CHAPTER III

MATRICES AS Γ-SEMIGROUPS

In this chapter, we deal with sets of $m \times n$ matrices over \mathbb{R}. For fixed $T \subseteq M_{m n}(\mathbb{R})$, our goal is to find all subsets Γ of $M_{n m}(\mathbb{R})$ such that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Recall that if $\left[b_{p q}\right] \in M_{n m}(\mathbb{R})$ and $\left[a_{r s}\right],\left[c_{u v}\right] \in M_{m n}(\mathbb{R})$, then

$$
\left[a_{r s}\right]\left[b_{p q}\right]\left[c_{u v}\right]=\left[\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{\tau \beta} b_{\beta \alpha} c_{\alpha v}\right] .
$$

Theorem 3.1. Let $i \in N_{m}, j \in N_{n}$ and $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=0\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if

$$
\Gamma \subseteq\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \mid b_{p q}=0 \text { if } p \neq j \text { and } q \neq i\right\}
$$

Proof. Let $M=\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \mid b_{p q}=0\right.$ if $p \neq j$ and $\left.q \neq i\right\}$.
First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{p q}\right] \in \Gamma$. Fix $p \neq j$ and $q \neq i$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ be such that

$$
a_{i \beta}=\delta_{p \beta} \quad \text { and } \quad c_{\alpha j}=\delta_{\alpha q} \text { for all } \beta \in N_{n} \text { and } \alpha \in N_{m}
$$

Then $\left[a_{r \beta}\right]\left[b_{p q}\right]\left[c_{\alpha v}\right] \in T$. Thus

$$
0=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} \delta_{p \beta} b_{\beta \alpha} \delta_{\alpha q}=b_{p q} .
$$

Hence $\left[b_{p q}\right] \in M$.
Conversely, assume that $\Gamma \subseteq M$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ and $\left[b_{p q}\right] \in \Gamma$. We claim that the (i, j)-entry of $\left[a_{r \beta}\right]\left[b_{p q}\right]\left[c_{\alpha v}\right]$ is zero. Since $b_{\beta \alpha}=0$ for all $\beta \neq j$ and $\alpha \neq i$ and $a_{i j}=c_{i j}=0$, it follows that

$$
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} a_{i j} b_{j \alpha} c_{\alpha j}=0
$$

Therefore, T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Theorem 3.2. Let $i, p \in N_{m}$ and $j, q \in N_{n}$ be such that $i \neq p$ and $j \neq q$. Let $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=0=a_{p q}\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if

$$
\Gamma \subseteq\left\{\left[b_{\alpha \beta}\right] \in M_{n m}(\mathbb{R}) \mid b_{j p} \text { and } b_{q i} \text { are arbitrary and } 0 \text { otherwise }\right\}
$$

Proof. Let $M=\left\{\left[b_{\alpha \beta}\right] \in M_{n m}(\mathbb{R}) \mid b_{j p}\right.$ and $b_{q i}$ are arbitrary and 0 otherwise $\}$.
First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{t k}\right] \in \Gamma$. Fix $(t, k) \neq(j, p)$ and $(t, k) \neq(q, i)$. Then for any $\left[a_{r s}\right],\left[c_{u v}\right] \in T$,

$$
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=0=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{p \beta} b_{\beta \alpha} c_{\alpha q} .
$$

Case 1. $k \neq i$ and $t \neq j$.
Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ be such that $a_{i \beta}=\delta_{t \beta}$ and $c_{\alpha j}=\delta_{\alpha k}$ for all $\beta \neq j$ and $\alpha \neq i$. Then

$$
0=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} \delta_{t \beta} b_{\beta \alpha} \delta_{\alpha k}=b_{t k}
$$

Case 2. $k=i$ or $t=j$.
Subcase $2.1 k=i$.
Then $t \neq q$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ be such that $a_{p \beta}=\delta_{t \beta}$ and $c_{\alpha q}=\delta_{\alpha i}$ for all
$\beta \neq q$ and $\alpha \neq p$. Then

$$
0=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{p \beta} b_{\beta \alpha} c_{\alpha q}=\sum_{\substack{\alpha=1 \\ \alpha \neq p}}^{m} \sum_{\beta=1}^{\beta \neq q}-1 \delta_{t \beta} b_{\beta \alpha} \delta_{\alpha i}=b_{t i} .
$$

Subcase $2.2 t=j$.
Then $k \neq p$. Similarly to Subcase 2.1, by choosing $\left[a_{\tau \beta}\right],\left[c_{\alpha v}\right] \in T$ such that $a_{p \beta}=\delta_{j \beta}$ and $c_{\alpha q}=\delta_{\alpha k}$ for all $\beta \neq q$ and $\alpha \neq p$, we obtain that $b_{j k}=0$.

Hence, we can conclude from all cases that $\left[b_{t k}\right] \in M$.
Conversely, assume that $\Gamma \subseteq M$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ and $\left[b_{\beta \alpha}\right] \in \Gamma$. Since $b_{\beta \alpha}=0$ for all $\beta \neq j$ and $\alpha \neq i$ and $a_{i j}=c_{i j}=0$, we have

$$
\begin{aligned}
& \sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{j=1}^{n} a_{i \beta} b_{\beta i} c_{i j} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\
\beta \neq j}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\substack{\alpha=1 \\
a \neq i}}^{m} a_{i j} b_{j \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j}=0 .
\end{aligned}
$$

Since $b_{\beta \alpha}=0$ for all $\beta \neq q$ and $\alpha \neq p$ and $a_{p q}=c_{p q}=0$, we have

$$
\begin{aligned}
& \sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{p \beta} b_{\beta \alpha} c_{\alpha q}=\sum_{\substack{\alpha=1 \\
\alpha \neq p}}^{m} \sum_{\beta=1}^{n} a_{p \beta} b_{\beta \alpha} c_{\alpha q}+\sum_{3=1}^{n} a_{p \beta} b_{\beta p} c_{p q} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq p \\
\beta \neq q}}^{m} \sum_{\substack{1 \\
\beta \neq q}}^{n} a_{p \beta} b_{\beta \alpha} c_{\alpha q}+\sum_{\substack{\alpha=1 \\
\alpha \neq p}}^{m} a_{p q} b_{q \alpha} c_{\alpha q}+\sum_{\beta=1}^{n} a_{p \beta} b_{\beta p} c_{p q}=0 .
\end{aligned}
$$

Thus $\left[a_{r \beta}\right]\left[b_{\beta \alpha}\right]\left[c_{\alpha v}\right] \in T$. Therefore, T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Theorem 3.3. Let $i \in N_{m}, j, t \in N_{n}$ and $j \neq t$. Let $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=\right.$ $\left.0=a_{i t}\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if

$$
\Gamma \subseteq\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \mid b_{p q}=0 \text { if } p \neq j, t \text { and } q \neq i\right\}
$$

Proof. Let $M=\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \mid b_{p q}=0\right.$ if $p \neq j, t$ and $\left.q \neq i\right\}$.
First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{p q}\right] \in \Gamma$. Fix $p \neq j, t$ and $q \neq i$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ be such that $a_{i \beta}=\delta_{p \beta}$ and $c_{\alpha j}=\delta_{\alpha q}$ for all $\beta \neq j, t$ and $\alpha \neq i$. Then $\left[a_{r \beta}\right]\left[b_{p q}\right]\left[c_{\alpha v}\right] \in T$. Thus

$$
0=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j, t}}^{n} \delta_{p \beta} b_{\beta \alpha} \delta_{\alpha q}=b_{p q} .
$$

Thus, $\left[b_{p q}\right] \in M$.
Conversely, assume that $\Gamma \subseteq M$. Let $\left[a_{r s}\right],\left[c_{u v}\right] \in T$ and $\left[b_{p q}\right] \in \Gamma$. Since $a_{i j}=$ $a_{i t}=c_{i j}=c_{i t}=0$ and $\sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha}=a_{i j} b_{j \alpha}+a_{i t} b_{t \alpha}=0$ where $\alpha=1,2, \ldots, \hat{i}, \ldots, m$, we have

$$
\begin{gathered}
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha==1 \\
\alpha \neq j}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j}=0, \quad \text { and } \\
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha t}=\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha t}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i t}=0 .
\end{gathered}
$$

Hence $\left[a_{r s}\right]\left[b_{p q}\right]\left[c_{u v}\right] \in T$. Therefore, T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

The following proposition is also useful for obtaining results in this chapter. Notice that this proposition is analogous to Proposition 2.1.1 and Proposition 2.2.1 which are major tools in studying Γ-subsemigroups of \mathbb{R} under usual addition and multiplication, respectively.

Proposition 3.4. Let T and Γ be nonempty subsets of $M_{m n}(\mathbb{R})$ and $M_{n m}(\mathbb{R})$, respectively. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if $T^{t r}$ is a $\Gamma^{t r}$-subsemigroup of $M_{n m}(\mathbb{R})$.

Proof. First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Then $T \Gamma T \subseteq T$. Thus $T^{t r} \Gamma^{t r} T^{t r}=(T \Gamma T)^{t r} \subseteq T^{t r}$. Thus $T^{t r}$ is a $\Gamma^{t r}$-subsemigroup of $M_{n m}(\mathbb{R})$. The converse is obtained similarly.

Theorem 3.3 and Proposition 3.4 give the following result.

Corollary 3.5. Let $i, t \in N_{m}$ and $j \in N_{n}$ and $i \neq t$. Let $T=\left\{\left[a_{r s}\right] \in\right.$ $\left.M_{m n}(\mathbb{R}) \mid a_{i j}=0=a_{t j}\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if

$$
\Gamma \subseteq\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \mid b_{p q}=0 \text { if } p \neq j, q \neq i, t\right\}
$$

Proof. Let $M=\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \mid b_{p q}=0\right.$ if $\left.p \neq j, q \neq i, t\right\}$.
First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. By Proposition 3.4, $T^{t r}$ is a $\Gamma^{t r}$-subsemigroup of $M_{n m}(\mathbb{R})$. Note that $T^{t r}=\left\{\left[a_{r s}\right] \in M_{n m}(\mathbb{R}) \mid a_{j i}=0=\right.$ $\left.a_{j t}\right\}$ and $M^{t r}=\left\{\left[b_{p q}\right] \in M_{m n}(\mathbb{R}) \mid b_{p q}=0\right.$ if $p \neq i, t$ and $\left.q \neq j\right\}$. It follows from Theorem 3.3 that $\Gamma^{t r} \subseteq M^{t r}$. Thus $\Gamma \subseteq M$.

Conversely, assume that $\Gamma \subseteq M$. Then $\Gamma^{t r} \subseteq M^{t r}$ so that $T^{t r}$ is a $\Gamma^{t r}$-subsemigroup of $M_{n m}(\mathbb{R})$. Therefore T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Theorem 3.6. Let $\lambda \in \mathbb{R} \backslash\{0\}, i \in N_{m}$ and $j \in N_{n}$. Let $T=\left\{\left[a_{r s}\right] \in\right.$ $\left.M_{m n}(\mathbb{R}) \mid a_{i j}=\lambda\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$
if and only if $\Gamma=\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{j i}=\frac{1}{\lambda}\right.\right.$ and 0 otherwise $\}$.
Proof. First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{x y}\right] \in \Gamma$. For each $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$, we have

$$
\begin{equation*}
\lambda=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j} \tag{3.1}
\end{equation*}
$$

Choose $\left[c_{\alpha v}\right] \in T$ such that $c_{\alpha j}=0$ where $\alpha \neq i$. Then

$$
\lambda=\lambda \sum_{\beta=1}^{n} a_{i \beta} b_{\beta i}
$$

so that

$$
\begin{equation*}
\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i}=1 \tag{3.2}
\end{equation*}
$$

From (3.1),(3.2) and the fact that $c_{i j}=\lambda$,

$$
\begin{equation*}
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j} \text { for all }\left[a_{r s}\right],\left[c_{u v}\right] \in T \tag{3.3}
\end{equation*}
$$

Suppose there exists $t \in N_{n} \backslash\{j\}$ such that $b_{t i} \neq 0$. Then choose $\left[a_{r \beta}\right] \in T$ such that

$$
a_{i \beta}=\left\{\begin{array}{cc}
\frac{2-\lambda b_{j i}}{b_{t i}}, & \text { if } \beta=t \tag{3.4}\\
0, & \text { if } \beta \in N_{n} \backslash\{j, t\}
\end{array}\right.
$$

From (3.2) and (3.4), $1=a_{i j} b_{j i}+a_{i t} b_{t i}=2$ which is a contradiction. Hence $b_{t i}=0$ for all $t \in N_{n} \backslash\{j\}$. From this result together with (3.2) and the fact that $a_{i j}=\lambda$, we see that $b_{j i}=\frac{1}{\lambda}$.

Next, suppose that there exists $p \in N_{m} \backslash\{i\}$ such that $b_{j p} \neq 0$. Choose

$$
a_{i \beta}=0 \quad \text { for all } \beta \neq j \quad \text { and } \quad c_{\alpha j}= \begin{cases}\frac{1}{\lambda b_{j p}} & , \text { if } \alpha=p \\ 0 & , \text { if } \alpha \in N_{m} \backslash\{i, p\}\end{cases}
$$

Then from (3.4)

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\beta=1}^{n} a_{i \beta} b_{\beta p} c_{p j}=a_{i j} b_{j p} c_{p j}=\lambda b_{j p} c_{p j}=1
$$

which is a contradiction. Hence $b_{j p}=0$ for all $p \in N_{m} \backslash\{i\}$. As a result,

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} a_{i j} b_{j \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j} \quad \text { for all }\left[a_{r s}\right],\left[c_{u v}\right] \in T .
$$

To show that $b_{t p}=0$ for all $t \in N_{n} \backslash\{j\}$ and $p \in N_{m} \backslash\{i\}$, we suppose not. Then there exist $t \in N_{n} \backslash\{j\}$ and $p \in N_{m} \backslash\{i\}$ such that $b_{t p} \neq 0$. Setting $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ such that

$$
a_{i \beta}=\left\{\begin{array}{ll}
\frac{1}{b_{t p}} & , \text { if } \beta=t, \\
0 & , \text { if } \beta \in N_{n} \backslash\{j, t\},
\end{array} \quad \text { and } \quad c_{\alpha j}= \begin{cases}1, \text { if } \alpha=p, \\
0, \text { if } \alpha \in N_{m} \backslash\{i, p\} .\end{cases}\right.
$$

We obtain that

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta p} c_{p j}=a_{i t} b_{t p}=1 .
$$

This leads to a contradiction. Hence $b_{t p}=0$ for all $t \in N_{n} \backslash\{j\}$ and $p \in N_{m} \backslash\{i\}$ as desired. Therefore $b_{x y}=0$ if $(x, y) \neq(j, i)$ and $b_{j i}=\frac{1}{\lambda}$, i.e., $\left[b_{x y}\right] \in M$. This shows that $\Gamma \subseteq M$. Since M is a singleton set and Γ must be a nonempty subset of M, it must follow that $\Gamma=M$.

Conversely, assume that $\Gamma=\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{j i}=\frac{1}{\lambda}\right.\right.$ and 0 otherwise $\}$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ and $\left[b_{p q}\right] \in \Gamma$. Then

$$
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j}+\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=a_{i j} b_{j i} c_{i j}=\lambda .
$$

Thus, $\left[a_{r \beta}\right]\left[b_{\beta \alpha}\right]\left[c_{\alpha v}\right] \in T$. Therefore, T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Theorem 3.7. Let $\lambda \in \mathbb{R} \backslash\{0\}, i \in N_{m}, j, q \in N_{n}$ and $j \neq q$. Let $T=\left\{\left[a_{r s}\right] \in\right.$ $M_{m n}(\mathbb{R}) \mid a_{i j}=\lambda$ and $\left.a_{i q}=0\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if
$\Gamma \subseteq\left\{\left[b_{\alpha \beta}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{j \beta}=\frac{1}{\lambda} \delta_{\beta i}\right.\right.$ and $b_{\alpha \beta}=0$ for all $\alpha \neq j, q$ and for all $\left.\beta\right\}$.
Proof. Let $M=\left\{\left[b_{\alpha \beta}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{j \beta}=\frac{1}{\lambda} \delta_{\beta i}\right.\right.$ and $b_{\alpha \beta}$ for all $\alpha \neq j, q$ and for all $\left.\beta\right\}$.
First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{\alpha \beta}\right] \in \Gamma$. Let $\left[c_{\alpha v}\right] \in T$ be such that $c_{\alpha j}=0$ where $\alpha \neq i$. For each $\left[a_{r \beta}\right] \in T$, similarly to the proof of Theorem 3.6, we obtain that

$$
\begin{equation*}
\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i}=1 \tag{3.5}
\end{equation*}
$$

Suppose there exists $t \in N_{n} \backslash\{j, q\}$ such that $b_{t i} \neq 0$. Choose $\left[a_{r \beta}\right] \in T$ such that

$$
a_{i \beta}=\left\{\begin{array}{cl}
\frac{2-\lambda b_{j i}}{b_{t i}} & , \text { if } \beta=t, \tag{3.6}\\
0 & , \text { if } \beta \in N_{n} \backslash\{j, t, q\} .
\end{array}\right.
$$

From (3.5) and (3.6), we see that $1=a_{i j} b_{j i}+a_{i t} b_{t i}+a_{i q} b_{q i}=2$ which is a contradiction. Hence $b_{t i}=0$ for all $t \in N_{n} \backslash\{j, q\}$. From (3.5) and the fact that $a_{i j}=\lambda$ and $a_{i q}=0$, we have $b_{j i}=\frac{1}{\lambda}$. Thus, for each $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$,

$$
\begin{aligned}
\lambda=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j} & =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+a_{i j} b_{j i} c_{i j}+a_{i q} b_{q i} c_{i j} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\lambda,
\end{aligned}
$$

so that

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}
$$

Next, we show that $b_{j \alpha}=0$ for all $\alpha \neq i$. Suppose that there exists $k \in N_{m} \backslash\{i\}$
such that $b_{j k} \neq 0$. Choosing $\left[a_{\tau \beta}\right],\left[c_{\alpha v}\right] \in T$ such that

$$
a_{i \beta}=0 \quad \text { for all } \beta \in N_{n} \backslash\{j, q\} \quad \text { and } \quad c_{\alpha j}=\left\{\begin{array}{cl}
\frac{1}{\lambda b_{j k}} & , \text { if } \alpha=k \\
0 & , \text { if } \alpha \in N_{m} \backslash\{i, k\}
\end{array}\right.
$$

Then

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\beta=1}^{n} a_{i \beta} b_{\beta k} c_{k j}=a_{i j} b_{j k} c_{k j}+a_{i q} b_{q k} c_{k j}=a_{i j} b_{j k} c_{k j}=1
$$

which is a contradiction. Hence $b_{j \alpha}=0$ for all $\alpha \neq i$ as desired. As a result,

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}
$$

Next, suppose for the contradiction that there exist $t \in N_{n} \backslash\{j, q\}$ and $k \in$ $N_{m} \backslash\{i\}$ such that $b_{t k} \neq 0$. Set

$$
a_{i \beta}=\left\{\begin{array}{ll}
\frac{1}{b_{t k}} & , \text { if } \beta=t, \\
0 & , \text { if } \beta \in N_{n} \backslash\{j, t, q\},
\end{array} \quad \text { and } c_{\alpha j}= \begin{cases}1 & , \text { if } \alpha=k, \\
0 & , \text { if } \alpha \in N_{m} \backslash\{i, k\} .\end{cases}\right.
$$

Then

$$
0=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{i \beta} b_{\beta k} c_{k j}=a_{i t} b_{t k} c_{k j}=1
$$

which is impossible. Consequently, $\left[b_{\alpha \beta}\right] \in M$. This shows that $\Gamma \subseteq M$.
Conversely, assume that $\Gamma \subseteq M$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ and $\left[b_{\beta \alpha}\right] \in \Gamma$.
We need to show that

$$
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\lambda \quad \text { and } \quad \sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha q}=0
$$

Note that since $b_{j i}=\frac{1}{\lambda}$ and $b_{\beta \alpha}=0$ for all $\alpha \neq i$ and $\beta \neq q$ while $a_{i q}=0$ and $a_{i j}=c_{i j}=\lambda$,
we have

$$
\begin{aligned}
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j} & =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\substack{\beta \neq q \\
\beta \neq q}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} a_{i q} b_{q \alpha} c_{\alpha j}+\lambda \sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} \\
& =\lambda \sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} \\
& =\lambda\left(a_{i j} b_{j i}+a_{i q} b_{q i}\right)=\lambda
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha q} & =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha q}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i q} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\
\beta \neq q}}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha q}+\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} a_{i q} b_{q \alpha} c_{\alpha q} \\
& =0 .
\end{aligned}
$$

Thus $\left[a_{r \beta}\right]\left[b_{\beta \alpha}\right]\left[c_{\alpha v}\right] \in T$. Therefore, T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Corollary 3.8 is an immediate result from Theorem 3.7 and Proposition 3.4.

Corollary 3.8. Let $\lambda \in \mathbb{R} \backslash\{0\}, i, p \in N_{m}, j \in N_{n}$ and $i \neq p$. Let $T=\left\{\left[a_{r s}\right] \in\right.$ $M_{m n}(\mathbb{R}) \mid a_{i j}=\lambda$ and $\left.a_{p j}=0\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if
$\Gamma \subseteq\left\{\left[b_{\alpha \beta}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{\alpha i}=\frac{1}{\lambda} \delta_{j \alpha}\right.\right.$ and $b_{\alpha \beta}=0$ for all $\beta \neq i, p$ and for all $\left.\alpha\right\}$.

Theorem 3.9. Let $\lambda \in \mathbb{R} \backslash\{0\}, i, j \in N_{m}$ and $p, q \in N_{n}$ be such that $p \neq i$ and
$q \neq j$. Let $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=0\right.$ and $\left.a_{p q}=\lambda\right\}$. Then T is not a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ for any nonempty subset Γ of $M_{n m}(\mathbb{R})$.

Proof. Suppose that Γ is a nonempty subset of $M_{n m}(R)$ and T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{t k}\right] \in \Gamma$. Fix $t \neq j$ and $k \neq i$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ be such that

$$
a_{i \beta}=\delta_{t \beta} \quad \text { and } \quad c_{\alpha j}=\delta_{\alpha k} \quad \text { for all } \beta \neq j \text { and } \alpha \neq i
$$

Then $\left[a_{r \beta}\right]\left[b_{p q}\right]\left[c_{\alpha v}\right] \in T$ so that

$$
0=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}=\sum_{\substack{\alpha=1 \\ \alpha \neq i}}^{m} \sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} \delta_{t \beta} b_{\beta \alpha} \delta_{\alpha k}=b_{t k}
$$

This shows that $b_{t k}=0$ for all $t \neq j$ and $k \neq i$. Next, choose $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ such that

$$
a_{p j}=0 \quad \text { and } \quad c_{\alpha q}= \begin{cases}0 & \text { if } \alpha \neq p \\ \lambda & , \text { if } \alpha=p\end{cases}
$$

Then

$$
\lambda=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{p \beta} b_{\beta \alpha} c_{\alpha q}=\sum_{\beta=1}^{n} a_{p \beta} b_{\beta p} c_{p q}=\sum_{\substack{\beta=1 \\ \beta \neq j}}^{n} a_{p \beta} b_{\beta p} c_{p q}+a_{p j} b_{j p} c_{p q}=0
$$

which is a contradiction. Hence T is not a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ for all nonempty subsets Γ of $M_{n m}(\mathbb{R})$.

Theorem 3.10. Let $\lambda, \mu \in \mathbb{R} \backslash\{0\}, i, p \in N_{m}$ and $j, q \in N_{n}$ be such that $p \neq i$ and $q \neq j$. Let $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=\lambda\right.$ and $\left.a_{p q}=\mu\right\}$. Then T is not a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ for any nonempty subset Γ of $M_{n m}(\mathbb{R})$.

Proof. Let Γ be a nonempty subset of $M_{n m}(R)$ and $\left[b_{t k}\right] \in \Gamma$. Suppose that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Since $a_{i j}=\lambda, a_{p q}=\mu$ and from the proof of Theorem 3.6, we obtain that $\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{j i}=\frac{1}{\lambda}\right.\right.$ and 0 otherwise $\}=\Gamma=$ $\left\{\left[b_{p q}\right] \in M_{n m}(\mathbb{R}) \left\lvert\, b_{q p}=\frac{1}{\mu}\right.\right.$ and 0 otherwise $\}$ which is impossible. Therefore, T is not a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ for all nonempty subsets Γ of $M_{n m}(\mathbb{R})$.

Theorem 3.11. Let $\lambda, \mu \in \mathbb{R} \backslash\{0\}, i \in N_{m}$ and $q, j \in N_{n}$ be such that $q \neq j$. Let $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=\lambda\right.$ and $\left.a_{i q}=\mu\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if $\Gamma \subseteq\left\{\left[b_{x y}\right] \in M_{n m}(\mathbb{R}) \mid 1=\lambda b_{j i}+\mu b_{q i}\right.$ and $\forall t \in$ $N_{m} \backslash\{i\}, \lambda b_{j t}+\mu b_{q t}=0$, and 0 otherwise $\}$.

Proof. Let $M=\left\{\left[b_{x y}\right] \in M_{n m}(\mathbb{R}) \mid 1=\lambda b_{j i}+\mu b_{q i}\right.$ and $\forall t \in N_{m} \backslash\{i\}, \lambda b_{j t}+\mu b_{q t}=0$, and 0 otherwise \}.

First, assume that T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$. Let $\left[b_{\beta \alpha}\right] \in \Gamma$. Suppose that there exists $p \in N_{n} \backslash\{j, q\}$ such that $b_{p i} \neq 0$. Choose $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ such that

$$
a_{i \beta}= \begin{cases}\frac{\lambda+1-\lambda^{2} b_{j i}-\lambda \mu b_{q i}}{\lambda b_{p i}}, & \text { if } \beta=p \\ 0, & \text { if } \beta \in N_{n} \backslash\{j, p, q\},\end{cases}
$$

and

$$
c_{\alpha j}=0 \text { for all } \alpha \neq i
$$

Then

$$
\begin{aligned}
\lambda=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j} & =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j} \\
& =a_{i j} b_{j i} c_{i j}+a_{i p} b_{p i} c_{i j}+a_{i q} b_{q i} c_{i j} \\
& =\lambda^{2} b_{j i}+\left(\lambda+1-\lambda^{2} b_{j i}-\lambda \mu b_{q i}\right)+\lambda \mu b_{q i} \\
& =\lambda+1
\end{aligned}
$$

which is a contradiction. Hence $b_{p i}=0$ for all $p \in N_{n} \backslash\{j, q\}$. Note that, for all $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$,

$$
\begin{align*}
\lambda & =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\sum_{\beta=1}^{n} a_{i \beta} b_{\beta i} c_{i j} \tag{3.7}\\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+a_{i j} b_{j i} c_{i j}+a_{i q} b_{q i} c_{i j} \\
& =\sum_{\substack{\alpha=1 \\
\alpha \neq i}}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha j}+\lambda^{2} b_{j i}+\lambda \mu b_{q i} . \tag{3.8}
\end{align*}
$$

Next, suppose that there exist $p \in N_{n} \backslash\{j, q\}$ and $t \in N_{m} \backslash\{i\}$ such that $b_{p t} \neq 0$. Putting $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ in (3.8) where

$$
a_{i \beta}=\left\{\begin{array}{cl}
\frac{\lambda+1-\lambda b_{j t}-\mu b_{q t}-\lambda^{2} b_{j i}-\lambda \mu b_{q i}}{b_{p t}} & , \text { if } \beta=p \\
0 & , \text { if } \beta \in N_{n} \backslash\{j, p, q\}
\end{array}\right.
$$

and

$$
c_{\alpha j}=\left\{\begin{array}{l}
1, \text { if } \alpha=t \\
0, \text { if } \alpha \in N_{m} \backslash\{i, t\}
\end{array}\right.
$$

yields $\lambda=\lambda+1$ which is a contradiction. Hence $b_{p t}=0$ for all $p \in N_{n} \backslash\{j, q\}$ and $t \in N_{m} \backslash\{i\}$. Moreover, from (3.8) for all $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$,

$$
\begin{equation*}
\lambda=\sum_{\alpha=1}^{m}\left(\lambda b_{j \alpha}+\mu b_{q \alpha}\right) c_{\alpha j} . \tag{3.9}
\end{equation*}
$$

Suppose that there exists $t \in N_{m} \backslash\{i\}$ such that $\lambda b_{j t}+\mu b_{q t} \neq 0$. Replacing $\left[c_{\alpha v}\right] \in T$ such that

$$
c_{\alpha j}=\left\{\begin{array}{cl}
\frac{\lambda+1-\lambda^{2} b_{j i}-\lambda \mu b_{q i}}{\lambda b_{j t}+\mu b_{q t}} & \text {, if } \alpha=t \\
0 & \text {, if } \alpha \in N_{m} \backslash\{i, t\}
\end{array}\right.
$$

in (3.9) gives another contradiction because $\lambda=\lambda+1$. Thus $\lambda b_{j t}+\mu b_{q t}=0$ for all $t \in N_{m} \backslash\{i\}$.

Finally, from (3.9), we obtain that $\lambda=\left(\lambda b_{j i}+\mu b_{q i}\right) c_{i j}$ and since $c_{i j}=\lambda$, we have $\lambda b_{j i}+\mu b_{q i}=1$. Therefore $\Gamma \subseteq M$.

Conversely, assume that $\Gamma \subseteq M$. Let $\left[a_{r \beta}\right],\left[c_{\alpha v}\right] \in T$ and $\left[b_{\beta \alpha}\right] \in \Gamma$. Then

$$
\begin{aligned}
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} a_{i \beta} b_{\beta \alpha} c_{\alpha v} & =\sum_{\alpha=1}^{m}\left(a_{i j} b_{j \alpha}+a_{i q} b_{q \alpha}\right) c_{\alpha v} \\
& =\sum_{\alpha=1}^{m}\left(\lambda b_{j \alpha}+\mu b_{q \alpha}\right) c_{\alpha v} \\
& =\left(\lambda b_{j i}+\mu b_{q i}\right) c_{i v} \\
& =c_{i v}=\left\{\begin{array}{l}
\lambda, \text { if } v=j, \\
\mu, \text { if } v=q .
\end{array}\right.
\end{aligned}
$$

Therefore, T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$.

Immediately from Theorem 3.11 and Proposition 3.4, we obtain

Corollary 3.12. Let $\lambda, \mu \in \mathbb{R} \backslash\{0\}, i, p \in N_{m}$ and $j \in N_{n}$ be such that $i \neq p$. Let $T=\left\{\left[a_{r s}\right] \in M_{m n}(\mathbb{R}) \mid a_{i j}=\lambda\right.$ and $\left.a_{p j}=\mu\right\}$. Then T is a Γ-subsemigroup of $M_{m n}(\mathbb{R})$ if and only if $\Gamma \subseteq\left\{\left[b_{x y}\right] \in M_{n m}(\mathbb{R}) \mid 1=\lambda b_{j i}+\mu b_{j p}\right.$ and $\forall t \in$ $N_{n} \backslash\{j\}, \lambda b_{t i}+\mu b_{t p}=0$, and 0 otherwise $\}$.

