signature is used for the surface comparison.  
This should be enough since the mean curvature component follow the normal vector 
component.  The k-nearest neighbor of three is used in the experiments since the 
higher the number of k value introduces more computational time but not increase the 
quality of the results.    

The Stanford bunny model in figure 4.16 – 4.17 contains stochastic relief 
pattern.  Thus, the neighborhood size of 7x7 should be enough to capture the pattern 
characteristic.  In figure 4.16, the final mesh (h) looks significantly different from the 
reference mesh (f).  This is because the coarse mesh (g) cannot produce the leg 
structure of the bunny.  The hole on the coarse mesh is filled with minimal surface area 
and minimal normal variation.  These geometric properties are not enough to capture 
the context information of the model.  In figure 4.17, the input surface (a) does not 
contain abrupt change of the geometric structure.  As a result, the coarse mesh (g) has 
the same structure as the reference mesh (f).  The final mesh (h) appears similar to the 
reference mesh (f).           

The armadillo leg model in figure 4.18 contains near-regular relief 
pattern.  The neighborhood size of 13x13 is used in this experiment.  The relief pattern 
(d) contains some noise.  Due to the hole’s shape, the hole of the coarse mesh is flat 
(g) rather than convex.  The relief pattern of the result mesh (h) is not clearly visible as 
in the reference mesh (f) because the height of the pattern is relatively low.         

The Ajax model in figure 4.19 contains irregular to stochastic relief 
pattern.  The neighborhood size of 13x13 is used in this experiment.  The input model 
(b) is very rough and steep.  Although, the coarse mesh (c) is smoothed with 15 
iterations, it still looks bumpy.  The relief pattern (d) does not exhibit any repeated 
pattern.  Thus, the filled surface (h) looks different when compare to the reference 
surface (g).  However, the filled surface (h) has the same visual appearance as the 
offset region.            

Figure 4.20 shows a wide range of relief patterns that can be completed 
using the proposed method.  The bunny model (c) and dragon model (d) contain many 
holes with multiple relief patterns.  In the dragon model, the model does not contain 
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large exemplar area.  Thus, it is a challenging for the algorithm to extract the pattern 
from the available surface.  However, the proposed method can produce satisfying 
result.   The variables setting on all of these holes completion in figure 4.20 are the 
same.  The users do not have to fine tune the parameters for each type of relief 
patterns on each input models.   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.16: Surface completions on the Stanford bunny model. 
 

In Figure 4.16, (a) is the input mesh with the hole region shaded in 
green.  (b) is the offset region.  (c) is the coarse mesh.  (d) and (e) are the relief mesh 
represented in Laplacian coordinates.  (g) is the smoothly filled coarse mesh.  (h) is the 
result surface completion with relief pattern.  (f) is the reference mesh extracted form 
the bunny model.  The neighborhood size of 11x11 is used in the computation. 
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Figure 4.17: Surface completions on the Stanford bunny model. 
 

In Figure 4.17, (a) is the input mesh with the hole region shaded in 
green.  (b) is the offset region.  (c) is the coarse mesh.  (d) and (e) are the relief mesh 
represented in Laplacian coordinates.  (g) is the smoothly filled coarse mesh.  (h) is the 
result surface completion with relief pattern.  (f) is the reference mesh extracted form 
the bunny model.  The neighborhood size of 11x11 is used in the computation. 
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Figure 4.18: Surface completions on the Armadillo model. 
 

In Figure 4.18, (a) is the input mesh with the hole region shaded in 
green.  (b) is the offset region.  (c) is the coarse mesh.  (d) and (e) are the relief mesh 
represented in Laplacian coordinates.  (g) is the smoothly filled coarse mesh.  (h) is the 
result surface completion with relief pattern.  (f) is the reference mesh extracted form 
the armadillo model.  The neighborhood size of 13x13 is used in the computation. 
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Figure 4.19: Surface completions on the Ajax model. 
 

In Figure 4.19, (a) is the input mesh with the hole region shaded in 
green.  (b) is the offset region.  (c) is the coarse mesh.  (d) and (e) are the relief mesh 
represented in Laplacian coordinates.  (g) is the smoothly filled coarse mesh.  (h) is the 
result surface completion with relief pattern.  (f) is the reference mesh extracted form 
the ajax model.  The neighborhood size of 13x13 is used in the computation. 
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Figure 4.20: Surface completion using Laplacian transform on various models. 
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The goal of this research is to produce the filled surface that have 

similar in visual appearance with the original surface.  The synthesized patterns do not 
need to be the exact replicate of the original patterns.  In Figure 4.21, surface (a) is the 
original surface.  Surface (b) is the surface completed with relief transfer using the 
proposed algorithm.  Surface (e) is the smoothly filled surface.  Image (c) and (d) show 
the Geometric deviation of 3.67 and Normal deviation of 1.60 when comparing surface 
(b) to surface (a).   Image (f) and (g) show the Geometric deviation of 4.21 and Normal 
deviation of 1.33 when comparing surface (e) to surface (a).  The results indicate that 
the errors value from these matrices do not reflect the visual appearance of the 
comparing surfaces.  The error metrics generally used for the mesh comparison, such 
as Geometric deviation or Normal deviation [66], cannot be used in this research.   

In addition, these metrics are transformation variant.  The two surfaces 
with the same geometric pattern but are different in transformation, such as translation 
or rotation, would have great error.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.21: The geometric deviation and the normal deviation of input surfaces.  
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Table 4.1: The computation time of all the models in the experiments. 

Model No. of 
Vertices 

Distance 
metric 

Neighborhood 
size 

k-nearest 
size 

Computation 
Time 

(seconds) 

1. Figure 4.1 (b) 8,075 nDist r  13x13 3 549 

2. Figure 4.1 (d) 8,075 HDist  13x13 3 534 

3. Figure 4.1 (f) 8,075 nHDist r  13x13 3 562 

4. Figure 4.2 (b) 6,095 nDist r  13x13 3 318 

5. Figure 4.2 (d) 6,095 HDist  13x13 3 320 

6. Figure 4.2 (f) 6,095 nHDist r  13x13 3 323 

7. Figure 4.3 (b) 9,911 nDist r  13x13 3 876 

8. Figure 4.3 (d) 9,911 HDist  13x13 3 870 

9. Figure 4.3 (f) 9,911 nHDist r  13x13 3 880 

10. Figure 4.4 (b) 6,298 nDist r  13x13 3 356 

11. Figure 4.4 (d) 6,298 HDist  13x13 3 349 

12. Figure 4.4 (f) 6,298 nHDist r  13x13 3 361 

13. Figure 4.5 (b) 5,860 nDist r  7x7 3 90 

14. Figure 4.5 (d) 5,860 nDist r  11x11 3 150 

15. Figure 4.5 (f) 5,860 nDist r  13x13 3 316 

16. Figure 4.6 (b) 6,746 nDist r  7x7 3 111 

17. Figure 4.6 (d) 6,746 nDist r  11x11 3 182 

18. Figure 4.6 (f) 6,746 nDist r  13x13 3 379 

19. Figure 4.7 (b) 7,254 nDist r  7x7 3 140 

20. Figure 4.7 (d) 7,254 nDist r  11x11 3 235 



79 

 

Model No. of 
Vertices 

Distance 
metric 

Neighborhood 
size 

k-nearest 
size 

Computation 
Time 

(seconds) 

21. Figure 4.7 (f) 7,254 nDist r  13x13 3 459 

22. Figure 4.8 (b) 6,904 nDist r  7x7 3 120 

23. Figure 4.8 (d) 6,904 nDist r  11x11 3 201 

24. Figure 4.8 (f) 6,904 nDist r  13x13 3 417 

25. Figure 4.9 (b) 10,161 nDist r  11x11 3 502 

26. Figure 4.9 (d) 10,161 nDist r  11x11 6 530 

27. Figure 4.9 (f) 10,161 nDist r  11x11 9 541 

28. Figure 4.10 (b) 7,135 nDist r  11x11 3 248 

29. Figure 4.10 (d) 7,135 nDist r  11x11 6 275 

30. Figure 4.10 (f) 7,135 nDist r  11x11 9 289 

31. Figure 4.11 (b) 8,908 nDist r  11x11 3 409 

32. Figure 4.11 (d) 8,908 nDist r  11x11 6 420 

33. Figure 4.11 (f) 8,908 nDist r  11x11 9 431 

34. Figure 4.12 3,230 nDist r  15x15 3 69 

35. Figure 4.13 3,470 nDist r  15x15 3 87 

36. Figure 4.14 4,960 nDist r  11x11 3 136 

37. Figure 4.15 5,200 nDist r  11x11 3 126 

38. Bunny’s Leg 3,100 nDist r  11x11 3 52 

39. Bunny’s back 2,260 nDist r  11x11 3 35 

40. Armadillo 4,090 nDist r  13x13 3 116 

41. Ajax 2,670 nDist r  13x13 3 50 
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The experiments are done on an Intel Pentium 2.4GHz with 2.00 GB of 

RAM running Windows 7 OS.  The computation time is dominant by the relief 
transferring part.  The other steps of the algorithm contribute less than ten percent of all 
the computation time.  From the Table 4.1, the complexity of the algorithm is quadratic 
with the number of vertices.  The running time also scales linearly with the number of 
sampling points used for the Laplacian surface signature.  However, increasing k-
nearest neighbor value does not introduce much performance lost since the k-nearest 
neighbor can be query in sub-linear time.  Typically, the k-nearest neighbor query has 
logarithmic complexity.  But with small value of k and some optimization of the library, 
the query may have O(1) complexity.  The types of distance metrics do not have effect 
on the computational time.            



CHAPTER  V 

SUMMARY AND FUTURE WORK 

5.1 Summary 

This research proposes an algorithm to fill the hole on non-smooth 
surfaces using the available surface context.  The algorithm can handle surface with 
relief patterns such as near-regular patterns, irregular patterns and stochastic patterns.  
This work would have a great benefit to surface acquisition process.  The users do not 
need to spend a great amount of time repairing the scanned models.  Another strong 
point of the proposed method is that no modification is done on the original surface.  
The preservation of the surface characteristics is crucial in application such as archiving 
ancient objects. 

The main ideas of the algorithm are to decompose the input models into 
coarse mesh and relief mesh.  The hole of the coarse mesh is filled using hole 
triangulation algorithm that minimize surface area and normal variation.  The hole of the 
relief mesh is filled using example-base synthesis framework.  The algorithm extracts 
the relief pattern from the surrounding surface and transfers it to the smoothly filled 
hole.  In this work, the new surface signature is defined using Laplacian coordinates.  
Laplacian coordinate explicitly represents the local geometrical properties of shapes 
thus making it suitable for surface similarity test.  Coarse mesh and relief mesh are 
combined in Laplacian space and then reconstruct using Inverse Laplacian transform.     

The algorithm is tested with planar surfaces and curve surfaces that 
have near-regular patterns, irregular patterns and stochastic patterns.  It is interesting to 
note that there are some connections between the characteristics of the normal vector 
component and the mean curvature component for points on the surface.  Thus, one of 
these components may be sufficient to use as a surface signature’s distance metric.  
When computing the Laplacian signature, the neighborhood size plays a dominant role 
in capturing the relief patterns.  For near-regular relief patterns, the neighborhood size 
of at least 13x13 is required to capture the surface details.  However, for stochastic 
patterns, the neighborhood size of 7x7 is usually enough.  The number of nearest 
neighbor used to compute the Laplacian coordinate of a sampling point does not have 
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obvious influence on the quality of the results.  Thus, the nearest neighbor size of three 
is adequate.  

5.2 Future work 

The quality of the coarse mesh can determine the quality of the result 
filled surface.  If the mesh is not smooth enough, the relief pattern may not be clearly 
detectable.  In addition, if the height of the relief pattern is too low, the Laplacian 
representation of the relief mesh may contain too much noise.  This situation 
complicates the algorithm to detect the pattern of the surface.   The author would like to 
explore geometric metrics that can be used to guide the smoothing process.  Surface 
may not have to be smoothed evenly and isotropically.  Some points of the surface may 
need more smoothing that the others. 

Another interesting area of further research is on coarse mesh 
completion.  The minimum area and normal variation are fine for smooth mesh 
completion.  However, some characteristics of surface structures need additional 
geometric knowledge.  Multi-scale curvature analysis, the curvature that define with 
more than 1-ring of neighborhood, may be useful to capture the structure of the model. 

Most of the time the results from scanning devices contain surface 
fragments.  It will be very useful to extend the proposed method to handle hole with 
isles.  To handle hole with isles, many parts of the algorithm require modification.  
Active contour based methods may be more suitable for smooth hole completion than 
minimum surface area method.    The available surface information of the fragments 
can be used as guidance when transferring relief pattern from the offset region.  The 
surface fragments can also be used as anchor points when computing the inverse 
Laplacian transform.  However, working with these fragments can introduce many 
difficulties.  For example, each isle can have its own holes.  Laplacian coordinates 
computed from the isles boundary are not accurate.  It may be easier to design the 
algorithm if some loss in geometric detail of these fragments are acceptable.  
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