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CHAPTER IT

PRINCIPLE OF NUCLEAR MAGNETIC INDUGTION

#otion of a Frees Spin{a' 3,9 )

Py
Consider a free spin whose maghetic moment ic /}i. placed

—
in 2 field H = Hoﬁ. i magnetic dipole In & maznetic field

would experience a torque:

J}Lx iH. (2.1

-

r

This torgue gives rise to.a rate of change of angular
—

momen tem dl ,» and we have
at
dr T . (2.2)
dt 4
Tiith /XLL = ¥1  we have
el O TR N (2.3)

which is the gyroscopie equation.

The rate of chanpge of the mmgnetic moment in eg.(2,3} is
-l — — —

aleng {Mx H } which is perpendicular toc both [ and .XAL
ra
itself., The magnitide of the mapnetic moment is unchangeq.. Gnly
its direction is ¢hanged. The gyroscopic.egquation ¢2.{(2.3) says
—h

that the magnetic moment precess about H  with angular

velogity .0 = JHO.
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FMig. 2, Precesszion of nuclear moments.

It is fruitful however to look at eq.(2.3) in a suitable

’
rotating coordinate system, Let & be a frame of reference

rotating wi th respect to the laboratory frame S5 with an

angular veloclty aj. The time derivative Eﬁ of any iive Jdopondent
quantity -E(t}, computed in the laboratory ?:ame 5 and ifs
derivative Ok comnputed in the rctatiné frame Si are related
through ’

ig - §:; s :E x.z. (2.4

at St

By making uze of eq.(2.4), we can write cg.f{2,3) in teras
.

of a coordinate system rotating with angular veloeity (O with

respect to laboratory frame:

- —_ ey 4
i + Mji/udz Y ALx i, (2.5)

VAL - e :
= TR+ 2, (2,6)

[

[in)
L
f
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59.{2.6) tells us that the motion nf/ji in the rotating
coordinate system obeys the the same equation as in the laboratory

: —
system, provided the magnetic field H is replaced by an

—k - ' "l| .
effective field H = H + 2, the sum of the laboratory field
= . W
H and 2 fictitious field X2

P N
e gan nov solve for the motion of AL in o static field

- . -~
H = HOE. Dy choosing o rotating frame with (ar = = EHDZ

- :
with respect to laboratry frame, the effective ficld He vanishos.

l!,-—'h.
In this reference frame ;ﬂf_: 0  and the mapgnetic moment is
o &
a fixed vector. Therefore, with respect to the laboratry frame it
r— .
precesses with an angular velocity (o = - IHOZ. The minus sign
dnly tell the sense of rotation di.e., clockwise if locking down

toward -z direction. The value of the precessional frequency

oz IHD of the spin in a static field 'HCl is ¢alled the

‘Larnior frequency, The motion of expectation value in gquantum

nechanical deséription is the same as the classical degserinption
It happens that the Larmor frequeney is oxactly the same

‘a8 the angular frequency needed for the mzgnetle reschnance

absorption mentioned in section 1.% . Frow: measurement of thz Tarmor

frequency, HD can be computed when ¥ is known with precissicn,

Elceh Equations and Relaxation ?EEEE(U}

—_,
The nuelear magnetization M is the sun E;igi (i .
=

. . Eh .. .
denotes the 1t nucleus? over all the nuclei in a unit volume,

—

“When the nuelei are placed in a static ficid H - HD%, Thie equation

of .motion for M is cxactly the same az thet for individual mdin:

that is
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EDE = E'-]‘-"? € ?‘I'.- {2-?)

In thermal equilibrium zt temperature 1 the mapnotization

—_
will ke zlong E, ¢ven ttirough individual /}L can not be aleng
H quantum mechanically. From knowledge of paramasnetism it is

gxpected that at thermal egquilibrium

¥ = 0, (2.8}

u

: - 0, 2.

r-':'r {2.9)
M, = M = 'XHD. (2.10G)

Suppese the magnetization component Hz iz not in thormal
eguilibrium. We assume that Mz -apyroaches equilibrium at a
rate proportional to the departure from the equilibrium value

M,
0
J:'fz !
: = M - [ f " ]
E = (iLD szqu {E 11}

"

T1 is called the spin-lattice relaxaiion timc cor
longitudinal relaxation time, The spin-lattice relaxation time
T1 is a time constant of ¥ which approaches exponentially to
the enuilibrium value Mo'

If at t = 0 an unmagnetized specimen is placged in a
aegnetic field Hoﬁ, the magnetization will increase from the

initial value M, = © toa final value M = M. The eq.(2.11)

can be integrated:
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%
a_ ’
= = | d4t, (2.12)
) ,4D~ Hz 1)
o 0
-t,fT,I
then Hz(t} = MD{‘I - 2 ), {2.1%)

Taking account of eq.{2.11), the z-component of the eguation

of notion eq.(2.7) becomes

dM
z

dt

where KMG— HZJJ’T1 is an extra trem in the equation of

- {ﬁxﬁ)z v (M - Mz}/T,] , (2,7%)

motion, arisecing from interactions not ineluded in the rRagnetic

N :
field H. That is, besides precessing about the magnetic field,

—

M will relax to the eguilibrium valuye Ma'

CIf in a static field HGE‘ the transverse magnetization

component Hx is not zero, then Hx'will deecay to zero, and

similarly for Hy' The decay oceurs because in thermal

eguilibrium the transverse components are zero, Ye can modify

the equations to provide for transverae relaxation;

dM
x

[

dt

dm

dt

where T2 is

M

- ¥ (M x E}x I (2.15)
. o T
2
a - M
= FiM x HJ:Ir - (2,16)
' 2

called the transverse relaxation time,
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The transverse relaxation time iz a time copstant of 3 or W
T

which decays to zero.

=k

The magnetic energy -1I.M does not change as Hz or Mv

ehanges, nrovided that H i3 along =. Ho energy flcw out of

the spin system for relaxation of M or HH to coccur, So that

X
the conditiorns which dotermine 'i‘2 may be less than for Tq.
Sometimes tie two times are nearly equal, but usuzlly T1?Q’T2,

dependin:t on local conditions., Twoe separate kinds of rolaxation
rrocesses must be considered,
The co.{2.18), ¢q.(2.15) and c¢q.{2,16) are called the

Bloch eguationsz.,

Soluticn to Bloch Equations

e are interested in the behavior of the transverse components
M, or My of the magnetization, Solution to the longitudinal
component 125 been given by ca.(2.13}. The first term on the right
of €q.(2.15} or eq.({2,16) implies s precession of the transverse

components of the magnetization arovund the anslied field B.

Hence in o frone of roference rotating with an zngular velocity

o= - }Hog with respect to laboratory frame, M wil) ke

considered Az @ counstant vector. let us consider the second torm
on the right of eq.{2,15), this term is not included in the

magnetic field 7, e can write the rate of change of i as
-

= - - = (2.17)

Suppeose at t = O Hx is not zero. ¥n thermal equilibrium



15

M, is zero, The q.{2.17) can be integrated

Hx{t) )
M ]
_ = - — it (2,18}
M T,
H-I(p] 0
-thE
then Hx(t) = Mx(ﬂ)e (2,19}

Eq.(2.19) tells us that Hx{t} decays exponentially et a

rate determine by T,. That 1s, in the frame rotating with

2
anguilar velocity of Ea = - HHDE with respect to laboratory
frame, Hx rrecesses around the field HOE and simultaﬁecusly
decays with a time constant Tz. M will induce a sinusoidal
voltage in a coil oriented in the x-axis of the laboratory
frane, The amplifude of a sinusoidal voltage will also decays
exponenfially with a time constant T, Hepce the signal of
the type of Fig. % should be observed, T2 determines the

anplitude of the induced voltage,

valtage | @ﬁﬁ}ﬂﬂﬁ

i
T —
¥ lu '

£, 3, Decaying sipnal.

V3 51 el



16

Zffect of Field Inhnmogeneitytj]

e have seen in section 2.3 that the precessing transverse
magnetization have to decay to zero at a rate detercines by TE
and signal induced in a coil is damped at the same rate. In practied
_T2 isg nét the only sourte of damping of the induced signal, inother
idportant souree of damping is due to the field inhomogencity.
This arises from the fact that magnetization at varicus part of
the sample volume are often in slightly different field and preccus
at slightly different frequencies. The precessicn of the
Magnetization in varicus parts of the sample volume will be out Df
phase in time (fﬂ}”f11 w#here AH denctes the average deviation
of the field at various points over the sample. If {HZldeq is
shorter than TE,'the controlling factor of signal amplitude is

due to ﬂ}L.the field inhomogeneity. The decaying curve i5 not

necessarily exponential,

Induced Signal{8‘10}

Only in a sample with long relaxation tioe T1 is it possibie
to observe the free precession in very weak field such as the
earth field. Distilled water is chosen as a sample., It is

: . . = e . v
zagnetized in a large field H o+ Hy, witn up,;>H1, where I is
the polarizing field along z-direction and H1 is the earth's
total magnetic field along y-direction. . sample acquires the
magnetization M = ;XHP. When Hp is switched off immediately.

a large magnetization M will precess around the earth field HT

with angular velocity Q,}O = —B’H,I. Following a precession of
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i, 4 component Msin@ precesses in the ¥z plune as shown in

Fig, %, and induced a sinusoidal voltage at the terminale of

a pi¢k-up coil oriented along z-direction, If the coil i=s

tuned in parallel with a condenser C at a frequency (s it is

seen that an e.nm.f. & of that frequency induced in the coil

will be a voltage of V = QF across its terminals, where

2 i the guality factor of the coil.

T

i
A
i A

\

Fig, 4. Illustration of the rosition of M after
pelarising field is switched off.

A component Msin® precessec in the xz

plane,

The voltage V = Q% available at the terminals of the

¢coil of n  turns of diameter d is engily computed,

The amplitude £ of the e.m.f. induecd in the coil by the
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precessing magnetization 1z pgiven by the Faraday law

C s 4’.'?'5,%9.&151:19 , (2.2C)

vhere 4 = 1'ﬁd2n is the total coil area crossed by

: b
the magnetic flux. In suitable units, this is

' -5 ,-.;E a2 . -
= 1 o 21
Dyotes = 107 77w d"nMsing (2 é )
Hence, for 8 = ﬂ ' v QE; 5
2
-8 .z 2 o
Voolts = 107 a3 M, (2,28)

It is of interest to calculate the magnitude of induced
e.m.f, that might be expected in a practical case, Consider a
110 cm3 sample of water, in which there are G.EKTGEE protonEKCmi,
¢ach with a magnetic moment jﬁL equal to 1.4 x 1027 Coly S
Lnits, Since I = X for the proten, if a polarizing field
of B0 oersted is ipplied to the sample, when its temperaturc
i1s about 300 GK, the nueclear magnetization ¥ is cqual to
3.4 x 1070 ¢.g.5. units. In Bangkok, the magnetization M

precesses In the carth field at frequency of approximately

1800 Hz.If n 5520 turns, 4= 5 e, ¢ = 18, then

v o 5ox 10_6 volt,
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