CHAPTER IV

STOKES' THEOREM

The primary goal of this chapter is to prove a version of Stokes' Theorem (Theorem 4.4). Before we can begin its proof, however, we need the following lemmas.

Lemma 4.1 For all $n \in \mathbb{Z}^+$ and all $r \in \overline{n}$,

$$
\int_{\Delta(n)} x^{(r)} \, dx = \frac{1}{(n+1)!}.
$$

Proof. Let $n \in \mathbb{Z}^*$, and let $r \in \overline{n}$. It follows from Proposition 3.2.9 that

$$
\int_{A(n)} x^{(r)} dx = (R) \int_{A(n)} x^{(r)} dx.
$$

Thus, it remains to show that

$$
(R)\int_{\Delta(n)} x^{(r)} dx = \frac{1}{(n+1)!}.
$$

If $n = 1$, then $(R)\int_{\Delta(1)} x dx = (R)\int_0^1 x dx = \frac{1}{2!}$, as required. Now suppose that $n \ge 2$. Let $i_1, ..., i_{n-1}$ be the distinct elements of $\overline{n} \setminus \{r\}$. Note that $(R)\int_{\Delta(n)} x^{(r)} dx$

$$
= (R)_0 \int_0^1 (R)_0 \int_0^{1-x^{(i_0-1)}} \cdots (R)_0 \int_0^{1-\sum_{j=2}^{n-1} x^{(ij)}} (R)_0 \int_0^{1} \cdots \int_0^{n-1} x^{(i)} dx^{(i)} dx^{(i_1)} \cdots dx^{(i_{n-1})}.
$$

This implies that

$$
\begin{array}{lll}\n\text{(R)} \int_{\Delta(n)} x^{(r)} \, dx \\
&= \frac{1}{2} \text{(R)}_0 \int_0^1 \text{(R)}_0 \int_0^{1-x^{(n-1)}} \cdots \text{(R)}_0 \int_0^{1-x^{(n-1)}} \text{(R)}_0 \int_0^{1-x^{(n-1)}} \text{(R)}_0 \left(1-\sum_{j=1}^{n-1} x^{(j_j)}\right)^2 \, dx^{(i_1)} \cdots dx^{(i_{n-1})}.\n\end{array}
$$

To investigate (R) $\int_{0}^{1-\sum_{j=2}^{n-1} x^{(i_j)}} (1-\sum_{i=1}^{n-1} x^{(i_j)})^2 dx^{(i_j)}$, proceed as follows. Let

$$
t = 1 - \sum_{j=1}^{n-1} x^{(l_j)};
$$
 then $dx^{(l_1)} = -dt$, $t = 1 - \sum_{j=2}^{n-1} x^{(l_j)}$ if $x^{(l_1)} = 0$, and $t = 0$ if

$$
x^{(l_1)} = 1 - \sum_{j=2}^{n-1} x^{(l_j)}.
$$
 Hence
\n
$$
(R)_0 \int_{t=1}^{n-1} (1 - \sum_{j=1}^{n-1} x^{(l_j)})^2 dx^{(l_1)} = (R)_0 \int_{t=2}^{1 - \sum_{j=2}^{n-1} x^{(j_j)}} t^2 dt = \frac{1}{3} (1 - \sum_{j=2}^{n-1} x^{(l_j)})^3.
$$
\n
$$
x^{(l_1)} = \sum_{j=1}^{n-1} x^{(j_1)}.
$$
\n
$$
(1 - \sum_{j=1}^{n-1} x^{(j_j)})^2 dx^{(l_1)} = \sum_{j=1}^{n-1} (1 - \sum_{j=1}^{n-1} x^{(j_j)})^3.
$$

By replacing $(R)_{0}$
(R) $\int_{\Delta(n)} x^{(r)} dx$ with $\frac{1}{3}(1-\sum_{j=2}^{x}x)$ $\sum_{j=1}^{\infty}$

$$
= \frac{1}{3!}(R)_0 \int_0^1 (R)_0 \int_0^{1-x^{(k-1)}} \cdots (R)_0 \int_0^{1-\sum_{j=4}^{k-1} x^{(ij)}} (R)_0 \int_0^{1-\sum_{j=3}^{k-1} x^{(ij)}} (1-\sum_{j=2}^{k-1} x^{(i_j)})^3 dx^{(i_0)} \cdots dx^{(i_{k-1})}.
$$

Continuing this process inductively, we eventually obtain

$$
(R)\int_{\Delta(n)} x^{(r)} dx = \frac{1}{n!} (R)_0 \int_1^1 (1 - x^{(i_{n-1})})^n dx^{(i_{n-1})}
$$

= $-\frac{1}{(n+1)!} (1 - x^{(i_{n-1})})^{n+1} \Big|_0^1$
= $\frac{1}{(n+1)!}$.

Lemma 4.2 Let $k \in \mathbb{Z}^*$ be such that $k \ge 2$. Suppose $q_0, q_1, ..., q_k \in \mathbb{R}^k$ are such that $q_1 - q_0, ..., q_k - q_0$ are linearly independent. For each $j \in \overline{k}$, let

41

$$
J_{j,0} = \det \begin{bmatrix} (q_2 - q_1)^{(1)} & \cdots & (q_k - q_1)^{(1)} \\ \vdots & & \vdots \\ (q_2 - q_1)^{(j-1)} & \cdots & (q_k - q_1)^{(j-1)} \\ (q_2 - q_1)^{(j+1)} & \cdots & (q_k - q_1)^{(j+1)} \\ \vdots & & \vdots \\ (q_2 - q_1)^{(k)} & \cdots & (q_k - q_1)^{(k)} \end{bmatrix},
$$

and for each $a\in\overline{k}$, let

$$
J_{ja} = \det \begin{bmatrix} (q_1 - q_0)^{(1)} & \cdots & (q_{a-1} - q_0)^{(1)} & (q_{a+1} - q_0)^{(1)} & \cdots & (q_k - q_0)^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ (q_1 - q_0)^{(f-1)} & \cdots & (q_{a-1} - q_0)^{(f-1)} & (q_{a+1} - q_0)^{(f-1)} & \cdots & (q_k - q_0)^{(f-1)} \\ (q_1 - q_0)^{(f+1)} & \cdots & (q_{a-1} - q_0)^{(f+1)} & (q_{a+1} - q_0)^{(f+1)} & \cdots & (q_k - q_0)^{(f+1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (q_1 - q_0)^{(k)} & \cdots & (q_{a-1} - q_0)^{(k)} & (q_{a+1} - q_0)^{(k)} & \cdots & (q_k - q_0)^{(k)} \end{bmatrix}.
$$

Then for every $j \in \overline{k}$,

(i)
$$
\sum_{a=0}^{k} (-1)^{a} J_{ja} = 0,
$$

\n(ii)
$$
\sum_{a=0}^{k} (-1)^{a+1} q_{a}^{(s)} J_{ja} = 0 \text{ for all } s \in \overline{k} \setminus \{j\}, \text{ and}
$$

(iii) if det
$$
\begin{bmatrix} 1 & 1 & \cdots & 1 \\ q_0^{(1)} & q_1^{(1)} & \cdots & q_k^{(1)} \\ \vdots & \vdots & & \vdots \\ q_0^{(k)} & q_1^{(k)} & \cdots & q_k^{(k)} \end{bmatrix} > 0
$$
, then

$$
\text{Vol}(\Delta(q_0,q_1,...,q_k)) = \frac{(-1)^{j+1}}{k!} \sum_{a=0}^k (-1)^{a+1} q_a^{(j)} \mathbf{J}_{ja}.
$$

Proof. Let $j \in \overline{k}$ be fixed.

To prove (i), note that (using expansion by minors)

$$
\sum_{\alpha=0}^k (-1)^{\alpha} J_{\beta \alpha} = J_{\beta,0} - \sum_{\alpha=1}^k (-1)^{\alpha+1} J_{\beta \alpha}
$$

$$
= J_{j,0} - \det \begin{bmatrix} 1 & \cdots & 1 \\ (q_1 - q_0)^{(1)} & \cdots & (q_k - q_0)^{(1)} \\ \vdots & & \vdots \\ (q_1 - q_0)^{(j-1)} & \cdots & (q_k - q_0)^{(j-1)} \\ (q_1 - q_0)^{(j+1)} & \cdots & (q_k - q_0)^{(j+1)} \\ \vdots & & \vdots \\ (q_1 - q_0)^{(k)} & \cdots & (q_k - q_0)^{(k)} \end{bmatrix}
$$

Thus, it is enough to show that $J_{j,0}$ equals the determinant of the last matrix. By subtracting the first column from each of the other columns in the last matrix and then expanding by minors along the first row, we get

$$
\begin{bmatrix}\n1 & \cdots & 1 \\
(q_1 - q_0)^{(1)} & \cdots & (q_k - q_0)^{(1)} \\
\vdots & & \vdots \\
(q_1 - q_0)^{(j-1)} & \cdots & (q_k - q_0)^{(j-1)} \\
(q_1 - q_0)^{(j+1)} & \cdots & (q_k - q_0)^{(j+1)} \\
\vdots & & \vdots \\
(q_1 - q_0)^{(k)} & \cdots & (q_k - q_0)^{(k)}\n\end{bmatrix}
$$

$$
= \det \begin{bmatrix} 1 & 0 & \cdots & 0 \\ (q_1 - q_0)^{(1)} & (q_2 - q_1)^{(1)} & \cdots & (q_k - q_1)^{(1)} \\ \vdots & \vdots & & \vdots \\ (q_1 - q_0)^{(f-1)} & (q_2 - q_1)^{(f-1)} & \cdots & (q_k - q_1)^{(f-1)} \\ (q_1 - q_0)^{(f+1)} & (q_2 - q_1)^{(f+1)} & \cdots & (q_k - q_1)^{(f+1)} \\ \vdots & \vdots & & \vdots \\ (q_1 - q_0)^{(k)} & (q_2 - q_1)^{(k)} & \cdots & (q_k - q_1)^{(k)} \end{bmatrix}
$$

$$
= J_{j,0}
$$

To prove (ii), suppose $s \in \overline{k} \setminus \{j\}$. We will only prove the case $s < j$; the case $s > j$ is similar. Thus, if we expand the first matrix below along its $(j + 1)^{st}$ row, we see

$$
\begin{bmatrix}\n1 & \cdots & 1 \\
q_0^{(1)} & \cdots & q_k^{(1)} \\
\vdots & & \vdots \\
q_0^{(s-1)} & \cdots & q_k^{(s-1)} \\
q_0^{(s)} & \cdots & q_k^{(s)} \\
q_0^{(s+1)} & \cdots & q_k^{(s+1)} \\
\vdots & & \vdots \\
q_0^{(s-1)} & \cdots & q_k^{(s-1)} \\
q_0^{(s)} & \cdots & q_k^{(s)} \\
q_0^{(s+1)} & \cdots & q_k^{(s)} \\
\vdots & & \vdots \\
q_0^{(k)} & \cdots & q_k^{(k)}\n\end{bmatrix}
$$

$$
= \sum_{a=0}^{k} (-1)^{(j+1)+(a+1)} q_a^{(s)} \det \begin{bmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 \\ q_0^{(1)} & \cdots & q_{a-1}^{(1)} & q_{a+1}^{(1)} & \cdots & q_k^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_0^{(j-1)} & \cdots & q_{a-1}^{(j-1)} & q_{a+1}^{(j+1)} & \cdots & q_k^{(j-1)} \\ q_0^{(j+1)} & \cdots & q_{a-1}^{(j+1)} & q_{a+1}^{(j+1)} & \cdots & q_k^{(j)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_0^{(k)} & \cdots & q_{a-1}^{(k)} & q_{a+1}^{(k)} & \cdots & q_k^{(k)} \end{bmatrix}.
$$

By subtracting the first column from each of the other columns in each of the matrices in the sum above, we see

$$
0 = (-1)^{j+1}(-1)q_0^{(s)} \det \begin{bmatrix} 1 & 0 & \cdots & 0 \\ q_1^{(1)} & (q_2 - q_1)^{(1)} & \cdots & (q_k - q_1)^{(1)} \\ \vdots & \vdots & & \vdots \\ q_1^{(j-1)} & (q_2 - q_1)^{(j-1)} & \cdots & (q_k - q_1)^{(j-1)} \\ q_1^{(j+1)} & (q_2 - q_1)^{(j+1)} & \cdots & (q_k - q_1)^{(j+1)} \\ \vdots & \vdots & & \vdots \\ q_1^{(k)} & (q_2 - q_1)^{(k)} & \cdots & (q_k - q_1)^{(k)} \end{bmatrix}
$$

$$
+(-1)^{j+1}\sum_{a=1}^k(-1)^{a+1}q_a^{(s)}Q_a,
$$

where for each $a\in\overline{k},\,{\bf Q}_a$ is equal to

$$
\begin{bmatrix}\n1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
q_0^{(1)} & (q_1 - q_0)^{(1)} & \cdots & (q_{a-1} - q_0)^{(1)} & (q_{a+1} - q_0)^{(1)} & \cdots & (q_k - q_0)^{(1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
q_0^{(f-1)} & (q_1 - q_0)^{(f-1)} & \cdots & (q_{a-1} - q_0)^{(f-1)} & (q_{a+1} - q_0)^{(f-1)} & \cdots & (q_k - q_0)^{(f-1)} \\
q_0^{(f+1)} & (q_1 - q_0)^{(f+1)} & \cdots & (q_{a-1} - q_0)^{(f+1)} & (q_{a+1} - q_0)^{(f+1)} & \cdots & (q_k - q_0)^{(f+1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
q_0^{(k)} & (q_1 - q_0)^{(k)} & \cdots & (q_{a-1} - q_0)^{(k)} & (q_{a+1} - q_0)^{(k)} & \cdots & (q_k - q_0)^{(k)}\n\end{bmatrix}
$$

By expanding by minors along the first row of each matrix, we have

$$
0 = (-1)^{j+1} \sum_{a=0}^{k} (-1)^{a+1} q_a^{(a)} J_{ja}.
$$

This implies that

$$
\sum_{a=0}^k (-1)^{a+1} q_a^{(s)} J_{a} = 0.
$$

To prove (iii), assume that
$$
\det \begin{bmatrix} 1 & 1 & \cdots & 1 \\ q_0^{(1)} & q_1^{(1)} & \cdots & q_k^{(1)} \\ \vdots & \vdots & & \vdots \\ q_0^{(k)} & q_1^{(k)} & \cdots & q_k^{(k)} \end{bmatrix} > 0
$$
; it follows that

 $\mathrm{Vol}(\Delta(q_0,q_1,...,q_k))$

$$
= \frac{1}{k!} \det \begin{bmatrix} 1 & 1 & \cdots & 1 \\ q_0^{(1)} & q_1^{(1)} & \cdots & q_k^{(1)} \\ \vdots & \vdots & & \vdots \\ q_0^{(k)} & q_1^{(k)} & \cdots & q_k^{(k)} \end{bmatrix}
$$

$$
= \frac{1}{k!} (-1)^{(j+1)+1} q_0^{(j)} \det \begin{bmatrix} 1 & \cdots & 1 \\ q_1^{(1)} & \cdots & q_k^{(1)} \\ \vdots & & \vdots \\ q_1^{(j-1)} & \cdots & q_k^{(j-1)} \\ q_1^{(j+1)} & \cdots & q_k^{(j+1)} \\ \vdots & & \vdots \\ q_1^{(k)} & \cdots & q_k^{(k)} \end{bmatrix}
$$

$$
+\frac{1}{k!} \sum_{a=1}^{k} (-1)^{(j+1)+(a+1)} q_a^{(j)} \det \begin{bmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 \\ q_0^{(1)} & \cdots & q_{a-1}^{(1)} & q_{a+1}^{(1)} & \cdots & q_k^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_0^{(j-1)} & \cdots & q_{a-1}^{(j-1)} & q_{a+1}^{(j+1)} & \cdots & q_k^{(j+1)} \\ q_0^{(j+1)} & \cdots & q_{a-1}^{(j+1)} & q_{a+1}^{(j+1)} & \cdots & q_k^{(j+1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_0^{(k)} & \cdots & q_{a-1}^{(k)} & q_{a+1}^{(k)} & \cdots & q_k^{(k)} \end{bmatrix}
$$

$$
= \frac{1}{k!} \left((-1)^{(j+1)+1} q_0^{(j)} \mathbf{J}_{j,0} + \sum_{a=1}^k (-1)^{(j+1)+(a+1)} q_a^{(j)} \mathbf{J}_{ja} \right)
$$

$$
= \frac{(-1)}{k!} \sum_{a=0}^{\infty} (-1)^{a+1} q_a^{(J)} J_{a}
$$

This completes the proof.

Lemma 4.3 Let $k, n \in \mathbb{Z}^+$ be such that $2 \le k \le n$. Let $e_0 = (0, ..., 0) \in \mathbb{R}^k$, and let $e_1, ..., e_k$ be the standard basis for R^k . Let $\sigma = [p_0, p_1, ..., p_k]$ be an oriented affine k-simplex in R^n . For each $a \in \{0, 1, ..., k\}$, let $\lambda_a = [e_0, e_1, ..., e_a, ..., e_k]$. Let $j \in \overline{k}$,

 $\#$

and let $a \in \{0, 1, ..., k\}$. Then:

(i) For all
$$
z \in \Delta(k-1)
$$
, $\det[\pi_j \circ \lambda_a'(z)] = \begin{cases} (-1)^{j+1} & \text{if } a = 0, \\ & \\ \delta_{ja} & \text{if } a > 0. \end{cases}$

(ii) For all $i_1, ..., i_{k-1} \in \overline{n}$, and for all $z \in \Delta(k-1)$,

$$
\frac{\partial((\sigma\circ\lambda_a)^{(l_i)},\ldots,(\sigma\circ\lambda_a)^{(l_{k-i})})}{\partial(x^{(1)},\ldots,x^{(k-1)})}(z) = \sum_{s=1}^k P_s \det[\pi_s\circ\lambda_a^{'}(z)],
$$

 \prime

where

$$
P_s = det \begin{bmatrix} (p_1 - p_0)^{(l_1)} & \cdots & (p_{s-1} - p_0)^{(l_1)} & (p_{s+1} - p_0)^{(l_1)} & \cdots & (p_k - p_0)^{(l_1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (p_1 - p_0)^{(l_{k-1})} & \cdots & (p_{s-1} - p_0)^{(l_{k-1})} & (p_{s+1} - p_0)^{(l_{k-1})} & \cdots & (p_k - p_0)^{(l_{k-1})} \end{bmatrix}.
$$

Proof. Part (i) follows easily from the definitions of π_j and λ_a .

To prove (ii), let $i_1, ..., i_{k-1} \in \overline{n}$, and let $z \in \Delta(k-1)$.

Case I: $a = 0$. By part (i),

$$
\sum_{s=1}^{k} P_s \det[\pi_s \circ \lambda_0'(z)]
$$

=
$$
\sum_{s=1}^{k} (-1)^{s+1} P_s
$$

$$
= \det \begin{bmatrix} 1 & \cdots & 1 \\ (p_1 - p_0)^{(l_1)} & \cdots & (p_k - p_0)^{(l_k)} \\ \vdots & & \vdots \\ (p_1 - p_0)^{(l_{k-1})} & \cdots & (p_k - p_0)^{(l_{k-1})} \end{bmatrix}
$$

$$
= \det \begin{bmatrix} 1 & 0 & \cdots & 0 \\ (p_1 - p_0)^{(l_1)} & (p_2 - p_1)^{(l_1)} & \cdots & (p_k - p_1)^{(l_k)} \\ \vdots & \vdots & & \vdots \\ (p_1 - p_0)^{(l_{k-1})} & (p_2 - p_1)^{(l_{k-1})} & \cdots & (p_k - p_1)^{(l_{k-1})} \end{bmatrix}
$$

$$
= det \begin{bmatrix} (p_2 - p_1)^{(l_1)} & \cdots & (p_k - p_1)^{(l_1)} \\ \vdots & & \vdots \\ (p_2 - p_1)^{(l_{k-1})} & \cdots & (p_k - p_1)^{(l_{k-1})} \end{bmatrix}.
$$

Note that

$$
[(\sigma \circ \lambda_0)'(z)]
$$

= $[\sigma'(\lambda_0(z))] \times [\lambda_0'(z)]$

$$
= \begin{bmatrix} (p_1-p_0)^{(1)} & \cdots & (p_k-p_0)^{(1)} \\ \vdots & & \vdots \\ (p_1-p_0)^{(n)} & \cdots & (p_k-p_0)^{(n)} \end{bmatrix} \times \begin{bmatrix} -1 & -1 & -1 & \cdots & -1 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} (p_2 - p_1)^{(1)} & \cdots & (p_k - p_1)^{(1)} \\ \vdots & & \vdots \\ (p_2 - p_1)^{(n)} & \cdots & (p_k - p_1)^{(n)} \end{bmatrix}.
$$

 $\hat{\tau}$

ţ,

Thus,

$$
\begin{bmatrix}D_{1}(\sigma_{0}\lambda_{0})^{(1)}(z) & D_{k-1}(\sigma_{0}\lambda_{0})^{(1)}(z) \\ \vdots & \vdots \\ D_{1}(\sigma_{0}\lambda_{0})^{(n)}(z) & D_{k-1}(\sigma_{0}\lambda_{0})^{(n)}(z)\end{bmatrix} = \begin{bmatrix} (p_{2}-p_{1})^{(1)} & \cdots & (p_{k}-p_{1})^{(1)} \\ \vdots & \vdots & \vdots \\ (p_{2}-p_{1})^{(n)} & \cdots & (p_{k}-p_{1})^{(n)}\end{bmatrix}.
$$

This implies that

$$
\det\begin{bmatrix} (p_2-p_1)^{(l_1)} & \cdots & (p_k-p_1)^{(l_1)} \\ \vdots & \vdots & \vdots \\ (p_2-p_1)^{(l_k)} & \cdots & (p_k-p_1)^{(l_k)} \end{bmatrix} = \frac{\partial((\sigma_0 \lambda_0)^{(l_1)}, \dots, (\sigma_0 \lambda_0)^{(l_{k-1})})}{\partial(x^{(1)}, \dots, x^{(k-1)})}(z).
$$

Case II: $a > 0$. Then by part (i) again and a similar investigation of $[(\sigma_0 \lambda_a)'(z)]$

$$
\sum_{s=1}^{k} P_s \det[\pi_s \circ \lambda_a' (z)] = \sum_{s=1}^{k} \delta_{sa} P_s
$$

=
$$
P_a
$$

=
$$
\frac{\partial((\sigma \circ \lambda_0)^{(l_1)}, ..., (\sigma \circ \lambda_0)^{(l_{k-1})})}{\partial(x^{(1)}, ..., x^{(k-1)})}(z).
$$

The lemma is proved.

We now have all tools to prove Stokes' Theorem.

 $#$

Theorem 4.4 (Stokes' Theorem) Let $k, n \in \mathbb{Z}^+$ be such that $k \leq n$. Let Ω be a nonempty open subset of Rⁿ, and let $\sigma = [p_0, p_1, ..., p_k]$ be an oriented affine k-simplex in Ω . If ω is a differentiable $(k-1)$ -form on Ω , then

 $\int_{\sigma} d\omega$

exists and

$$
\int_{\sigma} d\omega = \int_{\partial \sigma} \omega.
$$

Proof. We first assume that $k = 1$. Note that $\sigma = [p_0, p_1]$, and that $\omega = g$, where $g: \Omega \to R$ is differentiable. We get

$$
\int_{\sigma} d\omega = \int_{\sigma} \sum_{i=1}^{n} \frac{\partial g}{\partial x^{(i)}} dx^{(i)}
$$

$$
= (GR) \int_{0}^{1} \sum_{i=1}^{n} \frac{\partial g}{\partial x^{(i)}} (\sigma(t)) \sigma'_{i}(t) dt
$$

$$
= (GR) \int_{0}^{1} (g \circ \sigma)'(t) dt.
$$

It follows from the fundamental theorem of calculus that $\int_{\sigma} d\omega$ exists and

$$
\int_{\sigma} d\omega = g \circ \sigma(1) - g \circ \sigma(0)
$$

$$
= g(p_1) - g(p_0)
$$

$$
= \int_{[p_1]} \omega - \int_{[p_0]} \omega
$$

$$
= \int_{\partial \sigma} \omega.
$$

From now on we assume that $k > 1$. To prove the theorem it suffices to prove that if $g:\Omega\to R$ is differentiable and if $(i_1, ..., i_{k-1})$ is an ascending $(k-1)$ -tuple from the set n , then

$$
\int_{\sigma} d(g \, dx^{(h)} \wedge ... \wedge dx^{(i_{h-1})})
$$

exists and

(1)
$$
\int_{\sigma} d(g \ dx^{(i_1)} \wedge ... \wedge dx^{(i_{k-1})}) = \int_{\partial \sigma} g \ dx^{(i_1)} \wedge ... \wedge dx^{(i_{k-1})}.
$$

Thus, let $g:\Omega\to R$ be differentiable, and let $(i_1, ..., i_{k-1})$ be an ascending $(k-1)$ -tuple from the set n. Let $L \in \text{Lin}(R^k, R^n)$ be defined by

$$
L = [0, p_1 - p_0, ..., p_k - p_0],
$$

so $\sigma(x) = p_0 + L(x)$ for all $x \in \Delta(k)$. Put $e_0 = (0, ..., 0) \in R^k$, and let $e_1, ..., e_k$ be the standard basis for R^k .

We claim that for all $j \in \overline{k}$, $\sum_{n=1}^{n} (p_j - p_0)^{(m)} \frac{\partial g}{\partial x^{(m)}}$ o σ is integrable on $\Delta(k)$ and

$$
(-1)^{j+1}\int_{\Delta(k)} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma
$$

=
$$
\int_{\partial \Delta(k)} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(j)} \wedge \ldots \wedge dx^{(k)}.
$$

(Here we are viewing $\Delta(k)$ as the oriented affine k-simplex $[e_0, e_1, ..., e_k]$ in R^k .) Let $j \in \overline{k}$ be fixed. Let $\varepsilon > 0$ be given, and let $M \geq OV(\Delta(k))$. Define a gauge δ on $\Delta(k)$ as follows: Let $p \in \Delta(k)$; then $\sigma(p) \in \Omega$. Since g is differentiable at $\sigma(p)$, there exists a number $r_p > 0$ such that for all $h \in \mathbb{R}^n$, if $\sigma(p) + h \in \Omega$ and $|h| < r_p$, then

(2)
$$
\left|g(\sigma(p)+h)-g(\sigma(p))-g'(\sigma(p))(h)\right|\leq \frac{\varepsilon|h|}{(\|L\|+1)M}.
$$

Since σ is uniformly continuous on $\Delta(k)$, there is a number $\delta_p > 0$ such that for all a_p $b \in \Delta(k)$, $|a-b| < \delta_p$ implies $|\sigma(a)-\sigma(b)| < r_p$. Define $\delta(p) = \delta_p$. We now have our $\Delta(k)$ -gauge δ .

Let $\tau = \{(t_1, T_i) | i \in m\}$ be any δ -fine M-bounded k-partition of $\Delta(k)$. Each k-simplex T_i can be regarded as a positively oriented affine k-simplex. For each $a \in \{0, 1, ..., k\},$ let

$$
\lambda_a=[e_0,e_1,...,e_a,...,e_k].
$$

Observe that $\partial \Delta(k) = \sum_{a=1}^{k} (-1)^{a} \lambda_{a}$, and $\partial \sigma = \sum_{a=1}^{k} (-1)^{a} \sigma_{a} \lambda_{a}$. Let $l \in \overline{m}$, and let $a \in \{0, 1, ..., k\}$. Let $T_i = [q_0, q_1, ..., q_k]$ for some $q_0, q_1, ..., q_k \in \Delta(k)$, and let $J_{ja}^{(l)}$ be defined as J_{ja} is defined in Lemma 4.2. Define $E_{ia}: \Delta(k-1) \to R$ by

$$
E_{1a}(x) = g(\sigma(T_1 \circ \lambda_a(x))) - g(\sigma(t_1)) - g'(\sigma(t_1))(\sigma(T_1 \circ \lambda_a(x)) - \sigma(t_1))
$$

for all $x \in \Delta(k-1)$. Since σ , T_i , and λ_a are all affine maps, the map $g \circ \sigma \circ T_i \circ \lambda_a$ is continuous on $\Delta(k-1)$. Note that

- (i) E_{la} is continuous on $\Delta(k-1)$,
- (ii) $T_i \circ \lambda_a = [q_0, q_1, ..., q_a, ..., q_k],$

(iii)
$$
\frac{\partial ((T_i \circ \lambda_a)^{(1)}, ..., (T_i \circ \lambda_a)^{(J)}, ..., (T_i \circ \lambda_a)^{(k)})}{\partial (x^{(1)}, ..., x^{(k-1)})}(z) = J_{ja}^{(l)}
$$
 for all $z \in \Delta(k-1)$,

and

(iv) the integral

$$
\int_{\Delta(k-1)} g \circ \sigma \circ T_l \circ \lambda_a(x) \mathbf{J}_{ja}^{(l)} dx
$$

exists. We obtain

$$
\int_{T_1 \circ \lambda_a} g \circ \sigma \ dx^{(1)} \wedge ... \wedge dx^{(j)} \wedge ... \wedge dx^{(k)}
$$
\n
$$
= \int_{\Delta(k-1)} g \circ \sigma \circ T_1 \circ \lambda_a(x) J_{ja}^{(1)} dx
$$
\n
$$
= \int_{\Delta(k-1)} [g(\sigma(t_i)) + g'(\sigma(t_i)) (\sigma(T_1 \circ \lambda_a(x)) - \sigma(t_i)) + E_{ia}(x)] J_{ja}^{(1)} dx
$$
\n
$$
= \int_{\Delta(k-1)} g(\sigma(t_i)) J_{ja}^{(1)} dx - \int_{\Delta(k-1)} g'(\sigma(t_i)) (\sigma(t_i)) J_{ja}^{(1)} dx
$$
\n
$$
+ \int_{\Delta(k-1)} g'(\sigma(t_i)) (\sigma(T_1 \circ \lambda_a(x))) J_{ja}^{(1)} dx + \int_{\Delta(k-1)} E_{ia}(x) J_{ja}^{(1)} dx
$$
\n
$$
= [g(\sigma(t_i)) - g'(\sigma(t_i)) (\sigma(t_i))] \frac{J_{ja}^{(1)}}{(k-1)!}
$$
\n
$$
+ \int_{\Delta(k-1)} g'(\sigma(t_i)) (p_0 + L(T_1 \circ \lambda_a(x))) J_{ja}^{(1)} dx
$$
\n
$$
+ \int_{\Delta(k-1)} E_{ia}(x) J_{ja}^{(1)} dx
$$

$$
= [g(\sigma(t_i)) - g'(\sigma(t_i))(\sigma(t_i)) + g'(\sigma(t_i))(p_0)] \frac{J_{j_a}^{(l)}}{(k-1)!} + \int_{\Delta(k-1)} g'(\sigma(t_i))(L(T_i \circ \lambda_a(x))) J_{j_a}^{(l)} dx + \int_{\Delta(k-1)} E_{l_a}(x) J_{j_a}^{(l)} dx.
$$

Let us first investigate

$$
\int_{\Delta(k-1)} g'(\sigma(t_i)) (L(T_i \circ \lambda_a(x))) J_{ja}^{(1)} dx.
$$

Let $\beta_1, \ldots, \beta_{k-1}$ be the standard basis for R^{k-1} . We have 2 cases:

Case 1: $a = 0$. Let $A_0 \in \text{Lin}(R^{k-1}, R^k)$ be defined by $A_0 = [0, q_2 - q_1, ..., q_k - q_1]$, so that $T_i \circ \lambda_0(z) = [q_1, \ldots, q_k](z) = q_1 + A_0(z)$ for all $z \in \Delta(k-1)$. Thus $\int_{\Delta(k-1)}\; g'\left(\sigma(t_i)\right)\!(L(T_i\circ\lambda_0(x)))\;\; {\bf J}^{(i)}_{j,\,0}\;\; dx$

$$
= g'(\sigma(t_i))(L(q_1)) \frac{J_{f,0}^{(l)}}{(k-1)!} + \int_{\Delta(k-1)} g'(\sigma(t_i))(L \circ A_0(x)) J_{f,0}^{(l)} dx.
$$

Look at

 $\int_{\Delta(k-1)}\ g'(\sigma(t_i))(L\circ A_0(x))\ J_{j,0}^{(i)}\ dx$

$$
= \int_{\Delta(k-1)} \sum_{r=1}^{k-1} x^{(r)} g'(o(t_i))(L \circ A_0(\beta_r)) J_{j,0}^{(l)} dx
$$

\n
$$
= \sum_{r=1}^{k-1} g'(o(t_i))(L(q_{r+1} - q_1)) J_{j,0}^{(l)} \int_{\Delta(k-1)} x^{(r)} dx
$$

\n
$$
= \sum_{r=1}^{k-1} g'(o(t_i))(L(q_{r+1} - q_1)) J_{j,0}^{(l)} \t (by Lemma 4.1)
$$

\n
$$
= \sum_{r=1}^{k} g'(o(t_i))(L(q_r - q_1)) J_{j,0}^{(l)}.
$$

Therefore,

$$
\int_{\Delta(k-1)} g'(\sigma(t_i))(L(T_i \circ \lambda_0(x))) J_{j,0}^{(i)} dx
$$
\n
$$
= g'(\sigma(t_i))(L(q_1)) \frac{J_{j,0}^{(i)}}{(k-1)!} + \sum_{r=2}^k g'(\sigma(t_i))(L(q_r - q_1)) \frac{J_{j,0}^{(i)}}{k!}
$$
\n
$$
= k g'(\sigma(t_i))(L(q_1)) \frac{J_{j,0}^{(i)}}{k!} + \sum_{r=2}^k g'(\sigma(t_i))(L(q_r)) \frac{J_{j,0}^{(i)}}{k!}
$$
\n
$$
- (k-1)g'(\sigma(t_i))(L(q_1)) \frac{J_{j,0}^{(i)}}{k!}
$$
\n
$$
= \frac{1}{k!} \sum_{r=1}^k g'(\sigma(t_i))(L(q_r)) J_{j,0}^{(i)}
$$

 ~ 10

 $\overline{\lambda}$

$$
= \frac{1}{k!} \sum_{\substack{r=0 \ r \neq a}}^{k} g'(\sigma(t_i))(L(q_r)) J_{j,0}^{(l)}.
$$

Case 2: $a \neq 0$. Let $A_a \in \text{Lin}(R^{k-1}, R^k)$ be defined by

$$
A_{a} = [0, q_{1} - q_{0}, ..., q_{a} - q_{0}, ..., q_{k} - q_{0}],
$$

so $T_{i} \circ \lambda_{a}(z) = [q_{0}, q_{1}, ..., q_{a}, ..., q_{k}](z) = q_{0} + A_{a}(z)$ for all $z \in \Delta(k-1)$. Thus

$$
\int_{\Delta(k-1)} g'(\sigma(t_{i})) (L(T_{i} \circ \lambda_{a}(x))) J_{ja}^{(l)} dx
$$

$$
= g'(\sigma(t_{i})) (L(q_{0})) \frac{J_{ja}^{(l)}}{(k-1)!} + \int_{\Delta(k-1)} g'(\sigma(t_{i})) (L \circ A_{a}(x)) J_{ja}^{(l)} dx.
$$

Look at

 $\int_{\Delta(k-1)}\ g'(\sigma(t_i))(L\circ A_a(x))\ \mathbb{J}_{ja}^{(l)}\ dx$

$$
= \int_{\Delta(k-1)} \sum_{r=1}^{k-1} x^{(r)} g'(\sigma(t_i))(L \circ A_a(\beta_r)) J_{ja}^{(l)} dx
$$

\n
$$
= \sum_{r=1}^{k-1} g'(\sigma(t_i))(L \circ A_a(\beta_r)) J_{ja}^{(l)} \int_{\Delta(k-1)} x^{(r)} dx
$$

\n
$$
= \frac{1}{k!} \left(\sum_{r=1}^{a-1} g'(\sigma(t_i))(L(q_r - q_0)) J_{ja}^{(l)} + \sum_{r=a}^{k-1} g'(\sigma(t_i))(L(q_{r+1} - q_0)) J_{ja}^{(l)} \right)
$$

\n(by Lemma 4.1)

 \mathcal{A} .

$$
= \frac{1}{k!} \sum_{\substack{r=1\\r\neq a}}^k g'(o(t_i))(L(q_r-q_0)) J_{ja}^{(l)}.
$$

Therefore,

 $\int_{\Delta(k-1)}\ g'(\sigma(t_i))(L(T_i\circ\lambda_a(x)))\ J^{(l)}_{ja}\ dx$

$$
= \frac{1}{(k-1)!} g'(\sigma(t_i))(L(q_0)) J_{ja}^{(l)} + \frac{1}{k!} \sum_{\substack{r=1 \ r \neq a}}^k g'(\sigma(t_i))(L(q_r - q_0)) J_{ja}^{(l)}
$$

$$
= \frac{1}{k!} \left(k g'(\sigma(t_i))(L(q_0)) J_{ja}^{(l)} + \sum_{\substack{r=1 \ r \neq a}}^k g'(\sigma(t_i))(L(q_r - q_0)) J_{ja}^{(l)} \right)
$$

$$
= \frac{1}{k!} \sum_{\substack{r=0 \\ r \neq a}}^{k} g'(\sigma(t_i))(L(q_r)) J_{ja}^{(l)}.
$$

This finishes the case $a > 0$.

In either case, we eventually get

$$
\int_{\Delta(k-1)} g'(\sigma(t_i))(L(T_i \circ \lambda_a(x))) J_{ja}^{(1)} dx = \frac{1}{k!} \sum_{\substack{r=0 \\ r \neq a}}^k g'(\sigma(t_i))(L(q_r)) J_{ja}^{(1)}.
$$

We then get

 $\int_{\partial T_1}$ go σ dx⁽¹⁾ $\wedge \ldots \wedge dx^{(j)}$ $\wedge \ldots \wedge dx^{(k)}$

$$
= \sum_{a=0}^{k} (-1)^{a} \int_{T_{i} \circ \lambda_{a}} g \circ \sigma \, dx^{(1)} \wedge ... \wedge \hat{dx}^{(f)} \wedge ... \wedge dx^{(k)}
$$

$$
= \frac{g(\sigma(t_{i})) - g'(\sigma(t_{i}))(\sigma(t_{i})) + g'(\sigma(t_{i})) (p_{0})}{(k-1)!} \sum_{a=0}^{k} (-1)^{a} J_{ja}^{(l)}
$$

$$
+ \sum_{a=0}^{k} (-1)^{a} \int_{\Delta(k-1)} g'(\sigma(t_{i})) (L(T_{i} \circ \lambda_{a}(x))) J_{ja}^{(l)} dx
$$

$$
+ \sum_{a=0}^{k} (-1)^{a} \int_{\Delta(k-1)} E_{ia}(x) J_{ja}^{(l)} dx
$$

$$
= \sum_{a=0}^{k} (-1)^{a} \left(\frac{1}{k!} \sum_{\substack{r=0 \ r \neq a}}^{k} g'(\sigma(t_{i})) (L(q_{r})) J_{ja}^{(l)} \right) + \sum_{a=0}^{k} (-1)^{a} \int_{\Delta(k-1)} E_{ia}(x) J_{ja}^{(l)} dx
$$

(by Lemma $4.2(i)$)

$$
= \frac{1}{k!}\sum_{a=0}^k \sum_{\substack{r=0 \ r \neq a}}^k (-1)^a g'(\sigma(t_i))(L(q_r)) J_{ja}^{(l)} + \sum_{a=0}^k (-1)^a \int_{\Delta(k-1)} E_{la}(x) J_{ja}^{(l)} dx.
$$

Look at

$$
\frac{1}{k!} \sum_{\alpha=0}^{k} \sum_{\substack{r=0 \ r \neq a}}^{k} (-1)^{\alpha} g'(\sigma(t_{i})) (L(q_{r})) J_{\beta}^{(1)}
$$
\n
$$
= \frac{1}{k!} \sum_{\alpha=0}^{k} \sum_{\substack{r=0 \ r \neq a}}^{k} (-1)^{\alpha} g'(\sigma(t_{i})) \circ L(\sum_{x=1}^{k} q_{r}^{(i)} e_{x}) J_{\beta}^{(i)}
$$
\n
$$
= \frac{1}{k!} \sum_{\alpha=0}^{k} \sum_{\substack{r=0 \ r \neq a}}^{k} \sum_{x=1}^{k} (-1)^{\alpha} q_{r}^{(i)} g'(\sigma(t_{i})) \circ L(e_{x}) J_{\beta}^{(i)}
$$
\n
$$
= \frac{1}{k!} \sum_{\alpha=0}^{k} \sum_{\substack{r=0 \ r \neq a}}^{k} \sum_{x=1}^{k} \sum_{\substack{w=1 \ v \neq a}}^{n} (-1)^{\alpha} q_{r}^{(i)} (p_{x} - p_{0})^{(w)} \frac{\partial g}{\partial x^{(w)}} (\sigma(t_{i})) J_{\beta}^{(i)}
$$
\n
$$
= \frac{1}{k!} \sum_{\substack{w=1 \ r \neq a}}^{n} \sum_{x=1}^{k} (p_{x} - p_{0})^{(w)} \frac{\partial g}{\partial x^{(w)}} (\sigma(t_{i})) \left(\sum_{\alpha=0}^{k} \sum_{\substack{r=0 \ r \neq a}}^{k} (-1)^{\alpha} q_{r}^{(i)} J_{\beta}^{(i)} \right)
$$
\n
$$
= \frac{1}{k!} \sum_{\substack{w=1 \ r \neq 1}}^{n} \sum_{x=1}^{k} (p_{x} - p_{0})^{(w)} \frac{\partial g}{\partial x^{(w)}} (\sigma(t_{i})) \left(\sum_{r=0}^{k} \sum_{\substack{a=0 \ r \neq a}}^{k} (-1)^{\alpha} q_{r}^{(i)} J_{\beta}^{(i)} \right)
$$
\n
$$
= \frac{1}{k!} \sum_{\substack{w=1 \ r \neq 1}}^{n} \sum_{x=1}^{k} (p_{x} - p_{0})^{(w)} \frac{\partial g}{\partial x^{(w)}} \sigma(t_{i
$$

57

$$
= \frac{1}{k!} \sum_{w=1}^{n} \sum_{s=1}^{k} (p_s - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ o(t_i) \left(\sum_{r=0}^{k} (-1)^{r+1} q_r^{(s)} J_{jr}^{(l)} \right)
$$

$$
= \frac{1}{k!} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ o(t_i) \left(\sum_{r=0}^{k} (-1)^{r+1} q_r^{(r)} J_{jr}^{(l)} \right)
$$

$$
= (-1)^{j+1} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ o(t_i) \text{ Vol}(T_i).
$$

(Here we used Lemma 4.2 (i), (ii), and (iii) in the last four lines.) Hence

$$
\int_{\partial T_i} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(J)} \wedge \ldots \wedge dx^{(k)}
$$
\n
$$
= (-1)^{j+1} \sum_{w=1}^n (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(t_i) \text{ Vol}(T_i)
$$
\n
$$
+ \sum_{a=0}^k (-1)^a \int_{\Delta(k-1)} E_{la}(x) J_{ja}^{(l)} dx.
$$

We now investigate $\left| \int_{\Delta(k-1)} E_{l\alpha}(x) \right| J_{l\alpha}^{(l)} dx \right|$ for all $a \in \{0, 1, ..., k\}$. Let $a \in \{0, 1, ..., k\}$ be fixed; then $\big|\int_{\Delta(k-1)}\ E_{la}(x)\ \mathbf{J}^{(l)}_{ja}\ dx\ \big|$

$$
\leq \left| J_{ja}^{(l)} \right| \int_{\Delta(k-1)} \left| E_{la}(x) \right| dx
$$

\n
$$
= \left| J_{ja}^{(l)} \right| \int_{\Delta(k-1)} \left| g(\sigma(T_i \circ \lambda_a(x))) - g(\sigma(t_i)) - g(\sigma(t_i)) \right| dx
$$

\n
$$
- g'(\sigma(t_i)) (\sigma(T_i \circ \lambda_a(x)) - \sigma(t_i)) \left| dx \right|
$$

$$
\leq \int J_{ja}^{(l)} \left| \int_{\Delta(k-1)} \frac{\varepsilon |\sigma(T_l \circ \lambda_a(x)) - \sigma(t_l)|}{(\|L\| + 1) M} \right| dx
$$
 (by inequality (2))

$$
\leq \frac{\varepsilon \mathrm{diam}(\sigma(T_i)) |J_{ja}^{(l)}|}{(|L|+1) M(k-1)!}.
$$

Note that for all $y, z \in T_l$,

$$
\begin{aligned} \left| \sigma(y) - \sigma(z) \right| &= \left| (p_0 + L(y)) - (p_0 + L(z)) \right| \\ &= \left| L(y - z) \right| \\ &\leq \left\| L \right\| \left| y - z \right| \\ &\leq \left\| L \right\| \operatorname{diam}(T_i). \end{aligned}
$$

Thus, $diam(\sigma(T_i)) \leq ||L|| diam(T_i)$. Hence

$$
\begin{array}{lcl} \left| \int_{\Delta(k-1)} E_{la}(x) & J_{ja}^{(1)} \right| \, dx \, \left| \, \leq \, \frac{\varepsilon \|L\| \operatorname{diam}(T_l) \, \left| \, J_{ja}^{(1)} \right|}{\left(\|L\| + 1 \right) M \left(k - 1 \right)!} \\ & \leq \, \frac{\varepsilon \operatorname{diam}(T_l) \, \left| \, J_{ja}^{(1)} \right|}{M \left(k - 1 \right)!} \\ & \leq \, \frac{\varepsilon}{M} \cdot \frac{\operatorname{diam}(T_l) \, \left| \, \sum_{r=1}^k \, \left| \, J_{ra}^{(1)} \right|^2 \right|^{\frac{1}{2}}}{{\left(k - 1 \right)!}} \end{array}
$$

Since

 $\int_{\partial \Delta(k)} g \circ \sigma \, dx^{(1)} \wedge ... \wedge \hat{dx}^{(j)} \wedge ... \wedge dx^{(k)}$

$$
= \sum_{l=1}^{m} \int_{\partial T_l} g \circ \sigma \, dx^{(1)} \wedge ... \wedge \hat{dx}^{(j)} \wedge ... \wedge dx^{(k)}
$$

$$
= \sum_{l=1}^{m} \left((-1)^{j+1} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(t_i) \text{ Vol}(T_i) \right)
$$

$$
+ \sum_{l=1}^{m} \sum_{a=0}^{k} (-1)^a \int_{\Delta(k-1)} E_{l a}(x) J_{j a}^{(l)} dx,
$$

it follows that

$$
\left|\int_{\partial \Delta(k)} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(J)} \wedge \ldots \wedge dx^{(k)} - R \left((-1)^{J+1} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma, \tau \right)\right|
$$

$$
= \left| \int_{\partial \Delta(k)} g \circ \sigma \, dx^{(1)} \wedge ... \wedge \hat{dx}^{(f)} \wedge ... \wedge dx^{(k)} \right|
$$

\n
$$
- \sum_{l=1}^{m} \left((-1)^{l+1} \sum_{w=1}^{n} (p_{j} - p_{0})^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(t_{l}) \operatorname{Vol}(T_{l}) \right) \right|
$$

\n
$$
= \left| \sum_{l=1}^{m} \sum_{a=0}^{k} (-1)^{a} \int_{\Delta(k-1)} E_{la}(x) J_{ja}^{(l)} dx \right|
$$

\n
$$
\leq \sum_{l=1}^{m} \sum_{a=0}^{k} \left| \int_{\Delta(k-1)} E_{la}(x) J_{ja}^{(l)} dx \right|
$$

\n
$$
\leq \sum_{l=1}^{m} \left(\sum_{a=0}^{k} \frac{g}{M} \cdot \frac{\operatorname{diam}(T_{l})}{(k-1)!} \left(\sum_{r=1}^{k} |J_{ra}^{(l)}|^{2} \right)^{1} \right)
$$

\n
$$
= \frac{g}{M} \sum_{l=1}^{m} \frac{\operatorname{diam}(T_{l})}{(k-1)!} \left(\sum_{a=0}^{k} \left(\sum_{r=1}^{k} |J_{ra}^{(l)}|^{2} \right)^{1} \right)
$$

\n
$$
= \frac{g}{M} \sum_{l=1}^{m} \frac{\operatorname{diam}(T_{l})}{(k-1)!} \left(\left(\sum_{r=1}^{k} |J_{ra}^{(l)}|^{2} \right)^{1} + \sum_{a=1}^{k} \left(\sum_{r=1}^{k} |J_{ra}^{(l)}|^{2} \right)^{1} \right)
$$

\n
$$
= \frac{g}{M} \sum_{l=1}^{m} \frac{\operatorname{diam}(T_{l})}{(k-1)!} \left(S_{k}((q_{1},...,q_{k})) + \sum_{a=1}^{k} S_{k}((q_{0},q_{1},...,q_{a},...,q_{k})) \right)
$$

\n
$$
= \frac{g}{M} \sum_{l=1}^{m} \operatorname{OV}(T_{l})
$$

This shows that $(-1)^{j+1}$ $\sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma$ is integrable on $\Delta(k)$ and

$$
\int_{\Delta(k)} (-1)^{j+1} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(z) dz
$$

=
$$
\int_{\partial \Delta(k)} g \circ \sigma dx^{(1)} \wedge ... \wedge dx^{(j)} \wedge ... \wedge dx^{(k)};
$$

therefore, $\sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma$ is integrable on $\Delta(k)$ and

$$
(-1)^{j+1} \int_{\Delta(k)} \sum_{w=1}^{n} (p_j - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(z) dz
$$

=
$$
\int_{\partial \Delta(k)} g \circ \sigma dx^{(1)} \wedge \ldots \wedge dx^{(j)} \wedge \ldots \wedge dx^{(k)}.
$$

The claim is proved.

It follows from Lemma 4.3(ii) that for all $r \in \{0, 1, ..., k\}$, and all $z \in \Delta(k-1)$,

$$
\frac{\partial((\sigma_0\lambda_r)^{(l_1)},\ldots,(\sigma_0\lambda_r)^{(l_{k-1})})}{\partial(x^{(1)},\ldots,x^{(k-1)})}(z) = \sum_{s=1}^k P_s \det[\pi_s\circ\lambda_r'(z)],
$$

where

$$
P_s = det \begin{bmatrix} (p_1 - p_0)^{(l_1)} & \cdots & (p_{s-1} - p_0)^{(l_1)} & (p_{s+1} - p_0)^{(l_1)} & \cdots & (p_k - p_0)^{(l_1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (p_1 - p_0)^{(l_{k-1})} & \cdots & (p_{s-1} - p_0)^{(l_{k-1})} & (p_{s+1} - p_0)^{(l_{k-1})} & \cdots & (p_k - p_0)^{(l_{k-1})} \end{bmatrix}.
$$

Note that for all $r \in \{0, 1, ..., k\},\$

$$
\int_{\sigma \circ \lambda_{\tau}} g \, dx^{(l_1)} \wedge \ldots \wedge dx^{(l_{k+1})} = \int_{\Delta(k-1)} g \circ \sigma \circ \lambda_r(z) \, \frac{\partial((\sigma \circ \lambda_r)^{(l_1)}, \ldots, (\sigma \circ \lambda_r)^{(l_{k+1})})}{\partial(x^{(1)}, \ldots, x^{(k-1)})}
$$
\n
$$
= \int_{\Delta(k-1)} g \circ \sigma \circ \lambda_r(z) \left(\sum_{s=1}^k P_s \det[\pi_s \circ \lambda_r'(z)] \right) dz
$$
\n
$$
= \sum_{s=1}^k P_s \int_{\Delta(k-1)} g \circ \sigma \circ \lambda_r(z) \det[\pi_s \circ \lambda_r'(z)] dz
$$

$$
= \sum_{s=1}^k P_s \int_{\lambda_r} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(s)} \wedge \ldots \wedge dx^{(k)}
$$

We conclude that
\n
$$
\int_{\partial\sigma} g \, dx^{(l_1)} \wedge \ldots \wedge dx^{(l_{k+1})}
$$
\n
$$
= \sum_{r=0}^{k} (-1)^r \int_{\sigma \circ \lambda_r} g \, dx^{(l_1)} \wedge \ldots \wedge dx^{(l_{k+1})}
$$
\n
$$
= \sum_{r=0}^{k} (-1)^r \left(\sum_{s=1}^{k} P_s \int_{\lambda_r} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(s)} \wedge \ldots \wedge dx^{(k)} \right)
$$
\n
$$
= \sum_{s=1}^{k} P_s \left(\sum_{r=0}^{k} (-1)^r \int_{\lambda_r} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(s)} \wedge \ldots \wedge dx^{(k)} \right)
$$
\n
$$
= \sum_{s=1}^{k} P_s \int_{\partial \Delta(k)} g \circ \sigma \, dx^{(1)} \wedge \ldots \wedge \hat{dx}^{(s)} \wedge \ldots \wedge dx^{(k)}
$$
\n
$$
= \sum_{s=1}^{k} P_s \left((-1)^{s+1} \int_{\Delta(k)} \sum_{w=1}^{n} (p_s - p_0)^{(w)} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(z) \, dz \right)
$$
\n
$$
= \int_{\Delta(k)} \sum_{w=1}^{n} \left(\sum_{s=1}^{k} (-1)^{s+1} (p_s - p_0)^{(w)} P_s \right) \frac{\partial g}{\partial x^{(w)}} \circ \sigma(z) \, dz
$$

$$
= \int_{\Delta(k)} \sum_{w=1}^{n} \det \begin{bmatrix} (p_1-p_0)^{(w)} & \cdots & (p_k-p_0)^{(w)} \\ (p_1-p_0)^{(l_1)} & \cdots & (p_k-p_0)^{(l_k)} \\ \vdots & & \vdots \\ (p_1-p_0)^{(l_{k-1})} & \cdots & (p_k-p_0)^{(l_{k-1})} \end{bmatrix} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(z) dz
$$

Collective

$$
= \int_{\Delta(k)} \sum_{w=1}^{n} \frac{\partial g}{\partial x^{(w)}} \circ \sigma(z) \frac{\partial (\sigma^{(w)}, \sigma^{(l_1)}, \ldots, \sigma^{(l_{k-1})})}{\partial (x^{(l_1)}, \ldots, x^{(l_k)})}(z) dz
$$

$$
= \int_{\sigma} \sum_{w=1}^{n} \frac{\partial g}{\partial x^{(w)}} dx^{(w)} \wedge dx^{(l_1)} \wedge \ldots \wedge dx^{(l_{k-1})}
$$

$$
= \int_{\sigma} d(g dx^{(l_1)} \wedge \ldots \wedge dx^{(l_{k-1})}).
$$

This shows that $\int_{\sigma} d(g dx^{(l_1)} \wedge ... \wedge dx^{(l_{k-l})})$ exists and equation (1) holds, as required. $\#$

 $\mathcal{O}(\mathcal{O})$