CHAPTER II

REAL INTERVALS AS Γ -SUBSEMIGROUPS OF \mathbb{R}

We recall from Example 1.3 that \mathbb{R} is a Γ -semigroup under usual addition and multiplication for any nonempty subset Γ of \mathbb{R} . In this chapter, we focus Γ -subsemigroups of \mathbb{R} in two aspects. One hand, for each real interval I, we characterize which types of nonempty subsets Γ of \mathbb{R} such that I is a Γ -subsemigroup of \mathbb{R} . On the other hand, for each real interval Γ , we describe types of real intervals which are Γ -subsemigroups of \mathbb{R} .

We demonstrate these notions in two sections. In the first section, Γ -subsemigroups of \mathbb{R} under usual addition are considered. Next, Γ -subsemigroups of \mathbb{R} under usual multiplication are studied.

2.1 Γ -Subsemigroups of \mathbb{R} under Usual Addition

In this section, we consider only Γ -subsemigroups of \mathbb{R} under usual addition. First, for each given real interval I, we look up all possibilities of nonempty subsets Γ of \mathbb{R} such that I is a Γ -subsemigroup of \mathbb{R} . Later, we fix a real interval Γ in order to find all choices of real intervals I which I is a Γ -subsemigroup of \mathbb{R} .

The following proposition will play a major role in this section.

Proposition 2.1.1. Let I and Γ be nonempty subsets of \mathbb{R} . Then

I is a Γ -semigroup if and only if -I is a $(-\Gamma)$ -semigroup.

Proof. First, assume that I is a Γ -semigroup. Let $x, y \in -I$ and $\alpha \in -\Gamma$. Then $-x, -y \in I$ and $-\alpha \in \Gamma$ which imply that $(-x) + (-\alpha) + (-y) \in I$. Hence

 $x + \alpha + y \in -I$. This shows that -I is a $(-\Gamma)$ -semigroup.

Conversely, the result holds by changing I and Γ to -I and $-\Gamma$, respectively.

The following example shows results obtained from Proposition 2.1.1.

Example 2.1.2. For any real number a, it is clear that $\{-a\}$ is a $\{a\}$ —subsemigroup of \mathbb{R} and (a, ∞) is a $(-a, \infty)$ —subsemigroup of \mathbb{R} . By applying Proposition 2.1.1, we also obtain that $\{a\}$ is a $\{-a\}$ —subsemigroup of \mathbb{R} and $(-\infty, -a)$ is a $(-\infty, a)$ —subsemigroup of \mathbb{R} for any real number a.

Theorem 2.1.3. Let $x \in \mathbb{R}$. For a nonempty subset Γ of \mathbb{R} ,

 $\{x\}$ is a Γ -subsemigroup of \mathbb{R} if and only if $\Gamma = \{-x\}$.

Proof. First, assume that $\{x\}$ is a Γ -subsemigroup of \mathbb{R} . Let $k \in \Gamma$. Then x+k+x=x, so k=-x. Hence $\Gamma=\{-x\}$. On the other hand, obviously, $\{x\}$ is a $\{-x\}$ -subsemigroup of \mathbb{R} .

Theorem 2.1.4. Let $a, b \in \mathbb{R}$ and a < b. Then (a, b), [a, b), (a, b] and [a, b] are not Γ -subsemigroups of \mathbb{R} for all nonempty subsets Γ of \mathbb{R} .

Proof. Let Γ be a nonempty subset of \mathbb{R} . Without loss of generality, suppose that (a,b) is a Γ -subsemigroup of \mathbb{R} . Let $k \in \Gamma$. Then $(2a+k,2b+k)=(a,b)+k+(a,b)\subseteq (a,b)+\Gamma+(a,b)\subseteq (a,b)$. Thus $a\leq 2a+k<2b+k\leq b$. As a result, $-k\leq a< b\leq -k$ which is a contradiction. Hence (a,b) is not a Γ -subsemigroup.

Theorem 2.1.5. Let $b \in \mathbb{R}$ and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent.

- (i) $(-\infty, b)$ is a Γ -subsemigroup of \mathbb{R} .
- (ii) $(-\infty, b]$ is a Γ -subsemigroup of \mathbb{R} .
- (iii) sup $\Gamma \leq -b$.

Proof. First, by contrapositive, suppose that $\sup \Gamma > -b$. Let $k \in \Gamma$ be such that $\sup \Gamma \geq k > -b$. Then $\frac{b-k}{2} < b$. Let $m \in (\frac{b-k}{2}, b) \subseteq (-\infty, b)$. Thus $m+k+m>\frac{b-k}{2}+k+\frac{b-k}{2}=b$, so that $m+k+m\notin (-\infty,b)$. Therefore $(-\infty,b)$ is not a Γ -subsemigroup of \mathbb{R} , neither is $(-\infty,b]$ by using the same argument.

Conversely, assume that sup $\Gamma \leq -b$. Then $(-\infty, b) + \Gamma + (-\infty, b) \subseteq (-\infty, b)$ and $(-\infty, b] + \Gamma + (-\infty, b] \subseteq (-\infty, b]$. The result follows.

Consequently from Theorem 2.1.5 and Proposition 2.1.1, we have

Corollary 2.1.6. Let $a \in \mathbb{R}$ and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent.

- (i) (a, ∞) is a Γ -subsemigroup of \mathbb{R} .
- (ii) $[a, \infty)$ is a Γ -subsemigroup of \mathbb{R} .
- (iii) inf $\Gamma \geq -a$.

Proof. We obtain from Theorem 2.1.5 and Proposition 2.1.1 that

 (a,∞) is a Γ -subsemigroup of $\mathbb R$ if and only if $(-\infty,-a)$ is a $(-\Gamma)$ -subsemigroup of $\mathbb R$ if and only if $\sup(-\Gamma) \leq -(-a)$ if and only if $-\inf\Gamma \leq a$ if and only if $\inf\Gamma \geq -a$.

For a fixed $\Gamma \subseteq \mathbb{R}$, we list intervals which are Γ -subsemigroups of \mathbb{R} . Before doing so, it is a good place to point out the following simple result.

Remark 2.1.7. If I is a Γ -semigroup and Γ' is a nonempty subset of Γ , then I is a Γ' -semigroup.

Toward the end of this section, for each given real interval Γ , we characterize all types of real intervals which are Γ -subsemigroups of \mathbb{R} .

Proposition 2.1.8. Let I be a nonempty subset of \mathbb{R} . Then I is a $\{0\}$ -subsemigroup of \mathbb{R} if and only if I is a subsemigroup of \mathbb{R} under the usual addition.

Proof. First, assume that I is a $\{0\}$ —subsemigroup of \mathbb{R} . Then $I+I=I+\{0\}+I\subseteq I$ which implies that I is a subsemigroup of \mathbb{R} under the usual addition. The converse is obvious.

We see from Proposition 2.1.8 that subsemigroups of \mathbb{R} and $\{0\}$ —subsemigroups of \mathbb{R} (under usual addition) are identical.

Theorem 2.1.9. Let $\Gamma = \{a\}$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} , (ii) $\{-a\}$,
- (iii) $[y, \infty)$ where $y \ge -a$, (iv) (y, ∞) where $y \ge -a$,
- (v) $(-\infty, y]$ where $y \le -a$, (vi) $(-\infty, y)$ where $y \le -a$.

Proof. First, according to Proposition 2.1.8 and Proposition 1.1, it suffices to suppose that $a \neq 0$. Assume that I is a Γ -subsemigroup of \mathbb{R} . If I is not bounded above and bounded below, then $I = \mathbb{R}$. Thus, there are three more cases.

Case 1. $I = [y, \infty)$ or (y, ∞) for some $y \in \mathbb{R}$.

If $I = [y, \infty)$, then $y + a + y \ge y$, so $y \ge -a$.

Now assume that $I=(y,\infty)$. Suppose y<-a, then $\frac{y-a}{2}\in I$. So $y=\frac{y-a}{2}+a+\frac{y-a}{2}\in I$ which is a contradiction. Hence $y\geq -a$.

Case 2. $I = (-\infty, y]$ or $(-\infty, y)$ for some $y \in \mathbb{R}$.

Since I is a Γ -semigroup, by Proposition 2.1.1, -I is a $(-\Gamma)$ -semigroup. Now, we obtain that $[-y,\infty)$ (or $(-y,\infty)$) is a $\{-a\}$ -subsemigroup of \mathbb{R} . By Case 1, we have $-y \geq -(-a) = a$, i.e., $y \leq -a$.

Case 3. I = [x, y], [x, y), (x, y] or (x, y) for some $x, y \in \mathbb{R}$.

If x < y, by Theorem 2.1.4, we obtain that I cannot be a Γ -subsemigroup of \mathbb{R} .

Now assume that $I = \{x\}$. Then x + a + x = x which implies that x = -a.

Conversely, it is obvious that \mathbb{R} and $\{-a\}$ are Γ -subsemigroups of \mathbb{R} . If $y \geq -a$, then $[y, \infty) + a + [y, \infty) \subseteq [y, \infty)$ and $(y, \infty) + a + (y, \infty) \subseteq (y, \infty)$. Next, suppose that $y \leq -a$. Thus $(-\infty, y] + a + (-\infty, y] \subseteq (-\infty, y]$ and $(-\infty, y) + a + (-\infty, y) \subseteq (-\infty, y)$. Hence (i)-(vi) are Γ -subsemigroups of \mathbb{R} .

Theorem 2.1.10. Let $\Gamma = (a, b)$, [a, b), (a, b] or [a, b] where a < b. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} , (ii) $[y, \infty)$ where $y \ge -a$,
- (iii) (y, ∞) where $y \ge -a$, (iv) $(-\infty, y]$ where $y \le -b$,
- (v) $(-\infty, y)$ where $y \leq -b$.

Proof. First, let I be a Γ -subsemigroup. Clearly, $I = \mathbb{R}$ if I is not bounded above or bounded below. Then there are only three cases to be considered.

Case 1. $I = [y, \infty)$ or (y, ∞) for some $y \in \mathbb{R}$.

If $I = [y, \infty)$, then $y + x + y \ge y$ for all $x \in \Gamma$, i.e., $y \ge -x$ for all $x \in \Gamma$ which implies that $y \ge \sup(-\Gamma) = -a$.

Now, assume that $I=(y,\infty)$. Suppose that y<-a and let $k\in (y,-a)\cap (-b,-a)$. Then $\frac{y+k}{2}\in I$ and $-k\in \Gamma$. So $y=\frac{y+k}{2}-k+\frac{y+k}{2}\in I$ which is a contradiction. Hence $y\geq -a$.

Case 2. $I = (-\infty, y]$ or $(-\infty, y)$ for some $y \in \mathbb{R}$.

By Proposition 2.1.1, -I is a $(-\Gamma)$ -semigroup. Now, $-I = [-y, \infty)$ or $(-y, \infty)$ and $-\Gamma = (-b, -a), (-b, -a], [-b, -a)$ or [-b, -a]. It follows from Case 1 that

$$-y \ge -(-b) = b$$
, i.e., $y \le -b$.

Case 3. I = (x, y), [x, y), (x, y] or [x, y] for some $x, y \in \mathbb{R}$.

If x < y, by Theorem 2.1.4, the real interval I cannot be a Γ -subsemigroup of \mathbb{R} . Thus $I = \{x\}$, by Theorem 2.1.3, $\Gamma = \{-x\}$ which is a contradiction. As a result, this case is impossible.

For the reverse direction, we see that

$$\begin{split} &[y,\infty)+\Gamma+[y,\infty)\ \subseteq [2y+a,\infty)\subseteq [y,\infty) \text{ where } y\geq -a,\\ &(y,\infty)+\Gamma+(y,\infty)\subseteq (2y+a,\infty)\subseteq (y,\infty) \text{ where } y\geq -a,\\ &(-\infty,y]+\Gamma+(-\infty,y]\ \subseteq (-\infty,2y+b]\subseteq (-\infty,y] \text{ where } y\leq -b,\\ &(-\infty,y)+\Gamma+(-\infty,y)\subseteq (-\infty,2y+b)\subseteq (-\infty,y) \text{ where } y\leq -b. \end{split}$$

Therefore, the proof is complete.

Theorem 2.1.11. Let $\Gamma = (-\infty, b]$ or $(-\infty, b)$ where $b \in \mathbb{R}$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} ,
- (ii) $(-\infty, y]$ where $y \leq -b$,
- (iii) $(-\infty, y)$ where $y \leq -b$.

Proof. Suppose first that I is a Γ -subsemigroup of \mathbb{R} . Note that I cannot be bounded below because Γ is not bounded below. Since $(b-1,b] \subseteq (-\infty,b]$ and $(b-1,b) \subseteq (-\infty,b)$, it follows from Remark 2.1.7 that I is also a (b-1,b]- or (b-1,b)-subsemigroup of \mathbb{R} . By Theorem 2.1.10 and the fact that I is not bounded below, we have $I = \mathbb{R}$, $(-\infty,y]$ or $(-\infty,y)$ where $y \le -b$.

For the converse, we see that

$$(-\infty, y] + \Gamma + (-\infty, y] \subseteq (-\infty, 2y + b] \subseteq (-\infty, y]$$
 where $y \le -b$.

Therefore, the theorem is completely proved.

Corollary 2.1.12. Let $\Gamma = [a, \infty)$ or (a, ∞) where $a \in \mathbb{R}$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} ,
- (ii) $[y, \infty)$ where $y \ge -a$,
- (iii) (y, ∞) where $y \ge -a$.

Proof. The result follows by replacing I and Γ in Theorem 2.1.11 by -I and $-\Gamma$, respectively, and applying Proposition 2.1.1.

2.2 Γ -Subsemigroups of \mathbb{R} under Usual Multiplication

Recall from Example 1.3 that \mathbb{R} is a Γ -semigroup under usual multiplication for any nonempty subset Γ of \mathbb{R} . In the first part of this section, for each real interval subset I of \mathbb{R} , we find subsets Γ of \mathbb{R} so that I is a Γ -subsemigroup of \mathbb{R} . The following results will be used variously in this section.

Proposition 2.2.1. Let I and Γ be nonempty subsets of \mathbb{R} . Then

I is a Γ -semigroup if and only if -I is a $(-\Gamma)$ -semigroup.

Proof. The proof is similar to the proof of Proposition 2.1.1.

Remark 2.2.2. Let I and Γ be nonempty subsets of \mathbb{R} . If I is a Γ -subsemigroup of \mathbb{R} and $0 \notin I$, then $0 \notin \Gamma$.

Equivalently, Γ containing 0 implies that I must contain 0.

Proposition 2.2.3. Let I and Γ be nonempty subsets of \mathbb{R} such that I is a Γ -subsemigroup of \mathbb{R} and $I \neq \{0\}$. If I is bounded, then Γ is bounded.

Proof. Assume that I is bounded. Choose $x \in I \setminus \{0\}$ and let $\alpha \in \Gamma$. By the assumption, $\inf I$ and $\sup I$ exist. Since I is a Γ -subsemigroup of \mathbb{R} , $x\alpha x \in I$ so that $\inf I \leq x\alpha x \leq \sup I$. Thus $\frac{\inf I}{x^2} \leq \alpha \leq \frac{\sup I}{x^2}$. Since α is arbitrary, Γ is bounded.

Now, we are ready to characterize subsets Γ of \mathbb{R} which I is a Γ -subsemigroup of \mathbb{R} for any real interval I. We consider first where I is a singleton set.

Remark 2.2.4. Let Γ be a nonempty subset of \mathbb{R} and $x \in \mathbb{R} \setminus \{0\}$. Then

- (i) $\{0\}$ is a Γ -subsemigroup of \mathbb{R} ,
- (ii) $\{x\}$ is a Γ -subsemigroup of $\mathbb R$ if and only if $\Gamma = \{\frac{1}{x}\}$.

Now, we study where I is a bounded interval. Remark 2.2.2 suggests us to consider in many cases depending on the existence of 0 in I.

Theorem 2.2.5. Let $b \in \mathbb{R}$ with b > 0 and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent:

- (i) [0,b] is a Γ -subsemigroup of \mathbb{R} .
- (ii) [0,b) is a Γ -subsemigroup of \mathbb{R} .
- (iii) $0 \le \inf \Gamma \le \sup \Gamma \le \frac{1}{b}$.

Proof. First, assume that [0,b) is a Γ -subsemigroup of \mathbb{R} . If there exists $k \in \Gamma$ and k < 0, then $(\frac{b}{2})k(\frac{b}{2}) = (\frac{b}{2})^2k < 0$ so $(\frac{b}{2})k(\frac{b}{2}) \notin [0,b)$ which is a contradiction. Thus inf $\Gamma \geq 0$.

Suppose that $\sup \Gamma > \frac{1}{b}$. Let $k \in (\frac{1}{b}, \sup \Gamma] \cap \Gamma$, thus $b > \frac{1}{k}$, so $b^2 > \frac{b}{k}$ and it implies that $b > \sqrt{\frac{b}{k}}$. Let $x \in (\sqrt{\frac{b}{k}}, b) \subseteq [0, b)$. Then $b < x^2k$. Hence $xkx = x^2k \notin [0, b)$ which is a contradiction. Therefore $0 \le \inf \Gamma \le \sup \Gamma \le \frac{1}{b}$.

Conversely, assume that $0 \le \inf \Gamma \le \sup_{b} \Gamma \le \frac{1}{b}$. Let $k \in \Gamma$ and $m, n \in [0, b)$. Then $0 \le k \le \frac{1}{b}$ and $0 \le mn < b^2$. Thus $0 \le mkn = mnk < b^2k \le b$, so $mkn \in [0, b)$. The proof of (ii) if and only if (iii) is complete.

The proof of (i) if and only if (iii) is obtained similarly. \Box

Immediately, from Theorem 2.2.5 and Proposition 2.2.1, we have

Corollary 2.2.6. Let $a \in \mathbb{R}$ with a < 0 and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent:

- (i) [a,0] is a Γ -subsemigroup of \mathbb{R} .
- (ii) (a,0] is a Γ -subsemigroup of \mathbb{R} .
- (iii) $\frac{1}{a} \leq \inf \Gamma \leq \sup \Gamma \leq 0$.

Proposition 2.2.7. Let $a \in \mathbb{R}$ with a < 0 and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent:

- (i) [a,0) is a Γ -subsemigroup of \mathbb{R} .
- (ii) (a,0) is a Γ -subsemigroup of \mathbb{R} .
- (iii) $\frac{1}{a} \leq \inf \Gamma \leq \sup \Gamma \leq 0$ and $0 \notin \Gamma$.

Proof. Without loss of generality, we prove (ii) if and only if (iii). First, assume that (a,0) is a Γ -subsemigroup of \mathbb{R} . Then $0 \notin \Gamma$ by Remark 2.2.2. If there exists $k \in \Gamma$ and k > 0, then $(\frac{a}{2})k(\frac{a}{2}) = (\frac{a}{2})^2k > 0$ so $(\frac{a}{2})k(\frac{a}{2}) \notin (a,0)$ which is a contradiction. Thus $\sup \Gamma \leq 0$. Next, suppose that $\inf \Gamma < \frac{1}{a}$, let $k \in [\inf \Gamma, \frac{1}{a}) \cap \Gamma$. Then $a < \frac{1}{k}$, so $a^2 > \frac{a}{k}$ which implies that $a < -\sqrt{\frac{a}{k}}$. Let $x \in (a, -\sqrt{\frac{a}{k}}) \subseteq (a,0)$. Thus $x^2k < a$. Hence $xkx = x^2k \notin (a,0)$ which is a contradiction. Therefore, $\frac{1}{a} \leq \inf \Gamma \leq \sup \Gamma \leq 0$ and $0 \notin \Gamma$.

Conversely, assume that $\frac{1}{a} \leq \inf \Gamma \leq \sup \Gamma \leq 0$ and $0 \notin \Gamma$. Let $k \in \Gamma$ and $m, n \in (a, 0)$. Then $\frac{1}{a} \leq k < 0$ and $0 < mn < a^2$. Thus $a \leq a^2k < mnk = mkn < 0$. So $mkn \in (a, 0)$.

This proof is complete.

Corollary 2.2.8 is obtained immediately from Proposition 2.2.7 and Proposition 2.2.1.

Corollary 2.2.8. Let $b \in \mathbb{R}$ with b > 0 and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent:

- (i) (0,b] is a Γ -subsemigroup of \mathbb{R} .
- (ii) (0,b) is a Γ -subsemigroup of \mathbb{R} .
- (iii) $0 \le \inf \Gamma \le \sup \Gamma \le \frac{1}{b}$ and $0 \notin \Gamma$.

The following results are the characterization of subsets Γ of \mathbb{R} as I is a bounded interval such that 0 is not an endpoint of I.

Theorem 2.2.9. Let $a, b \in \mathbb{R}$ with a < 0 < b and Γ be a nonempty subset of \mathbb{R} . Then (a, b), [a, b), (a, b] or [a, b] are Γ -subsemigroups of \mathbb{R} if and only if $\max\{\frac{1}{a}, \frac{a}{b^2}\} \leq \inf \Gamma \leq \sup \Gamma \leq \min\{\frac{1}{b}, \frac{b}{a^2}\}$.

Proof. First, let I=(a,b), [a,b), (a,b] or [a,b] be a Γ -subsemigroup of \mathbb{R} . Since I is bounded and from Proposition 2.2.3, Γ must be bounded. There are two cases. Case 1. inf $\Gamma \geq 0$.

If $\sup \Gamma > \frac{1}{b}$, let $k \in (\frac{1}{b}, \sup \Gamma] \cap \Gamma$, thus $b > \frac{1}{k}$, so $b^2 > \frac{b}{k}$ implies that $b > \sqrt{\frac{b}{k}}$. Let $x \in (\sqrt{\frac{b}{k}}, b) \subseteq (a, b)$. Then $b < x^2k$. Hence $xkx = x^2k \notin I$ which is a contradiction. Hence $\sup \Gamma \le \frac{1}{b}$. Suppose further that $\sup \Gamma > \frac{b}{a^2}$, let $k \in (\frac{b}{a^2}, \sup \Gamma] \cap \Gamma$, thus $a^2 > \frac{b}{k}$ implies that $a < -\sqrt{\frac{b}{k}}$. Let $x \in (a, -\sqrt{\frac{b}{k}}) \subseteq (a, b)$. Then $b < x^2k$. Hence $xkx = x^2k \notin I$, again, a contradiction occurs. Hence $\sup \Gamma \le \frac{b}{a^2}$. This shows that $\max\{\frac{1}{a}, \frac{a}{b^2}\} < 0 \le \inf \Gamma \le \sup \Gamma \le \min\{\frac{1}{b}, \frac{b}{a^2}\}$.

Case 2. inf $\Gamma < 0$.

There are two subcases depending on $\sup \Gamma$.

Subcase 2.1. $\sup \Gamma \leq 0$.

If $\inf \Gamma < \frac{1}{a}$, let $k \in [\inf \Gamma, \frac{1}{a}) \cap \Gamma$, thus $a^2 > \frac{a}{k}$ implies that $a < -\sqrt{\frac{a}{k}}$. Let $x \in (a, -\sqrt{\frac{a}{k}}) \subseteq (a, b)$. Then $xkx = x^2k < a$ so $xkx \notin I$ which is a contradiction. Hence $\inf \Gamma \geq \frac{1}{a}$. Suppose that $\inf \Gamma < \frac{a}{b^2}$, let $k \in [\inf \Gamma, \frac{a}{b^2}) \cap \Gamma$, thus $b^2 > \frac{a}{k}$ implies that $\sqrt{\frac{a}{k}} < b$. Let $x \in (\sqrt{\frac{a}{k}}, b) \subseteq (a, b)$. Then $xkx = x^2k < a$ so $xkx \notin I$ which is a contradiction. Hence $\inf \Gamma \geq \frac{a}{b^2}$. Therefore $\max\{\frac{1}{a}, \frac{a}{b^2}\} \leq \inf \Gamma \leq \sup \Gamma \leq 0 < \min\{\frac{1}{b}, \frac{b}{a^2}\}$.

Subcase 2.2. $\sup \Gamma > 0$.

The same proof of Case 1 shows that $\sup \Gamma \leq \min\{\frac{1}{b}, \frac{b}{a^2}\}$. Moreover, $\max\{\frac{1}{a}, \frac{a}{b^2}\} \leq \inf \Gamma$ from the proof of Subcase 2.1. Then the result follows.

Conversely, assume that $\max\{\frac{1}{a},\frac{a}{b^2}\} \leq \inf \Gamma \leq \sup \Gamma \leq \min\{\frac{1}{b},\frac{b}{a^2}\}$ and let $k \in \Gamma$. Suppose that I = [a,b]. Note that the proofs for the other choices of I are obtained similarly. Firstly, assume that $k \geq 0$. Let $m, n \in [a,b]$. We will show that $mkn \in [a,b]$. Without loss of generality, there are three possibilities.

Case 1. m, n < 0.

Then a < mkn and $mn \le a^2$. Thus $mkn \le a^2k$ so that $mkn \le a^2k \le b$ since $k \le \frac{b}{a^2}$.

Case 2. m, n > 0.

Then a < mkn and $mn \le b^2$. Thus $mkn \le b^2k$ and then $mkn \le b^2k \le b$ because $k \le \frac{1}{b}$.

Case 3. m < 0 and n > 0.

Then mkn < b. Since $a \le m < 0$ and $0 < n \le b$, we have $akb \le mkn$. Since $k \le \frac{1}{b}$, it follows that $a \le akb$.

From all cases we can conclude that $mkn \in [a, b]$.

Secondly, assume that k < 0 and $m, n \in [a, b]$ (a < 0 < b). We will show that $mkn \in [a, b]$. There are three different choices for m and n.

Case 1. m, n < 0.

Then $mkn \le 0 < b$. Since $mn \le a^2$ and $\frac{1}{a} \le k$, we have $a = \frac{a^2}{a} \le a^2k \le mkn$. Case 2. m, n > 0.

Then $mkn \leq 0 < b$. Since $mn \leq b^2$ and $\frac{a}{b^2} \leq k$, we obtain that $a = \frac{ab^2}{b^2} \leq b^2k \leq mkn$.

Case 3. m < 0 and n > 0.

Then a < mkn. Since $a \le m < 0$ and $0 < n \le b$, $mkn \le akb$. Since $k \ge \frac{1}{a}$, $akb \le b$.

From all cases we can conclude that $mkn \in [a, b]$.

Therefore I is a Γ -subsemigroup of \mathbb{R} .

Theorem 2.2.10. Let $a, b \in \mathbb{R} \setminus \{0\}$ and I = (a, b), [a, b), (a, b) or [a, b] with $0 \notin I$. Then I is not a Γ -subsemigroup of \mathbb{R} for any nonempty subset Γ of \mathbb{R} .

Proof. Since $0 \notin I$ and $a, b \in \mathbb{R} \setminus \{0\}$, we have either 0 < a < b or a < b < 0. First, assume that 0 < a < b. Suppose that there exists a nonempty subset Γ of \mathbb{R} such that I is a Γ -subsemigroup of \mathbb{R} . Since $0 \notin I$ and I is bounded, $0 \notin \Gamma$ and Γ is bounded so that $\inf \Gamma$ and $\sup \Gamma$ exist. If there exists $k \in \Gamma$ with k < 0, then $(\frac{a+b}{2})^2k < 0 < a$, thus $(\frac{a+b}{2})k(\frac{a+b}{2}) = (\frac{a+b}{2})^2k \notin I$ which is a contradiction. Then $\inf \Gamma \geq 0$.

Suppose that $\sup \Gamma > \frac{1}{b}$, let $k \in (\frac{1}{b}, \sup \Gamma] \cap \Gamma$, thus $b > \frac{1}{k}$, so $b^2 > \frac{b}{k}$ implies that $b > \sqrt{\frac{b}{k}}$. Let $x \in (\sqrt{\frac{b}{k}}, b) \cap (a, b)$. Then $b < x^2k$. Hence $xkx = x^2k \notin I$ which is a contradiction. Thus $0 \le \inf \Gamma \le \sup \Gamma \le \frac{1}{b} < \frac{1}{a}$. Since $\inf \Gamma < \frac{1}{a}$, there exists $k \in [\inf \Gamma, \frac{1}{a}) \cap \Gamma$. Thus $a^2 < \frac{a}{k}$ implies that $a < \sqrt{\frac{a}{k}}$. Let $y \in (a, \sqrt{\frac{a}{k}}) \cap (a, b)$. Then $yky = y^2k < a$. So $yky \notin I$. A contradiction occurs.

Consequently, I is not a Γ -subsemigroup of $\mathbb R$ for any nonempty subset Γ of $\mathbb R$ and 0 < a < b.

Finally, assume a < b < 0. Suppose that there exists a nonempty subset Γ of \mathbb{R} such that I is a Γ -subsemigroup of \mathbb{R} . By Proposition 2.2.1, -I is a $(-\Gamma)$ -subsemigroup of \mathbb{R} which contradicts the first case of the proof.

This proof is complete.

The following results are the characterization of subsets Γ of $\mathbb R$ as I is an unbounded interval.

Theorem 2.2.11. For any nonempty subset Γ of \mathbb{R} ,

 $(-\infty,0]$ is a Γ -subsemigroup of \mathbb{R} if and only if $\sup \Gamma \leq 0$.

Proof. First, assume that $(-\infty, 0]$ is a Γ -subsemigroup of \mathbb{R} . If there exists $k \in \Gamma$ with k > 0, then $(-1)k(-1) = k \notin (-\infty, 0]$ which leads to a contradiction. Hence

sup $\Gamma \leq 0$.

Conversely, it is clear that $(-\infty,0]$ is a Γ -subsemigroup of $\mathbb R$ provided sup $\Gamma \leq 0$.

The following corollary results from Theorem 2.2.11 and Proposition 2.2.1.

Corollary 2.2.12. For any nonempty subset Γ of \mathbb{R} ,

 $[0,\infty)$ is a Γ -subsemigroup of \mathbb{R} if and only if $\inf \Gamma \geq 0$.

Proposition 2.2.13. For any nonempty subset Γ of \mathbb{R} ,

 $(-\infty,0)$ is a Γ -subsemigroup of \mathbb{R} if and only if $\sup \Gamma \leq 0$ and $0 \notin \Gamma$.

Proof. First, assume that $(-\infty, 0)$ is a Γ -subsemigroup of \mathbb{R} . From the argument in the proof of Theorem 2.2.11, we have $\sup \Gamma \leq 0$. By Remark 2.2.2, $0 \notin \Gamma$ since $0 \notin (-\infty, 0)$.

Conversely, it is clear that $(-\infty,0)$ is a Γ -subsemigroup of $\mathbb R$ provided sup $\Gamma \leq 0$ and $0 \notin \Gamma$.

Applying Proposition 2.2.1 and Proposition 2.2.13, we obtain the following corollary.

Corollary 2.2.14. For any nonempty subset Γ of \mathbb{R} ,

 $(0,\infty)$ is a Γ -subsemigroup of $\mathbb R$ if and only if $\inf \Gamma \geq 0$ and $0 \notin \Gamma$.

The next results are the characterization of subsets Γ of $\mathbb R$ as I is an unbounded real interval which does not contain 0.

Theorem 2.2.15. Let $b \in \mathbb{R}$ with b < 0 and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent:

- (i) $(-\infty, b)$ is a Γ -subsemigroup of \mathbb{R} .
- (ii) $(-\infty, b]$ is a Γ -subsemigroup of \mathbb{R} .
- (iii) $\sup \Gamma \leq \frac{1}{b}$.

Proof. Let I be $(-\infty,b)$ or $(-\infty,b]$. First, assume that I is a Γ -subsemigroup of \mathbb{R} . Note that $0 \notin \Gamma$ because $0 \notin I$. If there exists $k \in \Gamma$ with k > 0, then $(b-1)^2k > 0$ so that $(b-1)k(b-1) = (b-1)^2k \notin I$ which is impossible. Hence k < 0 for all $k \in \Gamma$. Suppose that there exists $k \in \Gamma$ with $k > \frac{1}{b}$. Then $b^2k > b$, so $b^2 < \frac{b}{k}$. Now $b > -\sqrt{\frac{b}{k}}$. Let $x \in (-\sqrt{\frac{b}{k}}, b) \subseteq I$, thus $x^2k > b$. Hence $xkx = x^2k \notin I$. A contradiction occurs. Therefore for all $k \in \Gamma$, $k \leq \frac{1}{b}$, i.e., $\sup \Gamma \leq \frac{1}{b}$.

Conversely, it is clear that I is a Γ -subsemigroup of \mathbb{R} where sup $\Gamma \leq \frac{1}{b}$.

Immediately from Theorem 2.2.15 and Proposition 2.2.1, we have the following.

Corollary 2.2.16. Let $a \in \mathbb{R}$ with a > 0 and Γ be a nonempty subset of \mathbb{R} . Then the followings are equivalent:

- (i) (a, ∞) is a Γ -subsemigroup of \mathbb{R} .
- (ii) $[a, \infty)$ is a Γ -subsemigroup of \mathbb{R} .
- (iii) inf $\Gamma \geq \frac{1}{a}$.

The following results are the characterization of subsets Γ of \mathbb{R} as I is an unbounded real interval containing 0.

Theorem 2.2.17. Let $a \in \mathbb{R} \setminus \{0\}$ and I be $(-\infty, a)$, $(-\infty, a]$, (a, ∞) or $[a, \infty)$ with $0 \in I$. Then for any nonempty subset Γ of \mathbb{R} ,

I is a Γ -subsemigroup of \mathbb{R} if and only if $\Gamma = \{0\}$.

Proof. First, assume that $I=(-\infty,a)$. Then a>0. We prove by contrapositive. Let Γ be a nonempty subset of $\mathbb R$ such that $\Gamma\neq\{0\}$. Then there exists $k\in\Gamma\setminus\{0\}$. Case 1. k>0.

Since
$$-\frac{1}{k}$$
, $-2a \in I$, it follows that $(-\frac{1}{k})(k)(-2a) = 2a \notin (-\infty, a)$.

Case 2. k < 0.

Since $\frac{4}{k}$, $\frac{a}{2} \in I$, it follows that $(\frac{a}{2})k(\frac{4}{k}) = 2a \notin (-\infty, a)$.

We can conclude from all cases that $(-\infty, a)$ is not a Γ -subsemigroup of \mathbb{R} . The converse is obvious.

Similarly, $(-\infty, a]$ is a Γ -subsemigroup of $\mathbb R$ if and only if $\Gamma = \{0\}$. Besides, let $I=(a,\infty)$ or $[a,\infty)$. Then a<0 because $0\in I$ and $a\neq 0$. Applying Proposition 2.2.1, we obtain that (a,∞) or $[a,\infty)$ are Γ -subsemigroups of $\mathbb R$ if and only if $\Gamma = \{0\}$.

From now on, for each real interval Γ we characterize all types of real intervals I such that I is a Γ -subsemigroup of \mathbb{R} . We consider the case that Γ is a singleton set.

Remark 2.2.18. Let I be a nonempty subset of \mathbb{R} .

I is a $\{0\}$ -subsemigroup of \mathbb{R} if and only if $0 \in I$.

Theorem 2.2.19. Let a > 0. Then a real interval I is a $\{a\}$ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i) \mathbb{R} ,

- (ii) $\{0\}$,
- (iii) $\{\frac{1}{a}\},$

(iv) $(0,\infty)$,

- (v) $[0,\infty)$,
- (vi) (x, ∞) where $x \ge \frac{1}{a}$ (vii) $[x, \infty)$ where $x \ge \frac{1}{a}$,
- (viii) [x, y] where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$,
- (ix) [x, y) where $-\frac{1}{a} \le x \le 0 \le x^2 a < y \le \frac{1}{a}$,

(x)
$$(x,y)$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$,

(xi)
$$(x,y)$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$.

Proof. First, let a real interval I be a $\{a\}$ -subsemigroup.

Case 1. I is not bounded above and below. Then $I = \mathbb{R}$.

Case 2. $I = [x, \infty)$ or (x, ∞) for some $x \in \mathbb{R}$.

If x < 0, then $2x = (\frac{4}{a})(a)(\frac{x}{2}) \in I$ which is a contradiction. Thus $x \ge 0$. Suppose that $0 < x < \frac{1}{a}$. Then $x^2 < \frac{x}{a}$ so $x < \sqrt{\frac{x}{a}}$. Let $k \in (x, \sqrt{\frac{x}{a}}) \subseteq I$ so that

 $k^2a < x$. Thus $kak = k^2a \notin I$ which is a contradiction. Hence x = 0 or $x \ge \frac{1}{a}$.

Case 3. $I = (-\infty, x]$ or $(-\infty, x)$ for some $x \in \mathbb{R}$.

If x > 0, then $2x = (-1)(a)(-\frac{2x}{a}) \in I$ which is a contradiction. Thus $x \le 0$. Note that $a(x-1)^2 > 0$. Then $(x-1)a(x-1) = a(x-1)^2 \notin I$ which is a contradiction. Hence this case is impossible.

Case 4. I = [x, y], [x, y), (x, y] or (x, y) for some $x, y \in \mathbb{R}$.

If $I = \{x\}$, then xax = x implies that x = 0 or $x = \frac{1}{a}$.

Now, assume that x < y. If $y \le 0$, then $a(\frac{x+y}{2})^2 > 0$ so that $(\frac{x+y}{2})a(\frac{x+y}{2}) = a(\frac{x+y}{2})^2 \notin I$ which leads to a contradiction. Thus y > 0. Suppose that $y > \frac{1}{a}$. Then $y^2 > \frac{y}{a}$, so $y > \sqrt{\frac{y}{a}}$. Let $k \in (x,y) \cap (\sqrt{\frac{y}{a}},y)$. Thus $y < k^2a$ and then $kak = k^2a \notin I$ which is a contradiction. Hence $0 < y \le \frac{1}{a}$.

Next, suppose that x>0. Then $0< x< y\leq \frac{1}{a}$, so $x^2<\frac{x}{a}$. Thus $x<\sqrt{\frac{x}{a}}$. Then there exists $k\in (x,y)\cap (x,\sqrt{\frac{x}{a}})$ and $k^2a< x$. As a result, $kak=k^2a\notin I$ which is a contradiction. Thus $x\leq 0$. Suppose further that $x<-\frac{1}{a}$. Then let $k\in (x,-\frac{1}{a})\subseteq (x,y)$. Thus $k^2>\frac{1}{a^2}$ and $k^2a>\frac{1}{a}\geq y$. Hence $kak=k^2a\notin I$, again, a contradiction occurs. Thus $-\frac{1}{a}\leq x\leq 0$.

Finally, suppose that $x^2a>y$. Then $x^2>\frac{y}{a}$ and $x<-\sqrt{\frac{y}{a}}$. Let $k\in(x,-\sqrt{\frac{y}{a}})\subseteq(x,y)$. Therefore $k^2a>y$. This leads to a contradiction because $kak=k^2a\notin I$.

From the above argument, we can see that k was chosen with $k \in (x, y)$. Consequently, if I = [x, y], [x, y), (x, y] or (x, y) (where x < y), then $-\frac{1}{a} \le x \le 0$

 $x^2a \leq y \leq \frac{1}{a}$. Moreover, if I=[x,y), then the inequality $x^2a \leq y$ is, in fact, $x^2a < y$ since $xax \in I$.

Conversely, it is clear that (i)-(v) are $\{a\}$ -subsemigroups of \mathbb{R} . Next, we show that (vii) is a $\{a\}$ -subsemigroup of \mathbb{R} .

If $x \ge \frac{1}{a}$, then x > 0 and $[x, \infty)\{a\}[x, \infty) \subseteq [x^2a, \infty) \subseteq [x, \infty)$.

If $-\frac{1}{a} \le x \le 0 < x^2 a \le y \le \frac{1}{a}$, then $xa \le 0 < ya \le 1$ so $x \le xya < y$ and then

$$[x,y]\{a\}[x,y] = [x,y][x,y]\{a\}$$

$$\subseteq [xy,k]\{a\} \text{ where } k = \max\{x^2,y^2\}$$

$$\subseteq [xya,ka]$$

$$\subseteq [x,y].$$

The other cases can be shown similarly to the above argument.

Corollary 2.2.20. Let I be a nonempty subset of \mathbb{R} . Then a real interval I is a $\{1\}$ -subsemigroup of \mathbb{R} if and only if I is a subsemigroup of \mathbb{R} .

Proof. This follows from
$$I\{1\}I = II$$
.

The following corollary is the immediate result from Theorem 2.2.19 and Proposition 2.2.1.

Corollary 2.2.21. Let a < 0. Then a real interval I is a $\{a\}$ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
,

(ii)
$$\{0\}$$
,

(iii)
$$\{\frac{1}{a}\}$$
,

(iv)
$$(-\infty,0)$$
,

(v)
$$(-\infty,0]$$
,

(vi)
$$(-\infty, x)$$
 where $x \leq \frac{1}{a}$

(vi)
$$(-\infty, x)$$
 where $x \le \frac{1}{a}$ (vii) $(-\infty, x]$ where $x \le \frac{1}{a}$,

(viii)
$$[x,y]$$
 where $\frac{1}{a} \le x \le y^2 a \le 0 \le y \le -\frac{1}{a}$,

(ix)
$$[x,y)$$
 where $\frac{1}{a} \le x \le y^2 a \le 0 \le y \le -\frac{1}{a}$,

(x)
$$(x, y]$$
 where $\frac{1}{a} \le x < y^2 a \le 0 \le y \le -\frac{1}{a}$,

(xi)
$$(x,y)$$
 where $\frac{1}{a} \le x \le y^2 a \le 0 \le y \le -\frac{1}{a}$.

Next, we find all nonempty subsets I of \mathbb{R} which are Γ -subsemigroups of \mathbb{R} as Γ is an interval which is not bounded above.

Theorem 2.2.22. Let $\Gamma = [a, \infty)$ and a > 0. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
, (ii) $\{0\}$,

(iii)
$$[0,\infty)$$
, (iv) $(0,\infty)$,

(v)
$$[x, \infty)$$
 where $x \ge \frac{1}{a}$, (vi) (x, ∞) where $x \ge \frac{1}{a}$.

Proof. First, assume that a real interval I is a Γ -subsemigroup of \mathbb{R} . Then

$$I\{a\}I \subseteq I[a,\infty)I \subseteq I$$
.

Thus I is a $\{a\}$ -subsemigroup of \mathbb{R} . By Theorem 2.2.19, I is one of the following

forms: (i)
$$\mathbb{R}$$
,

(ii)
$$\{0\}$$
,

(iii)
$$\left\{\frac{1}{a}\right\}$$
,

(iv)
$$(0,\infty)$$
,

$$(v) \quad [0,\infty),$$

(vi)
$$[x, \infty)$$
 where $x \ge \frac{1}{a}$ (vii) (x, ∞) where $x \ge \frac{1}{a}$,

(viii)
$$[x,y]$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$,

(ix)
$$[x, y)$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a < y \le \frac{1}{a}$,

(x)
$$(x, y]$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$,

(xi)
$$(x,y)$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$.

If $I = \{\frac{1}{a}\}$, then $\frac{1}{a} + \frac{1}{a^2} = \frac{1}{a^2}(a+1) = \frac{1}{a}(a+1)\frac{1}{a} = \frac{1}{a}$ which is a contradiction. Thus (iii) is impossible. Furthermore, I cannot be (ix)–(xi) because Γ is unbounded and by Proposition 2.2.3.

Conversely, it is clear that (i)–(ii) and (iv)–(v) are Γ –subsemigroups of \mathbb{R} . Note that if $x \geq \frac{1}{a}$, then $[x, \infty)[a, \infty)[x, \infty) \subseteq [x^2a, \infty) \subseteq [x, \infty)$ and $(x, \infty)[a, \infty)(x, \infty) \subseteq (x^2a, \infty) \subseteq (x, \infty)$. Hence (vi) and (vii) are Γ –subsemigroups of \mathbb{R} .

The following corollary is a result of Theorem 2.2.22 and Proposition 2.2.1.

Corollary 2.2.23. Let $\Gamma = (-\infty, a]$ and a < 0. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i) \mathbb{R} ,

- (ii) $\{0\}$,
- (iii) $(-\infty,0]$,
- (iv) $(-\infty,0)$,
- (v) $(-\infty, x]$ where $x \leq \frac{1}{a}$, (vi) $(-\infty, x)$ where $x \leq \frac{1}{a}$.

Theorem 2.2.24. Let $\Gamma = [0, \infty)$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} ,
- (ii) $\{0\}$,
- (iii) $[0,\infty)$.

Proof. First, let a real interval I be a Γ -subsemigroup of \mathbb{R} . Since $I\{1\}I \subseteq I[0,\infty)I \subseteq I$. This shows that I a is $\{1\}$ -subsemigroup of \mathbb{R} . Note that Γ is unbounded. By Proposition 2.2.3 and $0 \in I$, I is one of the forms \mathbb{R} , $\{0\}$ and $[0,\infty)$.

The converse is obvious.

Immediately from Theorem 2.2.24 and Proposition 2.2.1, we have

Corollary 2.2.25. Let $\Gamma = (-\infty, 0]$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} ,
- (ii) $\{0\}$,
- (iii) $(-\infty,0]$.

Theorem 2.2.26. Let $\Gamma = [a, \infty)$ and a < 0. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if $I = \mathbb{R}$ or $\{0\}$.

Proof. First, let a real interval I be a Γ -subsemigroup of \mathbb{R} . Then

$$I\{a\}I \subseteq I[a,\infty)I \subseteq I$$
 and $I[0,\infty)I \subseteq I[a,\infty)I \subseteq I$.

By Corollary 2.2.21 and Theorem 2.2.24, I must be either \mathbb{R} or $\{0\}$.

The converse is obvious.

As a consequence of Theorem 2.2.26 and Proposition 2.2.1, we have

Corollary 2.2.27. Let $\Gamma = (-\infty, b]$ and b > 0. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if $I = \mathbb{R}$ or $\{0\}$.

Finally, we find all real intervals I of \mathbb{R} which is a Γ -subsemigroup of \mathbb{R} as Γ is a bounded interval.

Theorem 2.2.28. Let $\Gamma = [a, 0]$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
, (ii) $\{0\}$, (iii) $(-\infty, 0]$,

- (iv) [x,y] where $\frac{1}{a} \le x \le y^2 a \le 0 \le y \le -\frac{1}{a}$,
- (v) [x,y) where $\frac{1}{a} \le x \le y^2 a < 0 < y \le -\frac{1}{a}$,
- (vi) (x,y] where $\frac{1}{a} \le x < y^2 a \le 0 \le y \le -\frac{1}{a}$,
- (vii) (x, y) where $\frac{1}{a} \le x \le y^2 a < 0 < y \le -\frac{1}{a}$.

Proof. First, let a real interval I be a Γ -subsemigroup. Since $I\{a\}I \subseteq I[a,0]I \subseteq I$ and $0 \in I$, we obtain that I is a $\{a\}$ -subsemigroup of \mathbb{R} . Applying Corollary 2.2.21, we have I is one of the mentioned forms.

Conversely, it is clear that \mathbb{R} , $\{0\}$ and $(-\infty, 0]$ are Γ -subsemigroups of \mathbb{R} . If $\frac{1}{a} \leq x \leq y^2 a < 0 \leq y \leq -\frac{1}{a}$, then $xa \leq 1$ so $x \leq 0 \leq xya \leq y$ and

$$\begin{split} [x,y][a,0][x,y] &= [x,y][x,y][a,0] \\ &\subseteq [xy,k][a,0] \text{ where } k = \max\{x^2,y^2\} \\ &\subseteq [ka,xya] \\ &\subseteq [x,y]. \end{split}$$

The other cases can be shown similarly to the above argument.

The immediate result from Theorem 2.2.28 and Proposition 2.2.1 is

Corollary 2.2.29. Let $\Gamma = [0, a]$. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
, (ii) $\{0\}$, (iii) $[0,\infty)$,

(iv)
$$[x, y]$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a \le y \le \frac{1}{a}$,

(v)
$$[x, y)$$
 where $-\frac{1}{a} \le x \le 0 \le x^2 a < y \le \frac{1}{a}$,

(vi)
$$(x,y]$$
 where $-\frac{1}{a} \le x < 0 < x^2 a \le y \le \frac{1}{a}$,

(vii)
$$(x,y)$$
 where $-\frac{1}{a} \le x < 0 < x^2 a \le y \le \frac{1}{a}$.

Theorem 2.2.30. Let $\Gamma = [a, b]$ and 0 < a < b. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
, (ii) $\{0\}$, (iii) $[0,\infty)$, (iv) $(0,\infty)$,

(v)
$$[x, \infty)$$
 where $x \ge \frac{1}{a}$,

(vi)
$$(x, \infty)$$
 where $x \ge \frac{1}{a}$,

(vii)
$$[x, y]$$
 where $x \le 0 \le x^2 b \le y \le \frac{1}{b}$,

(viii)
$$[x, y)$$
 where $x \le 0 \le x^2b < y \le \frac{1}{b}$,

(ix)
$$(x, y]$$
 where $x \le 0 \le x^2 b \le y \le \frac{1}{b}$,

$$(x) \qquad (x,y) \quad where \quad x \leq 0 \leq x^2 b \leq y \leq \tfrac{1}{b}.$$

Proof. First, assume that I is a Γ -subsemigroup of \mathbb{R} . Then $I\{a\}I \subseteq I\Gamma I \subseteq I$ and $I\{b\}I \subseteq I\Gamma I \subseteq I$. Thus I is both a $\{a\}$ -subsemigroup of \mathbb{R} and a $\{b\}$ -subsemigroup of \mathbb{R} . By Theorem 2.2.19 and $\frac{1}{a} > \frac{1}{b}$, the interval I must be one of the mentioned forms.

Conversely, it is obvious that (i)–(iv) are Γ -subsemigroups of \mathbb{R} . If $x \geq \frac{1}{a}$, then $[x,\infty)[a,b][x,\infty) \subseteq [xa,\infty)[x,\infty) \subseteq [x^2a,\infty) \subseteq [x,\infty)$, i.e., $[x,\infty)$ is a Γ -subsemigroup of \mathbb{R} . Next, assume that $x \leq 0 \leq x^2b \leq y \leq \frac{1}{b}$. Let $n = \max\{x^2b,y^2b\}$. Then $[x,y][a,b][x,y] \subseteq [xb,yb][x,y] \subseteq [xby,n] \subseteq [x,y]$. Again, this shows that [x,y] is a Γ -subsemigroup of \mathbb{R} .

The other cases can be shown similarly to the above argument.

This proof is complete.

Applying Theorem 2.2.30 and Proposition 2.2.1, we obtain the following result.

Corollary 2.2.31. Let $\Gamma = [a, b]$ and a < b < 0. Then a real interval I of is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} , (ii) $\{0\}$, (iii) $(-\infty, 0]$, (iv) $(-\infty, 0)$,
- (v) $(-\infty, x]$ where $x \leq \frac{1}{b}$,
- (vi) $(-\infty, x)$ where $x \leq \frac{1}{b}$,
- (vii) [x, y] where $\frac{1}{a} \le x \le y^2 a \le 0 \le y$,
- (viii) [x,y) where $\frac{1}{a} \le x \le y^2 a \le 0 \le y$,
- (ix) (x, y] where $\frac{1}{a} \le x < y^2 a \le 0 \le y$,
- (x) (x,y) where $\frac{1}{a} \le x \le y^2 a \le 0 \le y$.

Finally, the remaining type of Γ is [a,b] where a<0< b. We look up all possibilities of intervals I such that I is a Γ -subsemigroup of \mathbb{R} .

Theorem 2.2.32. Let $\Gamma = [a, b]$ and a < 0 < b. Then a real interval I is a Γ -subsemigroup of \mathbb{R} if and only if I is one of the following forms:

- (i) \mathbb{R} , (ii) $\{0\}$,
- (iii) [x,y] where $\max\{\frac{1}{a}, -\frac{1}{b}\} \le x \le y^2 a < 0 < x^2 b \le y \le \min\{\frac{1}{b}, -\frac{1}{a}\},$
- (iv) (x,y] where $\max\{\frac{1}{a}, -\frac{1}{b}\} \le x < y^2 a < 0 < x^2 b \le y \le \min\{\frac{1}{b}, -\frac{1}{a}\},$
- (v) [x,y) where $\max\{\frac{1}{a}, -\frac{1}{b}\} \le x \le y^2 a < 0 < x^2 b < y \le \min\{\frac{1}{b}, -\frac{1}{a}\}$,
- (vi) (x,y) where $\max\{\frac{1}{a}, -\frac{1}{b}\} \le x \le y^2 a < 0 < x^2 b \le y \le \min\{\frac{1}{b}, -\frac{1}{a}\}$.

Proof. First, let a real interval I be a Γ -subsemigroup of \mathbb{R} . Then $I[a,0]I\subseteq I\Gamma I\subseteq I$ and $I[0,b]I\subseteq I\Gamma I\subseteq I$. Thus I is both a [a,0]-subsemigroup of \mathbb{R} and a [0,b]-subsemigroup of \mathbb{R} . Suppose that I=[x,y],(x,y],[x,y) or (x,y) where

x < y. If $x \ge 0$, then $(\frac{x+y}{2})a(\frac{x+y}{2}) = (\frac{x+y}{2})^2a < 0$. So $(\frac{x+y}{2})^2b \notin I$ which is a contradiction. Thus x < 0. Suppose $y \le 0$, then $(\frac{x+y}{2})b(\frac{x+y}{2}) = (\frac{x+y}{2})^2b > 0$. So $(\frac{x+y}{2})^2a \notin I$ which is a contradiction. Hence x < 0 < y. By Theorem 2.2.28, Proposition 2.2.1 and Corollary 2.2.29, we obtain that I is one of the mentioned forms.

Conversely, it is obvious that $\mathbb R$ and $\{0\}$ are Γ -subsemigroups of $\mathbb R$. Assume that I=[x,y] and $\max\{\frac{1}{a},-\frac{1}{b}\} \leq x < y^2a < 0 < x^2b \leq y \leq \min\{\frac{1}{b},-\frac{1}{a}\}$. Then $\frac{1}{a} \leq x \leq y^2a < 0 < x^2b \leq y \leq \frac{1}{b}$. Let $m=\min\{xb,ya\}$ and $n=\max\{xa,yb\}$. Thus

$$[x,y][a,b][x,y] \subseteq [m,n][x,y] \subseteq [c,d],$$

where $c = \min\{my, nx\}$ and $d = \max\{mx, ny\}$. Claim that $x \le c$ and $d \le y$, i.e., $x \le xby$, $x \le y^2a$, $x \le x^2a$, $x^2b \le y$, $yax \le y$ and $y^2b \le y$. Since $yb \le 1$ and $xa \le 1$, we see that $x \le xby$, $y^2b \le y$, $yax \le y$ and $x \le x^2a$. Thus [x, y], where $\max\{\frac{1}{a}, -\frac{1}{b}\} \le x \le y^2a < 0 < x^2b \le y \le \min\{\frac{1}{b}, -\frac{1}{a}\}$, is a Γ -subsemigroup of \mathbb{R} .

The other cases can be shown similarly to the above argument.