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CHAPTER I

INTRODUCTION

This chapter will provide some background in functional equations, stabil-

ity problems of functional equations, as well as the motivation of our proposed

problem.

1.1 Functional Equations

A functional equation is simply an equation whose unknowns are functions. To

solve a functional equation is to seek all possible functions satisfying the equation.

Example 1.1. In order to find all functions f : R→ R such that

x2f(x) + f(1− x) = 2x− x4 for all x ∈ R, (1.1)

we will start with replacing x by 1− x to get

(1− x)2f(1− x) + f(x) = 2(1− x)− (1− x)4 for all x ∈ R.

Substituting f(1− x) = 2x− x4 − x2f(x) from (1.1) into the above equation and

solving for f(x), we obtain f(x) = 1− x2 for all x ∈ R.

On the contrary, if f(x) = 1− x2, then

x2f(x) + f(1− x) = x2(1− x2) + (1− (1− x)2) = 2x− x4,

which asserts that the functional equation (1.1) holds for all x ∈ R. Therefore,

the solution of (1.1) is the function f given by f(x) = 1− x2 for all x ∈ R. �

One of the most studied functional equations is the additive functional equa-

tion:

f(x+ y) = f(x) + f(y). (1.2)
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In the pioneering paper by A.L.Cauchy [4] in 1821, it was shown that all continuous

solutions of (1.2) on R are linear functions given by f(x) = cx for all x ∈ R, where

c is a real constant. This additive functional equation was later known as the

Cauchy functional equation. An existence of a nonlinear additive function on R

was not realized before 1905, when G. Hamel [9] constructed the general solution

of (1.2) using a Hamel basis over Q. A remarkable result regarding the nonlinear

additive functions is that the graph G(f) = {(x, f(x)) : x ∈ R} is a dense subset

of R2 (see [10]). In other words, for all ε > 0 and for all (x, y) ∈ R2, there exists

a point (a, f(a)) ∈ G(f) such that (x − a)2 + (y − f(a))2 < ε2, which indicates

that the graph of a nonlinear additive functions must consist of points scattered

all over the plane R2.

A functional equation closely related to (1.2) is the Jensen functional equation:

f

(
x+ y

2

)
=
f(x) + f(y)

2
. (1.3)

It should be noted that (1.3) is invariant under an introduction of a constant; i.e.

if we define a function g by g(x) = f(x) − c, where c is a constant, then g still

satisfies (1.3). It is known (see [5]) that the general solution of (1.3) is of the form

f(x) = c+ A(x), where A is a solution of (1.2).

We may think of c + A(x) as a generalized polynomial function of degree 1.

In an attempt to generalize the result to higher degrees, M. Fréchet [7] studied a

functional equation written in terms of a difference operator with a span h:

∆n+1
h f(x) = 0, (1.4)

where n is a nonnegative integer. More precisely, Fréchet showed that a continuous

solution f : R→ R satisfies (1.4) if and only if f is a polynomial function of degree

at most n, i.e. f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n. Hence, (1.4) will be referred

to as the Fréchet functional equation.

1.2 Stability Problems of Functional Equations

In 1940, the problem of stability of functional equations was first introduced by

S.M. Ulam [25] during his talk delivered to the Mathematics Club of the University
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of Wisconsin. Ulam proposed the following question: “Let G1 be a group and let G2

be a metric group with the metric d. Given ε > 0, does there exist a δ > 0 such that

if f : G1 → G2 satisfies the inequality d (f(xy), f(x)f(y)) < δ for all x, y ∈ G1,

then there exists a homomorphism H : G1 → G2 with d (f(x), H(x)) < ε for all

x ∈ G1?”

In the following year, this stability problem was affirmatively answered by

D.H. Hyers [11] that for a mapping f between Banach spaces E1 and E2, if f

satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E1 and for some ε > 0, then there will exist a unique additive

mapping A : E1 → E2 satisfying the inequality

‖A(x)− f(x)‖ ≤ ε.

The mapping A may be formed from A(x) = lim
n→∞

2−nf(2nx). The stability in

this sense was later recognized as the Hyers-Ulam stability and became one of

fundamental concepts of the stability theory of functional equations.

Another inspiring work regarding the stability problem of functional equation

is the work by Th.M. Rassias [19] in 1978 where he proved that if f satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for some θ ∈ [0,∞) and p ∈ [0, 1), then there is a unique additive mapping

A : E1 → E2 such that

‖f(x)− A(x)‖ ≤ 2θ

2− 2p
‖x‖p .

This type of stability is known as the Hyers-Ulam-Rassias stability. The stability

theorem then has been generalized to the case that the bound of the Cauchy

difference is a function with some certain conditions by Gãvruta [8] in 1994.

1.3 Motivation and Proposed Problem

The stability problem of functional equations has gained wide popularity from

researchers over the past few decades. Nonetheless, to the best of our knowledge,
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stability of polynomial-type functional equations were studied up to those of order

not exceeding 4. This motivates us to develop a new technique to prove the

stability of a functional equation which its solution is a generalized polynomial of

an arbitrary order.

The main purpose of this dissertation is to investigate the Hyers-Ulam stabil-

ity of the Fréchet functional equation (1.4) and its stability when the span h is

restricted to the region ‖h‖ > a for a given positive real number a.



CHAPTER II

PRELIMINARIES

This chapter covers some basic theorems and lemmas concerning the difference

operator and multi-additive functions. Throughout this chapter, we let X and Y

be linear spaces and f : X → Y be an arbitrary function.

We shall begin with some basic definitions related to our work.

Definition 2.1. If a function A : X → Y satisfies the property

A(x+ y) = A(x) + A(y) (2.1)

for all x, y ∈ X, then A is called an additive function.

Definition 2.2. Define the difference operator ∆h with the span h ∈ X by

∆hf(x) = f(x+ h)− f(x) for all x ∈ X.

For each positive integer n, we define the iterates ∆n
h by the recurrence

∆n+1
h f = ∆h(∆

n
hf).

We may also write the iterated operators ∆h1 · · ·∆hn shortly as ∆h1...hn .

Lemma 2.3. [5] The difference operators commute; that is, for all h1, h2 ∈ X,

∆h1∆h2f = ∆h2∆h1f.

Lemma 2.4. [5] For all h1, h2 ∈ X,

∆h1+h2f = ∆h1f + ∆h2f + ∆h1∆h2f.

We can also express the term ∆n
hf(x) in the form of the summation of f .
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Lemma 2.5. [5] Let n be a positive integer. For all x, h ∈ X,

∆n
hf(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ kh). (2.2)

In a similar way, an n-additive function can be defined as in the following.

Definition 2.6. Let n be a positive integer. A function An : X → Y will be

called an n-additive function if it is additive in each of its arguments; i.e., for each

1 ≤ i ≤ n and for all x1, . . . , xn, yi ∈ X,

An(x1, . . . , xi + yi, . . . , xn) = An(x1, . . . , xi, . . . , xn) + An(x1, . . . , yi, . . . , xn).

Lemma 2.7. [5] Let An : Xn → Y be an n-additive function, where n is a positive

integer, and let r be a rational number. For all x1, . . . , xn ∈ X.

An(x1, . . . , rxi, . . . , xn) = rAn(x1, . . . , xi, . . . , xn). (2.3)

In particular when r = 0, An(x1, . . . , 0, . . . , xn) = 0.

Definition 2.8. The diagonalization of an n-additive function An : Xn → Y ,

where n is a positive integer, is the function An : X → Y defined by

An(x) = An(x, . . . , x) for all x ∈ X. (2.4)

Lemma 2.9. [5] Let An : X → Y be the diagonalization of an n-additive function,

where n is a positive integer, and let r be a rational number. For all x ∈ X,

An(rx) = rnAn(x).

Definition 2.10. A function f : Xn → Y will be called symmetric if it is invariant

under a permutation of its arguments; that is,

f(x′1, . . . , x
′
n) = f(x1, . . . , xn)

for all x1, . . . , xn ∈ X and (x′1, . . . , x
′
n) denotes any permutation of (x1, . . . , xn).
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Theorem 2.11. [5] Let An : X → Y be the diagonalization of a symmetric n-

additive function, where n is a positive integer, and let m ≥ n be an integer.

Then, for all x, h1, . . . , hm ∈ X,

∆h1···hmA
n(x) =

n!An(h1, . . . , hn) if m = n,

0 if m > n.

The following remarkable theorem by M. Kuczma [16] shows that ∆h1...hnf(x)

can be rewritten in terms of ∆n
hf(x) for various values of x and h.

Theorem 2.12. [16] Let f : X → Y be a function and let h1, . . . , hn ∈ X be

arbitrary. For ε1, . . . , εn ∈ {0, 1}, define

αε1...εn = −
n∑
r=1

εrhr
r

and

bε1...εn = −
n∑
r=1

εrhr.

Then for every x ∈ X,

∆h1,...,hnf(x) =
∑

ε1,...,εn∈{0,1}

(−1)ε1+...+εn∆n
αε1...εn

f (x+ bε1...εn) .

Definition 2.13. Let n be a nonnegative integer. A function f : X → Y which

satisfies

∆n+1
h f(x) = 0,

for all x, h ∈ X, will be called a polynomial function of order n.

Theorem 2.14. [16] If f : X → Y is a polynomial function of order n, then, for

all x, h1, . . . , hn+1 ∈ X,

∆h1,...,hn+1f(x) = 0.

The following theorem give us the general solution of the Fréchet functional

equation.

Theorem 2.15. [5] Let n be a nonnegative integer. A function f : X → Y is a

polynomial function of order n, i.e. ∆n+1
h f(x) = 0 for all x ∈ X and for all h ∈ X,
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then there exist symmetric k-additive functions Ak : Xk → Y , k = 0, 1, . . . , n

whose diagonalizations Ak : X → Y satisfy

f(x) = A0 +
n∑
k=1

Ak(x).



CHAPTER III

STABILITY OF QUADRATIC FUNCTIONAL

EQUATIONS

In this chapter, we will investigate the stability of an n-dimensional quadratic

functional equation. The first section proves its general solution and the following

section will demonstrate its stability which elucidates the fundamental concepts

in our main work.

3.1 General Solution of Quadratic Functional Equations

One way to generalize a functional equation is to generalize the number of ar-

guments appearing in the functional equation. Here we take the classical quadratic

functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (3.1)

where its solution is the diagonalization of a bi-additive function, and we attempt

to generalize it to the following form:

∑
1≤i<j≤n

(f(xi + xj) + f(xi − xj)) = 2(n− 1)
n∑
i=1

f(xi) (3.2)

where n > 1 is a given integer.

In the following theorem, we will show that the functional equation (3.1) and

(3.2) are equivalent; i.e. they possess the same set of solutions.

Theorem 3.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

the functional equation (3.2) where n > 1, for all x1, . . . , xn ∈ X, if and only if it

satisfies the quadratic functional equation (3.1) for all x, y ∈ X.
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Proof. (Necessity) Putting x1 = x2 = . . . = xn = 0 in (3.2) yields

(n− 1)nf (0) = 2 (n− 1)nf (0) .

Since n > 1, we have

f (0) = 0 (3.3)

Then, setting x1 = x, x2 = y, and x3 = x4 = . . . = xn = 0 in (3.2), we have

f (x+ y) + f (x− y) + 2 (n− 2) f (x) + 2 (n− 2) f (y) + (n− 2) (n− 3) f (0)

= 2 (n− 1) (f (x) + f (y)) .

Using (3.3) ensures the validity of (3.1).

(Sufficiency) Assume (3.1) holds. Then,∑
1≤i<j≤n

(f (xi + xj) + f (xi − xj)) =
∑

1≤i<j≤n

(2f (xi) + 2f (xj))

= 2 (n− 1)
n∑
i=1

f (xi).

This completes the proof.

3.2 Generalized Stability

Throughout this section X and Y will be a real normed vector space and a

real Banach space, respectively. Given a function f : X → Y , we set

Df (x1, x2, . . . , xn) :=
∑

1≤i<j≤n

(f (xi + xj) + f (xi − xj)) − 2 (n− 1)
n∑
i=1

f (xi)

for all x1, . . . , xn ∈ X. At once, we prove the stability theorem of an n-dimensional

quadratic functional equation.

Theorem 3.2. Let φ : Xn → [0,∞) be a function such that
∞∑
i=0

4−iφ (2ix, 2ix, 0, . . . , 0) converges for all x ∈ X, and

lim
m→∞

4−mφ (2mx1, 2
mx2, . . . , 2

mxn) = 0 for all x1, . . . , xn ∈ X,
(3.4)
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or 
∞∑
i=0

4iφ (2−ix, 2−ix, 0, . . . , 0) converges for all x ∈ X, and

lim
m→∞

4mφ (2−mx1, 2
−mx2, . . . , 2

−mxn) = 0 for all x1, . . . , xn ∈ X.
(3.5)

If a function f : X → Y satisfies the inequality

‖Df (x1, x2, . . . , xn)‖ ≤ φ (x1, x2, . . . , xn) (3.6)

for all x1, . . . , xn ∈ X, and, in addition, f(0) = 0 if (3.5) holds, then there is a

unique function Q : X → Y such that Q satisfies (3.2) and, for all x ∈ X,

∥∥∥f (x) + n2−n−3
3

f (0)−Q (x)
∥∥∥ ≤


1
4

∞∑
i=0

4−iφ (2ix, 2ix, 0, . . . , 0) if (3.4)holds

1
4

∞∑
i=1

4iφ (2−ix, 2−ix, 0, . . . , 0) if (3.5)holds
(3.7)

The function Q is given by

Q (x) =

 lim
m→∞

4−mf (2mx) if (3.4)holds

lim
m→∞

4mf (2−mx) if (3.5)holds
(3.8)

for all x ∈ X.

Proof. We will first prove the case when condition (3.4) holds. Let g : X → Y

be the function defined by g (x) := f (x) + n2−n−3
3

f (0) for all x ∈ X. Putting

x1 = x2 = x and x3 = . . . = xn = 0 in (3.6) yields

‖g (2x)− 4g (x)‖ = ‖f (2x)− 4f (x)− (n2 − n− 3) f (0)‖

= ‖Df (x, x, 0, . . . , 0)‖

≤ φ (x, x, 0, . . . , 0)

for all x ∈ X. Dividing the above relation by 4 yields∥∥∥∥g (2x)

4
− g (x)

∥∥∥∥ ≤ 1

4
φ (x, x, 0, . . . , 0) . (3.9)

Therefore, ∥∥∥g(2mx)
4m − g (x)

∥∥∥ =

∥∥∥∥m−1∑
i=0

(
g(2i+1x)

4i+1 − g(2ix)
4i

)∥∥∥∥
≤

m−1∑
i=0

1
4i

∥∥∥∥g(2·2ix)
4
− g (2ix)

∥∥∥∥
≤ 1

4

m−1∑
i=0

4−iφ (2ix, 2ix, 0, . . . , 0)

(3.10)
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for any positive integer m and for all x ∈ X.

We will show that the sequence
{
g(2mx)

4m

}
converges for all x ∈ X. For every

positive integer l and m, we consider∥∥∥∥g(2l+mx)
4l+m − g(2mx)

4m

∥∥∥∥ = 1
4m

∥∥∥∥g(2l·2mx)
4l − g (2mx)

∥∥∥∥
≤ 1

4m

l−1∑
i=0

4−i 1
4
φ (2i · 2mx, 2i · 2mx, 0, . . . , 0)

= 1
4

l−1∑
i=0

4−(i+m)φ (2i+mx, 2i+mx, 0, . . . , 0).

By condition (3.4), the right-hand side approaches 0 when m tends to infinity.

Thus, the sequence
{
g(2mx)

4m

}
is a Cauchy sequence. Since a Banach space is

complete, we can define

Q (x) := lim
m→∞

g (2mx)

4m

for all x ∈ X. Consequently, by passing to the limit in (3.10) when m goes to

infinity, it follows that

‖Q (x)− g (x)‖ ≤ 1
4

∞∑
i=o

4−iφ
(
2ix, 2ix, 0, . . . , 0

)
for all x ∈ X. This inequality implies the validity of (3.7). Moreover, let x1, . . . , xn

be any points in X. We have

‖DQ (x1, . . . , xn)‖ = lim
m→∞

4−m ‖Dg (2mx1, . . . , 2
mxn)‖

≤ lim
m→∞

4−m
(
‖Df (2mx1, . . . , 2

mxn)‖+

∣∣∣∣n(n−1)(n2−n−3)
3

∣∣∣∣ ‖f (0)‖
)

≤ lim
m→∞

4−mφ (2mx1, . . . , 2
mxn) .

Using condition (3.4) the right-hand side tends to 0. Hence, Q satisfies (3.2) for

all x1, . . . , xn ∈ X which implies that Q is a quadratic function. It should be

noted that Q (ax) = a2Q (x) for every positive integer a and for all x ∈ X. [5]

Now, we prove the uniqueness of Q. Let Q′ : X → Y be another function

satisfying (3.2) and (3.4). Therefore,

‖Q′ (x)−Q (x)‖ = 1
4m ‖Q′ (2mx)−Q (2mx)‖

≤ 1
4m ‖Q′ (2mx)− g (2mx)‖+ 1

4m ‖g (2mx)−Q (2mx)‖

≤ 2 · 1
4m

1
4

∞∑
i=0

4−iφ (2i+mx, 2i+mx, 0, . . . , 0)

≤ 1
2

∞∑
i=0

4−(i+m)φ (2i+mx, 2i+mx, 0, . . . , 0)
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for all x ∈ X. By condition (3.4), the right-hand side goes to 0 as m tends to

infinity, and it follows that Q′ (x) = Q (x) for all x ∈ X. Hence, Q is unique.

For the case that condition (3.5) holds, we can state the proof in a similar

manner as in the case which the condition (3.4) holds with the additional condi-

tion, f (0) = 0. Starting by replacing x with x
2

in (3.9) and multiplying by 4, we

get ∥∥∥g (x)− 4g
(x

2

)∥∥∥ ≤ φ
(x

2
,
x

2
, 0, . . . , 0

)
for all x ∈ X. This inequality can be extended by mathematical induction to∥∥g (x)− 4mg

(
x

2m

)∥∥ ≤ m−1∑
i=0

4iφ
(

x
2i+1 ,

x
2i+1 , 0, . . . , 0

)
≤ 1

4

m∑
i=1

4iφ (2−ix, 2−ix, 0, . . . , 0)

for any positive integer m and for all x ∈ X.

We can show that a sequence
{

4mg
(
x

2m

)}
converges for all x ∈ X and let

Q (x) := lim
m→∞

4mf
(
2−mx

)
for all x ∈ X. The rest of the proof is similar to the corresponding part of the

proof of the previous case. Thus, it will be omitted.

Therefore, we now obtain the stability of an n-dimensional quadratic functional

equation in the Hyers-Ulam and the Hyers-Ulam-Rassias senses, respectively.

Corollary 3.3. If a function f : X → Y satisfies the inequality

‖Df (x1, . . . , xn)‖ ≤ ε

for all x1, . . . , xn ∈ X and for some real number ε > 0, then there exists a unique

function Q : X → Y such that Q satisfies (3.2) and∥∥∥f (x) + n2−n−3
3

f (0)−Q (x)
∥∥∥ ≤ ε

3

for all x ∈ X.

Proof. We choose φ (x1, . . . , xn) = ε for all x1, . . . , xn ∈ X. Being in condition

(3.4) in Theorem 3.2, it follows that∥∥∥f (x) + n2−n−3
3

f (0)−Q (x)
∥∥∥ ≤ 1

4

∞∑
i=0

ε

4i
=
ε

3

for all x ∈ X as desired.
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Corollary 3.4. Given positive real number ε and p with p 6= 2. If a function

f : X → Y satisfies the inequality

‖Df (x1, . . . , xn)‖ ≤ ε
n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X, then there exists a unique function Q : X → Y such that

Q satisfies (3.2) and∥∥∥f (x) + n2−n−3
3

f (0)−Q (x)
∥∥∥ ≤ ε

|2− 2p−1|
‖x‖p

for all x ∈ X.

Proof. We choose φ (x1, . . . , xn) = ε
n∑
i=1

‖xi‖p for all x1, . . . , xn ∈ X. If 0 < p < 2,

then condition (3.4) in Theorem 3.2 is fulfilled, and consequently∥∥∥f (x) + n2−n−3
3

f (0)−Q (x)
∥∥∥ ≤ 1

4

∞∑
i=0

4−iε · 2
∥∥2ix

∥∥p =
ε

2− 2p−1
‖x‖p

for all x ∈ X. If p > 2, the condition (3.5) in Theorem 3.2 is fulfilled, and

consequently∥∥∥f (x) + n2−n−3
3

f (0)−Q (x)
∥∥∥ ≤ 1

4

∞∑
i=1

4iε · 2
∥∥2−ix

∥∥p =
ε

2p−1 − 2
‖x‖p

for all x ∈ X.



CHAPTER IV

STABILITY OF FRÉCHET FUNCTIONAL

EQUATIONS

This chapter begins with the Hyers-Ulam stability of the Fréchet functional

equation and will move on to the stability problem with a restricted span.

4.1 Hyers-Ulam Stability of Fréchet Functional Equations

In this section, we will explore the stability of the Fréchet functional equation

∆n+1
y f(x) = 0 (4.1)

where n is a nonnegative integer.

To improve the readability, the first subsection will prove some lemmas that

will be helpful for the stability theorem and the following subsection will complete

the proof of the stability.

4.1.1 Auxiliary Lemmas

Throughout the section, we shall let X be a linear space and let Y be a Banach

space.

Lemma 4.1. Let ε > 0. Let f : X → Y be a function such that
∥∥∆n+1

h f(x)
∥∥ ≤ ε

for all x, h ∈ X. For arbitrary h1, . . . , hn+1 ∈ X and for every x ∈ X,

∥∥∆h1,...,hn+1f(x)
∥∥ ≤ 2n+1ε. (4.2)

Proof. Utilize Theorem 2.12 and apply the bound
∥∥∆n+1

h f(x)
∥∥ ≤ ε, we immedi-

ately get the desired result.
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Lemma 4.2. Let n be a positive integer and let ε > 0. Let f : X → Y be a

function such that
∥∥∆n+1

h f(x)
∥∥ ≤ ε for all x, h ∈ X. Define a function g : Xn →

Y by

g(x1, . . . , xn) =
1

n!
∆x1,...,xnf(0) for all x1, . . . , xn ∈ X.

Then g is symmetric and, for every x1, . . . , xn, y ∈ X and for each 1 ≤ i ≤ n,

‖g(x1, . . . , xi−1, xi + y, xi+1, . . . , xn)− g(x1, . . . , xn)− g(x1, . . . , xi−1, y, xi+1, . . . , xn)‖

≤ 2n+1

n!
ε.

Moreover, for every x1, . . . , xn ∈ X and for each positive integer m,∥∥∥∥g(2mx1, . . . , 2
mxn)

2mn
− g(x1, . . . , xn)

∥∥∥∥ ≤ 2n+1

n!
ε.

Proof. Since the difference operators commute, it immediately follows that g is

symmetric. By the definition of g along with Lemma 2.4, for every x1, . . . , xn, y ∈

X,

‖g(x1 + y, x2, . . . , xn)− g(x1, x2, . . . , xn)− g(y, x2, . . . , xn)‖

=
1

n!
‖∆x2...xn(∆x1+yf(0)−∆x1f(0)−∆yf(0))‖

=
1

n!
‖∆x2...xn∆x1∆yf(0)‖ .

From Lemma 4.1, ‖∆x2...xn∆x1∆yf(0)‖ ≤ 2n+1ε. Hence,

‖g(x1 + y, x2, . . . , xn)− g(x1, x2, . . . , xn)− g(y, x2, . . . , xn)‖ ≤ 2n+1

n!
ε. (4.3)

Recalling the symmetry of g, we can conclude that, for every x1, . . . , xn, y ∈ X

and for each 1 ≤ i ≤ n,

‖g(x1, . . . , xi−1, xi + y, xi+1, . . . , xn)− g(x1, . . . , xn)− g(x1, . . . , xi−1, y, xi+1, . . . , xn)‖

≤ 2n+1

n!
ε.

If we let y = xi, the above inequality turns to

‖g(x1, . . . , xi−1, 2xi+, xi+1, . . . , xn)− 2g(x1, . . . , xn)‖ ≤ 2n+1

n!
ε. (4.4)
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Now consider

‖g(2x1, . . . , 2xn)− 2ng(x1, . . . , xn)‖

=

∥∥∥∥∥
n∑
k=1

(
2n−kg(2x1, . . . , 2xk, xk+1, . . . , xn)− 2n−(k−1)g(2x1, . . . , 2xk−1, xk, . . . , xn)

)∥∥∥∥∥
≤

n∑
k=1

2n−k ‖g(2x1, . . . , 2xk, xk+1, . . . , xn)− 2g(2x1, . . . , 2xk−1, xk, . . . , xn)‖

Applying (4.4), we will have, for each k,

‖g(2x1, . . . , 2xk, xk+1, . . . , xn)− 2g(2x1, . . . , 2xk−1, xk, . . . , xn)‖ ≤ 2n+1

n!
ε.

Therefore,

‖g(2x1, . . . , 2xn)− 2ng(x1, . . . , xn)‖ ≤
n∑
k=1

2n−k
(

2n+1

n!
ε

)
=

2n+1(2n − 1)

n!
ε.

That is, for every x1, . . . , xn ∈ X,∥∥∥∥g(2x1, . . . , 2xn)

2n
− g(x1, . . . , xn)

∥∥∥∥ ≤ 2(2n − 1)

n!
ε. (4.5)

Let m be a positive integer. Consider∥∥∥∥g(2mx1, . . . , 2
mxn)

2mn
− g(x1, . . . , xn)

∥∥∥∥
=

∥∥∥∥∥
m−1∑
i=0

(
g(2i+1x1, . . . , 2

i+1xn)

2(i+1)n
− g(2ix1, . . . , 2

ixn)

2in

)∥∥∥∥∥
≤

m−1∑
i=0

1

2in

∥∥∥∥g(2i+1x1, . . . , 2
i+1xn)

2k
− g(2ix1, . . . , 2

ixn)

∥∥∥∥ .
Apply the bound (4.5), we finally have∥∥∥∥g(2mx1, . . . , 2

mxn)

2mn
− g(x1, . . . , xn)

∥∥∥∥ ≤ 2(2n − 1)ε

n!

m−1∑
i=0

1

2in
≤ 2n+1ε

n!
.

Lemma 4.3. Let n be a nonnegative integer. If F, F̃ : X → Y are polynomial

functions of order n with F (0) = F̃ (0), and there exists a constant ε > 0 such

that ∥∥∥F (x)− F̃ (x)
∥∥∥ ≤ ε for all x ∈ X, (4.6)

then F (x) = F̃ (x) for all x ∈ X.
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Proof. We will prove by mathematical induction on the order n. For the basis

step n = 0, F and F̃ simply are constant functions and thus F (x) = F̃ (x) for all

x ∈ X.

For the inductive step, we assume that the Lemma holds for n = k − 1.

Here k ≥ 1. We will prove that the lemma also holds for n = k. Assume the

assumptions in the lemma when n = k. In addition, F and F̃ are polynomial

functions of order k; that is, by Theorem 2.15,

F (x) = F (0)+A1(x)+· · ·+Ak(x) and F̃ (x) = F (0)+Ã1(x)+· · ·+Ãk(x), (4.7)

where Ai(x) and Ãi(x), for each i = 1, . . . , k, are the diagonalization of some

symmetric i-additive functions from Xn to Y . Note that we have also taken into

account F (0) = F̃ (0). By Lemma 2.9, for every positive integer m,

F (2mx) = F (0) + A1(2mx) + · · ·+ Ak(2mx) = F (0) + 2mA1(x) + · · ·+ 2mkAk(x).

Therefore, for every x ∈ X,

lim
m→∞

F (2mx)

2mk
= Ak(x).

Similarly, for every x ∈ X,

lim
m→∞

F̃ (2mx)

2mk
= Ãk(x).

Therefore,∥∥∥Ak(x)− Ãk(x)
∥∥∥ =

∥∥∥∥∥ lim
m→∞

F (2mx)− F̃ (2mx)

2mk

∥∥∥∥∥ = lim
m→∞

1

2mk

∥∥∥F (2mx)− F̃ (2mx)
∥∥∥

Since
∥∥∥F (x)− F̃ (x)

∥∥∥ ≤ ε for all x ∈ X, we have

lim
m→∞

1

2mk

∥∥∥F (2mx)− F̃ (2mx)
∥∥∥ = 0.

That is Ak(x) = Ãk(x) for all x ∈ X. If we let G(x) = F (0)+A1(x)+· · ·+Ak−1(x)

and G̃(x) = F (0)+ Ã1(x)+ · · ·+ Ãk−1(x), then G and G̃ are polynomial functions

of order k − 1 with G(0) = G̃(0). Moreover, for every x ∈ X,∥∥∥G(x)− G̃(x)
∥∥∥ =

∥∥∥F (x)− F̃ (x)
∥∥∥ ≤ ε,
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which fulfils all assumptions of the lemma when n = k − 1. Thus, the induction

hypothesis gives G(x) = G̃(x) for all x ∈ X, which in turn concludes that F (x) =

F̃ (x) for all x ∈ X.

4.1.2 Stability of Fréchet Functional Equation

We now state the stability theorem of the Fréchet functional equation as fol-

lows.

Theorem 4.4. Let X be a linear space and let Y be a Banach space. Let ε > 0

and n be a positive integer. If a function f : X → Y satisfies the inequality

∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x, h ∈ X, (4.8)

then there exists a symmetric n-additive function where its diagonalization An :

X → Y satisfies

‖∆n
h(f(x)− An(x))‖ ≤ 2n+2ε for all x, h ∈ X. (4.9)

Proof. Suppose a function f : X → Y satisfies the condition in the theorem.

Define a function g : Xn → Y by

g(x1, . . . , xn) :=
1

n!
∆x1...xnf(0) for all x1, . . . , xn ∈ X.

From Lemma 4.2, we have, for every x1, . . . , xn and for each positive integer

m, ∥∥∥∥g(2mx1, . . . , 2
mxn)

2mn
− g(x1, . . . , xn)

∥∥∥∥ ≤ 2n+1ε

n!
. (4.10)

We will show that
{
g(2mx1,...,2mxn)

2mn

}∞
m=1

is a Cauchy sequence. Let p, q > 0 be

integers.∥∥∥∥g(2p+qx1, . . . , 2
p+qxn)

2(p+q)n
− g(2px1, . . . , 2

pxn)

2pn

∥∥∥∥
=

1

2pn

∥∥∥∥g(2q · 2px1, . . . , 2
q · 2pxn)

2qn
− g(2px1, . . . , 2

pxn)

∥∥∥∥ ≤ 2n+1ε

2pnn!
.

Taking the limit p → ∞, the term on the right-hand side tends to zero. Hence,

the sequence is a Cauchy sequence as desired. This allows us to define a function
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An : Xn → Y by

An(x1, . . . , xk) := lim
m→∞

g(2mx1, . . . , 2
mxk)

2mk
.

Next we will show that An is n-additive. From Lemma 4.2, g is symmetric
and so is An. Thus, it suffices to prove the additivity only for the first component
of An.

‖An(x1 + y, x2, . . . , xn)−Ak(x1, x2, . . . , xn)−Ak(y, x2, . . . , xn)‖

=

∥∥∥∥ lim
m→∞

1

2mn
(g(2m(x1 + y), 2mx2, . . . , 2

mxn)− g(2mx1, . . . , 2
mxn)− g(2my, 2mx2, . . . , 2

mxn))

∥∥∥∥
= lim

m→∞

1

2mn
‖(g(2m(x1 + y), 2mx2, . . . , 2

mxn)− g(2mx1, . . . , 2
mxn)− g(2my, 2mx2, . . . , 2

mxn))‖

Using Lemma 4.2 again, we can see that the limit goes to zero, which concludes

the additivity of An. Now if we take the limit m → ∞ in (4.10), then, for every

x1, . . . , xn,

‖An(x1, . . . , xn)− g(x1, . . . , xn)‖ ≤ 2n+1ε

n!
. (4.11)

Setting x1 = · · · = xn = h in (4.11) and recalling that g(h) = 1
n!

∆n
hf(0), we have∥∥∥∥An(h)− 1

n!
∆n
hf(0)

∥∥∥∥ ≤ 2n+1ε

n!
,

where An : X → Y is the diagonalization of An. From Theorem 2.11, ∆n
hA

n(x) =

n!An(h). Therefore,

‖∆n
hA

n(x)−∆n
hf(0)‖ ≤ 2n+1ε.

Consider

‖∆n
h(f(x)− An(x))‖ = ‖∆n

h(f(x)− f(0)) + ∆n
hf(0)− An(x))‖

≤ ‖∆n
h∆xf(0)‖+ ‖∆n

hf(0)− An(x))‖ .

From Lemma 4.1, ‖∆n
h∆xf(0)‖ ≤ 2n+1ε. Hence,

‖∆n
h(f(x)− An(x))‖ ≤ 2n+2ε

as desired.

Theorem 4.5. Let X be a linear space and let Y be a Banach space. Let ε > 0

and n be a positive integer. If a function f : X → Y satisfies the inequality (4.8),
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then there exists a unique function F : X → Y such that F satisfies the Fréchet

functional equation, ∆n+1
h F (x) = 0, with F (0) = f(0), and

‖f(x)− F (x)‖ ≤ 2(n2+5n−6)/2ε for all x ∈ X. (4.12)

Moreover, F (x) = f(0) + A1(x) + · · ·+ An(x), where, for all x ∈ X,

An(x) = lim
m→∞

f(2mx)

2mn

and, for each k = 1, . . . , n− 1,

Ak(x) = lim
m→∞

1

2mk
(
f(2mx)− Ak+1(2mx)− · · · − An(2mx)

)
.

Proof. We will prove by mathematical induction on n. For n = 1, we have the

stability problem for Jensen functional equation which has already been proved

([13], for example). For the inductive step, assume that the theorem holds for

n = k− 1, we shall prove that the theorem also holds for n = k. Assume that, for

every x, h ∈ X, ∥∥∆k+1
h f(x)

∥∥ ≤ ε.

By Theorem 4.4, there exists the diagonalization Ak : X → Y of a symmetric

k-additive function such that∥∥∆k
h(f(x)− Ak(x))

∥∥ ≤ 2k+2ε.

If we let h(x) = f(x) − Ak(x) for all x ∈ X, then
∥∥∆k

hh(x)
∥∥ ≤ 2k+2ε. Applying

the induction hypothesis, there exists a function H : X → Y such that

∆k
hH(x) = 0 and H(0) = h(0) (4.13)

and ‖h(x)−H(x)‖ ≤ 2(k2+3k−10)/2 · 2k+2ε = 2(k2+5k−6)/2ε. (4.14)

Define F (x) = H(x) + Ak(x). Using (4.13) and Theorem 2.15, we see that

∆k+1
h F (x) = ∆k+1

h (H(x) + Ak(x)) = 0;

and F (0) = H(0) + Ak(0) = f(0). In addition,

‖f(x)− F (x)‖ = ‖h(x)−H(x)‖ ≤ 2(k2+5k−6)/2ε,

which completes the induction.

The uniqueness of F is guaranteed by Lemma 4.3.
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It is worth noting that the generalized stability problem with the bound

‖∆n+1
h f(x)‖ ≤ φ(x, h) for some general distance function φ (with certain con-

ditions) is possible by essentially the same method as what we have shown, but

the result might appears awkward. Therefore, it will be of advantage to treat only

the stability in the sense of Hyers and Ulam here.

4.2 Stability Problems of Conditional Functional Equa-

tions

Generally, functional equations will be stated without additional conditions

on the arguments, except for those violating the validity of the function values.

It is usually more challenging to solve functional equations with some additional

restrictions. The restricted domain of the arguments is sometimes called domains

of validity ([18] and [22]). Recall the classical example of Cauchy functional equa-

tion,

f(x+ y) = f(x) + f(y), (4.15)

when x, y are restricted to a region Ω. Its solutions may depend on the domain Ω

as well as regularity assumptions of f such as the continuity and the boundedness.

Example 4.6. As already noted, when f : R → R is an arbitrary function and

the domain of validity, Ω, is the entire domain R2, all continuous solutions will be

linear functions. On the other hand, consider all functions f satisfying

f(x+ y) = f(x) + f(y) for all (x, y) ∈ R× {0}. (4.16)

That is, the variable y is restricted to be only zero. It is obvious that all solutions

of Eq.(4.15) when Ω = R2 are also solution of Eq.(4.16). However, there exists a

function, for instance, f(x) = x2, which satisfies Eq.(4.16), but does not satisfy

Eq.(4.15) when Ω = R2. As a consequence, it can be concluded that the set of

solutions of Eq.(4.15) when Ω = R2 is contained in the set of solutions of Eq.(4.16).

�
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Due to the fact shown in the previous example, we found that new solutions

may generally occur if the domain of variables is restricted. It is worth noting that

some authors ([3], [18], for example) used the term conditional functional equations

to describe the functional equation with restricted domains. Furthermore, there is

a number of researches ([3], [6], [15], [18], and [20], for example) that address this

type of problems. The Fréchet functional equation with restricted domain is one

of interesting framework. One example of such works belongs to W. Towanlong

and P. Nakmahachalasint [24].

Accordingly, it is also merit to call attention to such functional equations in

the sense of stability problems. The bound of stability of a functional equation

with restricted domain may be affected due to emerging new solutions. Some

appealing works dealing with such stability problems belong to F. Skof [23] and

Z. Kominek [14].

4.3 Stability of Conditional Fréchet Functional Equation

In this section, we will determine the Hyers-Ulam stability of the Fréchet

functional equation, ∆n+1
h f(x) = 0, when the spans, h, is restricted with the

condition ‖h‖ > a, for a positive real number a.

Lemma 4.7. Let n be a nonnegative integer. Let f : X → Y be a function. Then

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
∆n+1

(k+1)zf(x0 + kh0)

=
n+1∑
j=0

(−1)n+1−j
(
n+ 1

j

)
∆n+1
h0+jzf(x0 + jz)

for all x0, h0, z ∈ X.

Proof. Let x0, h0, z ∈ X. By Lemma 2.5, we have

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
∆n+1

(k+1)zf(x0 + kh0)

=
n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

) n+1∑
j=0

(−1)n+1−j
(
n+ 1

j

)
f(x0 + kh0 + j(k + 1)z). (4.17)
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Swapping the order of the summations in (4.17) and applying Lemma 2.5, we get

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
∆n+1

(k+1)zf(x0 + kh0)

=
n+1∑
j=0

(−1)n+1−j
(
n+ 1

j

) n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
f(x0 + jz + k(h0 + jz))

=
n+1∑
j=0

(−1)n+1−j
(
n+ 1

j

)
∆n+1
h0+jzf(x0 + jz).

Lemma 4.8. Let a be a positive real number and let n be a nonnegative integer.

If a function f : X → Y satisfies, for ε > 0,∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x ∈ X and ‖h‖ > a, (4.18)

then ∥∥∆n+1
h f(x)

∥∥ ≤ (2n+2 − 1)ε for all x, h ∈ X.

Proof. Let a function f : X → Y satisfy (4.18). Let x0, h0 ∈ X. Choose z ∈ X

such that ‖z‖ > a+ ‖h0‖. We then obtain that for k = 0, . . . , n+ 1, (k+ 1) ‖z‖ ≥

‖z‖ > a+ ‖h0‖ ≥ a. Thus, by (4.18), we have∥∥∥∥∥
n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
∆n+1

(k+1)zf(x0 + kh0)

∥∥∥∥∥ ≤
n+1∑
k=0

(
n+ 1

k

)∥∥∥∆n+1
(k+1)zf(x0 + kh0)

∥∥∥
≤ 2n+1ε. (4.19)

Similarly, for all j = 1, . . . , n + 1, we also have that ‖h0 + jz‖ ≥ ‖z‖ − ‖h0‖ > a

and then ∥∥∥∥∥
n+1∑
j=1

(−1)n+1−j
(
n+ 1

j

)
∆n+1
h0+jzf(x0 + jz)

∥∥∥∥∥ ≤ (2n+1 − 1)ε. (4.20)

From Lemma 4.7,

(−1)n+1∆n+1
h0

f(x0) =
n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
∆n+1

(k+1)zf(x0 + kh0)

−
n+1∑
j=1

(−1)n+1−j
(
n+ 1

j

)
∆n+1
h0+jzf(x0 + jz).
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That is

∥∥∆n+1
h0

f(x0)
∥∥ ≤∥∥∥∥∥

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
∆n+1

(k+1)zf(x0 + kh0)

∥∥∥∥∥
+

∥∥∥∥∥
n+1∑
j=1

(−1)n+1−j
(
n+ 1

j

)
∆n+1
h0+jzf(x0 + jz)

∥∥∥∥∥
≤2n+1ε+ (2n+1 − 1)ε = (2n+2 − 1)ε.

We now reach the settlement of the stability of the Fréchet functional equation

with restricted spans.

Theorem 4.9. Let a be a positive real number and let n be a nonnegative integer.

If a function f : X → Y satisfies, for ε > 0,

∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x ∈ X and ‖h‖ > a,

then there exists a unique function F : X → Y such that F satisfies the Fréchet

functional equation with F (0) = f(0) and

‖f(x)− F (x)‖ ≤ 2
n2+5n−6

2 (2n+2 − 1)ε for all x ∈ X.

Proof. The desired result follows directly from Theorem 4.5 and Lemma 4.8.

For the case of functions defined on the set of real numbers, instead of restrict-

ing the span h to ‖h‖ > a, we may separately consider the restrictions h > a and

h < a as in the following two lemmas.

Lemma 4.10. Let a ∈ R and let n be a nonnegative integer. If a function

f : R→ R satisfies, for ε > 0,

∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x ∈ R and h ∈ (a,∞), (4.21)

then ∥∥∆n+1
h f(x)

∥∥ ≤ (2n+2 − 1)ε for all x, h ∈ R.
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Proof. Let a function f : R → R satisfy (4.21). Let x0, h0 ∈ R. To prove this

lemma, we will choose z > max{0, a, a − h0}. The rest of the proof is similar to

Lemma 4.8.

Lemma 4.11. Let a ∈ R and let n be a nonnegative integer. If a function

f : R→ R satisfies, for ε > 0,∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x ∈ R and h ∈ (−∞, a), (4.22)

then ∥∥∆n+1
h f(x)

∥∥ ≤ (2n+2 − 1)ε for all x, h ∈ R.

Proof. Let a function f : R→ R satisfy (4.22). It is the fact that, for all x0, h0 ∈

R, ∆n+1
h0

f(x0) = (−1)n+1∆n+1
−h0

f(x0 + (n + 1)h0). Due to this fact and (4.22), we

obtain ∥∥∆n+1
−h f(x+ (n+ 1)h)

∥∥ =
∥∥∆n+1

h f(x)
∥∥ ≤ ε.

Since −h ∈ (a,∞), we now can employ Lemma 4.10 to obtain the result as

desired.

Theorem 4.12. Let a ∈ R and let n be a positive integer. If a function f : R→ R

satisfies, for ε > 0,∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x ∈ R and h ∈ (a,∞),

then there exists a unique function F : R → R such that F satisfies the Fréchet

functional equation with F (0) = f(0) and

‖f(x)− F (x)‖ ≤ 2
n2+5n−6

2 (2n+2 − 1)ε for all x ∈ R.

Proof. The desired result follows directly from Theorem 4.5 and Lemma 4.10.

Theorem 4.13. Let a ∈ R and let n be a positive integer. If a function f : R→ R

satisfies, for ε > 0,∥∥∆n+1
h f(x)

∥∥ ≤ ε for all x ∈ R and h ∈ (−∞, a),

then there exists a unique function F : R → R such that F satisfies the Fréchet

functional equation with F (0) = f(0) and

‖f(x)− F (x)‖ ≤ 2
n2+5n−6

2 (2n+2 − 1)ε for all x ∈ R.
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Proof. The desired result follows directly from Theorem 4.5 and Lemma 4.11.
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[7] Fréchet M.: Une definition fonctionelle des polynomes, Nouv Ann 9 (1909),

145-162.
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Restricted Spans: Solution on Real Numbers, ScienceAsia 37(2)

(2011), 125-129.

[25] Ulam S.M.: Problems in Modern Mathematics, Chapter 6, John Wiley &

Sons, New York, NY, USA, 1964.



30

[26] Wiwatwanich A., Nakmahachalasint P.: On the Stability of a Cubic

Functional Equation, Thai Journal of Mathematics 3 (2008), 69-76.



31

VITA

Name : Miss Tippaporn Eungrasamee

Date of Birth : 3 June, 1980.

Place of Birth : Songkhla, Thailand

Education : B.Sc.(Mathematics), Kasetsart University, 2000,

M.Sc.(Applied Mathematics), Mahidol University, 2005.

Scholarship : Development and Promotion of Science and Technology

Talents Project (DPST)


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Functional Equations
	1.2 Stability Problems of Functional Equations
	1.3 Motivations and Proposed Problem

	Chapter II Preliminaries
	Chapter III Stability of Quadratic Functional Equations
	3.1 General Solution of Quadratic Functional Equations
	3.2 Generalized Stability of Quadratic Functional Equations

	Chapter IV Stability of Frechet Functional Equations
	4.1 Hyers-Ulam Stability of Fr�Echet Functional Equations
	4.2 Stability Problems of Conditional Functional Equations
	4.3 Stability of Conditional Fr�Echet Functional Equation

	References
	Vita



