THE DETERMINATION OF THE EARTH MAGNETIC FIELD BY NUCLEAR INDUCTION (การวัติการองสนามแม่งหลักโลกโดยการเหนี่ยวนำนีวเคลียร์)

by

Piya Piyanuj

B.Sc. (Hons.), Chulalongkorn University, 1960

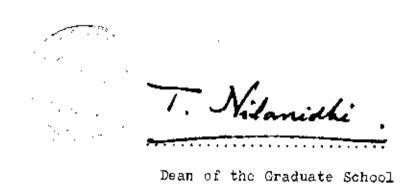
008991

Thesis

Submitted in partial fulfillment of the requirements for the :

Degree of Master of Science

in


The Chulalongkorn University Graduate School

Department of Physics

May, 1970

(B.E. 2513)

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

Thesis Committee Sypanodha Ketudet Chairman

Wijit Suphysha

Payore Tunsin

Kope Kutayakiran

Thesis Supervisor Wijit Suyhyda

Date May 4, 1970

ABSTRACT

The absolute value of the earth's magnetic field in the field in front of the Auditorium of Chulalongkorn University, Bangkok, has been determined with precision by means of nuclear magnetometer. The technique consists of the accurate measurement of the precession frequency about the earth field of hydrogen nuclei in a sample of distilled water. A typical value of the earth field at 6.02 p.m. on February 18, 1970, was found to be 0.41963 ± 0.00004 gauss. Variation of a few gammas(10⁻⁵ gauss) was observed during a period of one hour, and there is also a large variation from day to day.

. บพคัดยอ

ราสมัญรณ์ของสมานแม่เหล็กโลกที่สนามค้านหน้าหอประชุมของจุฬาจงกรณะหาวิทยาลัย ไควัดไว้แล้วอย่างละเจียด โดยไขนิวเคลียร์แมกนีโตมีเตอร์ วิธีการประกอบตัวยการวัด ความถื่อย่างละเจียดของการควงรอบ ๆ สนามแม่เหล็กโลกของนิวคีลอายของไฮโดรเจน ในน้ำกลัน วัดคาสนามแม่เหล็กโลกเพื่อวันที่ 18กุมภาพันธุ์ 2513 เวลา 18.02 น ได้ 0.41963 ± 0.00004 เกาส์ ในช่วงเวลา 1 ชั่วโมงปรากฏว่า สนามแบ่เหล็กโลก มีการเปลี่ยนแปลงขนาด 2-3 แกมมา และแต่ละวันมีการเปลี่ยนแปลงจางกับมาก

ACKNOWLEDGMENT

The author wishes to express his sincere thanks to Dr. Wijit Senghaphan for his help and expert guidance during the course of this work.

He is deeply grateful to Assistant Professor Bhiyayo Panyarjun, his first thesis adviser who suggested this interesting topic and thanks him for his help and advice.

He is also grateful for the financial support given by the Physics Department.

Finally, he would like to thank Professor Peng
Somanaphandhu, the head of Physics Department, Chulalongkorn
University, for his interest in this work.

TABLE OF CONTENTS

	Page
ABSTRACT	įįį
ACKNOWLEDGMENT	iv
LIST OF TABLES	v
LIST OF ILLUSTRATIONS	γí
Chapter	
I INTRODUCTION:	1
1.1 Nuclear Magnetic Moment	7
1.2 Nuclear Paramagnetism	3
1.3 Energy in the Magnetic Field	5
1.4 Nuclear Magnetic Resonance	G
1.5 Measurement of Magnetic Field	3
II PRINCIPLE OF NUCLEAR MAGNETIC INDUCTION	9
2.1 Motion of a Free Spin	9
2.2 Bloch Equations and Relaxation Times	11
2.3 Solution to Bloch Equations	1 4)
2.4 Effect of Field Inhomogeneity	16
2.5 Induced Signal	:6
III MEASUREMENT AND APPARATUS	19
3.1 The Measurement of Earth Magnetic Field	19
3.2 Functions of Electronic Units	21
3.2.1 Pick-up Coil and Switching Circuit	21
3.2.2 Amplifier	23
3.2.3 Signal Squaring Circuit	26
3.2.4 Frequency Divider	26

	Page
3.2.5 Start-Stop Triggering of Time Interval	
Measurement	29
3.5 Problems of Measurement	31
IV RESULTS AND DISCUSSIONS	32
4.1 Earth Magnetic Field	32
4.2 Field Variation	3 5
4.5 Uncertainty of the Field Measurement	33
4,4 Possible Pature Study	34
DIBLIOGRAPHY	54.
VITA	55

LIST OF TABLES

TABLE		
. 1	Typical values of χ and g_N	ż
2	Data	36
3-7	Reduction of data	44

LIST OF ILLUSTRATIONS

Figur	'e	Page
1	Energy level diagram for a nuclear moment of spin	
	5/2 showing the absorption of a quantum of	
	radiation which induces a transition between a	
	pair of adjacent Zeeman levels	7
2	Precession of nuclear moments	10
3	Decaying signal	15
4	Illustration of the position of \overrightarrow{M} after	
	polarizing field is switched off. A component	
	Msin@ precesses in the xz plane	17
5	Block diagram of the apparatus	20
6	Switching circuit	22
7	Circuit of amplifier	24
δ	Voltage gain vs frequency of amplifier	25
9	Signal squaring circuit	27
10	Frequency divider	28
17	Circuits of start and stop units	30
12	Decaying free precession signal (protons in water).	35
13-16	Variation in earth's total magnetic field	/i -5
17	The photographs of apparatus	53