ผลของกระบวนการตกตะกอนต่อสมบัติทางกลของโลหะผสมเงินสปริง 935

CHULALONGKORN UNIVERSITY บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโลหการและวัสดุ ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย Effects of precipitation process on mechanical properties of Spring Silver Alloy 935

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Metallurgical and Materials Engineering Department of Metallurgical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	ผลของกระบวนการตกตะกอนต่อสมบัติทางกลของ
	โลหะผสมเงินสปริง 935
โดย	นางสาวนวรัตน์ ไชยฤกษ์
สาขาวิชา	วิศวกรรมโลหการและวัสดุ
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร. เอกสิทธิ์ นิสารัตนพร

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

_____คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร. สุพจน์ เตชวรสินสกุล)

คณะกรรมการสอบวิทยานิพนธ์ 🕖

_____ประธานกรรมการ

(รองศาสตราจารย์ ดร. กอบบุญ หล่อทองคำ)

_____อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร. เอกสิทธิ์ นิสารัตนพร)

____กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร. บุญรัตน์ โล่ห์วงศ์วัฒน)

____กรรมการภายนอกมหาวิทยาลัย

(รองศาสตราจารย์ ดร. ธรณินทร์ ไชยเรื่องศรี)

นวรัตน์ ไชยฤกษ์ : ผลของกระบวนการตกตะกอนต่อสมบัติทางกลของโลหะผสมเงิน สปริง 935 (Effects of precipitation process on mechanical properties of Spring Silver Alloy 935) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร. เอกสิทธิ์ นิสารัตนพร, 288 หน้า.

งานวิจัยนี้ศึกษาผลของธาตุผสมและกระบวนการตกตะกอนต่อสมบัติทางกลและความ ้ต้านทานการหมองของโลหะเงินสปริง 935 โดยไม่มีการอบเนื้อเดียว ส่วนผสมทางเคมีของชิ้นงาน ที่ใช้ในการทดลอง ประกอบด้วยธาตุเงิน 93.5% ทองแดง 5.4-6.5% เบริลเลียม 0.3% ดีบุก 0.2-0.5% และอะลูมิเนียม 0.3% โดยน้ำหนัก พบว่า อะลูมิเนียมปรับปรุงความต้านทานการหมอง ้สมบัติความเป็นสปริง และความแข็ง โดยสมบัติทางกลอื่น ๆ ยังเหมาะสม ในขณะที่การเติมดีบุก ้นั้นส่งผลต่อสมบัติทางกลไม่มาก แต่ช่วยเพิ่มสมบัติด้านทานการหมอง การเติมธาตุดีบกร่วมกับ ธาตุเบริลเลียม ทำให้เฟลเบตา (β-phase) มีขนาดใหญ่ขึ้น และมีลักษณะเกือบกลมมน ส่วนการ เติมธาตุอะลูมิเนียมโครงสร้างจุลภาคที่ได้ มีลักษณะคล้าย ๆ เดิม การเติมธาตุผสมส่งผลให้เกรน ขนาดเล็กลง 3-6 เท่า มีขนาดประมาณ 0.5-2.0 มิลลิเมตร เมื่อเปรียบเทียบชิ้นงานระหว่างสภาพ หลังหล่อกับหลังการอบบ่มของโลหะผสม AgCu0.3AI พบว่า อุณหภูมิและเวลาในการอบบ่มที่ เหมาะสม คือ อุณหภูมิบ่ม 350 องศาเซลเซียส ใช้เวลาการอบบ่มในช่วง 15-30 นาที ได้ค่าความ เป็นสปริงที่สูง ประมาณ 2.6-3.6 MPa และค่าความเค้น ณ จุดคราก 232-310 MPa เหมาะสำหรับ การผลิตเป็นชิ้นส่วนเงินสปริง มีสมบัติทางกลอื่น ๆ เหมาะสม สีผิวของชิ้นงานมีความสวยงาม ตรง ความต้องการของอุตสาหกรรมการผลิตเครื่องประดับ ในทางตรงกันข้าม โลหะผสม AgCu ซึ่ง ถึงแม้ว่าจะให้ค่าความเป็นสปริงสูงที่สุดทั้งในสภาวะหลังหล่อ และหลังการอบบ่ม แต่มีปัญหาการ แตกเปราะหลังหล่อ และการเกิดฝ้าฝังลึก

ภาควิชา	วิศวกรรมโลหการ	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมโลหการและวัสดุ	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2558	

5570260121 : MAJOR METALLURGICAL AND MATERIALS ENGINEERING KEYWORDS: SILVER STERLING 935 / SPRING PROPERTY / TARNISH RESISTANCE / PRECIPITATION HARDENING / AGING CONDITION

NAVARAT CHAIRERK: Effects of precipitation process on mechanical properties of Spring Silver Alloy 935. ADVISOR: ASST. PROF. EKASIT NISARATANAPORN, Ph.D., 288 pp.

Effects of alloying elements and precipitation process without solution treatment on mechanical and anti-tarnish properties of Spring Silver Alloy 935 were studied. The chemical composition of tested specimens composed of 93.5% wt Ag, 5.4-6.5% wt Cu, 0.3% wt Be, 0.2-0.5% wt Sn and 0.3% wt Al. It was found that aluminium improved anti-tarnish resistance, spring properties and hardness with proper mechanical properties, whereas the addition of tin had no significant effect on improvement of mechanical properties but increase anti-tarnish properties. By adding tin and beryllium, size of β -phase was increased and formed in nearly around shape. However, aluminium had no significant effect on changing the microstructure. The addition of alloying elements improved grains size, resulted in a smaller 3-6 times was about 0.5-2.0 mm. In comparison between as-cast and aging condition of the AgCu0.3AI alloy, it was found that the suitable aging condition was 350°C for 15-30 minutes. The modulus of resilience and yield stress were about 2.6-3.6 MPa and 232-310 MPa with proper mechanical properties and beautiful surface appearance meeting the requirements of jewellry production industry. On the other hand, although the AgCu alloy possesses the highest modulus of resilience in both as-cast and aged conditions, the remained problems are as-cast cracking and deep oxide strains on its surface.

Department:	Metallurgical Engineering	Student's Signature	
Field of Study:	Metallurgical and	Advisor's Signature	
	Materials Engineering		

Academic Year: 2015

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงไปได้ด้วยดี จากความช่วยเหลือ และให้คำปรึกษา จากผู้ช่วยศาสตราจารย์ ดร. เอกสิทธิ์ นิสารัตนพร อาจารย์ที่ปรึกษาวิทยานิพนธ์ ขอขอบพระคุณ รองศาสตราจารย์ ดร.ธรณินทร์ ไชยเรืองศรี ที่ให้ความกรุณาเป็น คณะกรรมการสอบภายนอก อีกทั้งยังให้คำแนะนำ ขณะทำทำการตีพิมพ์ผลงานวิจัยอีกด้วย และขอบพระคุณอาจารย์ศิริรัตน์ นิสารัตนพร ที่ให้ข้อคิดเห็นต่าง ๆ คำปรึกษาที่ดี และกำลังใจ ทั้งเรื่องเรียนตลอดจนการดำเนินการทดลองขณะทำการวิทยานิพนธ์

ขอขอบคุณ บริษัท โอลด์มูน จำกัด ที่ให้ความอนุเคราะห์ในการใช้สถานที่ สนับสนุน เครื่องมือและอุปกรณ์ต่าง ๆ ในการหล่อหลอมชิ้นงานทดสอบโลหะเงินสเตอร์ลิง, คณะทันต แพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เจ้าหน้าที่ศูนย์วิจัยทันตวัสดุศาสตร์ ที่เอื้อเฟื้อการใช้ เครื่องทดสอบแรงดึงและเครื่องวัดเทียบสี อีกทั้งศูนย์วิจัยชีววิทยาช่องปาก โดยเฉพาะอย่างยิ่ง คุณลาวัลย์ บุญประคอง ที่คอยช่วยเหลือ ให้คำแนะนำเกี่ยวกับการถ่ายภาพด้วยกล้อง จุลทรรศน์แบบส่องกราด (SEM) การใช้เทคนิค Energy Dispersive X-ray Spectroscopy (EDX) และคุณสุจิน ชุมประเสริฐ ช่วยในการตรวจสอบปริมาณธาตุโดยใช้เครื่องมือ Inductively Couple Plasma Spectroscopy (ICP-OES) ในหลาย ๆ ครั้ง และสถาบันวิจัย โลหะและวัสดุ จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความอนุเคราะห์ใช้เครื่องทดสอบความแข็ง

ขอขอบพระคุณอาจารย์ เจ้าหน้าที่ ณ ภาควิชาวิศวกรรมโลหการทุกท่านที่ให้ความรู้ และอำนวยความสะดวกในการดำเนินงานวิจัย ตลอดจนจุฬาลงกรณ์มหาวิทยาลัย และ ขอขอบพระคุณ คุณสีริวรรณ สกุลตันเจริญชัย เป็นอย่างยิ่งที่ให้คำปรึกษาและคอยสอนในทุกๆ เรื่อง ช่วยแสดงความคิดเห็น ชี้แนะให้ความรู้ต่าง ๆ ที่ดีและมีประโยชน์เสมอมา รวมไปถึง ขอขอบคุณเพื่อน ๆ พี่ ๆ น้อง ๆ มหาบัณฑิตทุกท่าน ที่ให้ความช่วยเหลือให้งานวิจัยครั้งนี้ สามารถสำเร็จลุล่วงได้ดี

สุดท้ายนี้ขอขอบพระคุณบิดา มารดา และครอบครัวที่ให้การสนับสนุนเป็นกำลังใจ ให้เสมออย่างดียิ่ง ประโยชน์หรือความดีอันใด เนื่องจากวิทยานิพนธ์เล่มนี้ ขอมอบแด่บิดา มารดา และบุพพการีทุกท่านที่ได้อบรม สั่งสอนเลี้ยงดู และส่งแรงใจให้ผู้วิจัยตลอดมา

สารบัญ

หน้า	ſ
บทคัดย่อภาษาไทยง	
บทคัดย่อภาษาอังกฤษจ	
กิตติกรรมประกาศฉ	
สารบัญช	
สารบัญรูปภาพญ	
สารบัญตารางบ	
บทที่ 11	
บทนำ1	
1.1 ความเป็นมาและความสำคัญของงานวิจัย1	
1.2 วัตถุประสงค์ของงานวิจัย	
1.3 ขอบเขตการวิจัย	
1.4 ประโยชน์ที่คาดว่าจะได้รับ	
บทที่ 25	
ปริทรรศน์วรรณกรรมCHULALONGKORN UNIVERSITY	
2.1 ข้อมูลทั่วไปของโลหะเงิน5	
2.2 โลหะเงินสเตอร์ลิง7	
2.3 สมบัติทางกายภาพและทางกลของบรอนซ์เบริลเลียม9	
2.4 สมบัติทางกายภาพของเงิน ทองแดง เบริลเลียม ดีบุกและอะลูมิเนียม	
2.5 สมบัติทางกลของวัสดุ13	
2.6 ระบบสมดุลเฟสของเงิน-ทองแดง-เบริลเลียม-ดีบุก	
2.7 กลไกเพิ่มความแข็งแรง และสมบัติทางกลของเงินสเตอร์ลิง	
2.8 สมบัติกันหมองและสีของโลหะเงินสเตอร์ลิง	

	r	
ห	น	ſ

ป

2.9 ธาตุผสมที่มีผลต่อเงินสเตอร์ลิง45
2.10 งานวิจัยที่เกี่ยวข้อง
บทที่ 358
ระเบียบวิธีการวิจัย
3.1 เครื่องมือและอุปกรณ์ที่ใช้ในการวิจัย58
3.2 วัตถุดิบ
3.3 สารเคมี
3.4 ขั้นตอนการดำเนินงานวิจัย
3.5 ระเบียบและวิธีการตรวจสอบวิเคราะห์ผล63
บทที่ 4
รายงานผลการทดลองและอภิปรายผลการทดลอง67
4.1 ลักษณะและชิ้นงานตัวอย่างหลังการหล่อเงินสเตอร์ลิง
4.2 ส่วนผสมทางเคมี
4.3 โครงสร้างจุลภาค
4.4 การหาธาตุและสารประกอบต่างๆ ด้วยเทคนิคเอกซ์เรย์ดิฟแฟรกชัน
4.5 ผลของสมบัติต้านทานการหมองและการเปลี่ยนสีหลังการทดสอบ
4.6 สมบัติทางกล125
บทที่ 5145
สรุปผลการทดลองและข้อเสนอแนะ145
5.1 สรุปผลการทดลอง145
5.2 ปัญหาและข้อเสนอแนะ146
รายการอ้างอิง147

	r	
ห	น	ſ

ผ

ภาคผนวก ก
ลักษณะต้นโลหะเงินสเตอร์ลิงและสีของชิ้นงานสภาพหลังหล่อ153
ภาคผนวก ข
ข้อมูล ICP-OES จากศูนย์วิจัยชีววิทยาช่องปาก คณะทันตแพทยศาสตร์ จุฬาลงกรณ์
มหาวิทยาลัย
ภาคผนวก ค
โครงสร้างจุลภาค
ภาคผนวก ง
การทดสอบสมบัติการต้านทานการหมองแสดงสี่และความหมอง ก่อน – หลังการทดสอบ 250
ภาคผนวก จ
สมบัติทางกล
ประวัติผู้เขียนวิทยานิพนธ์

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญรูปภาพ

ภาพที่ 2.1 แว่โลหะเงิน5
ภาพที่ 2.2 เม็ดโลหะเงิน
ภาพที่ 2.3 โลหะเบริลเลียมเป็นโลหะแข็งสีเทาขาว9
ภาพที่ 2.4 แร่ดีบุก11
ภาพที่ 2.5 (ก) แร่ทองแดง และ (ข) ม้วนแผ่นทองแดงที่ผ่านการแปรรูปแล้ว11
ภาพที่ 2.6 ความสัมพันธ์ระหว่างความแข็งแบบวิกเกอร์กับปริมาณธาตุชนิดต่างๆ ในเงินผสม 12
ภาพที่ 2.7 (ก) อะลูมิเนียมบริสุทธิ์ 99% และ (ข) อะลูมิเนียมที่ผ่านการแปรรูปแล้ว
ภาพที่ 2.8 กราฟความเค้น - ความเครียดของโลหะ
ภาพที่ 2.9 Leaf Spring ภายใต้การรับ Load16
ภาพที่ 2.10 ลักษณะการกดทดสอบความแข็งแบบบริลเนลล์
ภาพที่ 2.11 ลักษณะการกดทดสอบความแข็งบริลเนลล์ที่ไม่ถูกต้อง
ภาพที่ 2.12 ลักษณะการกดของการวัดความแข็งแบบร็อคเวลล์
ภาพที่ 2.13 ลักษณะการกดในการทดสอบความแข็งแบบวิกเกอร์ส
ภาพที่ 2.14 แผนภูมิสมดุลเฟสระบบทองแดงเบริลเลียม
ภาพที่ 2.15 แผนภูมิสมดุลเฟสระบบทองแดง-เบริลเลียม ช่วง 1-4%Be
ภาพที่ 2.16 แผนภูมิสมดุลเฟสระบบเงิน – ทองแดง
ภาพที่ 2.17 แผนภูมิสมดุลเฟสระบบเงิน – เบริลเลียม
ภาพที่ 2.18 แผนภูมิสมดุลเฟสระบบเงิน – ดีบุก
ภาพที่ 2.19 แผนภูมิสมดุลเฟสระบบทองแดง – ดีบุก
ภาพที่ 2.20 แผนภูมิสมดุลแสดงเส้นลิควิดัสของระบบเงิน – ทองแดง – ดีบุก
ภาพที่ 2.21 แผนภูมิสมดุลแสดงเส้นลิควิดัสของระบบเงิน – ทองแดง – อะลูมิเนียม

ภาพที่ 2.22 แผนภูมิสมดุลเฟสระบบเบริลเลียม – ดีบุก
ภาพที่ 2.23 แผนภูมิสมดุลเฟสระบบเงิน – อะลูมิเนียม
ภาพที่ 2.24 แผนภูมิสมดุลเฟสระบบอะลูมิเนียม – ทองแดง35
ภาพที่ 2.25 แผนภูมิสมดุลเฟสระบบอะลูมิเนียม – ดีบุก
ภาพที่ 2.26 กลไกและโครงสร้างการเย็นตัวของการตกตะกอนของ อะลูมิเนียม – ทองแดง 38
ภาพที่ 2.27 การเคลื่อนที่ดิสโลเคชันผ่านผลึกมีอนุภาคของตะกอนโดยกลไกแบบ Orawan 39
ภาพที่ 2.28 Coherency ของอนุภาค
ภาพที่ 2.29 ลักษณะการสะท้อนแสงของวัตถุทึบแสง
ภาพที่ 2.30 ลักษณะการทะลุผ่านแสงของวัตถุโปร่งแสงและโปร่งใส
ภาพที่ 2.31 การบรรยายสีในระบบ CIE Lab มองในระนาบ 2 มิติ
ภาพที่ 2.32 การบรรยายสีพื้นในระบบ CIE Lab ในรูป 3 มิติ
ภาพที่ 2.33 (ก)-(ง) โครงสร้างเงินสเตอร์ลิงผสมดีบุกหลังอบเนื้อเดียว53
ภาพที่ 2.34 (ก)-(ง) โครงสร้างจุลภาคหลังอบเนื้อเดียวที่อุณหภูมิ 740°C
ภาพที่ 2.35 ความแข็งของเงินสเตอร์ลิงผสมดีบุกหลังผ่านการอบเนื้อเดียวที่ 740°C55
ภาพที่ 2.36 ความแข็งจุลภาคของชิ้นงานหลังผ่านการบ่มในช่วงอุณหภูมิ 250-350°C
ภาพที่ 2.37 สมบัติทางกลของชิ้นงานหลังผ่านการบ่มแข็งในช่วงอุณหภูมิ 250-350°C56
ภาพที่ 2.38 โครงสร้างจุลภาคของชิ้นงานหลังผ่านกระบวนการบ่มแข็ง
ภาพที่ 3.1 ภาพชิ้นทดสอบแรงดึง
ภาพที่ 3.2 แผนผังสรุปกระบวนการทดลอง
ภาพที่ 4.1 ชิ้นงานหลังหล่อของโลหะผสมทั้ง 7 ชุด
ภาพที่ 4.2 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu จากกล้อง SEM, (ค) การ
วิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping ใช้กำลังขยาย 2000x

ภาพที่ 4.3 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Al จากกล้อง SEM, (ค) ภาพที่ 4.4 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Sn จากกล้อง SEM, (ค) ภาพที่ 4.5 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.2Sn จากกล้อง SEM, ภาพที่ 4.6 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.3Sn จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2500x......77 ภาพที่ 4.7 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.5Sn จากกล้อง SEM, ภาพที่ 4.8 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.5Sn0.3Al จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2500x ... 79 ภาพที่ 4.9 ขนาดเกรนชิ้นงานสภาพหลังหล่อของโลหะผสมเงินสเตอร์ลิง (ก) AgCu0.3Sn ภาพที่ 4.10 โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิงของทั้ง 7 ชุดโลหะผสม หลังผ่าน กระบวนการอบบ่มที่อุณหภูมิ 350°C เวลา 120 นาที......83 ภาพที่ 4.12 กราฟ XRD ของชิ้นงานโลหะผสม AgCu หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ช้ำโบง ภาพที่ 4.14 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Al หลังอบบ่มที่อุณหภูมิ 350°C ภาพที่ 4.16 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Sn หลังอบบ่มที่อุณหภูมิ 350°C

ภาพที่ 4.18 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Be0.5Sn หลังอบบ่มที่อุณหภูมิ
350°C เวลา 2 ชั่วโมง91
ภาพที่ 4.19 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Be0.5Sn0.3Al สภาพหลังหล่อ92
ภาพที่ 4.20 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Be0.5Sn0.3Al หลังอบบ่มที่
อุณหภูมิ 350°C เวลา 2 ชั่วโมง92
ภาพที่ 4.21 ค่าเปลี่ยนแปลงสี dE* วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบกลุ่ม AgCu
- AgCu0.3Al - AgCu0.3Sn98
ภาพที่ 4.22 ค่าเปลี่ยนแปงสี dE* วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบกลุ่ม
AgCu0.3Sn - AgCu0.3Be0.2Sn - AgCu0.3Be0.3Sn - AgCu0.3Be0.5Sn
ภาพที่ 4.23 ค่าเปลี่ยนแปลงสี dE* วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบกลุ่ม
AgCu0.3Al - AgCu0.3Sn - AgCu0.3Be0.5Sn - AgCu0.3Be0.5Sn0.3Al
ภาพที่ 4.24 กราฟเส้นแสดงค่าเปลี่ยนแปลงสี dE* วัดได้จากเครื่องวัดเทียบสีชิ้นงานทดสอบ
ของโลหะผสมทั้ง 7 ชุดสภาวะหลังหล่อ (As-cast)105
ภาพที่ 4.25 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน
ภาพที่ 4.26 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu0.3Al ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน
ภาพที่ 4.27 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu0.3Sn ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน
ภาพที่ 4.28 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu0.3Be0.2Sn ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน
ภาพที่ 4.29 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu0.3Be0.3Sn ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน
ภาพที่ 4.30 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu0.3Be0.5Sn ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน

ภาพที่ 4.31 กราฟแท่งแสดงค่า dE* ที่วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของโลหะ
ผสม AgCu0.3Be0.5Sn0.3Al ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบ ต่าง ๆ กัน124
ภาพที่ 4.32 กราฟแสดงค่าสมบัติความเป็นสปริง (Modulus of Resilience) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C
ภาพที่ 4.33 กราฟแสดงค่าความเค้นจุดคราก (Yield stress) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C130
ภาพที่ 4.34 กราฟแสดงค่าอัตราการยืดตัว (Elongation) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C131
ภาพที่ 4.35 กราฟแสดงค่าความแข็ง (Hardness, HRA) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C132
ภาพที่ 4.36 กราฟแสดงค่าสมบัติความเป็นสปริง (Modulus of Resilience) ของ AgCu0.3Sn -AgCu0.3Be0.2Sn - AgCu0.3Be0.3Sn - AgCu0.3Be0.5Sn หลังการอบบ่ม 350°C และ 400°C
ภาพที่ 4.37 กราฟแสดงค่าความเค้นจุดคราก (Yield stress) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังอบบ่ม 350°C และ 400°C
ภาพที่ 4.38 กราฟแสดงค่าอัตราการยืดตัว (Elongation) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังอบบ่ม 350°C และ 400°C
ภาพที่ 4.39 กราฟแสดงค่าความแข็ง (Hardness, HRA) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังการอบบ่ม 350°C และ 400°C
ภาพที่ 4.40 กราฟแสดงสมบัติ Modulus of Resilience ของ AgCu0.3Al – AgCu0.3Sn – AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังการอบบ่ม 350°C และ 400°C
ภาพที่ 4.41 กราฟแสดงค่าความเค้นจุดคราก (Yield stress) ของ AgCu0.3Al – AgCu0.3Sn – AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังอบบ่ม 350°C และ 400°C

ภาพที่ 4.42 กราฟแสดงค่าอัตราการยึดตัว (Elongation) ของ AgCu0.3Al – AgCu0.3Sn –
AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังอบบ่ม 350°C และ 400°C143
ภาพที่ 4.43 กราฟแสดงค่าความแข็ง (Hardness, HRA) ของ AgCu0.3AI – AgCu0.3Sn –
AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังการอบบ่ม 350°C และ 400°C144
ภาพที่ กา. ภาพต้นโลหะเงินสเตอร์ลิงหลังหล่อ (As-cast) ของโลหะผสมทั้ง 7 ชุด154
ภาพที่ ค1. โครงสร้างจุลภาคสภาพหลังหล่อ ที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง
กราด (SEM) ของทั้ง 7 ชุดโลหะเงินสเตอร์ลิง176
ภาพที่ ค2. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ของทั้ง
7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60,
120 นาที ตามลำดับ โดยใช้กำลังขยาย 150x177
ภาพที่ ค3. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ของทั้ง
7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60,
120 นาที ตามลำดับ โดยใช้กำลังขยาย 1000x178
ภาพที่ ค4. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ของทั้ง
7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 400°C โดยใช้กำลังขยาย 150x 179
ภาพที่ ค5. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ของทั้ง
7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 400°C โดยใช้กำลังขยาย 1000x 180
ภาพที่ ค6. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) - ชุด
โลหะผสม AgCu : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 350 °C และ
400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)181
ภาพที่ ค7. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) - ชุด
โลหะผสม AgCu0.3AI : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 350 °C
และ 400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)182
ภาพที่ ค8. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) - ชุด
โลหะผสม AgCu0.3Sn : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ 350 °C
และ 400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)183

ภาพที่ ค9. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) – ชุด
โลหะผสม AgCu0.3Be0.2Sn : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ
350 °C และ 400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)
ภาพที่ ค10. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) – ชุด
โลหะผสม AgCu0.3Be0.3Sn : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ
350 °C และ 400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)
ภาพที่ ค11. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) – ชุด
โลหะผสม AgCu0.3Be0.5Sn : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่อุณหภูมิ
350 °C และ 400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)
ภาพที่ ค12. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) – ชุด
โลหะผสม AgCu0.3Be0.5Sn0.3AI : สภาพหลังหล่อ และหลังผ่านกระบวนการอบบ่ม ที่
อุณหภูมิ 350 °C และ 400°C โดยใช้ กำลังขยาย 150x(ซ้าย), 1000x(ขวา)
ภาพที่ ค13. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu :
ภาพที่ ค14. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Al :
ภาพที่ ค15. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn :
ภาพที่ ค16. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn :
ภาพที่ ค17. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn :
ภาพที่ ค18. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn :
ภาพที่ ค19. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน
โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al :

ภาพที่ ค20. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาพหลังหล่อ 209 ภาพที่ ค21. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาพหลังหล่อ 210 ภาพที่ ค22. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาพหลังหล่อ 211 ภาพที่ ค23. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาวะหลังผ่าน ึกระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 212 ภาพที่ ค24. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม(Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 213 ภาพที่ ค25. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ ภาพที่ ค26. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Al หลังหล่อ215 ภาพที่ ค27. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Al หลังหล่อ216 ภาพที่ ค28. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาวะหลัง ภาพที่ ค29. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาวะหลัง ภาพที่ ค30. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาวะหลัง

ภาพที่ ค31. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn หลังหล่อ220
ภาพที่ ค32. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn หลังหล่อ221
ภาพที่ ค33. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Snหลังหล่อ 222
ภาพที่ ค34. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาวะหลัง
้ผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที
ภาพที่ ค35. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาวะหลัง
ผ่านกระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที
กำลังขยาย 2000 เท่า
ภาพที่ ค36. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาวะหลัง
ผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที
ภาพที่ ค37. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาพ
หลังหล่อ (As-cast)
ภาพที่ ค38. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาพ
หลังหล่อ (As-cast)
ภาพที่ ค39. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาพ
หลังหล่อ (As-cast)

ภาพที่ ค40. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาวะ หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 229 ภาพที่ ค41. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาวะ หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 230 ภาพที่ ค42. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาวะ หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 231 ภาพที่ ค43. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาพ ภาพที่ ค44. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาพ ภาพที่ ค45. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาพ ภาพที่ ค46. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาวะ หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที235 ภาพที่ ค47. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาวะ หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 236 ภาพที่ ค48. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาวะ หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 237

ภาพที่ ค49. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาพ
หลังหล่อ (As-cast)
ภาพที่ ค50. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาพ
หลังหล่อ (As-cast)
ภาพที่ ค51. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาพ
หลังหล่อ (As-cast)
ภาพที่ ค52. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาวะ
หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 241
ภาพที่ ค53. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาวะ
หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 242
ภาพที่ ค54. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาวะ
หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที 243
ภาพที่ ค55. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al
สภาพหลังหล่อ (As-cast)244
ภาพที่ ค56. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al
สภาพหลังหล่อ (As-cast)245
ภาพที่ ค57. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al
สภาวะหลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เวลา 120 นาที 246

ภาพที่ ค58. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al
สภาวะหลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม ที่อุณหภูมิ 350°C เวลา 120 นาที247
ภาพที่ ค59. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และ
กราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al
สภาวะหลังผ่านกระบวนการทางความร้อนโดยการอบบ่มที่อุณหภูมิ 350°C เวลา 120 นาที248
ภาพที่ ค60. ขนาดเกรนของชิ้นงานสภาพหลังหล่อถ่ายภาพด้วยกล้องธรรมดา
ภาพที่ ค61. ขนาดเกรนของชิ้นงานสภาพหลังหล่อถ่ายภาพด้วยกล้อง LCD
ภาพที่ ง1 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้น
ในชิ้นงานสภาพหล่อ โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด
ภาพที่ ง2 ค่าการเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมาก
ขึ้นของชิ้นงานผ่านการอบบ่มอุณหภูมิ 350°C เวลา 30 นาที โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด 256
ภาพที่ ง3 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้น
ของชิ้นงานผ่านการอบบ่มอุณหภูมิ 350°C เวลา 60 นาที โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด 258
ภาพที่ ง4 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้น
ของชิ้นงานผ่านการอบบ่มอุณหภูมิ 400°C เวลา 30 นาที โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด 260
ภาพที่ ง5 ค่าเปลี่ยนแปลงสี dE* ของซิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้น
ของชิ้นงานผ่านการอบบ่มอุณหภูมิ 400°C เวลา 60 นาที โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด 262
ภาพที่ จ1 ค่าความแข็งแบบกราฟแท่งที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA)
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60 ,120
นาที่ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม
ภาพที่ จ2 ค่าความแข็งแบบกราฟแท่งที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA)
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60 ,120
นาที ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ3 ค่าความแข็งแบบกราฟเส้นที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA)	
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120	
นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	266
ภาพที่ จ4 ค่าความแข็งแบบกราฟเส้นที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA)	
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120	
นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	266
ภาพที่ จ5 ค่าความเป็นสปริง (Modulus of resilience) ที่ได้จากการทดสอบแรงดึง (Tensile	
test) ของชนงานทผานกระบวนการการอบบมทอุณหภูม 350 ัC เป็นเวลา 10, 15, 30, 60	
,120 นาที ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	267
ภาพที่ จ6 ค่าความเป็นสปริง (Modulus of resilience) ที่ได้จากการทดสอบแรงดึง (Tensile	
Test) ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60,	
120 นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	267
ภาพที่ จ7 ค่าความเค้น ณ จุดคราก (Yield Stress) ที่ได้จากการทดสอบแรงดึง (Tensile test)	
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120	
นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	268
ภาพที่ จ8 ค่าความเค้น ณ จุดคราก (Yield Stress) ที่ได้จากการทดสอบแรงดึง (Tensile test)	
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120	
นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	268
ภาพที่ จ9 ค่าเปอร์เซ็นต์การยืดตัว (Elongation) ที่ได้จากการทดสอบแรงดึง (Tensile test)	
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120	
นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	269
ภาพที่ จ10 ค่าเปอร์เซ็นต์การยืดตัว (Elongation) ที่ได้จากการทดสอบแรงดึง (Tensile test)	
ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120	
นาที่ ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม	269

สารบัญตาราง

ตารางที่ 2.1 สมบัติทางกายภาพของโลหะที่ผสมอยู่ในเงินสเตอร์ลิง
ตารางที่ 2.2 สมบัติทางกายภาพของ เงิน ทองแดง เบริลเลียมและดีบุก
ตารางที่ 2.3 ค่า Modulus of Resilience ของวัสดุชนิดต่างๆ18
ตารางที่ 2.4 ตารางเทียบค่าความแข็งที่ได้จากการทดสอบแบบบริลเนลล์
ตารางที่ 2.5 สเกลและแรงกดที่ใช้สำหรับการวัดความแข็งแบบร็อคเวลล์
ตารางที่ 2.6 ตารางเทียบค่าความแข็งของวิธีวัดแบบต่าง ๆ
ตารางที่ 2.7 รายละเอียดเพิ่มเติมของธาตุผสมเพิ่มสมบัติทางกลด้วยการอบชุบความร้อน 48
ตารางที่ 2.8 เป็นปริมาณของธาตุต่างๆ ที่ควรจะมีอยู่ในโลหะผสมเงินงานวิจัย Croce Scott M ซึ่งโลหะต่างๆ เหล่านี้เพิ่มลงไปเพื่อเพิ่มคุณสมบัติของโลหะผสม
ตารางที่ 2.9 แสดงปริมาณธาตุผสมที่เหมาะสมโดยเฉพาะอย่างยิ่งมีความสามารถในด้านกัน หมองของโลหะผสมเงินสำหรับโลหะอัดขึ้นรูปที่ใช้ในเครื่องประดับ
ตารางที่ 3.1 ส่วนผสมเงินผสม 935 ที่ทำการทดลองทั้ง 7 ชุดโลหะผสม
ตารางที่ 4.1 ปริมาณธาตุและส่วนผสมทางเคมีที่ได้จากการวิเคราะห์ด้วย ICP-OES70
ตารางที่ 4.2 ส่วนผสมทางเคมีของโครงสร้างจุลภาคแต่ละบริเวณด้วย Energy Dispersive
X-ray Spectroscopy (EDX) ชิ้นงานสภาพหลังหล่อ (As-cast)
ตารางที่ 4.3 ผลของการทดสอบสมบัติต้านทานการหมองชุดอ้างอิง AgCu - AgCu0.3AI -
AgCu0.3Sn สภาพหลังหล่อ (As-cast)97
ตารางที่ 4.4 ผลของการทดสอบสมบัติต้านทานการหมองชุดโลหะผสมเงินสเตอร์ลิง
AgCu0.3Sn / AgCu0.3Be0.2Sn / AgCu0.3Be0.3Sn / AgCu0.3Be0.5Sn สภาพหลังหล่อ100
ตารางที่ 4.5 ผลของการทดสอบสมบัติต้านทานการหมองชุดโลหะผสมเงินสเตอร์ลิง
AgCu0.3Al / AgCu0.3Sn / AgCu0.3Be0.5Sn / AgCu0.3Be0.5Sn0.3Al สภาพหลังหล่อ103
ตารางที่ 4.6 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของโลหะผสมทั้ง 7 ชุดสภาวะหลังหล่อ (As-cast)

ตารางที่ 4.7 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของชุดโลหะผสม AgCu ก่อนและหลังการอบบ่ม107
ตารางที่ 4.8 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของชุดโลหะผสม AgCu0.3Al ก่อนและหลังการอบบ่ม110
ตารางที่ 4.9 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของชุดโลหะผสม AgCu0.3Sn ก่อนและหลังการอบบ่ม112
ตารางที่ 4.10 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของชุดโลหะผสม AgCu0.3Be0.2Sn ก่อนและหลังการอบบ่มม
ตารางที่ 4.11 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของชุดโลหะผสม AgCu0.3Be0.3Sn ก่อนและหลังการอบบ่มมากการอบบ่ม
ตารางที่ 4.12 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง
ของชุดโลหะผสม AgCu0.3Be0.5Sn ก่อนและหลังการอบบ่ม119
ตารางที่ 4.13 ภาพชิ้นงานเปรียบเทียบสีหลังทำการทดสอบสมบัติการหมองของชุดโลหะผสม
AgCu0.3Be0.5Sn0.3Al ก่อนและหลังการอบบ่ม123
ตารางที่ ค1. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu
ตารางที่ ค2. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Al 190
ตารางที่ ค3. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Sn192
ตารางที่ ค4. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม
AgCu0.3Be0.2Sn
ตารางที่ ค5. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม
AgCu0.3Be0.3Sn
ตารางที่ ค6. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม
AgCu0.3Be0.5Sn
ตารางที่ ค7. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม
AgCu0.3Be0.5Sn0.3AI

ตารางที่ ง1. ชิ้นงานก่อนทดสอบสมบัติต้านทานการหมอง - ชุดที่ 1
ตารางที่ ง2. ชิ้นงานก่อนทดสอบสมบัติต้านทานการหมอง - ชุดที่ 2
ตารางที่ ง3. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง (สภาพหลังหล่อ) ทดสอบ
ใช้เวลา 0, 0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด
ตารางที่ ง4. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง ผ่านกระบวนการอบบ่ม
ใช้อุณหภูมิ 350°C เป็นเวลา 30 นาที (Age 350°C – 30 min), ทดสอบการหมองใช้เวลา 0,
0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด
ตารางที่ ง5. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง ผ่านกระบวนการอบบ่ม
ใช้อุณหภูมิ 350°C เป็นเวลา 60 นาที (Age 350°C – 60 min), ทดสอบการหมองใช้เวลา 0,
0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด
ตารางที่ ง6. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง ผ่านกระบวนการอบบ่ม
ใช้อุณหภูมิ 400°C เป็นเวลา 30 นาที (Age 400°C – 30 min), ทดสอบการหมองใช้เวลา 0,
0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด
ตารางที่ ง7. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง ผ่านกระบวนการอบบ่ม
ใช้อุณหภูมิ 400°C เป็นเวลา 60 นาที (Age 400°C – 60 min), ทดสอบการหมองใช้เวลา 0,
0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด
ตารางที่ จ1. ค่าความแข็งแรงดึงสูงสุด (Ultimate Tensile Strength, UTS) ของชิ้นงาน
ทดสอบการต้านทานแรงดึงทั้ง 7 ชุดโลหะผสม
ตารางที่ จ2. ค่าความแข็งจากการทดสอบแบบร็อคเวลล์ ชุด AgCu และ AgCu0.3Al
ตารางที่ จ3. ค่าความแข็งจากการทดสอบแบบร็อคเวลล์ ชุด AgCu0.3Sn และ
AgCu0.3Be0.2Sn
ตารางที่ จ4. ค่าความแข็งจากการทดสอบแบบร็อคเวลล์ ชุด AgCu0.3Be0.3Sn และ
AgCu0.3Be0.5Sn
ตารางที่ จ5. ค่าความแข็งจากการทดสอบแบบร็อคเวลล์ ชุด AgCu0.3Be0.5Sn0.3AI

บทนำ

1.1 ความเป็นมาและความสำคัญของงานวิจัย

ในปัจจุบันเงินได้รับความนิยมมากขึ้น เนื่องจากสมบัติของเงินที่เป็นสื่อกลางในการ แลกเปลี่ยน เป็นสินทรัพย์ที่สามารถสะสมมูลค่า อีกทั้งโลหะเงินมีมูลค่าที่ถูก ราคาไม่สูงมากนัก เมื่อเทียบกับทองคำ (Gold; Au) และทองขาว (Platinum; Pt) ดังนั้น จึงทำให้นักลงทุนหลายกลุ่ม เข้ามาสนใจในตัวโลหะเงินกันมากขึ้น อุปสงค์ของโลหะเงินนั้นมาจากปัจจัยหลัก ๆ 3 ส่วน คือ

- 1. อุตสาหกรรมเครื่องประดับ
- อุตสาหกรรมทั่วไป เช่น อุตสาหกรรมอิเล็คทรอนิค การผลิตแบตเตอรี่ อุตสาหกรรม ภาพถ่าย การใช้งานในอุปกรณ์เครื่องครัวต่าง ๆ
- 3. ความต้องการด้านความลงทุน

โดยภาคอุตสาหกรรมทั่วไปนับว่ามีความต้องการหลักของโลหะเงิน คิดเป็นสัดส่วนร้อยละ 70 ของความต้องการทั้งหมด ในขณะที่ความต้องการใช้ในอุตสาหกรรมเครื่องประดับนั้นอยู่ที่ ร้อยละ 20 ส่วนอีก 10 เปอร์เซ็นต์ที่เหลือนั้นเป็นความต้องการของการลงทุน เพราะสมบัติและ ประโยชน์ที่หลากหลายทำให้เงินเป็นที่ต้องการตั้งแต่อดีตจนถึงปัจจุบัน และในช่วง 10 ปีที่ผ่าน มา ราคาของโลหะเงินมีค่าสูงขึ้นเรื่อย ๆ เนื่องจากเศรษฐกิจเติบโตมากขึ้น ซึ่งอุตสาหกรรมโลหะเงินนี้ สามารถทำเงินให้กับประเทศเป็นอันดับต้น ๆ ของมูลค่าการส่งออกเลยทีเดียว

สำหรับงานในส่วนของการวิจัยฉบับนี้จะมีความสัมพันธ์และเกี่ยวข้องอยู่กับ อุตสาหกรรมอัญมณีและเครื่องประดับ งานวิจัยนี้เป็นศึกษาสมบัติความเป็นสปริงของโลหะเงิน ผสมเพื่อไปใช้ในเครื่องประดับเงินต่าง ๆ เช่น สปริงข้อต่อนาฬิกา ข้อเกี่ยวหรือตะขอของสร้อยคอ เงิน สร้อยข้อมือเงิน ลิ้นสปริงในงานเครื่องประดับ หรืออาจจะใช้ในการผลิตเครื่องประดับโดยตรง ที่ต้องการความยืดหยุ่นและความเป็นสปริงสูง ทำเป็นกำไลข้อมือที่ไม่ต้องมีตัวยึด และสามารถ ตอบสนองต่ออุตสาหกรรมหรือผู้บริโภคที่ต้องการให้ชิ้นส่วนประกอบทั้งหมดของเครื่องประดับที่ใช้ มีส่วนผสมของเนื้อเงินที่เท่ากันทั้งชิ้น หรือกล่าวได้ว่าผู้บริโภคต้องการเครื่องประดับที่มีความ บริสุทธิ์ของโลหะเงินที่สูงปริมาณของเนื้อเงินก็ต้องมีปริมาณเท่ากันทุก ๆ ชิ้นส่วนของเครื่องประดับ นั้น โดยทั่วไปโลหะเงินบริสุทธิ์จัดเป็นโลหะอ่อน ไม่สามารถรักษารูปทรง ไม่ทนรอยขีดข่วน และยึด เกาะอัญมณีได้ไม่ดีเท่าที่ควร ดังนั้นในการพัฒนาเครื่องประดับเงิน จึงมีความต้องการสมบัติด้าน ความแข็ง ซึ่งการเพิ่มความแข็งสามารถทำได้หลายวิธี เช่น กระบวนการขึ้นรูปเย็น (Cold work) การเติมธาตุผสม (Alloying element) และการบ่มแข็ง (Aging) เป็นต้น ส่วนใหญ่ในการทำ เครื่องประดับนิยมใช้โลหะเงินสเตอร์ลิง (Sterling silver) หรือที่นิยมเรียกว่าโลหะเงิน 925 โดย ส่วนผสมทางเคมีจะประกอบด้วย ธาตุเงินร้อยละ 92.5 เปอร์เซ็นต์โดยน้ำหนัก ส่วนอีก 7.5 เปอร์เซ็นต์จะเป็นโลหะผสมอื่น ๆ เพื่อเพิ่มความแข็งแรงและสมบัติต่าง ๆ ที่ต้องการให้แก่เงิน โลหะ ผสมที่นิยมใช้ เช่น ทองแดง (Copper; Cu) เพื่อเพิ่มความแข็งแรง ซึ่งสามารถเข้ากันได้ดีกับโลหะ เงินและราคาถูก ซิลิคอน (Silicon; Si) และแคลเซียม (Calcium; Ca) ช่วยลดอัตราการ เกิดปฏิกิริยาออกซิเดชัน และอะลูมิเนียม (Aluminum; Al) ช่วยเพิ่มความต้านทานการหมองและ เพิ่มความแข็งแรง เป็นต้น

จากงานวิจัยของสงวนลักษณ์ [1] ศึกษาผลของดีบุกต่อสมบัติทางกลของสปริงเงิน สเตอร์ลิง และงานวิจัยของตระกูลศักดิ์ [2] เรื่องการพัฒนาโครงสร้างจุลภาคและสมบัติทางกลของ โลหะผสมเงิน-เบริลเลียม เกรด 935 ซึ่งจากผลของการทดลองนั้นมีแนวโน้มไปทางเดียวกันคือ ผล ของดีบุกและเบริลเลียมต่างก็สามารถเพิ่มสมบัติความเป็นสปริงของโลหะเงินผสมได้ประมาณ 2 เท่าของโลหะเงินที่ไม่ได้ผสมธาตุเหล่านี้ ทำให้เป็นที่น่าสนใจอย่างยิ่ง ที่จะทำการศึกษาและพัฒนา ผลของการเติมธาตุดีบุก-เบริลเลียม รวมทั้งตัวแปรหรือปัจจัยต่าง ๆ ไม่ว่าจะเป็น ปริมาณธาตุผสม ที่เหมาะสม อุณหภูมิและเวลาในการอบทางความร้อน การอบบ่ม ที่เหมาะสม

ส่วนงานวิจัยโครงการของผู้ช่วยศาสตราจารย์ ดร.เอกสิทธิ์ นิสารัตนพรและคณะ [3] ใน หัวข้อการปรับปรุงโลหะเงินสปริง เกรด 935 เพื่อการผลิตเซิงอุตสาหกรรมเครื่องประดับ โดยมี การศึกษาต่อเนื่องมาจากงานวิจัยของสงวนลักษณ์ [1] และตระกูลศักดิ์ [2] ซึ่งทำการปรับ ส่วนผสมของธาตุให้เหมาะสมและใช้การเพิ่มความแข็งแรง และความแข็งด้วยกลไกการตกตะกอน (Precipitation hardening) รวมถึงปัจจัยทางด้านอุณหภูมิและเวลาที่ส่งเพิ่มสมบัติสปริงของวัสดุ โดยมีการอบให้ความร้อนที่เรียกว่า อบเนื้อเดียว (Solution treatment) ที่ 750-800 องศาเซลเซียส ช่วงเวลา 0.5-1 ชั่วโมงก่อน หลังจากนั้นตามด้วยกระบวนการอบบ่มที่ 200, 300 และ 350 องศาเซลเซียส ช่วงเวลา 7-120 นาที และยังทำกระบวนการอบบ่มแบบไม่ผ่านการอบเนื้อเดียว (Non-solutionization) เปรียบเทียบความแตกต่างข้อดีข้อเสียกันอีกด้วย ซึ่งพบว่ากระบวนการอบ ชุบความร้อนที่เหมาะสมสำหรับผลิตเป็นชิ้นงานมีสมบัติเป็นสปริงนั้น สามารถทำได้ทั้งสองแบบ คือ ผ่านการอบเนื้อเดียวแล้วไปอบบ่มแข็ง หรือทำการอบบ่มแข็งโดยไม่ผ่านการอบเนื้อเดียวเลยก็ ได้ แต่ควบคุมตัวแปรให้ต่างกัน โดยจากการสังเกตแล้วชิ้นงานที่ผ่านการอบเนื้อเดียวก่อนจะทำ การบ่มแข็งนั้น เนื่องจากการอบเนื้อเดียวใช้อุณหภูมิสูงทำให้เงินผสมที่มีธาตุหลักเป็นทองแดงจะ สามารถเกิดคราบทองแดงออกไซด์ที่กินลึกมาก ที่เรียกว่า ฝ้าแดง-ดำ (Fire scale) ที่เกิดขึ้นอย่าง หลีกเลี่ยงไม่ได้ส่งผลต่อความสวยงามของชิ้นงาน คราบเหล่านี้ฝังลึกและไม่สามารถปัดและ ตกแต่งออกได้หมด และยังส่งผลต่อการเสียความแข็งแรงและความแข็งเนื่องจากปริมาณทองแดง ไม่เพียงพอ ในขณะที่หลังจากการหล่อ แล้วนำชิ้นงานไปอบบ่มแข็งโดยไม่ผ่านการอบเนื้อเดียวไม่ เกิดปัญหาคราบฝ้าแดง-ดำขึ้น สมบัติความเป็นสปริงไม่ลดลง ไม่จำเป็นต้องปกคลุมผิวชิ้นงานด้วย สารประกอบโบรอนเพื่อป้องกันการแพร่ซึมของออกซิเจน และยังมีข้อดีทำให้ช่วยประหยัดเวลา และลดค่าใช้จ่ายในการผลิตงานเครื่องประดับเงินอีกด้วย

จากที่กล่าวมาข้างต้น อีกทั้งประกอบกับปัจจุบันแทบจะไม่พบงานวิจัยเกี่ยวกับการเติม โลหะผสมของเบริลเลียม-ดีบุกและอะลูมิเนียมในโลหะเงินสเตอร์ลิง แล้วเพิ่มความแข็งแรงโดยการ อบบ่มแข็งทันทีโดยไม่ผ่านการอบเนื้อเดียวหลังจากการหล่อ จึงเป็นที่มาของงานวิจัย เพื่อให้ได้ องค์ความรู้ในการศึกษาหาสภาวะที่เหมาะสมในการเพิ่มความแข็ง ความต้านแรงดึงสูงสุด และ เพิ่มสมบัติความเป็นสปริงให้กับโลหะเงินสเตอร์ลิง 935 ผสมทองแดง ดีบุก เบริลเลียมและ อะลูมิเนียม โดยการอบทางความร้อนด้วยวิธีการอบบ่มแข็ง โดยไม่ผ่านการอบเนื้อเดียวที่อุณหภูมิ สูง รวมทั้งการศึกษาสมบัติทางกล และความต้านทานการหมอง

1.2 วัตถุประสงค์ของงานวิจัย

 เพื่อศึกษาอิทธิพลของธาตุผสมและกระบวนการอบทางความร้อนต่อการเปลี่ยนแปลง สมบัติทางกลและความต้านทานการหมองของโลหะเงินผสมเกรด 935 มีปริมาณของธาตุเงิน 93.5% ทองแดง 5.4-6.5% เบริลเลียม 0.3% ดีบุก 0.2-0.5% และอะลูมิเนียม 0.3% โดยน้ำหนัก

 เพื่อศึกษาผลของกระบวนการอบทางความร้อนต่อการเปลี่ยนแปลงของโครงสร้าง จุลภาคของโลหะเงินผสมเกรด 935 ที่เติมธาตุผสมต่าง ๆ

1.3 ขอบเขตการวิจัย

สึกษาอิทธิพลของธาตุผสม ต่อโครงสร้างจุลภาค และการเปลี่ยนแปลงโครงสร้างที่
 เกิดขึ้น ในโลหะเงินสปริง

 ศึกษาอิทธิพลของธาตุผสมและกระบวนการทางความร้อนต่อสมบัติทางกลและความ ต้านทานการหมองของโลหะ ได้แก่ ความแข็ง ความต้านทานแรงดึง สมบัติความเป็นสปริงของ โลหะเงิน และการเปลี่ยนแปลงสีผิว

 สึกษาปริมาณของธาตุผสม ในอุณหภูมิและเวลาที่เหมาะสมสำหรับการผลิตโลหะเงิน สปริง

1.4 ประโยชน์ที่คาดว่าจะได้รับ

 1. ได้ทราบปริมาณส่วนผสมของโลหะเงินผสมทองแดง เบริลเลียม ดีบุก และอะลูมิเนียมที่ เหมาะต่อการผลิตสปริง

 2. ได้ทราบถึงการควบคุมอุณหภูมิ และเวลาที่เหมาะต่อการอบชุบทางความร้อนเพื่อให้ได้ สมบัติของสปริงที่ดี

 3. ได้ทราบถึงอิทธิพลของธาตุผสมต่าง ๆ ที่เติมลงในโลหะเงินซึ่งส่งผลต่อสมบัติความเป็น สปริงและสมบัติทางกล อีกทั้งการเปลี่ยนแปลงสีและสมบัติการกันหมองที่เปลี่ยนไปของโลหะเงิน ผสม

 สามารถนำข้อมูลงานวิจัยโลหะเงินสปริงไปปรับใช้และพัฒนาการเพื่อเป็นประโยชน์ต่อ การผลิตเครื่องประดับเงินในอุตสาหกรรมต่อไปได้

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 2

ปริทรรศน์วรรณกรรม

2.1 ข้อมูลทั่วไปของโลหะเงิน

โลหะเงิน [4] หรือในภาษาอังกฤษ เรียกว่า ซิลเวอร์ (Silver) สัญลักษณ์ที่ใช้ Ag (เป็นตัว ย่อมาจากคำในภาษาละตินว่า Argentum) มีเลขอะตอม 47 เป็นธาตุที่ 2 ของหมู่ IB ในตารางธาตุ จัดเป็นโลหะและโลหะทรานซิชัน น้ำหนักอะตอม 107.870 amu จุดหลอมเหลวของโลหะเงินมีค่า 960.8°C จุดเดือดที่ 2210°C ความหนาแน่น 10.5 g/cc ที่ 20°C และมีโครงสร้างผลึกเป็น FCC (Face-center-cubic) โลหะชนิดนี้มีลักษณะสีขาวเงิน เป็นประกายสวยงาม ในธรรมชาติอาจ รวมอยู่ในแร่อื่น ๆ หรืออยู่อิสระ

ภาพที่ 2.1 แร่โลหะเงิน [4]

โลหะเงินใช้ประโยชน์อย่างกว้างขวาง พอสรุปได้ดังนี้

- ใช้ทำขดลวดแลกเปลี่ยนความร้อน (Heat exchange coils) และอุปกรณ์การระเหย ท่อ ลำเลียง
- 2. ใช้ทำอุปกรณ์สำหรับทำปฏิกิริยาเคมี
- ใช้เตรียมซิลเวอร์ไนเตรต ซิลเวอร์โบรไมด์ ซึ่งใช้เป็นน้ำยาการถ่ายภาพ
- 4. ใช้ในอุตสาหกรรมเภสัชภัณฑ์
- 5. ใช้เป็นตัวเร่ง (Catalyst) ในปฏิกิริยาหลายประเภท เช่น ปฏิกิริยาการเตรียมเอทีลีน

- ใช้ทำอัญมณีและเครื่องเงิน โดยโลหะเงินสามารถใช้ร่วมกับโลหะชนิดอื่น เพื่อประกอบ เป็นเครื่องประดับอันสวยงาม เช่น ทองคำ ทองแดง เหล็ก ทองเหลือง นอกจากนี้ เครื่องเงินยังมีประโยชน์มากในด้านใช้สอย เช่น ช้อน ซ้อม มีด เป็นต้น
- เป็นตัวนำไฟฟ้าที่ดีมาก ใช้ทำอุปกรณ์อิเล็กทรอนิกส์ อีกทั้งผลิตภัณฑ์ไฟฟ้าบางชนิดก็มี โลหะเงินเป็นส่วนประกอบสำคัญ เช่น สายเคเบิ้ล สายลำโพง นาฬิกาก็ยังใช้แบตเตอรี่ ซิลเวอร์ออกไซด์ เนื่องจากมีอายุการใช้งานที่ยาวนาน เป็นต้น
- ด้านการแพทย์ เป็นส่วนประกอบของอุปกรณ์การแพทย์ต่าง ๆ อาจถูกใช้เพื่อรักษาโรคติด เชื้อภายนอก เงินยังใช้ในการใช้งานทางการแพทย์บางอย่าง เช่น สายสวนปัสสาวะ และ ท่อช่วยหายใจ เป็นต้น
- เสื้อผ้า เงินสามารถยับยั้งการเจริญเติบโตของเชื้อแบคทีเรียและเชื้อราบนเสื้อผ้า เช่น ถุงเท้า เสื้อกีฬา เพื่อลดกลิ่นอันไม่พึงประสงค์ ความเสี่ยงของการติดเชื้อแบคทีเรีย และ เชื้อรา ที่รวมอยู่ในเสื้อผ้าหรือรองเท้า โดยใช้อนุภาคซิลเวอร์นาโนในพอลิเมอร์จาก เส้นด้ายเคลือบด้วยเงิน

ภาพที่ 2.2 เม็ดโลหะเงิน [4]

ส่วนความเป็นพิษของโลหะเงิน เงินในรูปของธาตุอิสระเป็นพิษไม่มากนัก แต่เกลือส่วน ใหญ่เป็นพิษ (เพราะแอนอิออน) สารประกอบของเงินเมื่อเข้าสู่ร่างกายถูกดูดเข้าสู่ระบบการ หมุนเวียนของโลหิตได้ และถูกรีดิวซ์ทำให้โลหะเงินตกค้างตามเนื้อเยื่อต่าง ๆ ผลก็คือผิวหนังเกิด จุดลีเทา สภาวะเช่นนี้เรียกว่า 'Argyria'

แหล่งที่พบโลหะเงิน

ประเทศไทย : พบปนในแร่ตะกั่วที่ จังหวัดกาญจนบุรี ในแหล่งแร่ตะกั่วเกือบทุกแห่ง ต่างประเทศ : พบในเยอรมนี เปรู เม็กซิโก สหรัฐอเมริกา ออสเตรเลีย

2.2 โลหะเงินสเตอร์ลิง

เงินหรือโลหะเงินที่เรารู้จักกันนั้นเป็นทั้งเงินบริสุทธิ์ 100% และเงินผสมเพื่อความแข็งแรง ในการทำรูปพรรณหรือทำเครื่องประดับเงินทั่วไป ที่เรียกว่า 'เงินสเตอร์ลิง' (Sterling silver) [5] คำ จำกัดความของเงินสเตอร์ลิง คือ โลหะเงินที่มีโลหะชนิดอื่นผสมหรือปนอยู่ไม่เกิน 7.5% (ธาตุผสม อื่น ๆ เช่น ทองแดง ดีบุก สังกะสี ซิลิคอน ทองคำ ตะกั่ว หรือธาตุโลหะอื่น ๆ) เป็นมาตรฐานสากล ของเครื่องเงินที่มีคุณภาพเป็นที่ยอมรับได้ทั่วไป (สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม, 2515) เพราะถ้าใช้โลหะเงินบริสุทธิ์ 100% ในการทำเครื่องประดับหรือมาทำเป็นเงินรูปพรรณนั้น จะไม่แข็งแรงพอ เนื่องจากเงินบริสุทธิ์มีลักษณะอ่อนนุ่ม ดัดงอให้เป็นรูปร่างที่แข็งแรงนั้นทำได้ยาก จึงต้องมีการผสมโลหะอื่น ๆ เพื่อเพิ่มความแข็งแรงให้มากขึ้น ซึ่งสำหรับงานวิจัยนี้มุ่งเน้นไปที่การ ทำเพื่อผลิตเงินสปริง จึงเลือกใช้ธาตุผสมเป็นระบบเงิน-ทองแดง-ดีบุก-เบริลเลียม-อะลูมิเนียม (Ag-Cu-Sn-Be-Al)

สาเหตุที่เลือกระบบโลหะผสมดังกล่าวในการผลิตเป็นโลหะเงินสปริงนั้น เนื่องจากได้ ศึกษางานวิจัยของ นางสาวสงวนลักษณ์ โล่วานิชย์เจริญ [1] เป็นงานวิจัยหัวข้อ "ผลของดีบุกต่อ สมบัติทางกลของสปริงเงินสเตอร์ลิง" ซึ่งดีบุกที่เติมลงไปนั้นส่งผลต่อค่าความแข็งที่เพิ่มขึ้น ความ แข็งที่เพิ่มขึ้นนั้นมาจากสาเหตุสามประการ คือ ประการแรก ดีบุกเข้าไปละลายอยู่ในโครงสร้างเนื้อ พื้น ลักษณะสารละลายของแข็ง (Solid solution strengthening) ประการที่สอง ดีบุกเข้าไปอยู่ใน เฟสที่มีทองแดงสูง (Second phase) ทำให้มีความแข็งเพิ่มขึ้น ประการที่สาม โครงสร้างที่อยู่ โดยรอบโครงสร้างยูเทคติกที่มีลักษณะเล็กละเอียด โดยเมื่อแนวโน้มการเติมดีบุกเพิ่มขึ้น จะทำให้ ค่าความต้านทานแรงดึงและค่าความเค้นจุดครากเพิ่มขึ้นเช่นเดียวกัน ขณะที่ค่าเปอร์เซ็นต์การยืด ้ตัวจะลดลงเมื่อปริมาณดีบกเพิ่มมากขึ้น ส่วนสมบัติความเป็นสปริงของโลหะก็มีความเหมาะสม เพราะค่าโมดูลัสรีไซเลียน $\left(\sigma_y^2/2E
ight)$ มีค่าที่สูงพอสำหรับการทำเป็นลิ้นสปริง และเนื่องจากสีผิว ของเครื่องประดับมีความสำคัญมาก การที่สีผิวเปลี่ยนมากจะทำให้เกิดความหมองขึ้นหลังการอบ ทางความร้อนต่าง ๆ (Heat treatment) ซึ่งไม่เป็นที่ต้องการ งานวิจัยของคุณสงวนรักษ์ยังมีการ เปรียบเทียบการเปลี่ยนแปลงของสีผิวโลหะเงินสเตอร์ลิงจากผลของการเติมดีบุกลงไป พบว่า ลักษณะสี่ผิวของโลหะเงินสเตอร์ลิงที่ไม่เติมดีบุกหลังจากผ่านกระบวนการทางความร้อนจะมีสีดำ ที่สุด แต่เมื่อเติมดีบุกเข้าไปจะทำให้สีผิวเป็นสีเทาขาว สีผิวจะขาวมากขึ้นเมื่อปริมาณดีบุกที่เติม เข้าไปเพิ่มขึ้น ลักษณะสีผิวของโลหะเงินสเตอร์ลิงที่ไม่เติมดีบุกที่พบเกิดจากการแพร่ของทองแดง จากบริเวณใจกลางชิ้นงานไปยังผิวของชิ้นงานแล้วทำปฏิกิริยาออกซิเดชัน (Oxidation) ใน บรรยากาศ เกิดเป็นฟิล์มของสารประกอบออกไซด์ปกคลุมบนผิวหน้า ส่วนโลหะเงินสเตอร์ลิงที่เติม

ดีบุกก็อธิบายได้ในลักษณะเดียวกันแต่สีผิวของชิ้นงานที่มีสีอ่อนกว่าก็เนื่องมาจากปริมาณ ทองแดงที่มีน้อยกว่าในโลหะเงินนั้น ถึงแม้ว่าการเติมทองแดงเพียงอย่างเดียวจะมีความแข็งสูงขึ้น มากก็แต่สีผิวจะดำคล้ำ ดังนั้น จึงต้องมีการเติมดีบุกเข้าไปด้วยเพื่อช่วยให้ผิวของชิ้นงานไม่เป็นสี ดำและลดการสูญเสียทองแดงขณะอบให้ความร้อน

นายตระกูลศักดิ์ สุขรี [2] ได้วิจัยในหัวข้อ "การพัฒนาโครงสร้างจุลภาคและสมบัติทางกล ของโลหะผสมเงิน-เบริลเลียม เกรด 935" พบว่าการเติมเบริลเลียมลงในเงินสเตอร์ลิง 935 สามารถ เพิ่มสมบัติความเป็นสปริงได้มากขึ้น โดยค่าที่แสดงสมบัติความเป็นสปริงคือ ค่าโมดูลัสรีไซเลียน ซึ่งงานวิจัยนี้เมื่อเติมเบริลเลียมในการปรับปรุงส่วนผสมสามารถเพิ่มสมบัติความเป็นสปริงได้มาก ถึง 2 เท่า และหลังจากการอบบ่มเพิ่มความแข็ง เห็นได้ชัดว่าค่าความแข็ง สมบัติทางกลต่าง ๆ ไม่ ว่าจะเป็นค่าโมดูลัสยืดหยุ่น ความเค้นจุดคราก ของเงินสเตอร์ลิงที่เติมเบริลเลียมมีค่าสูงกว่าโลหะ เงินสเตอร์ลิงที่ไม่เติมเบริลเลียม เนื่องจากการตกตะกอนขนาดเล็กของเงิน-เบริลเลียม (Be₁₂Ag) ภายในโครงสร้างเนื้อพื้น และในโครงสร้างยูเทคติก

สมบัติ	เงิน	ทองแดง	ดีบุก เยอร์มาเนียม		สังกะสี	ซิลิกอน
สัญลักษณ์	Ag	Cu	Sn Ge		Zn	Si
เลขอะตอม	47	29	50 32		30	14
น้ำหนักอะตอม	196.8665	63.546	118.69 72.61		65.39	28.086
ໂ	FCC	FCC	เวิทยาลั	٤J	НСР	Diamond
PLINUI INMULIU 20 C	100		Univers	ITY	TICI	Cubic
สี	ขาวเงา	แดงเงา	ขาว,เทา ขาวเงา		ขาวเงา	ด้ำ
ความถ่วงจำเพาะ	10.5	8.96	7.28 5.323		7.14	2.33
ความหนาแน่นที่ 20°C (Kg/m ²)	10,500	8,960	7,280	5,323	7,140	2,330
จุดหลอมเหลว (°C)	960	1,083	231.9 938.2		419.6	1,423
จุดเดือด ([°] C)	2,195	2,600	2,602	2,833	907	2,355
สีสารประกอบออกไซด์	ใส-น้ำตาล	น้ำตาลแดง,	ดำ เทา	ขาว	ขาวอม	ใส
	ดำ	ดำ			เหลือง	
สีสารประกอบซัลไฟด์	ใส-ดำ	ขาวอมเขียว-	ขาว	-	ใส, ขาว	-
		ฟ้า, ดำ			อมเหลือง	

ตารางที่ 2.1 สมบัติทางกายภาพของโลหะที่ผสมอยู่ในเงินสเตอร์ลิง [6]

2.3 สมบัติทางกายภาพและทางกลของบรอนซ์เบริลเลียม

บรอนซ์เบริลเลียม [7] จัดเป็นโลหะทองแดงและสังกะสีผสมเบริลเลียมที่มีความเค้นแรงดึง ความแข็งความเหนียวสูง และความยืดหยุ่นอยู่ในระดับเหล็กกล้าผสม มีสมบัติทางกลที่ดี ความ ต้านทานการกัดกร่อนสูง สมบัติเป็นตัวนำไฟฟ้าสูง อีกทั้งยังซุบแข็งได้ดี แต่มีราคาแพงและใช้งาน อย่างจำกัดในชิ้นงานบางประเภท ได้แก่ สปริง สปริงนาฬิกาซึ่งต้องต่อต้านอำนาจแม่เหล็กและ ใดอะเฟรมทนการกัดกร่อน แบริ่งในเครื่องมือเครื่องจักร เครื่องมือไม่เกิดประกายไฟ (Non-sparking tools) ส่วนประกอบแม่พิมพ์พลาสติกที่นำความร้อนดีและทนการกัดกร่อน ถ้าใช้ เป็นโลหะผสมจะทำให้โลหะผสมเหล่านั้นมีความแข็งแรงเพิ่มขึ้นมาก แต่ไอหรือฝุ่นของเบริลเลียม เป็นพิษต่อร่างกาย ระดับการทนได้ของร่างกายคือ 0.002 mg/m³ ของอากาศ เกลือของเบริลเลียม เมื่อสัมผัสกับผิวหนังอาจเป็นพิษได้ แต่เข้าสู่ร่างกายในปริมาณไม่มากไม่ปรากฏเป็นพิษต่อร่างกาย

ภาพที่ 2.3 โลหะเบริลเลียมเป็นโลหะแข็งสีเทาขาว [4]

เนื่องจากปริมาณเบริลเลียมในทองแดงที่มีผลต่อสมบัติเชิงกลใช้ในสัดส่วนไม่เกิน 2.7% โดยน้ำหนัก จึงอยู่ในรูปสารละลายของแข็งที่อุณหภูมิสูงและลดอุณหภูมิต่ำลงมาความสามารถใน การละลายเบริลเลียมในเนื้อทองแดงลดลง ทำให้สามารถเพิ่มความแข็งและความแข็งแรงได้ด้วย การตกตะกอน โดยความแข็งภายหลังการอบบ่มจะเพิ่มความแข็งสูงถึง 40 H_{RC} และความเค้นแรง ดึงสูงสุดที่ 1300-1400 MPa โดยมีอัตราการยืดตัวประมาณ 2% ซึ่งเป็นสมบัติเชิงกลที่สูงกว่า ทองแดงผสมกลุ่มอื่น การเพิ่มปริมาณเบริลเลียมให้สูงเกิน 2.7% ไม่ทำให้สมบัติทางกลดีขึ้น นอกจากนี้ยังสามารถลดปริมาณเบริลเลียมต่ำกว่า 2.7% โดยเติมธาตุอื่นเช่น โคบอลต์ ซึ่งจะให้ บรอนซ์ที่มีคุณภาพดีเทียบเท่าบรอนซ์เบริลเลียม 2.7%

2.4 สมบัติทางกายภาพของเงิน ทองแดง เบริลเลียม ดีบุกและอะลูมิเนียม

ตารางที่ 2.2 แสดงสมบัติทางกายภาพของเงิน ทองแดง และเบริลเลียม พบว่า เบริลเลียม เป็นธาตุเบาสามารถลอยแยกตัวออกจากน้ำโลหะเงินที่มีความหนาแน่นสูงมาก และเกิด ออกซิเดชันได้ง่ายทำให้สูญเสียเบริลเลียมได้ในขณะหลอม

ธาตุ	น้ำหนัก อะตอม (amu)	โครงสร้าง ผลึกที่ 20 [°] C	รัศมี อะตอม (nm)	ความ หนาแน่น ที่ 20 [°] C (g/cm ³)	จุด หลอมเหลว ([°] C)	ค่าโมดูลัส ยืดหยุ่น E(10 [°] psi)
เงิน (Ag)	107.87	FCC	0.144	10.49	960	16.3
ทองแดง (Cu)	63.54	FCC	0.128	8.94	1083	36
เบริลเลียม (Be)	9.01	HCP	0.149	1.85	1278	40-44
ดีบุก (Sn)	118.69	BCT	0.145	7.29	231.9	50
อะลูมิเนียม(Al)	26.98	FCC	0.143	2.70	660.32	70

ตารางที่ 2.2 สมบัติทางกายภาพของ เงิน ทองแดง เบริลเลียมและดีบุก [8]

ดีบุก [9] (Tin) คือ ธาตุเคมีที่มีหมายเลขอะตอม 50 และสัญลักษณ์คือ Sn (มาจากคำใน ภาษาลาตินว่า Stannum) ดีบุกเป็นโลหะที่ไม่ดี หลอมเหลวได้ง่าย ทนต่อการกัดกร่อน และถูก ออกซิไดซ์ในอากาศได้ดี พบในโลหะผสมหลายชนิด ใช้ประโยชน์ในการเคลือบโลหะเพื่อป้องกัน การกันกร่อน ดีบุกส่วนใหญ่สกัดได้จากแร่แคสสิเตอร์ไรต์ (Cassiterite) สามารถช่วยเพิ่มความแข็ง ความแข็งแรงให้กับเงินสเตอร์ลิงได้โดยการอบบ่ม

ทองแดง [10] (Copper) คือธาตุที่มีเลขอะตอม 29 และสัญลักษณ์คือ Cu ทองแดงอยู่ใน ตารางธาตุหมู่ 29 เป็นที่ทราบกันว่ามนุษย์ใช้ประโยชน์จากทองแดงมาไม่น้อยกว่า 10,000 ปี ทองแดงนั้นเป็นโลหะที่มีคุณประโยชน์นานัปการ โดยเฉพาะทองแดงในวงการของ อุตสาหกรรม เช่น สายลวดทองแดง เครื่องจักรต่าง ๆ ฯลฯ บทบาทของทองแดงกับเครื่องประดับ อาจจะไม่เป็นที่ประจักษ์ชัด แต่หลายคนอาจลืมไปว่า โลหะผสมมีค่าหลายชนิด มีทองแดงเป็น ส่วนประกอบสำคัญที่จะขาดไปไม่ได้ เช่น นาก ลักษณะเด่นของนาก คือมีสีออกทองแดงผสมทอง โดยมีทองคำผสมอยู่ในอัตราประมาณ 37%

นอกจากนั้นจะเป็นส่วนประกอบของทองแดง และเงิน ส่วนทองชมพู ลักษณะเด่นของทอง ชมพู คือจะมีสีสุกใส ทองอมชมพู สีชมพูอ่อนนั้น ได้มาจากการผสมทองแดงในสัดส่วนที่น้อยกว่า ทองแดงที่ผสมในโลหะนาก โดยใช้ทองเป็นส่วนผสมประมาณ 75% และโลหะอื่น ๆ เป็นลำดับ ต่อมา ลำดับสุดท้ายคือ ทองแดง เรดโกลด์ ลักษณะเด่นของเรดโกลด์ จะคล้ายคลึงกับทองชมพู มาก มีส่วนผสมของโลหะแต่ละชนิดเหมือนกัน โดยปัจจัยหลักที่ทำให้ทองสองชนิดต่างกันคือ ปริมาณของทองแดง โดยจะเพิ่มทองแดงในอัตราส่วนที่มากกว่าทองชมพู การเติมทองแดงลงใน โลหะเงินผสม จะช่วยเพิ่มความแข็งแรงให้โลหะเงินได้มากขึ้น

ภาพที่ 2.5 (ก) แร่ทองแดง และ (ข) ม้วนแผ่นทองแดงที่ผ่านการแปรรูปแล้ว [10]

ธาตุผสมหลายชนิดที่มีบทบาทเพิ่มความแข็งและความแข็งแรงให้กับโลหะเงินแสดงใน ภาพที่ 2.6 พบว่าแมกนีเซียมและอะลูมิเนียมให้ความแข็งสูง และสามารถบ่มเพิ่มความแข็งด้วย การตกตะกอน แต่ธาตุทั้งสองสามารถออกซิไดซ์กับอากาศเป็นสารประกอบออกไซด์ได้ง่ายและยัง
ทำให้น้ำโลหะมีความหนืดเพิ่มสูงขึ้น ธาตุสังกะสีและนิกเกิลเพิ่มความแข็งในโลหะเงินจากการเกิด สารละลายของแข็งจึงไม่อาจใช้ร่วมกับทองแดงกับเบริลเลียมเพื่อเพิ่มความแข็งแรงด้วยการ ตกตะกอน ดังนั้น ธาตุที่เหมาะสมสำหรับการผลิตเงินสปริงประกอบด้วย ทองแดง และเบริลเลียม แต่เนื่องจากในอดีตการเติมเบริลเลียมในเนื้อเงินมีข้อจำกัดเนื่องจากแหล่งการเติมเบริลเลียมจะได้ จากบรอนซ์เบริลเลียมที่มีเบริลเลียม 2.7% เท่านั้น เบริลเลียมสามารถละลายในเงินเกรด 935 ใน ปริมาณ 0.17%โดยน้ำหนัก ปัจจุบันมีการนำเข้าทองแดงที่มีปริมาณเบริลเลียมมากขึ้น เช่น ทองแดงผสมเบริลเลียม 10 % ทำให้สามารถผสมเบริลเลียมในเนื้อเงินได้มากขึ้นถึง 0.65% ส่งผล ต่อการปรับปรุงสมบัติเงินสปริงเกรด 935 ได้มากขึ้นและสามารถศึกษาอิทธิพลของธาตุเบริลเลียม ได้ชัดเจนขึ้นด้วย [11]

ภาพที่ 2.6 ความสัมพันธ์ระหว่างความแข็งแบบวิกเกอร์กับปริมาณธาตุชนิดต่างๆ ในเงินผสม [11] อะลูมิเนียม [12] (Aluminum) คือ ธาตุในตารางธาตุที่มีสัญลักษณ์ Al และมีเลข อะตอม 13 เป็นโลหะที่มันวาวและอ่อนดัดง่าย มีคุณสมบัติเด่น คือ ต่อต้านการออกซิเดชันเป็น เยี่ยม (เนื่องจากปรากฏการณ์ Passivation) แข็งแรง และน้ำหนักเบา มีการใช้อะลูมิเนียมใน อุตสาหกรรมหลายประเภท เพื่อสร้างผลิตภัณฑ์ต่าง ๆ มากมาย และอะลูมิเนียมสำคัญต่อ เศรษฐกิจโลกอย่างมาก ชิ้นส่วนโครงสร้างที่ผลิตจากอะลูมิเนียมสำคัญต่ออุตสาหกรรมอากาศ ยาน และสำคัญในด้านอื่น ๆ ของการขนส่งและการสร้างอาคาร ซึ่งต้องการน้ำหนักเบา ความ ทนทาน และความแข็งแรง มีการค้นพบครั้งแรกในปี ค.ศ. 1820 ณ แหล่งบอกไซด์ ประเทศฝรั่งเศส ซึ่งต่อมาได้ใช้เป็นชื่อเรียกแร่อะลูมิเนียมจนถึงปัจจุบัน แม้โลหะอะลูมิเนียมจะเป็นธาตุชนิดใหม่ แต่ มีคุณสมบัติเด่นหลายประการ และสามารถนำไปใช้ได้อย่างกว้างขวาง ในอุตสาหกรรมหลาย ประเภท ทำให้การใช้ประโยชน์จากโลหะอะลูมิเนียม มีปริมาณเพิ่มขึ้นมาโดยตลอด จนนับเป็น โลหะนอกกลุ่มเหล็กที่มีปริมาณการใช้มากที่สุดในโลก อะลูมิเนียมเป็นโลหะที่พบมากบริเวณเปลือกโลก เป็นธาตุที่พบมากเป็นอันดับสาม รอง จากธาตุซิลิคอน คือ พบประมาณ 7.5% โดยมวล อะลูมิเนียมในธรรมชาติอยู่ในรูปของ สารประกอบชนิดต่าง ๆ เช่น บอกไซด์ (Al₂O₃.2H₂O) ไครโอไลต์ (Na₃AIF₆) แต่ในธรรมชาติ อะลูมิเนียมพบในรูปแร่บอกไซต์เป็นหลัก อะลูมิเนียมบริสุทธิ์มีสีขาวเงิน นำไฟฟ้าได้ดี และนำได้ดี ขึ้นเมื่อมีความบริสุทธิ์เพิ่มขึ้น มีความว่องไวในการป้องกันไม่ให้ผุกร่อน ต่อไป ทับทิม ไพลิน และ บุศราคัมที่ใช้เป็นเครื่องประดับ เป็นพลอยประเภทคอรันดัมสูตรเคมี คือ Al₂O₃ ซึ่งมีความแข็งรอง จากเพชร แต่มีสีต่างกันเพราะมีธาตุอื่นที่เป็นมลทินต่างกัน ถ้ามีโครเมียมออกไซด์ปนอยู่จะมีสีชมพู ถึงแดงเช้มเรียกว่า ทับทิม ถ้ามีไทเทเนียมและเหล็กออกไซด์ปนอยู่จะมีสีน้ำเงินเรียกว่า ไพลิน และ ถ้ามีเหล็กออกไซด์ปนอยู่จะมีสีเหลืองเรียกว่า บุศราคัม

ภาพที่ 2.7 (ก) อะลูมิเนียมบริสุทธิ์ 99% และ (ข) อะลูมิเนียมที่ผ่านการแปรรูปแล้ว [12]

2.5 สมบัติทางกลของวัสดุ

สมบัติเซิงกล (Mechanical properties) [13] ก็คือ พฤติกรรมอย่างหนึ่งของวัสดุ ที่ สามารถแสดงออกมาเมื่อมีแรงจากภายนอกมากระทำ สมบัติทางกล ได้แก่ ความแข็งแรง ความ แข็ง ความสามารถในการยืดตัว ความยืดหยุ่น ความเหนียว เป็นต้น ในงานวิศวกรรมสมบัติเชิงกล มีความสำคัญมาก เพราะเมื่อเราจะเลือกใช้วัสดุใด ๆ ก็ตาม สิ่งแรกที่จะนำพิจารณาก็คือ สมบัติ เชิงกลของมัน การที่เครื่องจักรหรืออุปกรณ์ใด ๆ จะสามารถทำงานได้อย่างปลอดภัยขึ้นอยู่กับ สมบัติเชิงกลของวัสดุที่ใช้ทำเครื่องจักร อุปกรณ์นั้น ๆ เป็นสำคัญ ซึ่งในงานวิจัยนี้เป็นการทดลอง หาและพัฒนาโลหะเงินที่มีความเป็นสปริงที่ดีในการใช้ทำเครื่องประดับ โดยค่าจำเป็นที่ต้องใช้ใน การดูความเหมาะสมของสมบัติความเป็นสปริง มีดังนี้ <u>ค่าโมดูลัสยืดหยุ่น (Modulus of Elasticity</u>) มีหน่วยเป็น GPa หรือ GN/m² คืออัตราส่วน ของความเค้น-ความเครียด (Stress-Strain) ในบริเวณที่ต่ำกว่าขีดจำกัดสัดส่วน (Proportional Limit) ความขันเส้นตรงคือค่า Stiffness หรือ Springiness โดย Stiffness คือความสามารถของ วัสดุที่ยังคงรักษารูปร่างเดิมไวเมื่อถูกแรงกระทำ ถ้าภาระเป็นแบบแรงดึงหรือแรงอัดจะเรียกว่า Young's modulus หรือ Modulus of Elasticity (E) ถ้าเป็นแรงเฉือนจะเรียกว่า Modulus of Rigidity หรือ Shear Modulus (G) ซึ่งค่าโมดูลัสจะมีความสัมพันธ์กับอัตราส่วนปัวซอง (Poisson's Ratio) การวัดค่าโมดูลัสยืดหยุ่นที่ดีสามารถใช้ค่าที่ได้จากการทดลองแรงดึง (Tensile Test) และวัดโดยใช้ค่าความถี่ธรรมชาติจากการสั่นสะเทือนทางกล (Natural Frequency of Vibration)

<u>ความเค้นจุดคราก (Yield Strength</u>, σ_y) มีหน่วยเป็น MPa หรือ MN/m² จะเป็นจุดแบ่ง ระหว่างพฤติกรรมการคืนรูปกับพฤติกรรมการคงรูป วัสดุหลายชนิด เช่น อะลูมิเนียมหรือทองแดง ไม่แสดงจุดครากอย่างชัดเจน แต่สามารถกำหนดความเครียดที่ 0.1-0.2% ของความยาวกำหนด เดิม แล้วลากเส้นขนานกับกราฟช่วงแรกไปจนตัดเส้นกราฟที่โค้งไปทางด้านขวา ดังภาพที่ 2.8

<u>ความเป็นสปริง</u> การพิจารณาความเป็นสปริง ค่าที่จะนำมาเป็นตัวบ่งชี้ถึงความ เหมาะสม คือ ค่าโมดูลัสรีไซเลียน, Modulus of Resilience (^{of}/_{2E}. v_r) เนื่องจากสปริงเป็นชิ้นส่วน ที่เมื่อได้รับแรงกระทำแล้วจะเกิดการเปลี่ยนแปลงรูปร่าง แต่เมื่อเอาแรงกระทำออกก็สามารถกลับ สู่รูปร่างเดิมได้ ดังนั้นสมบัติที่สำคัญของสปริงก็คือ การเก็บพลังงานช่วงยืดหยุ่น (Elastic energy storing) สมบัติทางกลที่บ่งชี้ถึง Modulus of Resilience คือพลังงานความเครียดต่อหน่วย ปริมาตรในการออกแรงทำให้วัสดุเปลี่ยนแปลงรูปร่างแบบยืดหยุ่นจากสภาพทีไม่มีภาระกรรมใดๆ ไปจนถึงจุดที่เกิดการคราก (Yielding)

ภาพที่ 2.8 กราฟความเค้น - ความเครียดของโลหะ [13]

การคำนวณค่าโมดูลัสรีไซเลียนของวัสดุที่ถูกทดสอบแรงดึงตามแนวแกนแบบทิศทางเดียว หาได้จากพื้นที่ใต้กราฟของความเค้น-ความเครียดทางวิศวกรรม

$$U_{\rm r} = \int^{\sigma = \sigma_y} \sigma d\varepsilon \tag{1}$$

หากสมมุติว่าพื้นที่ดังกล่าวเป็นสามเหลี่ยม

$$U_{\rm r} = 1/2\sigma_y \varepsilon_y$$
 (2)

โดย σ_y คือ ค่าความเค้น ณ จุดที่เกิดการคราก ϵ_y คือ ค่าความเครียดที่เกิดจากการคราก

หน่วยของสมบัติสปริงหรือค่าโมดูลัสรีไซเลียน จึงเท่ากับผลคุณของหน่วยแกนทั้งสองใน กราฟความเค้น-ความเครียด สำหรับระบบ SI จะมีหน่วยเป็นจูลต่อลูกบาศก์เมตร (J/m³ หรือ Pa) ในระบบอังกฤษมีหน่วยเป็น นิ้ว - ปอนด์แรงต่อลูกบาศก์เมตร (in-Ib/in³ หรือเทียบเท่ากับ psi) สรุปได้ว่าพื้นที่ใต้กราฟความเค้น-ความเครียด คือ พลังงานต่อหนึ่งหน่วยปริมาตรนั่นเอง

จากกฎของฮูก (Hook's law)

$$\mathbf{E} = \sigma_{\mathbf{y}} / \varepsilon_{\mathbf{y}} \tag{3}$$

เมื่อแทนค่า $\mathcal{E}_{\mathbf{y}}$ ในสมการ 2 จะได้

$$U_{\rm r} = 1/2\sigma_y \varepsilon_y = 1/2\sigma_y (\sigma_y/E) = \sigma_y^2/2E \tag{4}$$

สำหรับสปริงต้องการค่าสมการ 3 มีค่าสูง และเพื่อไม่ให้สปริงเกิดความเสียหายค่าความ เค้นที่ใช้ได้ ต้องไม่เกินค่าความเค้นจุดคราก σ_y นั้นคือ $\sigma \leq \sigma_y$ ถึงแม้ว่า Leaf Spring จะมีหลายรูปแบบแต่โดยพื้นฐานจะมีลักษณะเป็นคานอิลาสติก รับแรงดัด โดยคานที่มีภาคตัดขวางสี่เหลี่ยมผืนผ้าแบบตัวรองรับอย่างง่ายรับภาระ F ตรงกลาง จะ มีระยะแอ่น δ ดังภาพ 2.9

CHULALONGKORN UNIVERSITY

ค่าความเค้นสูงสุดจะอยู่ที่ผิวตรงจุดกึ่งกลางของคาน (เพราะมีโมเมนต์ดัดมากที่สุด) ดังนั้น

$$\sigma = \frac{3Fl}{2bt^2} \tag{6}$$

สปริงจะไม่เสียรูปร่างอย่างถาวรระหว่างใช้งาน นั่นคือเกิด Spring Back จะต้องมีค่า ความเค้นสูงสุดต่ำกว่าค่าความเค้นจุดคราก (Yield Strength)

$$(\sigma_{v}/E) > 6 \,\delta T/l^2 \tag{7}$$

จากสมการ 7 แสดงให้เห็นว่าเมื่อสปริงรับภาระ *F* แล้วจะแอ่นตัวไปเป็นระยะ δ ดังนั้น อัตราส่วน σ_y/E จะต้องมีค่าสูงเพียงพอที่จะหลีกเลี่ยงการเสียรูปแบบถาวร สปริงที่ดีควรทำด้วย วัสดุที่มีค่านี้สูง

ตัวอย่างการเลือกวัสดุทำสปริง

กำหนดให้คานสปริงมี							
ความหนา	(<i>t</i>) =	2 มิลลิเมตร	ความกว้าง(<i>b</i>)	=	50 มิลลิเมตร		
ความยาว	(/) =	127 มิลลิเมตร	ระยะแอ่น	\leq	6.35 มิลลิเมตร		
แทนค่าในสมกา	ารที่ 7						

$(\sigma_v/E) > 6 x 6.35 x 2/127^2 = 4.7 x 10^{-3}$

ตารางที่ 2.3 แสดงค่าของ $\sigma_y^2/2E$ วัสดุที่จะนำมาทำสปริงจะต้องมีค่าความเค้น จุดคราก (Yield strength) ที่สูง ซึ่งสามารถทำได้โดยการเพิ่มความแข็งแรงด้วยทำให้เป็น สารละลายของแข็ง(Solid solution strengthening, Work hardening) และการอบบ่ม (Precipitation strengthening) เช่น ในสปริงของเหล็กกล้า (Spring Steel) การอบอ่อนทำให้ ความแข็งแรงต่ำลงและเป็นสาเหตุให้อนุภาคตกตะกอนหยาบขึ้น ค่าความเค้นจุดครากที่ลดลงจะ ทำให้วัสดุไม่เหมาะทำสปริง เมื่อเทียบค่า $\sigma_y^2/2E$ จากตาราง แล้วจะเห็นได้ว่าสปริงของ เหล็กกล้า(Spring Steel) ซึ่งเป็นวัสดุที่ราคาถูกที่สุดในตารางก็สามารถนำมาเป็นวัสดุสำหรับสปริง ได้ แต่จะมีค่าความปลอดภัย (Safety Factor) น้อย ส่วนบรอนซ์เบริลเลียม มีความเหมาะสม สำหรับทำสปริง เนื่องจากมีค่าความปลอดภัยมากที่สุด แต่มีราคาแพง

ชนิดของวัสดุ	$\sigma_y^2/2E$ (MPa)	
Wrought iron	0.048265	
Steel 0.13 % C	0.075845	
Steel 0.25 % C	0.16548	
Steel 0.53 % C	0.6895	
Steel 1.2 % C	1.9306	
Steel Spring	2.2064	
Cast iron	0.006985	
Nickel cast iron	0.062055	
Rolled Bronze	0.4137	
Duralumin	0.117215	
Brass (cold-rolled)	3.38	
Stainless steel (cold-rolled)	5.00	
Beryllium copper	15.9	

ตารางที่ 2.3 ค่า Modulus of Resilience ของวัสดุชนิดต่างๆ [15, 16]

- การทดสอบความแข็งของวัสดุ (Hardness test) ค่าความแข็งของวัสดุนั้น ถือได้ว่าเป็น สมบัติเชิงกลเบื้องต้น ที่สามารถบอกถึงคุณสมบัติโดยรวมของวัสดุนั้นได้ ซึ่งสมบัติเชิงกลอื่น ๆ ต้องใช้ทั้งเครื่องมือในการวัด และการเตรียมชิ้นงานซับซ้อนหลากหลายขั้นตอนมากกว่า ได้แก่ ความต้านทานแรงดึง ความเหนียว ความยืดหยุ่นของวัสดุ การทนต่อแรงเสียดสีหรือการสึกหรอ ต่าง ๆ สมบัติความเป็นสปริง เป็นต้น โดยการวัดค่าความแข็งนั้น ชิ้นงานเตรียมแค่ผิวให้มีความ เรียบ และปัจจุบันการวัดค่าสามารถทำได้ง่ายขึ้น เพราะอุปกรณ์และเครื่องวัดความแข็งส่วนใหญ่ นั้นจะเป็นระบบอัตโนมัติแทบทั้งสิ้น แต่สิ่งที่ต้องคำนึงถึงอย่างมาก คือ วิธีทดสอบต้องมีการเลือก ให้เหมาะสมเนื่องจากหลายประเภท โดยวิธีการวัดค่าความแข็งที่นิยมใช้งานในวัสดุโลหะนั้นมี 3 วิธี ดังนี้

 การทดสอบแบบบริลเนลล์ (Brinell hardness test) การทดสอบความแข็งแบบ บริลเนลล์ ใช้การกดของหัวกดทรงกลมที่ผลิตจากเหล็กกล้าชุบแข็ง หรือทังสเตนคาร์ไบด์ ที่มีขนาด เส้นผ่านศูนย์กลาง D ลงบนพื้นผิวชิ้นงานทดสอบด้วยแรงกด F ดังรูป โดยยังคงค้างแรงกดไว้เป็น ระยะเวลา 10 ถึง 15 วินาที สำหรับวัสดุประเภทเหล็กหรือเหล็กกล้า และคงค้างแรงเป็นระยะเวลา 30 วินาที สำหรับโลหะอ่อน เช่น อะลูมิเนียม และทองเหลือง ทำให้เกิดรอยกดที่มีความลึก t และมี เส้นผ่านศูนย์กลางรอยกดเฉลี่ย d ซึ่งได้จากการวัดเส้นผ่านศูนย์กลางรอยกดในแนวตั้งฉากกันสอง ค่า แล้วหาค่าเฉลี่ย โดยเครื่องมือวัดตองมีความละเอียด 0.01 มิลลิเมตร ค่าความแข็งคำนวณได้ จากแรงกดหารด้วยพื้นที่รอยกด นั่นคือ

Brinell Hardness =
$$\frac{F}{A} = \frac{0.102F}{0.5\pi D[(D-\sqrt{D^2-d^2})]}$$
 (8)

ภาพที่ 2.10 ลักษณะการกดทดสอบความแข็งแบบบริลเนลล์ [17]

ภาพที่ 2.11 ลักษณะการกดทดสอบความแข็งบริลเนลล์ที่ไม่ถูกต้อง [18]

ในทางปฏิบัตินั้นไม่จำเป็นต้องคำนวณค่าความแข็งจากสูตรคำนวณ เพราะสามารถนำ ความยาวเฉลี่ยของเส้นผ่านศูนย์กลางรอยกด (d) และขนาดแรงกดที่ใช้ เทียบกับตารางค่าความ แข็งที่ได้คำนวณไว้แล้วได้โดยตรง ดังแสดงในตารางที่ 2.4 โดยทั่วไปลูกบอลที่ใช้เป็นหัวกดมีขนาด 10 มิลลิเมตร และสามารถใช้แรงกดได้ตั้งแต่ 500 กิโลกรัม สูงสุดถึง 3,000 กิโลกรัม หน่วยความ แข็งของการทดสอบแบบบริลเนลล์ คือ BHN หรือ H_B

ข้อดีสำหรับการทดสอบวิธีนี้คือ การวัดค่าความแข็งแบบบริลเนลล์ จะให้รอยกดที่กว้าง และลึก เพราะหัวกดมีขนาดใหญ่ ดังนั้น ความหยาบของพื้นผิวชิ้นงานทดสอบและความไม่ สม่ำเสมอของโครงสร้างจุลภาคจะส่งผลน้อยต่อค่าทดสอบ หรือกล่าวได้ว่าให้ค่าความแข็งเฉลี่ย ของวัสดุทดสอบ ส่วนข้อเสีย ค่าความแข็งได้มาจากการวัดเส้นผ่านศูนย์กลางรอยกด ฉะนั้นอาจ เกิดความผิดพลาดจากการอ่านค่าของผู้ทดสอบได้ นอกจากนี้รอยกดมีขนาดใหญ่ จึงไม่สามารถ ทำการทดสอบกับชิ้นงานขนาดเล็ก หรือชิ้นงานที่บางมาก ๆ ได้

เส้นผ่านศูนย์กลาง	ค่าความแข็งบริเนลล์ขนาดน้ำหนักต่างๆ					
รอยกด (mm)	500 kgf	1000 kgf	1500 kgf	2000 kgf	2500 kgf	3000 kgf
2.00	158	316	473	632	788	945
2.05	150	300	450	600	750	899
2.10	143	286	428	572	714	856
2.15	136	272	408	544	681	817
2.20	130	260	390	520	650	780
2.25	124	248	372	496	621	745
2.30	119	238	356	476	593	712
2.35	114	228	341	456	568	682
2.40	109	218	327	436	545	653
2.45	104	208	313	416	522	627
2.50	100	200	301	400	500	601
2.55	96.3	193	289	385	482	578
2.60	92.6	185	278	370	462	555
2.65	89.0	178	267	356	445	534
2.70	85.7	171	257	343	429	514
2.75	82.6	165	248	330	413	495
2.80	79.6	159	239	318	398	477
2.85	76.8	154	230	307	384	461
2.90	74.1	148	222	296	3/1	444
2.95	(1.5	143	215	286	358	429
3.00	69.1	138	207	210	340	415
5.05	00.0	104	200	201	334	401
5.10	04.0	129	194	258	324	366
2.10	60.5	125	100	250	202	262
3.20	E0.4	121	174	242	202	262
3.20	56.0	114	170	224	295	302
3.30	55.1	110	165	220	276	331
3.40	53.4	107	160	214	267	321
3.45	51.8	104	156	207	250	311
3.50	50.3	104	151	201	252	302
3 55	48.9	97.8	147	196	244	293
3.60	47.5	95.0	142	190	238	285
3.65	46.1	92.2	138	184	231	277
3.70	44.9	89.8	135	180	225	269
3.75	43.6	87.2	131	174	218	262
3.80	42.4	84.8	127	170	212	255
3.85	41.3	82.6	124	165	207	248
3.90	40.2	80.4	121	161	201	241
3.95	39.1	78.2	117	156	196	235
4.00	38.1	76.2	114	152	191	229
4.05	37.1	74.2	111	148	186	223
4.10	36.2	72.4	109	145	181	217
4.15	35.3	70.6	106	141	177	212
4.20	34.4	68.8	103	138	172	207
4.25	33.6	67.2	101	134	167	201
4.30	32.8	65.6	98.3	131	164	197
4.35	32.0	64.0	95.9	128	160	192
4.40	31.2	62.4	93.6	125	156	187
4.45	30.5	61.0	91.4	122	153	183
1	1		1			1

ตารางที่ 2.4 ตารางเทียบค่าความแข็งที่ได้จากการทดสอบแบบบริลเนลล์ [17]

เส้นผ่านศูนย์กลาง	ค่าความแข็งบริเนวส์ที่ขนาดน้ำหนักต่างๆ					
598UØ (mm)	500 kgf	1000 kgf	1500 kgf	2000 kgf	2500 kgf	3000 kgf
4.25	33.6	67.2	101	134	167	201
4.30	32.8	65.6	98.3	131	164	197
4.35	32.0	64.0	95.9	128	160	192
4.40	31.2	62.4	93.6	125	156	187
4.45	30.5	61.0	91.4	122	153	183
4.50	29.8	59.6	89.3	119	149	179
4.55	29.1	58.2	87.2	116	145	174
4.60	28.4	56.8	85.2	114	142	170
4.65	27.8	55.6	83.3	111	139	167
4.70	27.1	54.2	81.4	108	136	163
4.75	26.5	53.0	79.6	106	133	159
4.80	25.9	51.8	77.8	104	130	156
4.85	25.4	50.8	76.1	102	127	152
4.90	24.8	49.6	74.4	99.2	124	149
4.95	24.3	48.6	72.8	97.2	122	146
5.00	23.8	47.6	71.3	95.2	119	143
5.05	23.3	46.6	69.8	93.2	117	140
5.10	22.8	45.6	68.3	91.2	114	137
5.15	22.3	44.6	66.9	89.2	112	134
5.20	21.8	43.6	65.5	87.2	109	131
5.25	21.4	42.8	64.1	85.6	107	128
5.30	20.9	41.8	62.8	83.6	105	126
5.35	20.5	41.0	61.5	82.0	103	123
5.40	20.1	40.2	60.3	80.4	101	121
5.45	19.7	39.4	59.1	78.8	98.5	118
5.50	19.3	38.6	57.9	77.2	96.5	116
5.55	18.9	37.8	56.8	75.6	95.0	114
5.60	18.6	37.2	55.7	74.4	92.5	111
5.65	18.2	36.4	54.6	72.8	90.8	109
5.70	17.8	35.6	53.5	71.2	89.2	107
5.75	17.5	35.0	52.5	70.0	87.5	105
5.80	17.2	34.4	51.5	68.8	85.8	103
5.85	16.8	33.6	50.5	67.2	84.2	101
5.90	16.5	33.0	49.6	66.0	82.5	99.2
5.95	16.2	32.4	48.7	64.8	81.2	97.3
6.00	15.9	31.8	47.7	63.6	79.5	95.5
6.05	15.6	31.2	46.8	62.4	78.0	93.7
6.10	15.3	30.6	46.0	61.2	76.7	92.0
6.15	15.1	30.2	45.2	60.4	75.3	90.3
6.20	14.8	29.6	44.3	59.2	73.8	88.7
6.25	14.5	29.0	43.5	58.0	72.6	87.1
6.30	14.2	28.4	42.7	56.8	71.3	85.5
6.35	14.0	28.0	42.0	56.0	70.0	84.0
6.40	13.7	27.4	41.2	54.8	68.8	82.5
6.45	13.5	27.0	40.5	54.0	67.5	81.0

 2. การทดสอบแบบร็อกเวลล์ (Rockwell hardness test) เป็นการวัดค่าความแข็งของวัสดุ โดยการวัดความลึกของหัวกดซึ่งทำด้วยเพชรทรงกรวย หรือ ลูกบอลเหล็กกล้าที่มีขนาด 1.6-12.7 มิลลิเมตร (1/16 – 1/2 นิ้ว) และเลี่ยงอิทธิพลของผิวชิ้นงานทดสอบด้วยการใช้แรงกดนำค่าหนึ่ง (minor load) เพื่อกำหนดจุดอ้างอิงในการวัดความลึก การวัดความแข็งแบบร็อกเวลล์นี้ สามารถ แบ่งออกได้หลายหน่วย การทดสอบจากการใช้แรงกด และหัวกดที่ต่างกัน แต่วิธีการทดสอบที่นิยม ใช้ทดสอบกับโลหะมี 3 วิธี คือ

- O ร็อกเวลล์ซี (Rockwell−C)
- o ร็อกเวลล์บี (Rockwell B)
- ร้อกเวลล์เอ (Rockwell-A)

การทดสอบความแข็งแบบร็อกเวลล์ซี (Rockwell – C) ใช้หัวกดเพชรทรงกรวย มีมุมปลาย 120° ในการทดสอบเริ่มต้นจะให้แรงกดนำ (Minor load) 10 kgf กดลงบนผิวชิ้นงานทดสอบ จากนั้นเพิ่มแรงกดหลัก (Major load) อีก 140 kgf ค่าความแข็งจะถูกอ่านเมื่อนำแรงกดหลักออก ซึ่งเนื้อชิ้นงานที่ถูกกดจะคืนตัวกลับในปริมาณหนึ่ง และคงเหลือเพียงแรงกดนำ ซึ่งปลายหัวกดจะ อยู่ ณ ตำแหน่งที่เกิดจากการยุบตัวอย่างถาวรของชิ้นงานทดสอบ ดังแสดงในภาพที่ 2.12

ภาพที่ 2.12 ลักษณะการกดของการวัดความแข็งแบบร็อคเวลล์ [17]

ในการคิดเป็นค่าความแข็งนั้น ถ้าให้ E คือค่าคงที่ซึ่งถูกแบ่งออกเป็น 100 ส่วน ส่วนละ 0.002 มิลลิเมตร และ e คือความลึกที่เกิดจากการเสียรูปอย่างถาวรจากการกด ก็จะสามารถ คำนวณค่าความแข็งได้ดังนี้

$$HRC = 100 - \frac{e}{0.002} \tag{9}$$

ดังนั้น วัสดุที่ถูกกดเขาไปลึกมากกว่า 0.2 mm หรือวัสดุอ่อน จะไม่สามารถทำการทดสอบ ความแข็งแบบร็อกเวลล์ซี (Rockwell – C) ได้ ในกรณีนี้ควรใช้การทดสอบความแข็งแบบร็อกเวลล์ บี(Rockwell – B) หรือเอ (Rockwell – A) แทน การทดสอบความแข็งแบบร็อกเวลล์บี (Rockwell – B) มีขั้นตอนเหมือนกับการทดสอบ ความแข็งแบบร็อกเวลล์ซี (Rockwell – C) แต่ใช้หัวกดที่ทำจากลูกบอลเหล็กกล้าซุบแข็ง ขนาด เส้นผ่านศูนย์กลาง 1/16 นิ้ว หรือ 1.59 มิลลิเมตร ใช้แรงกดหลัก 90 kgf เหมาะกับการทดสอบ วัสดุอ่อน เพราะมีการยืดช่วงของ E เป็น 0.26 มม. และแบ่งเป็น 130 ส่วน ส่วนละ 0.002 มม. ฉะนั้นค่าความแข็งจึงคำนวณได้จาก

$$HRB = 130 - \frac{e}{0.002} \tag{10}$$

การทดสอบความแข็งแบบร็อกเวลล์โอ (Rockwell – A) จะกระทำเช่นเดียวกันกับการ ทดสอบความแข็งแบบร็อกเวลล์ซี (Rockwell – C) คือใช้หัวกดเพชรทรงกรวย และกำหนดระยะ E = 0.2 มม. แต่ใช้แรงกดหลัก 60 kgf เพื่อให้เหมาะสมกับการทดสอบวัสดุที่อ่อนลง ในทางปฏิบัติไม่ จำเป็นต้องคำนวณค่าความแข็ง เพราะจะมีเข็มชี้บอกค่าความแข็ง หรือบางเครื่องเป็นระบบ อัตโนมัติ สามารถแสดงค่าความแข็ง เพราะจะมีเข็มชี้บอกค่าความแข็ง หรือบางเครื่องเป็นระบบ อัตโนมัติ สามารถแสดงค่าความแข็งเป็นตัวเลขโดยตรง การวัดความแข็งด้วยสเกลเอนี้ เนื่องด้วย น้ำหนักกดที่น้อยกว่านี้เอง ทำให้รอยกดของการทดสอบกับวัสดุเดียวกันตี้นกว่าเมื่อเทียบกับร็อก เวลล์ซี (Rockwell – C) จึงสามารถวัดความแข็งของวัสดุได้ในช่วงที่กว้างกว่าตั้งแต่โลหะอ่อน จนถึงเซรามิกส์ ซึ่งมีความแข็งสูง แต่ขอเสียในทางกลับกันก็คือ ความละเอียดในการแจกแจงระดับ ความแข็งจะหยาบกว่าเล็กน้อย อย่างไรก็ตามร็อกเวลล์เอสามารถใช้ทดสอบความแข็งของชิ้นงาน บาง ที่ความหนาต่ำสุดน้อยกว่ากรณีร็อกเวลล์ซี ทั้งนี้ขึ้นกับค่าความแข็งของวัสดุด้วย ถ้าความแข็ง มากรอยกดจะตื้น และความหนาต่ำสุดที่จะทดสอบได้ก็จะมีค่าน้อย หน่วยของสเกล A คือ HRA หรือ H_A โดยในตารางที่ 2.5 แรงที่ใช้สำหรับสเกลต่าง ๆ และการสเกลที่เหมาะสมสำหรับใช้งาน ทั่วไปของเครื่องวัดความแข็งแบบร็อคเวลล์

สเกล	ประเภทหัวกด	Major	การใช้งานทั่วไป
		laod, kgf	
А	หัวกดเพชร (two scales-	60	ขีเมนต์คาร์ใบด์, เหล็กกล้าที่มีขนาดบาง และเหล็กกล้าซุบแข้ง
	carbide and steel)		ผิวไม่ลึก (shallow case-hardening steel)
В	ลูกบอลเหล็กกล้าชุบแข็ง	100	โดหะผสมของทองแดง (Copper alloys), เหล็กกล้าที่ไม่แข้ง
	1/16 นิ้ว (1.588 มม.)		มาก (soft steels), โดหะผสมของอะลูมิเนียม (aluminum
			alloys) และเหล็กหล่ออบเหนียว (malleable iron)
С	หัวกดเพชร	150	เหล็กกล้า, เหล็กหล่อที่มีความแข็งสูง (hard cast irons),
			เหล็กหล่ออบเหนียวขนิดเพอร์ริติก, ไทเทเนียม, เหล็กกล้าขุบ
			แข็งที่ผิวลึก และวัลดุอื่นๆ ที่มีความแข็งมากกว่า 100 HRB
D	หัวกดเพชร	100	เหล็กกล้าที่มีขนาดบาง และเหล็กกล้าขุบแข้งที่ผิว และ
			เหล็กหล่ออบเหนียวชนิดเพอร์ริติก
E	ลูกบอลเหล็กกล้าซุบแข็ง	100	เหล็กหล่อ, โดหะผสมของอะลูมิเนียม โดหะผสมของ
	1/8 นิ้ว (3.175มม.)		แมกนีเขียม และโลหะลำหรับผลิตแบริ่ง
F	ลูกบอลเหล็กกล้าชุบแข็ง	60	โลหะผสมของทองแดงที่ผ่านการอบอ่อน และโลหะแผ่นบางที่ไม่
	1/16 นิ้ว (1.588 มม.)		แข็ง
G	ลูกบอลเหล็กกล้าชุบแข็ง	150	บรอนซ์ผสมฟอสฟอรัส (Phosphor bronze), โลหะผสม
	1/16 นิ้ว (1.588 มม.)		ทองแดง-เบอริเลียม (beryllium copper), เหล็กหล่ออบเหนียว.
			โดยความแข็งสูงสุดที่วัดได้จะต้องไม่เกิน 92 HRG เพื่อป้องกัน
			หัวกดเลี้ยหาย
н	ลูกบอลเหล็กกล้าชุบแข็ง	60	จะฉบิเบียบ ดังกะดี และสะกั่ว
	1/8 นิ้ว (3.175 มม.)		
к	ลูกบอลเหล็กกล้าชุบแข็ง	150	โดหะลำหรับผลิตแบริ่ง และวัสดุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้
	1/8 นิ้ว (3.175 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาดเล็กและใช้แรงกดลูงเพื่อป้องกัน
			ผลของ anvil effect
L	ลูกบอลเหล็กกล้าชุบแข็ง	60	โลหะสำหรับผลิตแบริ่ง และวัสดุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้
	1/4 นิ้ว (6.350 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาดเล็กและใช้แรงกดสูงเพื่อป้องกัน
			ผลของ anvil effect
М	ลูกบอลเหล็กกล้าชุบแข็ง	100	โลหะลำหรับผลิตแบริ่ง และวัสดุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้
	1/4 นิ้ว (6.350 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาคเล็กและใช้แรงกคลูงเพื่อป้องกัน
			ผลของ anvil effect
Р	ลูกบอลเหล็กกล้าซุบแข็ง	150	โลหะสำหรับผลิตแบริ่ง และวัสคุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้

ตารางที่ 2.5 สเกลและแรงกดที่ใช้สำหรับการวัดความแข็งแบบร็อคเวลล์ [17]

สเกล	ประเภทหัวกด	Major	การใช้งานทั่วไป
		laod, kgf	
	1/4 นิ้ว (6.350 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาดเล็กและใช้แรงกดลูงเพื่อป้องกัน
			ผลของ anvil effect
R	ลูกบอลเหล็กกล้าซุบแข็ง	60	โลหะสำหรับผลิตแบริ่ง และวัลคุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้
	1/2 นิ้ว (12.70 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาดเล็กและใช้แรงกดลูงเพื่อป้องกัน
			ผลของ anvil effect
S	ลูกบอลเหล็กกล้าซุบแข็ง	100	โลหะลำหรับผลิตแบริ่ง และวัลคุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้
	1/2 นิ้ว (12.70 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาดเล็กและใช้แรงกดสูงเพื่อป้องกัน
			ผลของ anvil effect
V	ลูกบอลเหล็กกล้าซุบแข็ง	150	โลหะสำหรับผลิตแบริ่ง และวัลคุอื่นๆ ที่บางและนิ่ม โดยเลือกใช้
	1/2 นิ้ว (12.70 มม.)		ลูกบอลเหล็กกล้าซุบแข็งขนาดเล็กและใช้แรงกดสูงเพื่อป้องกัน
			ผลของ anvil effect

การทดสอบความแข็งแบบวิกเกอร์ส (Vickers hardness test) เป็นการวัดค่าความแข็งที่ ใช้หัวกดเพชรทรงพีระมิดมุม 136° ฐานสี่เหลี่ยมจัตุรัส กดลงบนผิวชิ้นงานทดสอบดวยแรงกด F ซึ่ง มีขนาดตั้งแต่ (1–120 kgf) โดยกดลงตั้งฉากกับผิวชิ้นงาน การเคลื่อนที่ของหัวกดที่กดลงบน ชิ้นงานจะใช้เวลา 15 วินาที แต่จะคงค่าแรงกดไว้อีกระยะหนึ่ง ขึ้นกับชนิดของวัสดุ เช่นเหล็กกล้า จะคงแรงกดไวประมาณ 10 วินาที ในขณะที่วัสดุอ่อนจะคงแรงกดไว้นานกว่า เมื่อหัวกดถูกยกขึ้น รอยกดที่เกิดขึ้นจะถูกวัดขนาดโดยการวัดเส้นทแยงมุม d1 และ d2 ด้วยความละเอียดการวัด 0.002 มม. ดังภาพที่ 2.13 ค่าเฉลี่ยของเส้นทแยงมุม (d) จะถูกนำไปคำนวณค่าความแข็งดังนี้

ภาพที่ 2.13 ลักษณะการกดในการทดสอบความแข็งแบบวิกเกอร์ส [19]

$$HV = \frac{uรงกด}{\vec{w}u\vec{n}\vec{k}_{2502100}}$$
$$= \frac{0.102F \times 2cos 22^{\circ}}{d^{2}} = \frac{0.189F}{d^{2}}$$
(11)

เช่นเดียวกับการวัดความแข็งแบบบริเนลล์ ค่าความแข็งจะถูกคำนวณไว้ ที่ความยาวรอย กดและแรงกดขนาดต่าง ๆ ในรูปของตาราง หรืออาจมีการแสดงค่าความแข็งด้วยระบบอัตโนมัติ เป็นตัวเลขจากเครื่องทดสอบโดยตรง หน่วยความแข็งคือ H_v หรือ VHN

		01918	535 <i>3]]]]]]]</i>		
Rockwell	Rockwell	Rockwell	Brinell 10-	Brinell 10-mm	Vickers
C, 150 kgf	A, 60 kgf	B, 100 kgf	mm Standard	CarbideBall	Hardness
(HRC)	(HRA)	(HRB)	Ball	3000-kgf	Number
			3000-kgf	(HB)	(HV)
	05.4		(HB)		
68	85.6				940
01	85.0				900
00	04.0			(720)	000
60	03.9			(739)	002
62	02.4			(705)	600
62	82.3			(688)	746
61	81.8			(670)	720
60	81.2			(654)	607
50	80.7			634	674
58	80.1			615	653
57	79.6			595	633
56	79.0			577	613
55	78.5			560	595
54	78.0			543	577
53	77.4			525	560
52	76.8		(500)	512	544
51	76.3		(487)	496	528
50	75.9		(475)	481	513
49	75.2		(464)	469	498
48	74.7		451	455	484
47	74.1		442	443	471
46	73.6		432	432	458
45	73.1		421	421	446
44	72.5		409	409	434
43	72.0		400	400	423
42	71.5		390	390	412
41	70.9		381	381	402
40	70.4		3/1	3/1	392
39	69.9		202	262	262
27	69.0		333	333	262
36	69.4		336	336	354
35	67.9		327	327	345
34	67.4		310	310	336
33	66.8		311	311	327
32	66.3		301	301	318
31	65.8		294	294	310
30	65.3		286	286	302
29	64.8		279	279	294
28	64.3		271	271	286
27	63.8		264	264	279
26	63.3		258	258	272
25	62.8		253	253	266
24	62.4		247	247	260
23	62.0		243	243	254
22	61.5		237	237	248
21	61.0	1	221	221	243

ตารางที่ 2.6 ตารางเทียบค่าความแข็งของวิธีวัดแบบต่าง ๆ [17]

2.6 ระบบสมดุลเฟสของเงิน-ทองแดง-เบริลเลียม-ดีบุก

จากแผนภูมิสมดุลในภาพที่ 2.14 และ 2.15 พบว่า เบริลเลียมสามารถละลายให้ สารละลายของแข็ง (α) สูงสุดได้ 2.7% ที่ 866°C เฟส α มีระบบผลึก FCC เป็นโครงสร้างที่มี ความเหนียวสูงที่ 866°C เกิดปฏิกิริยาเพอร์ริเทคติก ของเหลวรวมตัวกับเฟส α เกิด เฟส β ใน ระบบผลึก BCC โดยการวางตัวของอะตอมเบริลเลียมไม่เป็นระเบียบ (Disordered phase) มี ความแข็งสูงกว่าเฟส α ที่ 605°C เกิดปฏิกิริยายูเทคตอยด์ โดย เฟส β สลายตัวเป็น α และ β_1 หรือ γ โดยอัตราการละลายของเบริลเลียมในทองแดงสูงสุดที่ 866°C เบริลเลียมละลายได้ 2.7% และอัตราการละลายลดลงอย่างรวดเร็วเหลือเพียง 0.25% ที่อุณหภูมิปกติ ในขณะที่อะตอมของ เบริลเลียมถูกผลักออกจากเฟส α ไปรวมตัวเป็น β หรือ β_1 ซึ่งเอื้อให้เกิดปรากฏการณ์ตกตะกอน (Precipitation Hardening) [20] เช่นเดียวกับในระบบ Al-Cu

ขั้นตอนการอบตกตะกอน จะอบที่ 700-800 ^oC เพื่อให้เฟส β_1 สลายตัว เกิดสารละลาย ของแข็งเฟสเดียวของ α นำแท่งบรอนซ์ออกจากเตาทำให้เย็นตัวรวดเร็วในน้ำ เกิดเฟส $\dot{\alpha}$ ใน ลักษณะสารละลายของแข็งอิ่มตัวยิ่งยวด (Supersaturation solid solution) ขั้นตอนนี้เรียกว่า Solution treatment ความแข็งของบรอนซ์เบริลเลียมในสภาพนี้สูงเพียง 60 HR_B หลังจากนั้น นำมาอบบ่มที่ 330 ^oC เพื่อให้ $\dot{\alpha}$ สลายตัวเป็น α และ β_1 ในลักษณะการตกผลึกขนาดเล็กของ β_1 กระจัดกระจายในเฟส α ทำให้ความแข็งและความแข็งแรงเพิ่มขึ้นอย่างมาก อาจสูงถึงระดับ 40 HR_c เทียบได้กับเหล็กกล้าผ่านการอบซุบทางความร้อน

ภาพที่ 2.14 แผนภูมิสมดุลเฟสระบบทองแดงเบริลเลียม [20]

ภาพที่ 2.15 แผนภูมิสมดุลเฟสระบบทองแดง-เบริลเลียม ช่วง 1-4%Be [20]

แผนภูมิสมดุลในภาพที่ 2.16 แสดงว่าทองแดงสามารถละลายในเงินเป็นสารละลาย ของแข็งเฟส α ได้สูงสุด 8.8%โดยน้ำหนัก ที่ 779.1°C และที่อุณหภูมินี้จะเกิดปฏิกิริยายูเทคติกที่ ส่วนผสมทองแดง 28.1% ความสามารถในการละลายของทองแดงในเฟส α ลดลงเมื่ออุณหภูมิ ลดลง ลักษณะดังกล่าวทำให้สามารถเพิ่มความแข็งและความแข็งแรงโดยการตกตะกอนได้ โดยมี ขั้นตอนการอบชุบความร้อนดังนี้

การทำให้เป็นสารละลายของแข็งเนื้อเดียว (Solutionizing) ที่อุณหภูมิสูงกว่า 750°C
ได้โลหะผสมที่เป็นสารละลายของแข็ง เพื่อให้อะตอมตัวถูกละลายกระจายอย่างสม่ำเสมอ

 2. ชุบชิ้นงานในน้ำทำให้เย็นตัวอย่างรวดเร็วจนถึงอุณหภูมิห้อง เพื่อให้เกิดสารละลาย อิ่มตัวยิ่งยวด (Supersaturated solid solution) โดยมีทองแดงมากกว่าสมดุล ในขั้นตอนนี้โลหะ ผสมจะอ่อนนิ่มความแข็งอาจจะมาจากความบิดเบี้ยวในโครงสร้างของสารละลายของแข็ง และ เกิดการแพร่ช้าจนเฟส α สามารถคงสภาพอยู่เป็นเวลานาน

 3. อบบ่มเพิ่มความแข็ง (Aging) ที่ 300[°]C โดยจะเกิดการตกตะกอนของเฟส β ที่มี ทองแดงสูง และมีขนาดเล็กมาก ทำให้ความแข็งเพิ่มขึ้น

เงินสเตอร์ลิง (ทองแดง 7.5% โดยน้ำหนัก) สามารถเพิ่มความแข็งโดยการตกตะกอนได้ โดยให้ความร้อนแก่โลหะเงินที่ 750°C เป็นเวลา ½ - 1 ชั่วโมง ขึ้นกับขนาดชิ้นงาน แล้วชุบน้ำ หลังจากนั้นบ่มเพิ่มความแข็งที่ 300°C จะได้โลหะเงินที่มีความแข็งสูงถึง 145 HB

จากแผนภูมิสมดุลเฟสระบบเงิน-เบริลเลียม ดังภาพ 2.17 พบว่าความสามารถในการ ละลายของเบริลเลียมในเงินมีปริมาณสูงสุด 0.03% โดยน้ำหนัก ความสามารถในการละลายจะ ลดลงเมื่ออุณหภูมิลดลง มีสารประกอบโลหะที่เกิดขึ้นซึ่งมีสมบัติเปราะคือเฟส δ มีโครงสร้างผลึก แบบ FCC และเสถียรระหว่างช่วง 760-1010°C ที่อุณหภูมิประมาณ 880°C จะเกิดปฏิกิริยา ยูเทคติกซึ่งส่วนประกอบที่มีส่วนผสมของเบริลเลียม 0.03% เมื่อปริมาณของเบริลเลียมมากกว่า 1.5% สารละลายของแข็งที่มีเบริลเลียมสูง (lpha) จะเกิดขึ้นได้ที่อุณหภูมิสูงกว่า 1010 $^\circ$ C

ภาพที่ 2.18 แสดงแผนภูมิสมดุลเฟสระบบเงิน-ดีบุก จากภาพจะพบว่าความสามารถใน การละลายได้สูงสุดของดีบุกในเงินคือ 12.5% โดยน้ำหนักที่อุณหภูมิ 724°C สารละลายของแข็งที่ ้ได้มีระบบผลึกแบบ FCC และความสามารถในการละลายจะลดลงเมื่ออุณหภูมิลดลง

Ag-Sn

ภาพที่ 2.19 แสดงแผนภูมิเฟสระบบทองแดง-ดีบุก พบว่าดีบุกสามารถละลายในทองแดง ได้ 13.5% โดยน้ำหนัก ได้สารละลายของแข็งเฟสอัลฟา (α phase) ที่อุณหภูมิ 798°C และ ความสามารถในการละลายจะเพิ่มได้สูงสุดเป็น 16% โดยน้ำหนัก ที่อุณหภูมิ 586°C จากนั้น อัตราการละลายของดีบุกในเฟสอัลฟาจะลดลงเป็น 11% โดยน้ำหนัก ที่อุณหภูมิ 350°C และ ลดลงอีกเหลือ 1.3% โดยน้ำหนัก ที่อุณหภูมิ 200°C

ภาพที่ 2.19 แผนภูมิสมดุลเฟสระบบทองแดง – ดีบุก [21]

ภาพที่ 2.20 แผนภูมิสมดุลแสดงเส้นลิควิดัสของระบบเงิน – ทองแดง – ดีบุก [22]

ภาพที่ 2.21 แผนภูมิสมดุลแสดงเส้นลิควิดัสของระบบเงิน – ทองแดง – อะลูมิเนียม [23]

แผนภูมิสมดุลเฟสระบบเบริลเลียม-ดีบุก ระบบนี้เป็นแบบโมโนเทคติก (Monotectic) โดย มี Liquid miscibility gap ที่ค่อนข้างกว้างและมีอุณหภูมิโมโนเทคติก (Monotectic) ประมาณ 1276°C (2330°F) ซึ่งไม่มีความสามารถการละลายระหว่างโลหะดีบุกกับโลหะเบริลเลียม แต่ เบริลเลียมสามารถในโลหะดีบุกได้ประมาณ 1% ปฏิกิริยาบริเวณที่มีดีบุกหนาแน่นอาจจะ เกิดปฏิกิริยาเพอริเทคติก (Peritectic) ขึ้นได้แต่อุณหภูมิที่เกิดไม่ชัดเจนดังภาพที่ 2.22

จากภาพที่ 2.23 จะเห็นได้ว่ามีปฏิกิริยาที่เกิดขึ้นหลายปฏิกิริยาเมื่ออุณหภูมิและส่วนผสม ทางเคมีเปลี่ยนไป โดยบริเวณ Ag rich Solid solution นั้นอะลูมิเนียมมีความสามารถในการ ละลายได้ปริมาณ 19.5% ส ที่อุณหภูมิ 450°C และที่อุณหภูมิ 610°C ปริมาณอะลูมิเนียมละลาย ได้ 21% at ส่วนเฟสที่ได้หลังจากอุณหภูมิและส่วนผสมเปลี่ยนคือ δ เสถียรที่อุณหภูมิต่ำกว่า 726°C ส่วนเฟส β เสถียรที่อุณหภูมิเหนือ 603°C จนถึง 727°C และยังพบว่าที่อุณหภูมิต่ำเกิด เฟส μ ขึ้นโครงสร้างซับซ้อน โดยจะเสถียรที่อุณหภูมิต่ำกว่า 300°Cจนถึง 448°C ดังแสดง

ภาพที่ 2.23 แผนภูมิสมดุลเฟสระบบเงิน – อะลูมิเนียม [25]

แผนภูมิสมดุลเฟสระบบอะลูมิเนียม-ทองแดง เป็นลักษณะของระบบของยูเทคติกที่ ปริมาณของทองแดง 0-60 %wt โดยอุณหภูมิที่เกิดปฏิกิริยายูเทคติกเกิดที่ 548.2°C ซึ่ง ความสามารถของทองแดงที่ละลายได้สูงสุดที่อุณหภูมินี้เช่นกันโดยทองแดงละลายได้ 5.78 %wt และยังเกิดเฟส θ ที่อุณหภูมิต่ำกว่า 600°C ซึ่งเป็นปฏิกิริยาเพอริเทคติก (Peritectic) และเมื่อ ปริมาณทองแดงเพิ่มมากขึ้นเกินกว่า 60%wt แล้วนั้น ปฏิกิริยาและเฟสที่เกิดร่วมกับสารประกอบ อื่น ๆ จำนวนมาก จากแผนภาพจะดูค่อนข้างซับซ้อน มีทั้งเฟส α, β, γ, ς, ε เป็นต้น ตามภาพที่ 2.24

ภาพที่ 2.24 แผนภูมิสมดุลเฟสระบบอะลูมิเนียม – ทองแดง [21]

ภาพที่ 2.25 แสดงแผนภูมิ เฟสระบบอะลูมิเนียม-ดีบุก เป็นลักษณะของระบบที่เรียกว่า ยูเทคติก จะเกิดปฏิกิริยายูเทคติกที่อุณหภูมิ 228.5°C โดยมีปริมาณดีบุก 97.6 (%at) ความสามารถในการละลายของดีบุกในอะลูมิเนียมมีอย่างจำกัด พบ AI โครงสร้างเป็น FCC (Faced-center cubic) ร่วมกับเฟส βSn โครงสร้างเป็น Tetragonal ขณะที่อุณหภูมิต่ำลงเรื่อย ๆ ดีบุกบริสุทธิ์เปลี่ยนแปลงเป็น βSn (Body-center tetragonal) และเปลี่ยนเป็น αSn โครงสร้าง Diamond cubic อีกครั้งเมื่ออุณหภูมิต่ำลงอีก ซึ่งความสามารถในการละลายสูงสุดอุณหภูมิ 500°C เป็น 0.011-0.014%at หรือประมาณ 0.05-0.06%wt ของดีบุก

ภาพที่ 2.25 แผนภูมิสมดุลเฟสระบบอะลูมิเนียม – ดีบุก [21]

2.7 กลไกเพิ่มความแข็งแรง และสมบัติทางกลของเงินสเตอร์ลิง

การเพิ่มความแข็งแรงและสมบัติทางกลของเงินสเตอร์ลิงที่ผลิตจากการหล่อ [26] ทำได้ 3 วิธี ดังนี้

 กลไกการเพิ่มความแข็งจากสารละลายของแข็ง ซึ่งเป็นผลจากขนาดอะตอมที่แตกต่าง กันเกิดการแทรกที่ห รือแทนที่ภายในโครงสร้างผลึก ส่งผลให้ความแข็งแรงเพิ่มขึ้น เช่น เงินผสม ทองแดง และเงินผสมอัลลอยทางการค้าทั่วไป แนวโน้มการเติมธาตุผสมเกือบทุกชนิดสนับสนุน การเพิ่มความแข็งแรง ซึ่งเป็นไปตาม Hume Rothery Rule ซึ่งอธิบายถึงความสัมพันธ์ของขนาด อะตอม ลักษณะโครงสร้างผลึกและ พลังงานพันธะในการสร้างสารละลายของแข็งต่าง ๆ

 การเพิ่มความแข็งแรงจากผลของขนาดเกรน (Grain size effect) การเพิ่มความ แข็งแรงลักษณะนี้เป็นการขัดขวางการเคลื่อนที่ของดิสโลเคชัน (Dislocation) ของขอบเกรน ดังนั้น
เมื่อขนาดเกรนเล็กลงก็ส่งผลให้มีปริมาณขอบเกรนเพิ่มขึ้น ดิสโลเคชันเคลื่อนที่ยากขึ้นทำให้ ต้องการออกแรงกระทำเพิ่มขึ้น เพื่อทำให้ดิสโลเคชันเคลื่อนที่ต่อไป ดังนั้น ความแข็งแรงและความ แข็งของโลหะเพิ่มขึ้นนั่นเอง

3. การเพิ่มความแข็งแรงโดยกลไกการตกตะกอน (Precipitation hardening) เป็นกลไกที่ เกิดจากการตกตะกอนแยกตัวของเฟสที่มีทองแดงสูง (Cu-rich phase) ออกจากเฟสอัลฟา (α Ag-rich phase) เนื่องจากความสามารถในการละลายของทองแดงในเนื้อเงินจะลดลงเมื่อ อุณหภูมิลดลงตามเส้นแสดงความสามารถในการละลายสูงสุด (Solvus line) และหากทำการชุบ แข็งอย่างรวดเร็วขณะโลหะกำลังแข็งตัว จะสามารถยับยั้งการตกตะกอนของทองแดงได้ เกิดเป็น สภาวะอิ่มตัวอย่างยิ่งยวดและเมื่อทำการอบกระตุ้นหรือบ่มที่อุณหภูมิต่ำ ก็จะเกิด Cu-rich phase ที่ได้จะมีขนาดเล็กมาก

การเพิ่มความแข็งโดยการตกตะกอน [20] (Precipitation hardening) เป็นการอบชุบ ความร้อนให้เกิดการตกตะกอนขนาดเล็กในเนื้อพื้น ประกอบด้วยขั้นตอนการดำเนินการ 3 ขั้นตอน (ในกรณีอะลูมิเนียมผสมทองแดง ภาพที่ 2.26) ได้แก่

ขั้นตอนแรก การอบให้เป็นสารละลายของแข็งเนื้อเดียว (Solution treatment) จุดประสงค์ ของขั้นตอนนี้เพื่อให้เฟล θ ที่อยู่ตามขอบเกรนละลายกลับเข้าไปในเฟล α ทั้งหมด โดยการปฏิบัติ ในขั้นตอนนี้คือการอบด้วยความร้อนให้อุณหภูมิการอบสูงกว่าอุณหภูมิขีดจำกัดของการละลาย (Solvus temperature) ดังนั้น เนื้อโลหะที่ได้จากการอบจะมีเฟสเดียวและเป็นเฟสสารละลาย ของแข็งอิ่มตัวอย่างสมบูรณ์ (Saturated solid solution) ที่อุณหภูมิดังกล่าว

ขั้นตอนที่สอง การชุบอย่างรวดเร็ว (Quenching) ในขั้นตอนนี้เป็นการนำโลหะออกจาก เตาที่อุณหภูมิในขั้นตอนที่ 1 แล้วรีบจุ่มในน้ำหรือน้ำเย็น เพื่อให้โลหะเย็นตัวอย่างรวดเร็วเป็นการ ยับยั้งการแพร่ของอะตอมธาตุผสม เกิดสารละลายของแข็งอิ่มตัวอย่างยิ่งยวด (Supersaturated solid solution)

 ขั้นตอนที่สาม การบ่มเพิ่มความแข็ง (Aging) เนื่องจากโลหะในขั้นตอนที่ 2 เป็น สารละลายของเข็งอิ่มตัวยิ่งยวดซึ่งไม่เสถียร เมื่ออบที่อุณหภูมิที่เหมาะสมจะทำให้เฟส θ´ ตกตะกอนในเฟส α ซึ่งเป็นตัวขัดขวางการเคลื่อนที่ของดิสโลเคชัน ส่งผลให้วัสดุมีความแข็งและ ความแข็งแรงเพิ่มขึ้น แต่หากบ่มนานเกินไป (Over Aging) จะทำให้ขนาดของ เฟส θ´ใหญ่ขึ้นจน ค่อยๆเปลี่ยนไปเป็นเฟส θ ทำให้ความแข็งแรงและความแข็งลดลงได้

ภาพที่ 2.26 กลไกและโครงสร้างการเย็นตัวของการตกตะกอนของ อะลูมิเนียม – ทองแดง [20]

กลไกการเพิ่มความแข็งเป็นผลมาจากการที่ดิสโลเคชัน เคลื่อนที่ลำบากขึ้น โดยการ เคลื่อนที่ของ ดิสโลเคชัน จะเคลื่อนที่ผ่านตะกอน โดยใช้ความเค้นมากกว่าธรรมดา ภาพที่ 2.27 แสดงถึงกลไก Orawan โดยอนุภาคของตะกอนทำหน้าที่คล้าย Frank-Reed source ทำให้เกิด Dislocation loop ขึ้นรอบๆ อนุภาค Dislocation loop มีสนามความเค้นทำให้เส้นดิสโลเคชันวิ่ง ผ่านไปได้ยากขึ้น โดยสนามความเค้นรอบๆ ดิสโลเคชันเป็นตัวทำให้ดิสโลเคชันเคลื่อนที่ได้ยาก โดยการเกิดอนุภาคต้องมีความสัมพันธ์กับเนื้อพื้นแบบโคฮีเรนต์ (Coherency) [27] ภาพที่ 2.28 แสดงถึง Coherency ของอนุภาค โดยภาพ 2.28 (ก) แสดงสภาพสารละลายอิ่มตัวยิ่งยวด (Supersaturated solid solution) โดยอะตอมทึบจะเป็น Solute atoms ส่วนภาพ 2.28 (ข) เป็น อนุภาคที่โคฮีเรนต์กับเนื้อพื้น จะเห็นว่ามีความเครียดของแลททิชเกิดขึ้นและจะเพิ่มมากขึ้นเมื่อ อนุภาคมีขนาดโตขึ้น ทั้งนี้เพราะขนาด Solute atom กับ Solvent atom ไม่เท่ากัน ความเครียดที่ เพิ่มขึ้นตามขนาดของอนุภาคนี้จะเพิ่มขึ้นจนอนุภาคแยกตัวออกมาจากเนื้อพื้น เกิดขอบเกรน ทำ ให้สูญเสียโคฮีเรนต์ (Coherency) และก็มีผลทำให้ความเครียดลดลง [23]

ภาพที่ 2.27 การเคลื่อนที่ดิสโลเคชันผ่านผลึกมีอนุภาคของตะกอนโดยกลไกแบบ Orawan [27]

(ข) อนุภาคของตะกอนรวมตัวเป็นกลุ่มก้อนอะตอมตัวถูกละลาย(สีดำ) ซึ่งโคฮีเรนต์กับเนื้อพื้น

ภาพที่ 2.28 Coherency ของอนุภาค [27]

2.8 สมบัติกันหมองและสีของโลหะเงินสเตอร์ลิง

ผิวของโลหะเงินสเตอร์ลิงนั้น เกิดความหมองขึ้นเนื่องจากการทำปฏิกิริยาระหว่างเนื้อ โลหะเงินกับซัลเฟอร์ หรือสารประกอบที่มีกำมะถัน ตัวอย่างเช่น H₂S, SO₂, SO₄, H₂SO₃ การทำ ปฏิกิริยาดังกล่าวนั้นจะทำให้เกิดสารประกอบซัลไฟด์ของเงิน โดยพบว่าสารประกอบหลักจะเป็น Ag₂S นั่นเอง Raub [28] ได้ทำการศึกษา จะพบชั้นฟิล์มของ Ag₂S ที่เป็นสาเหตุของความหมอง ขึ้นของโลหะเงินได้ ในโลหะที่มีส่วนผสมของเนื้อเงินมากกว่า 83% เท่านั้น โดยฟิล์มของ Ag₂S จะ ทำให้ผิวของชิ้นงานมีความหมองมากขึ้นเป็นสีน้ำตาล สีน้ำตาลอมเขียว จนกระทั่งเป็นสีน้ำตาลดำ เข้มในที่สุดขึ้นอยู่กับความหนาของชั้นฟิล์ม

งานวิจัยของพรหมมินทร์ เจริญยิ่ง [29] พบว่า การเปลี่ยนแปลงของสีบนผิวของโลหะขณะ ทำการทดสอบในบรรยากาศที่มีซัลเฟอร์หรือกำมะถันปริมาณความเข้มข้นสูง เมื่อเวลาการทดสอบ เพิ่มขึ้น สีผิวของชิ้นงานจะมีการเปลี่ยนแปลงต่างกันออกไป ดังนี้ : สีเนื้อโลหะ (สีขาวใส แวววาว) → สีเหลืองอ่อน → สีเหลือง → สีเหลืองออกน้ำตาล → สีน้ำตาล → สีน้ำตาลแก่ → สี น้ำตาลอมม่วง → สีม่วงอ่อน → สีม่วงแก่ → สีม่วงอมน้ำเงิน → สีม่วงอมฟ้า → สีฟ้าอ่อน → สีฟ้าอ่อน (ฟ้าขาว) → สีขาวขุ่น → สีเทา → สีเทาดำ → สีดำ → สีดำเข้ม เวลาที่ใช้ใน การทดสอบต่างกันจะทำให้มีความเปลี่ยนแปลงของสีแตกต่างกันไป เวลาในการทดสอบมากขึ้น แสดงถึงการเกิดปฏิกิริยาของซัลเฟอร์ในบรรยากาศกับผิวชิ้นงานมากขึ้น ผิวชิ้นงานจะสะท้อนแสง ได้น้อยลง ค่าความสว่างจะลดต่ำลงมาก เกิดความหมองบนผิวชิ้นงานได้อย่างเห็นได้ชัดเจน เงิน สเตอร์ลิงจะมีความหมองได้ง่ายกว่าเงินบริสุทธิ์ภายใต้การใช้งานในสภาวะปกติ

Vinal และ Schramm [30] ศึกษาและพบว่า อัตราการหมองของเงินจะแปรผันตรงกัน ปริมาณของธาตุทองแดงที่ผสมอยู่ในเนื้อโลหะ เนื่องด้วยการเกิดปฏิกิริยาออกซิเดชันของทองแดง กับบรรยากาศที่มีออกซิเจน ทำให้ความหมองเพิ่มมากขึ้นจากออกไซด์ของทองแดง CuO (Cupric Oxide) จะเป็นออกไซด์ที่มีสีเทาดำ และ Cu₂O (Cuprous oxide) เป็นออกไซด์มีสีแดงอม ชมพู จึงมีการเติมธาตุผสมเพื่อเพิ่มความต้านทางการหมองของโลหะเงินสเตอร์ลิง เพื่อให้มีการ สร้างฟิล์มออกไซด์ของธาตุผสมอื่นขึ้นมาทดแทน โดยกลไกการหน่วงทำปฏิกิริยาของเงินกับ สารประกอบซัลเฟอร์ เช่น ดีบุก อะลูมิเนียม สังกะสี อินเดียม พาลาเดียม และซิลิกอน เป็นต้น

สีเป็นคุณสมบัติเชิงแสงที่สามารถใช้บรรยายคุณลักษณะของวัสดุได้ง่ายที่สุดวิธีหนึ่ง ใน การอธิบายสีของวัตถุด้วยคำพูด มาตรฐานของการบรรยายลักษณะสีอาจจะแตกต่างกัน ขึ้นอยู่กับ ประสบการณ์ ลักษณะทางกายภาพของตาของผู้บรรยาย ลักษณะแสงที่ตกกระทบ และอื่น ๆ ดังนั้น การวัดและบรรยายสีในเชิงวิชาการจึงต้องมีการจัดมาตรฐาน เพื่อเป็นการลดความไม่เป็น กลาง (Bias) ของผู้บรรยายสีของวัสดุนั้น ๆ โดยปัจจัยที่ทำให้เกิดสีมีอยู่ 3 ประเภท

 แหล่งกำเนิดแสง (Light source) แหล่งกำเนิดแสงมีผลอย่างมากในการบรรยายสี ของวัตถุ แหล่งกำเนิดแสงถ้ามีแสงแตกต่างจากแสงขาว เมื่อตกกระทบกับวัตถุจะทำให้แสงที่ สะท้อนกลับมาเกิดสีที่แตกต่างไป เช่น แสงจากหลอด Incandescent จะให้แสงสีส้ม ในขณะที่ Fluorescent จะให้แสงขาวเย็น

 2. วัตถุที่มอง (Specimen) วัตถุที่ทึบแสง (Opaque) จะให้การสะท้อนของแสงเพื่อเกิดสี แตกต่างจากวัตถุที่โปร่งแสง (Translucent) และโปร่งใส (Transparent) ลักษณะของการตก กระทบของแสงบนวัตถุ

วัตถุทึบแสง ได้รับแสงกระทบจากภายนอก การสะท้อนแสงจะมีอยู่ 2 ส่วนคือ การสะท้อน แสงเสมือนจริง (Specular reflection) และการสะท้อนแสงกระจาย (Diffuse reflection) ดังภาพ ที่ 2.29 การสะท้อนแสงเสมือนจริง คือการสะท้อนแสงกลับจากวัตถุที่เหมือนและมีขนาดใกล้เคียง กับแสงตกกระทบแต่ทิศทางตรงข้าม การสะท้อนแสงเสมือนจริงจะแสดงออกมามากที่สุดเพียง 4% ของการสะท้อนแสงทั้งหมด (Total reflection) ซึ่งจะเกิดในกรณีที่วัตถุมีผิวมันเงา 100% ดังนั้น การสะท้อนแสงเสมือนจริงในวัตถุที่มีผิวมันเงาจะมากกว่าวัตถุผิวด้านและผิวขรุขระ ตามลำดับ ส่วนการสะท้อนแสงกระจายเป็นการสะท้อนแสงกระจายนี้เองเป็นส่วนของการสะท้อนที่ใช้ ในการวัดเฉดสี

สำหรับวัตถุโปร่งแสงและโปร่งใส (ภาพที่ 2.30) แสงจะทะลุผ่านวัตถุได้แตกต่างกัน วัตถุ โปร่งแสงจะมีความขุ่นอยู่ภายในเนื้อ และจะดูดกลืนแสงบางส่วนไว้ สำหรับวัตถุโปร่งใสนั้น แสง จะถูกดูดกลืนในเนื้อวัตถุเป็นส่วนใหญ่ การทะลุผ่านแสงมี 2 รูปแบบคือ การทะลุผ่านปกติ (Regular transmission) และ การทะลุผ่านกระจาย (Diffuse transmission) ถ้าวัตถุโปร่งแสงหรือ มีความขุ่น เช่น เม็ดพลาสติกขุ่น การทะลุผ่านปกติจะน้อยกว่าวัตถุวัตถุโปร่งใส การวัดสีของวัตถุ โปร่งแสงและโปร่งใสนี้จะวัดที่การทะลุผ่านกระจาย ในลักษณะเดียวกับการวัดสีแบบหลักการ สะท้อนของแสง

การสะท้อนแสงทั้งหมด (Total reflection) = Specular reflection + Diffuse reflection

ภาพที่ 2.29 ลักษณะการสะท้อนแสงของวัตถุทึบแสง [31]

การทะลุผ่านแสงทั้งหมด(Total transmission) = Regular transmission + Diffuse transmission

ภาพที่ 2.30 ลักษณะการทะลุผ่านแสงของวัตถุโปร่งแสงและโปร่งใส [31]

3. ผู้สังเกตการณ์ (Observer) ผู้สังเกตการณ์นั้นมีผลอย่างยิ่งต่อการบรรยายสีที่มองเห็น ผู้สังเกตการณ์ต่างคนจะบรรยายลักษณะสีต่างกัน ขึ้นอยู่กับสรีระทางกายภาพของตาแต่ละคน ใน ร่างกายคนจะมีเซลล์อยู่ 2 ชนิดที่เกี่ยวข้องกับการรับสี คือ เซลล์รูปแท่งและเซลล์รูปโคน เซลล์รูป แท่งจะตอบสนองได้ดีกับการมองเห็นในที่เกี่ยวกับความมืดสว่าง ส่วนเซลล์รูปโคนจะตอบสนองต่อ สีที่มองเห็น

จากหลักการพื้นฐานเรื่องสีข้างต้น จึงได้มีการพัฒนาอุปกรณ์ เพื่อใช้วัดสีที่มีมาตรฐาน และลดความไม่เป็นกลาง เนื่องจากปัจจัยของแหล่งกำเนิดแสงและผู้สังเกตการณ์ องค์กรที่มี บทบาทสำคัญในการกำหนดมาตรฐานด้านสี คือ Commission International de l'Eclairage (CIE) หรือในชื่ออังกฤษว่า International Commission on Illumination มีสำนักงานใหญ่อยู่ใน ประเทศฝรั่งเศส องค์กรนี้ได้กำหนดมาตรฐานการวัดสีซึ่งเป็นที่ยอมรับอย่างกว้างในวงการวิชาการ และการวิจัย คือระบบ CIE Lab scale ในระยะเริ่มแรก CIE ได้กำหนดสเกลการวัดสีเป็น X-Y-Z ซึ่งใช้ บรรยายสีแดง (Red) เขียว (Green) และน้ำเงิน (Blue) แต่เนื่องจากระบบสีดังกล่าวไม่ สามารถบรรยายถึงลักษณะความมืด-สว่างของสีได้ CIE ได้พัฒนาต่อมาเป็นระบบ X-Y-L ซึ่ง บรรยายถึงค่าสีแดง เขียว และความสว่าง (Lightness) ตามลำดับ

อย่างไรก็ตามระบบดังกล่าวก็ยังขาดส่วนที่บรรยายถึงค่าสีน้ำเงิน CIE จึงได้พัฒนาระบบสี ต่อมาจนเป็นระบบที่ยอมรับและใช้กันอย่างแพร่หลายในปัจจุบัน คือระบบ L*-a*-b* ซึ่งเป็นระบบ การบรรยายสีแบบ 3 มิติ โดยที่

แกน L* จะบรรยายถึงความสว่าง (Lightness) : +L* แสดงถึงสีขาว -L* แสดงถึงสีดำ
แกน a* จะบรรยายถึงแกนสีจากแดงไปจนถึงเขียว : +a* บอกถึงสีแดง -a* บอกถึงสีเขียว
แกน b* จะบรรยายถึงแกนสีจากเหลืองไปน้ำเงิน : +b* บอกถึงสีเหลือง -b* บอกสีน้ำเงิน

ภาพที่ 2.31 การบรรยายสีในระบบ CIE Lab มองในระนาบ 2 มิติ: Hue บรรยายถึงเฉดสี และ Chroma บรรยายถึงความมันวาวหรือความเข้มของโทนสี [32]

ภาพที่ 2.32 การบรรยายสีพื้นในระบบ CIE Lab ในรูป 3 มิติ [32]

การเปลี่ยนแปลงค่าที่วัดได้จะเป็นดัชนีบ่งบอกถึงความหมองที่เกิดขึ้นบนผิวของวัสดุหรือ โลหะผสม โดยขึ้นอยู่กับปัจจัยแวดล้อมต่างๆ ที่เกี่ยวข้อง คือ สภาวะแวดล้อม บรรยากาศที่เป็นอยู่ ขณะนั้น อุณหภูมิ ความหยาบของผิววัสดุ ความชื้นและโครงสร้างที่เกิดขึ้นของธาตุผสม เนื่องจาก ความหมองที่เกิดขึ้นจะค่อนข้างมีความซับซ้อนของการทำปฏิกิริยาต่าง ๆ ดังนั้น จึงมีคณิตศาสตร์ เข้ามาเกี่ยวข้องกับการคำนวณการเปลี่ยนไปของสีที่เกิดขึ้น ดังสมการ

$$dE^* = [(\Delta L^2 + \Delta a^2 + \Delta b^2)]^{1/2}$$
(12)

เมื่อ

 Δ L = L₂ - L₁ , Δ a = a₂ - a₁ , Δ b = b₂ - b₁

- โดยค่า L₁ , L₂ คือ ค่าความสว่างของชิ้นงานก่อนและหลังการทดสอบการหมอง a₁ , a₂ คือ ค่าสีแดงและสีเขียวของชิ้นงานก่อนและหลังการทดสอบ
 - b₁ , b₂ คือ ค่าสีเหลืองและสีน้ำเงินของชิ้นงานก่อนและหลังการทดสอบ

อุปกรณ์วัดเทียบสีที่นิยมใช้ในปัจจุบันคือ Spectrophotometer หรือ Spectrocolormeter อุปกรณ์ดังกล่าว จะใช้แสงจากแหล่งประดิษฐ์ (Illuminant) คือ แสงที่แต่งค่าความเข้มแสง (Intensity) หรืออุณหภูมิของสี (Color temperature) แล้ว ตัวอย่างของแหล่งแสงประดิษฐ์ ได้แก่ D65 – แสงเที่ยงวัน (Noon daylight) A- แสงส้มจากหลอดทังสเตน C – แสงกลางวันเฉลี่ย (Average daylight) CWF – แสงขาวเย็นจากหลอดฟลูออเรสเซ็นส์ (Cooled white fluorescent) ซึ่ง spectrophotometer บางรุ่นสามารถบอกค่าสีได้หลายสเกลในเครื่องเดียว เช่น X-Y-Z / L-a-b / L*-a*-b* รวมไปถึง CMYK (Crayon Magenta-Yellow-Black) ซึ่งเป็นระบบสีนิยมใช้ในเกี่ยวกับ สิ่งพิมพ์

2.9 ธาตุผสมที่มีผลต่อเงินสเตอร์ลิง

ซิลิกอน (Si) การเติมซิลิกอนในปริมาณที่เหมาะสม สามารถปรับปรุงความแข็ง ความ แข็งแรง ความเหนียว และความต้านการหมองได้ มีค่าระหว่าง 0.02-0.20 เปอร์เซ็นต์ หากเติมมาก เกินกว่า 0.2 เปอร์เซ็นต์ จะทำให้เกิดโครงสร้างตาข่าย (Network) อย่างแน่นหนาทำให้เปราะ และ เกิดการฉีกขาดขณะร้อนได้ง่าย ไม่เหมาะที่จะใช้ในอุตสาหกรรมเครื่องประดับ [33]

อินเดียม (In) การเติมอินเดียมในเงินสเตอร์ลิงจะทำให้ความแข็งและความต้านแรงดึง ลดลง เนื่องจากอินเดียมดึงทองแดงออกจากเนื้อพื้นออกมาเกิดเฟสที่สองขึ้น อินเดียมมีส่วนช่วย เพิ่มความต้านการหมองร่วมกับธาตุอื่น [33]

ดีบุก (Sn) ธาตุดีบุกมีจุดหลอมเหลวต่ำและมีความลื่นตัว ซึ่งการเติมธาตุดีบุกในปริมาณ ต่ำๆ ไม่เกิน 1 เปอร์เซ็นต์ สามารถช่วยเพิ่มความแข็ง ความแข็งแรงให้กับเงินสเตอร์ลิงได้โดยการ อบบ่ม แต่สภาวะของกรรมวิธีอบบ่ม ถูกรายงานไว้แตกต่างกัน [33]

อะลูมิเนียม (AI) การเติมธาตุอะลูมิเนียม ร้อยละ 2 โดยน้ำหนัก แทนการเติมทองแดง จะ ช่วยป้องกันการเกิดออกไซด์ ที่มีสีหมองคล้ำถึงแดงที่ผิวของโลหะเงินสเตอร์ลิงได้ หากเติมธาตุ อะลูมิเนียมมากกว่าร้อยละ 1.5 โดยน้ำหนัก ส่งผลให้โลหะเงินสเตอร์ลิงที่ได้มีสีสันไม่สวยงาม และ ยังทำให้โลหะเงินสเตอร์ลิงมีความแข็งสูงขึ้นมาก ยากต่อการขึ้นรูปเครื่องประดับด้วยมือ [34]

สังกะสี (Zn) ปรับปรุงคุณสมบัติด้านการหล่อ การประสาน ลดแรงตึงผิว ทำให้งานเต็ม แบบได้ดี รายละเอียดชัดและผิวเรียบหลังการหล่อ ลดการเกิดผิวเดนไดรท์ และเพิ่มความยืดหยุ่น ทำให้จุดหลอมเหลวของโลหะผสมลดลง และเพิ่มความสว่างความขาวให้โลหะผสม เนื่องจาก อะตอมสังกะสีจะเข้าไปแทนที่อะตอมทองแดงและเงิน อีกทั้งยังช่วยเพิ่มความสามารถในการไหล ของโลหะหลอมเหลวขณะหล่อสังกะสียังถูกนำไปใช้เป็นตัวกันหมองได้ด้วยเช่นกัน นอกจากนี้ธาตุ สังกะสียังทำหน้าที่เป็นฟลักซ์ (Flux) และตัวลดการเกิดออกซิไดซ์ (Deoxidizer)ในการหล่อหลอม ลดการกักเก็บฟองกาซในเนื้อเงิน อย่างไรก็ตามการใช้สังกะสีผสมในเนื้อเงินมากเกินไปจะส่งผล ต่อการเปลี่ยนประกายสีสะท้อนของผิวเงินจากขาวสว่างในเงินผสมทองแดงเป็นเงินสีขาวประกาย เหลือง และเกิดคราบเหลืองที่ผิวได้ง่ายในชิ้นงานที่ใช้งานมาระยะหนึ่ง [35]

2.10 งานวิจัยที่เกี่ยวข้อง

ใน European Patent No.399,261, Oesterheld [36] ใด้ศึกษาระบบของเบริลเลียม-เงิน และ เบริลเลียม-ทองแดง พบว่าในระบบเบริลเลียม-เงินที่มีปริมาณเบริลเลียมน้อยจะช่วยต้านทาน การหมองและสัดส่วนของเบริลเลียม 3% จะช่วยต้านทานไอของซัลเฟอร์ นอกจากนี้ ความเหนียว (Ductility) ของโลหะผสมจะลดลงเมื่อปริมาณเบริลเลียมเพิ่มขึ้น เงินผสมเบริลเลียม 3-5% เมื่อ ้นำไปรีดจะเปราะมากและเงินผสมเบริลเลียมที่มีส่วนผสม 90%Ag, 1.5%Be, 8.5%Cu ที่อุณหภูมิ 880⁰C จะเกิดปฏิกิริยายูเทคติกที่ส่วนผสมเบริลเลียม 1% เมื่อปริมาณเบริลเลียมมากกว่า 1.5% ความสามารถในการละลายของสารละลายของแข็งเบริลเลียมในเงินจะลดลง ทำให้ปฏิกิริยา ียูเทคติกเกิดขึ้นที่ 0.3%Be และอุณหภูมิของปฏิกิริยายูเทคติกจะลดต่ำลง อีกทั้งสารละลาย ของแข็งที่มีเบริลเลียมสูงจะแยกตัว หากขนาดและปริมาณเพียงพอจะทำให้เกิดรอยด่าง (Mirrorlike) ซึ่งเป็นเหตุผลในการจำกัดปริมาณเบริลเลียมในระบบสามส่วนที่มีส่วนผสมของโลหะเงินไม่ ้น้อยกว่า 90% ความสามารถในการละลายของเบริลเลียมและการเริ่มแยกตัวของสารละลาย ของแข็งที่มีเบริลเลียมสูง จะไม่แตกต่างกับแบบสองส่วนผสมซึ่งเป็นความจริงเฉพาะในกรณีของ โลหะผสม Ag-Cu-Be มาตรฐานการค้าของโลหะเงินที่ผสมเบริลเลียม 1.5% กำหนดว่าต้องมีโลหะ เงิน 92.5% ส่วนที่เหลือคือทองแดงดังนั้นมาตรฐานของโลหะเงินผสมที่ใช้ทำเครื่องประดับควรมี เงิน 92.5% 7%Cu และ 0.5%Be สำหรับการขึ้นรูปควรเงินที่มีส่วนผสมเบริลเลียมเล็กน้อย จะทำ เหมือนกับโลหะเงินปกติที่ไม่มีเบริลเลียมผสม โดยไม่ต้องอบบ่ม หรืออบอ่อนอีก ในการผลิตโลหะ

ผสมมักเติมเบริลเลียมในรูปโลหะผสม Cu-Be โลหะผสม Ag-Cu-Be มีอุณหภูมิหลอมเหลว และ สมบัติการหล่อจะเหมือนกับโลหะผสมไม่มีเบริลเลียม สิ่งที่ยากในการผลิตเพื่อการค้าของโลหะ ผสมเบริลเลียมคือการเกิดออกซิเอชันของเบริลเลียม โดยเฉพาะการนำเศษวัสดุมาหลอมใหม่ เนื่องจากมีการปนเปื้อนของออกไซด์มากับเศษวัสดุ ซึ่งจะลอยขึ้นมาด้านบนยากต่อการควบคุม ส่วนผสมให้ถูกต้องได้ สำหรับโลหะผสม 0.5%Be จะควบคุมส่วนผสมได้ง่ายที่สุด

ใน U.S. Patent No. 1,984,225, Mcfarland [37] ได้ศึกษาถึงการเพิ่มความแข็งของโลหะ เงินสเตอร์ลิงโดยการอบบ่ม พบว่าการเติมโลหะในกลุ่มตกตะกอนได้เช่น อะลูมิเนียม แมกนีเซียม ตะกั่ว พลวง และเบริลเลียม ในปริมาณ 0.1-0.5% โดยทำให้เป็นสารละลายเนื้อเดียวที่ อุณหภูมิ 593-760[°]C และบ่มเพิ่มความแข็ง (Age Hardening) ที่อุณหภูมิ 298[°]C เป็นเวลา 1 ชั่วโมง สามารถเพิ่มความแข็งของเงินสเตอร์ลิงจาก 80 HR_B เป็น 94 HR_B ในการศึกษาเรื่องนี้อาจเกิด ความผิดพลาดในช่วงการอบซุบความร้อนโดยปกติความแข็งควรมีค่าเพิ่มขึ้นในช่วง 1-1.5 เท่าของ สภาพหลังหล่อ (As-cast condition) และอาจเกิดจากการใช้ธาตุผสมหลายชนิดทำให้เกิดยับยั้ง การตกตะกอน หรือเกิดสารประกอบเชิงซ้อนอื่น กั้นการตกตะกอนให้เนื้อเงินได้

เบริลเลียมนอกจากเพิ่มสมบัติทางกล เหมาะแก่การผลิตสปริงแล้ว ยังเพิ่มความต้านทาน การหมอง U.S. Patent No. 2,031,113, Robert H.Leach [38] ค้นพบการเติม Be 0.5% ในเงิน สเตอร์ลิง 925 ที่มีธาตุร่วมเช่น ทองแดง แคดเมียม ดีบุกและสังกะสี เพิ่มความต้านทานการหมอง นอกจากนี้ U.S. Patent No.2,196,303 [39] กล่าวถึง เบริลเลียมเป็นธาตุผสมที่ใช้ผลิตเงินที่มี สมบัติการนำไฟฟ้าสูง (Superior electrical characteristic) ข้อมูลสรุปสำหรับการเติมเบริลเลียม และธาตุอื่นที่ส่งเสริมสมบัติทางกลด้วยการอบซุบความร้อนเป็นดังตารางที่ 2.4 จากการศึกษาของ ผศ.ดร.สีริพร โรจนนันต์ และคณะ [40] พบการเติมดีบุกในเงินกลุ่มสเตอร์ลิงที่มีส่วนผสม เงิน 93.7 % ทองแดง 6 % ดีบุก 0.3 % สามารถเพิ่มความแข็งได้ด้วยการอบเนื้อเดียวที่ 740 องศาเซลเซียส และ อบบ่มที่ 300 องศาเซลเซียส โดยมีความแข็งหลังหล่อ 72 วิกเกอร์ และความแข็งหลังการอบ บ่ม 167 วิกเกอร์
สิทธิบัตร	รายละเอียด
European Patent No.399,261	เงิน 90% เติม Be 3-5 % ลดการหมอง และช่วยต้านทานไอซัลเฟอร์
U.S. Patent No. 1,984,225	เงิน 92.5% เติม Al, Mg, Pb, Sn, Be สามารถเพิ่มความแข็งด้วยการอบชุบ ความร้อน
U.S. Patent No. 2,031,113	เงิน 92.5% เติม Be (0.5%) Cd, Sn, Zn มีความต้านทานการหมองสูงขึ้น
U.S. Patent No. 2,196,303	เงินผสม Cd, Zn, Sn, Mg, Ni, P, Si, Mn, Be และ Ca ใช้ผลิต Solder และ Electrical contact ธาตุผสมไม่ลด Electrical conductivity
U.S. Patent No. 4,810,308	เงินผสม Li, Cu, Sn, Sb, In, Al, In สามารถเพิ่มความแข็งแรงด้วยการอบบ่ม โดย Solution treatment ที่ 1250 ^o F และบ่มที่ 300-700 ^o F
U.S. Patent No. 1,928,429	อธิบายการอบเงิน 50-90% ผสม Be 0.1-2.5%
U.S. Patent No. 4,869,757	เงินผสม Li, Cu, Sn, Bi สามารถเพิ่มความแข็งแรงด้วยการอบบ่มโดย Solution treatment ที่ 1250 ^o F และบ่มที่ 300-700 ^o F
US Patent No. 6,139,652	ธาตุที่นิยมเติม เช่น Al, Sb, Cd, Si, Ti, Zn ซึ่งบางตัวสามารถเพิ่มความแข็งแรง ให้กับเงินสเตอร์ลิงโดยการอบซุบความร้อน

ตารางที่ 2.7 แสดงรายละเอียดเพิ่มเติมของธาตุผสมเพิ่มสมบัติทางกลด้วยการอบชุบความร้อน

ใน US Patent No. 6,139,652 จากการศึกษาของ Carrano [41] พบว่า เงินสเตอร์ลิง จำเป็นต้องมีฟิล์มออกไซด์ของธาตุอย่างน้อย 1 ชนิดขึ้นไปเพื่อปรับปรุงสมบัติต้านทานการหมองที่ มักเกิดจากออกไซด์ของทองแดงที่มักผสมเป็นธาตุหลัก โดยธาตุที่นิยมเติมได้แก่ อะลูมิเนียม พลวง แคดเมียม ซิลิคอน ไทเทเนียม สังกะสีและธาตุที่กล่าวมาบางตัวสามารถเพิ่มความแข็งแรง ให้กับเงินสเตอร์ลิงโดยการอบซุบความร้อน

จากงานวิจัยของ Carrano R. [35] รายงานว่าการเติมธาตุผสมในปริมาณที่เหมาะสม สามารถช่วยปรับปรุงสมบัติต่างๆ ของเงินสเตอร์ลิงได้ เช่น สังกะสี (Zn) และซิลิกอน (Si) ช่วยเพิ่ม ความสามารถในการหล่อได้ดีขึ้น แต่ถ้าใช้ในปริมาณที่ไม่เหมาะสม ก็จะก่อให้เกิดปัญหาอื่นๆ ตามมา การเติมเจอมาเนียม (Ge) และ Zn เข้าไปในโลหะเงินสเตอร์ลิงช่วยทำหน้าที่เป็นตัวลด ออกซิเจน (Deoxidizer) ที่ดี การเติม Zn ปริมาณ 1-2% ช่วยทำให้ผิวเรียบสวยงามขึ้น โดยลด ข้อบกพร่องที่เกิดจากปฏิกิริยาที่ผิวโลหะทำกับปูนที่ใช้เป็นแบบ และทำให้ผิวเงาขึ้น

ใน U.S. Patent 4,124,380, Youdelis [42] ได้จดสิทธิบัตรส่วนผสมของในโลหะเงิน สเตอร์ลิง และรายงานว่าธาตุ Ge และ Sn ช่วยป้องกันความหมองได้ดีในบรรยากาศธรรมดา สำหรับ Si ใช้เป็นตัวลดออกซิเจนช่วยทำให้ผิวเงาขึ้น เนื่องจากมีแรงตึงผิวเกิดขึ้น ทำให้ผิวเงา สวยงาม การเติมธาตุ Si ปริมาณสูงจะทำให้เกิดเฟส Cu-rich จับตัวกันอยู่ตามขอบเกรนมากขึ้น ทำให้เปราะและแตกหักได้ง่ายขึ้น ธาตุผสมใด ๆ อาจส่งทั้งผลดีและผลเสียให้กับสมบัติของเงิน สเตอร์ลิงขึ้น กับปริมาณที่ผสม

งานของ Croce Scott M [43] การเติมปริมาณธาตุอื่น ๆ ลงในโลหะเงินผสมสำหรับ งานวิจัยนี้มีการกำหนดเพื่อการใช้งานที่ดีที่สุดสำหรับโลหะ โดยมีปริมาณเงินอย่างน้อยประมาณ 85% ถึง 95% และยังมีธาตุสังกะสี, ทองแดง, อินเดียม, ดีบุก อาจจะมีปริมาณเหล็กจำนวน เล็กน้อยผสมตามตาราง 2.8

ตารางที่ 2.8 เป็นปริมาณของธาตุต่างๆ ที่ควรจะมีอยู่ในโลหะผสมเงินงานวิจัย Croce Scott M ซึ่ง โลหะต่างๆ เหล่านี้เพิ่มลงไปเพื่อเพิ่มคุณสมบัติของโลหะผสม [43]

Element	Range of Weight Percent
Silver (Ag)	85% to 95%
Zinc (Zn)	>0% to 5%
Copper (Cu)	>0% to 2%
Indium (In)	>0% to 1%
Tin (Sn)	>0% to 2%
Iron (Fe)	0% to 1%
Gold (Au)	0% to 2%
Silicon (Si)	0% to 0.1%
Manganese (Mn)	0% to 0.1%
Boron (B)	0% to 0.1%
Bismuth (Bi)	0% to 0.1%
Cobalt (Co)	0% to 0.1%
Chromium (Cr)	0% to 0.1%
Lead (Pb)	0% to 0.1%
Vanadium (V)	0% to 0.1%
Cerium (Ce)	0% to 0.1%
Iridium (In)	0% to 0.1%
Zirconium (Zr)	0% to 0.1%

ซึ่งปริมาณที่เหมาะสมของธาตุแต่ละธาตุจะเพิ่มประสิทธิภาพหรือความสามารถในแต่ละ ด้านแตกต่างกันออกไปตามการใช้งาน โดยสังกะสีจะเพิ่มความขาวของโลหะผสมหรือป้องกันการ หมองแก่ชิ้นงาน, ทองแดงทำหน้าที่เพิ่มความสามารถในการชุบแข็งและเพิ่มความอ่อนนุ่มให้แก่ โลหะผสม, อินเดียมเพิ่มความสามารถด้านกันหมอง เพิ่มความแวววาวหรือความเป็นประกาย เพิ่มความเหนียวและทำให้การการหล่อโลหะผสมทำได้ง่าย, ดีบุกเพิ่มความสามารถในความแข็ง ความเหนียว(ความสามารถขึ้นกับปริมาณและกรรมวิธีการให้ความร้อน) และเพิ่มความสามารถ ในการเชื่อมประสานของโลหะผสม ส่วนเหล็กจะเพิ่มความแข็งของโลหะผสม พบว่าโลหะผสมที่ ได้จากการทดลองนี้ยังคงมีสีที่สวยงามและสามารถต้านทานความหมองได้ดีจากช่วงปริมาณ ส่วนผสมของธาตุตามตาราง ซึ่งพบว่าทองแดงเป็นธาตุที่สำคัญในการส่งผลต่อความแข็งจึงมีการ ควบคุมและเปลี่ยนปริมาณทองแดงเพื่อดูความแตกต่างของชิ้นงาน การลดปริมาณทองแดงลง ส่งผลต่อการป้องกันความหมองของโลหะเงินน้อยมาก และความแข็งก็ยังอยู่ในเกณฑ์ที่สามารถ รับได้จึงสรุปว่าปริมาณทองแดงใช้ที่ปริมาณต่ำกว่า 1.5% โดยน้ำหนัก

ส่วนธาตุผสมอื่น ๆ ที่ส่งผลต่อการป้องกันการหมองของโลหะเงินที่จะนำไปทำ เครื่องประดับเงินสเตอร์ลิงโดยการอัดขึ้นรูป (Extruded metal) ควรจะใช้ปริมาณของเงิน 92-95%, สังกะสี 2-5%, ทองแดง 1-1.5% และอินเดียม 0.05-0.2% โดยน้ำหนัก

Element	Preferred Weight %				
Silver (Ag)	94.848				
Zinc (Zn)	0.5				
Copper (Cu)	1.25				
Indium (In)	0.10				
Tin (Sn)	0.5				
Iron (Fe)	0.005				
Gold (Au)	0.2500				
Silicon (Si)	0.035				
Manganese (Mn)	0.001				
Boron (B)	0.001				
Bismuth (Bi)	0.002				
Cobalt (Co)	0.0015				
Chromium (Cr)	0.0005				
Lead (Pb)	0.002				
Vanadium (V)	0.001				
Cerium (Ce)	0.001				
Iridium (In)	0.001				
Zirconium (Zr)	0.001				

ตารางที่ 2.9 แสดงปริมาณธาตุผสมที่เหมาะสมโดยเฉพาะอย่างยิ่งมีความสามารถในด้านกัน หมองของโลหะผสมเงินสำหรับโลหะอัดขึ้นรูปที่ใช้ในเครื่องประดับ [43]

Peter Gamon John [44] โลหะผสมได้ทำการทดลองเป็นโลหะเงินผสมโดยมีเงินอย่าง น้อย 77% โดยน้ำหนัก มีทองแดงและปริมาณของเจอร์เมเนียมที่มีประสิทธิภาพในการลดฝ้า (Fire stain) และป้องกันการหมอง ปริมาณของเจอร์เมเนียมต่ำสุดจะใช้ที่ปริมาณ 0.5% โดย ้น้ำหนัก ในทางปฏิบัติจะใช้น้อยกว่า 1% โดยน้ำหนัก แต่ผู้วิจัยพิจารณาว่าเป็นปริมาณไม่ เหมาะสม ควรจะใช้ปริมาณ 1-1.5% จะดีกว่า ซึ่งอาจจะมีการเติมสังกะสีเพื่อไปใช้ทำหน้าที่แทน ทองแดงก็ได้ หรือส่วนผสมสำคัญที่สามารถนำมาใช้แทนทองแดงได้นอกเหนือจากสังกะสี (เช่น เพิ่มปริมาณได้ถึง 1% โดยน้ำหนัก หรือ 0.5% โดยน้ำหนัก) อาจจะเป็น ทอง. แพลเลเดียม และ แพลทตินัม หรือผสมส่วนผสมอื่น ๆ เช่น อะลูมิเนียม, แบเรียม, เบริลเลียม, แคดเมียม, โคบอลต์, ้ โครเมียม, เออร์เบียม, แกลเลียม, อินเดียม, แมกนีเซียม, แมงกานีส, นิกเกิล, ตะกั่ว, ซิลิกอน, ดีบุก, ไทเทเนียม, วานาเดียม, อิตเทรียม, อิตเทอร์เบียม และเซอร์โคเนียม เป็นต้น โดยเฉพาะอย่างยิ่ง ซิลิกอนสามารถเติมลงในโลหะเงินผสมได้ถึง 0.5% โดยน้ำหนัก แต่ทั่วไปจะใช้ 0.05-0.3% แต่ที่ นิยมใช้กันจะมีปริมาณ 0.1-0.2% โดยน้ำหนัก และเพื่อความสะดวกมีการผลิตออกมาในรูปแบบ ของมาสเตอร์อัลลอยทองแดง-ซิลิกอน เช่นมีปริมาณ 10% ซิลิกอน หรืออาจจะมีการหล่อแล้วหยด เม็ดเป็นลักษณะของโลหะเงินผสม-ทองแดง-เจอร์เมเนียม และนอกจากเงิน. ทคงแดง. เจอร์เมเนียมและสังกะสีแล้ว โลหะผสมอื่น ๆ สามารถทำให้เกรนเล็กละเอียด โดยไม่ให้เกิดอาการ เกรนโตได้ในขณะกระบวนการผลิตโลหะผสม ธาตุที่ส่งผลโดยตรงกับการปรับปรุงลักษณะของ เกรนประกอบไปด้วยโบรอน, อิริเดียม, เหล็ก และนิกเกิล ซึ่งโบรอนจะเป็นธาตุที่ส่งผลดีที่สุดต่อการ ปรับปรุงลักษณะของเกรนให้มีขนาดเล็ก

Bernhard และ Sivertsen [45] ศึกษาโลหะเงินสเตอร์ลิงที่มีธาตุสำคัญอื่นๆประกอบด้วย : เงินประมาณ 92.5% ทองแดง 2.625% สังกะสี 4.25% อินเดียม 0.02% ดีบุก 0.48%โบรอน 0.025% และซิลิกอน 0.1% ซึ่งเงินสเตอร์ลิงที่ส่วนผสมนี้แสดงคุณสมบัติที่ดีเนื่องจากลดฝ้าที่ เกิดขึ้นลง (Fire scale) อีกทั้งเมื่อนำโลหะผสมมาหล่อใหม่ (Recast) ยังสามารถลดความพรุนและ ขนาดของเกรนลงได้ และเมื่อทำการปรับปรุงส่วนผสมของโลหะเงินอีกซึ่งปริมาณธาตุประกอบด้วย โลหะเงินบริสุทธิ์ประมาณ 89-93.5% ซิลิกอน 0.1-2% โบรอน 0.001-2% สังกะสี 0.5-5% ทองแดง 0.5-6% ดีบุก 0.25-2% และอินเดียมประมาณ 0.01-1.25% ปริมาณทั้งหมดเป็นปริมาณ โดยน้ำหนัก ในส่วนผสมดังกล่าวซิลิกอนทำหน้าที่เป็นตัวดีออกซิแดนซ์ (Deoxidant) ทำให้ลด ปริมาณรูพรุนของโลหะผสมที่ทำการหล่อซ้ำ และมีผลต่อการซุบแข็งเล็กน้อย โบรอนที่เพิ่มเข้าไป เพื่อลดแรงตึงผิวของโลหะผสมขณะหลอมเหลวทำให้น้ำโลหะกลมกลืนเป็นเนื้อเดียวกัน สังกะสี เพิ่มเพื่อลดจุดหลอมเหลวของโลหะผสม, เพิ่มความขาว, ทำหน้าที่ทดแทนทองแดง, ยังเป็นตัวดี ออกซิแดนซ์ (Deoxidant) และเติมเพื่อปรับปรุงการไหลของโลหะผสม โดยทั่วการเติมทองแดงนั้น เติมเพื่อเพิ่มความแข็งแรงแก่เงินเหมือนกับการเติมเพื่อเพิ่มความแข็งให้กับวัสดุอื่น ๆ ดีบุกเติมลง ไปเพื่อส้านทานการหมองและส่งผลต่อการซุบแข็ง อินเดียมเป็นตัวทำให้เกรนมีขนาดเล็กละเอียด และปรับปรุงความสามารถในการเปียก (Wettability) ของโลหะผสม ซึ่งปริมาณของธาตุขึ้นอยู่กับ ว่าต้องการผลิตเป็นเงินเหรียญหรือเงินสเตอร์ลิงสามารถเปลี่ยนแปลงได้ตามความเหมาะสม ซึ่ง ธาตุผสมที่อยู่ในช่วงดังที่กล่าวมานั้นเมื่อถูกนำไปหล่อเพื่อที่จะผลิตชิ้นงานสามารถพบผ้าได้ แต่ ข้อดีคือสามารถลดอัตราของปริมาณรูพรุน และขนาดเกรนของชิ้นงานได้

Hensel, Emmert และ Wiggs [46] ทำการวิจัยเพื่อปรับปรุงคุณสมบัติทางไฟฟ้า เช่น การนำไฟฟ้า ของโลหะผสม และเพื่อให้โลหะหลอมเหลวมีสมบัติการไหลในที่ดีในสภาพ หลอมเหลวสามารถหล่อรูปร่างต่าง ๆ ที่ซับซ้อนมาก ๆ ได้ และเพื่อปรับปรุงสมบัติเปียกบนวัสดุ (Wetting characteristics) เมื่อใช้เป็นเงินประสาน(Silver solder) และยังมีการศึกษาธาตุผสม อื่น ๆ ที่นอกเหนือไปจากเงิน คือ เบริลเลียมและลิเธียม โดยศึกษาธาตุผสมในการผลิตชิ้นงานใน ปริมาณช่วงลิเธียม ประมาณ 0.002-1%, เบริลเลียม 0.1-5% และเงินคือส่วนที่เหลือ ซึ่งผลที่ได้ จากการเติมลิเธียม ประมาณ 0.002-1%, เบริลเลียมจง 0.1-5% และเงินคือส่วนที่เหลือ ซึ่งผลที่ได้ จากการเติมลิเธียม คือ ไม่เกิดการออกซิไดซ์ (Deoxidize) กับโลหะเงินหลอมเหลวและไม่เกิดสิ่ง สกปรกอื่น ๆ ที่เป็นอันตราย ส่วนหนึ่งของลิเธียมจะถูกกำจัดพร้อมกับสิ่งสกปรกอื่น ๆ และ ลิเธียมส่วนที่เหลือจะหลอมละลายพร้อมกับเงินซึ่งไม่เกิดการรวมเป็นออกไซด์ การเติมลิเธียมลงไป เป็นการป้องกันการเกิดออกซิเดชันของโลหะขณะหลอมเหลวโลหะเงินผสมที่อุณหภูมิสูง หรือช่วง ที่มีเทน้ำโลหะ(อากาศจะเข้าทำปฏิกิริยา) ซึ่งถือว่าการหล่อในการทดลองนี้เป็นการหล่อที่สะอาด มาก (ลิเธียมส่งผลป้องกันปฏิกิริยาออกซิเดชัน)

Leach [47] โลหะผสมใหม่ที่ถูกทดลองโดยมีปริมาณโลหะเงินเป็นส่วนใหญ่ตั้งแต่ ประมาณ 90-99.5% โดยน้ำหนัก มีการเพิ่มปริมาณของเบริลเลียมน้อย ๆ ตั้งแต่ประมาณ 0.10%-1.75% และปริมาณของโลหะผสมอื่น ๆ เช่น ทองแดง ดีบุก สังกะสี และแคดเมียม อาจจะ ใช้เพียงอย่างเดียวหรือผสมรวมกัน พบว่าเบริลเลียมในช่วงของปริมาณที่ที่ระบุนั้นส่งผลให้ คุณสมบัติทางกายภาพของโลหะเงินผสมดีขึ้น ทั่วไปปริมาณของเบริลเลียมที่ใช้จะไม่เกิน 1.75% ไม่ควรจะมากกว่านี้ ซึ่งการเติมปริมาณเบริลเลียม 0.5% จะมีผลดีต่อการป้องกันการหมอง โดย การเพิ่มปริมาณเบริลเลียมมากขึ้นส่งผลให้โลหะผสมที่ได้จะมีแนวโน้มเปราะขึ้น ยังทำให้พื้นผิว ของโลหะแผ่นที่ผ่านการรีดนั้นหยาบขึ้นและขัดยากขึ้นอีกด้วย ส่วนใหญ่จะใช้เบริลเลียมในการ ผสมประมาณ 0.5% หรือน้อยกว่านั้นจะเหมาะสมที่สุด

สิริพร โรจนนันต์ และคณะ [40] ได้ศึกษาอิทธิพลของการอบบ่มที่มีผลต่อโครงสร้างและ ความแข็งของเงินสเตอร์ ซึ่งทำโดยหลอมธาตุบริสุทธิ์ แล้วหล่อชิ้นงานที่มีส่วนผสมของ 93.7Ag-6.0Cu-0.3Sn นำชิ้นงานไปรีดขึ้นรูปเย็น จากนั้นทำการอบผ่านกรรมวิธีทางความร้อน โดยการผ่าน

การอบเนื้อเดียว (Solution treatment) ที่อุณหภูมิ 720-760°C แล้วทำการอบบ่มแข็ง (Aging) ที่ อุณหภูมิ 260-320°C เพราะถ้าหากใช้อุณหภูมิอบเนื้อเดียวต่ำกว่า 730°C จะทำให้ไม่สามารถ ละลายเฟส Cu-rich ได้หมด ส่งผลให้หลังการอบบ่มแล้วจะไม่ได้ความแข็งสูงสุด ส่วนการอบเนื้อ เดียวด้วยอุณหภูมิ 800°C พบว่าเกรนโตเกินไป ทำให้ได้สมบัติไม่ดีนัก จากโครงสร้างจุลภาคของ งานหล่อพบว่า มีลักษณะเป็นเดนไดรต์เฟสอัลฟาของเงิน (**α**-Ag phase) และโครงสร้างยูเทคติก (Eutectic) อยู่ในช่องว่างระหว่างเดนไดรต์ (Interdendritic dendrite) ความแข็งเฉลี่ยมีค่า 72 วิกเกอร์ โครงสร้างและความแข็งของชิ้นงานหลังการอบบ่มขึ้นกับอุณหภูมิและเวลาในการอบเนื้อ เดียวและอบบ่ม โดยสามารถสรุปได้ว่า สภาวะการอบบ่มที่ทำให้ได้ความแข็งสูงสุด ควรใช้ อุณหภูมิการอบเนื้อเดียวที่อุณหภูมิ 740°C เวลา 1 ชั่วโมง ตามด้วยการอบบ่มแข็งที่ 300°C เวลา 1 ชั่วโมง ได้ความแข็งสูงสุดมีค่า 167 วิกเกอร์

ข) อบละลายที่ 730 องศาเซลเซียส

ง) อบละลายที่ 760 องศาเซลเซียส ค) อบละลายเฟสที่ 740 องศาเซลเซียส ภาพที่ 2.33 (ก)-(ง) โครงสร้างเงินสเตอร์ลิงผสมดีบุกหลังอบเนื้อเดียว (หรืออบละลายเฟล) ที่อุณหภูมิต่าง ๆ [40]

โดยผลการทดลองพบว่า อุณหภูมิที่เหมาะสมในการอบเนื้อเดียวของเงินสเตอร์ลิงผสม ดีบุก 0.3 เปอร์เซนต์ คือ 740°C ดังนั้น การอบเนื้อเดียวส่วนที่เหลือจึงเลือกใช้อุณหภูมิที่ 740°C เป็นเวลา 1 ชั่วโมงแล้วจุ่มน้ำเย็น ตามด้วยการบ่มแข็งชิ้นงานอุณหภูมิ 260 280 300 และ 320°C เป็นเวลา 1 ชั่วโมง ตามลำดับพบว่าโครงสร้างเป็นเกรนกลมมีทวินอยู่ภายในเกรน บริเวณขอบ เกรนมีเฟสเกิดขึ้น ส่วนความแข็งของโลหะเงินนั้น พบว่าการอบบ่มแข็งที่อุณหภูมิ 300°C ให้ความ แข็งสูงสุดมีค่า 167 วิกเกอร์ ซึ่งเป็นไปตามหลักการโดยทั่วไปของการเพิ่มความแข็งโดยการอบบ่ม เนื่องจากเกิดอนุภาคขนาดเล็ก (Precipitate) กระจายทั่วในโครงสร้างทำหน้าที่ขัดขวางการ เคลื่อนที่ของดิสโลเคชัน (Dislocation)

ภาพที่ 2.35 ความแข็งของเงินสเตอร์ลิงผสมดีบุกหลังผ่านการอบเนื้อเดียวที่ 740°C และตามด้วยการอบบ่มที่อุณหภูมิ 260-320°C [40]

McFarland [48] โลหะเงินสเตอร์ลิงตามมาตรฐานจะประกอบไปด้วยโลหะเงินบริสุทธิ์ 92.5% โดยน้ำหนัก และอีก 7.5% จะเป็นทองแดงซึ่งเมื่อผ่านการอบให้ความร้อนทองแดงกระจาย ไปทั่วสารละลายของแข็งในเมทริกซ์ของเงินในรูปแบบของอนุภาคขนาดเล็กที่ และสามารถนำไป เพิ่มความแข็งแรงได้ด้วยวิธีการอบบ่มแข็งให้ตกตะกอนจะทำให้ชิ้นงานเงินมีความแข็งเพิ่มยิ่งขึ้น และจากการทดลองยังพบว่า อลูมิเนียม (Al), แมกนีเซียม (Mg), ตะกั่ว (Pb), พลวง (Sb), เบริลเลียม (Be) หรือการรวมกันของธาตุเหล่านี้อาจใช้แทนเป็นส่วนหนึ่งของทองแดงที่มีผลเพิ่ม ความแข็งในเครื่องประดับเงินต่าง ๆ เช่น กรณีนาฬิกา ตะขอและเครื่องประดับอื่น ๆ อีกหลายชนิด ที่จำเป็นต้องมีความแข็งแกร่งมาก หรือต้องการความยืดหยุ่น

ปวริศร์ และคณะ [49] ศึกษาการปรับปรุงสมบัติทางกลของเงินสเตอร์ลิงโดยการเติม โลหะผสมอลูมิเนียม-สแกนเดียม และกระบวนการบ่มแข็ง เริ่มจากการเตรียมอินกอตส่วนผสมทาง เคมีของ 93Ag-6Cu-1(Al-2Sc) จากโลหะเงินบริสุทธิ์ โลหะทองแดงบริสุทธิ์ และโลหะผสมของ อะลูมิเนียม-สแกนเดียมในรูปของมาสเตอร์อัลลอย ศึกษาโครงสร้างจุลภาคและวัดความแข็งของ อินกอตนั้น แล้วนำอินกอตไปรีดขึ้นรูปเย็นร้อยละ 80 หลังจากนั้นนำไปผ่านกระบวนการอบเนื้อ เดียวที่อุณหภูมิ 760°C ตามด้วยการบ่มแข็งในช่วงอุณหภูมิ 250-350°C แล้วศึกษาโครงสร้าง จุลภาค วัดความแข็งจุลภาค ซ้ำอีกครั้งและทดสอบแรงดึง จากผลการทดลองพบว่าโครงสร้างงาน หล่อเป็นเดนไดรต์ของเฟสที่มีเงินเป็นส่วนผสมหลัก และบริเวณช่องว่างระหว่างเดนไดรต์เป็นเฟสที่ มีทองแดงเป็นส่วนผสมหลัก มีค่าความแข็งเฉลี่ย 80±5 วิกเกอร์ สมบัติทางกลขึ้นกับอุณหภูมิที่ เลือกใช้ในการบ่มแข็ง สรุปว่าชิ้นงานที่ผ่านการบ่มแข็งที่อุณหภูมิ 300°C เป็นเวลา 60 นาที ส่งผล ให้ชิ้นงานมีค่าความสูงสุดเฉลี่ย 180±5 วิกเกอร์ ให้ค่าความต้านทางแรงดึงจุดสูงสุดเฉลี่ย และค่า ความต้านทางแรงดึงจุดครากเฉลี่ย มีค่า 565±5 และ 517±5 MPa ตามลำดับ

ภาพที่ 2.36 ความแข็งจุลภาคของชิ้นงานหลังผ่านการบ่มในช่วงอุณหภูมิ 250-350°C [49]

ภาพที่ 2.37 สมบัติทางกลของชิ้นงานหลังผ่านการบ่มแข็งในช่วงอุณหภูมิ 250-350°C [49]

ภาพที่ 2.38 โครงสร้างจุลภาคของชิ้นงานหลังผ่านกระบวนการบ่มแข็งที่อุณหภูมิ [49] : (ก) 250°C (ข) 275°C (ค) 300°C (ง) 325°C และ (จ) 350°C

บทที่ 3

ระเบียบวิธีการวิจัย

3.1 เครื่องมือและอุปกรณ์ที่ใช้ในการวิจัย

3.1.1) อุปกรณ์ในการทำแม่พิมพ์ยาง

- 1. กรอบอะลูมิเนียมวัดขนาดแม่พิมพ์ (Aluminum mold frame)
- 2. ยางสำหรับทำแม่พิมพ์ (Mold rubber)
- 3. มีดผ่าแม่พิมพ์ (Mold knife)
- 4. หัวจุกทางน้ำโลหะเข้า (Sprue former)
- 5. ต้นแบบตัวเรือน (Jewelry model)
- 6. เครื่องอัดแม่พิมพ์ยาง (Vulcanizer machine)

3.1.2) อุปกรณ์ในการหล่อเทียนและติดต้น

- 1. เครื่องฉีดเทียน (Wax injector)
- 2. เทียน (Wax)
- 3. สเปรย์ แป้ง และแปรงสำหรับทำความสะอาดแม่พิมพ์ยาง
- 4. ฐานยาง (Sprue base)
- 5. หัวแว้งไฟฟ้า
- 3.1.3) อุปกรณ์ในการทำแม่พิมพ์ปูนหล่อและอบเผา
 - 1. กระบอกหล่อ
 - 2. ปูนปลาสเตอร์หล่อแบบต้นเทียน
 - 3. ชามผสมปูนหล่อ
 - 4. เครื่องผสมปูนหล่อ
 - 5. เครื่องสุญญากาศ (Vacuum machine)
 - 6. กระบอกตวงน้ำและตาชั่ง
 - 7. เตาอบแม่พิมพ์

- 3.1.4) อุปกรณ์ในการหลอมและหล่อโลหะ
 - เตาหลอมและหล่อแบบสุญญากาศ (Vacuum pressure casting machine) พร้อมอุปกรณ์ที่ใช้ในการหลอมโลหะ OLDMOON รุ่น OMC1
 - เตาหลอมและเครื่องเทเม็ดขนาด 20 kW ความจุถึง 8 กิโลกรัม และหลอมได้ ถึง 1650°C
 - 3. กระบอกหล่อที่ได้จากการอบเผาแม่พิมพ์ปูนหล่อ
 - 4. อุปกรณ์อื่นๆ ที่ใช้ในการหลอมและหล่อโลหะ
 - 5. เครื่องทำความสะอาดชิ้นงานความดันสูง
- 3.1.5) อุปกรณ์ในการทดสอบกันหมองของวัสดุ
 - 1. โฟร์ดอมมือ สำหรับเจาะรู
 - 2. เครื่องปัดเงาหยาบ / ละเอียด
 - 3. ลวดใช้ในการจับ / แขวนชิ้นงานทดสอบ
 - 4. ภาชนะสำหรับทดสอบชิ้นงานกันหมอง
 - 5. เครื่องอัลตร้าโซนิค
 - 6. คีมตัดลวดและชิ้นงาน
 - 7. เครื่องขัดชิ้นงานด้วยกระดาษทรายและผ้าสักหลาด
- 3.1.6) เครื่องมือวิเคราะห์ผลการทดลอง
 - 1. กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope; SEM) ยี่ห้อ JEOL รุ่น JSM-6400LV และ JSM-5410F
 - 2. Energy Dispersive X-ray spectroscopy (EDX) ยี่ห้อ INCA
 - เครื่องมือทดสอบแรงดึง (Universal tensile testing machine) ยี่ห้อ LLOYD รุ่น LR10K, LLOYD Instruments, England
 - เครื่องมือวิเคราะห์ส่วนผสมทางเคมีโดยวิธี Inductively Couple Plasma Spectroscopy (ICP-OES) ยี่ห้อ Perkin Elmer รุ่น ICP-Plasma-1000
 - 5. เครื่องมือวิเคราะห์ธาตุและสารประกอบ X-ray diffraction (XRD)
 - 6. เครื่องวัดและเทียบสี (Spectrocolormeter) รุ่น UltraScan XE
 - 7. เครื่องวัดความแข็งแบบ Rockwell ยี่ห้อ GALILEO durometria (Scale A)

3.2 วัตถุดิบ

- 1. เม็ดโลหะเงินบริสุทธิ์ 99.99 %
- 2. เม็ดโลหะทองแดงบริสุทธิ์ 99.99 %
- 3. ดีบุกบริสุทธิ์ 99 %
- 4. อะลูมิเนียมบริสุทธิ์ 99 %
- 5. มาสเตอร์อัลลอยทองแดง 10% เบริลเลียม

3.3 สารเคมี

- 1. แอลกอฮอล์ (C_2H_6O) Absolute (AR)
- 2. น้ำกลั่น (H₂O)
- 3. น้ำปราศจากไอออน (Deionized water) หรือน้ำดีไอ (DI)
- 4. กรดโครมิค (Chromic acid, H₂CrO₄)
- 5. กรดในตริกเข้มข้น (HNO₃) ยี่ห้อ Maersk
- 6. กรดกำมะถัน (H₂SO₄) 70%
- 7. โซเดียมซัลไฟด์ (Na₂S)
- 8. ผงเพชร (Diamond paste) ขนาด 6, 3, 1 และ 1/4 ไมครอน ยี่ห้อ Struers

3.4 ขั้นตอนการดำเนินงานวิจัย

3.4.1) สืบค้นข้อมูลจากเอกสารต่าง ๆ ทั้งในประเทศและต่างประเทศ ซึ่งจะศึกษาข้อมูล ของธาตุผสมเพื่อเพิ่มสมบัติความเป็นสปริงของโลหะเงิน และศึกษาวิธีการอบทางความร้อนด้วย วิธีอบบ่มให้ตกตะกอน

3.4.2) ศึกษาส่วนผสมทางเคมีของโลหะเงินผสมทองแดง เบริลเลียม ดีบุก และ อะลูมิเนียมที่นำมาใช้เป็นวัตถุดิบ

3.4.3) ทดลองหล่อชิ้นงานและศึกษาโครงสร้างจุลภาครวมไปถึงสมบัติทางกลของชิ้นงาน หล่อ

3.4.3.1) ทำต้นแบบตัวเรือนต้นแบบที่ใช้ทดสอบแรงดึง โดยใช้ชิ้นงานขนาดตาม มาตรฐาน ASTM E 8M-96 ในการทำแม่พิมพ์ยางเพื่อใช้ในการฉีดเทียนและทำการหล่อต่อไป

3.4.3.2) ฉีดเทียนที่ทำการหลอมละลายแล้ว เข้าสู่แม่พิมพ์ยางด้วยเครื่องฉีด เทียนได้ลักษณะตามต้นแบบมาตรฐาน ASTM E8 M-96 และแบบชิ้นงานทดสอบกันหมอง 3.4.3.3) นำแบบเทียน (Wax pattern) ที่ได้มาทำการติดต้นเทียนและจัดให้เป็น กลุ่มอย่างมีระเบียบ เพื่อสามารถหล่อชิ้นงานได้ครั้งละจำนวนมาก

3.4.3.4) ขั้งน้ำหนักต้นเทียน เพื่อนำไปคำนวณหาส่วนผสมโลหะที่ต้องการหล่อ
 3.4.3.5) นำต้นเทียนใส่ในกระบอกหล่อ แล้วตวงอัตราส่วนระหว่างปูนหล่อและ
 น้ำให้เหมาะสม โดยให้มีน้ำหนัก 37 เปอร์เซ็นต์ของน้ำหนักปูนหล่อ

3.4.3.6) ผสมปูนหล่อกับน้ำด้วยเครื่องผสมปูนหล่อ แล้วดูดอากาศออกจากเนื้อ ปูนหล่อด้วยเครื่องสุญญากาศ (Vacuum machine) นานประมาณ 3 นาที หลังจากนั้นเทปูนลงใน กระบอกหล่อและดูดอากาศออกอีกครั้งใช้เวลาประมาณ 3 นาทีเช่นเดียวกัน

 3.4.3.7) รอให้กระบอกปูนหล่อแห้ง โดยทิ้งไว้ในสภาวะอากาศปกติ (อุณหภูมิห้อง) ใช้เวลาประมาณ 1¹/₂ ชั่วโมงแล้วนำกระบอกปูนหล่อเข้าเตาอบเผาแม่พิมพ์ปูนหล่อ เพื่อขจัดเทียนออกจากแม่พิมพ์ปูนหล่อและเพิ่มความแข็งแรงของปูน โดยเพิ่มอุณหภูมิเตาขึ้นช้า ๆ แล้วปรับอุณหภูมิให้คงที่ที่ 580°C ใช้เวลาในการอบเผาทั้งสิ้นประมาณ 12-16 ชั่วโมง

3.4.3.8) เตรียมส่วนผสมและอุปกรณ์ในการหล่อและหลอมโลหะเงินผสม 935
ทั้งหมด 7 ชุด โดยชั่งน้ำหนักเม็ดเงินบริสุทธิ์ 99.99% เม็ดทองแดงบริสุทธิ์ 99.99% ดีบุกบริสุทธิ์
99 % อะลูมิเนียมบริสุทธิ์ 99 % และโลหะผสมทองแดง-เบริลเลียมโดยมีอัตราส่วนผสมตามตาราง
ที่ 3.1

্ৰুম Cum	ปริมาณของธาตุผสม(%โดยน้ำหนัก)						
ชุดที่	เงิน	ทองแดง	เบริลเลียม	ดีบุก	อะลูมิเนียม		
	(Ag)	(Cu)	(Be)	(Sn)	(AI)		
1) AgCu	Balance	6.5	-	-	-		
2) AgCu0.3Al	Balance	6.2	-	-	0.3		
3) AgCu0.3Sn	Balance	6.2	-	0.3	-		
4) AgCu0.3Be0.2Sn	Balance	6.0	0.3	0.2	-		
5) AgCu0.3Be0.3Sn	Balance	5.9	0.3	0.3	-		
6) AgCu0.3Be0.5Sn	Balance	5.7	0.3	0.5	-		
7) AgCu0.3Be0.5Sn0.3Al	Balance	5.4	0.3	0.5	0.3		

ตารางที่ 3.1 ส่วนผสมเงินผสม 935 ที่ทำการทดลองทั้ง 7 ชุดโลหะผสม

3.4.3.9) หลอมและหล่อโลหะผสมด้วยเครื่องหลอมและหล่อแบบสุญญากาศ แล้วทำการหล่อโลหะเงินผสม 935 และโลหะเงิน 935 ผสมทองแดง-เบริลเลียม-ดีบุก-อะลูมิเนียม ที่อุณหภูมิ 1000°C อุณหภูมิเบ้า 550°C

3.4.3.10) นำแม่พิมพ์ออกจากเครื่องหล่อโลหะ แล้วแช่ลงในน้ำเย็นทันที แล้วนำ แม่พิมพ์ไปทำความสะอาดชิ้นงานหล่อด้วยเครื่องฉีดน้ำความดันสูง เพื่อทำลายปูนหล่อออกจาก กระบอกหล่อ

3.4.3.11) นำต้นชิ้นงานโลหะที่ได้ทำความสะอาดด้วยการจุ่มกรดกำมะถัน
 H₂SO₄ (ความเข้มข้น 20-25% โดยปริมาตร ที่อุณหภูมิ 60-80 องศาเซลเซียส) เพื่อกัดผิวชิ้นงานให้
 สะอาด ตัดแต่งและขัดชิ้นงาน เพื่อนำไปทดสอบต่อไป

3.4.4) ศึกษากระบวนการการบ่มเพิ่มความแข็ง

3.4.4.1) นำชิ้นงานที่ได้จากแบบหล่อต้นเทียนทั้ง 7 ชุด มาทำการอบบ่มแข็ง
 (Aging) เพื่อเพิ่มสมบัติทางกลที่อุณหภูมิ 350°C, 400°C โดยใช้ระยะเวลาในการบ่มแข็ง
 0, 10, 15, 30, 60 และ 120 นาที

3.4.4.2) จุ่มลงในน้ำเย็นอย่างรวดเร็ว เพื่อลดอุณหภูมิลงถึงอุณหภูมิห้อง

3.4.4.3) นำชิ้นงานหล่อที่ได้จากแบบหล่อต้นเทียน และผ่านการบ่มเพิ่มความ แข็งแล้วไปทดสอบแรงดึง สมบัติความเป็นสปริง ทดสอบความแข็ง วิเคราะห์ปริมาณส่วนผสมทาง เคมีด้วยเครื่องมือ ICP-OES (Inductively Couple Plasma-Optical Emission Spectrometer) ตรวจสอบโครงสร้างจุลภาคด้วย กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope,(SEM)) วิเคราะห์ธาตุและสารประกอบ X-ray diffraction (XRD) และทดสอบสมบัติ ความต้านทานกันหมองของวัสดุ วัดและเทียบค่าสีด้วยเครื่อง Spectrocolormeter

3.4.4.5) วิเคราะห์และสรุปผลการทดลอง

3.5 ระเบียบและวิธีการตรวจสอบวิเคราะห์ผล

3.5.1) การทดสอบแรงดึง (Tensile test) หล่อชิ้นงานให้มีขนาดเส้นผ่านศูนย์กลาง
 4 มิลลิเมตร และขนาด Gage length 20 มิลลิเมตร ตามมาตรฐาน ASTM E 8M-96 ดังภาพที่ 3.1

ภาพที่ 3.1 ภาพชิ้นทดสอบแรงดึง [50]

- G = Gage length = 20.0 ± 0.1 mm.
- D = Diameter = 4.0 ± 0.1 mm.
- R = Radius of fillet, min = 4 mm.
- A = Length of reduced section, min = 24 mm.

3.5.1.1) นำชิ้นทดสอบทั้งสภาพหล่อ (As-cast) และชิ้นงานหลังจากการอบชุบ ทางความร้อน (Heat treatment) ไปทำการทดสอบแรงดึงด้วยเครื่องทดสอบแรงดึง Universal tensile test ระบบอัตโนมัติ ขนาด 150 kN รุ่น ยี่ห้อ LLOYD รุ่น LR10K, LLOYD Instruments กำหนดความเร็วในการดึง (Tension speed) 0.5 มิลลิเมตรต่อนาที เพื่อหาค่าความต้านทานแรงดึง (Tensile strength) ความเค้นจุดคราก (Yield strength) ค่าโมดูลัสยืดหยุ่น (Young's modulus) และเปอร์เซ็นต์การยืดตัว (%Elongation)

3.5.1.2) วิเคราะห์ผลที่ได้และสรุปผล

3.5.2) การวิเคราะห์ปริมาณส่วนผสมทางเคมีด้วยเครื่อง ICP-OES (Inductively Couple Plasma-Optical Emission Spectrometer) เพื่อตรวจสอบปริมาณธาตุผสมต่าง ๆ ในโลหะผสม และชิ้นงานเงินทดสอบหลังการหล่อ โดยส่งชิ้นตัวอย่างทดสอบไปวิเคราะห์หาปริมาณธาตุเงิน ทองแดง ดีบุก และ เบริลเลียม ที่ศูนย์วิจัยชีววิทยาในช่องปาก คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย วิธีเตรียมตัวอย่างสำหรับการทดสอบหาปริมาณธาตุด้วย ICP-OES ทำ ได้โดย 3.5.2.1)ชั่งตัวอย่างเงิน ทดสอบปริมาณ 0.5 กรัม ละลายในกรดไนตริกเข้มข้น 50% โดยปริมาตรจำนวน 10 มิลลิลิตร

3.5.2.2)ทิ้งไว้ 2 ชั่วโมง จนละลายหมด แล้วไล่ก๊าซไนโตรเจนไดออกไซด์ (NO₂) ออกให้หมด จากนั้นปรับปริมาตรด้วยน้ำปราศจากไอออน (DI) ให้ได้ปริมาตรรวม 100 มิลลิลิตร

3.5.2.3)วิเคราะห์ปริมาณธาตุโดยเครื่อง ICP-OES โดย วัดค่าพลังงานที่คาย ออกมาเทียบกับตอนเริ่มต้น จะทำให้ทราบค่าพลังงานส่วนที่ ถูกดูดกลืนไป แล้วนำค่าที่ ได้มาเทียบกับค่ามาตรฐานของเครื่องมือจะทำให้ทราบว่าชิ้นตัวอย่างทดสอบมีส่วนผสม ของโลหะที่ต้องการทราบเป็นปริมาณเท่าใด

3.5.3) การตรวจสอบโครงสร้างจุลภาค มีการเตรียมชิ้นงานโลหะสำหรับการวิเคราะห์ด้วย กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM) และ เครื่องมือวิเคราะห์ธาตุและสารประกอบ (XRD) มีขั้นตอนการเตรียมชิ้นงานดังนี้

3.5.3.1) เตรียมชิ้นงานเพื่อตรวจสอบโครงสร้างจุลภาคของโลหะผสม โดยตัด ชิ้นงานหล่อแล้วเตรียมผิวโดยขัดผิวชิ้นงานด้วยกระดาษทรายเบอร์ 400, 600, 800, 1000, 1200 และ 2000 ตามลำดับ แล้วขัดละเอียด (Polishing) ด้วยผงเพชรชนิดน้ำมัน ขนาด 6, 3, 1 และ 1/4 ไมครอน ตามลำดับ จากนั้นล้างคราบสกปรกด้วยน้ำและ แอลกอฮอล์ แล้วเป่าให้แห้ง

3.5.3.2) ตรวจสอบโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง กราด (SEM) และตรวจสอบปริมาณของธาตุผสมในโครงสร้างที่พบด้วย Energy Dispersive X-ray spectroscopy (EDX)

3.5.3.3) ในส่วนของการวิเคราะห์สารประกอบและธาตุ X-ray diffraction (XRD) นั้น ก็ทำการเตรียมตัวอย่างเหมือนข้างต้น แล้วทำการส่งทางศูนย์เครื่องมือวิจัย วิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัยทำการตรวจสอบตัวอย่างให้

3.5.3.4) วิเคราะห์และสรุปผล

3.5.4) การทดสอบความแข็งแบบร็อคเวล

3.5.4.1) เตรียมชิ้นงานเพื่อตรวจสอบโครงสร้างจุลภาคของโลหะผสม โดยตัด
 ชิ้นงานหล่อแล้วเตรียมผิวโดยขัดผิวชิ้นงานด้วยกระดาษทรายเบอร์ 400, 600, 800,
 1000, 1200 และ 2000 ตามลำดับ แล้วขัดละเอียด (Polishing) ด้วยผงเพชรชนิดน้ำมัน

ขนาด 6, 3, 1 และ 1/4 ไมครอน ตามลำดับ จากนั้นล้างคราบสกปรกด้วยน้ำและ แอลกอฮอล์ แล้วเป่าให้แห้ง

3.5.4.2) นำชิ้นงานที่ได้ทดสอบด้วยเครื่องวัดความแข็งแบบร็อคเวล สเกล A (Rockwell Scale A) โดยใช้หัวกดเพชร น้ำหนักโหลด 60 kgf

3.5.4.3) บันทึกค่าที่ได้ นำข้อมูลไปวิเคราะห์และสรุปผล

3.5.5) การทดสอบสมบัติต้านทานการหมองและวัดเทียบสี

3.5.5.1) หล่อชิ้นงานลักษณะสี่เหลี่ยมผืนผ้า สำหรับทดสอบการกันหมอง ขนาด 15x22 มิลลิเมตร หนา 3 มิลลิเมตร (โดยวิธีการหล่อได้อธิบายไปข้างต้นแล้ว) ซึ่งการ เตรียมชิ้นงานหลังหล่อทำได้โดย

3.5.5.2) นำชิ้นงานเจาะรูเล็ก ๆ ด้วยโฟร์ดอมมือ ให้ได้ขนาดเส้นผ่านศูนย์กลาง 2 มิลลิเมตร บริเวณด้านบนของชิ้นงานสำหรับการแขวนขณะทดสอบสมบัติต้านทางการ หมอง

3.5.5.3) นำชิ้นงานที่ผ่านการเจาะรูแล้วไปขัดด้วยกระดาษทราย เบอร์ 100, 250,
350, 400, 600, 800 ตามลำดับ แล้วไปผ่านการปัดเงาด้วยเครื่องปัดหยาบและละเอียด
ให้ชิ้นงานมีความเรียบเงา สม่ำเสมอทั้งชิ้นงาน

3.5.5.4) ล้างทำความสะอาดชิ้นงาน และทำความสะอาดอีกครั้งด้วยเครื่อง
 อัลตราโซนิค ล้างด้วยแอลกอฮอล์ แล้วใช้ไดร์เป่าให้แห้ง เพื่อไม่ให้มีคราบไขมันหรือสิ่ง
 สกปรกต่าง ๆ เกาะอยู่บริเวณผิวของชิ้นงาน

3.5.5.5) นำชิ้นงานไปทดสอบความต้านทานการหมอง โดยใช้ลวดแขวนชิ้นงาน
ไว้เหนือสารละลายโซเดียมซัลไฟด์ (Na₂S) ที่ทำละลายกับกรดกำมะถัน (H₂SO₄) ความ
เข้มข้น 40% แล้วในภาชนะที่มีฝาปิดมิดชิด โดยเวลาการทดสอบใช้ 0.5, 1, 2, 3, 4, 12,
24 ชั่วโมง ตามลำดับ ทดสอบชิ้นงานทั้ง 7 ชุด ซึ่งจะเลือกใช้ทั้งชิ้นงานหลังหล่อ (As-cast)
และ ชิ้นงานที่ผ่านการอบบ่ม (Aging) ด้วย คือ ชิ้นงานหลังหล่อ (As-cast), ชิ้นงานที่ผ่าน
การอบบ่ม (Aging) 350°C เป็นเวลา 0.5 และ 1 ชั่วโมง และชิ้นงานที่ผ่านการอบบ่ม
(Aging) 400°C เป็นเวลา 0.5 และ 1 ชั่วโมง

3.5.5.6) หลังจากครบเวลาทดสอบ ก็นำชิ้นงานที่ได้ถ่ายภาพ และนำไปทำการวัด เทียบสีด้วยเครื่องวัดเทียบสี (Spectrocolormeter)

3.5.5.7) เก็บข้อมูลที่ได้จากเครื่องวัดเทียบสี มาวิเคราะห์และสรุปผล

ภาพที่ 3.2 แผนผังสรุปกระบวนการทดลอง

บทที่ 4

รายงานผลการทดลองและอภิปรายผลการทดลอง

4.1 ลักษณะและชิ้นงานตัวอย่างหลังการหล่อเงินสเตอร์ลิง

ภาพที่ 4.1 แสดงชิ้นงานที่ได้หลังจากการหล่อต้นโลหะเงินสเตอร์ลิง โดยใช้ เครื่องหลอม และหล่อแบบสุญญากาศ ใช้อุณหภูมิในการหล่อ 1000°C และอุณหภูมิเบ้าหล่อ 550°C ทำการ ทดสอบการดึงและทดสอบกันหมอง การหล่อชิ้นงานใช้วิธีหล่อแบบหล่อขี้ผึ้ง (Investment casting or Lost wax casting) โดยใช้เทียนเป็นต้นแบบ แล้วติดชิ้นงานเป็นต้นเทียน มีกิ่งก้าน ลักษณะคล้ายต้นไม้ แล้วเมื่อหลังเทน้ำโลหะ หล่อออกมาจะได้เป็นต้นโลหะเงินสเตอร์ลิง ซึ่งทำการ หล่อชุดของโลหะผสมทั้งหมดเงินสเตอร์ลิงทั้งหมด 7 ชุด โดยปรับเปลี่ยนส่วนผสมทางเคมีด้วยการ เติมธาตุอะลูมิเนียม ดีบุกและเบริลเลียม ดังตารางที่ 3.1

ผลการหล่อพบว่า ชิ้นงานโลหะผสมเงินสเตอร์ลิงชุด AgCu และ AgCu0.3Sn ในสภาพ หลังหล่อเกิดการแตกเป็นจำนวนหลายชิ้น ซึ่งพบการแตกของชิ้นงานทั้งในลักษณะแตกหักคาอยู่ บนต้นโลหะ หรือมีการแตกขณะใช้คีมตัดแยกชิ้นงานเพื่อไปทำการทดสอบ ลักษณะเป็นการแตก แบบเปราะ (Brittle Fracture) สาเหตุจากการเย็นตัวอย่างรวดเร็วของโลหะชุดทั้ง 2 ชุดดังกล่าว ทำ ให้เนื้อโลหะมีการหดตัวแต่ละบริเวณไม่เท่ากัน ซึ่งชิ้นงานสภาพหลังหล่อใช้คีมตัดแล้วแสดงใน ภาพที่ 4.1

ชิ้นงานในสภาพหลังหล่อยังแสดงถึงสีผิวของชิ้นงานได้อย่างชัดเจน ซึ่งเห็นได้ว่า ชิ้นงาน ชุดโลหะผสม AgCu และชุดโลหะผสม AgCu0.3Sn นอกจากเกิดการแตกเปราะหลังหล่อแล้ว ชิ้นงานหลังหล่อยังมีสีดำคล้ำกว่าชุดโลหะผสมอื่น ๆ อันเนื่องมาจากทองแดงทำปฏิกิริยากับ ออกซิเจนในอากาศ (Oxidation) เกิดเป็นออกไซด์ของทองแดงเกาะบนผิวของโลหะ ออกไซด์ของ ทองแดงที่พบในโลหะเงินสเตอร์ลิงส่วนใหญ่จะเป็นสารประกอบ Cu₂O (Copper I oxide) ที่รู้จัก กันในชื่อ คิวปรัสออกไซด์ (Cuprous Oxide) เป็นออกไซด์ที่มีสีแดง/แดงอมชมพู หรือเรียกว่า ฝ้า แดง และสารประกอบทองแดงออกไซด์ CuO รู้จักกันในชื่อ คิวปริกออกไซด์ (Cupric Oxide) เป็น ออกไซด์ที่มีสีออกไปทางดำ/เทาดำ (ฝ้าดำ) คราบออกไซด์ที่เกิดขึ้นรวม ๆ เรียกว่า สเกลที่เกิดจาก ความร้อน (Fire Scale) แม้การศึกษาของสงวนรักษ์ [1] มีศึกษาผลของปริมาณดีบุกในช่วง 0 – 0.63% พบว่า ปริมาณดีบุกที่เพิ่มขึ้นจะช่วยในการป้องกันการเกิดออกซิเดชันของทองแดงที่ผิวโลหะ สังเกตได้ จากความดำคล้ำสีผิวของชิ้นงานที่ลดลง แต่ในกรณีของงานวิจัยนี้ปริมาณดีบุกที่ใช้น้อยกว่า (AgCu0.3Sn) เติมดีบุกเพียง 0.3% จึงน่าจะส่งผลทำให้การช่วยลดการเกิดปฏิกิริยาออกซิเดชัน กับอากาศและช่วยในการป้องกันการหมองได้น้อยกว่าในกรณีดังกล่าว

ในชุดโลหะผสมเงินสเตอร์ลิงอื่น ๆ ดังภาพที่ 4.1(ก) – 4.1(ช) ที่เพิ่มปริมาณธาตุผสม ปริมาณมากขึ้น ไม่ว่าจะเป็นเติมธาตุอะลูมิเนียม เบริลเลียม หรือดีบุกมากขึ้นเพื่อดูศึกษาจากธาตุ ผสมที่เติมพบว่า ธาตุเหล่านี้สามารถช่วยเพิ่มความต้านทานการหมองและสมบัติทางกลเพิ่มขึ้นอีก ด้วย เมื่อเปรียบเทียบชิ้นงานทั้ง 7 ชุด พบว่า ธาตุที่มีอิทธิพลช่วยลดการเกิดออกซิเดชันได้ดีที่สุด ของทุกชุดโลหะผสมคือ ธาตุอะลูมิเนียม ดังภาพที่ 4.1 (ข) สังเกตเห็นว่า สีผิวของชิ้นงานที่เติมธาตุ อะลูมิเนียม 0.3% โดยน้ำหนัก (โลหะผสม AgCu0.3Al) ผิวชิ้นงานหลังหล่อเกิดคราบออกไซด์น้อย ที่สุด (ขาวที่สุด) ผิวของชิ้นงานจะเป็นสีของโลหะเงินและค่อนไปทางเหลืองเล็กน้อย นอกจากนี้ เมื่อเปรียบเทียบสีผิวของโลหะผสมชุดอื่น ๆ ที่เหลือ สามารถเรียงลำดับสีผิวที่หมองคล้ำ(ความ เข้ม) จากชุดที่ความหมองน้อยไปหามากได้ดังนี้ AgCu0.3Be0.5Sn0.3Al, AgCu0.3Be0.5Sn, AgCu0.3Be0.3Sn, AgCu0.3Be0.2Sn อย่างไรก็ดี แม้ว่าจะพบความหมองคล้ำที่เกิดขึ้นบริเวณ ผิวของชิ้นงาน แต่เมื่อเทียบกับโลหะผสม AgCu โลหะผสมทั้ง 6 ชุดที่กล่าวมานั้น ยังมีความหมอง น้อยกว่าโลหะผสม AgCu แสดงให้เห็นว่าธาตุทองแดง มีผลต่อสีผิวที่ได้หลังหล่อ อันเนื่องมาจาก การเกิดปฏิกิริยาออกซิเดชั่นอย่างชัดเจน และยังเห็นได้รัดว่า ธาตุดีบุกสามารถเพิ่มความสามารถ ในการต้านทานการหมองของเงินสเตอร์ลิงได้ เมื่อเติมดีบุกในปริมาณที่มากขึ้น โดยภาพของ ลักษณะต้นเงินสเตอร์ลิงสภาพหลังหล่อของทุกชุดโลหะผสม สามารถดูได้ในภาคผนวก ก.

ภาพที่ 4.1 ชิ้นงานหลังหล่อของโลหะผสมทั้ง 7 ชุด

ประกอบด้วย

- (ก) ชิ้นงานชุด AgCu
- (ค) ชิ้นงานชุด AgCu0.3Sn
- (จ) ชิ้นงานชุด AgCu0.3Be0.3Sn
- (ข) ชิ้นงานชุด AgCu0.3Be0.5Sn0.3AI
- (ข) ชิ้นงานชุด AgCu0.3Al
- (ง) ชิ้นงานชุด AgCu0.3Be0.2Sn
- (ฉ) ชิ้นงานชุด AgCu0.3Be0.5Sn

4.2 ส่วนผสมทางเคมี

ผลการตรวจสอบปริมาณธาตุและส่วนผสมทางเคมี ด้วยเทคนิคการวิเคราะห์ส่วนผสม ทางเคมีโดยวิธี Inductively Couple Plasma Spectroscopy (ICP-OES) ของชิ้นงานตัวอย่างก่อน หล่อและหลังหล่อชิ้นงาน แสดงไว้ดังตารางที่ 4.1

	Cu (%wt)		Be (%wt)		Sn (%wt)		AI (%wt)	
ขุดโลหะผสม	ก่อน	หลัง	ก่อน	หลัง	ก่อน	หลัง	ก่อน	หลัง
	หล่อ	หล่อ	หล่อ	หล่อ	หล่อ	หล่อ	หล่อ	หล่อ
AgCu	6.5	5.586	11720	-	-	-	-	-
AgCu0.3Al	6.2	5.353			-	-	0.3	0.317
AgCu0.3Sn	6.2	5.252			0.3	0.246	-	-
AgCu0.3Be0.2Sn	6.0	5.115	0.3	0.279	0.2	0.183	-	-
AgCu0.3Be0.3Sn	5.9	5.096	0.3	0.283	0.3	0.278	-	-
AgCu0.3Be0.5Sn	5.7	4.945	0.3	0.288	0.5	0.454	-	-
AgCu0.3Be0.5Sn0.3AI	5.4	4.596	0.3	0.283	0.5	0.439	0.3	0.323

ตารางที่ 4.1 ปริมาณธาตุและส่วนผสมทางเคมีที่ได้จากการวิเคราะห์ด้วย ICP-OES

จากผลการวิเคราะห์ปริมาณธาตุและส่วนผสมทางเคมี พบว่า ปริมาณธาตุที่ตรวจพบ หลังหล่อมีการสูญหายหรือลดลงเล็กน้อย ซึ่งอาจจะเป็นผลมาจากการเตรียมตัวอย่างและ เนื่องจากปัจจัยต่าง ๆ เช่น การทำละลายเพิ่มเติม (Dilution) เพื่อปรับสารละลายตัวอย่าง และ ทองแดงอาจสูญหายเนื่องจากการหลอมและหล่อเป็นต้นโลหะเงินสเตอร์ลิง อย่างไรก็ดี ส่วนผสม ดังกล่าวก็อยู่ในช่วงที่สามารถนำมาเปรียบเทียบกันได้ ไม่มีความแตกต่างกันมากนัก นอกจากนี้ใน การวิเคราะห์ด้วยเทคนิค ICP – OES ยังต้องควรระวัง เพราะธาตุบางธาตุ เช่น ดีบุก ซึ่งอาจจะเกิด การตกตะกอนในช่วงที่ทำเป็นสารละลายตัวอย่าง โดยเฉพาะระยะเวลาหลังที่ทำเป็นสารละลาย แล้ว ถ้ามีการทิ้งไว้นานเกินไป (ตรวจสอบด้วยเครื่องช้าเกินไป) จะส่งผลให้ค่าที่ได้มีความ คลาดเคลื่อนมากขึ้น

4.3 โครงสร้างจุลภาค

โครงสร้างจุลภาคในผลการวิจัยนี้ได้ดำเนินการตรวจสอบด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบส่องกราด (Scanning Electron Microscope; SEM) ในส่วนของการวิเคราะห์การกระจายตัว และหาตำแหน่งของธาตุผสมด้วยเทคนิคที่เรียกว่า X-ray Mapping นอกจากนี้ยังตรวจสอบ ส่วนผสมทางเคมีของโครงสร้างจุลภาคและเฟสต่าง ๆ แต่ละบริเวณด้วย Energy Dispersive X-ray Spectroscopy (EDX) ในการอภิปรายผลได้แบ่งเนื้อหาออกเป็น 2 ส่วน ดังนี้

4.3.1 โครงสร้างจุลภาคสภาพหลังหล่อ

4.3.2 โครงสร้างจุลภาคที่ได้หลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม

4.3.1 โครงสร้างจุลภาคในสภาพหลังหล่อ

ภาพที่ 4.2 (ก) แสดงโครงสร้างจุลภาคโลหะผสมเงินทองแดงสภาพหลังหล่อ (AgCuascast) ที่กำลังขยายต่ำ (150X) โครงสร้างที่พบมีลักษณะเป็นโครงสร้างเดรนไดรท์ (Dendrite) ของเฟสอัลฟาเนื้อพื้น (α-phase) ส่วนในบริเวณพื้นที่ระหว่างแขนของเดรนไดรท์ประกอบด้วย โครงสร้างยูเทคติกซึ่งจะเห็นได้ว่ามีการกระจายอยู่อย่างชัดเจน เมื่อพิจารณาภาพที่ 4.2 (ข) แสดง ถึงโครงสร้างจุลภาคที่กำลังขยายสูงมากขึ้น จะปรากฏโครงสร้างหลัก 2 ชนิด คือ โครงสร้างเนื้อพื้น (Matrix) ซึ่งมีธาตุเงินในปริมาณสูง เรียกว่า สารละลายของแข็งเนื้อเงินสูง (Ag-rich solid solution) หรือเฟสอัลฟา (α-phase) และโครงสร้างยูเทคติก (Eutectic structure) มีลักษณะเป็น แถบสีดำกับแถบสีขาว สลับกันไปเป็นริ้ว ๆ กระจัดกระจายอยู่ ซึ่งประกอบด้วยแถบสีขาว คือ เฟสอัลฟา (α-phase) และในส่วนของแถบสีดำจะมีสารละลายของแข็งทองแดงสูง (Cu-rich solid solution) เรียก เฟสเบตา (β-phase) จากการตรวจสอบด้วย EDX พบว่าในโครงสร้างเนื้อ พื้นพบปริมาณเงิน 94.01% และทองแดง 5.99% ส่วนโครงสร้างยูเทคติกมีปริมาณเงิน 74.82% ทองแดง 25.18%

การพิจารณาผลของการวิเคราะห์การกระจายตัวและหาตำแหน่งของธาตุผสมด้วย X-ray Mapping ดังภาพที่ 4.2 (ค) เป็นการชี้ชัดว่าโครงสร้างเนื้อพื้น (Matrix) ประกอบด้วยเนื้อเงิน ปริมาณสูง (4.2 (ค) – ล่างซ้าย) ส่วนโครงสร้างยูเทคติกจะประกอบด้วยทองแดงเป็นหลัก (4.2 (ค) – ล่างขวา)

ภาพที่ 4.2 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu ที่ได้จากกล้อง SEM, (ค) การ วิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping ใช้กำลังขยาย 2000 เท่า

ภาพที่ 4.3 แสดงโครงสร้างจุลภาคโลหะผสมชุดเงิน ทองแดง อะลูมิเนียมสภาพหลังหล่อ (AgCu0.3Al-ascast) โครงสร้างจากภาพถ่ายที่กำลังขยาย 150 เท่า มีลักษณะเป็นโครงสร้างเดรน ใดรท์ (Dendrite) และมีโครงสร้างยูเทคติกอยู่ระหว่างแขนของเดรนไดรท์ เช่นเดียวกับโลหะผสม เงิน ทองแดง (AgCu) แต่เนื่องจากโลหะผสมชุดนี้มีการเติมอะลูมิเนียม เป็นธาตุผสมเพิ่มเข้าไปอีก 0.3% โดยน้ำหนัก จึงสังเกตพบว่า รูปร่างโครงสร้างยูเทคติกมีการเปลี่ยนแปลงไปเล็กน้อย โดยจะ เห็นว่า มีเฟสเบตา (β-phase) ขนาดใหญ่เกิดขึ้นบริเวณใกล้ ๆ กับโครงสร้างยูเทคติก รูปร่าง เชื่อมต่อกัน มีขนาดใหญ่และยาวขึ้นกว่าชุดโลหะผสม AgCu การกระจายตัวของโครงสร้าง ยูเทคติกดูไม่สม่ำเสมอมากนัก เมื่อสังเกตภาพ 4.3 (ค) X-ray Mapping ธาตุอะลูมิเนียมจะ กระจายตัวอยู่ทั้งโครงสร้างพื้นและโครงสร้างยูเทคติก ขณะที่ธาตุทองแดงและเงินมีการกระจายตัว คล้ายกับชิ้นงานโลหะเงินผสมทองแดง (AgCu) จากการตรวจสอบปริมาณธาตุบริเวณเฟสต่าง ๆ ด้วย EDX พบว่า โครงสร้างพื้นประกอบด้วยเงิน 96.67% ทองแดง 3.16% และอะลูมิเนียม 0.17% ส่วนบริเวณเฟสเบตา (β-phase) มีเงิน 8.81% ทองแดง 86.23% และอะลูมิเนียม 4.96% ดังแสดงในภาพ 4.3 (ก) และ 4.3 (ข)

2000x

ภาพที่ 4.3 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3AI ที่ได้จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping ใช้กำลังขยาย 2000 เท่า

ภาพที่ 4.4 แสดงโครงสร้างจุลภาคโลหะผสมชุดเงิน ทองแดง ดีบุกสภาพหลังหล่อ (AgCu0.3Sn-ascast) ขนาดเกรนและเดรนไดรท์ (Dendrite) ที่เกิดขึ้นมีขนาดใหญ่กว่าโลหะผสม เงินสเตอร์ลิงชุดอื่น ๆ ประมาณ 3 – 6 เท่า ดังภาพที่ 4.9 แสดงการเปรียบเทียบขนาดเกรนของ AgCu0.3Sn ภาพที่ 4.9 (ก) และ AgCu0.3Be0.5Sn0.3AI ภาพที่ 4.9 (ข) สภาพหลังหล่อ ผลของ ดีบุกทำให้โครงสร้างยูเทคติกเปลี่ยนแปลงไป ขนาดของโครงสร้างยูเทคติกที่เกิดมีน้อยกว่าและ ขนาดเล็กกว่ามาก โครงสร้างยูเทคติกที่มีปริมาณลดน้อยลงนั้น มีขนาดประมาณ 10 – 40 µm และเห็นได้ชัดเจนว่า มีการเกิดเฟสที่สองขึ้น (Secondary phase) อีกทั้งเป็นเฟสมี ขนาดใหญ่ ประกอบด้วยธาตุทองแดงที่มีปริมาณสูง 94.15% เงิน 5.28% และดีบุก 0.57% โดย จากการวิเคราะห์ X-ray Mapping ภาพที่ 4.4 (ค) สามารถยืนยันได้ว่า ดีบุกกระจายตัวอยู่ทั่วทั้งใน โครงสร้างพื้นและในเฟสเบตา ส่วนทองแดงจะพบในเบตาเฟสขนาดใหญ่ และในโครงสร้าง ยูเทคติกที่เหลืออยู่ในปริมาณน้อย ซึ่งจากการตรวจสอบปริมาณธาตุด้วย EDX พบว่าในเนื้อพื้น (Matrix) จะมีเงิน 95.47% ทองแดง 3.86% และดีบุก 0.67% ส่วนโครงสร้างยูเทคติก (Eutectic structure) มีเงิน 78.55% ทองแดง 21.45%

2000x

ภาพที่ 4.4 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Sn ที่ได้จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2000 เท่า

ผลจากการเติมธาตุเบริลเลียม (Be) 0.3% โดยน้ำหนัก และการปรับเติมธาตุดีบุกในช่วง 0.2%, 0.3% และ 0.5% โดยน้ำหนัก เพื่อดูการเปลี่ยนแปลงของโครงสร้างจุลภาคและสมบัติทาง กล พบว่า การเติมธาตุเบริลเลียมลงไปเพียง 0.3% นั้นทำให้โครงสร้างจุลภาคที่ได้เปลี่ยนแปลงไป จากเดิม นั่นคือ ลักษณะของแขนเดรนไดรท์ และระยะห่างระหว่างแขนของแดนไดรท์ลดลง ทองแดงเกิดการแยกตัวจากโครงสร้างยูเทคติก และเนื้อพื้นเงินออกมาเป็นเฟสที่สอง (Secondary phase) มากขึ้น ซึ่งพบว่ามี 2 เฟสที่เกิดขึ้น คือ เฟสลีดำ (β-phase) มีลักษณะคล้ายกับโลหะเงิน ผสมทองแดง (AgCu) และอีกเฟสเป็นสีเทา (Grey phase) ซึ่งมีทองแดงเป็นองค์ประกอบหลัก

เช่นเดียวกัน โดยยังไม่สามารถระบุได้อย่างชัดเจน เนื่องจากไม่สามารถตรวจสอบธาตุเบริลเลียม ได้ แต่เมื่อดูจากแผนภูมิเฟสระบบทองแดง-เบริลเลียม (ภาพที่ 2.15) แล้วสามารถสันนิษฐานว่า เฟสสีเทาที่เกิดขึ้นนั้น อาจจะเป็นเฟสของ eta – CuBe หรือ eta'– CuBe ก็ได้ โดยเฟสสีเทานี้ไม่พบ ในโลหะเงินผสมทองแดง (AgCu) โลหะเงินผสมทองแดงดีบุก (AgCu0.3Sn) และโลหะเงินผสม ทองแดง อะลูมิเนียม (AgCu0.3Al) สามารถสังเกตได้จากสีที่ปรากฦในภาพโครงสร้างจุลภาค ภาพที่ 4.5 – ภาพที่ 4.7 โดยเฟสที่สอง (Secondary phase) ที่พบจะมีสีเทาหรือสีเทาจาง ๆ ซึ่งมี รูปร่าง และขนาดไม่แน่นอน (Irregular shape) จากการตรวจสอบด้วย EDX แล้วเฟสที่สอง (Secondary phase) ที่เกิดขึ้นใหม่มีทองแดงเป็นธาตุประกอบหลักเช่นเดียวกันเฟสเบตา (βphase) โดยจาก EDX พบว่าเฟสสีเทามีปริมาณของทองแดง 93 – 98% เงิน 1 – 5% และดีบุก 0 – 0.3% ยังสังเกตพบอีกว่าเมื่อมีการเติมธาตุเบริลเลียมร่วมกับดีบุกนั้น เฟสเบตา (β-phase) มี ้ลักษณะกลมมนขึ้น ซึ่งทำให้โครงสร้างยูเทคติกเหมือนจะมีขนาดเล็กใหญ่แตกต่างกันออกไปแต่ละ บริเวณ แต่มีการกระจายตัวอย่างสม่ำเสมอในโครงสร้างจุลภาค การปรับเปลี่ยนธาตุดีบุกในช่วง 0.2 – 0.5% โดยน้ำหนักนั้น ไม่เห็นการเปลี่ยนแปลงของโครงสร้างจุลภาค แต่จะไปส่งผลกับความ ต้านทานการหมอง ปริมาณดีบุกที่เพิ่มมากขึ้น ทำให้ความสามารถในการป้องกันการหมองเพิ่ม มากขึ้นด้วย ซึ่งจะกล่าวต่อไปในส่วนของการทดสอบสมบัติความต้านทานการหมองของโลหะเงิน สเตอร์ลิง

การเติมเบริลเลียมลงไปนั้น ผู้เขียนเชื่อว่าจะสามารถละลายได้ทั้งเนื้อพื้นโลหะที่เป็นเงิน และโครงสร้างยูเทคติก โดยได้มีผลงานวิจัยจากโครงการ การปรับปรุงโลหะเงินสปริง เกรด 935 ด้วยเบริลเลียม [51] พบว่าการตรวจสอบด้วยเทคนิค Electron Prove Microanalysis (EPMA) และ กล้องจุลทรรศน์อิเล็คตรอนแบบส่องผ่าน (Transmission Electron Microscope : TEM) เบริลเลียมสามารถกระจายตัวและอาจเกิดตะกอนขึ้นในเนื้อเงิน (Matrix) และยังมีเบริลเลียม บางส่วนที่รวมตัวอยู่กับทองแดง แต่ในงานวิจัยนี้เนื่องจากธาตุเบริลเลียม เป็นธาตุที่มีน้ำหนักเบา และปริมาณที่เติมลงไปน้อยมาก อีกทั้งข้อจำกัดทางเทคนิคของเครื่องมือ จึงไม่สามารถตรวจพบ ได้ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) และเทคนิควัดการกระจายตัวของธาตุ X-ray Mapping หรือแม้แต่การวิเคราะห์ปริมาณธาตุด้วย EDX

ภาพที่ 4.5 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.2Sn ที่ได้จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2500 เท่า

ภาพที่ 4.6 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.3Sn ที่ได้จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2500 เท่า

ภาพที่ 4.7 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.5Sn ที่ได้จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2500 เท่า

ภาพที่ 4.8 (ก) และ (ข) โครงสร้างจุลภาคของโลหะผสม AgCu0.3Be0.5Sn0.3Al ที่ได้จากกล้อง SEM, (ค) การวิเคราะห์การกระจายตัวของธาตุผสมด้วย X-ray Mapping กำลังขยาย 2500 เท่า

ภาพที่ 4.8 แสดงโครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิงชุด AgCu0.3Be0.5Sn0.3AI มีการเติมธาตุผสมมากขึ้น โดยปริมาณธาตุผสมที่เติม มีดังนี้ เงิน ทองแดง 5.4%เบริลเลียม 0.3% ดีบุก 0.5% และอะลูมิเนียม 0.3% โดยน้ำหนัก คือมีการเติมธาตุ ดีบุก เบริลเลียมร่วมกับอะลูมิเนียมอีกด้วย จากการตรวจสอบพบว่า โครงสร้างจุลภาคเป็นแบบ ผสมคล้ายกับโครงสร้างจุลภาคทั้งหมดที่กล่าวมา คือ มีลักษณะเป็นเดนไดรท์ โดยเกรนมีขนาด เล็กกว่าเมื่อเทียบกับชิ้นงานชุดอื่น ๆ ที่กล่าวมาข้างต้น โดยมีโครงสร้างพื้นประกอบด้วยเงินสูง 95.78% ทองแดง 3.64% ดีบุก 0.33% และอะลูมิเนียม 0.62% กับโครงสร้างยูเทคติกเป็นหลัก เช่นเดิมโดยประกอบด้วย 2 เฟส เฟสเบตา (β-phase) ซึ่งมีสีดำ และเฟสสีเทา(Grey phase) ลักษณะที่เป็นก้อนขนาดใหญ่ โครงสร้างยูเทคติกมีเงินเป็นส่วนประกอบ 66.13% ทองแดง 29.41% ดีบุก 1.19% และอะลูมิเนียม 3.27% เฟสเบตา (β-phase) พบทั้งที่มีลักษณะเป็นกลม มน ลักษณะเป็นเส้นริ้ว ๆ และลักษณะรูปร่างอื่น ๆ อีกหลายแบบ ประกอบด้วยเงิน 7.08% ทองแดง 92.08% ดีบุก 0.22% และอะลูมิเนียม 0.62% ตามลำดับ อีกทั้งยังพบเฟสสีเทา (Grey phase) ซึ่งมาจากการที่ทองแดงแยกตัวออกมารวมตัวกันด้วยเช่นกัน โดยกระจายอยู่เต็ม โครงสร้างเช่นเดียวกันกับเฟสเบตา ธาตุอะลูมิเนียมที่พบจะกระจายตัวอยู่ทั้งโครงสร้างพื้นและ โครงสร้างยูเทคติก แต่เมื่อสังเกตจากผลของ X-ray Mapping พบปริมาณอะลูมิเนียมในโครงสร้าง พื้น (Matrix) มากกว่าในโครงสร้างอื่น ๆ อย่างไรก็ดี ยังไม่สามารถตรวจพบธาตุเบริลเลียมได้ด้วย เทคนิค EDX และ X-ray Mapping

ภาพที่ 4.9 ขนาดเกรนชิ้นงานสภาพหลังหล่อของโลหะผสมเงินสเตอร์ลิง (ก) AgCu0.3Sn และ (ข) AgCu0.3Be0.5Sn0.3Al

ภาพที่ 4.9 แสดงขนาดเกรนที่ได้หลังทำการทดสอบหาขนาดเกรนโดยการกัดกรดชิ้นงาน สภาพหลังหล่อด้วยกรดโครมซิค (กรดโครมิค 5 กรัมต่อน้ำ 1000 มิลลิลิตร ผสมด้วยกรดซัลฟิวริก 20% โดยปริมาตร) และวิเคราะห์ขนาดเกรนพบว่า การเติมอะลูมิเนียม ร่วมกับเบริลเลียมและดีบุก นั้น มีผลทำให้เกรนที่ได้เล็กละเอียดขึ้น วัดขนาดเกรนได้ประมาณ 0.5-1.5 มิลลิเมตร โดยเมื่อ เปรียบเทียบขนาดเกรนที่ได้จากชิ้นงาน เบริลเลียมและอะลูมิเนียม (AgCu0.3Be0.5Sn0.3Al, ภาพ 4.9 (ข)) กับโลหะเงินผสมทองแดง ดีบุก (AgCu0.3Sn, ภาพ 4.9 (ก)) ซึ่งวัดขนาดเกรนได้ 3.0-7.0 มิลลิเมตร ขนาดเกรนที่ได้เล็กละเอียดกว่าประมาณ 3 – 6 เท่า ซึ่งขนาดเกรนที่ได้จะส่งผล ต่อสมบัติทางกลต่อไป จากผลการทดลองการตรวจสอบโครงสร้างจุลภาคทั้ง 7 ชุดโลหะเงินผสม สามารถสรุปได้ ว่า การเติมทองแดงจะทำให้เกิดโครงสร้างยูเทคติกขึ้น ซึ่งส่วนผสมในแต่ละเฟสสามารถดูได้จาก ตารางที่ 4.2 นอกจากนี้การเติมอะลูมิเนียม จะพบว่า โครงสร้างยูเทคติกยังคงมีลักษณะคล้ายกับ โลหะเงินผสมทองแดง (AgCu) อย่างไรก็ตาม ผลของธาตุดีบุกส่งทำให้เห็นชัดเจนว่า เมื่อปริมาณ ดีบุกเพิ่มมากขึ้น จะทำให้โครงสร้างยูเทคติก มีลักษณะที่เปลี่ยนไป จากแถบสลับไปมา เริ่มมีการ เกิดการจับรวมตัวกันเป็นก้อนมากขึ้นของเฟสที่สอง และมีผลทำให้โครงสร้างยูเทคติกลดน้อยลง

การเติมอะลูมิเนียม ดีบุก พบว่า ทำให้ทองแดงในเนื้อพื้น (Matrix) ลดน้อยลง ซึ่งน่าจะมา จากธาตุผสมเหล่านี้เข้าไปละลายในเนื้อพื้นมากขึ้น แล้วปริมาณทองแดงจะลดลง จะเห็นได้ชัดว่า ชุดโลหะผสมเกือบทุกชุดจะมีปริมาณทองแดงในโครงสร้างพื้นอยู่ในระดับ 3 – 4% ในขณะที่โลหะ เงินผสมทองแดง (AgCu) มีปริมาณทองแดงในเนื้อพื้นสูงถึง 5.99% และทองแดงที่ลดลงดังกล่าว นั้น แยกตัวออกมาเป็นเฟสที่สอง (ก้อนทองแดง) ซึ่งไม่ใช่ลักษณะของโครงสร้างยูเทคติก และเฟส ที่สองที่เกิด ซึ่งมีปริมาณทองแดงสูงมากถึงระดับ 80 – 90% อันจะส่งผลต่อสมบัติทางกล โดยจะ กล่าวต่อไปในหัวข้อ 4.5 สมบัติทางกล

ตารางที่ 4.2 ส่วนผสมทางเคมีของโครงสร้างจุลภาคแต่ละบริเวณด้วย Energy Dispersive X-ray Spectroscopy (EDX) ชิ้นงานสภาพหลังหล่อ (As-cast)

	ส่วนผสมทางเคมี (%wt)						
Alloy & Area delect	Ag	Cu	Be	Sn	AI		
AgCu	Balance	6.5	-	-	-		
Overall	93.72	6.28	-	-	-		
Matrix (White)	94.01	5.99	-	-	-		
Eutectic (Alpha+Beta)	74.82	25.18	-	-	-		
Beta phase (Black)	-	-	-	-	-		
AgCu0.3Al	Balance	6.2	-	-	0.3		
Overall	93.10	6.52	-	-	0.37		
Matrix (White)	96.67	3.16	-	-	0.17		
Eutectic (Alpha+Beta)	-	-	-	-	-		
Beta phase (Black)	8.81	86.23	-	-	4.96		
AgCu0.3Sn	Balance	6.2	-	0.3	-		
Overall	94.72	4.77	-	0.51	-		
Matrix (White)	95.47	3.86	-	0.67	-		
Eutectic (Alpha+Beta)	78.55	21.45	-	N/A	-		
Beta phase (Black)	5.28	94.15	-	0.57	-		

	ส่วนผสมทางเคมี (%wt)						
Alloy & Area detect	Ag	Cu	Be	Sn	Al		
AgCu0.3Be0.2Sn	Balance	6.0	0.3	0.2	-		
Overall	93.59	5.87	ND	0.54	-		
Matrix (White)	96.20	3.51	ND	0.29	-		
Eutectic (Alpha+Beta)	-	-	ND	-	-		
Beta phase (Black)	36.27	63.73	ND	N/A	-		
Grey phase	3.07	96.93	ND	N/A	-		
AgCu0.3Be0.3Sn	Balance	5.9	0.3	0.3	-		
Overall	92.34	7.32	ND	0.34	-		
Matrix (White)	95.68	3.94	ND	0.38	-		
Eutectic (Alpha+Beta)	86.72	13.28	ND	N/A	-		
Beta phase (Black)	8.54	91.46	ND	N/A	-		
Grey phase	2.04	97.82	ND	0.14	-		
AgCu0.3Be0.5Sn	Balance	5.7	0.3	0.5	-		
Overall	92.68	6.87	ND	0.45	-		
Matrix (White)	96.13	3.29	ND	0.58	-		
Eutectic (Alpha+Beta)	A	PI-IS	ND	-	-		
Beta phase (Black)	2.96	96.79	ND	0.25	-		
Grey phase	1.79	98.21	ND	N/A	-		
AgCu0.3Be0.5Sn0.3Al	Balance	5.4	0.3	0.5	0.3		
Overall	93.20	6.05	ND	0.51	0.24		
Matrix (White)	95.78	3.64	ND	0.33	0.25		
Eutectic (Alpha+Beta)	66.13	29.41	ND	1.19	3.27		
Beta phase (Black)	7.08	92.08	ND	0.22	0.62		
Grey phase	N/A	N/A	ND	N/A	N/A		

<u>หมายเหตุ</u>

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้

**N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

***ส่วนผสมทางเคมีโครงสร้างจุลภาคแต่ละบริเวณด้วย Energy Dispersive X-ray Spectroscopy (EDX) ของโลหะผสมชุดอื่น ๆ ที่ผ่านกระบวนการทางความร้อน ณ เวลา และ อุณหภูมิต่าง ๆ ทั้งหมดอยู่ในภาคผนวก ค.

4.3.2 โครงสร้างจุลภาคที่ได้หลังผ่านกระบวนการอบบ่ม

โครงสร้างจุลภาคของชิ้นงานที่ได้หลังผ่านกระบวนการทางความร้อน คือ การอบบ่ม (Aging) เพื่อเพิ่มความแข็งแรงให้แก่ชิ้นงานด้วยการตกตะกอน (Precipitation hardening) โดยใช้ อุณหภูมิในการอบ ที่ 350°C และ 400°C เป็นระยะเวลา 10, 15, 30, 60 และ 120 นาที ตามลำดับ พบว่าหลังผ่านการอบบ่ม ไม่พบการเปลี่ยนแปลงของโครงสร้างจุลภาคที่ชัดเจนด้วยภาพถ่าย SEM ที่ กำลังขยาย 1000 เท่า ดังแสดงในภาพที่ 4.10 โครงสร้างจุลภาพที่สังเกตเห็น ก็ยังคง ประกอบด้วย ลักษณะของโครงสร้างเดนไดรท์ โครงสร้างยูเทคติก และเฟสที่สองที่ยังสามารถพบ ได้ แต่โดยรวมจากภาพถ่ายแล้วไม่มีการเปลี่ยนแปลง โครงสร้างโดยทั่วไปเหมือนเดิม เมื่อ เปรียบเทียบกับชิ้นงานสภาพหลังหล่อ ดังภาพที่ 4.10 (ก) – 4.10 (ซ) และภาคผนวก ค.

Overall Ag 94.01 % Cu 5.99 %

Overall Ag 93.10 % Cu 6.67 % Al 0.24 %

ภาพที่ 4.10 โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิงของทั้ง 7 ชุดโลหะผสม หลังผ่านกระบวนการอบบ่มที่อุณหภูมิ 350°C เวลา 120 นาที

- (ก) โลหะเงินผสม AgCu
- (ข) โลหะเงินผสม AgCu0.3Al
จากการตรวจสอบด้วยเทคนิค EDS โลหะเงินผสมทองแดง (AgCu) ภาพที่ 4.10 (ก) ประกอบด้วยโครงสร้างพื้นมีเงิน 94.77 % ทองแดง 5.23% มีโครงสร้างยูเทคติก และเฟสเบตา (สี ดำ) เกิดขึ้นโดยเฟสเบตา ประกอบด้วย เงิน 17.51 % ทองแดง 82.49% ในการเติมอะลูมิเนียม (AgCu0.3AI) ดังภาพที่ 4.10 (ข) อะลูมิเนียมทำให้โครงสร้างยูเทคติกเกิดการเปลี่ยนแปลงไป รวมตัวกันมีขนาดที่ใหญ่มากขึ้น ซึ่งเป็นลักษณะเดียวกับชิ้นงานสภาพหลังหล่อดังที่กล่าวมาแล้ว โดยโครงสร้างพื้น มีเนื้อเงินเป็นองค์ประกอบ 95.25% ทองแดง 4.48% และอะลูมิเนียม 0.27% ใน เฟสของเบตามีเงิน 8.44% ทองแดง 86.53% อะลูมิเนียม 5.03% โลหะเงินผสมทองแดงและดีบุก (AgCu0.3Sn) ภาพที่ 4.10 (ค) ก็พบลักษณะเดียวกัน ซึ่งเนื้อพื้นประกอบด้วย เงิน 94.43% ทองแดง 5.40% ดีบุก 0.16, โครงสร้างยูเทคติก พบมีธาตุเงิน 81.98% ทองแดง 17.60% ดีบุก 0.42% ในส่วนของเฟสเบตามีทองแดงสูง 90.99% เงิน 8.66% และดีบุก 0.35%

ชุดโลหะเงินที่มีการเติมทั้งทองแดง เบริลเลียม และดีบุกโดยการควบคุมธาตุดีบุกให้อยู่ ในช่วงของ 0.2 – 0.5% นั้น ภาพที่ 4.10 (ง) – ภาพที่ 4.10 (ฉ) นอกจากจะพบโครงสร้างพื้นที่เป็น เฟสอัลฟา โครงสร้างยูเทคติก แล้วยังพบเฟสที่สองขึ้น 2 ลักษณะเห็นได้อย่างชัดเจนจากสีที่ ปรากฏในภาพ คือ เฟสเบตาที่เป็นสีดำ และเฟสสีเทา โดยทั้งสองเฟสนี้ มีทองแดงเป็น องค์ประกอบหลัก ซึ่งปริมาณธาตุที่พบในเฟสต่าง ๆ หลังทำการอบบ่มใกล้เคียงกับปริมาณที่ได้ จากชิ้นงานทดสอบสภาพหลังหล่อ

ภาพที่ 4.10 (ต่อ) โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิงของทั้ง 7 ชุดโลหะผสม หลังผ่านกระบวนการอบบ่มที่อุณหภูมิ 350°C เวลา 120 นาที (ค) โลหะเงินผสม AgCu0.3Sn

ภาพที่ 4.10 (ต่อ) โครงสร้างจุลภาคของโลหะผสมเงินสเตอร์ลิงของทั้ง 7 ชุดโลหะผสม หลังผ่านกระบวนการอบบ่มที่อุณหภูมิ 350°C เวลา 120 นาที

- (ง) โลหะเงินผสม AgCu0.3Be0.2Sn
- (จ) โลหะเงินผสม AgCu0.3Be0.3Sn
- (ฉ) โลหะเงินผสม AgCu0.3Be0.5Sn

โครงสร้างจุลภาคหลังการอบบ่มของโลหะเงินผสมทองแดง ดีบุก เบริลเลียม และ อะลูมิเนียม AgCu0.3Be0.5Sn0.3Al ดังภาพที่ 4.10 (ช) นั้นพบเฟสต่างๆ มากมายรวมอยู่ใน ชิ้นงานทดสอบนี้ โดยมีรูปร่างลักษณะต่างๆ เหมือนกับโครงสร้างที่ได้หลังหล่อ พบทั้งโครงสร้าง พื้นที่ประกอบไปด้วย เงิน 93.96% ทองแดง 5.03% ดีบุก 0.77% อะลูมิเนียม 0.25% และ โครงสร้างยูเทคติกที่มีเงิน 58.39% ทองแดง 36.95% ดีบุก 1.55% อะลูมิเนียม 3.10% รวมถึงพบ เฟสเบตาและเฟสสีเทาอยู่ด้วย ซึ่งทั้งสองเฟสนี้มีปริมาณทองแดงค่อนข้างสูงถึง 83% โดยรวมนั้น โครงสร้างที่ได้ไม่มีการเปลี่ยนแปลงไปจากสภาพหลังหล่อ

ภาพท 4.10 (ตอ) แสดงโครงสรางจุลภาคของโลหะผสมเงนสเตอร์ลงของทง 7 ชุดโลหะผส: หลังผ่านกระบวนการอบบ่มที่อุณหภูมิ 350°C เวลา 120 นาที (ช) โลหะเงินผสม AgCu0.3Be0.5Sn0.3Al

4.4 การหาธาตุและสารประกอบต่างๆ ด้วยเทคนิคเอกซ์เรย์ดิฟแฟรกชัน

ผลการตรวจสอบชิ้นงานโลหะผสมเงินสเตอร์ลิงเพื่อหาธาตุและสารประกอบต่าง ๆ ที่ เกิดขึ้นในโครงสร้างจุลภาคด้วยเทคนิคเอกซ์เรย์ดิฟแฟรกชัน (X-ray diffraction, XRD) ของโลหะ เงินผสมทั้ง 10 ชุด ประกอบด้วย

1.โลหะเงินผสม AgCu สภาพหลังหล่อ

2.โลหะเงินผสม AgCu หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

3.โลหะเงินผสม AgCu0.3AI สภาพหลังหล่อ

4.โลหะเงินผสม AgCu0.3Al หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

5.โลหะเงินผสม AgCu0.3Sn สภาพหลังหล่อ

6.โลหะเงินผสม AgCu0.3Sn หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

7.โลหะเงินผสม AgCu0.3Be0.5Sn สภาพหลังหล่อ

8.โลหะเงินผสม AgCu0.3Be0.5Sn หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

9.โลหะเงินผสม AgCu0.3Be0.5Sn0.3Al สภาพหลังหล่อ

10.โลหะเงินผสม AgCu0.3Be0.5Sn0.3Al หลังอบบ่มที่อุณหภูมิ 350°C

พบว่าค่าความเข้ม (Intensity) ของรังสีเอ็กซ์หรือสัญญาณที่เครื่องตรวจวัดวัดได้ ดัง ปรากฏขึ้นกราฟ XRD จะเป็นค่าโครงสร้างผลึกของธาตุเงินและทองแดง เนื่องจากปริมาณเงินและ ทองแดงมีปริมาณสูง และผลจากโครงสร้างจุลภาคที่ได้อธิบายไว้ในหัวข้อ 4.3 ดังที่กล่าวมาแล้ว ก่อนหน้านี้ ซึ่งแสดงให้เห็นว่า โครงสร้างที่ได้ประกอบด้วยเนื้อพื้น (Matrix) ที่มีเงินสูง และทองแดง ที่อยู่ในโครงสร้างยูเทคติกและโครงสร้างของเฟสอื่น ๆ ซึ่งเป็นสารละลายของแข็ง และเป็น สารประกอบหลังการอบบ่มที่น่าจะมีปริมาณน้อย จึงไม่สามารถตรวจสอบพบได้ด้วยเทคนิคนี้ จึง พบความเข้มของสัญญาณเฉพาะของเงินและทองแดง ผลของการเติมอะลูมิเนียมเพียงอย่างเดียว ในปริมาณ 0.3% (โลหะผสมชุดที่ 3 ในภาพที่ 4.13 และขึ้นงานที่ 4 ในภาพที่ 4.14) พบความเข้ม ของสัญญาณที่ตำแหน่งมุม 42.736° (scale 2 theta) จึงอาจจะเป็นไปได้ว่าเป็นสัญญาณ (Peak) ของสารประกอบ AICu₃ โดยพบทั้งในขึ้นงานสภาพหลังหล่อและชิ้นงานหลังผ่านการอบบ่ม ส่วน ผลของการเติมเบริลเลียม ดีบุก และอะลูมิเนียมร่วมกันในชิ้นงานอื่น ๆ นั้น (โลหะผสมชุดที่ 5 – 10 ในภาพที่ 4.15 – 4.20) พบเฉพาะสัญญาณของธาตุเงินและทองแดง โดยไม่พบสารประกอบอื่น ใดๆ ซึ่งอาจจะเป็นเพราะ การละลายตัวของธาตุที่เดิมลงไป และปริมาณที่ใช้อยู่ในระดับต่ำ จึงกำ ให้ไม่สามารถตรวจสอบพบด้วยเทคนิค XRD ได้ เนื่องจากเป็นข้อจำกัดของเครื่องมือ อย่างไรก็ ตาม สามารถยืนยันปริมาณธาตุผสมที่เติมลงไปในแต่ละชุดโลหะเงินสเตอร์ลิงที่ทำการทดลองได้ ด้วยวิธี Inductively Couple Plasma Spectroscopy (ICP-OES) ผลของการตรวจสอบ XRD เป็นไปดังภาพที่ 4.11 – 4.20

ภาพที่ 4.12 กราฟ XRD ของชิ้นงานโลหะผสม AgCu หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

ภาพที่ 4.16 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Sn หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

ภาพที่ 4.18 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Be0.5Sn หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

ภาพที่ 4.19 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Be0.5Sn0.3AI สภาพหลังหล่อ

ภาพที่ 4.20 กราฟ XRD ของชิ้นงานโลหะผสม AgCu0.3Be0.5Sn0.3AI หลังอบบ่มที่อุณหภูมิ 350°C เวลา 2 ชั่วโมง

4.5 ผลของสมบัติต้านทานการหมองและการเปลี่ยนสีหลังการทดสอบ

วิธีการเตรียมชิ้นงานทดสอบสมบัติการหมอง ดำเนินการโดยการหล่อต้นโลหะเงินสเตอร์ ลิงและล้างทำความสะอาดเอาปูนออกหมดแล้ว ตัดชิ้นงานทดสอบการหมองจากต้นโลหะเงิน เจาะรูบริเวณด้านบนของชิ้นงานทดสอบ เพื่อไว้สำหรับแขวนขณะทดสอบการหมอง ซึ่งการ ทดสอบสมบัติการต้านทานการหมองนั้น จะศึกษาการเปลี่ยนแปลงค่าสีของชิ้นงานสภาพหลังหล่อ (As-cast) และชิ้นงานหลังผ่านกระบวนการทางความร้อนด้วยการอบบ่ม ที่อุณหภูมิและเวลาการ อบบ่มต่าง ๆ โดยนำมาทดสอบการเปลี่ยนแปลงสีเฉพาะอุณหภูมิ 350°C และ 400°C ส่วนเวลาใน การอบบ่มใช้ 30 และ 60 นาที

หลังจากการอบบ่มตามอุณหภูมิและเวลาที่กำหนดแล้วชิ้นงานที่ได้จะนำไปเตรียมผิวเพื่อ ทดสอบ โดยการขัดเปิดผิวชิ้นงานให้เรียบด้วยกระดาษทราย หลังจากนั้นก็ทำการปัดเงาหยาบ ปัด เงาละเอียด ตามลำดับเพื่อให้ผิวชิ้นงานเรียบ ทำความสะอาดชิ้นงานทดสอบ แล้วใช้เครื่อง อัลตราโซนิคกำจัดคราบสกปรกหรือคราบน้ำมันต่าง ๆ บนผิวหน้าอีกครั้ง ล้างด้วยแอลกอฮอล์ และเป่าชิ้นงานทดสอบให้แห้ง พร้อมสำหรับการทดสอบสมบัติต้านทานการหมอง

การทดสอบการหมองของชิ้นงานต้องระวัง และควรเตรียมอุปกรณ์การป้องกัน เช่น ผ้าปิดจมูก หน้ากากครอบจมูกและปาก เพื่อไม่ให้ร่างกายสูดดมก๊าซก๊าซไข่เน่า หรือไฮเดรเจน ซัลไฟด์ (H₂S: Hydrogen Sulfide Gas) เข้าไป เนื่องจากก๊าซไฮโดรเจนซัลไฟด์ที่ว่านี้เป็นก๊าซที่ ค่อนข้างอันตราย ไม่มีสี แต่จะมีกลิ่นที่รุนแรง คล้ายไข่เน่า เป็นก๊าซที่มีพิษร้ายแรง ลุกติดไฟได้ง่าย ขณะที่ทำการทดสอบควรจะทำในตู้ดูดควัน หรือเลือกบริเวณที่มีอากาศถ่ายเทได้สะดวก (แต่ ภาชนะที่ใช้ในวางชิ้นงานทดสอบต้องเป็นอุปกรณ์ที่มีฝาปิดมิดชิด) และหลังจากการทดสอบสมบัติ ด้านทานการหมองและนำชิ้นงานทดสอบออกจากภาชนะที่มีก๊าซไฮโดรเจนซัลไฟด์แล้วนั้น ควรจะ รีบเก็บภาพถ่ายจากชิ้นงานที่ได้แล้ววัดค่าเทียบสีทันที เพราะถ้าปล่อยชิ้นงานหลังทดสอบสัมผัส อากาศนานๆ จะทำให้สีและความหมองของชิ้นงานทดสอบเปลี่ยนไป ความหมองของชิ้นงานมีค่า มากขึ้น ค่าที่วัดได้ก็จะผิดพลาดไปด้วย และเนื่องจากชิ้นงานที่ผ่านการทดสอบการหมองแล้วจะได้ สีของแต่ละบริเวณบนชิ้นงานแตกต่างกันไป เหตุจากการเข้าทำปฏิกิริยาของแต่ละบริเวณไม่ เท่ากัน ดังนั้น ค่าสีและการหมองต่างๆ ที่ได้ในขั้นตอนการวัดเทียบสีด้วยเครื่องสเปคโตรคัลเลอร์ มิเตอร์ (Spectrocolormeter) จะมีค่าคลาดเคลื่อนได้ จึงต้องระวังในขั้นตอนนี้ เลือกวัดจุดหรือ บริเวณสีบนชิ้นงานไม่แตกต่างกันเกินไป ดูภาพรวมสีที่เกิดขึ้นบนชิ้นงาน ในการทดสอบสมบัติต้านทานการหมองนั้น ได้ดำเนินการโดยนำชิ้นงานทดสอบมาใส่ใน ภาชนะปิดและใช้ก๊าซไฮโดรเจนซัลไฟด์ (H₂S) หรือก๊าซไข่เน่าเป็นตัวเร่งปฏิกิริยาการทดสอบ โดย ใช้เวลาการทดสอบ 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ตามลำดับ ในการอภิปรายผลการ ทดลองการต้านทานการหมอง จะอภิปรายโดยแยกออกเป็น 2 กลุ่มใหญ่ คือ กลุ่มของชิ้นงาน ทดสอบสภาพหลังหล่อ และกลุ่มของชิ้นงานที่ผ่านกระบวนการทางความร้อนโดยการอบบ่ม ดังนี้

4.5.1 อิทธิพลของธาตุผสมที่มีต่อการทดสอบสมบัติด้านทานการหมองและสีของชิ้นงาน สภาพหลังหล่อ โดยผลการทดสอบผู้วิจัยจะทำการแบ่งออกเป็นกลุ่ม ๆ 3 กลุ่มย่อย เพื่อง่ายต่อการ เปรียบเทียบและได้เห็นภาพอย่างชัดเจน

 กลุ่ม AgCu / AgCu0.3AI / AgCu0.3Sn : กลุ่มแรก ใช้เป็นขึ้นงานอ้างอิง (Reference) จะเป็นผลของการเปรียบเทียบให้เห็นถึงกลุ่มโลหะเงินทองแดงที่นิยมหล่อเป็นเงิน สเตอร์ลิงทั่วไปโดยยังไม่เติมธาตุใด ๆ กับผลของการเติมธาตุผสมอะลูมิเนียม และดีบุกต่อการ เปลี่ยนแปลงค่าสี (dE*) และความหมองที่เกิดกับชิ้นงานทดสอบ

2) กลุ่ม AgCu0.3Sn / AgCu0.3Be0.2Sn / AgCu0.3Be0.3Sn / AgCu0.3Be0.5Sn : กลุ่มที่สองนี้จะเป็นการเปรียบเทียบชุดโลหะผสมที่มีการเติมธาตุผสม เบริลเลียม และดีบุกเพิ่ม ซึ่งจะมีการดูผลการเปลี่ยนแปลง เมื่อปรับค่าดีบุกระหว่าง
0.2 - 0.5%

 3) กลุ่ม AgCu0.3AI / AgCu0.3Sn / AgCu0.3Be0.5Sn / AgCu0.3Be0.5Sn0.3AI
: กลุ่มที่สาม นำชุดโลหะผสมอ้างอิงที่เติมอะลูมิเนียม ดีบุก มาเปรียบเทียบกับ ชุดธาตุผสมที่มีการ เติมทั้งอะลูมิเนียม ดีบุก และเบริลเลียม เพื่อดูผลของสีและการหมองที่เกิดขึ้น

4.5.2 อิทธิพลของอุณหภูมิ (350°C, 400°C) และเวลาการอบบ่ม (30, 60 นาที) ที่มีต่อ การทดสอบสมบัติต้านทานการหมองและสีของชิ้นงาน ซึ่งผลการทดสอบจะเรียงลำดับเป็นชุด โลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด

1) ชุดโลหะผสม AgCu

- 2) ชุดโลหะผสม AgCu0.3Al
- 3) ขุดโลหะผสม AgCu0.3Sn
- 4) ชุดโลหะผสม AgCu0.3Be0.2Sn
- 5) ชุดโลหะผสม AgCu0.3Be0.3Sn
- 6) ชุดโลหะผสม AgCu0.3Be0.5Sn
- 7) ชุดโลหะผสม AgCu0.3Be0.5Sn0.3AI

4.5.1 อิทธิพลของธาตุผสมต่อการทดสอบสมบัติต้านทานการหมองของชิ้นงานสภาพหลังหล่อ

1) กลุ่ม AgCu / AgCu0.3Al / AgCu0.3Sn : ความหมองเกิดจากการทำปฏิกิริยาระหว่าง เนื้อโลหะเงินกับซัลเฟอร์ หรือสารประกอบที่มีกำมะถัน โดยการทำปฏิกิริยาดังกล่าวจะทำให้เกิด สารประกอบซัลไฟด์ของเงิน (Ag₂S) ซึ่งมีสีดำ จึงส่งผลให้ผิวโลหะเงินดำคล้ำขึ้น อย่างไรก็ตาม การ เปลี่ยนแปลงสี จะเริ่มเกิดการเปลี่ยนแปลงตามลำดับ [29] ดังนี้ สีเหลืองอ่อน สีเหลือง สีเหลือง ออกน้ำตาล สีน้ำตาล สีน้ำตาลแก่ สีน้ำตาลอมม่วง สีม่วงอ่อน สีม่วงแก่ สีม่วงอมน้ำเงิน สีม่วง อมฟ้า สีฟ้าอ่อน สีฟ้าอ่อน (ฟ้าขาว) สีขาวขุ่น สีเทา สีเทาดำ สีดำ การเปลี่ยนแปลงดังกล่าวนี้ ขึ้นอยู่กับระยะเวลาการทดสอบ ในตารางที่ 4.3 แสดงการเปรียบเทียบอิทธิพลของโลหะเงินผสม ทองแดง (ชุด AgCu) ที่นิยมผลิตเป็นเงินสเตอร์ลิงทั่วไป กับชุดโลหะผสมที่เติมเฉพาะธาตุ อะลูมิเนียม (ชุด AgCu0.3Al) และดีบุก (ชุด AgCu0.3Sn) จะเห็นได้อย่างชัดเจนว่าสีผิวของ ชิ้นงานหลังการทดสอบค่อย ๆ หมองคล้ำขึ้นตามเวลาที่เพิ่มขึ้น จาก 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ตามลำดับ ในกรณีของกลุ่มที่ไม่ได้เติมธาตุผสมเลย (ชุด AgCu) นี้มีการเปลี่ยนแปลงของสีผิว และการหมองอย่างรุนแรง โดยจะเห็นว่าชิ้นงานมีความหมองคล้ำในระยะเวลากามหองสลีผิว และการหมองอย่างรุนแรง โดยจะเห็นว่าชิ้นงานมีความหมองคล้ำในระยะเวลาการทดสอบที่สั้น ตัวอย่างเช่น ทำการทดสอบเพียงแค่ 0.5 ชั่วโมงสีผิวของชิ้นงานทดสอบก็เริ่มเปลี่ยนเป็นสีฟ้าแล้ว และเมื่อผ่านไป 24 ชั่วโมงสีผิวเปลี่ยนเป็นสีน้ำเงินเช้มค่อนไปทางสีดำในที่สุด

ในขณะที่กลุ่มของชุดโลหะผสมที่เติมธาตุอะลูมิเนียม (AgCu0.3AI) การเติมอะลูมิเนียม ไปเพียง 0.3% นั้นช่วยทำให้การหมองเกิดยากขึ้น โดยสังเกตได้ว่าการเปลี่ยนแปลงของสีที่เกิดขึ้น เปลี่ยนไปอย่างช้า ๆ สีโลหะเงินค่อย ๆ เปลี่ยนมาเป็นสีเหลืองอ่อนและเข้มขึ้นเรื่อย ๆ เมื่อทดสอบ การหมองครบ 24 ชั่วโมง สีของชิ้นงานในกลุ่มนี้จะเปลี่ยนเป็นสีน้ำตาลอ่อน

ส่วนขึ้นงานทดสอบกลุ่มที่เติมดีบุก (AgCu0.3Sn) ก็มีการเปลี่ยนแปลงสีเช่นเดียวกัน คล้ายกับกรณีของชุดโลหะเงินผสมทองแดง (AgCu) เมื่อทำการสังเกตเปรียบเทียบการ เปลี่ยนแปลงสีด้วยตาเปล่า สามารถเห็นได้อย่างชัดเจนว่า กลุ่มโลหะผสมที่เติมอะลูมิเนียมนั้นมี การเปลี่ยนแปลงสีน้อยที่สุด (AgCu0.3Al) อย่างไรก็ตามได้มีการวัดค่าและเทียบสี จากเครื่องวัด เทียบสีสเปคโตรคัลเลอร์มิเตอร์ ดังภาพที่ 4.21 ค่า dE* ที่ได้ก็มีความสอดคล้องกับผลการทดสอบ ข้างต้น ส่วนค่า dE* ของ โลหะเงินผสมทองแดง (AgCu) มีการเปลี่ยนแปลงที่รุนแรง โดยมีค่าการ เปลี่ยนแปลงสี dE* อยู่ในช่วง 19.04 – 39.01 ซึ่งเป็นค่าสูงที่สุด สีและขั้นตอนการเปลี่ยนแปลง ดำเนินไปไกลที่สุด (ดูจากสีผิวของชิ้นงานเป็นสีฟ้าอย่างรวดเร็ว) รองลงมาเป็นชุดโลหะเงินผสม ทองแดง ดีบุก (AgCu0.3Sn) ค่าเปลี่ยนแปลงสี dE* ของชุดโลหะนี้ มีค่า 14.93 – 29.6 (หลังผ่าน การทดสอบ 24 ชั่วโมง) โดยโลหะชุดนี้นั้นมีการเปลี่ยนแปลงสีที่น้อยกว่าชุดเงินผสมทองแดง (AgCu) ส่วนโลหะเงินผสมทองแดงอะลูมิเนียม (AgCu0.3Al) วัดค่า dE* ได้ต่ำสุดในกลุ่มนี้ เพราะ หลังผ่านการทดสอบการหมอง 24 ชั่วโมง การเปลี่ยนแปลงสีที่วัดได้ dE* มีค่าแค่ 24.13 เท่านั้น อาตุอะลูมิเนียมจึงมีผลต่อการเปลี่ยนแปลงสี ทำให้การหมองเกิดยากขึ้น โดยการเพิ่มเวลาในการ ปฏิกิริยามีผลต่อการหมอง จะทำให้ค่า dE* เพิ่มมากขึ้น ยกเว้นในกรณีของชุดโลหะเงินผสม ทองแดง (AgCu) และโลหะเงินผสมทองแดงดีบุก (AgCu0.3Sn) ได้ค่า dE* ที่ค่อนข้างต่ำกว่าที่ ควรจะเป็น ผลเนื่องจากในกรณีของโลหะ 2 ชุดนี้ มีการเปลี่ยนสีของผิวชิ้นงานอย่างรุนแรง โดยจะ เปลี่ยนเป็นสีฟ้าหรือสีน้ำเงิน ทำให้เกิดรบกวนค่าที่ได้ ส่งผลให้ค่าการเปลี่ยนแปลงสี dE* จึงลดลง (ได้ค่าต่ำกว่าที่ควรจะเป็น) แต่อย่างไรก็ตาม หลังช่วงการเปลี่ยนแปลงจากสีฟ้าไปเป็นสีดำ เมื่อ ผ่านการทดสอบ 24 ชั่วโมงแล้วนั้น จะเห็นได้ชัดเจนว่า ค่า dE* จะเพิ่มขึ้นอยู่ในระดับค่าที่สูง

แม้ว่าโลหะเงินผสมทองแดง (AgCu) และโลหะเงินผสมทองแดงดีบุก (AgCu0.3Sn) ทั้ง 2 ชุด โลหะผสมนี้จะมีค่าการเปลี่ยนแปลงสี dE* สูงกว่าชุดโลหะเงินผสมทองแดงอะลูมิเนียม (AgCu0.3Al) ก็ตาม ผู้วิจัยมีข้อสังเกตว่า ชิ้นงานสภาพหลังหล่อที่นำมาตรวจสอบนั้น (ยังไม่ได้ ทดสอบการหมอง ในตารางที่ 4.3 คือ 0 ชั่วโมง) มีฝ้าเกิดขึ้นหลังหล่อ ซึ่งเป็นผลมาจาก กระบวนการหล่อ จึงทำให้การเปลี่ยนแปลงสีที่วัดได้หลังการทดสอบน่าจะมีค่าต่ำกว่าค่าจริงที่ควร จะเป็น (ในกรณีชิ้นงานทดสอบที่ไม่มีฝ้า) ฝ้าที่พบบนผิวชิ้นงาน มีลักษณะเป็นฝ้าสีแดง ซึ่งก็คือ ออกไซด์ของทองแดงที่เรียกกันว่า Cuprous (Cu₂O) และมีลักษณะเป็นฝ้าที่ฝังลึก แม้จะทำการขัด ออกแล้วก็กำจัดไม่ได้ ยังพบฝ้าอยู่ (ยิ่งเปิดผิว ยิ่งเจอมากขึ้น) แต่ในขณะที่ชุดโลหะผสม อะลูมิเนียมนั้นไม่พบฝ้าที่เกิดขึ้นบนชิ้นงานสภาพหลังหล่อ ตารางที่ 4.3 ผลของการทดสอบสมบัติต้านทานการหมองชุดอ้างอิง AgCu - AgCu0.3Al -AgCu0.3Sn สภาพหลังหล่อ (As-cast)

AgCu	AgCu0.3Al	AgCu0.3Sn	Condition Tarnish
		March 1	0 Hours
			0.5 Hours
			1 Hours
			2 Hours
G			3 Hours
			4 Hours
			12 Hours
			24 Hours

ภาพที่ 4.21 ค่าเปลี่ยนแปลงสี dE* วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบกลุ่ม AgCu - AgCu0.3Al - AgCu0.3Sn

2) กลุ่ม AgCu0.3Sn / AgCu0.3Be0.2Sn / AgCu0.3Be0.3Sn / AgCu0.3Be0.5Sn : ใน ตารางที่ 4.4 กลุ่มนี้จะทำการเปรียบเทียบซุดโลหะผสมที่มีการเติมเบริลเลียม (Be) เป็นธาตุผสม เพิ่มลงไป และทำการปรับเปลี่ยนธาตุดีบุก (Sn) ในช่วง 0.2 – 0.5% โดยน้ำหนัก โดยจากตารางที่ 4.4 พบว่าสำหรับโลหะผสมซุด AgCu0.3Sn นั้นเมื่อมีการเติมธาตุเบริลเลียมลงไปเพียง 0.3% (AgCu0.3Be0.3Sn) ความต้านทานการหมองก็เพิ่มขึ้นอย่างเห็นได้ชัด ซึ่งสังเกตง่ายๆ จากสีผิว ของชิ้นงานหลังผ่านการทดสอบสีผิวชิ้นงานเปลี่ยนไปอย่างช้า ๆ เมื่อเวลาผ่านไป 24 ชั่วโมง สี ผิวชิ้นงานสุดท้ายเปลี่ยนเป็นแค่สีน้ำตาลอ่อนเท่านั้น อีกทั้งยังไม่พบผ้าแดงบนผิวสภาพหลังหล่อ ในขณะที่ชุดโลหะผสมเงินทองแดงดีบุก ที่ไม่ได้เติมเบริลเลียมนั้น (AgCu0.3Sn) มีความ เปลี่ยนแปลงของสีค่อนข้างรุนแรง และพบผ้าแดงผังลึกในชิ้นงานสภาพหลังหล่อ และยังสังเกตได้ ว่า สีผิวของชิ้นงานมีการเปลี่ยนแปลงเป็นสีฟ้าเข้มซึ่งส่งผลต่อค่า ค่า dE* จากการวัดเทียบสี ทำให้ มีค่าลดลง แต่ความหมองที่เห็นจากในภาพก็พบว่า มีความหมองมากกว่าอย่างชัดเจน ดังภาพที่ 4.22 ก็มีแนวโน้มเพิ่มขึ้นเมื่อเวลาในการทดสอบเพิ่มขึ้น จึงสามารถสรุปได้ว่า การเติมธาตุ เบริลเลียม ช่วยส่งผลให้ความต้านทานการหมองเพิ่มขึ้น

ในกรณีศึกษาอิทธิพลของธาตุดีบุก ที่มีปริมาณเบริลเลียมเท่ากัน 0.3% และปรับเปลี่ยนดีบุก ในช่วง 0.2 – 0.5% นั้นคือ ชุดโลหะเงินผสม AgCu0.3Be0.2Sn, AgCu0.3Be0.3Sn และ AgCu0.3Be0.5Sn เพื่อดูอิทธิพลของธาตุดีบุกที่เพิ่มขึ้นนั้นพบว่า ชิ้นงานทั้ง 3 ชุด ไม่พบการเกิด ้ส้าบนผิวชิ้นงานสภาพหล่อ และยังชี้ให้เห็นว่าการเติมปริมาณดีบุกที่เพิ่มมากขึ้นนั้น เพิ่ม ความสามารถการต้านทานการหมองให้แก่โลหะเงินสเตอร์ลิงได้ดี ชิ้นงานทั้งหมดค่อย ๆ เปลี่ยนสี ้ช้าลง ๆ เมื่อปริมาณดีบุกเพิ่มขึ้นจาก 0.2, 0.3 ถึง 0.5% สีค่อย ๆ เปลี่ยนแปลงจากสีโลหะเงินเป็น สีเหลืองอ่อน สีเหลือง สีน้ำตาลอ่อน และสีน้ำตาล แสดงถึงความสามารถในการป้องกันการหมอง ของโลหะเงินสเตอร์ลิง ซึ่งค่าเปลี่ยนแปลงสีที่วัดได้ ก็มีแนวโน้มเพิ่มขึ้นตามเวลาที่ทดสอบมากขึ้น อย่างสอดคล้องกัน ซึ่งเมื่อเปรียบเทียบค่าเปลี่ยนแปลงสี (ค่า dE*) กับปริมาณธาตุดีบุกที่เติมลงไป 0.2 – 0.5% พบว่า เมื่อผ่านเวลาทดสอบการหมองไป 0.5 ชั่วโมง ค่า dE* ที่วัดได้จากเครื่องมือ วัดสเปกโตรคัลเลอร์มิเตอร์เท่ากับ 22.78, 13.57 และ 11.99 ตามลำดับปริมาณดีบุกที่เพิ่มขึ้น (จากดีบุก 0.2%, 0.3% และ 0.5%) แล้วหลังจากผ่านเวลาการทดสอบการหมองไป 12 ชั่วโมง ค่า การเปลี่ยนแปลงสี dE* ที่ไดมีค่า 32.37, 27.76 และ 19.44 ตามปริมาณดีบุกที่เพิ่มขึ้น ดังนั้น จึง สามารถบอกได้อย่างชัดเจนว่า ปริมาณดีบุกที่เติมมากขึ้นมีผลต่อการเปลี่ยนแปลงสีและช่วยลด การหมองที่เกิดบนผิวชิ้นงาน โดยการเติมดีบุก 0.5% ให้ค่า dE* ที่ต่ำสุด สำหรับชุดโลหะผสมเงิน สเตอร์ลิงกลุ่มนี้

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ตารางที่ 4.4 ผลของการทดสอบสมบัติต้านทานการหมองชุดโลหะผสมเงินสเตอร์ลิงAgCu0.3Sn / AgCu0.3Be0.2Sn / AgCu0.3Be0.3Sn / AgCu0.3Be0.5Sn สภาพหลังหล่อ

AgCu0.3Sn	AgCu0.3Be0.2Sn	AgCu0.3Be0.3Sn	AgCu0.3Be0.5Sn	Condition Tarnish
				0 Hours
				0.5 Hours
				1 Hours
				2 Hours
				3 Hours
				4 Hours
				12 Hours
				24 Hours

ภาพที่ 4.22 ค่าเปลี่ยนแปงสี dE* วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบกลุ่ม AgCu0.3Sn - AgCu0.3Be0.2Sn - AgCu0.3Be0.3Sn - AgCu0.3Be0.5Sn

3) กลุ่ม AgCu0.3Al / AgCu0.3Sn / AgCu0.3Be0.5Sn / AgCu0.3Be0.5Sn0.3Al : จาก ตารางที่ 4.5 แสดงการเปรียบเทียบของชุดโลหะผสมเงินสเตอร์ลิงเพื่อดูอิทธิพลของอะลูมิเนียมต่อ ความต้านทานการหมอง สำหรับกลุ่มนี้เป็นการนำโลหะผสมชุดอ้างอิง AgCu0.3AI และ AgCu0.3Sn มาเปรียบเทียบกับชุดที่มีการเติมทั้ง เบริลเลียม ดีบุก และอะลูมิเนียม เพื่อดูการ เปลี่ยนแปลงของสีชิ้นงานและการต้านทานการหมอง จากตารางพบว่า ผลของธาตุผสมทั้งหมด ไม่ว่าจะเป็น เบริลเลียม ดีบุก และอะลูมิเนียม มีสามารถในการเพิ่มความต้านทานการหมองของ โลหะเงินสเตอร์ลิงได้ดีขึ้น แต่ถ้ามีการเติมธาตุดีบุกเพียงธาตุเดียว ประสิทธิภาพดังกล่าวเพิ่มขึ้นได้ ไม่มากนัก จึงต้องมีการเติมเบริลเลียม กับอะลูมิเนียมร่วมด้วย จึงจะช่วยให้การหมองเกิดได้ยาก ้ยิ่งขึ้น แต่สำหรับธาตุอะลูมิเนียมนั้น มีความสามารถในการต้านทานการหมองที่ดีเยี่ยม แม้จะเติม เพียงธาตุเดียวในปริมาณแค่ 0.3% เท่านั้น โดยจากตารางที่ 4.5 แสดงสีที่เกิดขึ้น และค่า dE* แสดงไว้ในภาพ 4.23 ชิ้นงานที่ผ่านการทดสอบ 24 ชั่วโมง ยังมีการเปลี่ยนแปลงสีที่เปลี่ยนไปช้า และน้อยมาก ๆ วัดค่า dE* ได้เพียง 24.13 แต่อย่างไรก็ตาม แม้ว่าการเติมธาตุผสมต่าง ๆ ร่วมกัน (AgCu0.3Be0.5Sn0.3Al) ซึ่งมีทั้งธาตุเบริลเลียม ดีบุกและอะลูมิเนียม พบว่า ความสามารถใน การต้านทานการหมองของโลหะผสมชุดนี้ก็ยังด้อยกว่าชุดโลหะเงินผสมทองแดง ที่มีการเติมธาตุ อะลูมิเนียมเพียงธาตุเดียว (AgCu0.3Al) สาเหตุเกิดจากโครงสร้างจุลภาคที่ได้ของชุดโลหะผสมทั้ง สองนี้แตกต่างกัน โดย AgCu0.3Be0.5Sn0.3AI มีลักษณะโครงสร้างจุลภาคที่หลากหลาย มีเฟส ต่าง ๆ เกิดขึ้นลักษณะรูปร่างไม่แน่นอน (Irregular shape) และการกระจายตัวของโครงสร้างไม่ สม่ำเสมอ อีกทั้งยังมีการแยกตัวของทองแดงออกมาเกิดเป็นเฟสใหม่ขึ้น ทั้งเฟสเบตา (β-phase) และเฟสสีเทา (Grey phase) ซึ่งมีทองแดงอยู่สูง น่าจะเป็นสาเหตุทำให้ความต้านทานการหมอง ด้อยกว่า เมื่อเทียบกับ AgCu0.3AI ที่มีโครงสร้างยูเทคติกลักษณะพิเศษ รูปร่างค่อนข้างคล้าย ๆ กัน กระจายตัวอยู่เต็มเนื้อพื้นโลหะอย่างสม่ำเสมอ และมีการแยกตัวของธาตุทองแดง เป็นเฟสที่ สอง (Secondary Phase) น้อยกว่า อีกทั้งส่วนผสมทางเคมีของแต่ละเฟสต่างกันออกไป จึงทำให้ AgCu0.3AI เป็นโลหะผสมเงินสเตอร์ลิงที่ให้ความสามารถในสมบัติต้านทานการหมองดีที่สุด จาก ทั้งหมด 7 ชุดโลหะผสมที่ทำการทดสอบ โดยสามารถดูภาพรวมของสีผิวชิ้นงานและค่า dE* จาก เครื่องทดสอบเทียบสีทุกชุดส่วนผสมจากตารางที่ 4.6 และภาพที่ 4.24

ภาพที่ 4.23 ค่าเปลี่ยนแปลงสี dE* วัดได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบกลุ่ม AgCu0.3AI - AgCu0.3Sn - AgCu0.3Be0.5Sn - AgCu0.3Be0.5Sn0.3AI ตารางที่ 4.5 ผลของการทดสอบสมบัติต้านทานการหมองชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI / AgCu0.3Sn / AgCu0.3Be0.5Sn / AgCu0.3Be0.5Sn0.3AI สภาพหลังหล่อ

AgCu0.3Al	AgCu0.3Sn	AgCu0.3Be0.5Sn	AgCu0.3Be0.5Sn 0.3Al	Condition Tarnish
				0 Hours
				0.5 Hours
				1 Hours
				2 Hours
				3 Hours
				4 Hours
				12 Hours
				24 Hours

AgCu	AgCu0.3Al	AgCu0.3Sn	AgCu0.3Be 0.2Sn	AgCu0.3Be 0.3Sn	AgCu0.3 Be0.5Sn	AgCu0.3Be 0.5Sn0.3Al	Condition Tarnish
							0 Hours
							0.5 Hours
							1 Hours
							2 Hours
							3 Hours
							4 Hours
							12 Hours
							24 Hours

ตารางที่ 4.6 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง ของโลหะผสมทั้ง 7 ชุดสภาวะหลังหล่อ (As-cast)

ภาพที่ 4.24 กราฟเส้นแสดงค่าเปลี่ยนแปลงสี dE* วัดได้จากเครื่องวัดเทียบสีชิ้นงานทดสอบ ของโลหะผสมทั้ง 7 ชุดสภาวะหลังหล่อ (As-cast)

4.5.2 อิทธิพลของอุณหภูมิและเวลาการในการอบบ่ม

ผลของอุณหภูมิ และเวลาการในการอบบ่ม (Aged) ที่มีผลต่อสีผิวของชิ้นงานและสมบัติ ต้านทานการหมอง สำหรับการอบบ่ม (Aged) นั้น ผู้วิจัยจะเลือกทำการศึกษาชิ้นงานหลังการอบ บ่มโดยใช้อุณหภูมิบ่ม 350°C และ 400°C ใช้เวลาการบ่ม 30 และ 60 นาที เพื่อจะดูแนวโน้มที่ เกิดขึ้นของอุณหภูมิและเวลาการอบบ่มเท่านั้น ว่ามีต่อสีและการหมองผลมากน้อยเพียงใด โดยนำ ชิ้นงานในสภาพหลังหล่อ ไปทำการอบต่อเนื่องตามอุณหภูมิและเวลาที่กำหนด หลังจากนั้นก็นำ ชิ้นงานไปขัดปัดผิว แล้วจึงทำการทดสอบการหมอง อย่างไรก็ตาม ผู้วิจัยก็ได้ทำการทดสอบทั้ง 7 ชุดโลหะผสม ซึ่งมีทั้งผลของภาพถ่ายและค่าการเปลี่ยนแปลงสี (ค่า dE*) ที่ได้จากการวัดเทียบสี ด้วยเครื่องมือสเปคโตรคัลเลอร์มิเตอร์ โดยผลการทดสอบที่ได้ เป็นดังนี้

 บุลุดโลหะผสม AgCu : สำหรับโลหะผสมเงินทองแดงชุดนี้ สีผิวชิ้นงานที่ได้หลังหล่อและ ล้างปูนแล้ว มีสีดำมาก สีผิวหมองคล้ำชัดเจน สามารถดูได้จากภาพที่ 4.1 (ก) และหลังจากการอบ บุ่มแล้วลักษณะสีผิวก็ดำเหมือนเดิม และเมื่อมีการขัดเปิดผิวเพื่อเตรียมทดสอบการหมองพบว่า ผิวชิ้นงานมีฝ้าแดงเกิดขึ้นและฝ้านั้นมีลักษณะฝังลึก แม้จะมีการขัดเนื้อโลหะเงินออกไปปริมาณ มากแล้วก็ตาม ฝ้าแดงดังกล่าวก็ยังปรากฏอยู่ เนื่องมาจากการทำปฏิกิริยาออกซิเดชันของ ออกซิเจนในอากาศกับทองแดง ตั้งแต่การหล่อต้นโลหะที่อุณหภูมิสูง จนกระทั่งถึงการบ่ม การ ออกซิเดชันสามารถเกิดได้ง่าย อันเนื่องมาจากความร้อนที่ใช้ ทั้งในขั้นตอนการหล่อและการอบบ่ม ดังนั้นจึงพบฝ้าแดงฝังลึกอยู่ในชิ้นงาน ดังแสดงในตารางที่ 4.7 พบว่าที่เวลาทดสอบ 0 ชั่วโมง สังเกตเห็น ฝ้าแดงในทุก ๆ ชิ้นงานทดสอบ

จากผลการทดสอบการหมองของชุดโลหะเงินผสมทองแดงนี้ สีผิวหลังการทดสอบ ณ เวลาทดสอบต่าง ๆ ที่ปรากฏจะไม่สามารถชี้ชัดว่า อุณหภูมิและเวลาในการอบบ่มส่งผลต่อสมบัติ การหมอง เป็นเพราะโลหะชุดนี้มีการเปลี่ยนแปลงสีเร็ว และเป็นการทำปฏิกิริยาที่ค่อนข้างรุนแรง มาก ลักษณะสีที่ได้เปลี่ยนเป็นสีฟ้าหรือสีน้ำเงินอย่างรวดเร็วหลังผ่านเวลาการทดสอบเพียงครึ่ง ชั่วโมงเท่านั้น ซึ่งได้อธิบายไว้ก่อนหน้านี้แล้วว่า การเปลี่ยนแปลงสีผิวชิ้นงานไปเป็นสีฟ้า จะส่งผล ทำให้ค่า dE* ลดลง ถ้าดูจากผลของค่าการเปลี่ยนแปลงสี dE* เพียงอย่างเดียวจะระบุได้ยากกว่า อุณหภูมิและเวลาการอบบ่มส่งผลต่อความด้านทานการหมอง สำหรับกรณีของโลหะเงินผสม ทองแดงชุดนี้ และยิ่งไปกว่านั้นการเกิดผ้าแดงหลังหล่อหรือหลังการอบบ่ม ทำให้การวัดค่า dE* ของชิ้นงานเริ่มต้นก่อนจะทำการทดสอบในบรรยากาศไฮโดรเจนซัลไฟด์ (H₂S) มีการคลาดเคลื่อน และส่งผลทำให้การเปลี่ยนแปลงค่าสีหลังการทดสอบผิดพลาดไปด้วย แต่เมื่อทำการสังเกตชิ้นงาน ทดสอบด้วยตาเปล่า จะเห็นได้ว่า ชิ้นงานทดสอบที่ผ่านการอบบ่มนั้น มีสีผิวที่เปลี่ยนไปมากกว่า ชิ้นงานสภาพหลังหล่อดังในภาพที่ 4.25

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ตารางที่ 4.7 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง ของชุดโลหะผสม AgCu ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
					0 Hours
					0.5 Hours
					1 Hours
					2 Hours
					3 Hours
					4 Hours
					12 Hours
					24 Hours

ภาพที่ 4.25 กราฟแท่งแสดงค่า dE* ที่วัดได้ จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของ โลหะผสม AgCu ก่อนและหลังการอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง)

2) ชุดโลหะผสม AgCu0.3AI : สีผิวชิ้นงานสภาพหลังหล่อมีความขาว (ออกสีเหลืองนิด ๆ) มากกว่าโลหะผสมชุดอื่น ๆ ดังภาพที่ 4.1(ข) และหลังผ่านการอบบ่มแล้วนั้นสีผิวของชิ้นงานมี ความเข้มขึ้นเล็กน้อยเท่านั้น โดยแทบจะไม่เปลี่ยนแปลงไปจากสภาพหลังหล่อเลย ตารางที่ 4.8 และภาพที่ 4.26 จะเห็นได้อย่างชัดเจนว่าอุณหภูมิและเวลาการอมบ่ม ลดความต้านทานการ หมองของชิ้นงาน อย่างไรก็ตามเนื่องจากอิทธิพลของอะลูมิเนียมที่เป็นธาตุผสมมีประสิทธิภาพใน การต้านทานการหมองที่สูงมาก มากที่สุดในบรรดาธาตุผสมอื่น ๆ ที่เติมลงไปในการวิจัยนี้ (Sn, Be, Al) สามารถสร้างฟิล์ม Al₂O₃ ขึ้นเพื่อต้านทานการทำปฏิกิริยา จึงทำให้สีผิวและค่า dE* ของ ชิ้นงานทดสอบค่อยๆ เปลี่ยนแปลงไปอย่างช้า ๆ แม้เวลาการทดสอบจะผ่านไปแล้วจาก 0 – 3 ้ชั่วโมง สีผิวของชิ้นงานก็เปลี่ยนไปเป็นสีเหลืองอ่อน ๆ เท่านั้น การเปลี่ยนแปลงสี dE* ที่วัดได้มีค่า 11.64, 12.12, 18.33 สำหรับชิ้นงานทดสอบการหมองสภาพหลังหล่อ หลังอบบ่ม 350°C และหลัง อบบ่ม 400°C โดยใช้เวลาอบบ่ม 30 นาที ตามลำดับ และเมื่อครบเวลาทำการทดสอบ 24 ชั่วโมง การเปลี่ยนแปลงสี dE* ที่วัดได้มีค่า 24.13, 38.81, 41.7 สำหรับชิ้นงานทดสอบการหมองสภาพ หลังหล่อ หลังอบบ่ม 350°C และหลังอบบ่ม 400°C โดยใช้เวลาอบบ่ม 30 นาที ตามลำดับเช่นเดิม ซึ่งหลังผ่านการทดสอบ 24 ชั่วโมงแล้ว สีของชิ้นงานเปลี่ยนเป็นสีน้ำตาล อย่างไรก็ตาม โลหะผสม ชุดนี้เหมาะสมมากในการที่จะเลือกนำไปใช้เป็นเครื่องประดับ สามารถต้านทานการหมองได้ดี เพราะสมบัติที่สำคัญของเครื่องประดับ คือ ความแวววาว และความสวยงามของสีตัวเนื้อโลหะ

3) ชุดโลหะผสม AgCu0.3Sn : สำหรับชุดโลหะผสมเงินทองแดงดีบุก แสดงพฤติกรรม เดียวกับในกรณีของชุดโลหะผสมเงินทองแดง AgCu คือ มีการเกิดฝ้าแดงผังลึกในชิ้นงานหลัง สภาพหล่อ และเกิดการเปลี่ยนสีผิวอย่างรวดเร็วหลังการทดสอบสมบัติด้านทานการหมอง ปรากฏ การเปลี่ยนเป็นสีพ้าอย่างรวดเร็วซึ่งส่งผลต่อค่า dE* แสดงในภาพที่ 4.27 ทำให้ค่าแสงสะท้อนที่วัด ได้จากเครื่องดูเหมือนจะมีค่าต่ำลง ทั้งที่การสังเกตด้วยตาเปล่านั้น (ภาพที่ 4.9) พบความหมองที่ เกิดมีลักษณะรุนแรงมากกว่า (มากกว่าสีน้ำตาล) นอกจากนี้ยังมีปัจจัยการเปลี่ยนแปลงสีของ ชิ้นงานทดสอบในแต่ละตำแหน่งที่ไม่สม่ำเสมอ จึงทำให้ค่าการเปลี่ยนแปลงสีหรือค่า dE* ที่วัดได้มี ความแปรปรวนสูง (ค่าค่อนข้างแกว่งไปมาจากผลของการเปลี่ยนสีและฝ้าที่เกิดขึ้น) อย่างไรก็ดี จากกราฟ (ภาพที่ 4.27) จะเห็นได้ว่า อุณหภูมิและเวลาในการอบบ่มเป็นปัจจัยเพิ่มความหมอง ของชิ้นงานทดสอบ นั่นคือ การด้านทานการหมองของวัสดุลดลง โดยถ้าพิจารณาจากสีผิวเพื่อจะ ไปผลิตเป็นเครื่องประดับ ธาตุผสมชุดนี้อาจจะยังไม่เหมาะสม ตารางที่ 4.8 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมองของชุด โลหะผสม AgCu0.3AI ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
					0 Hours
				1.5	0.5 Hours
		0.			1 Hours
					2 Hours
				19	3 Hours
					4 Hours
					12 Hours
					24 Hours

ภาพที่ 4.26 กราฟแท่งแสดงค่า dE* ที่วัด ได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบ ของโลหะผสม AgCu0.3AI ก่อนและหลัง การอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง) ตารางที่ 4.9 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมองของชุด โลหะผสม AgCu0.3Sn ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
					0 Hours
			M	E	0.5 Hours
					1 Hours
					2 Hours
					3 Hours
				R	4 Hours
					12 Hours
					24 Hours

ภาพที่ 4.27 กราฟแท่งแสดงค่า dE* ที่วัด ได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบ ของโลหะผสม AgCu0.3Sn ก่อนและหลัง การอบบ่ม ณ เวลาการทดสอบต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง)

- 4) ชุดโลหะผสม Ag-0.3Be-6.0Cu-0.2Sn
- 5) ชุดโลหะผสม Ag-0.3Be-5.9Cu-0.3Sn
- 6) ชุดโลหะผสม Ag-0.3Be-5.7Cu-0.5Sn

ชุดโลหะผสม 3 ชุดนี้ไม่พบฝ้าแดงบนผิวชิ้นงานทดสอบหลังหล่อ และชิ้นงานสภาพหลัง หล่อมีลักษณะเป็นสีของเนื้อโลหะเงิน ออกสีเทา ๆ เล็กน้อย โดยเมื่อผ่านกระบวนการทางความ ้ร้อนโดยการอบบ่มสีผิวที่ได้จะคล้ำกว่าเดิมเพียงเล็กน้อยเท่านั้น (สีเทาเข้มขึ้นกว่าเดิม) ซึ่งขึ้นกับ ้ปริมาณดีบุกที่เติม สำหรับชุดโลหะเงินที่มีการเติมธาตุผสมมากขึ้น โดยเติมธาตุเบริลเลียม 0.3% ้อีกทั้งปรับธาตุดีบุกให้อยู่ในช่วง 0.2 – 0.3% เพื่อดูการเปลี่ยนแปลงสีนั้น นอกจากเบริลเลียมและ ดีบุกจะช่วยให้มีความสามารถในการต้านทานการหมองเพิ่มขึ้นดังที่กล่าวแล้ว พบว่า เมื่อมีการ เติมธาตุดีบุกมากขึ้น ยังช่วยชะลอการหมองของชิ้นงานทดสอบได้อีกด้วย ซึ่งการเปลี่ยนแปลงของ สีผิวชิ้นงานจะรุนแรงน้อยลงเมื่อปรับธาตุดีบุกจาก 0.2% ไปเป็น 0.3% และเป็น 0.5% ตามลำดับ เห็นได้ชัดเจนว่า สีผิวของชิ้นงานทดสอบมีความหมองคล้ำลดลงอย่างชัดเจน ดูได้ในตางรางที่ 4.10 – 4.12 โดยสอดคล้องกับค่าวัดเทียบสีที่ได้ในภาพที่ 4.28 – 4.30 ซึ่งชุดโลหะผสมทั้ง 3 ชุดนี้มี แนวโน้มของความต้านทานการหมองลดลงเมื่อเวลาและอุณหภูมิที่ใช้ในการอบบ่มเพิ่มขึ้นจาก 30 เป็น 60 นาที และจาก 350°C เป็น 400°C ยกตัวอย่างเช่น ค่าเปลี่ยนแปลงสี dE* ของชุดโลหะ AgCu0.3Be0.2Sn หลังผ่านการทดสอบการหมองเป็นเวลา 1 ชั่วโมงมีค่า 24.12 (ชิ้นงานสภาพ หลังหล่อ), 33.25 (หลังการอบบ่ม 350°C เป็นเวลา 30 นาที), 32.66 (หลังการอบบ่ม 350°C เป็น เวลา 60 นาที), 41.68 (หลังการอบบ่ม 400°C เป็นเวลา 30 นาที) , 45.55 (หลังการอบบ่ม 400°C เป็นเวลา 60 นาที)

ในส่วนของการเปลี่ยนแปลงสีของชุดโลหะผสม AgCu0.3Be0.3Sn นั้นหลังผ่านการ ทดสอบการหมองนาน 0.5 ชั่วโมง ได้ค่า dE* เท่ากับ 13.57 (ชิ้นงานสภาพหลังหล่อ), 26.7 (หลัง การอบบ่ม 350°C เป็นเวลา 30 นาที), 29.55 (หลังการอบบ่ม 350°C เป็นเวลา 60 นาที), 42.23 (หลังการอบบ่ม 400°C เป็นเวลา 30 นาที), 42.89 (หลังการอบบ่ม 400°C เป็นเวลา 60 นาที)

และกรณีของโลหะผสม AgCu0.3Be0.5Sn หลังผ่านการทดสอบสมบัติต้านทานการ หมอง 3 ชั่วโมง แล้ววัดค่าความเปลี่ยนแปลงสี พบว่า dE* มีค่า 11.57 (ชิ้นงานสภาพหลังหล่อ), 9.94 (หลังการอบบ่ม 350°C เป็นเวลา 30 นาที), 15.83 (หลังการอบบ่ม 350°C เป็นเวลา 60 นาที), 20.92 (หลังการอบบ่ม 400°C เป็นเวลา 30 นาที), 26.135 (หลังการอบบ่ม 400°C เป็น เวลา 60 นาที) เป็นต้น ตารางที่ 4.10 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง ของชุดโลหะผสม AgCu0.3Be0.2Sn ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
			•		0 Hours
					0.5 Hours
					1 Hours
					2 Hours
					3 Hours
					4 Hours
			N. W		12 Hours
					24 Hours

ASTORNA AREASOC AREADOC

และหลังการอบบ่ม ณ เวลาการทดสอบ ต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง)

ตารางที่ 4.11 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง ของชุดโลหะผสม AgCu0.3Be0.3Sn ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
					0 Hours
					0.5 Hours
					1 Hours
					2 Hours
					3 Hours
					4 Hours
					12 Hours
					24 Hours

ภาพที่ 4.29 กราฟแท่งแสดงค่า dE* ที่วัด ได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบ ของโลหะผสม AgCu0.3Be0.3Sn ก่อน และหลังการอบบ่ม ณ เวลาการทดสอบ ต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง) ตารางที่ 4.12 ภาพชิ้นงานเปรียบเทียบสีและความหมองหลังทำการทดสอบสมบัติการหมอง ของชุดโลหะผสม AgCu0.3Be0.5Sn ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
					0 Hours
					0.5 Hours
					1 Hours
					2 Hours
					3 Hours
					4 Hours
					12 Hours
					24 Hours

ภาพที่ 4.30 กราฟแท่งแสดงค่า dE* ที่วัด ได้จากเครื่องวัดเทียบสีของชิ้นงานทดสอบ ของโลหะผสม AgCu0.3Be0.5Sn ก่อน และหลังการอบบ่ม ณ เวลาการทดสอบ ต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง)

7) ชุดโลหะผสม AgCu0.3Be0.5Sn0.3AI : สำหรับโลหะผสมชุดนี้ก็เช่นเดียวกัน คือ สภาพ หลังหล่อไม่เกิดฝ้าแดง และสีผิวหลังอบบ่มเข้มขึ้นเพียงเล็กน้อยเท่านั้น อย่างไรก็ตามโลหะผสมชุด ้นี้มีการเติมทั้งเบริลเลียม 0.3% ดีบุก 0.5% และอะลูมิเนียม 0.3% เนื่องจากผู้ทำวิจัยคาดว่าจะได้ ทั้งสมบัติทางกลและสมบัติต้านทานการหมองที่ดีที่สุด เพราะ จากการศึกษาข้อมูลนั้น ธาตุโลหะ ีผสมเหล่านี้ ทั้งเบริลเลียม (Be), ดีบุก (Sn) และอะลูมิเนียม (Al) มีคุณสมบัติช่วยในการลดความ หมองของโลหะเงินทั้งสิ้น พร้อมทั้งสามารถช่วยให้เกิดตะกอนของธาตุเพื่อเพิ่มความแข็งแรงได้ โดยผลที่ได้ในตารางที่ 4.13 และภาพที่ 4.31 นั้นแสดงให้เห็นว่า ธาตุผสมที่เติมลงไปสามารถช่วย ในการต้านทานและซะลอความหมองที่เกิดขึ้นได้จริง ซึ่งสามารถสังเกตจากสีที่ปรากฏ และค่า dE* จากการวัดเทียบสี ค่าการเปลี่ยนแปลงสีที่เกิดลดลงอย่างมีนัยสำคัญแสดงให้เห็นถึงอิทธิพลของ ธาตุผสม ที่ส่งผลต่อคุณสมบัติดังกล่าว รวมทั้งแสดงให้เห็นชัดเจนว่าอุณหภูมิและเวลาการอบบ่ม ที่สูงขึ้น ส่งผลให้ความหมองคล้ำมีค่าสูงขึ้นเช่นเดียวกัน โดยชิ้นงานสภาพหลังหล่อ เมื่อผ่านการ ทดสอบการหมอง 0.5 – 24 ชั่วโมงนั้น ค่า dE* อยู่ในช่วง 11.92 – 21.34 ซึ่งเป็นการเปลี่ยนแปลงสี ที่ค่อนข้างน้อยมาก นอกจากนี้ เมื่อนำชิ้นงานทดสอบทำการอบบ่มด้วยอุณหภูมิและเวลาต่าง ๆ แล้วนำไปผ่านการทดสอบสมบัติการต้านทานการหมอง โดยใช้เวลาทดสอบ 0.5 – 24 ชั่วโมง พบว่า การเปลี่ยนแปลงสีที่วัดได้มีค่าอยู่ช่วง 6.11 – 32.81 (สำหรับผ่านการอบบ่ม 350°C นาน 30 นาที), 5.26 – 33.54 (ผ่านการอบบ่ม 350°C นาน 60 นาที), 6.07 – 23.31 (ผ่านการอบบ่ม 400°C นาน 30 นาที), และมีค่า dE* ช่วง 6.9 – 27.73 (ผ่านการอบบ่ม 400°C นาน 60 นาที)

แต่อย่างไรก็ตาม เมื่อเปรียบเทียบสมบัติการต้านทานการหมองของชุดโลหะผสม AgCu0.3Be0.5Sn0.3AI พบว่ายังด้อยกว่าโลหะผสมชุด AgCu0.3AI ที่มีการเติมธาตุอะลูมิเนียม เพียงธาตุเดียว แต่ค่าที่ได้มีความต่างกันไม่มาก ดังนั้น การเลือกใช้โลหะผสมไปผลิตเป็น เครื่องประดับเงินสปริง นอกจากต้องการความแข็งแรงแล้ว ข้อสำคัญที่ควรคำนึงถึงก็คือ หลังจาก ผลิตแล้วเครื่องประดับมีความเงางาม สีสวย สามารถต้านทานการหมองได้ดี ซึ่งทั้ง AgCu0.3AI และ AgCu0.3Be0.5Sn0.3AI จะเป็นตัวเลือกที่ดีเหมาะสำหรับการทำเป็นเครื่องประดับได้ จึงสามารถสรุปได้ว่าในบรรดาโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด ที่ผู้วิจัยได้ทำการ ทดลองสมบัติการต้านทานการหมองและวัดเทียบค่าสีแล้วนั้น ชุดโลหะผสมเงินสเตอร์ลิงที่ให้ สมบัติความต้านทานการหมองดีที่สุดคือ AgCu0.3AI และรองลงมาเป็นชุด AgCu0.3Be0.5Sn0.3AI และชุดโลหะผสมอื่น ๆ เป็น AgCu0.3Be0.5Sn, AgCu0.3Be0.3Sn, AgCu0.3Be0.2Sn, AgCu0.3Sn และ AgCu ตามลำดับ ซึ่งชุดโลหะผสม 2 ลำดับสุดท้ายนี้ยังไม่ เหมาะสมสำหรับการผลิตเป็นเครื่องประดับเงินสเตอร์ลิง เนื่องจากสีผิวไม่สวยงาม มีผ้าลึกที่เกิด บนผิวชิ้นงาน อีกทั้งยังมีปัญหาแตกเปราะหลังหล่อดังที่กล่าวมาแล้วข้างต้น

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ตารางที่ 4.13 ภาพชิ้นงานเปรียบเทียบสีหลังทำการทดสอบสมบัติการหมองของชุดโลหะผสม AgCu0.3Be0.5Sn0.3Al ก่อนและหลังการอบบ่ม

As-Cast	Age 350°C / 30 min	Age 350°C / 60 min	Age 400°C / 30 min	Age 400°C / 60 min	Condition Tarnish
					0 Hours
					0.5 Hours
					1 Hours
					2 Hours
					3 Hours
					4 Hours
					12 Hours
					24 Hours

ภาพที่ 4.31 กราฟแท่งแสดงค่า dE* ที่วัดได้ จากเครื่องวัดเทียบสีของชิ้นงานทดสอบของ โลหะผสม AgCu0.3Be0.5Sn0.3AI ก่อน และหลังการอบบ่ม ณ เวลาการทดสอบ ต่าง ๆ กัน (0.5, 1, 2, 3, 4, 12, 24 ชั่วโมง)

4.6 สมบัติทางกล

สมบัติทางกลได้จากการทดสอบแรงดึง โดยทดสอบด้วยเครื่องมือทดสอบแรงดึง (Universal tensile testing machine) ยี่ห้อ LLOYD รุ่น LR10K, LLOYD Instruments, England ซึ่งได้รับความอนุเคราะห์การใช้เครื่องมือจากศูนย์ทันตวัสดุศาสตร์ คณะทันตแพทย์ศาสตร์ ็จฺฬาลงกรณ์มหาวิทยาลัย ใช้อัตราความเร็ว (Tension speed) ในการดึง 0.5 มิลลิเมตรต่อนาที เพื่อหาค่าความต้านทานแรงดึง (Tensile strength) ความเค้น ณ จุดคราก (Yield strength) ค่า มอดูลัสยืดหยุ่น (Young's Modulus) และ อัตราการยืดตัวของชิ้นงานหรือเปอร์เซ็นต์การยืดตัว (%Elongation) จากนั้นจะสามารถคำนวณค่าสมบัติความเป็นสปริง (Modulus of Resilience) ของชิ้นงานทดสอบแต่ละชิ้น ซึ่งชิ้นงานทดสอบจะหล่อให้ได้ตามมาตรฐาน ASTM E 8M-96 โดย ทำการทดสอบชิ้นงาน 5 ชิ้นต่อหนึ่งชุดหรือแต่ละสภาวะการทดลอง ซึ่งค่าความเป็นสปริง (Modulus of Resilience) สามารถคำนวณได้จาก

$$U_r = \frac{\sigma_y^2}{2E} \tag{13}$$

โดย

E

σ_ν คือ ค่าความเค้น ณ จุดคราก [MPa] คือ ค่าโมดูลัสความยืดหยุ่น [MPa]

ส่วนการทดสอบความแข็งจะทำด้วยวิธีวัดความแข็งแบบร็อคเวลล์ ใช้สเกลเอ (Rockwell Scale A Test) ยี่ห้อ GALILEO durometria ซึ่งได้รับความอนุเคราะห์ได้ใช้เครื่องมือจาก สถาบันวิจัยโลหะและวัสดุ จุฬาลงกรณ์มหาวิทยาลัย โดยการวัดด้วยสเกลเอนี้จะใช้หัวกดเพชรทรง กรวย ใช้แรงกดหลัก (Major load) เท่ากับ 60 kgf เพื่อให้เหมาะสมกับการทดสอบวัสดุโลหะเงิน สเตอร์ลิงที่ค่อนข้างอ่อนนุ่ม การวัดค่าความแข็งจะกดชิ้นงาน 5 จุดต่อหนึ่งชิ้นแล้วนำมาหา ค่าเฉลี่ย

การอภิปรายผลของสมบัติทางกล ผู้เขียนจะเรียงลำดับเป็นกลุ่มๆ เหมือนกับผลของการ ทดสอบสมบัติต้านทานการหมองหัวข้อ 4.5 ที่ผ่านมา เพื่อจะสามารถเรียงลำดับลำดับได้ง่าย อีก ทั้งยังสามารถเห็นภาพได้อย่างชัดเจน โดยผลของอิทธิพลของธาตุผสมที่เติม การปรับเปลี่ยนธาตุ ผสมของชุดโลหะเงินสเตอร์ลิงแต่ละชุด และอุณหภูมิที่ใช้ รวมถึงระยะเวลาสำหรับการอบบ่มให้ ตกตะกอนเพิ่มความแข็งแรง เพื่อเพิ่มสมบัติทางกลต่าง ๆ แก่โลหะเงินสเตอร์ลิงที่ต้องการให้มีค่า

ความสปริงสูง (Modulus of Resilience) (ซึ่งจะเรียงสมบัติทางกล ค่า Modulus of Resilience, ค่า Yield stress, ค่า Elongation และค่าความแข็ง ตามลำดับ) ชุดโลหะเงินผสมที่ทำการทดสอบ จะมีทั้งหมด 7 ชุด และจะแบ่งการอภิปรายออกเป็น 3 กลุ่มใหญ่ ๆ คือ

- 4.6.1 กลุ่ม AgCu / AgCu0.3Al / AgCu0.3Sn
- 4.6.2 กลุ่ม AgCu0.3Sn / AgCu0.3Be0.2Sn / AgCu0.3Be0.3Sn/ AgCu0.3Be0.5Sn
- 4.6.3 กลุ่ม AgCu0.3Al / AgCu0.3Sn / AgCu0.3Be0.5Sn / AgCu0.3Be0.5Sn0.3Al

โลหะผสมเงินสเตอร์ลิงทุก ๆ ชุด และทุก ๆ ชิ้นงาน เมื่อผ่านการหล่อและได้ต้นโลหะแล้ว จะนำไปผ่านการล้างปูนให้สะอาด และนำชิ้นงานที่ได้ตัดออกเป็นชิ้น ๆ ออกจากต้นโลหะ แล้ว นำไปผ่านกระบวนการอบบุ่มเพื่อเพิ่มความแข็งแรงและความแข็งด้วยกลไกการตกตะกอน (Precipitation hardening) ด้วยอุณหภูมิและเวลาที่เหมาะสม แล้วทำการจุ่มลงในน้ำเย็นอย่าง รวดเร็ว (Water quench) โดยกลไกที่เกิดขึ้นจะมาจากการตกตะกอนแยกตัวของเฟสที่มีทองแดง สูง (Cu-rich phase) ออกจากเฟสอัลฟา (α, Ag-rich phase) เนื่องจากความสามารถในการ ละลายของทองแดงในเนื้อเงินจะลดลงเมื่ออุณหภูมิลดลงตามเส้นแสดงความสามารถในการ ละลายสูงสุด (Solvus line) และหากทำการชุบแข็งอย่างรวดเร็วขณะโลหะกำลังแข็งตัว จะ สามารถยับยั้งการตกตะกอนของทองแดงได้ เกิดเป็นสภาวะอิ่มตัวอย่างยิ่งยวดและเมื่อทำการอบ กระตุ้นหรือบ่มที่อุณหภูมิต่ำ ก็จะเกิด Cu-rich phase ที่ได้จะมีขนาดเล็กมาก ซึ่งการศึกษาในครั้ง ้นี้จะไม่มีการอบให้เป็นสารละลายของแข็งเนื้อเดียว (Solutionization) เหมือนวิธีการที่นิยมทำกัน ทั่วไป การตัดขั้นตอนรอบให้เป็นสารละลายของแข็งเนื้อเดียว (Solutionization) ดังกล่าวออกไป ้นั้น เพื่อหลีกเลี่ยงการเกิดเกิดคราบทองแดงออกไซด์ (Fire scale) เพราะอุณหภูมิที่ใช้ในการอบให้ เป็นสารละลายของแข็งเนื้อเดียวนั้นจะสูงประมาณ 700 – 800°C และยังส่งผลต่อการเสียความ แข็งแรงและความแข็งเนื่องจากสูญเสียปริมาณทองแดง จากการแพร่ของทองแดงไปที่บริเวณผิว ของชิ้นงาน นอกจากนี้การตัดขั้นตอนดังกล่าวออกยังช่วยลดต้นทุน เวลาและค่าใช้จ่ายที่ต้องใช้ให้ ้น้อยลง อย่างไรก็ตาม การวิจัยในครั้งนี้จึงทำการหล่อแล้วอบบ่ม (Aging) เพื่อเพิ่มความแข็งแรง ้ต่อเนื่อง โดยปราศจากการทำให้เป็นสารละลายของแข็งเนื้อเดียว ซึ่งผลที่ได้สามารถยืนยันว่าการ ผลิตโลหะเงินสเตอร์ลิงโดยวิธีนี้ให้สมบัติทางกลสูง ทั้งยังผลิตเป็นชิ้นงานที่มีค่าความเป็นสปริง เหมาะสมเพื่อตอบสนองการใช้งานของอุตสาหกรรมและตลาดเครื่องประดับได้ อุณหภูมิและเวลา ที่ใช้ในการคบบ่ม คือ

> - 350°C ใช้เวลา 0, 10, 15, 30, 60 และ 120 นาที - 400°C ใช้เวลา 0, 10, 15, 30, 60 และ 120 นาที

4.6.1 กลุ่ม AgCu / AgCu0.3Al / AgCu0.3Sn : จากการทดสอบสมบัติทางกล พบว่า หลังจากผ่านกระบวนการทางความร้อนด้วย การอบบ่ม (Aging) แล้วนั้นส่งผลทำให้สมบัติทางกล มีค่าเพิ่มขึ้นในทุกกรณี ทั้งที่ผ่านการอบที่อุณหภูมิ 350°C และ 400°C ทุกระยะการอบเวลาใด ๆ เมื่อสังเกตผลที่ได้จากการเติมธาตุผสมอะลูมิเนียมและดีบุก เห็นได้ชัดว่า การเติมธาตุอะลูมิเนียม (AgCu0.3Al) และดีบุก (AgCu0.3Sn) ทำให้ค่าความแข็งแรงลดลงและสมบัติทางกลลดลง เมื่อ เทียบกับโลหะเงินสเตอร์ลิงผสมทองแดง (AgCu) ที่ไม่ได้มีการเติมธาตุผสมอื่น ๆ อย่างไรก็ตาม โลหะเงินผสมอะลูมิเนียมชุด AgCu0.3Al ยังได้ค่าความเป็นสปริง (Modulus of Resilience) ระดับที่สูงกว่าค่าความเป็นสปริงของเหล็กกล้า [15] ดังแสดงในภาพที่ 4.32

เมื่อพิจารณาอุณหภูมิการบ่ม จากภาพที่ 4.32 พบว่าการอบบ่มที่อุณหภูมิ 350°C จะได้ ค่าความเป็นสปริง (Modulus of Resilience) สูงกว่าการอบบ่มที่อุณหภูมิ 400°C ตัวอย่างเช่น หลังการอบบ่มที่อุณหภูมิ 350°C โลหะเงินผสมทองแดง (AgCu) มีค่าความเป็นสปริงในช่วง 4.0 – 4.75 MPa ส่วนโลหะเงินผสมทองแดง ดีบุก (AgCu0.3Sn) มีค่าความเป็นสปริง 1.0 – 2.25 MPa และโลหะเงินผสมทองแดง อะลูมิเนียม (AgCu0.3Al) มีค่าสปริงในช่วง 3.0 – 3.6 MPa ก็จะเห็นได้ ว่าการเติมอะลูมิเนียม ทำให้ค่าสมบัติความเป็นสปริงเพิ่มขึ้นมากกว่าค่าความเป็นสปริงของ เหล็กกล้า (Spring steel = 2.2 MPa) แต่ต่ำกว่าค่าความเป็นสปริงของเหล็กกล้าไร้สนิม (Spring stainless steel = 5.0 MPa) และโลหะเงินผสมที่เติมทองแดงอย่างเดียว (AgCu) ขณะที่การเติม ดีบุกแม้ว่าหลังการอบบ่มจะทำให้ค่าความเป็นสปริงเพิ่มมากขึ้น แต่ก็ไม่เหมาะสมที่จะนำไปผลิต เป็นขึ้นส่วนสปริง เพราะมีค่าความเป็นสปริงต่ำ (ต่ำกว่าสปริงเหล็กกล้า, Spring steel) ซึ่งในกรณี ของการอบบ่มที่อุณหภูมิ 400°C สมบัติความเป็นสปริงก็เป็นไปในทิศทางเดียวกันกับอุณหภูมิบ่ม 350°C แต่ค่าที่ได้จะมีค่าความเป็นสปริงต่ำกว่า ดังนั้น สามารถสรุปได้ว่า การเติมธาตุอะลูมิเนียม ให้ค่าความเป็นสปริงที่เหมาะสม และจากผลทดสอบสมบัติการหมองแสดงให้เห็นถึงความ ด้านทานการหมองที่มีค่าสูง จึงเหมาะสมที่จะผลิตเป็นชิ้นส่วนโลหะเงินสปริง ที่มีความเป็นสปริง และความต้านการหมองดี

ภาพที่ 4.33 ในส่วนของผลการทดสอบการต้านทานแรงดึงนี้ ก็พบว่า ค่าความเค้น ณ จุด คราก (Yield Stress) จะมีแนวโน้มเป็นไปในทิศทางเดียวกันกับค่าสมบัติความเป็นสปริง ดังภาพที่ 4.23 ตัวอย่างเช่น โลหะเงินผสมทองแดง (AgCu) หลังอบบ่ม มีค่าความเค้น ณ จุดคราก (Yield Stress) ในช่วง 330 – 350 MPa ส่วนชุดโลหะเงินผสมทองแดง อะลูมิเนียม (AgCu0.3Al) ได้ค่า อยู่ในช่วง 260 – 310 MPa และโลหะเงินผสมทองแดง ดีบุก (AgCu0.3Sn) มีค่าความเค้น ณ จุด คราก 100 – 210 MPa ซึ่งเมื่อทำการเทียบค่าความเค้น ณ จุดครากของชิ้นงานหลังอบบ่ม (Aged) กับชิ้นงานทดสอบสภาพหล่อ (As-cast) พบว่ามีค่าเพิ่มขึ้นถึง 6 – 7 เท่าสำหรับโลหะชุด AgCu , 2.5 – 3 เท่าของชุดโลหะ AgCu0.3Al และ 0.5 – 0.75 เท่าในโลหะผสม AgCu0.3Sn ตามลำดับ

ในส่วนของค่าความเหนียวหรืออัตราการยืด (Elongation) จะพบว่าในสภาพหลังหล่อนั้น มีอัตราการยืดตัวที่สูงที่สุด โดยโลหะเงินผสมทองแดง อะลูมิเนียม (AgCu0.3Al) ให้ค่าความ เหนียวสูงถึง 60% แต่หลังจากที่ผ่านกระบวนการอบบ่มแล้ว มีผลทำให้ความเหนียวลดลงอย่าง รวดเร็ว แต่ความเหนียวที่ลดลงยังมีค่าที่อยู่ในระดับใกล้เคียงกันกับโลหะเงินผสมทองแดง (AgCu) ซึ่งอยู่ในช่วง 20 ถึง 30% ซึ่งอยู่ในช่วงระดับเดียวกัน แตกต่างกันไม่มาก แสดงในภาพที่ 4.34

อย่างไรก็ตาม โลหะผสมชุดเงินทองแดง (AgCu) และ โลหะเงินสเตอร์ลิงผสมทองแดง ดีบุก (AgCu0.3Sn) นั้นพบปัญหาการแตกเปราะของชิ้นงานหลังกระบวนการหล่อ (As-cast) เป็น จำนวนมาก และยังพบปัญหาการเกิดฝ้าแดงฝังลึกลงบนผิวชิ้นงาน แม้จะมีการขัดเปิดหน้าผิว โลหะเงินออกเป็นเวลานานแล้วก็ตาม แต่คราบของฝ้าที่ปรากฏก็ไม่มีการลดลงหรือหายไป เมื่อ พิจารณาค่าความแข็งที่ได้จากการทดสอบ ภาพที่ 4.35 พบว่า มีแนวโน้มเดียวกับค่าความเป็น สปริง และค่าความเค้น ณ จุดคราก กล่าวคือ เมื่อนำชิ้นงานสภาพหลังหล่อ ไปผ่านการอบบ่มแล้ว ค่าความแข็งจะสูงขึ้นเป็น 3 – 8 เท่าของความแข็งของชิ้นงานสภาพหลังหล่อ

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาพที่ 4.32 กราฟแสดงค่าสมบัติความเป็นสปริง (Modulus of Resilience) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C

ภาพที่ 4.33 กราฟแสดงค่าความเค้นจุดคราก (Yield stress) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C

ภาพที่ 4.34 กราฟแสดงค่าอัตราการยืดตัว (Elongation) ของ AgCu – AgCu0.3Al – AgCu0.3Sn หลังการอบบ่ม 350°C และ 400°C

** Aging time 0 minute: ND = Not Detect (ค่าต่ำกว่าสเกล HRA Rockwell) **

ภาพที่ 4.35 กราฟแสดงค่าความแข็ง (Hardness, HRA) ของ AgCu – AgCu0.3Al – AgCu0.3Snหลังการอบบ่ม 350°C และ 400°C

4.6.2 กลุ่ม AgCu0.3Sn / AgCu0.3Be0.2Sn / AgCu0.3Be0.3Sn / AgCu0.3Be0.5Sn : ในโลหะผสมกลุ่มนี้จะเป็นการเปรียบเทียบค่าสมบัติทางกลที่ได้จากการปรับเปลี่ยนธาตุดีบุก เติม ในปริมาณที่มากขึ้นเพื่อดูผล โดยจะปรับค่าดีบุกให้อยู่ในช่วง 0.2 – 0.5% โดยกำหนดให้ธาตุ เบริลเลียมคงที่ที่ปริมาณ 0.3% เพื่อดูผลของการเปลี่ยนแปลงอีกด้วย จากการศึกษาเงินสเตอร์ลิง 935⁽⁴⁷⁾ โดยควบคุมปริมาณเบริลเลียม 0.13 – 0.65% ทำการอบบ่มด้วยความร้อนโดยใช้เทคนิค การบ่มเพิ่มความแข็งด้วยตะกอน (Precipitation hardening) ที่อุณหภูมิต่ำ ในช่วง 250 – 350 ้องศาเซลเซียส โดยใช้เวลาการบ่ม 7 – 120 นาที พบว่า สมบัติทางกลต่าง ๆ เพิ่มสูงขึ้น ซึ่งการเติม ธาตุเบริลเลียมนั้น นอกจากจะส่งผลในด้านการต้านทานการหมองของโลหะเงินสเตอร์ลิงแล้ว ยัง สามารถเพิ่มความแข็งแรงให้แก่โลหะเงินสปริงโดยการช่วยเร่งการเกิดตะกอน (Precipitate) ขณะ ทำการอบบ่มให้เร็วขึ้นได้อีกด้วย อย่างไรก็ตาม ในผลของการวิจัยนี้ ชิ้นงานที่ผ่านการอบบ่ม มี สมบัติทางกลดีขึ้นกว่าในสภาพหลังหล่อ แต่ค่าสมบัติทางกลที่ได้ไม่สูงมาก เมื่อเทียบกับโลหะเงิน แสมทองแดง (AgCu) และโลหะเงินผสมทองแดง อะลูมิเนียม (AgCu0.3Al) จากภาพที่ 4.36 พบว่า ค่าความเป็นสปริงของโลหะเงินผสมทั้ง 4 ชุด มีค่าต่ำกว่าค่าความเป็นสปริงของเหล็กกล้า (spring steel = 2.2 MPa) จึงไม่เหมาะสมสำหรับการนำไปผลิตและทำเป็นสปริงมากนัก ยกเว้น กรณีที่ไม่ต้องการค่าความเป็นสปริงสูง แต่ต้องการความเหนียวที่ดี เพราะค่าอัตราการยืดตัว (Elongation) ที่ได้อยู่ในระดับ 35-40% โดยค่าความเป็นสปริง พบอยู่ในช่วง 0.35 – 2.67 MPa ถึงแม้ค่าความเป็นสปริงจะน้อยกว่าแต่ก็สามารถเทียบกับวัสดุสปริงโลหะชนิดอื่น เช่น บรอนซ์ที่ ้ผ่านการรีด มีค่าความเป็นสปริงประมาณ 0.42 MPa หรือเหล็กกล้าที่มีปริมาณคาร์บอน 1.2% มี ค่าความเป็นสปริง 1.93 MPa เป็นต้น ชุดโลหะผสมเงินสเตอร์ลิงที่เติมเบริลเลียม 0.3% และ ปรับเปลี่ยนดีบุกช่วง 0.2 – 0.5% จึงสามารถจะนำไปใช้เป็นตัวเลือกในการผลิตชิ้นส่วน ้เครื่องประดับเงินที่มีสมบัติค่าสปริงไม่สูงมากได้ ส่วนอุณหภูมิในการอบบ่มนั้นการอบบ่มที่ 350°C ให้ค่าความแข็งแรงสงกว่าอบที่ 400°C

จากภาพที่ 4.37 ค่าความเค้น ณ จุดครากของโลหะผสมกลุ่มนี้เป็นไปเช่นเดียวกับค่า ความเป็นสปริง โดยความเค้น ณ จุดครากที่เพิ่มขึ้นหลังการอบบ่ม มีค่าอยู่ในช่วง 100 – 260 MPa ซึ่งขึ้นอยู่กับเวลาการอบบ่มด้วย เช่นเดียวกับความแข็งในภาพที่ 4.39 มีค่าอยู่ในช่วง 15 – 35 HRA โดยเมื่อพิจารณาถึงค่าความเหนียวหรืออัตราการยืดตัวของโลหะผสมเงินสเตอร์ลิง ภาพที่ 4.38 นั้นโลหะผสมเงิน เบริลเลียม ดีบุก มีอัตราการยืดตัวของชิ้นงานค่อนข้างดีเยี่ยม ช่วง 15 – 50% (เนื่องจากค่าความแข็งแรงไม่สูงมาก) แต่สำหรับโลหะผสมชุดเงินดีบุกที่ ปราศจาก การเติมเบริลเลียมนั้น มีความเหนียวที่ต่ำกว่าอย่างเห็นได้ชัด อีกทั้งโลหะผสมชุด AgCu0.3Sn มี ปัญหาการแตกเปราะของชิ้นงานหลังหล่อ โดยจากการสังเกตพบว่ารอยแตกของชิ้นงานหลัง ทดสอบการดึง จะมีจุดสีเทา ๆ บริเวณรอยแตก ซึ่งอาจเป็นจุดกำเนิดของดึงแล้วขาดเร็วมีความ เหนียวต่ำ โดยผู้เขียนสันนิษฐานว่า อาจเป็นกรณีที่ดีบุกมีการแยกตัวออกมาเป็นเม็ด ๆ ขณะน้ำ โลหะเย็นตัว อาจจะต้องมีการศึกษาเพิ่มเติมในขั้นต่อไป

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาพที่ 4.36 กราฟแสดงค่าสมบัติความเป็นสปริง (Modulus of Resilience) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังการอบบ่ม 350°C และ 400°C

ภาพที่ 4.37 กราฟแสดงค่าความเค้นจุดคราก (Yield stress) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังอบบ่ม 350°C และ 400°C

ภาพที่ 4.38 กราฟแสดงค่าอัตราการยึดตัว (Elongation) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังอบบ่ม 350°C และ 400°C

ภาพที่ 4.39 กราฟแสดงค่าความแข็ง (Hardness, HRA) ของ AgCu0.3Sn – AgCu0.3Be0.2Sn – AgCu0.3Be0.3Sn – AgCu0.3Be0.5Sn หลังการอบบ่ม 350°C และ 400°C

4.6.3 กลุ่ม AgCu0.3Al / AgCu0.3Sn / AgCu0.3Be0.5Sn / AgCu0.3Be0.5Sn0.3Al : ชุดโลหะผสมกลุ่มนี้จะเป็นการเปรียบเทียบผลของการเติมธาตุผสมต่าง ๆ โดยมีทั้งการเติม อะลูมิเนียม (AgCu0.3Al), ดีบุก (AgCu0.3Sn) เบริลเลียมร่วมกับดีบุก (AgCu0.3Be0.5Sn) และ การเติมเบริลเลียม ดีบุก ร่วมกับอะลูมิเนียม (AgCu0.3Be0.5Sn0.3Al) โดยผลการเติมธาตุผสม เหล่านี้ช่วยในการต้านทานการหมองที่ดีขึ้น อีกทั้งช่วยให้ชิ้นงานสภาวะหลังการอบบ่มมีคุณสมบัติ ที่ดีขึ้น ทั้งด้านความแข็งแรง และสมบัติทางกลต่าง ๆ จากภาพที่ 4.40 ผลของสมบัติความเป็น สปริงของทั้ง 4 ชุดโลหะผสมนี้ หลังผ่านการอบบ่มโดยใช้เวลาเพียงไม่นาน (ทั้ง 350°C และ 400°C) ค่าความเป็นสปริงเพิ่มขึ้นสูงมากโดยเฉพาะชุดโลหะกลุ่ม AgCu0.3AI และ AgCu0.3Be0.5Sn0.3Al ซึ่งค่าความเป็นสปริงที่ทดสอบได้จะอยู่ในช่วง 2.0 – 4.5 MPa มากขึ้น กว่าเดิม 6 – 9 เท่า โดยค่าความเป็นสปริงที่เพิ่มขึ้นเข้าใกล้สปริงของวัสดุที่เป็นเหล็กกล้าไร้สนิม (Stainless Steel) เลยทีเดียว แต่สำหรับชุดโลหะผสม AgCu0.3Sn และ AgCu0.3Be0.5Sn ที่ไม่มี การเติมธาตุอะลูมิเนียมนั้น สมบัติความเป็นสปริงก็ปรับค่าสูงขึ้นหลังทำการอบ สามารถเทียบกับ สปริงของเหล็กกล้าได้เมื่อใช้เวลาการอบบ่มที่ 60 นาที โดยใช้อุณหภูมิ 350°C แต่ค่าที่ได้ก็ไม่สูง เท่ากับโลหะผสมเงินสเตอร์ลิงที่มีธาตุอะลูมิเนียมเติมลงไป 2 ชุด ที่กล่าวข้างต้น เนื่องจาก อะลูมิเนียมมีอิทธิพลต่อการเพิ่มความแข็งแรงและความต้านทานการหมองได้ดีกว่าธาตุอื่น ๆ เมื่อ พิจารณาความเค้น ณ จุดครากตามภาพที่ 4.41 และค่าความแข็งจากภาพที่ 4.43 พบว่าเป็น แนวโน้มเดียวกับสมบัติความเป็นสปริง และช่วงความเค้นจุดครากที่ได้หลังการอบบ่มของชุดโลหะ กลุ่ม AgCu0.3Al และ AgCu0.3Be0.5Sn0.3Al จะอยู่ในช่วง 200 – 357 MPa ซึ่งมีความแข็งแรง สูงกว่าชุดธาตุผสมอื่น ๆ ส่วนค่าความแข็งจะอยู่ในช่วง 20 – 50 HRA

เมื่อพิจารณาความเหนียวของวัสดุที่ได้ของโลหะเงินกลุ่มนี้ ภาพที่ 4.42 พบว่า อัตราการ ยืดตัวส่วนใหญ่ของโลหะกลุ่มนี้มีความเหนียวที่ดี เว้นแต่โลหะผสมชุด AgCu0.3Be0.5Sn0.3AI ที่ มีค่าความแข็งแรง สมบัติความเป็นสปริงสูงที่สุด ซึ่งเป็นธรรมชาติของวัสดุโลหะที่มีความแข็งแรง สูงแล้ว ความเหนียว หรืออัตราการยืดหยุ่นจะลดลง ดังนั้น จึงควรจะระมัดระวังในการเลือกใช้ โลหะผสมชนิดนี้ที่มีสมบัติสปริงสูง แต่ความเหนียวที่ได้มีค่าประมาณ 8 – 12% เท่านั้น แต่ในทาง การผลิตและใช้งานนั้นก็ยังถือว่ายอมรับได้สำหรับอัตราการยืดตัวดังกล่าว สามารถนำไปผลิตเป็น ชิ้นงานเครื่องประดับบางที่ต้องการความคงทนและความสวยงามของลวดลาย ดังนั้น จึงสามารถสรุปได้ว่า ชุดโลหะผสมที่เหมาะสำหรับการผลิตเป็นเครื่องประดับ ที่ ต้องการสมบัติความเป็นสปริงสูง และมีสีผิวสวยงาม สามารถต้านทานการหมองที่ดีจากสภาวะ บรรยากาศการใช้งานปกติ สามารถเลือก ชุดโลหะผสม AgCu0.3AI นอกจากจะมีความเป็นสปริง สูง ต้านทานการหมองดีแล้วยังมีอัตราการยืดตัวของวัสดุที่สูงมากพอและมีความเหมาะสม หรือ อาจจะใช้โลหะผสมชุด AgCu0.3Be0.5Sn0.3AI ก็ได้เช่นกัน แต่ควรระวังในชิ้นงานหรือชิ้นส่วนที่ ต้องการความเหนียว เพราะโลหะผสมชุดนี้มีอัตราการยืดตัวที่จำกัด อย่างไรก็ดี ในการผลิตชิ้นงาน ให้ได้คุณสมบัติที่ดีที่สุด สำหรับโลหะผสมในการทำวิจัยครั้งนี้ อุณหภูมิและเวลาที่เหมาะสมในการ อบบ่มคือ 350°C ใช้เวลาในการอบบ่ม 15 – 30 นาที เนื่องจากถ้าใช้เวลานานกว่านี้ทำให้ความ แข็งแรงและสมบัติความเป็นสปริงที่ได้ลดลง อีกทั้งยังเป็นการสิ้นเปลืองต้นทุน ค่าใช้จ่าย และเวลา ในการผลิต

อย่างไรก็ตาม สำหรับธาตุผสมชุดอื่น ๆ ทั้งหมดที่ได้ทำการวิจัยครั้งนี้นั้นก็ยังมีค่าความ เป็นสปริงและสมบัติทางกลที่แตกต่างกันออกไป ซึ่งสามารถนำไปเลือกใช้งานหรือผลิตเป็นชิ้นส่วน ของเครื่องประดับได้ตามความเหมาะสมของลักษณะงานที่ต้องการ

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาพที่ 4.40 กราฟแสดงสมบัติ Modulus of Resilience ของ AgCu0.3Al – AgCu0.3Sn – AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังการอบบ่ม 350°C และ 400°C

ภาพที่ 4.41 กราฟแสดงค่าความเค้นจุดคราก (Yield stress) ของ AgCu0.3Al – AgCu0.3Sn – AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังอบบ่ม 350°C และ 400°C

ภาพที่ 4.42 กราฟแสดงค่าอัตราการยึดตัว (Elongation) ของ AgCu0.3Al – AgCu0.3Sn – AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังอบบ่ม 350°C และ 400°C

ภาพที่ 4.43 กราฟแสดงค่าความแข็ง (Hardness, HRA) ของ AgCu0.3Al – AgCu0.3Sn – AgCu0.3Be0.5Sn – AgCu0.3Be0.5Sn0.3Al หลังการอบบ่ม 350°C และ 400°C

บทที่ 5

สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

 การเติมอะลูมิเนียม ทำให้เฟสเบตา (β-phase) ขนาดใหญ่เกิดขึ้นบริเวณใกล้ ๆ กับ โครงสร้างยูเทคติก รูปร่างเชื่อมต่อกัน การเติมดีบุก ทำให้โครงสร้างยูเทคติกมีปริมาณลดลงและ ขนาดเล็กกว่า แต่พบเฟสเบตาขนาดใหญ่ที่อยู่ในโครงสร้างยูเทคติก ส่วนธาตุเบริลเลียมและธาตุ ดีบุก ทำให้แขนของโครงสร้างเดรนไดรท์ และระยะห่างระหว่างแขนของแดนไดรท์ลดลง ทองแดง เกิดการแยกตัวจากโครงสร้างยูเทคติกและโครงสร้างพื้น เป็นเฟสเบตาและเฟสสีเทามากขึ้น ซึ่ง เป็นไปได้ว่าเฟสสีเทาจะเป็น β-CuBe หรือ β'-CuBe โดยการเติมธาตุเบริลเลียมร่วมกับดีบุก ยัง ส่งผลให้เฟสเบตา (β-phase) มีลักษณะกลมมนมากยิ่งขึ้น

2) การเติมธาตุเบริลเลียม และอะลูมิเนียม ช่วยให้เกรนมีขนาดเล็กลง โดยขนาดเกรน
 (0.5 – 2 มิลลิเมตร) ที่ได้เล็กละเอียดกว่าโลหะผสม AgCu และโลหะผสม AgCu0.3Sn
 (3 – 7 มิลลิเมตร) ประมาณ 3 – 6 เท่า และธาตุเบริลเลียม ธาตุอะลูมิเนียมถูกพบกระจายตัวอยู่ทั้ง
 โครงสร้างพื้น และในโครงสร้างยูเทคติก

3) ธาตุผสมมีผลต่อสมบัติต้านทานการหมองและค่าการเปลี่ยนแปลงสีที่ได้ โดยการเติม อะลูมิเนียม เบริลเลียม และการเติมปริมาณธาตุดีบุกที่เพิ่มมากขึ้นสามารถเพิ่มสมบัติการ ด้านทานการหมองได้ดียิ่งขึ้น ซึ่งอะลูมิเนียมเป็นธาตุที่มีอิทธิพลต่อการป้องกันการหมองของ ชิ้นงานได้ดีที่สุด ชุดโลหะผสม AgCu0.3AI มีการเปลี่ยนแปลงค่าสีน้อยที่สุด โดยวัดค่า dE* ได้ ต่ำสุด อุณหภูมิและเวลาการอบบ่ม ส่งผลต่อสีผิวและสมบัติการต้านทานการหมองของชิ้นงาน ทดสอบ เมื่อใช้อุณหภูมิและเวลาในการอบบ่มสูงขึ้น การเปลี่ยนแปลงสีและความหมองที่เกิดบน ผิวชิ้นงานก็เพิ่มมากขึ้นตามไปด้วย

4) การอบบ่ม ส่งผลทำให้สมบัติทางกลมีค่าเพิ่มขึ้นในทุกชิ้นงานทดสอบ ทั้งค่าความเป็น สปริง ค่าความเค้น ณ จุดคราก ส่วนผสมทางเคมีของโลหะผสมสำหรับการผลิตเครื่องประดับที่ ต้องการสมบัติความเป็นสปริงสูง และมีสีผิวสวยงาม ต้านทานการหมองดีในสภาวะบรรยากาศ การใช้งานปกติ คือ โลหะผสม AgCu0.3Al ที่อุณหภูมิอบบ่ม 350°C และเวลาอยู่ในช่วง 15 – 30 นาที โดยมีสมบัติค่าสปริงเท่ากับ 2.6 – 3.6 MPa ค่าความเค้น ณ จุดคราก 232 – 310 MPa

5.2 ปัญหาและข้อเสนอแนะ

 ควรศึกษาการระยะเวลาการเย็นตัวของน้ำโลหะเนื่องจากปัญหาการแตกเปราะของ ชิ้นงานโลหะผสมเงินสเตอร์ลิงหลังหล่อของชุด AgCu และ AgCu0.3Sn เกิดขึ้นในสภาวะการเย็น ตัวของโลหะเร็วเกินไป

 ควรมีการศึกษาชั้นฟิล์ม หรือชั้นออกไซด์ที่เกิดขึ้นหลังผ่านการทดสอบสมบัติการหมอง (Tarnish Test) ของชิ้นงาน และหลังผ่านกระบวนการทางความร้อนโดยการอบบ่ม เพื่อเข้าใจ กลไกที่เกิดขึ้น คุณสมบัติของชั้นฟิล์ม หรือชั้นออกไซด์ดังกล่าว

 การศึกษาการปริมาณและกระจายตัวของตะกอน (Precipitation) ที่เกิดขึ้นในขึ้นงาน สามารถศึกษาเพิ่มเติมได้ด้วย กล้องจุลทรรศน์อิเล็คตรอนแบบส่องผ่าน (Transmission Electron Microscope :TEM) รวมถึงธาตุเบริลเลียม (Be) ที่มีข้อจำกัดไม่สามารถตรวจพบได้ด้วยกล้อง จุลทรรศน์อิเล็คตรอนแบบส่องกราดกราด (Scanning Electron Microscope; SEM) ธรรมดาได้ เนื่องจากเป็นเบริลเลียมธาตุที่เบา และมีขนาดเล็กมากๆ ก็สามารถศึกษาเพิ่มเติมได้ด้วย TEM

 4) โลหะผสมในกลุ่มที่มีการปรับเติมธาตุดีบุก 0.2 – 0.5% ซึ่งประกอบไปด้วย AgCu0.3Sn, AgCu0.3Be0.2Sn, AgCu0.3Be0.3Sn และ AgCu0.3Be0.5Sn แม้ว่าความแข็งแรง และสมบัติ ความเป็นสปริงของโลหะเงินผสมทั้ง 4 ชุดนี้ จะมีค่าที่ค่อนข้างต่ำ (0.35 – 2.67 MPa) แต่ยังมี ความเหนียวที่ดี เพราะค่าอัตราการยืดตัว (Elongation) ที่ได้อยู่ในระดับ 15 – 50% ซึ่งมีค่าสูง สามารถนำไปใช้ตัวเลือกในการผลิตชิ้นส่วนเครื่องประดับเงินอื่น ๆ ได้

5) สำหรับโลหะผสมที่มีสมบัติความเป็นสปริงและมีความแข็งแรงสูงมาก แต่ให้ความยืดหยุ่น ต่ำ ตัวอย่างเช่น ชุดโลหะผสม AgCu0.3Be0.5Sn0.3AI ที่มีค่าความเค้นจุดคราก 200 – 357 MPa และสมบัติความเป็นสปริงสูงถึง 2.0 – 4.55 MPa แต่มีอัตราการยืดตัวที่จำกัดในช่วง 8 – 12% เท่านั้น สามารถนำเป็นผลิตเป็นเครื่องประดับได้ ซึ่งควรผลิตให้เป็นชิ้นงานบางเพื่อป้องกันการเสีย รูป เช่น กำไลบาง แหวนบาง ที่มีน้ำหนักเบาแต่แข็งแรง เน้นการแสดงลวดลายสวยงาม และความ คงทนแทน

รายการอ้างอิง

- สงวนรักษ์ โล่วานิชย์เจริญ, ผลของดีบุกต่อสมบัติทางกลของสปริงเงินสเตอร์ลิง, สาขาวิชาวิศวกรรมโลหการ ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์. ปีการศึกษา 2547, จุฬาลงกรณ์มหาวิทยาลัย.
- ตระกูลศักดิ์ สุขรี, การพัฒนาโครงสร้างจุลภาคและสมบัติทางกลของโลหะผสม เงิน-เบริลเลียม เกรด 935, สาขาวิชาวิศวกรรมโลหการ ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์. ปีการศึกษา 2549, จุฬาลงกรณ์มหาวิทยาลัย.
- มศ.ดร.เอกสิทธิ์ นิสารัตนพร และคณะ, การปรับปรุงโลหะเงินสปริงเกรด 935 เพื่อการผลิต เชิงอุตสาหกรรมเครื่องประดับ, ส. สำนักนายกรัฐมนตรี, 1 พฤศจิกายน 2555.
- 4. ดร.ชัยวัฒน์ เจนวาณิชย์, รวบรวมจาก หนังสือสารานุกรมธาตุ. ; from: <u>http://web.ku.ac.th/schoolnet/snet5/topic2/Ag.html</u>, <u>http://th.wikipedia.org/wiki/</u> <u>เงิน (โลหะ)</u>".
- 5. มอก. 21-2515 มาตรฐานผลิตภัณฑ์อุตสาหกรรมเครื่องเงิน กระทรวงอุตสาหกรรม. 2515, สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม: กระทรวงอุตสาหกรรม.
- Pradyot P., Handbook of Inorganic Chemicals. 2002. pp. 253, 271, 275, 276, 313, 318, 818, 822, 826, 833, 842, 845, 935, 940, 941, 991, 992.
- อ.วรวิทย์ จันทร์สุวรรณ, เอกสารประกอบการสอนรายวิชาเคมีประยุกต์ (02-411-105)
 หน่วยที่ 3 โลหะและการกัดกร่อนของโลหะ (Metals and metal corrosion). 2554,
 คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร: วิทยาลัย
 เทคโนโลยีภาคตะวันออก ภาคฤดู้ร้อน.
- Patnaik, P., ph.D, Handbook of Inorganic Chemicals. 2002:97-255, New York: McGraw-Hill.
- ศูนย์การเรียนรู้อุตสาหกรรมเหมืองแร่ออนไลน์. หัวข้อเรื่องดีบุก. หมวดหมู่ : การใช้ ประโยชน์ของโลหะชนิดต่างๆ. ; from: <u>http://lc.dpim.go.th/kb/1074</u>.
- ศูนย์การเรียนรู้อุตสาหกรรมเหมืองแร่ออนไลน์. หัวข้อเรื่องทองแดง. หมวดหมู่ : การใช้ ประโยชน์ของโลหะชนิดต่างๆ]. ; from: <u>http://lc.dpim.go.th/kb/1077</u>.

- สมนึก วัฒนศรียกุล และคณะ, รายงานวิจัยฉบับสมบูรณ์โครงการการศึกษาและพัฒนา คุณสมบัติของโลหะเงินเจือสำหรับการผลิตตัวเรือนเครื่องประดับ, ส. (สกว.), มกราคม
 2544. p. 13.
- ศูนย์การเรียนรู้อุตสาหกรรมเหมืองแร่ออนไลน์. หัวข้อเรื่องอะลูมิเนียม. หมวดหมู่ : การใช้ ประโยชน์ของโลหะชนิดต่างๆ]. ; from: <u>http://lc.dpim.go.th/kb/1084</u> และ <u>http://www.kme10.com/mo4y2552/mo403/noname13.html</u>.
- 13. W.F. Hosford., *Mechanical Behavior of Materials*. 2005, University of Michigan.
- Ashby, Michael F. and David RH Jones., *Engineering Materials: An Introduction to Their Properties and Applications*. 1985: 32-35, Oxfords: Pegamons Press Ltd.
- 15. Lessells, J.M., Strength and Resistance of Metals. 1954: 7, New York:John Wiley & Sons, Inc,
- Properties of Precious Metals. ASM Handbook., *Properties and Selection: Nonferrous Alloys and Special-Purpose Material*. Vol. 2.10th ed. 2000: 699-702, Ohio: ASM International.
- 17. อภิชาติ พานิชกุล และ อุษณีย์ กิตกำธร., เอกสารประกอบการเรียน เรื่องการทดสอบความ แข็ง. ; from: http://eng.sut.ac.th/metal/images/stories/CV/Lab_5_Hardness.pdf
- 18. สถาบันเหล็กและเหล็กกล้าแห่งประเทศไทย. ; from: http://www.isit.or.th/
- 19. ; from: <u>http://www.twiprofessional.com/content/jk74.html</u>.
- มนัส สถิรจินดา., บรอนซ์เบริลเลียม, โลหะนอกกลุ่มเหล็ก. 2543: 36-40, กรุงเทพ: สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.
- Phase diagram. ASM Handbook., *Alloy Phase Diagrams*. Vol. 3. 10th ed.
 2000:28, Ohio: ASM International.
- 22. G. Effenberg and S. Ilyenko., *Ternary Alloy Systems Phase Diagrams, Crystallographic and Thermodynamic Data*. 2007, Materials Science International Team, MSIT.
- 23. ; from: <u>http://materials-informatics-class-fall2015.github.io/MIC-Ternary-Eutectic-</u> <u>Alloy/2015/09/08/First-Post-About-Paper/</u>.

- 24. Edgar E. Vidal., *Beryllium Chemistry and Processing*, in *Lawrence Livermore National Laboratory*, A.G.a.E.N.C. Dalder, Editor. July 2009, Brush Wellman, Inc.,.
- 25. ; from: <u>http://link.springer.com/article/10.1007%2FBF02879428#page-1</u>
- 26. Milton Ohring., *How Engineering Materials are strengthened and toughened*.Engineering Materials Science, chapter 9 1995-12-01.
- 27. Reed-Hill, Robert E., *Physical Metallurgy Principle*. New York: D. Van Nostrand Company, Inc.,.
- 28. Christopher, Raub. Use of Silver in Jewelry in The Proceeding of The Santa Fe Symposium of Jewelry Manufacturing Technology. 1989: 241-256.
- พรหมมินทร์ เจริญยิ่ง., ผลของธาตุผสมซิลิคอนและแคลเซียมต่อการลดออกซิเจนใน เงินสเตอร์ลิงหลอมเหลวในเตาอินดักชันที่สภาวะบรรยากาศ, คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมโลหการ. ปีการศึกษา 2542, จุฬาลงกรณ์มหาวิทยาลัย.
- 30. Vinal, G.W., and Schramm. 1934, G.M Metal Industry (N.T.). p. 1, 15, 22, 100, 151, 231.
- 31. เอกสารสรุปโครงการการจัดการองค์ความรู้ภาควิชาคหกรรมศาสตร์., คณะวิทยาศาสตร์
 ภาควิชาคหกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ, 4 กุมภาพันธ์ 2556.
 ; from: http://cms2.swu.ac.th/Portals/เอกสารอ้างอิง/HOM_55_7.2_2.3.pdf
- Konica Minolta. Precise color communication. 2003 ; from: https://www.konicaminolta.eu/fileadmin/content/eu/Measuring Instruments/4 Lea rning Centre/C A/PRECISE COLOR COMMUNICATION/pcc english 13.pdf.
- เอกสิทธิ นิสารัตนาพร และศิริรัตน์ นิสารัตนาพร., อิทธิพลของธาตุผสมในโลหะเงิน สเตอร์ลิงผสม, สำนักงานกองทุนสนับสนุนการวิจัย, Editor. 2547. p. 51-67.
- 34. Gardam G.E., Sterling Silver Containing Aluminium, Metallurgia. 1953. p. 29.
- 35. Carrano, R. in *Proceedings of the fourth Santa Fe Symposium on Jewelry Manufacturing Technology*. 1990.
- 36. Slomon, Hedley Archibald., *Improvement in and Relating to Alloying Containing Beryllium and Silver*. May 25, 1932: 1-4.

- 37. McFarland, James C. and Fort Thomas., *Age Hardening Silver of Sterling of Higher Standard*. Sept 14, 1932: 1-2.
- 38. Robert H. Leach., *Alloys*. April 17, 1934: 1-2.
- 39. Emmert Kenneth L, Hensel Franz R, Wiggs James W., Silver copper alloy.Apr. 9, 1940, Cl 75-173.
- สรริพร โรจนนันต์, สุรศิษฐ์ โรจนนันต์, เกรียงไกร แสงอำนาจเดช, สุริยงค์ ช้างนิล และ อเนก พานแวววาว, อิทธิพลของการอบบ่มที่มีผลต่อโครงสร้างและความแข็งของเงิน สเตอร์ลิง (The Effect of Age Hardening on Structure and Hardness of Silver Sterling), การประชุมวิชาการ ด้านพลังงานสิ่งแวดล้อมและวัสดุ ครั้งที่ 1., 31 สิงหาคม 2550., สายวิชาเทคโนโลยีวัสดุ คณะพลังงานสิ่งแวดล้อมและวัสดุ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี.
- 41. Carrano V Richard, and Mondillo A Ronald., *Tarnish-resistant Hardenable Fine Silver Alloys*. Oct. 31, 2000.
- 42. Youdelis, W.V., Silver-copper-germanium alloys having high oxidation resistant melts. 1978.
- 43. Croce Scott M., *Anti-tarnish silver alloy*. Jan 11, 2005.
- 44. Peter Gamon Johns., *Process for making finished or semi-finished articles of silver alloy*. Oct 21, 2010.
- 45. Melvin Bernhard, James T. Sivertsen., *Silver alloy compositions, and master alloy compositions*. Aug 13, 1991.
- 46. Franz It. Hensel, Kenneth L. Emmert, and James W. Wiggs, *SILVER ALLOY*.Apr. 9, 1940.
- 47. Robert H. Leach., *ALLOYS*. Feb. 18, 1936.
- 48. James C. McFarland., Age hardening silver of sterling or higher standard.Dec 11, 1934.
- 49. ปวริศร์ ชัยโฉม, สีริพร โรจนนั้นต์ และไพบูลย์ ช่วงทอง., การปรับปรุงสมบัติทางกลของเงิน สเตอร์ลิงโดยการเติมโลหะผสมอะลูมิเนียม-สแกนเดียม และกระบวนการบ่มแข็ง. วารสารวิจัยและพัฒนา มจธ. ปีที่ 32. ฉบับที่ 4 ตุลาคม-ธันวาคม 2552.

- 50. American Society of Testing and Materials., *Annual Book of ASTM Standard.*Vol. 03.01. ASTM E 8M 96, 1996. pp. 76 96.
- 51. ผศ.ดร.เอกสิทธิ์ นิสารัตนพร และ รศ.ดร. ธรณินทร์ ไชยเรื่องศรี., โครงการการปรับปรุง โลหะเงินสปริงเกรด 935 ด้วยเบริลเลียม, ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 22 เมษายน 2555, เสนอสำนักงาน กองทุนสนับสนุนการวิจัย สำนักนายกรัฐมนตรี.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ก.

ลักษณะต้นโลหะเงินสเตอร์ลิงและสีของชิ้นงานสภาพหลังหล่อ

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University ภาพที่ กา. ภาพต้นโลหะเงินสเตอร์ลิงหลังหล่อ (As-cast) และล้างปูนเรียบร้อยแล้วของโลหะผสม ทั้ง 7 ชุด

1. ชุดโลหะผสม AgCu :

ชิ้นงานแตกเปราะหลังหล่อ ซึ่งมีการแตกหักขณะล้าง ปูน และขณะใช้คืมตัดออกจากต้นโลหะเงินสเตอร์ลิง

2. ชุดโลหะผสม AgCu0.3AI :

3. ชุดโลหะผสม AgCu0.3Sn :

ขณะล้างปูน และขณะใช้คีมตัดออกจากต้นโลหะเงินสเตอร์ลิง

4. ชุดโลหะผสม AgCu0.3Be0.2Sn :

5. ชุดโลหะผสม AgCu0.3Be0.3Sn :

6. ชุดโลหะผสม AgCu0.3Be0.5Sn :

7. ชุดโลหะผสม AgCu0.3Be0.5Sn0.3AI :

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ข.

ข้อมูล ICP-OES จากศูนย์วิจัยชีววิทยาช่องปาก คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Method: Nawarat-Ag	000310						-
Analysis Begun							
	C 4.00.44 TH		Diegne On Miner	2/0/2016	4.22.5	6 DM	
Start Time: 3/8/20	16 4:29:44 PM		Plasma on Time:	3/8/2010	4:22:50	o PM	
Logged in Analyst:	· Optima 7300 DV		Autosampler Mode	1: \$10			
spectrometer Moder	. Optima 7500 DV		Autosampier mode	1. 010			
Sample Information Batch ID:	File: C:\pe\Dentis	stry CU\Sampl	e Information\Naw	arat-080	316\Ag-1	1.10-BS1	2-5-10.si
Results Library: C	:\pe\Dentistry CU\B	Results\Resul	ts.mdb				
				======================================			
Sequence No.: 1	blank		Date Collected:	3/8/2016	4:29:5	1 PM	
Analyst:	Diana		Data Type: Origi	nal			
Initial Sample Wt:			Initial Sample V	ol:			
Dilution:			Sample Prep Vol:				
Replicate Data: rea	agent blank Net	Corrected	Calib			Sample	Analysi
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Ag 328.068	253111.5	253719.2	0.920 mg/L		0.920	mg/L	16:31:0
2 Ag 328.068	254303.7	254911.3	0.924 mg/L		0.924	mg/L	16:31:2
3 Ag 328.068	254295.5	254903.1	0.924 mg/L		0.924	mg/L	16:31:3
fean Data: reagent	Mean Corrected	Calib.			Sample		
and I when			AL 1	-	WW- 2 4 -		Derr DCD
inaryte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.	Dev. RSD
Ag 328.068	Intensity 254511.2	0.923 mg/L	0.0025	0.923	mg/L	0.0	025 0.27
Analyte Ag 328.068 Sequence No.: 2 Sample ID: BS1	Intensity 254511.2	Conc. Units 0.923 mg/L	Autosampler Loca Date Collected:	Conc. 0.923 tion: 62 3/8/2016	mg/L 2 4:32:5	Std. 0.0	0025 0.27
Ang 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Daitial Sample Wt:	Intensity 254511.2	Conc. Units 0.923 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V	Conc. 0.923 tion: 62 3/8/2016 nal	mg/L 25 4:32:5	Std. 0.0	0025 0.27
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X	Intensity 254511.2	Conc. Units 0.923 mg/L	Autosampler Loca Date Collected: Initial Sample V Sample Prep Vol:	Conc. 0.923 tion: 62 3/8/2016 nal fol:	mg/L 2 5 4:32:5	5td. 0.0	0025 0.27
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X	Intensity 254511.2	Conc. Units 0.923 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol:	Conc. 0.923 tion: 62 3/8/2016 nal 'ol:	mg/L 2 5 4:32:5	Std. 0.0	
Ang 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS	Intensity 254511.2	Conc. Units 0.923 mg/L Corrected	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calib	Conc. 0.923 tion: 62 3/8/2016 nal fol:	mg/L	Sample	Analysi
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte	Intensity 254511.2 1 Net Intensity	Conc. Units 0.923 mg/L Corrected Intensity	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units	Conc. 0.923 tion: 62 3/8/2016 nal ol:	Conc.	Sample	Analysi Time
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068	Intensity 254511.2 1 Net Intensity 11998351.8	Corrected Intensity 11998959.5	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L	Conc. 0.923 tion: 62 3/8/2016 nal ol:	Conc. 4257	Sample Units mg/L	Analysi Time 16:34:0
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068	Intensity 254511.2 I Net Intensity 11998351.8 11990907.1	Corrected Intensity 199859.5 11991514.8	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.55 mg/L 42.55 mg/L	Conc. 0.923 tion: 62 3/8/2016 nal 'ol:	Conc. 4257 4255	Std. 0.0 I PM Sample Units mg/L mg/L	Analysi Time 16:34:0
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068	Intensity 254511.2 1 Net Intensity 11998351.8 11990907.1 12124727.5	Corrected Intensity 11998959.5 11991514.8 12125335.1	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calib Conc. Units 42.57 mg/L 43.03 mg/L	Cone. 0.923 tion: 62 3/8/2016 nal ol:	Conc. 4257 4303	Std. 0.0 I PM Sample Units mg/L mg/L mg/L	Analysi Time 16:34:0 16:34:1 16:34:3
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 3 Ag 328.068 4 Ag 328.068	Intensity 254511.2 Net Intensity 11990907.1 12124727.5	Corrected Intensity 11998959.5 11991514.8 12125335.1	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.55 mg/L 43.03 mg/L	Cone. 0.923 tion: 62 3/8/2016 nal ol:	Conc. 4257 4303	Sample Units mg/L mg/L	Analysi Time 16:34:1 16:34:3
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068	Intensity 254511.2 Net Intensity 11998351.8 11990907.1 12124727.5 Mean Corrected	Conc. Units 0.923 mg/L Corrected Intensity 11998959.5 11991514.8 12125335.1 Calib.	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 43.03 mg/L	Cone. 0.923	Conc. 4257 4303 Sample	Sample Units mg/L mg/L mg/L	Analysi Time 16:34:0 16:34:1 16:34:3
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 3 Ag 328.068 3 Ag 328.068 3 Ag 328.068	Intensity 254511.2 Net Intensity 1998351.8 11990907.1 12124727.5 Mean Corrected Intensity	Conc. Units 0.923 mg/L Corrected Intensity 1199859.5 11991514.8 12125335.1 Calib. Conc. Units	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.57 mg/L 43.03 mg/L Std.Dev.	Conc. 0.923 tion: 62 3/8/2016 nal 'ol:	Conc. 4257 4255 4303 Sample Units	Std. 0.0 1 PM Sample Units mg/L mg/L mg/L mg/L	Analysi Time 16:34:0 16:34:1 16:34:3
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Manalyte Ag 328.068	Intensity 254511.2 Net Intensity 11998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Conc. Units 0.923 mg/L Corrected Intensity 11998959.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 43.03 mg/L Std.Dev. 0.273	Conc. 0.923 	Conc. 4257 4255 4303 Sample Units mg/L	Std. 0.0 I PM Sample Units mg/L mg/L mg/L Std. 2	Analysi Time 16:34:0 16:34:1 16:34:3 2000 RSD 27.3 0.64
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068	Intensity 254511.2 Net Intensity 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Corrected Intensity 119985515.1 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 43.03 mg/L Std.Dev. 0.273	Conc. 0.923	Conc. 4257 4255 4303 Sample Units mg/L	Sample Units mg/L mg/L Std. 2	Analysi Time 16:34:0 16:34:1 16:34:3 2000 16:34:1 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16:34:35 16
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sequence No.: 3	Intensity 254511.2 Net Intensity 11998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Corrected Intensity 11998959.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca	Conc. 0.923 tion: 62 3/8/2016 nal ol:	Conc. 4257 4255 4303 Sample Units mg/L	Std. 0.0 I PM Sample Units mg/L mg/L Std. 2 9 PM	Analysi Time 16:34:10 16:34:13 16:34:33 16:34:3 16:34:3 16:34:3 16:34:3 16:34:3
Ag 328.068 Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyt: Sample ID: BS2 Analyt:	Intensity 254511.2 Net Intensity 1998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Conc. Units 0.923 mg/L Corrected Intensity 1199859.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.57 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Data Collected: Data Type: Origi	Conc. 0.923	Conc. 4257 4255 4303 Sample Units mg/L	Std. 0.0 1 PM Sample Units mg/L mg/L mg/L mg/L 2 Std. 2	Analysi Time 66:34:0 16:34:1 16:34:3 2000 27.3 0.64
Ag 328.068 Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS2 Repl# Analyte 1 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt.	Intensity 254511.2 Net Intensity 11998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Corrected Intensity 11998959.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.55 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Date Collected: Data Type: Origi Initial Samble V	Conc. 62 3/8/2016 nal 'ol: Conc. 4272 tion: 63 3/8/2016 nal	Conc. 4257 4255 4303 Sample Units mg/L	Std. 0.0 I PM Sample Units mg/L mg/L std. 2 9 PM	Analysi Time 16:34:0 16:34:1 16:34:3 27.3 0.64
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 100X	Intensity 254511.2 Net Intensity 1998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Conc. Units 0.923 mg/L Corrected Intensity 1199859.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.57 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Data Type: Origi Initial Sample Vol:	Conc. 0.923	Conc. 4257 4255 4303 Sample Units mg/L	Std. 0.0 1 PM Sample Units mg/L mg/L mg/L g/L Std. 2 9 PM	Analysi Time 6:34:0 16:34:1 16:34:3 27.3 0.64
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 100X	Intensity 254511.2 Net Intensity 11998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Corrected Intensity 1998959.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol:	Conc. 0.923	Conc. 4257 4255 4303 Sample Units mg/L	Sample Units mg/L mg/L mg/L std. 2	Analysi Time 16:34:0 16:34:1 16:34:3
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS	Intensity 254511.2 Net Intensity 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1	Conc. Units 0.923 mg/L Corrected Intensity 11998519.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L	Autosampler Loca Date Collected: Data Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol:	Conc. 0.923	Conc. 4257 4255 4303 Sample Units mg/L	Sample Units mg/L mg/L Std. 2 9 PM Sample	Analysi Dev. RSD Analysi Time 16:34:1 16:34:3 Dev. RSD 27.3 0.64 Analysi
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Replicate Data: BS	Intensity 254511.2 Net Intensity 1998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1 2 Net Intensity	Conc. Units 0.923 mg/L Corrected Intensity Conc. Units 42.72 mg/L Corrected Intensity	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units	Conc. 62 3/8/2016 nal ol:	Conc. Sample Units mg/L Sample Units Mg/L Conc.	Std. 0.0 1 PM Sample Units Std. 2 9 PM Sample Units	Analysi Dev. RSD Analysi Dev. RSD 27.3 0.64 Analysi Time
Ag 328.068 Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068	Intensity 254511.2 Net Intensity 1998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1 2 Net Intensity 12903394.5	Corrected Intensity 12904002.1	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.55 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Data Type: Origi Initial Sample Vol: Calif Conc. Units Autosample Prep Vol: Calif Conc. Units 45.85 mg/L	Conc. 0.923 tion: 62 3/8/2016 nal 'ol: Conc. 4272 tion: 63 3/8/2016 nal 'ol:	Conc. 35 4:32:5: Conc. 4257 4255 4303 Sample Units mg/L 35 4:35:4:	Sample Units 9 PM Sample Sample Sample Units mg/L	Analysi Time 16:34:0 16:34:1 16:34:3 Dev. RSD 27.3 0.64 Analysi Time 16:37:0
Ag 328.068 Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: BS1 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 100X Replicate Data: BS Repl# Analyte 1 Ag 328.068	Intensity 254511.2 Net Intensity 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1 2 Net Intensity 1203394.5 12863379.7	Corrected Intensity 11998595- 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L Corrected Intensity 12904002.1 12863987.3	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 42.57 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 45.85 mg/L 45.71 mg/L	Conc. 62 3/8/2016 nal fol: Conc. 4272 tion: 65 3/8/2016 nal fol:	Conc. 4255 4:32:52 4:303 Sample Units 5 4:35:42 Conc. 4585 4571	Sample Units mg/L Std. 2 9 PM Sample Units mg/L	Analysi Time 16:34:0 16:34:1 16:34:3 Dev. RSD 27.3 0.64 Analysi Time 16:37:0 16:37:1
Ag 328.068 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 100X Applicate Data: BS Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyte: Initial Sample Wt: Dilution: 100X Analyte Ag 328.068 Sequence No.: 3 Sample ID: BS2 Analyte: Initial Sample Wt: Dilution: 100X Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 3 Ag 328.068	Intensity 254511.2 1 Net Intensity 1998351.8 11990907.1 12124727.5 Mean Corrected Intensity 12038603.1 2 Net Intensity 1203334.5 12863379.7 12964318.1	Corrected Intensity 1998959.5 11991514.8 12125335.1 Calib. Conc. Units 42.72 mg/L Corrected Intensity 12904002.1 12863987.3 12964925.8	Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 42.57 mg/L 42.55 mg/L 43.03 mg/L Std.Dev. 0.273 Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units 45.85 mg/L 46.07 mg/L	Conc. 0.923 	Conc. 4257 4255 4303 Sample Units mg/L 5 4:35:4: 5 4:35:4: 6 4585 4571 4607	Std. 0.0 I PM Sample Units mg/L g/L Std. 2 9 PM Sample Units mg/L mg/L	Analysi Time 16:34:0 16:34:1 16:34:3 27.3 0.64 27.3 0.64 27.3 0.64 16:37:1 16:37:1

Method: Nawarat-Ag	-080316	P	age 2		Date:	3/8/2016 4:	56:09 PM
Analyte Ag 328.068	Mean Corrected Intensity 12910971.7	Calib. Conc. Units 45.88 mg/L	Std.Dev. 0.184	Conc. 4588	Sample Units mg/L	Std.Dev 18.4	. RSD 0.40%
Sequence No.: 4 Sample ID: BS5 Analyst: Initial Sample Wt: Dilution: 100X			Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	ion: 64 /8/2010 al 1:	4 5 4:38:4	6 PM	
Replicate Data: BS	5						
D	Net	Corrected	Calib.		Cong	Sample	Analysis
1 Ag 328.068	11896480.3	11897088.0	42.20 mg/L		4220	mg/L	16:39:57
2 Ag 328.068	12142204.3	12142811.9	43.09 mg/L		4309	mg/L	16:40:13
3 Ag 328.068	12022746.1	12023353.7	42.66 mg/L		4266	mg/L	16:40:2
Mean Data: BS5							
	Mean Corrected	Calib.			Sample		
Analyte Ag 328.068	Intensity 12021084.5	Conc. Units 42.65 mg/L	Std.Dev. 0.445	Conc. 4265	Units mg/L	Std.Dev 44.5	1.04
Sequence No.: 5 Sample ID: BS10			Autosampler Locat Date Collected: 3 Data Type: Origin	ion: 65 /8/2010	5 6 4:41:4	4 PM	
Initial Sample Wt:			Initial Sample Vo	1:			
Dilution: 100X			Sample Prep Vol:				
Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068	Net Intensity 13632645.3 13611794.0 13498036.7	Corrected Intensity 13633253.0 13612401.7 13498644.4	Calib. Conc. Units 48.50 mg/L 48.42 mg/L 48.01 mg/L		Conc. 4850 4842 4801	Sample Units mg/L mg/L mg/L	Analysi: Time 16:42:5 16:43:0 16:43:2
Mean Data: BS10							
Analyte Ag 328.068	Mean Corrected Intensity 13581433.0	Calib. Conc. Units 48.31 mg/L	Std.Dev . 0.263	Conc. 4831	Sample Units mg/L	Std.Dev 26.3	. RSD 0.54
Sequence No.: 6 Sample ID: AgCu Analyst: Initial Sample Wt: Dilution: 100X			Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	ion: 6 /8/201 al l:	6 6 4:44:4	0 PM	
Replicate Data: Ag	Сu						
Conl# Analyta	Net	Corrected	Conc Unite		Conc	Units	Time
1 Ag 328.068	12790838.3	12791446.0	45.44 mg/L		4544	mg/L	16:45:5
2 Ag 328.068	12764891.7	12765499.4	45.35 mg/L		4535	mg/L	16:46:0
3 Ag 328.068	12799106.0	12799713.7	45.47 mg/L		4547	mg/L	16:46:1
Mean Data: AgCu							
Analysta	Mean Corrected	Calib.	Std Dev	Conc	Sample Unite	Std Der	RSD
Ag 328.068	12785553.0	45.42 mg/L	0.065	4542	mg/L	6.5	0.14
Sequence No.: 7 Sample ID: AgCu0.3 Analyst: Initial Sample Wt:	Sn		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo	ion: 6 /8/201 al l:	7 6 4:47:3	7 PM	

Method: Nawarat-A	g-080316	E					
Dilution: 100X			Sample Prep Vol:				
Replicate Data: A	gCu0.3Sn						
	Net	Corrected	Calib			Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		Lone.	Units	16.49.5
I Ag 328.068	13016263.4	12025542 1	46.20 mg/L		4020	mg/L	16.49.0
2 Ag 328.068	13034935.4	12050001 0	40.35 mg/L		4000	mg/L	16.49.2
3 Ag 328.068	1295/393.3	12958001.0	40.05 Mg/L		4005	IIIG / L	10.49.2
Mean Data: AgCu0.	3Sn	Galib			Comple		
-	Mean Corrected	Calib.	and Deer	Conc	Janpie	etd T	Derr PCD
Analyte	Intensity	Cond. Units	sta.Dev.	4621	units	314.1	17 0 32
Sequence No.: 8			Autosampler Locat	tion: 68	3		n ma da ina 30 da ina da di d
Sequence No.: 8 Sample ID: AgCu0.	 3al		Autosampler Locat Date Collected: 3	tion: 68	3 5 4:50:4	3 PM	
Sequence No.: 8 Sample ID: AgCu0. Analyst:	 3al		Autosampler Locat Date Collected: 3 Data Type: Origin	tion: 68 3/8/2016 hal	3 5 4:50:4	3 PM	
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt	3Al :		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample V	tion: 68 3/8/2016 hal ol:	3 5 4:50:4	3 PM	
Sequence No.: 8 Sample ID: AgCuO. Analyst: Initial Sample Wt Dilution: 100X	3al :		Autosampler Loca Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	tion: 68 3/8/2016 hal bl:	3 5 4:50:4	3 PM	
Sequence No.: 8 Sample ID: AgCuO. Analyst: Initial Sample Wt Dilution: 100X	3Al : gCu0.3Al		Autosampler Loca Date Collected: 1 Data Type: Origin Initial Sample Vol Sample Prep Vol:	tion: 68 3/8/2016 hal bl:	3 5 4:50:4	3 PM	
Sequence No.: 8 Sample ID: AgCuO. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A	3Al : gCu0.3Al Net	Corrected	Autosampler Loca Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib	tion: 68 3/8/2016 hal bl:	35 4:50:4	3 PM Sample	Analysi
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A Repl# Analyte	3Al : gCu0.3Al Net Intensity	Corrected Intensity	Autosampler Loca Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib Conc. Units	tion: 68 3/8/2016 hal bl:	3 5 4:50:4 Conc.	3 PM Sample Units	Analysi: Time
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A Repl# Analyte 1 Ag 328.068	3Al : gCu0.3Al Net Intensity 12740630.0	Corrected Intensity 12741237.7	Autosampler Locai Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib Conc. Units 45.26 mg/L	tion: 68 3/8/2016 hal bl:	3 5 4:50:4 Conc. 4526	3 PM Sample Units mg/L	Analysi: Time 16:51:53
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X 	3Al : gCu0.3Al Net Intensity 12740630.0 12809660.2	Corrected Intensity 12741237.7 12810267.9	Autosampler Locai Date Collected: 3 Data Type: Origin Initial Sample Vol: Sample Prep Vol: Calib Conc. Units 45.26 mg/L 45.51 mg/L	tion: 68 3/8/2016 hal bl:	3 5 4:50:4 Conc. 4526 4551	Sample Units mg/L mg/L	Analysi: Time 16:51:51 16:52:00
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068	3A1 : gCu0.3A1 Net Intensity 12740630.0 12809660.2 13035045.9	Corrected Intensity 12741237.7 12810267.9 13035653.5	Autosampler Locai Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib Conc. Units 45.26 mg/L 45.51 mg/L 46.33 mg/L	tion: 68 3/8/2016 aal bl:	Conc. 4526 4551 4633	3 PM Sample Units mg/L mg/L mg/L	Analysi: Time 16:51:53 16:52:01 16:52:22
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068	3A1 : gCu0.3A1 Net Intensity 12740630.0 12809660.2 13035045.9	Corrected Intensity 12741237.7 12810267.9 13035653.5	Autosampler Locai Data Collected: : Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib Conc. Units 45.26 mg/L 45.51 mg/L 46.33 mg/L	tion: 68 8/8/2016 aal bl:	3 5 4:50:44 Conc. 4526 4551 4633	3 PM Sample Units mg/L mg/L mg/L	Analysi Time 16:51:5 16:52:0 16:52:2
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 	3A1 : gCu0.3A1 Net Intensity 12740630.0 12809660.2 13035045.9 3A1 Mean Corrected	Corrected Intensity 12741237.7 12810267.9 13035653.5	Autosampler Locai Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib Conc. Units 45.26 mg/L 45.51 mg/L 46.33 mg/L	tion: 66 8/8/2016 aal 11:	3 5 4:50:4 Conc. 4526 4551 4633 Sample	3 PM Sample Units mg/L mg/L mg/L	Analysi Time 16:51:5 16:52:0 16:52:2
Sequence No.: 8 Sample ID: AgCu0. Analyst: Initial Sample Wt Dilution: 100X Replicate Data: A Repl# Analyte 1 Ag 328.068 2 Ag 328.068 3 Ag 328.068 Mean Data: AgCu0.	3Al : gCu0.3Al <u>Net</u> <u>Intensity</u> 12740630.0 12809660.2 13035045.9 3Al Mean Corrected Intensity	Corrected Intensity 12741237.7 12810267.9 13035653.5 Calib. Conc. Units	Autosampler Locai Date Collected: 3 Data Type: Origin Initial Sample Vol: Sample Prep Vol: Calib Conc. Units 45.26 mg/L 45.51 mg/L 46.33 mg/L	tion: 68 8/8/2016 aal bl:	Conc. 4526 4551 4633 Sample Units	3 PM Sample Units mg/L mg/L mg/L std.I	Analysi Time 16:51:5 16:52:0 16:52:2

lechou. Huwaruc ou	-080316	P	age 1		Date: .	5/8/2016	3:33:51 PM
naiysis Begun							
tart Time: 3/8/20	16 3:07:27 PM		Plasma On Time: 3	/8/2016	2:36:3	9 PM	
ogged In Analyst:	Dentistry CU · Optima 7300 DV	N No Serial	#Autosampler Mode	1: S10	IS		
pecciometer Moder	opcima /500 bv, i	o, a ao berrar	maccoumpion mode				
ample Information	File: C:\pe\Dentis	stry CU\Sampl	e Information\Nawa	rat-080	316\Cu-I	BS1-2-5-1	0.sif
Satch ID:	Nawarat-Cu-sample-(080316					
Results Library: C	:\pe\Dentistry CU\I	Results\Resul	ts.mdb				
Sequence No.: 1			Autosampler Locat	ion: 13	3		
Sample ID: reagent	blank		Date Collected: 3	/8/2016	3:07:2	7 PM	
Analyst:			Data Type: Origin	al			
Initial Sample Wt:			Initial Sample Vo	1:			
JIIULION:			Sample riep vor.				
Replicate Data: re	agent blank						
	Net	Corrected	Calib.		0	Sample	Analysi
Repl# Analyte	Intensity	Intensity	Conc. Units		0.061	mg/I.	15:08:4
2 Cu 327.393	12374.3	13455.4	0.058 mg/L		0.058	mg/L	15:09:02
3 Cu 327.393	12648.3	13729.4	0.059 mg/L		0.059	mg/L	15:09:1
lean Data: reagent	blank						
	Mean Corrected	Calib.	Ctd Dorr	Cong	Sample	std D	PSD
Analyte 311 327.393	13778.1	0.059 mg/L	0.0015	0.059	mg/L	0.00	15 2.54
Sequence No.: 2			Autosampler Locat	ion: 14			
Sample ID: BS1			Date Collected: 3	/8/2016	3:10:3	2 PM	
Analyst:			Data Type: Origin	al			
Initial Sample Wt:			Initial Sample Vo	1:			
Dilution: IX			Sampie riep voi.				
Replicate Data: BS	1					Sample	Analysi
Replicate Data: BS	1 Net	Corrected	Calib.				Timo
Replicate Data: BS	Net	Corrected Intensity	Calib. Conc. Units		Conc.	Units	15.11.5
Replicate Data: BS Repl# Analyte 1 Cu 327.393	51 Net Intensity 52040186.7	Corrected Intensity 52041267.8 52183306.0	Calib. Conc. Units 224.3 mg/L 224.9 mg/L		Conc. 224.3 224.9	mg/L	15:11:5
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393	1 Net Intensity 52040186.7 52182225.0 52075855.8	Corrected Intensity 52041267.8 52183306.0 52076936.8	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L		Conc. 224.3 224.9 224.5	Mg/L mg/L mg/L	15:11:5 15:12:1 15:12:3
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393	1 Net Intensity 52040186.7 52182225.0 52075855.8	Corrected Intensity 52041267.8 52183306.0 52076936.8	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L		Conc. 224.3 224.9 224.5	mg/L mg/L mg/L	15:11:50 15:12:11 15:12:32
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1	1 Net Intensity 52040186.7 52182225.0 52075855.8	Corrected Intensity 52041267.8 52183306.0 52076936.8	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L		Conc. 224.3 224.9 224.5	mg/L mg/L mg/L	15:11:5(15:12:11 15:12:32
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib.	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L	Conc	Conc. 224.3 224.9 224.5 Sample	mg/L mg/L mg/L	15:11:50 15:12:11 15:12:32
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 	Conc. 224.6	Conc. 224.3 224.9 224.5 Sample Units mg/L	mg/L mg/L mg/L Std.E	15:11:5(15:12:12: 15:12:32 Nev. RSD 32 0.14
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 	Conc. 224.6	Conc. 224.3 224.9 224.5 Sample Units mg/L	mg/L mg/L mg/L Std.E	15:11:5(15:12:11: 15:12:32 15:12:32 Nev. RSD 32 0.144
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sequence No.: 3	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L Std.Dev. 0.32 Autosampler Locat	Conc. 224.6	Conc. 224.3 224.9 224.5 Sample Units mg/L	mg/L mg/L mg/L Std.D 0.	15:11:5 15:12:1 15:12:3 15:12:3 32 0.14
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyt:	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 	Conc. 224.6 cion: 15 /8/2016 al	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 3:13:5	mg/L mg/L mg/L Std.D 0.	15:11:5(15:12:12 15:12:32 15:12:32 15:12:32 15:12:32
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt:	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 	Conc. 224.6 	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 3:13:5	mg/L mg/L mg/L Std.D 0.	15:11:5(15:12:1) 15:12:1) 15:12:3) Mev. RSD 32 0.14
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyt: Initial Sample Wt: Dilution: 1X	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 224.5 mg/L 	Conc. 224.6 cion: 15 /8/2016 al	Conc. 224.3 224.9 224.5 Sample Units mg/L	mg/L mg/L mg/L Std.E 0.	15:11:50 15:12:12 15:12:32 Nev. RSD 32 0.144
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: PS2	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 5218306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L Std.Dev. 0.32 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo:	Conc. 224.6 ion: 15 0/8/2016 al 01:	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 5 3:13:5	Dhits mg/L mg/L std.E 0.	15:11:50 15:12:11 15:12:31 15:12:33 32 0.141
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: BS	1 Net Intensity 52040186.7 5218225.0 52075855.8 Mean Corrected Intensity 52100503.6	Corrected Intensity 52041267.8 5218306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L Std.Dev. 0.32 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	Conc. 224.6 :ion: 15 /8/2016 al :	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 5 3:13:5	Dhits mg/L mg/L Std.D 0. 2 PM Sample	Analysi:
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: BS Repl# Analyte	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6 32 Net Intensity	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 224.5 mg/L Std.Dev. 0.32 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vc Sample Prep Vol: Canco. Units Conc. Units	Conc. 224.6 iion: 15 0/8/2016 al 01:	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 3:13:5 3:13:5	Sample Units Mg/L Mg/L Std.E 0.	Analysi: Time Analysi: Time
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyt: Initial Sample Wt: Dilution: 1X Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6 32 Net Intensity 57252501.4	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L Corrected Intensity 57253582.5 5781460.0	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 224.5 mg/L 	Conc. 224.6 	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 3:13:5 Conc. 246.8 249.2	Sample Units mg/L 0. 2 PM	Analysia Time 15:11:50 15:12:12 15:12:32 Nev. RSD 32 0.141 15:15:12 Time 15:15:12 15:15:32 15:15:32 15:15:32 15:15:32 15:15:32 15:15:32 15:15:32 15:12:12 15:15:12 15:1
Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: BS1 Analyte Cu 327.393 Sequence No.: 3 Sample ID: BS2 Analyte: Initial Sample Wt: Dilution: 1X Replicate Data: BS Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393	1 Net Intensity 52040186.7 52182225.0 52075855.8 Mean Corrected Intensity 52100503.6 32 Net Intensity 52200503.4 57813609.9 58007720.7	Corrected Intensity 52041267.8 52183306.0 52076936.8 Calib. Conc. Units 224.6 mg/L Corrected Intensity 57253582.5 57814690.9 58008801.7	Calib. Conc. Units 224.3 mg/L 224.9 mg/L 224.5 mg/L 224.5 mg/L 	Conc. 224.6 cion: 15 0/8/2016 al	Conc. 224.3 224.9 224.5 Sample Units mg/L 5 5 3:13:5 5 5 3:13:5 5 6 246.8 249.2 250.1	Sample Units mg/L 0. 2 PM Sample Units mg/L mg/L	Analysia 15:11:50 Analysia Time 15:15:12:32 0.144 Manalysia 15:15:12:12:12:12:12:12:12:12:12:12:12:12:12:

Analyte Cu 327.393	Mean Corrected Intensity 57692358.4	Calib. Conc. Units 248.7 mg/L	Std.Dev. 1.69	Conc. 248.7	Sample Units mg/L	Std.Dev 1.69	. RSD 0.68%
equence No.: 4 ample ID: BS5			Autosampler Locat: Date Collected: 3,	ion: 16 /8/2016	3:17:21	PM	
nalyst:			Data Type: Origina	al			
nitial Sample Wt:			Initial Sample Vol	L:			
ilution: 1X			Sample Prep Vol:				
Pata							
epiicate Data: BS.	Net	Corrected	Calib.			Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Cu 327.393	50884832.7	50885913.7	219.3 mg/L		219.3	mg/L	15:18:40
2 Cu 327.393	50668647.0	50669728.1	218.4 mg/L		218.4	mg/L	15:19:04
3 Cu 327.393	50574927.1	50576008.1	218.0 mg/L		218.0	mg/L	15:19:2
lean Data: BS5	Mean Corrected	Calib.			Sample		
nalyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
u 327.393	50710550.0	218.6 mg/L	0.69	218.6	mg/L	0.69	0.314
Sequence No.: 5			Autosampler Locat:	ion: 17			
Sample ID: BS10			Date Collected: 3,	/8/2016	3:20:4	7 PM	
Analyst:			Data Type: Origina	al			
Initial Sample Wt:			Initial Sample Vol	1:			
ilution: 1X			Sample Prep Vol:				
Replicate Data: BS							
	Net	Corrected	Calib.		G = = = =	Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		212 1	Units	15.22.0
1 Cu 327.393	49193130.3	49194219.5	212.1 mg/L		213 9	mg/L	15:22:0
2 Cu 327.393	49011040.0	49012921.9	213.5 mg/L		213.7	mg/L	15.22.4
5 64 527.555	49004/1/.0	49000790.1	210., mg/2				
Mean Data: BS10							
	Mean Corrected	Calib.		-	Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Cu 327.393	49464313.2	213.2 mg/L	1.01	213.2	mg/L	1.01	0.4/3
Sequence No.: 6			Autosampler Locat:	ion: 18			
Sample ID: AgCu			Date Collected: 3,	/8/2016	3:24:09	PM 9	
Analyst:			Data Type: Origin	al			
Initial Sample Wt:			Initial Sample Vo.	1:			
Dilution: 1X			Sample Prep Vol:				
Replicate Data: Ag	 Cu						
-	Net	Corrected	Calib.			Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Cu 327.393	60285520.1	60286601.2	259.9 mg/L		259.9	mg/L	15:25:2
2 Cu 327.393	60710370.9	60711452.0	261.7 mg/L		261.7	mg/L	15.26.0
3 Cu 327.393	60538797.9	60539879.0	261.0 mg/L		201.0	шg/ L	19:20:01
Mean Data: AgCu							
-	Mean Corrected	Calib.			Sample		
	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Analyte		260 0 mm/T	0.92	260.9	mg/L	0.92	0.35
Analyte Cu 327.393	60512644.1	260.9 mg/L					
Analyte Cu 327.393	60512644.1	260.9 Mg/L	Autosampler Locat	ion · 10			=======
Analyte Cu 327.393 Sequence No.: 7	60512644.1	260.9 mg/L	Autosampler Locat	ion: 19) 5 3:27:21		
Analyte Cu 327.393 Sequence No.: 7 Sample ID: AgCu0.3 Analyst:	60512644.1 Sn	260.9 mg/L	Autosampler Locat. Date Collected: 3 Data Type: Origin	ion: 19 /8/2016 al	9 5 3:27:20		

Method: Nawarat-Cu	1-080316	P	age 3		Date:	3/8/2016	5 5.55.51 FR
Dilution: 1X			Sample Prep Vol:				
Replicate Data: Ag	Cu0.3Sn						
	Net	Corrected	Calib			Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	15.20.40
1 Cu 327.393	56852851.7	50853932.7	245.1 mg/L		243.1	mg/L	15:20:40
2 Cu 327.393	57567734.7	57336442 0	240.2 mg/L		240.2	mg/L	15.29.11
3 Cu 327.393	5/335360.9	5/336442.0	247.2 mg/L		241.2	IIIG / L	13.29.3
Mean Data: AgCu0.3	Sn						
	Mean Corrected	Calib.			Sample		
Analvte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.	Dev. RSD
Cu 327.393	57253063.5	246.8 mg/L	1.57	246.8	mg/L	1	1.57 0.64%

Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X	IAl		Autosampler Loca Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol:	tion: 2 3/8/201 nal ol:	0 6 3:30:5	5 PM	
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X 	(A) (Cu0.3A)		Autosampler Loca Date Collected: Data Type: Origi Initial Sample Sample Prep Vol:	tion: 2 3/8/201 nal ol:	0 6 3:30:5	5 PM	
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag	VAl VCU0.3Al Net	Corrected	Autosampler Loca Date Collected: Data Type: Origi Initial Sample Y Sample Prep Vol: Calif	tion: 2 3/8/201 nal ol:	0 6 3:30:5	5 PM Sample	Analysis
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte	Cu0.3Al Net Intensity	Corrected Intensity	Autosampler Locz Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Califi Conc. Units	tion: 2 3/8/201 nal ol:	0 6 3:30:5	5 PM Sample Units	Analysis Time
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte 1 Cu 327.393	yAl rCu0.3Al Net Intensity 59900065.5	Corrected Intensity 59901146.6	Autosampler Loca Date Collected: Data Type: Origi Initial Sample Y Sample Prep Vol: Calif Conc. Units 258.2 mg/L	tion: 2 3/8/201 nal ol:	0 6 3:30:5	5 PM Sample Units mg/L	Analysis Time 15:32:13
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte 1 Cu 327.393 2 Cu 327.393	Cu0.3A1 Net Intensity 59900065.5 59843983.4	Corrected Intensity 59901146.6 59845064.5	Autosampler Loca Date Collected: Data Type: Origi Initial Sample Y Sample Prep Vol: Califi Conc. Units 258.2 mg/L 258.0 mg/L	tion: 2 3/8/201 nal ol:	0 6 3:30:5 Conc. 258.2 258.0	5 PM Sample Units mg/L mg/L	Analysis Time 15:32:33 15:32:34
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393	TCu0.3A1 Net Intensity 59900065.5 59843983.4 59833607.9	Corrected Intensity 59901146.6 59845064.5 59834689.0	Autosampler Loca Date Collected: Data Type: Origi Initial Sample Y Sample Prep Vol: Calif Conc. Units 258.2 mg/L 258.0 mg/L 257.9 mg/L	tion: 2 3/8/201 nal ol:	0 6 3:30:5 258.2 258.0 257.9	5 PM Sample Units mg/L mg/L mg/L	Analysis Time 15:32:13 15:32:34 15:32:55
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 3 Cu 327.393	Cu0.3Al Net Intensity 59900065.5 59843983.4 59833607.9	Corrected Intensity 59901146.6 59845064.5 59834689.0	Autosampler Locz Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 258.2 mg/L 258.0 mg/L 257.9 mg/L	tion: 2 3/8/201 nal ol:	0 6 3:30:5 Conc. 258.2 258.0 257.9	5 PM Sample Units mg/L mg/L mg/L	Analysis Time 15:32:13 15:32:34 15:32:55
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 Mean Data: AgCu0.3	VAl Net Intensity 59900065.5 59843983.4 59833607.9 VAl Mean Corrected	Corrected Intensity 59901146.6 59845064.5 59834689.0 Calib.	Autosampler Locz Date Collected: Data Type: Origi Initial Sample V Sample Prep Vol: Calif Conc. Units 258.2 mg/L 258.0 mg/L 257.9 mg/L	tion: 2 3/8/201 nal ol:	0 6 3:30:5 Conc. 258.2 258.0 257.9 Sample	5 FM Sample Units mg/L mg/L	Analysis Time 15:32:13 15:32:34 15:32:55
Sequence No.: 8 Sample ID: AgCu0.3 Analyst: Initial Sample Wt: Dilution: 1X Replicate Data: Ag Repl# Analyte 1 Cu 327.393 2 Cu 327.393 3 Cu 327.393 3 Cu 327.393 Mean Data: AgCu0.3 Analyte	TCu0.3Al Net Intensity 59900065.5 59843983.4 59833607.9 Mean Corrected Intensity	Corrected Intensity 59901146.6 59845064.5 59834689.0 	Autosampler Loca Date Collected: Data Type: Origi Initial Sample Y Califi Conc. Units 258.2 mg/L 258.0 mg/L 257.9 mg/L Std.Dev.	tion: 2 3/8/201 nal ol:	0 6 3:30:5 Conc. 258.2 258.0 257.9 Sample Units	5 PM Sample Units mg/L mg/L mg/L std.	Analysis Time 15:32:13 15:32:34 15:32:55

Method: Nawarat-Be	-080310		age 1						
Analysis Begun									
Start Time: 3/8/20	16 5:02:22 PM		Plasma On '	Time: 3/	/8/2016	4:22:5	6 PM		
Logged In Analyst:	Dentistry CU		Technique:	ICP Cor	ntinuou	15			
Spectrometer Model	: Optima 7300 DV		Autosample	r Model:	: S10				
Sample Information	File: C:\pe\Denti:	stry CU\Sampl	e Informatio	on\Nawaı	rat-080)316\Be-1	BS1-2-5-	10.sif	
Batch ID:	Nawarat-Bo-el 10-0	80316							
Results Library: C	:\pe\Dentistry CU\H	Results\Resul	ts.mdb						
Semience No · 1			Autosample		 ion: 13				
Sample ID: reagent	blank		Date Colle	cted: 3/	/8/2016	5 5:02:23	3 PM		
Analyst:			Data Type:	Origina	al				
Initial Sample Wt: Dilution:			Sample Pre	p Vol:	τ:				
Replicate Data: re	agent blank Net	Corrected		Calib.			Sample	Ana	lysi
Repl# Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Г	Time
1 Be 313.107	-5080.6	1306.5	0.000	mg/L		0.000	mg/L	17:	03:4
2 Be 313.107	-5142.2	1244.9	0.000	mg/L		0.000	mg/L	17:	03:5
3 Be 313.107	-5050.0	1337.1	0.000	mg/L		0.000	mg/L	17:	04:0
Moon Data: moogont	hlank								
Mean Data: reagent	Dialik	Calib				Sample			
	Mean Corrected	Carro.							
Analyte	Mean Corrected Intensity	Conc. Units	Std.De	v .	Conc.	Units	Std.	Dev.	RSD
Analyte Be 313.107	Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Dev 0.000	v. 0	Conc. 0.000	Units mg/L	Std . 0.0	Dev. 000	RSD 3.62
Analyte Be 313.107	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Der 0.000	v. D ===================================	Conc. 0.000	Units mg/L	Std . 0.0	Dev. 000	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Der 0.000 Autosample: Date Collect	r Locati cted: 3/	Conc. 0.000 ion: 26 /8/2016	Units mg/L 5 5 5:05:2	std. 0.0 3 PM	Dev . 000	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst:	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Der 0.000 Autosample: Date Coller Data Type:	r Locati cted: 3/ Origina	Conc. 0.000 ion: 26 /8/2016 al	Units mg/L 5 5 5:05:2	std. 0.0 3 PM	Dev. 000	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt:	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Der 0.000 Autosample: Date Collec Data Type: Initial Sam Scarle Braz	v. r Locati cted: 3/ Origina mple Vol	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5 5:05:2	std. 0.0 3 PM	Dev. 000	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Der 0.000 Autosample: Date Collec Data Type: Initial Sam Sample Prej	v. D r Locati cted: 3/ Origina mple Vol p Vol:	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 555:05:2	std. 0.0	Dev. 000	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L	Std.Der 0.000 Autosample: Data Colle Data Type: Initial Sam Sample Prep	v. r Locati cted: 3/ Origina mple Vol p Vol:	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5 5:05:2:	Std. 0.0 3 PM	Dev. 000	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L Corrected	Std.Der 0.000 Autosample: Date Colle Data Type: Initial Sa Sample Prej	v. r Locati cted: 3, Origina mple Vol p Vol: Calib.	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5 5:05:2	Sample	Dev. 000 	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte	Mean Corrected Intensity 1296.2	Conc. Units 0.000 mg/L Corrected Intensity	Std.Der 0.0000 Autosample: Date Collec Data Type: Initial Sam Sample Prep Conc.	r Locati sted: 3/ Origina mple Vol p Vol: Calib. Units	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc.	Sample Units	Dev. 000 Ana T	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5	Std.Der 0.0000 Autosample: Data Colle Data Type: Initial Sam Sample Prej Conc. 1.230	v. pr Locati sted: 3/ Origina mple Vol: vol: Calib. Units mg/L	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 555:05:2: Conc. 12.30	Sample Units mg/L	Dev. 000 Ana 17: 17:	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS: Repl# Analyte 1 Be 313.107 2 Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0	Corrected Intensity 4114156.5	Std.Der 0.0000 Autosample: Data Colle: Data Type: Initial Sam Sample Prep Conc. 1.230 1.223	v. pr Locati cted: 3/ Origina mple Vol p Vol: Calib. Units mg/L mg/L	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.23	Sample Units mg/L	Dev. 000 Ana 1 17: 17: 17:	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8	Std.Der 0.0000 Autosample: Data Colle Initial Sar Sample Prej Conc. 1.230 1.223 1.228	r Locati teted: 3/ Origina mple Vol: Vol: Calib. Units mg/L mg/L mg/L	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5 5:05:2: Conc. 12.30 12.23 12.28	Std. 0.0 3 PM Sample Units mg/L mg/L mg/L	Dev. 000 Ana 17: 17: 17: 17:	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS: Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8	Std.Der 0.0000 Autosample: Date Colle Data Type: Initial Sai Sample Prep Conc. 1.230 1.223 1.228	r Locati cted: 3/ Origina mple Vol p Vol: Calib. Units mg/L mg/L	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28	Sample Units mg/L mg/L	Dev. 000 Ana 17: 17: 17: 17:	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107	Mean Corrected Intensity 1296.2 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib.	Std.Der 0.0000 Autosample: Data Colle Initial Sau Sample Prej Conc. 1.230 1.223 1.228	r Locati cted: 3/ Origina mple Vol: Calib. Units mg/L mg/L mg/L	Conc. 0.000 ion: 26 /8/2016 al 1:	Units mg/L 5 5 5:05:2: Conc. 12.30 12.23 12.28 Sample	Sample Units mg/L mg/L	Dev. 000 Ana 17: 17: 17: 17:	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107	Mean Corrected Intensity 1296.2 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units	Std.Der 0.0000 Autosample: Data Collee Data Type: Initial Sam Sample Prep Conc. 1.230 1.223 1.228 Std.Der	v. v. v. v. v. v. v. v. v. v.	Conc. 0.000 ion: 26 /8/2016 al 1: Conc.	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units	Sample Units mg/L mg/L mg/L std.	Dev. 000 Ana 17: 17: 17: 17: Dev.	RSD 3.62 alysi Cime 06:3 06:5 07:0 RSD
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Colle Initial San Sample Prej Conc. 1.230 1.223 1.228 Std.Der 0.003	v. v. v. v. v. v. v.	Conc. Conc. 12.27	Units mg/L 5 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L	Sample Onits mg/L mg/L std. 0.	Dev. 000 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS: Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Colle: Data Type: Initial Sam Sample Prep Conc. 1.230 1.223 1.228 Std.Der 0.003	v. v. v. v. v. v. v. v. v. v.	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 27	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L	Sample Units mg/L gtd. 0.	Dev. 000 Ana 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2	Mean Corrected Intensity 1296.2 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Date Collee Initial San Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Date Collee	v. 9 Calib. Units mg/L mg/L mg/L mg/L mg/L	Conc. 2000	Units mg/L 5 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L 5 5:08:2!	Std. 0.0 3 PM Sample Units mg/L mg/L mg/L 0. Std. 0. 9 PM	Dev. 000 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyst:	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Collee Initial Sam Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Data Collee Data Type:	v. o calib. Units mg/L mg/L mg/L mg/L mg/L o v. o calib. Calib. Units	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 27 /8/2016 al	Units mg/L 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Std. 0.0 3 PM Sample Units mg/L mg/L mg/L mg/L std. 0.	Dev. 000 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS: Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt:	Mean Corrected Intensity 1296.2 I Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 408805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Colle Data Type: Initial San Sample Prep Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Data Colle Data Type: Initial San	v. calib. Units mg/L mg/L mg/L mg/L mg/L mg/L origina mg/statistics v. 9	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L	Sample Units mg/L mg/L Std. 0.	Dev. 000 Ana 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS1 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 10X	Mean Corrected Intensity 1296.2 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Colle Data Type: Initial Sam Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Data Colle: Data Type: Initial Sam Sample Prey	v. v. v. v. v. v. v. v. v. volument	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 27 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L 5 5:08:2:	Std. 0.0 3 PM Sample Units mg/L mg/L g/L Std. 0. 9 PM	Dev. 000 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS: Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS:	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Type: Initial Sam Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Data Colle: Data Colle: Data Type: Initial Sam	v. or Locatic cted: 3/ Origina mple Vol: Calib. Units mg/L mg/L mg/L mg/L y. 9 9 v. 9 v. 9	Conc. 26 /8/2016 al 1: Conc. 12.27 ion: 22 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.28 Sample Units mg/L 5 5:08:2:	Sample Units mg/L mg/L Std. 0. 9 PM	Dev. 000 Ana 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3	Mean Corrected Intensity 1296.2 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Type: Initial Sam Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Date Colley Date Colley Data Type: Initial Sam Sample Prey	v. v. v. v. v. v. v. v. v. v.	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 22 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units 5 5:08:2:	Sample Onits mg/L g/L Std. 0. 9 PM	Dev. 000 Ana 17: 17: 17: 17: 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyte: Initial Sample Wt: Dilution: 10X Replicate Data: BS3	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L Corrected Intensity	Std.Der 0.0000 Autosample: Data Colle Data Type: Initial Sam Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Data Colle: Data Colle: Data Type: Initial Sam Sample Prey	v. v. v. v. v. calib. Units mg/L mg/L mg/L mg/L mg/L v. v. calib. Units calib. Units mg/L mg/L mg/L calib. Units mg/L mg/L calib. Units calib. Units calib. cali	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 27 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L 5 5:08:2: 5 5:08:2:	Sample Onits mg/L mg/L Std. 0. 9 FM	Dev. 000 17: 17: 17: 17: 039 Dev. 039	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS2 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyte: Initial Sample Wt: Dilution: 10X Replicate Data: BS2 Repl# Analyte 1 Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1 2 Net Intensity 4122646.3	Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L	Std.Der 0.0000 Autosample: Data Collec Data Type: Initial Sam Sample Prey Conc. 1.230 1.223 1.228 Std.Der 0.003 Autosample: Data Collec Data Type: Initial Sam Sample Prey Conc. 1.381	v. original v. original mg/L mg/L mg/L mg/L original v. original mg/L calib. totation calib. units mg/L colicital	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 27 /8/2016 al 1:	Units mg/L 5 5 5:05:2: Conc. 12.30 12.23 12.28 Sample Units mg/L 5 5:08:2: 5 5:08:2: 5 5:08:2: 7 5:08:2:	Std. 0.0 3 PM Sample Units mg/L g/L 0. 9 PM Sample Units mg/L	Dev. 000 4na 17: 17: 17: 17: 039 	RSD 3.62
Analyte Be 313.107 Sequence No.: 2 Sample ID: BS1 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 3 Be 313.107 Mean Data: BS1 Analyte Be 313.107 Sequence No.: 3 Sample ID: BS2 Analyst: Initial Sample Wt: Dilution: 10X Replicate Data: BS3 Repl# Analyte 1 Be 313.107 2 Be 313.107 2 Be 313.107	Mean Corrected Intensity 1296.2 1 Net Intensity 4107769.4 4082418.0 4099465.7 Mean Corrected Intensity 4102938.1 2 Net Intensity 4102938.1	Conc. Units 0.000 mg/L Corrected Intensity 4114156.5 4088805.0 4105852.8 Calib. Conc. Units 1.227 mg/L Corrected Intensity 4619033.4 4616594.0	Std.Der 0.0000 Autosample: Data Collec Data Type: Initial Sam Sample Prey Conc. 1.230 1.228 Std.Der 0.003 Autosample: Date Collec Data Type: Initial Sam Sample Prey Conc. 1.381 1.380	v. 9 Calib. Units mg/L mg/L v. 9 Calib. Units r Locati cted: 3/ Origina mple Vol v. 9 Calib. Units mg/L cted: 3/ Construction cted: 3/ cted: 3/ Construction cted: 3/ Constru	Conc. 0.000 ion: 26 /8/2016 al 1: Conc. 12.27 ion: 27 /8/2016 al 1:	Units mg/L 5 5:05:2: Conc. 12:30 12:23 12:28 Sample Units 5 5:08:2: 5 5:08:2: 7 5:08:2	Sample Units mg/L Std. 0. 9 PM Sample Units mg/L mg/L	Dev. 000 Ana 17: 17: 17: 17: 17: 17: 17: 17: 17: 17:	RSD 3.62

in the start of th	-080316	P	Page 2		Date:	3/8/2016	5:19:34 P
Analyte Be 313.107	Mean Corrected Intensity 4624112.2	Calib. Conc. Units 1.383 mg/L	Std.Dev. 0.0033	Conc. 13.83	Sample Units mg/L	Std.E 0.0	Pev. RSD 133 0.24
Sequence No.: 4 Sample ID: BS5 Analyst: Initial Sample Wt: Dilution: 10X			Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	ion: 28 /8/2016 al 1:	3 5 5:11:3		
Replicate Data: BS	5						
	Net	Corrected	Calib.		-	Sample	Analysi
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Be 313.107	4254499.9	4260887.0	1.2/4 mg/L		12.74	mg/L mg/I	17.12:5
3 Be 313.107	4262708.2	4269095.3	1.276 mg/L		12.71	mg/L mg/L	17:13:1
Analyte Be 313.107	Mean Corrected Intensity 4259807.8	Calib. Conc. Units 1.274 mg/L	Std.Dev. 0.0030	Conc. 12.74	Sample Units mg/L	Std.E 0.0	ev. RSD
Sequence No.: 5 Sample ID: BS10 Analyst: Initial Sample Wt: Dilution: 10X			Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	ion: 29 /8/2010 al 1:	9 5 5:14:5	0 PM	
Replicate Data: BS	10						
	Net	Corrected	Conc Units		Conc	Unite	Analysi Time
Dopl# Appleto	4398076 6	4404463 7	1.317 mg/L		13.17	ma/L	17:16:0
Repl# Analyte	4000010.0	4373555 7	1.308 mg/L		13.08	mg/L	17.16.2
Repl# Analyte 1 Be 313.107 2 Be 313.107	4367168.6						1/.10.2
Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107	4367168.6 4372722.5	4379109.6	1.309 mg/L		13.09	mg/L	17:16:4
Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS10	4367168.6 4372722.5	4379109.6	1.309 mg/L		13.09	mg/L	17:16:4
Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Mean Data: BS10	4367168.6 4372722.5 Mean Corrected	4379109.6	1.309 mg/L		13.09 Sample	mg/L	17:16:4
Repl# Analyte 1 Be 313.107 2 Be 313.107 3 Be 313.107 Gen Data: BS10 Analyte Second	4367168.6 4372722.5 Mean Corrected Intensity	4379109.6 Calib. Conc. Units	1.309 mg/L 	Conc.	13.09 Sample Units	mg/L Std.D	ev. RSD

		E	age 1		Duce.	2/23/2016	5 2:20:51
Analysis Begun							
Start Time: 2/23/2	016 2:01:28 PM		Plasma On Time: 2,	/23/201	6 1:16:	49 PM	
Logged In Analyst:	Dentistry CU		Technique: ICP Con	ntinuou	IS		
Spectrometer Model	: Optima 7300 DV,	S/N No Serial	#Autosampler Model	l: S10			
Sample Information Satch ID:	File: C:\pe\Denti	stry CU\Sampl	e Information\Nawa	rat-230)216\Sn-	BS1-2-5-1	10-AgCuSn.
Results Data Set: Results Library: C	Nawarat-Sn-sample- :\pe\Dentistry CU\	230216 Results\Resul	ts.mdb				
Sequence No.: 1			Autosampler Locat:	ion: 13			
Sample ID: reagent	blank		Date Collected: 2,	/23/201	6 2:01:	28 PM	
Analyst:			Data Type: Origina	al			
Initial Sample Wt:			Initial Sample Vol	L:			
Dilution:			Sample Prep Vol:				
Replicate Data: re	agent blank Net	Corrected	Calib.			Sample	Analysi
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc	Units	Time
1 Sn 189.927	1302.7	1276.1	0.120 mg/L		0.120	mg/L	14:02:5
2 Sn 189.927	1193.9	1167.3	0.110 mg/L		0.110	mg/L	14:03:0
3 Sn 189.927	1138.4	1111.8	0.105 mg/L		0.105	mg/L	14:03:2
lean Data: reagent	blank Mean Corrected	Calib			Sample		
nalute	Intensity	Conc Unite	Std Dev	Conc	Unite	Std T	
n 189 927	1185 1	0.111 mg/L	0 0079	0 111	ma/L	0.00	179 7 05
105.527	1100.1	o.rrr mg/ b	0.0075	0.111		0.00	
ample ID: BS1 nalyst: nitial Sample Wt: Dilution: 1X			Date Collected: 2, Data Type: Origina Initial Sample Vol Sample Prep Vol:	/23/201 al L:	.6 2:04:	33 PM	
Replicate Data: BS	1					Commlo	
Replicate Data: BS	1 Net	Corrected	Calib.	0.7		Sampre	Analysi
Replicate Data: BS Repl# Analyte	1 Net Intensity	Corrected Intensity	Calib. Conc. Units	0.2	Conc.	Units	Analysi Time
Replicate Data: BS Repl# Analyte 1 Sn 189.927	1 Net Intensity 87359.8	Corrected Intensity 87333.2	Calib. Conc. Units 8.098 mg/L	0.2	Conc. 8.098	Units mg/L	Analysi Time 14:05:5
Replicate Data: BS Repl# Analyte 1 Sn 189.927 2 Sn 189.927	1 Net Intensity 87359.8 86958.8	Corrected Intensity 87333.2 86932.2	Calib. Conc. Units 8.098 mg/L 8.060 mg/L	0.2	Conc. 8.098 8.060	Units mg/L mg/L	Analysi Time 14:05:5 14:06:2
eplicate Data: BS epl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3	Corrected Intensity 87333.2 86932.2 86324.7	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L	0.7	Conc. 8.098 8.060 8.003	Units mg/L mg/L mg/L	Analysi Time 14:05:5 14:06:2 14:06:4
Seplicate Data: BS 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3	Corrected Intensity 87333.2 86932.2 86324.7	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 20111 3.009	Q. 2	Conc. 8.098 8.060 8.003	Units mg/L mg/L mg/L	Analysi Time 14:05:5 14:06:2 14:06:4
Seplicate Data: BS 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 3 Sn 189.927 4 Sn 189.927 3 Sn 189.927 4 Sn 189.927 3 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3	Corrected Intensity 87333.2 86932.2 86324.7	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 90000 g cong	0, 2	Conc. 8.098 8.060 8.003	Units mg/L mg/L mg/L	Analysi Time 14:05:5 14:06:2 14:06:4
Applicate Data: BS 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 4 Sn 189.927 3 Sn 189.927 4 Sn 189.927 3 Sn 189.927 4 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected	Corrected Intensity 87333.2 86932.2 86324.7 Calib.	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L Std Day	0. 7	Conc. 8.098 8.060 8.003 Sample	Sample Units mg/L mg/L mg/L	Analysi Time 14:05:5 14:06:2 14:06:4
eplicate Data: BS epl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 	1 Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 0.003 mg/L 0.00477	©. 2 Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L	Sample Units mg/L mg/L mg/L Std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
Image: Sepile Analyte Sn 189.927 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 Gean Data: BS1 malyte Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 0.0111 3.000 Std.Dev. 0.0477	0.2 Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L	std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
Leplicate Data: BS 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 3 Sn 189.927 4 Sn 189.927 4 Sn 189.927 3 Sn 189.927 4 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L control of the second Std.Dev. 0.0477 Autosampler Locati	0.2 Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L	Sample Units mg/L mg/L mg/L Std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
teplicate Data: BS tepl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 dean Data: BS1 malyte in 189.927 equence No.: 3 cample ID: BS2	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 0.011 3.000 Std.Dev. 0.0477 Autosampler Locat: Date Collected: 2/	Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L .6 2:07:	std.E mg/L mg/L mg/L Std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
<pre>teplicate Data: BS tepl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 tean Data: BS1 malyte in 189.927 tequence No.: 3 tequence No.: 3 temple ID: BS2 malyst:</pre>	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 0.0477 Autosampler Locat: Date Collected: 2, Data Type: Origina	Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07:	sample Units mg/L mg/L mg/L Std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4 14:06:4 14:06:4 14:05:4 14:05:5 1
<pre>teplicate Data: BS tepl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 tean Data: BS1 malyte in 189.927 tequence No.: 3 teample ID: BS2 malytt: initial Sample Wt:</pre>	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 0.011 Std.Dev. 0.0477 Autosampler Locati Date Collected: 2/ Data Type: Origina Initial Sample Vol	Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07:	sample Units mg/L mg/L mg/L Std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
<pre>teplicate Data: BS tepl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 tean Data: BS1 analyte in 189.927 tequence No.: 3 tequence No.: 4 tequence N</pre>	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 9.111 Std.Dev. 0.0477 Autosampler Locat: Date Collected: 2, Data Type: Origina Initial Sample Vol:	Conc. 8.054 Lon: 15 /23/201 al L:	Conc. 8.098 8.060 8.003 Sample Units mg/L 6.2:07:	sample Units mg/L mg/L Mg/L Std.E 0.04	Analysi Time 14:05:5 14:06:2 14:06:4 14:06:4 14:06:4 14:05:7 1
Replicate Data: BS Repl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 Mean Data: BS1 Malyte Sequence No.: 3 Sample ID: BS2 Malyst: Conitial Sample Wt: Solution: 1X Meplicate Data: BS	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.003 mg/L 8.003 mg/L 8.003 mg/L 9.00477 Std.Dev. 0.0477 Autosampler Locati Date Collected: 2/ Date Collected: 2/ Date Collected: 2/ Date Sample Prep Vol:	Conc. 8.054 Lon: 15 (23/201 al L:	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07:	std.I mg/L mg/L mg/L Std.I 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
Replicate Data: BS Repl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 Mean Data: BS1 Malyte Sequence No.: 3 Sample ID: BS2 Malyst: Shitial Sample Wt: Silution: 1X Replicate Data: BS	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.003 mg/L 8.003 mg/L 9.00477 Autosampler Locat: Date Collected: 2/ Date Collected: 2/ Date Type: Origina Initial Sample Vol: Sample Prep Vol: Calib.	Conc. 8.054 ion: 15 /23/201 al	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07:	Sample	Analysi Time 14:05:5 14:06:2 14:06:4
Replicate Data: BS Repl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 dean Data: BS1 malyte Sample ID: BS2 malyst: nitial Sample Wt: Dilution: 1X Replicate Data: BS Repl# Analyte	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L	Calib. Conc. Units 8.098 mg/L 8.060 mg/L 8.003 mg/L 9.00477 Autosampler Locat: Date Collected: 2/ Data Type: Origina Initial Sample Vol: Sample Prep Vol: Calib. Conc. Units	Conc. 8.054	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07:	Sample Units mg/L mg/L Std.I 0.04	Analysi Time 14:05:5 14:06:2 14:06:4
Replicate Data: BS Repl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 dean Data: BS1 unalyte in 189.927 dequence No.: 3 dample ID: BS2 unalyst: initial Sample Wt: bilution: 1X deplicate Data: BS lepl# Analyte 1 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4 2 Net Intensity 145619.2	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L Corrected Intensity 145592.6	Calib. Conc. Units 8.098 mg/L 8.003 mg/L 8.003 mg/L 9.004 Std.Dev. 0.0477 Autosampler Locati Data Collected: 2, Data Type: Origina Initial Sample Vol: Calib. Conc. Units 13.57 mg/L	Conc. 8.054 Lon: 15 /23/201 al	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07: Conc. 13.57	Sample Units mg/L mg/L Std.I 0.04 56 PM Sample Units mg/L	Analysi Time 14:05:5 14:06:2 14:06:4
Replicate Data: BS Repl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 Mean Data: BS1 Malyte Sn 189.927 Sequence No.: 3 Sample ID: BS2 Malyst: Snitial Sample Wt: Dilution: 1X Seplicate Data: BS Meplicate Data: BS Meplicate Data: BS Sepl# Analyte 1 Sn 189.927 2 Sn 189.927	1 Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4 2 Net Intensity 145619.2 146919.0	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L Corrected Intensity. 146852.4	Calib. Conc. Units 8.098 mg/L 8.003 mg/L 8.003 mg/L 9.00477 Std.Dev. 0.0477 Autosampler Locati Date Collected: 2/ Date Collected: 2/ Date Collected: 2/ Date Collected: 2/ Date Collected: 2/ Date Collected: 2/ Date Sample Prep Vol: Calib. Conc. Units 13.57 mg/L 13.70 mg/L	Conc. 8.054 ion: 15 /23/201 al	Conc. 8.098 8.060 8.003 Sample Units mg/L 6 2:07: 6 2:07: 13.70	Sample Units mg/L mg/L Std.I 0.04 56 PM Sample Units mg/L mg/L	Analysi Time 14:05:5 14:06:2 14:06:4
teplicate Data: BS tepl# Analyte 1 Sn 189.927 2 Sn 189.927 3 Sn 189.927 tean Data: BS1 malyte n 189.927 tequence No.: 3 ample ID: BS2 nalyst: nitial Sample Wt: tilution: 1X eplicate Data: BS epl# Analyte 1 Sn 189.927 2 Sn 189.927	1 Net Intensity 87359.8 86958.8 86351.3 Mean Corrected Intensity 86863.4 2 Net Intensity 145619.2 146919.0 143617.6	Corrected Intensity 87333.2 86932.2 86324.7 Calib. Conc. Units 8.054 mg/L Corrected Intensity 145522.6 146892.4 143591.0	Calib. Conc. Units 8.098 mg/L 8.003 mg/L 8.003 mg/L 9.00477 Std.Dev. 0.0477 Autosampler Locati Date Collected: 2/ Date Collecte	Conc. 8.054 Lon: 15 /23/201 al	Conc. 8.098 8.060 8.003 	Sample Units mg/L mg/L Std.I 0.04 56 PM Sample Units mg/L mg/L	Analysi Time 14:05:5 14:06:2 14:06:4

Method: Nawarat-Sn-	-230216	E	age 2		Date:	2/23/2016	2:20:51 H
	Mean Corrected	Calib			Sample		
Analvte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.De	v. RSD
3n 189.927	145358.6	13.55 mg/L	0.156	13.55	mg/L	0.15	6 1.15%
equence No.: 4			Autosampler Locat	ion: 1	6	10 DM	
Sample ID: BS5			Date Collected: 2	723720	10 2:11:	IS PM	
Analyst:			Data Type: Origin	al			
Initial Sample Wt:			Initial Sample Vo	. 10			
Dilution: 1X			Sample Prep Vol:				
Replicate Data: BS	5		o.'5				
	Net	Corrected	Calib.			Sample	Analysi
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Sn 189.927	216406.5	216379.9	20.23 mg/L		20.23	mg/L	14:12:4
2 Sn 189.927	215485.3	215458.7	20.14 mg/L		20.14	mg/L	14:13:07
3 Sn 189.927	212019.5	211992.9	19.82 mg/L		19.82	mg/L	14:13:29
Mean Data: BS5							
	Mean Corrected	Calib.			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.De	v. RSD
Sn 189.927	214610.5	20.06 mg/L	0.217	20.06	mg/L	0.21	7 1.08
Sequence No · 5			Autosampler Locat	ion: 1	 7		
Sample TD: B810			Date Collected: 2	/23/20	16 2.14.	42 PM	
Sample ID. BSIO			Data Time: Origin	1			
Analyst:			Taitial Comple Ve	1.			
Initial Sample Wt:			Initial Sample VC				
Dilution: 1X			Sample Prep vol:				
Replicate Data: BS	10		Q.6				
	Net	Corrected	Calib.			Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Sn 189.927	219857.0	219830.4	20.55 mg/L		20.55	mg/L	14:16:09
2 Sn 189.927	216436.4	216409.7	20.23 mg/L		20.23	mg/L	14:16:32
3 Sn 189.927	217838.2	217811.6	20.36 mg/L		20.36	mg/L	14:16:5
Mean Data: BS10							
	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.De	v. RSD
Sn 189.927	218017.2	20.38 mg/L	0.162	20.38	mg/L	0.16	2 0.79
Sequence No.: 6			Autosampler Locat	ion: 1	8		
Sample ID: AgCuSn			Date Collected: 2	/23/20	16 2:18:	10 PM	
Analyst:			Data Type: Origin	al			
Initial Sample Wt:			Initial Sample Vo	1:			
Dilution: 1X			Sample Prep Vol:				
Replicate Data: Mod	 CuSn		0.3				
	Net	Corrected	Calib.			Sample	Analysi
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Sn 189.927	124036.3	124009.7	11.55 mg/L		11.55	mg/L	14:19:34
2 Sn 189.927	125687.9	125661.3	11.70 mg/L		11.70	mg/L	14:19:55
3 Sn 189.927	122307.8	122281.2	11.38 mg/L		11.38	mg/L	14:20:1
Mean Data: AgCuSn							
	Mean Corrected	Calib			Sample		
		Cone Maite	Ctd Dom	Cong	IInite	Std De	v. RSD
Analyte	Intensity	Cone. Units	Sta.Dev.	cone.	OUTCO	Dea.De	

					-, -,	
nalysis Begun						
tart Time: 3/1/20	16 2:03:53 PM		Plasma On Time: 3	/1/2016 1:2	4:50 PM	
ogged In Analyst:	Dentistry CU	/N No Coni-1	Technique: ICP Co	ntinuous		
pectrometer Model	: optima /300 DV, 5	S/M NO Serial	#Autosampier Mode	1. 310		
ample Information	File: C:\pe\Dentis	stry CU\Sampl	e Information\Nawa	rat-230216\	Al2.sif	
atch ID:						
esults Data Set: 1	Nawarat-Al-sample-(010316	h =			
esults Library: C	:\pe\Dentistry CO\H	Results (Resul	ts.mdb			
equence No.: 1			Autosampler Locat	ion: 13		
ample ID: reagent	blank		Date Collected: 3	/1/2016 2:0	3:53 PM	
nalyst:			Initial Sample Vo	a.		
nitial Sample Wt:			Sample Prep Vol.	±.		
iiution:			combre treb AOT:			
eplicate Data: re	agent blank					
epirouse baca. 18	Net	Corrected	Calib.		Sample	Analysi
epl# Analyte	Intensity	Intensity	Conc. Units	Co	nc. Units	Time
1 Al 396.153	9820.4	9638.3	0.071 mg/L	0.	0/1 mg/L	14:05:0
2 Al 396.153	6961.2	6779.0	0.050 mg/L	0.	041 mg/L	14:05:2
3 Al 396.153	5663.4	5481.2	0.041 mg/L	0.	∪41 mg/L	14:05:3
ean Data: reagent	Mean Corrected	Calib.		Samp	le	
nalyte	Intensity	Conc. Units	Std.Dev.	Conc. Unit	s Std.	Dev. RSI
1 396.153	7299.5	0.054 mg/L	0.0157	0.054 mg/L	0.0)157 29.14
equence No.: 2			Autosampler Locat	ion: 42		
ample ID: AgCuAl			Date Collected: 3	/1/2016 2:0	6:49 PM	
nolwat.			Data Type: Origin	2		
naryst.			baca type. ottgin			
nitial Sample Wt:			Initial Sample Vo	1:		
nitial Sample Wt: ilution: 1X			Initial Sample Vo Sample Prep Vol:	1:		
enlicate Data: Ag			Initial Sample Vo Sample Prep Vol:	1: 		
eplicate Data: Ag	CuAl Net	Corrected	Initial Sample Vo Sample Prep Vol: Calib.	1: 	Sample	Analysi
naiyst. nitial Sample Wt: ilution: 1X 	CuAl Net Intensity	Corrected Intensity	Calib. Conc. Units	1: Co	Sample nc. Units	Analysi Time
eplicate Data: Ag Action 12 Applicate Data: Ag Applicate Data: Ag Ag Applicate Data: Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag A	CuAl Net Intensity 2079916.2	Corrected Intensity 2079734.0	Calib. Conc. Units 15.34 mg/L	Co 15	Sample nc. Units .34 mg/L	Analysi Time 14:08:1
eplicate Data: Ag apple Analyte 1 Al 396.153 2 Al 36.153	CuAl Net Intensity 2079916.2 2064362.4	Corrected Intensity 2079734.0 2064180.2	Calib. Conc. Units 15.34 mg/L 15.23 mg/L	Co 15 15	Sample nc. Units .34 mg/L .23 mg/L	Analysi Time 14:08:1 14:08:2
eplicate Data: Ag a Al 396.153 A Al 396.153 A Al 396.153 A Al 396.153	CuAl Net Intensity 2079916.2 2064362.4 2063240.0	Corrected Intensity 2079734.0 2064180.2 2063057.9	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L	Co 15 15 15	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L	Analysi Time 14:08:1 14:08:3 14:08:5
eplicate Data: Ag epli Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153	CuAl Net Intensity 2079916.2 2064362.4 2063240.0	Corrected Intensity 2079734.0 2064180.2 2063057.9	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L	Co 15 15 15	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L	Analys: Time 14:08:1 14:08:5 14:08:5
All Sample Wt: ilution: 1X eplicate Data: Ag epli Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 Hean Data: AgCual	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib.	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L	2: Co 15 15 15 5 5	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L	Analysi Time 14:08:1 14:08:3 14:08:5
eplicate Data: Ag eplicate Data: Ag epli Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 ean Data: AgCuAl nalyte	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L Std.Dev.	Con Co 15 15 15 0 Conc. Unit	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L .22 mg/L	Analysi Time 14:08:1 14:08:5 14:08:5
eplicate Data: Ag eplicate Data: Ag eplicate Data: Ag 2 Al 396.153 3 Al 396.153 ean Data: AgCuAl nalyte 1 396.153	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L Std.Dev. 0.069	Coo 15 15 15 15 Conc. Unit 15.26 mg/L	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L .22 mg/L .22 mg/L .23	Analysi Time 14:08:1 14:08:3 14:08:5 .0ev. RSE .069 0.45
eplicate Data: Ag eplicate Data: Ag eplitate Data: Ag epl# Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 Gean Data: AgCuAl nalyte 1 396.153	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L Std.Dev. 0.069	Co 15 15 15 15 15 Conc. Unit 15.26 mg/L	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0.	Analysi Time 14:08:1 14:08:2 14:08:5 04:08:5 04:08:5 06:9 0.45
<pre>maryst. mitial Sample Wt: ilution: 1X eplicate Data: Ag epli Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 Hean Data: AgCuAl malyte 1 396.153 equence No.: 3 iample ID: BS10</pre>	Cual Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 5.22 mg/L Std.Dev. 0.069 Autosampler Locat Date Collected: 3	Conc. Unit 15.26 mg/L 15.26 mg/L 15.26 mg/L	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0. 0:07 PM	Analys: Time 14:08:1 14:08:2 14:08:5 .069 0.45
<pre>maryst. mitial Sample Wt: iilution: 1X eplicate Data: Ag epl# Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 elean Data: AgCuAl malyte 1 396.153 elequence No.: 3 ample ID: BS10 malyst:</pre>	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 15.22 mg/L 0.069 Autosampler Locat Data Cype: Oricin	Conc. Unit 15.26 mg/L 15.26 mg/L 15.26 mg/L 101: 43 /1/2016 2:1 al	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L .22 mg/L .22 mg/L .22 mg/L .20	Analysi Time 14:08:3 14:08:5 14:08:5 .0 Ev. RSI .069 0.45
Arrow Control of Contr	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L Std.Dev. 0.069 Autosampler Locat Data Type: Origin Initial Sample Vo	Conc. Unit 15.26 mg/L ion: 43 /1/2016 2:1 1:	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0. 0:07 PM	Analysi Time 14:08:1 14:08:3 14:08:5 .069 0.45
eplicate Data: Ag eplicate Data: Ag eplicate Data: Ag appl# Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 ean Data: AgCuAl nalyte 1 396.153 equence No.: 3 ample ID: BS10 nalyst: nitial Sample Wt: ilution: 1X	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L Std.Dev. 0.069 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vos	Conc. Unit 15.26 mg/L 15.26 mg/L 15.26 mg/L 17/2016 2:1 al 1:	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0. 0:07 PM	Analysi Time 14:08:1 14:08:5 14:08:5 069 0.45
eplicate Data: Ag eplicate Data: Ag eplicate Data: Ag appl# Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 ean Data: AgCuAl nalyte 1 396.153 equence No.: 3 ample ID: BS10 nalyst: nitial Sample Wt: ilution: 1X	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 5.22 mg/L Std.Dev. 0.069 Autosampler Locat Data Type: Origin Initial Sample Vo Sample Prep Vol:	Conc. Unit 15.26 mg/L ion: 43 /1/2016 2:1 1:	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0. 0:07 PM	Analysi Time 14:08:1 14:08:3 14:08:5 Dev. RSI .069 0.45
eplicate Data: Ag eplicate Data: Ag eplicate Data: Ag eplicate Data: Ag 1 Al 396.153 2 Al 396.153 3 Al 396.153 	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L	Calib. Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 15.22 mg/L Std.Dev. 0.069 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vos Sample Prep Vol:	Con Samp Conc. Unit 15.26 mg/L ion: 43 /1/2016 2:1 al 1:	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0:07 PM	Analysi Time 14:08:1 14:08:3 14:08:5 069 0.45
Allyst: initial Sample Wt: iultion: 1X Applicate Data: Ag Applicate Data: Ag Applicate Data: Ag Applicate Data: AgCuAl Analyte Apple ID: BS10 Analyst: initial Sample Wt: Dilution: 1X Applicate Data: BS Applicate D	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L Corrected Intensity	Calib. Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 5.22 mg/L Std.Dev. 0.069 Autosampler Locat Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib. Conc. Units	Conc. Unit 15.26 mg/L ion: 43 /1/2016 2:1 1:	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0. 0:07 PM Sample nc. Units	Analysi Time 14:08:1 14:08:5 .0ev. RSE .069 0.45 .069 0.45
eplicate Data: Ag eplicate Data: Ag eplicate Data: Ag epli Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 ean Data: AgCuAl nalyte 1 396.153 equence No.: 3 ample ID: BS10 nalyst: nitial Sample Wt: ilution: 1X eplicate Data: BS epli Analyte 1 Al 396.153	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7 10 Net Intensity 1097631 4	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L Corrected Intensity 199749.3	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 15.22 mg/L Std.Dev. 0.069 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib. Conc. Units 14.73 mg/L	Co Samp Conc. Unit 15.26 mg/L ion: 43 /1/2016 2:1 al 1: Co Co 14	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L .22 mg/L .22 mg/L .22 mg/L .22 mg/L .22 mg/L .23 mg/L .22 mg/L .23 mg/L .22 mg/L .23	Analysi Time 14:08:1 14:08:3 14:08:5 06:9 0.45 0.69 0.45 Analysi Time 14:11:2
<pre>maryst. mitial Sample Wt: ilution: 1X eplicate Data: Ag epl# Analyte 1 Al 396.153 2 Al 396.153 3 Al 396.153 </pre>	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7 10 Net Intensity 1997631.4 2044718.0	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L Corrected Intensity 1997449.3 2044535.9	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 15.22 mg/L Std.Dev. 0.069 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib. Conc. Units 14.73 mg/L 15.08 mg/L	Con 15 15 15 15 15 15 15 15 15 15 15 15 15 1	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0. 0:07 FM Sample nc. Units .73 mg/L .08 mg/L	Analysi Time 14:08:1 14:08:3 14:08:5 .069 0.45 .069 0.45 .069 0.45 .069 14:1 .11:1
eplicate Data: Ag eplitate Data: Ag eplitate Data: Ag eplitate Data: Ag eplitate Data: Ag a 396.153 2 Al 396.153 2 Al 396.153 a 3 Al 396.153 ean Data: AgCuAl nalyte 1 396.153 equence No.: 3 ample ID: BS10 nalyst: nitial Sample Wt: ilution: 1X eplicate Data: BS eplitate Data: BS eplitate Data: BS eplitate Data: Sa eplitate Data: AgCuAl Al 396.153 2 Al 396.153 3 Al 396.153 3 Al 396.153 3 Al 396.153	CuAl Net Intensity 2079916.2 2064362.4 2063240.0 Mean Corrected Intensity 2068990.7 10 Net Intensity 1997631.4 2044718.0 2048263.8	Corrected Intensity 2079734.0 2064180.2 2063057.9 Calib. Conc. Units 15.26 mg/L Corrected Intensity 1997449.3 2044535.9 2048081.7	Calib. Calib. Conc. Units 15.34 mg/L 15.23 mg/L 15.22 mg/L 15.22 mg/L 5.22 mg/L 5.22 mg/L 0.069 Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Calib. Conc. Units 14.73 mg/L 15.08 mg/L 15.11 mg/L	Conc. Unit 1: 5.26 mg/L 15.26 mg/L 15.26 mg/L 15.26 mg/L 11: 0.01: 43 12: 0.01: 43 12: 0.01: 43 12: 0.01: 43 12: 0.01: 43 12: 12: 12: 12: 12: 12: 12: 12: 12: 12:	Sample nc. Units .34 mg/L .23 mg/L .22 mg/L le s Std. 0:07 PM 0:07 PM Sample nc. Units .73 mg/L .08 mg/L .11 mg/L	Analysi Time 14:08:1 14:08:3 14:08:5 .069 0.45 .069 0.45 .069 0.45 .069 14:12:1 Time 14:11:2 14:12:1

Method: Nawarat-Al-010316			Page 2			Date: 3/1/2016 2:13:0			2 PM
2	Mean Corrected		Calib.			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.De	ev. 1	RSD
Al 396.153	2030022.3	14.98	mg/L	0.209	14.98	mg/L	0.2	09 1	.40%

ภาคผนวก ค. โครงสร้างจุลภาค

ภาพที่ ค1. โครงสร้างจุลภาคสภาพหลังหล่อ (As-cast) ที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบ ส่องกราด (Scanning Electron Microscope: SEM) ของทั้ง 7 ชุดโลหะเงินสเตอร์ลิง

As-Cast

ภาพที่ ค2. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) ของทั้ง 7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม (Aging) ที่ อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้กำลังขยาย 150 เท่า

Age 350 °C-150x

177

ภาพที่ ค3. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) ของทั้ง 7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม (Aging) ที่ อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้กำลังขยาย 1000 เท่า

Age 350 °C-1000x

ภาพที่ ค4. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) ของทั้ง 7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม (Aging) ที่ อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้กำลังขยาย 150 เท่า

Age 400 °C-150x

ภาพที่ ค5. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) ของทั้ง 7 ชุดโลหะผสม : หลังผ่านกระบวนการอบบ่ม (Aging) ที่ อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้กำลังขยาย 1000 เท่า

Age 400 °C-1000x

ภาพที่ ค6. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) - ชุดโลหะผสม AgCu : สภาพหลังหล่อ (As-cast) และหลังผ่าน กระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400 °C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

ภาพที่ ค7. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) - ชุดโลหะผสม AgCu0.3AI : สภาพหลังหล่อ (As-cast) และหลัง ผ่านกระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400 °C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

Ag-Cu-0.3Al-Ref.

ภาพที่ ค8. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) - ชุดโลหะผสม AgCu0.3Sn : สภาพหลังหล่อ (As-cast) และหลัง ผ่านกระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

Ag-Cu-0.3Sn-Ref.

ภาพที่ ค9. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) – ชุดโลหะผสม AgCu0.3Be0.2Sn : สภาพหลังหล่อ (As-cast) และหลังผ่านกระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

Ag-0.3Be-6.0Cu-0.2Sn

ภาพที่ ค10. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) – ชุดโลหะผสม AgCu0.3Be0.3Sn : สภาพหลังหล่อ (As-cast) และหลังผ่านกระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

Ag-0.3Be-5.9Cu-0.3Sn

ภาพที่ ค11. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) – ชุดโลหะผสม AgCu0.3Be0.5Sn : สภาพหลังหล่อ (As-cast) และหลังผ่านกระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

Ag-0.3Be-5.7Cu-0.5Sn

ภาพที่ ค12. โครงสร้างจุลภาคที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope: SEM) – ชุดโลหะผสม AgCu0.3Be0.5Sn0.3AI : สภาพหลังหล่อ (As-cast) และหลังผ่านกระบวนการอบบ่ม (Aging) ที่อุณหภูมิ 350 °C และ 400 °C เป็นเวลา 10, 15, 30, 60, 120 นาที ตามลำดับ โดยใช้ กำลังขยาย 150 เท่า(ซ้าย), 1000 เท่า(ขวา)

Ag-0.3Be-5.4Cu-0.5Sn-0.3AI

ข้อมูลของปริมาณธาตุบริเวณต่างๆ ที่เกิดในโครงสร้างจุลภาคของชุดโลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด ซึ่งทำการวิเคราะห์จากเทคนิคและเครื่องมือ Energy Dispersive X-ray spectroscopy (EDX)

ตารางที่ ค1. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu

Alloy & Area detect	ส่วนผสมทางเคมี (%wt)						
	Ag	Cu	Be	Sn	AI		
AgCu - ascast							
Overall	93.72	6.28	-	-	-		
Matrix (White)	94.01	5.99	-	-	-		
Eutectic (Alpha+Beta)	74.82	25.18	-	-	-		
Beta phase (Black)	-	-	-	-	-		
AgCu – age 350°C/10 min							
Overall	94.41	5.59	-	-	-		
Matrix (White)	94.56	5.44	-	-	-		
Eutectic (Alpha+Beta)	88.95	11.05	-	-	-		
Beta phase (Black)	6.76	93.24	-	-	-		
AgCu – age 350°C/15 min							
Overall	94.54	5.46	-	-	-		
Matrix (White)	95.22	4.78	-	-	-		
Eutectic (Alpha+Beta)	74.05	25.95	-	-	-		
Beta phase (Black)	9.64	90.36	-	-	-		
	AgCu	– age 350°C/30 mi	n				
Overall	92.72	7.28	- n	-	-		
Matrix (White)	94.38	5.62	J -	-	-		
Eutectic (Alpha+Beta)	69.62	30.38	_	-	-		
Beta phase (Black)	17.63	82.37	รัย -	-	-		
AgCu – age 350°C/60 min							
Overall	93.74	6.26	-	-	-		
Matrix (White)	94.82	5.18	-	-	-		
Eutectic (Alpha+Beta)	66.89	33.11	-	-	-		
Beta phase (Black)	28.60	71.40	-	-	-		
AgCu – age 350°C/120 min							
Overall	94.01	5.99	-	-	-		
Matrix (White)	94.77	5.23	-	-	-		
Eutectic (Alpha+Beta)	-	-	-	-	-		
Beta phase (Black)	17.51	82.49	-	-	-		
AgCu – age 400°C/10 min							
Overall	93.42	6.58	-	-	-		
Matrix (White)	93.15	6.85	-	-	-		
Eutectic (Alpha+Beta)	71.86	28.14	-	-	-		
Beta phase (Black)	10.14	89.86	-	-	-		

Alloy & Area detect	ส่วนผสมทางเคมี (%wt)					
	Ag	Cu	Be	Sn	AI	
	AgCu	– age 400°C/15 min	n			
Overall	93.92	6.08	-	-	-	
Matrix (White)	94.50	5.50	-	-	-	
Eutectic (Alpha+Beta)	68.81	31.19	-	-	-	
Beta phase (Black)	-	-	-	-	-	
	AgCu	– age 400°C/30 mir	n			
Overall	93.94	6.06	-	-	-	
Matrix (White)	95.89	4.11	-	-	-	
Eutectic (Alpha+Beta)	76.78	23.22	-	-	-	
Beta phase (Black)	22.84	77.16	-	-	-	
	AgCu	– age 400°C/60 mil	n			
Overall	93.99	6.01	-	-	-	
Matrix (White)	95.92	4.08	-	-	-	
Eutectic (Alpha+Beta)	74.56	25.44	-	-	-	
Beta phase (Black)	24.78	75.22	-	-	-	
	AgCu	– age 400°C/120 mi	in			
Overall	93.50	6.50	-	-	-	
Matrix (White)	95.04	4.96	-	-	-	
Eutectic (Alpha+Beta)	66.07	33.93	-	-	-	
Beta phase (Black)	19.64	80.36	-	-	-	

<u>หมายเหตุ</u>

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้

**N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

Alloy & Area detect	ส่วนผสมทางเคมี (%wt)						
	Ag	Cu	Be	Sn	Al		
AgCu0.3Al - ascast							
Overall	93.10	6.52	-	-	0.37		
Matrix (White)	96.67	3.16	-	-	0.17		
Eutectic (Alpha+Beta)	-	-	-	-	-		
Beta phase (Black)	8.81	86.23	-	-	4.96		
AgCu0.3AI – age 350°C/10 min							
Overall	93.54	6.06	-	-	0.40		
Matrix (White)	93.88	5.84	-	-	0.29		
Eutectic (Alpha+Beta)	75.01	23.64	-	-	1.34		
Beta phase (Black)	19.86	75.70	-	-	4.44		
AgCu0.3AI – age 350°C/15 min							
Overall	94.90	4.78	-	-	0.32		
Matrix (White)	96.48	3.38	-	-	0.14		
Eutectic (Alpha+Beta)	79.73	19.70	-	-	0.57		
Beta phase (Black)	12.78	86.62	-	-	0.60		
AgCu0.3Al – age 350°C/30 min							
Overall	94.87	4.93	-	-	0.20		
Matrix (White)	97.06	2.68	-	-	0.27		
Eutectic (Alpha+Beta)	66.87	30.70	-	-	2.43		
Beta phase (Black)	14.49	84.35	- 0	-	1.16		
AgCu0.3AI – age 350°C/60 min							
Overall	94.85	4.81	-	-	0.34		
Matrix (White)	96.25	3.59	តខ -	-	0.16		
Eutectic (Alpha+Beta)	75.49	23.18	ISITY -	-	1.33		
Beta phase (Black)	32.09	64.04	-	-	3.87		
AgCu0.3Al – age 350°C/120 min							
Overall	93.10	6.67	-	-	0.24		
Matrix (White)	95.25	4.48	-	-	0.27		
Eutectic (Alpha+Beta)	-	-	-	-	-		
Beta phase (Black)	8.44	86.53	-	-	5.03		
AgCu0.3AI – age 400°C/10 min							
Overall	94.51	5.20	-	-	0.29		
Matrix (White)	96.59	3.15	-	-	0.26		
Eutectic (Alpha+Beta)	70.79	27.88	-	-	1.33		
Beta phase (Black)	22.77	76.32	-	-	0.91		

ตารางที่ ค2. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Al

Alloy & Area detect	ส่วนผสมทางเคมี (%wt)				
	Ag	Cu	Be	Sn	Al
	AgCu0.3	3Al – age 400°C/15 r	min		
Overall	94.31	5.40	-	-	0.29
Matrix (White)	96.16	3.70	-	-	0.14
Eutectic (Alpha+Beta)	69.58	28.72	-	-	1.69
Beta phase (Black)	14.72	80.40	-	-	4.88
	AgCu0.3	3Al – age 400°C/30 r	min		
Overall	95.09	4.65	-	-	0.26
Matrix (White)	97.21	2.63	-	-	0.16
Eutectic (Alpha+Beta)	74.19	24.47	-	-	1.34
Beta phase (Black)	18.05	77.24	-	-	4.71
	AgCu0.3	3Al – age 400°C/60 r	min		
Overall	94.44	5.23	-	-	0.32
Matrix (White)	96.28	3.52	-	-	0.20
Eutectic (Alpha+Beta)	74.12	24.49	-	-	1.39
Beta phase (Black)	43.46	54.53	-	-	2.01
	AgCu0.3	Al – age 400°C/120	min		
Overall	94.70	5.00	-	-	0.30
Matrix (White)	96.25	3.60	-	-	0.15
Eutectic (Alpha+Beta)	79.45	19.85	-	-	0.70
Beta phase (Black)	14.54	80.47	-	-	4.99

<u>หมายเหตุ</u>

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้

**N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว
	ส่วนผสมทางเคมี (%wt)						
Alloy & Area detect	Ag	Cu	Be	Sn	Al		
	Age	Cu0.3Sn - ascast		1	L		
Overall	94.72	4.77	-	0.51	-		
Matrix (White)	95.47	3.86	-	0.67	-		
Eutectic (Alpha+Beta)	78.55	21.45	N/A	N/A	-		
Beta phase (Black)	5.28	94.15	-	0.57	-		
AgCu0.3Sn – age 350°C/10 min							
Overall	94.11	5.77	-	0.13	-		
Matrix (White)	94.12	5.56	-	0.32	-		
Eutectic (Alpha+Beta)	71.65	28.10	-	0.25	-		
Beta phase (Black)	·	11/10-	-	-	-		
AgCu0.3Sn – age 350°C/15 min							
Overall	93.93	5.71	-	0.36	-		
Matrix (White)	95.00	5.00	-	N/A	-		
Eutectic (Alpha+Beta)	53.13	46.84	-	0.03	-		
Beta phase (Black)	///P3	- -	-	-	-		
	AgCu0.3	Sn – age 350°C/30	min				
Overall	94.77	5.15	-	0.08	-		
Matrix (White)	94.77	5.23	-	N/A	-		
Eutectic (Alpha+Beta)	83.34	16.30	-	0.37	-		
Beta phase (Black)	17.49	82.46	2 -	0.05	-		
	AgCu0.3	Sn – age 350°C/60	min				
Overall	93.81	6.19	- -	N/A	-		
Matrix (White)	95.27	4.73	ា ខ្ម	N/A	-		
Eutectic (Alpha+Beta)	62.75	36.64	SITY -	0.61	-		
Beta phase (Black)	-	-	-	-	-		
	AgCu0.35	Sn – age 350°C/120) min				
Overall	94.42	5.11	-	0.47	-		
Matrix (White)	94.43	5.40	-	0.16	-		
Eutectic (Alpha+Beta)	81.98	17.60	-	0.42	-		
Beta phase (Black)	8.66	90.99	-	0.35	-		
	AgCu0.3	Sn – age 400°C/10	min				
Overall	95.11	4.52	-	0.36	-		
Matrix (White)	94.86	4.53	-	0.61	-		
Eutectic (Alpha+Beta)	80.34	19.56	-	0.10	-		
Beta phase (Black)	4.59	95.06	-	4.59	-		

ตารางที่ ค3. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Sn

	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
AgCu0.3Sn – age 400°C/15 min								
Overall	94.24	5.76	-	N/A	-			
Matrix (White)	93.96	5.69	-	0.35	-			
Eutectic (Alpha+Beta)	73.69	25.86	-	0.44	-			
Beta phase (Black)	44.92	55.02	-	0.06	-			
	AgCu0.3	8Sn – age 400°C/30	min					
Overall	93.98	5.27	-	0.75	-			
Matrix (White)	95.16	4.36	-	0.48	-			
Eutectic (Alpha+Beta)	86.01	13.59	-	0.39	-			
Beta phase (Black)	18.11	81.38	-	0.51	-			
	AgCu0.3	3Sn – age 400°C/60	min					
Overall	94.23	5.43	-	0.34	-			
Matrix (White)	94.11	5.45	-	0.44	-			
Eutectic (Alpha+Beta)	84.77	15.12	-	0.41	-			
Beta phase (Black)	15.30	84.18	-	0.52	-			
	AgCu0.3	Sn – age 400°C/120	min					
Overall	95.23	4.25	-	0.52	-			
Matrix (White)	95.05	4.45	-	0.50	-			
Eutectic (Alpha+Beta)	78.90	20.59	-	0.51	-			
Beta phase (Black)	9.15	90.30	-	0.55	-			

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้

**N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
	AgCul).3Be0.2Sn – ascas	st	•				
Overall	93.59	5.87	ND	0.54	-			
Matrix (White)	96.20	3.51	ND	0.29	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	36.27	63.73	ND	N/A	-			
Grey phase	3.07	96.93	ND	N/A	-			
AgCu0.3Be0.2Sn – age 350°C/10 min								
Overall	94.61	5.07	ND	0.32	-			
Matrix (White)	97.08	2.62	ND	0.30	-			
Eutectic (Alpha+Beta)	75.22	24.78	ND	N/A	-			
Beta phase (Black)	20.09	79.91	ND	N/A	-			
Grey phase	0.97	99.03	ND	N/A	-			
AgCu0.3Be0.2Sn– age 350°C/15 min								
Overall	92.36	7.08	ND	0.56	-			
Matrix (White)	95.09	4.34	ND	0.57	-			
Eutectic (Alpha+Beta)	1118	-	ND	-	-			
Beta phase (Black)	4.01	95.99	ND	N/A	-			
Grey phase	1.49	98.51	ND	N/A	-			
	AgCu0.3Be	0.2Sn – age 350°C/	/30 min					
Overall	92.77	6.65	ND	0.58	-			
Matrix (White)	96.47	2.87	ND	0.66	-			
Eutectic (Alpha+Beta)	59.37	40.63	ND	N/A	-			
Beta phase (Black)	4.16	95.84	ND B	N/A	-			
Grey phase	1.58	98.42	S ND	N/A	-			
	AgCu0.3Be	0.2Sn – age 350°C/	/60 min					
Overall	92.85	6.67	ND	0.48	-			
Matrix (White)	94.07	5.30	ND	0.63	-			
Eutectic (Alpha+Beta)	63.46	35.73	ND	0.81	-			
Beta phase (Black)	4.16	95.84	ND	N/A	-			
Grey phase	-	-	ND	-	-			
	AgCu0.3Be0).2Sn – age 350°C/^	120 min					
Overall	92.18	6.87	ND	0.95	-			
Matrix (White)	96.74	2.66	ND	0.60	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	4.77	95.19	ND	-	-			
Grey phase	2.13	97.87	ND	N/A	-			

ตารางที่ ค4.ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Be0.2Sn

Alley & Area datast	ส่วนผสมทางเคมี (%wt)							
Alloy & Area delect	Ag	Cu	Be	Sn	Al			
AgCu0.3Be0.2Sn– age 400°C/10 min								
Overall	94.65	4.96	ND	0.39	-			
Matrix (White)	95.37	4.06	ND	0.57	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	5.44	94.56	ND	N/A	-			
Grey phase	1.07	98.93	ND	N/A	-			
AgCu0.3Be0.2Sn- age 400°C/15 min								
Overall	94.68	4.67	ND	0.65	-			
Matrix (White)	93.98	5.47	ND	0.55	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	9.12	90.88	ND	N/A	-			
Grey phase	3.85	96.15	ND	N/A	-			
	AgCu0.3Be0).2Sn– age 400°C/3	30 min					
Overall	92.07	7.23	ND	0.70	-			
Matrix (White)	91.06	8.29	ND	0.65	-			
Eutectic (Alpha+Beta)	11168	-	ND	-	-			
Beta phase (Black)	3.65	96.33	ND	0.02	-			
Grey phase	1.54	98.46	ND	N/A	-			
	AgCu0.3Be0	.2Sn – age 400°C/	60 min					
Overall	92.93	6.80	ND	0.27	-			
Matrix (White)	95.07	4.47	ND	0.46	-			
Eutectic (Alpha+Beta)	81.94	17.90	ND	0.16	-			
Beta phase (Black)	18.90	81.08	ND	0.02	-			
Grey phase	3.29	96.71	ND	N/A	-			
	AgCu0.3Be0	.2Sn– age 400°C/1	20 min					
Overall	92.48	7.52	ST ND	N/A	-			
Matrix (White)	95.25	4.66	ND	0.09	-			
Eutectic (Alpha+Beta)	73.17	26.72	ND	0.11	-			
Beta phase (Black)	1.88	98.02	ND	0.10	-			
Grey phase	1.80	98.20	ND	N/A	-			

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้ **N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
	AgCu).3Be0.3Sn – ascas	st	L	I			
Overall	92.34	7.32	ND	0.34	-			
Matrix (White)	95.68	3.94	ND	0.38	-			
Eutectic (Alpha+Beta)	86.72	13.28	ND	N/A	-			
Beta phase (Black)	8.54	91.46	ND	N/A	-			
Grey phase	2.04	97.82	ND	0.14	-			
AgCu0.3Be0.3Sn- age 350°C/10 min								
Overall	92.57	7.19	ND	0.24	-			
Matrix (White)	92.75	7.25	ND	N/A	-			
Eutectic (Alpha+Beta)	80.76	18.93	ND	0.31	-			
Beta phase (Black)	77.03	20.68	ND	2.29	-			
Grey phase	2.00	98.00	ND	N/A	-			
AgCu0.3Be0.3Sn– age 350°C/15 min								
Overall	92.53	7.09	ND	0.38	-			
Matrix (White)	95.85	3.66	ND	0.49	-			
Eutectic (Alpha+Beta)	1/1/2	- 1	ND	-	-			
Beta phase (Black)	4.07	95.93	ND	N/A	-			
Grey phase	19.44	80.56	ND	N/A	-			
	AgCu0.3Be	0.3Sn- age 350°C/3	30 min					
Overall	93.59	6.26	ND	0.15	-			
Matrix (White)	95.28	4.20	ND	0.52	-			
Eutectic (Alpha+Beta)	-		ND	-	-			
Beta phase (Black)	6.77	93.23	ND	N/A	-			
Grey phase	1.94	98.06	ST ND	N/A	-			
	AgCu0.3Be	0.3Sn– age 350°C/6	60 min					
Overall	92.48	7.09	ND	0.34	-			
Matrix (White)	93.82	5.68	ND	0.50	-			
Eutectic (Alpha+Beta)	82.87	17.13	ND	N/A	-			
Beta phase (Black)	3.96	96.04	ND	N/A	-			
Grey phase	2.34	97.66	ND	N/A	-			
	AgCu0.3Be0).3Sn– age 350°C/1	20 min					
Overall	93.57	6.43	ND	N/A	-			
Matrix (White)	96.05	3.03	ND	0.82	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	42.13	57.87	ND	N/A	-			
Grey phase	5.46	94.50	ND	0.04	-			

ตารางที่ ค5.ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Be0.3Sn

Allow & Area datast	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
AgCu0.3Be0.3Sn– age 400°C/10 min								
Overall	92.34	7.02	ND	0.55	-			
Matrix (White)	93.20	6.80	ND	N/A	-			
Eutectic (Alpha+Beta)	54.00	45.93	ND	0.07	-			
Beta phase (Black)	35.69	64.31	ND	N/A	-			
Grey phase	34.59	62.80	ND	2.61	-			
AgCu0.3Be0.3Sn- age 400°C/15 min								
Overall	93.92	5.86	ND	0.22	-			
Matrix (White)	95.89	3.90	ND	0.21	-			
Eutectic (Alpha+Beta)	72.62	26.71	ND	0.67	-			
Beta phase (Black)	13.89	85.89	ND	0.22	-			
Grey phase	1.54	98.22	ND	0.24	-			
	AgCu0.3Be	0.3Sn- age 400°C/3	30 min					
Overall	93.23	6.05	ND	0.72	-			
Matrix (White)	96.37	3.57	ND	0.06	-			
Eutectic (Alpha+Beta)	83.57	16.43	ND	N/A	-			
Beta phase (Black)	6.20	93.80	ND	N/A	-			
Grey phase	6.39	93.61	ND	N/A	-			
	AgCu0.3Be	0.3Sn- age 400°C/6	60 min					
Overall	93.77	6.18	ND	0.05	-			
Matrix (White)	96.32	3.48	ND	0.20	-			
Eutectic (Alpha+Beta)	77.87	22.08	ND	0.05	-			
Beta phase (Black)	2.36	97.64	ND	N/A	-			
Grey phase	2.17	97.83	ND	N/A	-			
AgCu0.3Be0.3Sn– age 400°C/120 min								
Overall	92.70	7.08	ND	0.22	-			
Matrix (White)	92.72	6.79	ND	0.49	-			
Eutectic (Alpha+Beta)	81.23	18.77	ND	N/A	-			
Beta phase (Black)	3.90	96.10	ND	N/A	-			
Grey phase	1.85	98.15	ND	N/A	-			

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้ **N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
	AgCu	0.3Be0.5Sn-ascas	st					
Overall	92.68	6.87	ND	0.45	-			
Matrix (White)	96.13	3.29	ND	0.58	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	2.96	96.79	ND	0.25	-			
Grey phase	1.79	98.21	ND	N/A	-			
AgCu0.3Be0.5Sn- age 350°C/10 min								
Overall	92.68	6.83	ND	0.49	-			
Matrix (White)	94.35	5.51	ND	0.14	-			
Eutectic (Alpha+Beta)	56.56	43.44	ND	N/A	-			
Beta phase (Black)	2.72	97.22	ND	0.06	-			
Grey phase	2.72	97.22	ND	0.06	-			
AgCu0.3Be0.5Sn- age 350°C/15 min								
Overall	94.07	4.67	ND	1.26	-			
Matrix (White)	95.94	3.59	ND	0.47	-			
Eutectic (Alpha+Beta)	78.86	20.86	ND	0.28	-			
Beta phase (Black)	1.46	98.54	ND	N/A	-			
Grey phase	1.40	98.60	ND	N/A	-			
	AgCu0.3Be	0.5Sn- age 350°C/	'30 min					
Overall	92.16	6.58	ND	1.17	-			
Matrix (White)	94.30	5.22	ND	0.48	-			
Eutectic (Alpha+Beta)	86.34	11.58	ND	2.08	-			
Beta phase (Black)	3.91	96.09	ND B	N/A	-			
Grey phase	LALONGKO	rn Univer	S ND	-	-			
	AgCu0.3Be	0.5Sn– age 350°C/	'60 min					
Overall	92.81	6.84	ND	0.35	-			
Matrix (White)	96.40	3.31	ND	0.29	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	3.51	96.49	ND	N/A	-			
Grey phase	1.59	98.19	ND	0.22	-			
	AgCu0.3Be0).5Sn– age 350°C/′	120 min					
Overall	91.87	7.86	ND	0.27	-			
Matrix (White)	94.88	5.03	ND	0.09	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	3.47	96.25	ND	0.28	-			
Grey phase	1.19	98.81	ND	N/A	-			

<u>ตารางที่ ค6</u>.ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม AgCu0.3Be0.5Sn

Allow & Area dataat	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
AgCu0.3Be0.5Sn- age 400°C/10 min								
Overall	93.41	6.41	ND	0.18	-			
Matrix (White)	96.21	3.16	ND	0.63	-			
Eutectic (Alpha+Beta)	83.49	16.41	ND	0.10	-			
Beta phase (Black)	5.94	94.06	ND	N/A	-			
Grey phase	5.94	94.06	ND	N/A	-			
AgCu0.3Be0.5Sn- age 400°C/15 min								
Overall	93.28	6.46	ND	0.26	-			
Matrix (White)	96.73	2.82	ND	0.45	-			
Eutectic (Alpha+Beta)	-	-	ND	-	-			
Beta phase (Black)	7.47	92.36	ND	0.17	-			
Grey phase	2.63	97.30	ND	0.07	-			
	AgCu0.3Be().5Sn- age 400°C/3	30 min					
Overall	92.85	6.47	ND	0.68	-			
Matrix (White)	95.92	3.61	ND	0.47	-			
Eutectic (Alpha+Beta)	86.22	13.60	ND	0.18	-			
Beta phase (Black)	1.86	98.14	ND	N/A	-			
Grey phase	1.85	98.15	ND	N/A	-			
	AgCu0.3Be().5Sn- age 400°C/6	60 min					
Overall	93.99	5.69	ND	0.32	-			
Matrix (White)	94.36	5.63	ND	0.01	-			
Eutectic (Alpha+Beta)			ND	-	-			
Beta phase (Black)	4.78	95.22	ND	N/A	-			
Grey phase	9.81	90.04	ND	0.15	-			
AgCu0.3Be0.5Sn – age 400°C/120 min								
Overall	92.47	7.05	S T ND	0.48	-			
Matrix (White)	95.19	4.30	ND	0.51	-			
Eutectic (Alpha+Beta)	76.90	22.46	ND	0.64	-			
Beta phase (Black)	1.00	99.00	ND	N/A	-			
Grey phase	1.04	98.96	ND	N/A	-			

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้ **N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

<u>ตารางที่ ค7</u>. ปริมาณธาตุที่วิเคราะห์ได้จากโครงสร้างจุลภาคของชุดโลหะผสม

AgCu0.3Be0.5Sn0.3Al

Allow & Area datast	ส่วนผสมทางเคมี (%wt)							
Alloy & Area delect	Ag	Cu	Be	Sn	AI			
	AgCu0.3	Be0.5Sn0.3Al – aso	cast					
Overall	93.20	6.05	ND	0.51	0.24			
Matrix (White)	95.78	3.64	ND	0.33	0.25			
Eutectic (Alpha+Beta)	66.13	29.41	ND	1.19	3.27			
Beta phase (Black)	7.08	92.08	ND	0.22	0.62			
Grey phase	-	-	ND	-	-			
	AgCu0.3Be0.5Sn0.3Al – age 350°C/10 min							
Overall	93.22	6.34	ND	0.03	0.41			
Matrix (White)	97.64	2.13	ND	N/A	0.23			
Eutectic (Alpha+Beta)	51.13	43.03	ND	2.57	3.27			
Beta phase (Black)	10.52	89.09	ND	N/A	0.39			
Grey phase		111.	ND	-	-			
AgCu0.3Be0.5Sn0.3AL age 350°C/15 min								
Overall	90.26	8.40	ND	1.09	0.25			
Matrix (White)	96.09	3.55	ND	0.24	0.11			
Eutectic (Alpha+Beta)	/-/w		ND	-	-			
Beta phase (Black)	42.22	57.65	ND	N/A	0.13			
Grey phase	14.67	83.46	ND	0.25	1.62			
	AgCu0.3Be0.5	Sn0.3Al – age 350	°C/30 min					
Overall	91.39	7.70	ND	0.61	0.30			
Matrix (White)	96.89	2.63	ND	0.24	0.24			
Eutectic (Alpha+Beta)	77.68	19.13	ND	0.35	2.84			
Beta phase (Black)	6.54	93.20	ND	N/A	0.26			
Grey phase	LALONGKO							
	AgCu0.3Be0.5	Sn0.3Al – age 350 [°]	°C/60 min					
Overall	92.37	6.68	ND	0.60	0.35			
Matrix (White)	90.60	8.14	ND	0.95	0.31			
Eutectic (Alpha+Beta)	54.47	40.55	ND	3.19	1.79			
Beta phase (Black)	26.09	73.72	ND	N/A	0.19			
Grey phase	-	-	ND	-	-			
	AgCu0.3Be0.5	Sn0.3Al – age 350°	C/120 min					
Overall	92.45	5.99	ND	1.17	0.39			
Matrix (White)	93.96	5.03	ND	0.77	0.25			
Eutectic (Alpha+Beta)	58.39	36.95	ND	1.55	3.10			
Beta phase (Black)	16.69	83.11	ND	N/A	0.20			
Grey phase	-	-	ND	-	-			

	ส่วนผสมทางเคมี (%wt)							
Alloy & Area detect	Ag	Cu	Be	Sn	Al			
AgCu0.3Be0.5Sn0.3Al – age 400°C/10 min								
Overall	91.99	7.11	ND	0.59	0.31			
Matrix (White)	96.94	2.76	ND	0.14	0.16			
Eutectic (Alpha+Beta)	65.12	30.51	ND	1.19	3.19			
Beta phase (Black)	3.55	94.76	ND	0.53	1.16			
Grey phase	-	-	ND	-	-			
	AgCu0.3Be0.5	Sn0.3Al – age 400	°C/15 min					
Overall	92.51	6.26	ND	0.94	0.30			
Matrix (White)	96.22	3.24	ND	0.17	0.36			
Eutectic (Alpha+Beta)	74.22	25.42	ND	N/A	0.36			
Beta phase (Black)	29.31	66.23	ND	1.11	3.36			
Grey phase	29.31	66.22	ND	1.11	3.36			
AgCu0.3Be0.5Sn0.3Al – age 400°C/30 min								
Overall	92.90	6.02	ND	0.72	0.37			
Matrix (White)	96.37	2.39	ND	0.95	0.29			
Eutectic (Alpha+Beta)	53.13	42.60	ND	2.32	1.95			
Beta phase (Black)	4.59	95.19	ND	0.13	0.09			
Grey phase	-/-///		ND	-	-			
	AgCu0.3Be0.5	Sn0.3Al – age 400°	°C/60 min					
Overall	92.22	7.11	ND	0.38	0.28			
Matrix (White)	96.91	2.66	ND	0.33	0.11			
Eutectic (Alpha+Beta)	66.40	28.18	ND	1.13	4.29			
Beta phase (Black)	4.60	95.29	ND	N/A	0.11			
Grey phase		-	ND	-	-			
AgCu0.3Be0.5Sn0.3Al – age 400°C/120 min								
Overall	92.69	6.52	ND	0.40	0.38			
Matrix (White)	96.96	2.52	SITIND	0.30	0.22			
Eutectic (Alpha+Beta)	67.29	26.88	ND	3.08	2.75			
Beta phase (Black)	8.61	91.08	ND	N/A	0.32			
Grey phase	-	-	ND	-	-			

*ND (Not Detect) หมายถึง อาจเป็นข้อจำกัดของเครื่องมือ ทำให้ไม่สามารถวัดได้

**N/A (Not Applicable) หมายถึง ตรวจไม่พบธาตุดังกล่าว

ผลของการวิเคราะห์ปริมาณธาตุผสมที่ได้เป็นกราฟ จาก EDX ของแต่ละบริเวณที่ยิงและ ของแต่ ละชุดรวมทั้งหมด 7 ชุด ได้แก่

1. ชุดโลหะผสม AgCu

ภาพที่ ค13. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu :

ค.13 – 1 Overall : ยิ่งทั่วบริเวณของชิ้นงาน 100X

ค.13 – 2 Matrix : บริเวณเนื้อพื้นของโครงสร้างจุลภาค

ค.13 – 3 Eutectic : บริเวณโครงสร้างยูเทคติก

- ค.14 1 Overall : ยิ่งทั่วบริเวณของชิ้นงาน 100X,
- ค.14 2 Matrix : บริเวณเนื้อพื้นของโครงสร้างจุลภาค,
- ค.14 3 Eutectic : บริเวณโครงสร้างยูเทคติก

ค.15 – 1 Overall : ยิ่งทั่วบริเวณของชิ้นงาน 100X

ค.15 – 2 Matrix : บริเวณเนื้อพื้นของโครงสร้างจุลภาค

ค.15 – 3 Eutectic : บริเวณโครงสร้างยูเทคติก

ค.15 – 4 Beta phase : บริเวณโครงสร้างที่เป็นเฟสของเบตา ซึ่งส่วนใหญ่จะเป็น ธาตุของทองแดง (ถ้าดูในรูป SEM คือส่วนที่เป็นสีดำ)

4. ชุดโลหะผสม AgCu0.3Be0.2Sn

ภาพที่ ค16. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn :

ค.16 – 1 Overall : ยิ่งทั่วบริเวณของชิ้นงาน 100X

ค.16 – 2 Matrix : บริเวณเนื้อพื้นของโครงสร้างจุลภาค

ค.16 – 3 Beta phase : บริเวณโครงสร้างที่เป็นเฟสของเบตา ซึ่งส่วนใหญ่จะเป็น ธาตุของทองแดง (ถ้าดูในรูป SEM คือส่วนที่เป็นสีดำ)

ค.16 – 4 Secondary Phase : บริเวณโครงสร้างที่เป็นเฟสที่เกิดขึ้นใหม่ เรียกว่า Secondary Phase เป็นโครงสร้างที่เกิดจากทองแดงแยกตัวออกมาเกิดเป็นเฟสใหม่ (ถ้าดู ในรูป SEM คือส่วนที่เป็นสีเทา/สีเทาอ่อน)

ภาพที่ ค17. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn :

ค.17 – 1 Overall : ยิ่งทั่วบริเวณของชิ้นงาน 100X ค.17 – 2 Matrix : บริเวณเนื้อพื้นของ
โครงสร้างจุลภาค ค.17 – 3 Eutectic : บริเวณโครงสร้างยูเทคติก ค.17 – 4 Beta phase :
บริเวณโครงสร้างที่เป็นเฟสของเบตา ซึ่งส่วนใหญ่จะเป็นธาตุของทองแดง (ถ้าดูในรูป SEM คือ
ส่วนที่เป็นสีดำ) ค.17 – 5 Secondary Phase : บริเวณโครงสร้างที่เป็นเฟสที่เกิดขึ้นใหม่ เรียกว่า
Secondary Phase เป็นโครงสร้างที่เกิดจากทองแดงแยกตัวออกมาเกิดเป็นเฟสใหม่ (ถ้าดูในรูป

6. ชุดโลหะผสม AgCu0.3Be0.5Sn

ภาพที่ ค18. กราฟ EDX ของแต่ละบริเวณที่ยิงเพื่อหาปริมาณธาตุผสม ของแต่ละจุดภายใน โครงสร้างจุลภาค ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn :

ค.18 – 1 Overall ยิ่งทั่วบริเวณของชิ้นงาน 100X

ค.18 – 2 Matrix : บริเวณเนื้อพื้นของโครงสร้างจุลภาค

ค.18 – 3 Beta phase : บริเวณโครงสร้างที่เป็นเฟสของเบต้า ซึ่งส่วนใหญ่จะเป็น ธาตุของทองแดง (ถ้าดูในรูป SEM คือส่วนที่เป็นสีดำ)

ค.18 – 4 Secondary Phase : บริเวณโครงสร้างที่เป็นเฟสที่เกิดขึ้นใหม่ เรียกว่า Secondary Phase เป็นโครงสร้างที่เกิดจากทองแดงแยกตัวออกมาเกิดเป็นเฟสใหม่ (ถ้าดู ในรูป SEM คือส่วนที่เป็นสีเทา/สีเทาอ่อน)

7. ชุดโลหะผสม AgCu0.3Be0.5Sn0.3Al

ค.19 – 1 Overall ยิงทั่วบริเวณของชิ้นงาน 100X ค.19 – 2 Matrix : บริเวณเนื้อพื้นของโครงสร้างจุลภาค

ค.19 – 3 Eutectic : บริเวณโครงสร้างยูเทคติก

ค.19 – 4 Beta phase : บริเวณโครงสร้างที่เป็นเฟสของเบต้า ซึ่งส่วนใหญ่จะเป็น ธาตุของทองแดง (ถ้าดูในรูป SEM คือส่วนที่เป็นสีดำ) ผลของการวิเคราะห์หาการกระจายตัว และหาตำแหน่งของธาตุผสมด้วยเทคนิค X-ray Mapping รวมทั้งผลจากการตรวจสอบส่วนผสมทางเคมีโครงสร้างจุลภาคแต่ละบริเวณด้วย Energy Dispersive X-ray Spectroscopy (EDX) ของโลหะผสมเงินสเตอร์ลิง 935 ทั้ง 7 ชุด ดังนี้

ภาพที่ ค20. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาพหลังหล่อ (As-cast) กำลังขยาย 500 เท่า

Condition :: AgCu-ascast (no age) - 2000X No.1

ภาพที่ ค21. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาพหลังหล่อ (As-cast) กำลังขยาย 2000 เท่า

ภาพที่ ค22. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาพหลังหล่อ (As-cast) กำลังขยาย 2000 เท่า

ภาพที่ ค23. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาวะหลังผ่านกระบวนการ ทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

Condition :: AgCu-age 350oC-2h - 2000X

ภาพที่ ค24. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu สภาวะหลังผ่านกระบวนการ ทางความร้อนโดยการอบบ่ม(Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2000 เท่า

ภาพที่ ค25. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาพหลังหล่อ (Ascast) กำลังขยาย 500 เท่า

ภาพที่ ค26. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาพหลังหล่อ (Ascast) กำลังขยาย 2000 เท่า

ภาพที่ ค27. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาพหลังหล่อ (Ascast) กำลังขยาย 2000 เท่า

ภาพที่ ค28. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

ภาพที่ ค29. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2000 เท่า

Ţ

20 Energy (keV)

Condition :: AgCu0.3Al-age 350oC-2h - 2000X No.2

ภาพที่ ค30. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3AI สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2000 เท่า

ภาพที่ ค31. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาพหลังหล่อ (Ascast) กำลังขยาย 500 เท่า

ภาพที่ ค32. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาพหลังหล่อ (Ascast) กำลังขยาย 2000 เท่า

Condition :: AgCu0.3Sn-ascast (no age) - 2000X No.2

ภาพที่ ค33. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาพหลังหล่อ (Ascast) กำลังขยาย 2000 เท่า

ภาพที่ ค34. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

ภาพที่ ค35. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2000 เท่า

ภาพที่ ค36. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2000 เท่า

ภาพที่ ค37. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 500 เท่า

Condition :: 0.2Sn-0.3Be-6.0Cu-ascast (no age) - 2500X No.1

ภาพที่ ค38. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 2500 เท่า

Condition :: 0.2Sn-0.3Be-6.0Cu-ascast (no age) - 2500X No.2

ภาพที่ ค39. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 2500 เท่า

ภาพที่ ค40. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

Condition :: 0.2Sn-0.3Be-6.0Cu-age 350oC-2h - 2500X No.1

ภาพที่ ค41. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

Condition :: 0.2Sn-0.3Be-6.0Cu-age 350oC-2h - 2500X No.2

ภาพที่ ค42. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.2Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

Condition :: 0.3Sn-0.3Be-5.9Cu-ascast (no age) - 500X

ภาพที่ ค43. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 500 เท่า

Condition :: 0.3Sn-0.3Be-5.9Cu-ascast (no age) - 2500X No.1

ภาพที่ ค44. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 2500 เท่า

Condition :: 0.3Sn-0.3Be-5.9Cu-ascast (no age) - 2500X No.2

ภาพที่ ค45. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 2500 เท่า

ภาพที่ ค46. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

Condition :: 0.3Sn-0.3Be-5.9Cu-age 350oC-2h - 2500X No.1

ภาพที่ ค47. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

Condition :: 0.3Sn-0.3Be-5.9Cu-age 350oC-2h - 2500X No.2

ภาพที่ ค48. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.3Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

ภาพที่ ค49. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 500 เท่า

Condition :: 0.5Sn-0.3Be-5.7Cu- ascast (no age) - 2500X No.1

ภาพที่ ค50. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 2500 เท่า

Condition :: 0.5Sn-0.3Be-5.7Cu- ascast (no age) - 2500X No.2

ภาพที่ ค51. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาพหลังหล่อ (As-cast) กำลังขยาย 2500 เท่า

Condition :: 0.5Sn-0.3Be-5.7Cu-age 350oC-2h - 500X

ภาพที่ ค52. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

Condition :: 0.5Sn-0.3Be-5.7Cu-age 350oC-2h - 2500X No.1

ภาพที่ ค53. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

Condition :: 0.5Sn-0.3Be-5.7Cu-age 350oC-2h - 2500X No.2

ภาพที่ ค54. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn สภาวะหลังผ่าน กระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

ภาพที่ ค55. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3AI สภาพหลัง หล่อ (As-cast) กำลังขยาย 500 เท่า

ภาพที่ ค56. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3AI สภาพหลัง หล่อ (As-cast) กำลังขยาย 2500 เท่า

245

ภาพที่ ค57. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al สภาวะหลัง ผ่านกระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 500 เท่า

Condition :: 0.5Sn-0.3Be-5.4Cu-0.3Al -age 350oC-2h - 2500X No.1

ภาพที่ ค58. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al สภาวะหลัง ผ่านกระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า

Condition :: 0.5Sn-0.3Be-5.4Cu-0.3Al -age 350oC-2h - 2500X No.2

ภาพที่ ค59. ผลการวิเคราะห์การกระจายตัวของธาตุผสมด้วยเทคนิค X-ray Mapping และกราฟ EDX เพื่อดูปริมาณธาตุผสม ของชุดโลหะผสมเงินสเตอร์ลิง AgCu0.3Be0.5Sn0.3Al สภาวะหลัง ผ่านกระบวนการทางความร้อนโดยการอบบ่ม (Aging) ที่อุณหภูมิ 350°C เป็นเวลา 120 นาที กำลังขยาย 2500 เท่า ภาพที่ ค60. ขนาดเกรนของชิ้นงานสภาพหลังหล่อที่ได้หลังการกัดกรดและถ่ายด้วยกล้องธรรมดา

P60 – 1. AgCu0.3Sn-Ascast P60 – 2. AgCu0.3Be0.5Sn0.3Al -Ascast

ภาพที่ ค61. ขนาดเกรนของชิ้นงานสภาพหลังหล่อหลังการกัดกรดและถ่ายภาพด้วยกล้อง LCD

ฅ61 – 1. AgCu0.3Sn-Ascast

*** <u>หมายเหตุ</u> : 1 ช่องเท่ากับ 1 มิลลิเมตร

ภาคผนวก ง.

การทดสอบสมบัติการต้านทานการหมองแสดงสีและความหมอง ก่อน – หลังการทดสอบ

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University 250

ตารางที่ ง1. ชิ้นงานก่อนทดสอบสมบัติต้านทานการหมอง (ปัดเงาแล้วสภาพหลังหล่อ/หลังผ่าน กระบวนการอบบ่ม) - ชุดที่ 1

As-cast	Age 350°C 30m	Age 350°C 60m	Age 400°C 30m	Age 400°C 60m	Condition Composition
			-		AgCu
					AgCu0.3Al
		· Phil			AgCu0.3Sn
					AgCu0.3Be0.2Sn
					AgCu0.3Be0.3Sn
					AgCu0.3Be0.5Sn
					AgCu0.3Be0.5Sn 0.3Al

ตารางที่ ง2. ชิ้นงานก่อนทดสอบสมบัติต้านทานการหมอง (ปัดเงาแล้วสภาพหลังหล่อ/หลังผ่าน กระบวนการอบบ่ม) - ชุดที่ 2

As-cast	Age 350°C 30m	Age 350°C 60m	Age 400°C 30m	Age 400°C 60m	Condition Composition
					AgCu
					AgCu0.3Al
				5	AgCu0.3Sn
					AgCu0.3Be0.2Sn
					AgCu0.3Be0.3Sn
					AgCu0.3Be0.5Sn
					AgCu0.3Be0.5Sn 0.3Al

ตารางที่ ง3. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง (สภาพหลังหล่อ) โดยการ ทดสอบใช้เวลา 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด

AgCu	AgCu0.3Al	AgCu0.3Sn	AgCu0.3Be 0.2Sn	AgCu0.3Be 0.3Sn	AgCu0.3Be 0.5Sn	AgCu0.3 Be0.5Sn 0.3Al	Condition Tarnish
	-						0 Hours
							0.5 Hours
							1 Hours
							2 Hours
							3 Hours
	-						4 Hours
							12 Hours
							24 Hours

ภาพที่ ง1 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้น จาก 0.5, 1, 2, 3, 4, 12, 24 ชั่วโมงในชิ้นงานสภาพหล่อ(As-cast) โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด

ตารางที่ ง4. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง โดยชิ้นงานผ่านกระบวนการ อบบ่ม ใช้อุณหภูมิ 350°C เป็นเวลา 30 นาที (Age 350°C – 30 min), ทดสอบการหมองใช้เวลา 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด

AgCu	AgCu0.3Al	AgCu0.3Sn	AgCu0.3Be 0.2Sn	AgCu0.3Be 0.3Sn	AgCu0.3Be 0.5Sn	AgCu0.3Be 0.5Sn0.3Al	Condition Tarnish
							0 Hours
							0.5 Hours
	·						1 Hours
							2 Hours
	-	1					3 Hours
***							4 Hours
							12 Hours
							24 Hours

ภาพที่ ง2 ค่าการเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้น จาก 0.5, 1, 2, 3, 4, 12, 24 ชั่วโมงของชิ้นงานผ่านการอบบ่มอุณหภูมิ 350°C เวลา 30 นาที (Aging 350°C, 30 min) โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด

ตารางที่ ง5. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง โดยชิ้นงานผ่านกระบวนการ อบบ่ม ใช้อุณหภูมิ 350°C เป็นเวลา 60 นาที (Age 350°C – 60 min), ทดสอบการหมองใช้เวลา 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด

AgCu	AgCu0.3Al	AgCu0.3Sn	AgCu0.3Be 0.2Sn	AgCu0.3Be 0.3Sn	AgCu0.3Be 0.5Sn	AgCu0.3Be 0.5Sn0.3Al	Condition Tarnish
		124					0 Hours
							0.5 Hours
					M		1 Hours
							2 Hours
							3 Hours
							4 Hours
							12 Hours
				2			24 Hours

ภาพที่ ง3 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้นจาก 0.5, 1, 2, 3, 4, 12, 24 ชั่วโมงของชิ้นงานผ่านการอบบ่มอุณหภูมิ 350°C เวลา 60 นาที (Aging 350°C, 60 min) โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด

ตารางที่ ง6. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง โดยชิ้นงานผ่านกระบวนการ อบบ่ม ใช้อุณหภูมิ 400°C เป็นเวลา 30 นาที (Age 400°C – 30 min), ทดสอบการหมองใช้เวลา 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด

AgCu	AgCu0.3Al	AgCu0.3Sn	AgCu0.3B e0.2Sn	AgCu0.3Be 0.3Sn	AgCu0.3Be 0.5Sn	AgCu0.3Be 0.5Sn0.3Al	Condition Tarnish
	·						0 Hours
							0.5 Hours
	No.						1 Hours
							2 Hours
	•						3 Hours
		2.1					4 Hours
							12 Hours
							24 Hours

ภาพที่ ง4 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้นจาก 0.5, 1, 2, 3, 4, 12, 24 ชั่วโมงของชิ้นงานผ่านการอบบ่มอุณหภูมิ 400°C เวลา 30 นาที (Aging 400°C, 30 min) โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด ตารางที่ ง7. ชิ้นงานก่อนและหลังทดสอบสมบัติต้านทานการหมอง โดยชิ้นงานผ่านกระบวนการ อบบ่ม ใช้อุณหภูมิ 400°C เป็นเวลา 60 นาที (Age 400°C – 60 min), ทดสอบการหมองใช้เวลา 0, 0.5, 1, 2, 3, 4, 12 และ 24 ชั่วโมง ของโลหะผสมเงินสเตอร์ลิงทั้งหมด 7 ชุด

AgCu	AgCu0.3Al	AgCu0.3Sn	AgCu0.3Be 0.2Sn	AgCu0.3Be 0.3Sn	AgCu0.3Be 0.5Sn	AgCu0.3Be 0.5Sn0.3Al	Condition Tarnish
							0 Hours
							0.5 Hours
					A A		1 Hours
							2 Hours
				·	**		3 Hours
							4 Hours
							12 Hours
							24 Hours

Alloy Condition

ภาพที่ ง5 ค่าเปลี่ยนแปลงสี dE* ของชิ้นงานที่เปลี่ยนแปลงไปตามเวลาทดสอบที่เพิ่มมากขึ้นจาก 0.5, 1, 2, 3, 4, 12, 24 ชั่วโมงของชิ้นงานผ่านการอบบ่มอุณหภูมิ 400°C เวลา 60 นาที (Aging 400°C, 60 min) โลหะผสมเงินสเตอร์ลิงทั้ง 7 ชุด

** Aging time 0 minute: ND = Not Detect (ค่าต่ำกว่าสเกล HRA Rockwell) **

ภาพที่ จ1 ค่าความแข็งแบบกราฟแท่งที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60 ,120 นาที (Aging 350°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

** Aging time 0 minute: ND = Not Detect (ค่าต่ำกว่าสเกล HRA Rockwell) **

ภาพที่ จ2 ค่าความแข็งแบบกราฟแท่งที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60 ,120 นาที (Aging 400°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ3 ค่าความแข็งแบบกราฟเส้นที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 350°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ4 ค่าความแข็งแบบกราฟเส้นที่ได้จากการทดสอบความแข็งแบบร็อคเวลล์ (HRA) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 400°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ5 ค่าความเป็นสปริง (Modulus of resilience) ที่ได้จากการทดสอบแรงดึง (Tensile test) ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60 ,120 นาที (Aging 350°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ6 ค่าความเป็นสปริง (Modulus of resilience) ที่ได้จากการทดสอบแรงดึง (Tensile Test) ของชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 400°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ7 ค่าความเค้น ณ จุดคราก (Yield Stress) ที่ได้จากการทดสอบแรงดึง (Tensile test) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 350°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ8 ค่าความเค้น ณ จุดคราก (Yield Stress) ที่ได้จากการทดสอบแรงดึง (Tensile test) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 400°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ9 ค่าเปอร์เซ็นต์การยืดตัว (Elongation) ที่ได้จากการทดสอบแรงดึง (Tensile test) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 350°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 350°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ภาพที่ จ10 ค่าเปอร์เซ็นต์การยืดตัว (Elongation) ที่ได้จากการทดสอบแรงดึง (Tensile test) ของ ชิ้นงานที่ผ่านกระบวนการการอบบ่มที่อุณหภูมิ 400°C เป็นเวลา 10, 15, 30, 60, 120 นาที (Aging 400°C, Time 10, 15, 30, 60, 120 minutes) ของโลหะผสมเงินสเตอร์ลิง 7 ชุดโลหะผสม

ตารางที่ จ1. ค่าความแข็งแรงดึงสูงสุด (Ultimate Tensile Strength, UTS) ของชิ้นงานทดสอบ การต้านทานแรงดึงทั้ง 7 ชุดโลหะผสม

Sample Reference	UTS (N)	AVG	SD	
AgCu-ascast-1	2383.541841			
AgCu-ascast-2	2104.796838			
AgCu-ascast-3	1445.224842	2281.642023	153.7442684	
AgCu-ascast-4	2356.587389			
AgCu-ascast-5	1952.268923			
AgCu-350c-10m-1	4178.580794			
AgCu-350c-10m-2	4069.275676	3774.863211	607.0634848	
AgCu-350c-10m-3	3076.733164			
AgCu-350c-15m-1	4276.613066			
AgCu-350c-15m-2	3969.639144	4070.655138	178.3755987	
AgCu-350c-15m-3	3965.713205			
AgCu-350c-30m-1	3897.114078		74.31598101	
AgCu-350c-30m-2	3912.294308	3947.386177		
AgCu-350c-30m-3	4032.750144			
AgCu-350c-60m-1	4007.196771			
AgCu-350c-60m-2	3966.192795	4004.346942	36.81205882	
AgCu-350c-60m-3	4039.65126			
AgCu-350c-120m-1	3934.510081			
AgCu-350c-120m-2	3787.495999	3947.703964	167.1958002	
AgCu-350c-120m-3	4121.105811			
AgCu-400c-10m-1	3821.169554			
AgCu-400c-10m-2	3775.781369	3814.355105	35.65825356	
AgCu-400c-10m-3	3846.114392			
AgCu-400c-15m-1	3602.263082			
AgCu-400c-15m-2	3730.538468	3660.897043	64.84224572	
AgCu-400c-15m-3	3649.889579			
AgCu-400c-30m-1	3694.823442			
AgCu-400c-30m-2	3805.538101	3763.315682	59.84990847	
AgCu-400c-30m-3	3789.585503			

Sample Reference	UTS (N)	AVG	SD	
AgCu-400c-60m-1	3684.779074			
AgCu-400c-60m-2	3570.312646	3638.63787	60.37167257	
AgCu-400c-60m-3	3660.821891			
AgCu-400c-120m-1	3598.061593			
AgCu-400c-120m-2	3463.992729	3558.872819	82.58181999	
AgCu-400c-120m-3	3614.564134			
AgCu0.3Al-ascast-1	2481.266821			
AgCu0.3Al-ascast-2	2449.33592	2452.00929	28.01667018	
AgCu0.3Al-ascast-3	2425.42513			
AgCu0.3Al-350c-10m-1	3678.353209			
AgCu0.3Al-350c-10m-2	3790.754818	3725.368461	58.40936129	
AgCu0.3Al-350c-10m-3	3706.997358			
AgCu0.3Al-350c-15m-1	3572.485581		356.7603531	
AgCu0.3Al-350c-15m-2	3210.739547	3569.154015		
AgCu0.3Al-350c-15m-3	3924.236919			
AgCu0.3Al-350c-30m-1	3419.472991		64.03128384	
AgCu0.3Al-350c-30m-2	3447.961844	3469.75953		
AgCu0.3Al-350c-30m-3	3541.843755			
AgCu0.3Al-350c-60m-1	3650.595863			
AgCu0.3Al-350c-60m-2	3586.911885	3523.880778	167.381676	
AgCu0.3Al-350c-60m-3	3334.134585			
AgCu0.3Al-350c-120m-1	3407.090425			
AgCu0.3Al-350c-120m-2	3366.035166	3424.637659	69.06858386	
AgCu0.3Al-350c-120m-3	3500.787386			
AgCu0.3Al-400c-10m-1	3170.676162			
AgCu0.3Al-400c-10m-2	3168.479289	3209.050467	68.3776176	
AgCu0.3Al-400c-10m-3	3287.99595			
AgCu0.3Al-400c-15m-1	3396.600757			
AgCu0.3Al-400c-15m-2	3347.481919	3313.092857	105.0139762	
AgCu0.3Al-400c-15m-3	3195.195896			
AgCu0.3Al-400c-30m-1	3190.474599	2000 704 447	140,0000050	
AgCu0.3Al-400c-30m-2	3383.972109	3228.781447	140.0238952	

Sample Reference	UTS (N)	AVG	SD	
AgCu0.3Al-400c-30m-3	3111.897632			
AgCu0.3Al-400c-60m-1	3131.475192			
AgCu0.3Al-400c-60m-2	2964.55671	3084.487168	104.6704059	
AgCu0.3Al-400c-60m-3	3157.429602			
AgCu0.3Al-400c-120m-1	3233.798543			
AgCu0.3Al-400c-120m-2	3009.185773	3142.169887	117.8788769	
AgCu0.3Al-400c-120m-3	3183.525345			
AgCu0.3Sn-ascast	2458.311496			
AgCu0.3Sn-ascast-2	633.7831255	2085.917294	526.6449299	
AgCu0.3Sn-ascast-3	1713.523093			
AgCu0.3Sn-350c-10m-1	1850.309071			
AgCu0.3Sn-350c-10m-2	1537.97218	1746.648231	180.7200306	
AgCu0.3Sn-350c-10m-3	1851.663443			
AgCu0.3Sn-350c-15m-1	1125.940313		71.52755135	
AgCu0.3Sn-350c-15m-2	2835.875487	2785.29787		
AgCu0.3Sn-350c-15m-3	2734.720254			
AgCu0.3Sn-350c-30m-1	2905.156469	2005 156460	0.000000000	
AgCu0.3Sn-350c-30m-2	765.452507	2905.156469		
AgCu0.3Sn-350c-60m-1	3139.326343			
AgCu0.3Sn-350c-60m-2	2058.720339	2599.023341	764.1038332	
AgCu0.3Sn-350c-60m-3	1720.932999			
AgCu0.3Sn-350c-120m-1	1317.765029			
AgCu0.3Sn-350c-120m-2	1273.623402	1781.17986	841.1754002	
AgCu0.3Sn-350c-120m-3	2752.151149			
AgCu0.3Sn-400c-10m-1	2456.605505			
AgCu0.3Sn-400c-10m-2	3064.620012	2760.612759	429.931181	
AgCu0.3Sn-400c-10m-3	786.778536			
AgCu0.3Sn-400c-15m-1	760.2907515			
AgCu0.3Sn-400c-15m-2	2852.420794	2364.28364	690.3301839	
AgCu0.3Sn-400c-15m-3	1876.146485			
AgCu0.3Sn-400c-30m-1	3178.587183	0704 040004	641 7040050	
AgCu0.3Sn-400c-30m-2	2271.037399	2724.812291	041.7340059	

Sample Reference	UTS (N)	AVG	SD	
AgCu0.3Sn-400c-30m-3	462.0690142			
AgCu0.3Sn-400c-60m-1	871.8570784			
AgCu0.3Sn-400c-60m-2	2361.60621	2465.803299	147.3569359	
AgCu0.3Sn-400c-60m-3	2570.000387			
AgCu0.3Sn-400c-120m-1	3166.49171			
AgCu0.3Sn-400c-120m-2	1431.749669	3054.148054	158.8779222	
AgCu0.3Sn-400c-120m-3	2941.804398			
AgCu0.3Be0.2Sn-ascast-1	2203.531168			
AgCu0.3Be0.2Sn-ascast-2	2267.251893	2230.548972	32.94592253	
AgCu0.3Be0.2Sn-ascast-3	2220.863854			
AgCu0.3Be0.2Sn-350c-10m-1	2492.700503			
AgCu0.3Be0.2Sn-350c-10m-2	2330.7971	2395.586739	85.65520872	
AgCu0.3Be0.2Sn-350c-10m-3	2363.262613			
AgCu0.3Be0.2Sn-350c-15m-1	2525.699664			
AgCu0.3Be0.2Sn-350c-15m-2	2368.413445	2462.525871	83.08211602	
AgCu0.3Be0.2Sn-350c-15m-3	2493.464505			
AgCu0.3Be0.2Sn-350c-30m-1	2734.111446			
AgCu0.3Be0.2Sn-350c-30m-2	2598.826593	2674.249861	68.97189522	
AgCu0.3Be0.2Sn-350c-30m-3	2689.811543			
AgCu0.3Be0.2Sn-350c-60m-1	2804.546113			
AgCu0.3Be0.2Sn-350c-60m-2	2980.382772	2872.03763	94.77023136	
AgCu0.3Be0.2Sn-350c-60m-3	2831.184004			
AgCu0.3Be0.2Sn-350c-120m-1	2935.231131			
AgCu0.3Be0.2Sn-350c-120m-2	3033.552912	3058.379834	137.256629	
AgCu0.3Be0.2Sn-350c-120m-3	3206.355458			
AgCu0.3Be0.2Sn-400c-10m-1	2545.343694			
AgCu0.3Be0.2Sn-400c-10m-2	2635.695037	2520.509641	129.4021862	
AgCu0.3Be0.2Sn-400c-10m-3	2380.490192			
AgCu0.3Be0.2Sn-400c-15m-1	2766.05815			
AgCu0.3Be0.2Sn-400c-15m-2	2840.244825	2772.862795	64.25052762	
AgCu0.3Be0.2Sn-400c-15m-3	2712.285411			
AgCu0.3Be0.2Sn-400c-30m-1	2795.750058	2861.07033	108.1553546	

Sample Reference	UTS (N)	AVG	SD
AgCu0.3Be0.2Sn-400c-30m-2	2985.9125		
AgCu0.3Be0.2Sn-400c-30m-3	2801.548433		
AgCu0.3Be0.2Sn-400c-60m-1	2928.950259		
AgCu0.3Be0.2Sn-400c-60m-2	2840.020329	2906.406487	58.47007046
AgCu0.3Be0.2Sn-400c-60m-3	2950.248872		
AgCu0.3Be0.2Sn-400c-120m-1	2953.747789		
AgCu0.3Be0.2Sn-400c-120m-2	3030.944526	2872.626027	210.9231212
AgCu0.3Be0.2Sn-400c-120m-3	2633.185765		
AgCu0.3Be0.3Sn-ascast-1	2322.030998		
AgCu0.3Be0.3Sn-ascast-2	2257.120016	0000 104000	77 00705050
AgCu0.3Be0.3Sn-ascast-3	2437.862646	2328.104809	11.03100000
AgCu0.3Be0.3Sn-ascast-4	2295.645575		
AgCu0.3Be0.3Sn-350c-10m-1	2363.301414		
AgCu0.3Be0.3Sn-350c-10m-2	2562.212487	2505.495938	123.9809134
AgCu0.3Be0.3Sn-350c-10m-3	2590.973914		
AgCu0.3Be0.3Sn-350c-15m-1	2947.287461		206.2168034
AgCu0.3Be0.3Sn-350c-15m-2	2534.858495	2740.508216	
AgCu0.3Be0.3Sn-350c-15m-3	2739.378693		
AgCu0.3Be0.3Sn-350c-30m-1	3010.107738		
AgCu0.3Be0.3Sn-350c-30m-2	2607.17978	2828.636356	204.4183131
AgCu0.3Be0.3Sn-350c-30m-3	2868.62155		
AgCu0.3Be0.3Sn-350c-60m-1	3068.088017		
AgCu0.3Be0.3Sn-350c-60m-2	3197.260198	3132.674107	91.33852499
AgCu0.3Be0.3Sn-350c-60m-3	2745.39281		
AgCu0.3Be0.3Sn-350c-120m-1	3386.873777		
AgCu0.3Be0.3Sn-350c-120m-2	3323.36147	3305.300231	91.94439079
AgCu0.3Be0.3Sn-350c-120m-3	3205.665447		
AgCu0.3Be0.3Sn-400c-10m-1	2779.381719		
AgCu0.3Be0.3Sn-400c-10m-2	2774.666767	2764.758976	21.37447149
AgCu0.3Be0.3Sn-400c-10m-3	2740.228442		
AgCu0.3Be0.3Sn-400c-15m-1	2722.577976	2054 51600	156 6210204
AgCu0.3Be0.3Sn-400c-15m-2	2813.353545	2004.01089	156.6312384

Sample Reference	UTS (N)	AVG	SD
AgCu0.3Be0.3Sn-400c-15m-3	3027.619148		
AgCu0.3Be0.3Sn-400c-30m-1	2888.287883	2931.000022	37.32044073
AgCu0.3Be0.3Sn-400c-30m-2	2947.39926		
AgCu0.3Be0.3Sn-400c-30m-3	2957.312924		
AgCu0.3Be0.3Sn-400c-60m-1	2931.102411		
AgCu0.3Be0.3Sn-400c-60m-2	2836.633445	2929.818697	92.55007295
AgCu0.3Be0.3Sn-400c-60m-3	3021.720236		
AgCu0.3Be0.3Sn-400c-120m-1	2931.090886		
AgCu0.3Be0.3Sn-400c-120m-2	2939.021819	2924.614551	18.51536142
AgCu0.3Be0.3Sn-400c-120m-3	2903.730947		
AgCu0.3Be0.5Sn-ascast-1	2189.021797		
AgCu0.3Be0.5Sn-ascast-2	2452.262409	2240.045000	110 7022120
AgCu0.3Be0.5Sn-ascast-3	2329.089643	2349.845968	119.7933130
AgCu0.3Be0.5Sn-ascast-4	2429.010023		
AgCu0.3Be0.5Sn-350c-10m-1	2828.578839		169.1827982
AgCu0.3Be0.5Sn-350c-10m-2	2377.980958	2708.948535	
AgCu0.3Be0.5Sn-350c-10m-3	2589.318231		
AgCu0.3Be0.5Sn-350c-15m-1	2529.584477		
AgCu0.3Be0.5Sn-350c-15m-2	2646.667516	2527.261149	120.5848188
AgCu0.3Be0.5Sn-350c-15m-3	2405.531453		
AgCu0.3Be0.5Sn-350c-30m-1	2624.343212		
AgCu0.3Be0.5Sn-350c-30m-2	2722.185345	2597.458841	140.1166074
AgCu0.3Be0.5Sn-350c-30m-3	2445.847967		
AgCu0.3Be0.5Sn-350c-60m-1	2841.713206		
AgCu0.3Be0.5Sn-350c-60m-2	2959.25514	3027.781534	228.1838757
AgCu0.3Be0.5Sn-350c-60m-3	3282.376257		
AgCu0.3Be0.5Sn-350c-120m-1	2801.981135		
AgCu0.3Be0.5Sn-350c-120m-2	2792.099212	2795.580698	5.55007208
AgCu0.3Be0.5Sn-350c-120m-3	2792.661748		
AgCu0.3Be0.5Sn-400c-10m-1	2809.309948		
AgCu0.3Be0.5Sn-400c-10m-2	2635.144343	2759.428099	108.3288854
AgCu0.3Be0.5Sn-400c-10m-3	2833.830007		

Sample Reference	UTS (N)	AVG	SD
AgCu0.3Be0.5Sn-400c-15m-1	2553.377088		
AgCu0.3Be0.5Sn-400c-15m-2	2567.923981	2653.791543	161.4888393
AgCu0.3Be0.5Sn-400c-15m-3	2840.073559		
AgCu0.3Be0.5Sn-400c-30m-1	3016.829436		
AgCu0.3Be0.5Sn-400c-30m-2	2915.647104	2938.214094	70.11083603
AgCu0.3Be0.5Sn-400c-30m-3	2882.165744		
AgCu0.3Be0.5Sn-400c-60m-1	2864.099704		
AgCu0.3Be0.5Sn-400c-60m-2	3084.852615	2996.940459	117.0337393
AgCu0.3Be0.5Sn-400c-60m-3	3041.869056		
AgCu0.3Be0.5Sn-400c-120m-1	2849.392608		
AgCu0.3Be0.5Sn-400c-120m-2	2938.530718	2893.961663	63.03016231
AgCu0.3Be0.5Sn-400c-120m-3	2510.852244		
AgCu0.3Be0.5Sn0.3Al-ascast-1	2368.366891		
AgCu0.3Be0.5Sn0.3Al-ascast-2	2035.440673	0000 001700	00 70070000
AgCu0.3Be0.5Sn0.3Al-ascast-3	2410.416706	2389.391798	29.13310929
AgCu0.3Be0.5Sn0.3Al-ascast-4	1685.627775		
AgCu0.3Be0.5Sn0.3Al-350c-10m-1	2313.333429		
AgCu0.3Be0.5Sn0.3Al-350c-10m-2	4193.832953	4102.968105	128.5022996
AgCu0.3Be0.5Sn0.3Al-350c-10m-3	4012.103258		
AgCu0.3Be0.5Sn0.3Al-350c-15m-1	3686.033357		
AgCu0.3Be0.5Sn0.3Al-350c-15m-2	3268.86019	3728.703982	60.34537687
AgCu0.3Be0.5Sn0.3Al-350c-15m-3	3771.374607		
AgCu0.3Be0.5Sn0.3Al-350c-30m-1	3757.055638		
AgCu0.3Be0.5Sn0.3Al-350c-30m-2	3747.092631	3752.074134	7.04491011
AgCu0.3Be0.5Sn0.3Al-350c-30m-3	3191.118375		
AgCu0.3Be0.5Sn0.3Al-350c-60m-1	3290.541521		
AgCu0.3Be0.5Sn0.3Al-350c-60m-2	3541.612472	3418.271782	125.593021
AgCu0.3Be0.5Sn0.3Al-350c-60m-3	3422.661354		
AgCu0.3Be0.5Sn0.3Al-350c-120m-1	2946.137877		
AgCu0.3Be0.5Sn0.3Al-350c-120m-2	3207.179032	3008.796234	175.6458478
AgCu0.3Be0.5Sn0.3Al-350c-120m-3	2873.071794		
AgCu0.3Be0.5Sn0.3Al-400c-10m-1	2502.301475	2648.573739	213.9404559

Sample Reference	UTS (N)	AVG	SD
AgCu0.3Be0.5Sn0.3Al-400c-10m-2	2894.115895		
AgCu0.3Be0.5Sn0.3Al-400c-10m-3	2549.303846		
AgCu0.3Be0.5Sn0.3Al-400c-15m-1	3406.412212	3323.996176	116.5538753
AgCu0.3Be0.5Sn0.3Al-400c-15m-2	2689.57539		
AgCu0.3Be0.5Sn0.3Al-400c-15m-3	3241.580141		
AgCu0.3Be0.5Sn0.3Al-400c-30m-1	2221.105468		
AgCu0.3Be0.5Sn0.3Al-400c-30m-2	3097.973285	3029.452593	96.90289204
AgCu0.3Be0.5Sn0.3Al-400c-30m-3	2960.931901		
AgCu0.3Be0.5Sn0.3Al-400c-60m-1	3005.085504		
AgCu0.3Be0.5Sn0.3Al-400c-60m-2	2972.347872	3050.165406	107.6836702
AgCu0.3Be0.5Sn0.3Al-400c-60m-3	3173.062841		
AgCu0.3Be0.5Sn0.3Al-400c-120m-1	3018.174804		
AgCu0.3Be0.5Sn0.3Al-400c-120m-2	2847.315242	2936.529683	85.68091079
AgCu0.3Be0.5Sn0.3Al-400c-120m-3	2944.099003		

ตารางที่ จ2. ค่าความแข็งจากการทดสอบความแข็งร็อคเวลล์ (Scale A)

ชุด AgCu และ AgCu0.3Al

Sample	Point	Hardness(HRA)	Sample	Point	Hardness(HRA)
	1	-		1	-
	2	-		2	-
AgCu-ascast	3	-	AgCu0.3Al-ascast	3	-
	4	-		4	-
	5	-		5	-
AVG		-	AVG		-
SD		-	SD		-
	1	39	1	1	38.2
	2	42.9		2	36.9
AgCu-350-10m	3	43	AgCu0.3AI-350-	3	37.9
	4 -	42.8	Tom	4	37.2
	5 -	43.8		5	38.4
AVG		42.3	AVG		37.72
SD		1.886796226	SD		0.645755372
	1	39.9	AgCu0.3AI-350-	1	37.4
	2	43.6		2	37.5
AgCu-350-15m	3	41.9		3	37.5
	4	42.2		4	37
	5	41.6	วิทยาลัย	5	37.3
AVG		41.84	AVG		37.34
SD		1.327780102	SD		0.207364414
	1	42.2		1	37.4
	2	42.8		2	37
AgCu-350-30m	3	43.2	AgCu0.3AI-350-	3	35.9
	4	42.3	3011	4	36.9
	5	43.2		5	37.8
AVG		42.74	AVG		37
SD		0.477493455	SD		0.71063352
	1	44		1	39.4
	2	44.5		2	36.6
AgCu-350-1h	3	44	AgCu0.3Al-350-1h	3	38.8
	4	44.1		4	36.1
	5	44.9		5	38.7
AVG		44.3	AVG		37.92

SD		0.393700394	SD		1.46867287
	1	42.8		1	36.6
	2	41.8		2	36.2
AgCu-350-2h	3	42.5	AgCu0.3Al-350-2h	3	37.9
	4	43.8		4	37
	5	42.9		5	37.2
AVG		42.76	AVG		36.98
SD		0.723187389	SD		0.641872261
	1	42.4		1	31.9
	2	42.5		2	38
AgCu-400-10m	3	44.7	AgCu0.3AI-400-	3	38
	4	43.5	TOM	4	37.5
	5	43.9	22	5	33.3
AVG		43.4	AVG		35.74
SD		0.969535971	SD		2.915990398
AgCu-400-15m	1 ⊿	44.1	- AgCu0.3Al-400- - 15m	1	37
	2 🥖	43.2		2	38.1
	3	43.1		3	37.9
	4	43.3		4	38.2
	5	43.1		5	37.9
AVG		43.36	AVG		37.82
SD		0.421900462	SD		0.47644517
	1	40.5	ີ່ແຜ່ວິສ	1	35.1
	2	43		2	37
AgCu-400-30m	3	43.2	AgCu0.3AI-400-	3	36.2
	4	43.5	3011	4	36.8
	5	41.7		5	36.2
AVG		42.38	AVG		36.26
SD		1.255786606	SD		0.740270221
	1	42.8		1	33.5
	2	42.9		2	33.4
AgCu-400-1h	3	42	AgCu0.3Al-400-1h	3	34.2
	4	42.7		4	35
	5	42.3		5	33.8
AVG		42.54	AVG		33.98
SD		0.378153408	SD		0.649615271

	1	41.2		1	33.9
	2	40.8		2	30.5
AgCu-400-2h	3	41.2	AgCu0.3AI-400-2h	3	33
	4	40.2		4	33.9
	5	40.5		5	33.5
AVG		40.78	AVG		32.96
SD		0.438178046	SD		1.42407865

ตารางที่ จ3. ค่าความแข็งจากการทดสอบความแข็งร็อคเวลล์ (Scale A)

ชุด AgCu0.3Sn และ AgCu0.3Be0.2Sn

Sample	Point	Hardness(HRA)	Sample	Point	Hardness(HRA)
	1 🚽	10.8		1	-
	2 🖉	13.5	A ~ C++0.2D=0.2Cm	2	-
AgCu0.3Sn-ascast	3 🖉	10.3	ascast	3	-
	4	13.7	ascast	4	-
	5	14.2		5	-
AVG		12.5	AVG		-
SD		1.8069311	SD		-
	1	22		1	20.3
	2	20.5	AgCu0.3Be0.2Sn- 350-10m	2	22.8
AgCu0.3Sn-350-10m	3	24.5		3	19.5
	4	23		4	18.5
	5	21.4		5	18.5
AVG		22.28	AVG		19.92
		1.538505769	SD		1.778201338
	1	26.3		1	5.7
	2	25.2	A	2	6.3
AgCu0.3Sn-350-15m	3	16.3	250-15m	3	7.5
	4	17.4	330 1311	4	8.3
	5	20.6		5	10.3
AVG		21.16	AVG		7.62
		4.494774744	SD		1.808867049
	1	33		1	27.7
AgCu0.3Sn-350-30m	2	35	350-30m	2	27.9
	3	33.9	550-5011	3	28

	4	36		4	30
	5	33.8		5	28.8
AVG		34.34	AVG		28.48
SD		1.169615321	SD		0.947100839
	1	32.8		1	25.7
	2	33.2		2	26
AgCu0.3Sn-350-1h	3	34.1	AgCu0.3Be0.2Sh-	3	28.7
	4	32.8	350-11	4	31.2
	5	33		5	31.5
AVG		33.18	AVG		28.62
SD		0.540370243	SD		2.754450943
	1	34		1	26.2
	2	32.2	AdCu0 2Po0 2Sp	2	24.3
AgCu0.3Sn-350-2h	3	32.2	AgCu0.3Be0.23II-	3	26.5
	4	31.1	350-211	4	26.3
	5 🥒	33.5		5	27.5
AVG		32.6	AVG		26.16
SD		1.155422001	SD		1.161034022
	1	31.2		1	92
	2	28.3	AgCu0.3Be0.2Sn-	2	99.5
AgCu0.3Sn-400-10m	3	30		3	91.2
	4	32.2	400-1011	4	96.3
	5	29	วินยาลัย	5	70
AVG		30.14	AVG		89.8
SD		1.586820721	SD		11.56697886
	1	27.5		1	19
	2	28.2	∆aCu0 3Be0 2Sn-	2	23.3
AgCu0.3Sn-400-15m	3	26.7	400-15m	3	22.2
	4	27.3	400 1011	4	23.6
	5	24.2		5	21.2
AVG		26.78	AVG		21.86
SD		1.538505769	SD		1.859569843
	1	24.9		1	19.1
	2	29.1	AaCu0 3Re0 2Sr-	2	22
AgCu0.3Sn-400-30m	3	29	400-30m	3	27.2
	4	29.7		4	26.2
	5	28.3		5	28.8
AVG		28.2	AVG		24.66

SD		1.910497317	SD		3.998499719
	1	31.2		1	29.5
	2	30.8	A aCu0 2Da0 2Sp	2	30.3
AgCu0.3Sn-400-1h	3	31.2	AgCu0.3Be0.25n-	3	31
	4	31.8	400-111	4	31.9
	5	31.8		5	30.6
AVG		31.36	AVG		30.66
SD		0.433589668	SD		0.884872872
	1	27		1	32.2
	2	28	A aCu0 2Da0 2Sp	2	32.6
AgCu0.3Sn-400-2h	3	30.1	AgCu0.3Be0.23H-	3	32.3
	4	27.8	400-211	4	31.1
	5	29.9	22	5	31
AVG		28.56	AVG		31.84
SD		1.368575902	SD		0.736885337

ตารางที่ จ4. ค่าความแข็งจากการทดสอบความแข็งร็อคเวลล์ (Scale A)

ชุด AgCu0.3Be0.3Sn และ AgCu0.3Be0.5Sn

Name	Point	Hardness(HRA)	Name	Point	Hardness(HRA)
	1	-	- XI	1	-
	2	/	A = C + C 2 D = C 5 C =	2	-
AgCu0.3Be0.3Sh-	3	เลงกร _ั ณ์มหา	AgCu0.3Be0.55n-	3	-
ascasi	4	LONGKORN		4	-
	5	-		5	-
AVG		-	AVG		-
SD		-	SD		-
	1	18.4		1	20
Accus 2Pol 2Sp	2	12.5		2	21.2
350-10m	3	16.8	350-10m	3	16.2
330 1011	4	16	550 1011	4	20.8
	5	15.9		5	17.2
AVG		15.92	AVG		19.08
SD		2.158008341	SD		2.243211983
	1	22		1	17.8
AgCu0.3Be0.3Sn-	2	22.9	AgCu0.3Be0.5Sn-	2	24
350-15m	3	18.9	350-15m	3	25
	4	21		4	22.8

	5	24.3		5	24.9
AVG		21.82	AVG		22.9
SD		2.033961652	SD		2.984962311
	1	33		1	21
	2	31.8		2	19.2
AgCu0.3Be0.3Sn-	3	29.5	AgCu0.3Be0.5Sn-	3	17.8
350-30m	4	31.5	350-30m	4	20.3
	5	30.5		5	20.2
AVG		31.26	AVG		19.7
SD		1.327780102	SD		1.240967365
	1	30.1		1	16.1
	2	33		2	15
AgCu0.3Be0.3Sh-	3	33	AgCu0.3Be0.5Sh-	3	22.5
350-1h	4	31	350-1h	4	24
	5	33.6		5	23
AVG		32.14	AVG		20.12
SD		1.505988048	SD		4.224570984
	1	29.9		1	20.5
	2	32.3		2	24.6
AgCu0.3Be0.3Sn-	3	32.5	AgCu0.3Be0.5Sh-	3	27.4
350-2n	4	33.1	350-2n	4	23.9
	5	33		5	25.4
AVG		32.16	AVG		24.36
SD		1.30690474	SD		2.524480145
(1	18.8	UNIVERSITY	1	21.8
	2	16.5		2	19.5
AgCu0.3Be0.3Sh-	3	18.2	AgCu0.3Be0.55n-	3	18.8
400-1011	4	16.7	400-1011	4	23.3
	5	17.5		5	23.2
AVG		17.54	AVG		21.32
SD		0.976217189	SD		2.082546518
	1	19.9		1	11.1
	2	19.8		2	5.8
AUCUU.3BEU.35N-	3	17.3	AyCuU.3BeU.55h-	3	3
400-1011	4	19.9	400-1011	4	8
	5	19.8		5	13.3
AVG		19.34	AVG		8.24
SD		1.141490254	SD		4.100365837

	1	26.3		1	28.2
	2	25.8	A ~ Cu0 2D = 0 5 Cm	2	26.2
400.20m	3	27	400.20m	3	28.2
400-3011	4	27.6	400-3011	4	27.8
	5	27.8		5	28.5
AVG		26.9	AVG		27.78
SD		0.848528137	SD		0.91760558
	1	30.8		1	31.2
Aacul 2Rol 2Sp	2	29	AaCu0 2Pa0 5Sp	2	31.1
400-1h	3	32	AgCu0.3Be0.55h-	3	31.1
400-111	4	31	400-111	4	30
	5	33.3		5	28.9
AVG		31.22	AVG		30.46
SD		1.588080602	SD		1.001498877
	1	29.9		1	26.8
Aacuo 2Roo 2Sp	2 🖉	33.1	Accu0 2Pc0 5Sp	2	29
400.2h	3 🥖	32.8	400.2h	3	28.9
400-211	4	32.6	400-211	4	26.3
	5	33.8		5	29.4
AVG		32.44	AVG		28.08
SD		1.490972837	SD		1.420211252
			AVI		

ตารางที่ จ5. ค่าความแข็งจากการทดสอบความแข็งร็อคเวลล์ (Scale A)

ชุด AgCu0.3Be0.5Sn0.3Al

Name	Point	Hardness(HRA)
	1	6.2
	2	7.4
AgCu0.3Be0.5Sn0.3Al-ascast	3	6.5
	4	8.2
	5	5.2
AVG		6.7
SD		1.148912529
- i -	1	48.8
	2	48.9
AgCu0.3Be0.5Sn0.3Al-350-10m	3	48.8
	4	49
	5	48.8
AVG		48.86
SD		0.089442719
	1	46.8
จุหาลงกรณ์มหาวิทยา	2	47
AgCu0.3Be0.5Sn0.3Al-350-15m	3	45.4
	4	45.3
	5	47.2
AVG		46.34
SD		0.915423399
	1	42.1
	2	43.7
AgCu0.3Be0.5Sn0.3Al-350-30m	3	43
	4	43.9
	5	42.9
AVG		43.12
SD		0.715541753

	1	43
	2	42.8
AgCu0.3Be0.5Sn0.3Al-350-1h	3	43.8
	4	43.7
	5	41.8
AVG		43.02
SD		0.80746517
	1	37.1
	2	37.1
AgCu0.3Be0.5Sn0.3Al-350-2h	3	40.9
	4	41.5
	5	42
AVG		39.72
SD		2.423220997
-////202	1	44
	2	45.1
AgCu0.3Be0.5Sn0.3Al-400-10m	3	45.4
	5 4	44.5
	5	44.2
AVG		44.64
SD		0.594138031
	1	44.9
	2	41.2
AgCu0.3Be0.5Sn0.3Al-400-15m	3	45.5
	4	45.2
	5	43
AVG		43.96
SD		1.825650569
	1	41.8
	2	42.2
AgCu0.3Be0.5Sn0.3Al-400-30m	3	44.1
	4	40.05
	5	41.5

AVG		41.93
SD		1.459280645
	1	38
	2	37.7
AgCu0.3Be0.5Sn0.3Al-400-1h	3	38.1
	4	38.2
	5	37.5
AVG		37.9
SD		0.291547595
SD	1	0.291547595 36.5
SD	1	0.291547595 36.5 34.7
SD AgCu0.3Be0.5Sn0.3Al-400-2h	1 2 3	0.291547595 36.5 34.7 33
SD AgCu0.3Be0.5Sn0.3Al-400-2h	1 2 3 4	0.291547595 36.5 34.7 33 36.4
SD AgCu0.3Be0.5Sn0.3Al-400-2h	1 2 3 4 5	0.291547595 36.5 34.7 33 36.4 36.2
SD AgCu0.3Be0.5Sn0.3Al-400-2h AVG	1 2 3 4 5	0.291547595 36.5 34.7 33 36.4 36.2 35.36

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ประวัติผู้เขียนวิทยานิพนธ์

ชื่อ-นามสกุล: นวรัตน์ ไชยฤกษ์ บุตรนายบำรุง ไชยฤกษ์และนางสุจิตรา ไชยฤกษ์ วันเดือนปีเกิด: วันที่ 7 พฤศจิกายน พ.ศ. 2531 ที่อยู่: 83 หมู่ที่ 8 ถ.ตรัง-ปะเหลียน ต.ท่าข้าม อ.ปะเหลียน จ.ตรัง 92120 วุฒิการศึกษา:

สำเร็จการศึกษาระดับปริญญาบัณฑิต วิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2553
หลังสำเร็จการศึกษาได้เข้าศึกษาต่อในระดับบัณฑิตศึกษา หลักสูตรวิศวกรรมมหาบัณฑิต สาขาวิชาวิศวกรรมโลหการและวัสดุ ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2555

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University