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THAI ABSTRACT 

บาร์บาร่า แอกนีสกา ซูชิโอ : การประมาณน า้หนกัของรถบรรทกุขณะเคล่ือนท่ีจากคา่
ความเร่งสะพาน (WEIGHT ESTIMATION OF MOVING TRUCK FROM BRIDGE 
ACCELERATIONS) อ.ท่ีปรึกษาวิทยานิพนธ์หลกั: รศ. ดร.ทศพล ป่ินแก้ว{, 73 หน้า. 

น า้หนกัรถในโครงข่ายจราจรเป็นข้อมูลส าคญัในการออกแบบและวางแผนบ ารุงรักษา
ถนนและสะพาน แม้มีหลายวิธีท่ีจะใช้หาน า้หนกัรถบรรทกุ วิธีการใช้สะพานชัง่น า้หนกั (B-WIM) 
ได้รับความนิยมมากขึน้เน่ืองจากผู้ ขับรถไม่สามารถมองเห็นและระบบสามารถเคล่ือนย้ายได้  
อย่างไรก็ดีระบบ B-WIM นีม้กัใช้สญัญาณจากหวัวดัความเครียดท่ีติดตัง้ใต้สะพานมาประมาณ
น า้หนกัรถ การวิจยันีจ้ึงศกึษาความเห็นไปได้และประสิทธิภาพของระบบ  B-WIM ท่ีใช้สญัญาณ
ความเร่งของสะพานแทน เพราะหวัวดัความเร่งติดตัง้ได้ง่ายกว่าและมีราคาถกูกว่า ส าหรับวิธีการ
หาน า้หนกัรถได้น าวิธีการ average acceleration discrete algorithm ซึ่งใช้หาคา่แรงกระท าตอ่
อาคารได้ดีมาพฒันาและปรับใช้กบักรณีท่ีแรงกระท าตอ่สะพานจากรถมีการเคล่ือนท่ี ในการศกึษา
ได้จ าลองปฏิสมัพนัธ์ของรถและสะพานด้วยสมการคณิตศาสตร์ แล้วน าคา่ความเร่งของสะพานท่ี
ได้ไปใช้ประมาณคา่น า้หนกัรถท่ีแล่นผ่านสะพาน โดยกระบวนการ inverse identification เพ่ือให้
คา่คาดการณ์ความเร่งใกล้เคียงกบัคา่ความเร่งท่ีเกิดขึน้มากท่ีสดุ งานวิจยันีพ้ิจารณาสะพานแบบ
ช่วงเดียวมีรถบรรทกุเคล่ือนท่ีผ่าน ผลการหาคา่น า้หนกับรรทกุถกูน าไปเปรียบเทียบกบัคา่น า้หนกั
จริงกรณีท่ีรถมีระยะห่างเพลา น า้หนกับรรทกุ และความเร็วต่างๆ สุดท้ายจึงอภิปรายถึงความ
เป็นไปได้และประสิทธิภาพในการใช้คา่ความเร่งแทนคา่ความเครียดในการประมาณน า้หนกัของ
รถบรรทกุขณะเคล่ือนท่ีข้ามสะพาน    
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ENGLISH  ABSTRACT 

# # 5770520521 : MAJOR CIVIL ENGINEERING 
KEYWORDS: WEIGHT ESTIMATION / LOAD IDENTIFICATION / MOVING LOAD / 
ACCELERATION RESPONSE 

BARBARA AGNIESZKA SZUCIO: WEIGHT ESTIMATION OF MOVING TRUCK 
FROM BRIDGE ACCELERATIONS. ADVISOR: ASSOC. PROF.TOSPOL 
PINKAEW, Ph.D.{, 73 pp. 

Vehicular weight in road network is crucial information for road and bridge 
design and maintenance. Many methods of weight identification have been proposed. 
The bridge weigh-in-motion (B-WIM) method is an alternative that becomes more 
popular due to its difficult visibility by the truck drivers and portability. Existing bridge 
weigh-in-motion (B-WIM) system utilizes the signals from strain gauges installed beneath 
the bridges to estimate the weight of the moving vehicles. Therefore, this research 
studies the feasibility and effectiveness of weight determination of moving vehicles from 
bridge accelerations since the installation of accelerometers is more convenient and 
much cheaper. The average acceleration discrete algorithm which was found to be 
effective to identify the non-moving dynamic loads acting on buildings is selected and 
extended to the case of moving load identification of truck passing over the bridge. To 
study the effectiveness of the proposed weight estimation method, the vehicle-bridge 
interaction is simulated. The obtained bridge acceleration is employed as the input for 
weight estimation of passing truck. This load estimation is an inverse identification 
problem. Numerical examples of a simply-supported bridge under passing truck are 
conducted to investigate the accuracy and efficiency of the proposed method. Effects of 
the axle spacing, mass and speed of vehicle on the accuracy of the identification results 
are reported.  
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1. Introduction 

1.1  Background and Research Motivation 

Vehicular weight on a bridge deck is crucial information for bridge design and 
maintenance. Bridge design is mainly dominated by heavy trucks, which produce large 
impact loading and can cause serious structural damages. Even though the weight limit 
regulations are specified, the truck overloading is becoming an increasing problem. To 
enforce the weight limit requirements in the transportation network, weight stations have 
been installed. Traditionally, the vehicle is measured directly, which is both time 
consuming and expensive due to the price of weigh pad. The required stop of all heavy 
truck on the highway can cause queuing and induce traffic congestion. A wide range of 
alternative methods of indirect weight identification have been proposed in the last few 
years. The most important objectives of these methods are to detect the vehicle weights 
without disturbing the traffic flow and to decrease the cost of this process. 

The first proposed methods are based on the estimating the vehicle axle weights 
using strain response or bending moments of the bridge. The researches proved that 
these methods provided high accuracy and efficiency and they were robust for force 
identification in engineering practices. However due to the fact that the price of strain 
gauges is high and they are difficult to install, the other type of bridge response was 
proposed to be used in force identification.  

The newest idea of force identification in the vehicle-bridge system is based on 
dynamic response. Recently some research investigations have been conducted to 
provide the method of force identification using acceleration response. The new method 
explored by Ding et al. (2013) has attracted my attention. The research explores the 
average acceleration discrete algorithm, which is very promising in the future 
application. However the accuracy of the proposed algorithm relies only on the 
numerical simulation and the simple experimental investigation. That is why there is a 
need for continued research and application of this idea. 
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The objective of this dissertation is to extend the Ding’s algorithm. The force 
identification technique is modified for different type of loading. The problem of moving 
vehicle over the bridge is studied. The purpose is to calculate the weight of the moving 
vehicle with high accuracy and the low cost of future application. Main advantage of 
proposed method is that it requires only finite element model of the structure and 
accelerometers. The axle sensors should be placed at the entry and exit of the bridge 
deck to obtain required information about vehicle such as moving speed and axle 
spacing. The numerical study on computer simulation will be provided to validate the 
effectiveness of a proposed method.  

1.2  Objectives 

 To numerically model the vehicle-bridge interaction.  

 To apply the average acceleration method to identify the dynamic axle loads 

and weight of moving vehicle from bridge deck acceleration. 

 To evaluate the performance and effectiveness of the adopted method. 

1.3  Scope 

 2D linear bridges simplified as simply supported uniform beam.  

 Single truck with two axles moving over the bridge deck with constant velocity. 

1.4  Methodology 

The purpose of this study is to estimate vehicular weight on a bridge deck. The force 
identification method is proposed to estimate weight of a moving truck based on the 
Ding’s research (2013). The average acceleration method which was found to be 
effective to identify the dynamic loads on buildings is selected and extended to the case 
of moving load identification of truck passing over a bridge. The algorithm for weight 
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estimation of moving vehicle is derived. The bridge acceleration is used as the input 
data in the calculation. Computer simulation is conducted using MATLAB software in 
order to validate the proposed method and investigate the effectiveness of weight 
estimation. The proposed scheme of this study is presented in a flowchart.  

In this study, the vehicle-bridge interaction is numerically simulated to obtain 
acceleration response. The Newmark-  method is proposed to solve coupled equation. 
The obtained bridge acceleration is employed as the input for weight estimation of 
passing truck.To address the accuracy of derived force identification method, four 
numerical examples are investigated.  

The study begins with the simplest system in which the bridge is modeled as single-
degree-of-freedom system (SDOF). The second numerical system is Multi Degree of 
Freedom System with a non-moving load placed at the mid-span. The bridge structure is 
modelled as single span simply supported beam and is discretized by finite element 
method using beam elements. These two examples are studied to check the influence of 
different time varying amplitude load functions on accuracy of dynamic force 
identification. The third system is a moving point load over the bridge deck. In all above 
cases, the accuracy of identified dynamic loads is investigated. The percentage error is 
defined as the norm of difference between the real and the identified force to the norm 
of the real one. Additionally, to address the accuracy of identified forces, reproduction of 
responses from identified dynamic force is made using Newmark-   method. The 
reproduced responses of the bridge, such as acceleration, velocity and displacement 
are compared with the real ones. 
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The last numerical system is a moving vehicle over the bridge. The vehicle is 
simplified as a dynamic model with 4 degrees of freedom moving over the bridge deck 
with the constant speed. The moving load is assumed to be always in contact with the 
bridge surface throughout the duration of travel. The last numerical example addresses 
not only accuracy of identified dynamic force but also weight estimation of the truck. 
Three accelerometers are assumed to be installed beneath the bridge and are 
employed in identification. The errors of dynamic load of front axle, rear axle and 
summation of axles are calculated. The system of two dynamic forces moving over the 
bridge is solved to reproduce the responses.   

When the accuracy of identification of dynamic axle loads is addressed, the idea of 
weight estimation is defined. The weight of each axle is assumed to be the average of 
dynamic force. Time duration, in which the identification of dynamic force is the most 
accurate, is taken as representative for the weight estimation of axles. Percentage errors 
between real and identified axle weight are calculated. All simulations are conducted 
with varying of parameters of passing truck such as speed, weight and axle spacing to 
study accuracy and limits of the proposed method for future application.  

The discussion and the suggestion for actual application are provided at the end of 
the study based on the effectiveness of dynamic force identification and truck weight 
estimation.  



 

 

2. Literature review 

2.1  General 

The discussion will include a review of the relevant literature in order to provide a 
broader understanding of vehicle-bridge interaction and different methods for force 
identification used throughout the last few years. 

2.2 Vehicle-bridge interaction 

The major objective of WIM system is to identify the axle loads of vehicle. That is 
why a large body of research has been published on vehicle-bridge interaction to 
investigate identification methods. 

Fryba (1973) studied vibration of solids and structures under moving loads. The first 
chapter is focused on one-dimensional solids subjected to loads that vary in both time 
and space called moving loads. The book broadens knowledge about the dynamic 
effects of different speed and weights of vehicle on the simply supported beam. 

Henchi et al. (1998) proposed an efficient algorithm for dynamic analysis of bridges 
under moving vehicles. A bridge is discretized by a three-dimensional finite element 
model with dynamic system of vehicles running at a prescribed speed. Vehicle is 
modeled as a linear discrete mass-spring-damper system. The two ways to simulate the 
dynamic interaction are given. The first way is to solve the uncoupled iteration method, 
in which bridge and vehicles systems are solved separately and then an iterative 
process in each time step is performed to find the equilibrium between the bridge and 
vehicle tires. The second idea is to simulate the dynamic interaction between bridge and 
vehicle. The paper presented a way to find a solution of this coupled system based on 
modal superposition method for the bridge structure and the physical components for 
the vehicles using Lagrange’s formulation. 

Green and Cebon (1997) explored the dynamic interaction between heavy vehicles 
and highway bridges. The iterative method is presented for calculating the dynamic 
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response of bridges to dynamic wheel loads. A simply supported bridge is subjected to 
a single degree of freedom vehicle model(lumped mass supported by spring and 
damper).The method is validated by field tests on a highway bridge and concludes 
whether the bridge-vehicle interaction is important or can be ignored and treated as 
uncoupled.  

Yang (1999) derived a versatile element for analyzing vehicle–bridge interaction 
(VBI) response, in which Newmark finite difference scheme was used to discretize the 
vehicle equations of motion. Through use of the no-jump condition for vehicles, the 
contact forces can be related to the contact displacements of the bridge. The proposed 
method is versatile because it allows us to deal with vehicle models of various 
complexities. The paper focused on the problem of train-bridge interaction due to its 
complexity. The effect of the suspension system of the vehicles should be considered if 
the riding comfort is a concern. The other major problem of analyzing VBI response is an 
unknown number of vehicles, which leads to the great range of sophisticated models 
used in simulations. The first step in analyzing the vehicle–bridge interaction systems is 
to write two equations of motion of the second order for the vehicles and the bridge. 
Then the two subsystems are coupled based on the interaction forces existing at the 
contact points. The matrices are time-dependent, therefore they have to be updated and 
factorized at each time step in an incremental analysis.  

The paper described different approaches to find a solution. The one way is to use 
iteration method in which the vehicle equation is solved to obtain the interaction forces 
and then proceed to solve the bridge equations for improved values of displacements 
for the contact points. The poor convergence rate is the main drawback of this method 
while solving a problem with a large number of vehicles. The other way to solve the VBI 
problems is based on the condensation method. Some condensation methods relate the 
vehicle (slave) DOFs to the bridge (master) DOFs. However these methods are efficient 
only for computing the bridge response, not for computing the vehicle response. Instead 
of accurate master–slave relations, the Newmark finite difference scheme has been 
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established in this research to discretize the vehicle equation, which contributes good 
results and is suitable for handling both the vehicle and bridge responses.  

Yang and Lin (2005) studied “Vehicle–bridge interaction dynamics and potential 
applications”. Based on the method of modal superposition, closed-form solutions are 
obtained for the vertical responses of both the bridge and moving vehicle, assuming the 
vehicle-bridge mass ratio to be small. Method considering only first mode gives quite 
good accuracy. The different types of vehicle models are explained such as moving 
load, moving mass and sprung mass models. The paper studied a simply supported 
beam subjected to a moving sprung mass. Two sets of second order differential 
equations of motion have to be written. Thanks to contact force existing between the two 
subsystems, the two sets of equations become nonlinear and coupled. The proposed 
method was validated by field tests and compared with the results from another method. 
The accuracy of this analytical method is better than the accuracy of solution obtained 
based on finite element analysis. 

2.3  Vehicle Force identification 

2.3.1 Strain or displacement based identification 

The conventional WIM (Weigh-in-motion) systems have been explored in a 
considerable amount of researches for many years. The accuracy of estimation of static 
load from the measurements of dynamic impact forces has been improved greatly 
through new approaches and more sophisticated numerical models. The robustness of 
a wide range of algorithms of force prediction has been proved by both numerical 
simulations and field tests. 

Law et al. (1997) explored the time-domain identification method for axle loads on 
the bridge. The paper contained the analytical solution derivation and the test. Bridge is 
modeled as a simply supported beam. The modal superposition principle is used in the 
method. The procedure is shown for both a single force identification and two moving 
forces identification. Both the simulations and laboratory experiments show that data 
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from bending moment and acceleration measurements can be used to obtain axle 
forces accurately and effectively. However, the large error occurs at the time when axles 
approach and leave the bridge. 

Chan et al. (1999) proposed a closed-form solution method for moving force 
identification. The method is an inverse study in which the Euler beam associated with 
modal analysis is used to identify moving loads from bridge responses. The paper 
contained also recommended number of strain gauges.  

Chan et al. (2000) theoretically and experimentally conducted the comparative 
studies on moving force identification from bridge strains. A theoretical study of force 
identification using prestressed concrete bridges was conducted. Moving forces across 
a prestressing bridge are identified from strain gauge measurements. The accuracy of 
those identified forces is significantly affected by noise. The method is applied to a field 
test on an existing prestressed concrete bridge in Hong Kong. In other paper, the 
comparative studies on moving force identification were conducted in laboratory. The 
moving forces were identified from the bridge strains using the four methods. It was 
proved that the Time-domain method (TDM) had the best accuracy and was highly 
recommended.  

What is more, Chan et al. (2000) also studied moving force identification using an 
existing prestressed concrete bridge. The field measurements were conducted of a two-
axle heavy vehicle over real bridge. The forces are identified based on the above time-
domain method. Clearly, this shows that the method is robust for force identification in 
engineering practices. 

European Commission DG VII – Transport: WAVE (2001) developed another 
identification technique for moving loads on bridge using least-square method with 
optimization technique. Since the axle loads are assumed to be constants on the bridge, 
the parameters in the optimization become velocity, number of axles, axle spacing and 
total weight. Two-dimensional bridge model is used to study the effect of eccentricity of 
the bridge. The field test was investigated to verify the accuracy of identification. The 
results show that the static load of vehicle has error in the range of ±10 %.  
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Zhu and Law (2002) proposed a new method to identify moving loads on the bridge 
taking into account road surface roughness and incomplete vehicle speed. Validation of 
the given method is proved by not only numerical studies a single and multiple-span 
bridges but also the experiment using only strain gauges. Furthermore in numerical 
studies, the force identification conducted from accelerations gives better results than 
from strains. The acceleration is less sensitive to the noise level however a bigger 
number of modes is required. The proposed method with the assumption of average 
speed is also accurate with the vehicle which is braking on the bridge.  

Yu and Chan (2004) applied the frequency–time domain method to identify the 
multi-axle vehicle loads from the measured bending moment response. The method was 
tested in laboratory by fabricated bridge–vehicle system model. 

Law et al. (2004) proposed vehicle axle loads identification method based on finite 
element method and condensation technique using strain measurements. The 
measured displacements are expressed as the shape functions without the modal 
coordinate transformation. Numerical simulations and experimental results show the 
efficiency and accuracy of the method to identify moving loads. 

Zhu and Law (2005) developed a moving load identification algorithm for multi-span 
continuous bridge with elastic supports. In the paper the effects of the wide variety of 
parameters are studied such as the measuring noise, sampling rate, vertical and 
rotational stiffness. The method based on modal superposition and regularization 
technique is adopted. The vertical translation and rotational springs are included in the 
model to simulate the elastic bearings and support fixity conditions of the bridge. It is 
shown that identified forces are more accurate when measured acceleration is used in 
calculation. For high frequency of the excitation forces the greater number of vibration 
modes is required to obtain an accurate solution. The paper proved that the proposed 
method can be used to solve problems with elastic restraints. 

Pinkaew (2006) established updated static component technique for identification 
of vehicle axle loads. The main objective of the new method is to calculate the vehicle 
weight from the bridge strain responses without any disturbance due to the vehicle’s 
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traveling speed. Instead of the least-squares method, the updated static component 
(USC) technique is proposed, which is not sensitive to an assigned regularization 
parameter. The numerical examples of a two-axle vehicle moving on a simply-supported 
bridge subjected to different speeds of the vehicle and surface roughness amplitudes of 
the bridge are conducted. The experiments proved the accuracy of the proposed 
method.  

Wu and Law (2010) developed moving force identification based on stochastic finite 
element model. A statistical relationship between the random moving force and the 
random structural responses is established to formulate a general stochastic force 
identification algorithm. Numerical simulations prove effectiveness of the algorithm. 

More recently Xun Xu and Jinping Ou (2015) proposed the method for “Force 
identification of dynamic systems using virtual work principle”. This research indicated a 
moving least square (MLS) method, which is one of the load reconstructed methods for 
identifying the dynamic force. The method contained three main parts.  

The first part was responsible for obtaining the expressions of the unknown acting 
force at each moment. However before identification it is crucial to face some difficulties 
such as the number of loads and the unknown individual values in time history. Method 
is simplified by reducing the number of unknowns by defining force as a series of known 
primary functions with unknown coefficients. In the research, Chebyshev orthogonal 
basis functions are used as primary functions to express impact force and structural 
responses. This approach reduces the calculating time and gives high accuracy. The 
main idea of force identification is to change the differential equation to integral equation 
based on the virtual work principle. Thanks to this, the method eliminates errors which 
are connected with calculating the structural acceleration and velocity response. What is 
more, there is no need to integrate and make iteration process to get a fitting solution. 
Additionally the method is general for all types of forces due to the fact that shape 
functions are always the same with different coefficients.  

The second part is focused on solving the equation of motion. Due to the fact that 
direct solving the differential equations is very difficult, the other method is proposed. 



 

 

 

12 

The Fourier transform and the inverse frequency response function (IFSF) method are 
used to transform the governing equation into the product of the frequency response 
function and external load. These two techniques have also some drawbacks, for 
instance, numerical instability for the resonance frequency or other errors due to very 
short load duration. The previous studies proposed to use modal orthogonality to 
simplify a problem however it may cause truncation errors and the instability for the ill-
conditioned matrix. Avoiding the calculation of the matrix inversion is also the 
advantage.  

The last part is focused on assuring the stability of the solution and dealing with 
random noises. Using numerical methods, it is crucial to be aware of the error of 
measured data, the error of discretization and round-off error. In this paper, the two 
methods are proposed to deal with ill-conditioned problems, such as Tikhonov 
regularization method and truncated singular value decomposition (TSVD). 

The validation of proposed method is proved by three examples. The first two are 
numerical simulations of a four-degree-of-freedom dynamic system and a cantilever 
beam. The results are compared with actual applied force to calculate the relative error. 
The noise impact is controlled by the signal-to-noise ratio (SNR). The significant 
influence on the accuracy has not only noise level but also the pace of disturbances. It 
is proved that harmonic force is better identified and more immunes to noise than 
arbitrary force.  The last example is an experimental model of a cantilever beam, which 
checked the application of this method with different structures. Due to a certain error 
between the real structure and the FEA model, the model was improved by the structural 
frequency measured. The results are slightly less accurate than from previous examples 
because of difficulty of correct noise’s identification and the FEA model error. 

2.3.2 Acceleration based identification 
The alternative idea of force identification is to use accelerometers instead of strain 

gauges. The major advantage of application of accelerometers is that their installation is 
much easier and they are more practically attractive.  
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Xu et al. (2010) explored stress and acceleration analysis of coupled vehicle (train) 
and long-span bridge systems. The mode superposition method is presented analyzing 
only the resonance condition. The Tsing Ma Bridge in Hong Kong was selected as a 
case study. It was proved that proposed method could be used to predict stressed 
without installing strain gauges. 

Lu and Liu (2011) described a method to identify both damages in bridge deck and 
vehicular parameters using acceleration measurements. This approach is based on 
dynamic response sensitivity-based finite element model. Through examples, it is shown 
that the proposed method has potential for real application of damage detection and 
parameter identification.  

More recent studies, Ding et al. (2013) investigated the “Average acceleration 
discrete algorithm for force identification in state space” and revealed quite good 
results. The validation of the proposed method is checked on three structures.  

Firstly, a three-dimensional three-storey frame is numerically investigated with single 
and multiple random excitations. The investigation of the method’s accuracy includes 
measurement noise, model error and unexpected environmental disturbances.  

Secondly, a seven-storey planar frame is tested in a laboratory. The frame on the 
bottom is connected firmly to the ground and two lumped mass are placed on each 
floor. The stiffness of the structure is calculated by the optimization function ‘fmincon’. 
The impact force is the horizontal hammer impact applied at the peak. 

Finally, a scaled model of a fourteen-storey concrete shear wall building with 
additional steel frame is subjected to shaking table simulating seismic excitation. A 
scale ratio is 1/6; the steel frame is constructed with the rubber isolation. This 
experiment enables to study the horizontal interaction between the steel frame and the 
shear wall building. 

The investigation of the method’s accuracy includes measurement noise, model 
error and unexpected environmental disturbances. Without any noise and model error 
the method is very accurate. Adding different percentage number of measurement 
noise, model error or unexpected random base excitation show that force identification 
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can be still fairly accurate. The study also explores two other existing force identification 
algorithms to provide the check of the results. These discrete algorithms are the First-
Order-Hold (FOH) and the Zeroth-Order-Hold (ZOH). 

The results both from numerical simulations and from laboratory tests prove that the 
proposed method can be successfully used to identify external excitations by the 
structural acceleration responses. Another advantage is that the method needs only 
finite element model of the structure and accelerometers. It is important to recognize 
that the idea of force identification with average acceleration discrete algorithm is used 
only for structures subjected to seismic excitations in numerical simulations and simple 
laboratory tests. The method has not been tested for real structures or different types of 
an impact force yet. 

Qiao et al. (2015) proposed a force identification method based on wavelet multi-
resolution analysis using cubic B-spline scaling functions. Instead of solving the original 
governing equation of force identification, the coefficients of scaling functions, which 
yield a well-posed problem, have to be found. Force identification laboratory 
experiments are conducted on a cantilever beam to check the accuracy of the 
proposed method. The cantilever beam structure is applied for impact and harmonic 
force identification. The measured data is the acceleration response. Results are 
compared with the results based on the truncated singular value decomposition (TSVD) 
technique. 

Wang et al. (2015) presented a novel state space method for force identification 
based on the Galerkin weak formulation using the discretization idea of the Finite 
Element Method and the refined version for the case of high noise level. The method is 
more suitable for the cases of large time step and discontinuous loading compared with 
the conventional state space method and the explicit Newmark method. Numerical 
studies are conducted to evaluate the performance of the GW method on plane truss 
structure. In the experiments the measured acceleration responses are used in force 
identification. The method is proved to be conditionally stable and second-order 
accurate. 
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Feng et al. (2015) studied simultaneous identification of bridge structural 
parameters and vehicle loads. The previous methods are based on a model with known 
system parameters, therefore this research proposed a method which can be used not 
only to identify vehicle dynamic axle loads but also to identify bridge structural 
parameters such as flexural stiffness and damping ratio or the road roughness. This 
possibility is beneficial, because the dynamic effects can be rapidly increased by road 
roughness. 

Firstly, dynamics of the VBI system are defined such as road surface roughness, 
vehicle model and bridge model. The Newmark-  method is proposed to solve the 
vehicle-bridge coupled equation. Secondly, an iterative procedure is developed to 
address the inverse problem for simultaneous identification of bridge structural 
parameters and vehicle axle loads from a limited number of response measurements. 
Then, a Bayesian inference-based regularization technique is used to solve the ill-posed 
problem of force identification. The measurement data is bridge acceleration response. 
The objective of an iterative parametric optimization process is to minimize the error 
between the measured and predicted system responses. Herein, the algorithm of this 
iterative procedure is given. Numerical analyses of a simply-supported single-span 
bridge and a three-span continuous bridge are conducted to investigate the accuracy 
and efficiency of the proposed method. The errors occur only at the instances when the 
moving vehicle enters and exits the bridge. The accuracy of solution can be improved 
by increasing the number of sensors.  

To sum, although previous research investigations provide some insight into force 
identification from acceleration response there is a need for continued research and 
application of this idea. Further investigation should be conducted in order to modify this 
method for different types of problem.  

All recent methods are interesting however they have not been proved sufficiently 
yet. For instance, Qiao et al. (2015) proved their method only by simple laboratory 
experiments conducted on a cantilever beam. Wang et al. (2015) conducted only 
numerical studies on plane truss structure. Feng et al. (2015) showed numerical 
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analyses of a bridge with moving load. In contrast to the above researches, the Ding et 
al. (2013) method is proved not only by numerical simulations but also by laboratory 
tests. The paper contains a numerical investigation of three-dimensional three-storey 
frame, a laboratory test of a seven-storey planar frame and a scaled model of a 
fourteen-storey concrete shear wall building subjected to shaking table simulating 
seismic excitation. 

Although previous researches have been numerically and experimentally studied 
and have shown that the external loads can be accurately predicted from acceleration 
responses. They have overlooked a fundamental issue where it is impossible to predict 
using only acceleration data such as static load case. Therefore this study will focus 
firstly on the fundamental of load prediction from acceleration response by considering 
some simple load patterns to understand the identification behavior. Then a more 
realistic vehicle-bridge system is investigated. The identification technique is extended 
form Ding (2013) and Feng (2015). 



 

 

3. Theory 

3.1  General 

Since it is difficult to measure the moving forces directly, this chapter is focused on 
techniques to measure indirectly the vehicle loads from measured acceleration 
response of the bridge. Firstly vehicle-bridge interaction is presented. In order to 
simulate the vehicle bridge-interaction, coupled system of bridge and vehicle is solved 
at each time step. Secondly the concept of axle load identification is derived using 
measured acceleration response.  

3.2  Vehicle-bridge interaction 

The vehicle-bridge interaction model is described based on the finite element 
method. This concept has been studied by Deesomsuk (2008). 

3.2.1 Vehicle Model 

The vehicle model is present in Figure 3.1. The vehicle moving at a speed v(t) 
over a bridge. There are 4 degrees of freedom in the vehicle model consisting of vertical 
displacement, rotation of vehicle mass, vertical displacement of front and rear axle 
suspension mass. The equation of motion can be derived by dynamic equilibrium of the 
vehicle system in each degree of freedom as shown in Figure 3.2. 
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Figure 3.1 Vehicle-bridge system 

 
Let    – mass of the vehicle 
    – mass rotational moment of inertia of the vehicle 
    – mass of front axle suspension 
    – mass of rear axle suspension 
         – suspension stiffness of front and rear axle  
         – suspension damping of front and rear axle  
         – tire stiffness of front and rear axle 
         – tire damping of front and rear axle 
   – axle spacing  
   – span length of bridge 
             – positions of the front and rear axle respectively at time   
             – front and rear axle force respectively at time   
   – velocity of vehicle 
    – rotation of vehicle mass 
    – vertical displacement of vehicle 
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       – vertical displacement of front and rear suspension mass 
      – vertical dynamic deflection of bridge 
       – center of gravity ratio of vehicle from front and rear axle. 
 

 
Figure 3.2 Free body diagram of vehicle-bridge system 

 
 The vertical force equilibrium of vehicle mass: 
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where 
                          ̇   ̇      ̇   
                          ̇   ̇      ̇  . 

Using above equations, equilibrium of vehicle mass of vertical motion becomes: 
   ̈            ̇             

                  ̇                    

        ̇                  ̇            

      (3.2) 

  
Consider rotation of vehicle mass at center of gravity: 

 ∑      ̈  ;                  ̈   (3.3) 
Replacing         in (3.3), equilibrium of rotation of vehicle mass will become: 

   ̈                   ̇                    

       
         

     ̇        
         

      

          ̇                       ̇               

   (3.4) 

Consider the vertical equilibrium of suspension mass  : 
 ∑     ̈  ;            ̈    (3.5) 

where 

 

                    ̇   ̇  

              

 ̇   ̇          

     

Replacing         in Eq. (3.5), equilibrium of vertical motion of suspension mass 
   will become: 

   ̈         ̇         ̇           ̇            

       ̇              

 (3.6) 

The vertical equilibrium of suspension mass   : 
 ∑     ̈  ;            ̈    (3.7) 

where 
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                    ̇   ̇  

              

 ̇   ̇          

     

Replacing         in Eq. (3.7), equilibrium of vertical motion of suspension mass 
   is: 

    ̈         ̇                     ̇             

       ̇              

        (3.8) 

  
Thus, the equations of motion for the vehicle are transformed into matrix form 

using Eq. (3.2), (3.4), (3.6) and (3.08): 
   ̈       ̇                   (3.9) 
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    is the force terms containing the interaction force vector and static force vector
 as follows: 
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where      
                                            ̇      ̇         

 
                                             ̇      ̇         

 
              

 
              

3.2.2 Bridge Model 

The bridge structure is considered as a simply supported beam and is 
discretized by finite element method using beam elements as shown in Figure 3.2. The 
finite beam element has 2 nodes with respect to 4 degrees of freedom in vertical 
displacement and rotational displacement at both ends as shown in Figure 3.3. 

 
Figure 3.3 Finite beam element with 4 degrees of freedom 

where 
    – cross section area of beam element 
    – modulus of elasticity of beam element 
    – moment of inertia of beam element 
    – mass per unit length of beam element 
    – length of beam element. 

Let        is the deflection of the bridge at distance x at time t. Thus, the 
governing equation of beam at position   and at time   can be expressed by: 
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   [  
        

   ]       (3.11) 
For the bridge having constant  , Eq. (3.11) can be rewritten as: 

        

          (3.12) 
The solution of Eq. (3.12) can be expressed in polynomial form as: 

             
        

                (3.13) 
where       is the coefficient of the polynomial form with constant value. 

The boundary conditions of beam element are: 
                               

       

  
                    

  
                 (3.14) 

Substituting (3.13) in Eq. (3.14), the constant values become: 
            
            

      
 

  
[                  ]

 
      

 

  
[                 ]   (3.15) 

 
Substituting (3.15) in Eq. (3.13), one can write the displacement equation of 

beam element at position   and at time   as follow: 
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]      

  (3.16) 

The shape functions of displacements of a beam element are the coefficient 
terms in front of      . 
 The mass matrix of beam element is defined by substituting Eq. (3.16) in 
equation of kinetic energy: 

        
 

 
∫   [

       

  
]

 

 

 

      (3.17) 
Then, Eq. (3.17) becomes as: 

        
 

 
 ̇   ̇    (3.18) 

Where the elemental mass matrix is   and the time derivative of the elemental 
displacement vector      is  ̇. 
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        [

     
     
     
     

]    (3.19) 

 The elemental mass matrix of beam element is obtained by substituting Eq. 
(3.16) and Eq. (3.19) in Eq. (3.18).  

  
   

   
[

            
             

            
               

]   (3.20) 

 As the mass matrix, the stiffness matrix can be calculated by substituting  
Eq. (3.16) in strain energy equation: 

        
 

 
∫   [
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      (3.21) 
The Eq. (3.21) can be written as: 

        
 

 
         (3.22) 

Using      which is determined in Eg. (3.19), the stiffness matrix of a beam 
element can be expressed as: 

  
  

  
[

         

           

           

           

]     (3.23) 

   
The equation of motion of bridge is: 

   ̈       ̇                   (3.24) 
where    – mass matrix of the bridge 
    – damping matrix of the bridge 
    – stiffness matrix of the bridge 
      – global response vector of the bridge 

       – external acting load vector of the bridge, which is the interaction 
force expressed as nodal loads at bridge’s degrees of freedom. 
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Figure 3.4 Nodal loads from external load 

 
       –   the distance between the left node of element and the external 

acting load      . 
The nodal loads transformed from external load become: 
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where 
                –  vertical load of node    and        
          –  bending moment of node    and      . 

The shape function of the jth element which is used to calculate the nodal load 
vector from the external acting load can be expressed as: 
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For the global external load shape function, the above equation becomes: 
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   – an NN × Np matrix with zero entries except at the degrees of freedom 
corresponding to the nodal displacements of the beam elements on 
which the load is acting, 

 NN – the number of degrees of freedom of the bridge after considering the 
boundary condition, 

 Np – the number of external acting loads. 
Using the relationship between the nodal load and the global load, the 

interaction force between bridge and vehicle is expressed as: 
           (    )             (3.31) 

        {                 
   }

 

   (3.32) 
where 
        – nodal load vector of bridge 
   (    ) – transformation vector from external loads to nodal loads 
          – vector of vehicle-bridge interaction force with respect to 

number of axles. 
Then, the equation of motion for bridge becomes: 

   ̈       ̇             (    )         (3.33) 

3.2.3 Vehicle-Bridge Interaction 

 All degrees of freedom of vehicle and bridge must be solved simultaneously to 
formulate the vehicle-bridge interaction as the equation of motion of the vehicle-bridge 
system.  

When vehicle with the number of axles Np = 2 is considered, the interaction force 
vector becomes: 
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  It is observed that the Eq. (3.34) contains vehicle’s and bridge’s degrees of 
freedom.  
 When      is obtained, the deflection of bridge at position   and at time   can 
be obtained from: 

            
 (    )          (3.35) 

The time derivative of bridge’s deflection is 

 ̇      
   

 (    )

  
       ̇      

 (    )   ̇   .  (3.36) 
Substituting Eq. (3.35) and (3.46) in Eq. (3.34) yields 
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The Eq. (3.37) can be rewritten in matrix form as: 
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Introducing Eq. (3.38) into the vehicle’s equation of motion (3.9), the equilibrium 
for the vehicle degrees of freedom becomes 
 

[
   
     
     

] [
 ̈

 ̈
]  [

   
         

     
         

] [
 ̇

 ̇
] 

 [

   
         

      
     

   
 

  
        

] [
 

 
]  [

 

 
] 

 
 

(3.39) 



 

 

 

28 

where 
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Likewise Eq. (3.39), using Eq. (3.38) in the equation of motion of bridge Eq. 
(3.33), the equilibrium of the bridge degrees of freedom can be written as: 
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(3.40) 

where  

   {
          
          

}. 

By combining Eq. (3.39) and Eq. (3.40), the global equation of motion of vehicle-
bridge interaction system becomes: 
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The Eq. (3.41) is the vehicle-bridge interaction equation, and the Eq. (3.37) is the 

front and rear axle load equations which are compose of static load of vehicle and 
dynamic interaction force between vehicle and bridge. The vehicle-bridge interaction 
equation can be solved step-by-step using either direct integration method such as 
Newmark’s method – average acceleration. 

3.3 Force identification using acceleration response 

The average acceleration discrete algorithm for force identification has been 
investigated by Ding et al. (2013). However the proposed method was used only for 
structures subjected to seismic excitations in numerical simulations and simple 
laboratory tests. The method has not been tested for real structures or for different type 
of loading. In this chapter the average acceleration discrete algorithm is extended to 
axle loads identification of vehicle moving on the bridge deck. 

3.3.1 System equations of motion 

Considering a bridge under a moving vehicle, the equations of motion of the bridge 
beam can be expressed by  

   ̈      ̇                   (3.42) 
where  
 ,  ,    –the mass, damping and stiffness matrices of the bridge 
       –  vehicle-bridge interaction force vector with respect to number of axles 
      – the global load transformation matrix, transformation external loads to 

nodal loads for each time step, the matrix with zero entries except at the 
degrees of freedom corresponding to the nodal displacements of the 
beam elements on which the load is acting 
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3.3.2 Discrete equation 

The equations of motion of structural system form the continuous system equations 
which can be transformed into the equivalent discrete equations. The superscripts   
and   denote the matrices for continuous and discrete system respectively. Recall the 
Eq. (3.42) and rearrange into the state-space expression, the continuous system 
equations become 

  ̇                     (3.43) 
where 

      [
    
 ̇   
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      [
 

       
] 

 
 
 

     – continuous system matrix, 
        – time-varying input matrix due to the moving loading, 
    – identity matrix. 
 

After solving above equations, the state      and  ̇    are known. Then the 
bridge accelerations at any location can be obtained from the output vector     : 

        ̈    (3.44) 
where   
   - output influence matrix for the measured acceleration, which depends 

on the sensor location information,           
   - dimension of the measured responses equal to the number of 

accelerometers placed on the bridge deck 
       - number of DOFs of the bridge 
 
This output vector can be alternatively calculated from 

                       (3.45) 
where the continuous output matrices are 
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   [               ]  
              

Due to the fact that actual measured acceleration data is in a discrete form, the 
above continuous state equations have to be converted into the discrete equations as 

                         (3.46) 

                       (3.47) 

where 
    ,      and       - respectively the discrete vectors of state, output and 

load at time step        for           
     ,              - discrete system matrices; 
  ,    - discrete system matrices which are determined by 

average acceleration algorithm for load identification at 
paragraph 3.3.3. 

For zero initial conditions, the discrete output becomes the summation of the 
history load effects as 
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(3.48) 
     – history load vector for            . 

3.3.3 Average acceleration algorithm for force identification 

The method is based on Newmark-   with the following assumptions: 
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Therefore the incremental acceleration and velocity are: 
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By substituting these increments into the equation of motion at any step       
th one 

can obtain: 
 (
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The incremental displacement and velocity can be expressed as: 
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(3.55) 

(3.56) 

The displacement and velocity at time step      
th can be written as: 
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Then the output      can be represented by 
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    (∏   
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  (3.62) 
The superscript   denotes the system matrix in a new discrete version with average 

acceleration discrete algorithm. 

3.3.4 Iterative regularization method 

The general form of the acceleration output as a function of the load input based on 
average acceleration algorithm (3.59) can be expressed as 
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where 
   – represents the measured acceleration response. 

 
To identify the load vector   from the measured acceleration of the bridge  , 

both sides of above equations are pre-multiplied with a pseudo inverse of the matrix   . 
The identified load F̂ is obtained by a conventional least-square method as   
 

 ̂             (3.66) 

However above equations become an ill-posed condition when the position of 
the moving load is close to the bridge supports. The regulation method as proposed by 
Tikhonov might be employed to obtain the improved solution as 
 

 ̂                 (3.67) 
where 
   - non-negative penalty coefficient. 



 

 

4. Numerical Example 

The purpose of this numerical study is to approximate weight of the truck moving 
over the bridge. The Newmark-   method is employed to obtain acceleration response 
of the bridge. The average acceleration algorithm is adopted for load identification using 
only bridge acceleration as the input. Four numerical examples are investigated. In first 
numerical examples moving vehicle is modeled as a point load. While in the last one it is 
modeled as the vehicle system with 4 degrees of freedom: vertical displacement, 
rotation of vehicle mass, vertical displacement of front and rear axle suspension mass.  

To study the accuracy of identified force, the relative percentage error is calculated 
based on force and response. 
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(4.2) 

 
Where   ̂  and   ̂̈  denote the identified load and identified acceleration, respectively. 

 

4.1  System properties 

The vehicle-bridge system as in Figure 4.1 is considered. The bridge deck is 
simplified as a simply supported beam with constant cross-section with properties given 
in Table 4.1. The vehicle is a 4-degree of freedom system consisting of vertical 
displacement, rotation of vehicle mass, vertical displacement of front and rear axle 
suspension mass. 
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 Figure 4.1 Vehicle-bridge system 
 
Table 4.1 Properties of bridge and vehicle 

Bridge Vehicle 
EI=2.3x1010 N/m2     
L= 36 m           
ς =0.02  
ρ  =5x103 kg/m 
 

Iv=9.50E5 kg-m2               
mv=28780 kg   
S =4.27 m     
a1 =0.567 
a2 =0.433   

m1 = 700 kg 
m2 = 1100 kg 
ks1=0.40∙106 N/m                              
ks2=1.00∙106 N/m                                                         
kt1=1.75∙106 N/m                                                          

kt2=3.50∙106 N/m                                                          
cs1=1.00∙104 N/m/s  
cs2=2.00∙104 N/m/s  
ct1=3.90∙103 N/m/s                                                           
ct2=4.30∙103 N/m/s                              

4.2   Equivalent SDOF bridge system 

 
Figure 4.2 Single Degree of Freedom system 
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The numerical study begins with the simplest system in which the bridge is modeled 
by single-degree-of-freedom system (SDOF) as in Figure 4.2. The mid-span deflection of 
the bridge is considered to be the DOF. The properties of this equivalent SDOF are 
obtained from the first modal properties of the bridge. Four basic load functions F(t) with 
time-varying amplitude as in Figure 4.3 are investigated with T and tx equal to 1.8 and 
0.1 seconds, respectively. The maximum load is equal to Fmax=200kN. Time step for all 
simulations is equal to dt=0.0005s. 

 
Figure 4.3 Time varying amplitude load functions 

 
 The influence of load function on accuracy of the identified force is investigated and 

shown as in Fig. 4.4. 

 
Figure 4.4 Identified forces for Single Degree of Freedom system 
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Table 4.2 presents force identification errors for all load functions. For different 
load functions applied to the system, the errors of identified force are found to be less 
than 10% for all cases. 

 
Figure 4.5 Reproduced responses for Force No.1 

 

 
Figure 4.6 Reproduced responses for Force No.2 
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Figure 4.7 Reproduced responses for Force No.3 

 

 
Figure 4.8 Reproduced responses for Force No.4 

 
From table 4.2, the following observations can be made. Even though the average 

force identification error is 6.87%, the identified responses are rather accurate. In 
particular the error of acceleration is less than 0.5%. It is also observed that for different 
loadings similar errors of acceleration and displacement are reported. It can be 
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concluded that the type of time varying amplitude load function does not influence the 
accuracy of force identification.  
Table 4.2 Identification error for Single Degree of Freedom system 

Force  
Error[%] 

F ẍ ẋ x 
No.1 7.15 0.43 0.76 6.17 
No.2 7.14 0.43 0.76 6.18 
No.3 6.62 0.53 2.20 6.50 
No.4 6.57 0.40 2.25 6.51 

Average 6.87 0.45 1.49 6.34 
 

In addition, the errors between load and displacement identifications are noticed to 
be in the same order. The reason of this relation could be following. In the proposed 
method, the acceleration response is an input data which is used to estimate the 
dynamic force of the system. Since dynamic force depends not only on acceleration, but 
also displacement and velocity response, the other responses have to be approximated 
from acceleration. To obtain these two responses, double integration of acceleration is 
indirectly made.  

The error of approximation of velocity is a constant that is added to the function, 
obtained by evaluating the integral of a given function of acceleration. The error of 
approximation of displacement becomes a linear function of time. Since the part of 
identified force, which relies on the displacement, is the most important, the accuracy of 
identification relies mainly on the accuracy of displacement. The error of approximation 
of displacement depends on the number of time steps. The higher the number of time 
steps, the bigger the accumulation of the error. Due to that, the difference between real 
and identified force increases linearly with the time. It should be noted, that reducing the 
number of time steps should not be made by enlarging the length of time step, since it 
will increase the error. 
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4.3   Bridge with a non-moving load 

In this paragraph, Multi Degree of Freedom System is studied. The bridge is 
modeled by 8 beam elements. The vehicle is simplified as a non-moving force applied in 
the middle of the beam which is shown in Figure 4.9. Two types of loading, i.e. Force 
No. 2 and Force No.4, are considered. Time step for all simulations is equal to 
dt=0.0005s. Three accelerometers are placed on the bridge deck. The location of these 
accelerometers is shown in Figure 4.10. 

 
Figure 4.9  MDOF – non-moving load at mid-span 

 
Figure 4.10 Schematic of sensor locations 

Figure 4.11 Identified forces for MDOF with non-moving load 
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Figure 4.12 Reproduced responses for Force No.2 

 
Figure 4.13 Reproduced responses for Force No.4 

 
Table 4.3 Identification error for MDOF system with non-moving load 

Force No. 
Error[%] 

F ẍ ẋ x 
2. 17.35 8.78 1.60 15.05 
4. 16.52 4.71 5.92 16.37 

Average 16.94 6.75 3.76 15.71 
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For the same load functions applied to the SDOF system and MDOF system, the 
error of force identification is significantly different. For MDOF system with non-moving 
force the average error is 16.94%, which is more than 2 times higher than that for SDOF. 
The increase in error of force identification might be caused by imperfections of the 
model. Using more complicated model with higher number of degrees of freedom 
causes difficulties in capturing the real behavior of the system.  

Similar linearly increasing error between identified force and real force and the 
relation between errors of displacement and force are observed. The errors are larger 
due to the use of more complicated model. 

The type of load function does not influence the accuracy of identified force as it 
was for SDOF. However the decrease in the accuracy of acceleration reproduction can 
be observed. It seems that for continuous load function, the accuracy of reproduced 
acceleration is higher for MDOF systems. These obtained results imply that the load 
identification demands higher mode information to accurately reproduce the 
acceleration response.   

4.4   Bridge with a moving load 

This section considers MDOF system with a concentrate load moving over the 
beam. The time-varying amplitude load function as in Figure 4.14 is applied. The 
maximum load is equal to Fmax=200kN. The system is studied for three different speeds 
of moving loads which are 10, 20 and 40 m/s, with the excitation frequencies of 62.83, 
125.66 and 251.33 rad/s, respectively. The bridge is modeled by 8 beam elements. 
Time step for all simulations is equal to dt=0.0005s. Three accelerometers are placed on 
the bridge deck at the same locations as described in paragraph 4.3. 

 
Figure 4.14 Time-varying amplitude load function 
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Figure 4.15 MDOF – moving load at mid-span 

Figure 4.16 Identified force for MDOF with moving load (V=10m/s)

Figure 4.17 Identified force for MDOF with moving load (V=20m/s) 
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Figure 4.18 Identified force for MDOF with moving load (V=40m/s) 
 
 

 
Figure 4.19 Identified responses at mid-span for MDOF with moving load (V=10m/s) 



 

 

 

45 

 
 Figure 4.20 Identified responses at mid-span for MDOF with moving load (V=20m/s) 

 
 

 
Figure 4.21 Identified responses at mid-span for MDOF with moving load (V=40m/s) 
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Table 4.4 Percentage error for MDOF system with moving load for different speeds 

Speed  
[m/s] 

Error [%] 

F ẍ ẋ x 
10 >100 2.45 33.62 54.88 
20 >100 3.69 16.18 38.21 
40 >100 7.82 16.07 33.77 

Average >100 4.65 21.96 42.29 
 

Table 4.4 presents the identification errors from three cases of speeds of moving 
load. Unlike the previous cases, even though the identification errors of the acceleration 
are found well within 10%, the errors of identified loads are greater than 100% in all 
cases. This is due to the fact that the system equation becomes an ill-posed condition 
when the position of moving load is close to the bridge supports.  The speed of vehicle 
influences the accuracy of reproduction of responses. If speed increases, error of 
reproduced acceleration increases, while error of displacement and velocity decrease. 

As shown in Figures 4.17 and 4.20, the similar error between real and identified 
force and displacement can be observed. It proves that the significant factor in 
accuracy is error of displacement approximation in force identification, which 
accumulates with time. 

It should be noted that, to improve the identification accuracy, one might reduce 
the time step size of 0.0005 second to smaller size. However, this seems impractical 
since it costs on both hardware and software. In the next chapter, to reduce the error 
due to ill-posed condition, the regularization parameter   will be applied. 

 

4.5  Bridge with a moving vehicle 

This section considers MDOF system with vehicle moving over the beam. The bridge 
is modeled by 36 beam elements for response simulation and 4 beam elements for force 
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identification. Three accelerometers are placed on the bridge deck. The location of 
these accelerometers is shown below. 

 
Figure 4.22 Schematic of sensor locations 

 
Table 4.5 Sensor location ( DOF no.) 

Sensor No. Simulation Force identification 
1 
2 
3 

18 
36 
54 

2 
4 
6 

 
For all simulations time step is equal to dt=0.001s and the regularization 

parameter         as in Eq. 3.67. In this numerical study, the 1st part will be focused 
on the identification of dynamic force for whole time period. While in the 2nd part, weight 
estimation will be addressed. In these two parts the influence of properties of vehicle on 
accuracy of force identification will be shown, such as: axle spacing, mass of vehicle 
and speed. 

4.5.1 Dynamic force identification 

This section considers identification of dynamic force of moving vehicle over the 
bridge deck. To demonstrate the accuracy of the identified force, percentage errors, 
between identified force and real interaction force of front axle, rear axle and summation 
of two axles, are calculated. In addition, the dynamic structural responses are 
reproduced using Newmark-   method. The reproduced displacement, velocity and 
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acceleration at the mid-span of the bridge are plotted and compared with the real forces 
and bridge responses.  

4.5.1.1 Axle spacing 

The properties of the vehicle are following: static weight of axles Nt= 300kN, 
additional force Fadd= 10%, speed v=20m/s. Three axle spacing are investigated: 0.5S, 
1.0S and 1.5S, where S= 4.27m. 

Figure 4.23 Summation of identified forces for 0.5S 
 

 
Figure 4.24 Summation of identified forces for 1.0S 
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Figure 4.25 Summation of identified forces for 1.5S 

 
 The errors of identification occur at the time when front and rear axles enter and 
leave the bridge deck. However for wider axle spacing the errors become smaller. It can 
be observed that identified force in time goes away from the real dynamic force.  
 

Figure 4.26 Identified responses at mid-span for 0.5S 
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Figure 4.27 Identified responses at mid-span for 1.0S 

 
Figure 4.28 Identified responses at mid-span for 1.5S 

Table 4.6 Identification error for different axle spacing 

Axle 
spacing 

Error[%] 

Front Rear Sum  ̈  ̇   

0.5S 78.33 79.86 30.91 7.27 12.95 13.76 

S 38.20 49.75 21.37 7.37 11.94 11.47 

1.5S 18.14 35.07 17.89 6.96 9.82 10.68 
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As shown in Table 4.6, the force identification error decreases as the axle 
spacing is wider. It seems that summation of dynamic forces of both axles is the most 
accurate and the least susceptible to the varying of axle spacing. The second most 
accurate identified value is dynamic force of front axle. It is important to highlight that 
even though the force identification errors are significant, the reproduced acceleration 
response is accurate: error is only around 7%. It can be concluded that for significantly 
different forces, it is possible to obtain very similar responses.  

The identified force is prone to varying of axle spacing, while the accuracy of 
reproduced responses is similar for different axle spacing. The difference between 0.5S 
and 1.5S is less than 3% for all responses.  

For wider axle spacing, the identified force is more accurate. The reason of this 
relation is connected with the error of displacement approximation. When the 
displacement is close to zero, the error is smaller. While the axle spacing is wider, the 
time when only one force is moving over the bridge is longer. This results in simpler 
model, similar to one point load moving over the bridge which yields smaller error in 
displacement approximation.  
 

4.5.1.2 Mass of vehicle 

The properties of the vehicle are following: axle spacing S= 4.27m and speed 
v=20m/s. Five static weight are investigated: Nt=100, 200, 300, 400 and 500kN with 
three different additional force:  Fadd=0, 10 and 20%.  

Figures 4.29, 4.30 and 4.31 present the typical comparison of identified with real 
summation of forces with Nt=500 kN and Fadd=0, 10 and 20%, respectively. 
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Figure 4.29 Summation of identified forces for Nt=500kN, Fadd=0% 

 

 
Figure 4.30 Summation of identified forces for Nt=500kN, Fadd=10% 
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 Figure 4.31 Summation of identified forces for Nt=500kN, Fadd=20% 
Table 4.7 Identification error for Nt = 100kN 

Fadd 

Error[%] 

Nt = 100kN 

Front Rear Sum  ̈  ̇   

0 39.95 49.56 21.98 13.19 12.32 11.44 

10% 38.72 49.73 21.27 7.37 12.04 11.47 

20% 39.88 50.87 21.89 7.21 11.42 11.55 

Average 39.52 50.05 21.71 9.26 11.93 11.49 

Table 4.8 Identification error for Nt = 200kN 

Fadd 

Error[%] 

Nt = 200kN 

Front Rear Sum  ̈  ̇   

0 39.36 49.47 22.00 12.67 12.26 11.44 

10% 38.08 49.65 21.30 7.37 11.98 11.50 

20% 39.16 50.83 21.93 7.21 11.37 11.56 

Average 38.87 49.98 21.75 9.08 11.87 11.50 
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Table 4.9 Identification error for Nt = 300kN 

Fadd 

Error[%] 

Nt = 300kN 

Front Rear Sum  ̈  ̇   

0 39.50 49.57 22.07 12.67 12.22 11.42 

10% 38.20 49.75 21.37 7.37 11.94 11.47 

20% 39.22 50.94 22.00 7.21 11.34 11.53 

Average 38.97 50.09 21.81 9.08 11.84 11.47 

 
Table 4.10 Identification error for Nt = 400kN 

Fadd 

Error[%] 

Nt = 400kN 

Front Rear Sum  ̈  ̇   

0 39.72 49.67 22.10 12.61 12.15 11.39 

10% 38.38 49.86 21.39 7.36 11.89 11.45 

20% 39.35 51.06 22.02 7.21 11.30 11.50 

Average 39.15 50.20 21.84 9.06 11.78 11.45 

 
Table 4.11 Identification error for Nt = 500kN 

Fadd 

Error[%] 

Nt = 500kN 

Front Rear Sum  ̈  ̇   

0 39.75 49.65 22.07 12.52 12.12 11.39 

10% 38.41 49.84 21.36 7.36 11.86 11.44 

20% 39.35 51.04 21.98 7.21 11.27 11.50 

Average 39.17 50.18 21.80 9.03 11.75 11.44 
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It is clearly seen from obtained results that the mass of vehicle and additional force 
do not have any influence on the accuracy of force identification. However, it can be 
observed that for higher additional force, the reproduced acceleration response is more 
accurate. It seems that for sinusoidal force is easier to identify acceleration response 
accurately than for constant force. The reason of this relation is that it is impossible to 
predict static load using only acceleration response, so for force with dynamic pattern 
such as sinusoid, the reproduced acceleration is more accurate. 

It can be concluded that method of identification is equally accurate for different 
weights of moving vehicles and different magnitude of bridge roughness. 

4.5.1.3 Speed of vehicle  

The properties of the vehicle are following: static weight of axles Nt= 300kN, 
additional force Fadd= 10%, axle spacing S= 4.27m. The system is studied for eight 
different speeds of moving which are 5, 10, 15, 20, 25, 30, 35 and 40m/s, with the 
excitation frequencies of 31.42, 62.83, 94.25, 125.67, 157.08, 188.50, 219.91 and 
251.33 rad/s, respectively. 

The parameter which represents the effect of the speed-   is introduced by Fryba 
(1973). The given parameter is a ratio of speed of vehicle to critical speed. The critical 
speed           depends on length of the bridge and 1st natural frequency. For the 
frequency of studied bridge equal to 2.6 Hz, the critical speed is equal to 187.2 m/s. For 
studied speeds of vehicle such as 5 m/s and 40 m/s,   is equal only to 0.027 and 0.2, 
respectively. It implies that the effect of the speed is significantly small and that studied 
vehicle-bridge system is almost a static system. The errors may be caused by the fact 
that it is not possible to identify static force using only acceleration response.  
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Figure 4.32 Summation of identified forces for v=5m/s 

 

 
Figure 4.33 Identified responses at mid-span for v=5m/s 
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Figure 4.34 Summation of identified forces for v=40m/s 

 

 
Figure 4.35 Identified responses at mid-span for v=40m/s 

 
From the obtained results, it is obviously seen that the speed of vehicle is an 

important factor in force identification. It can be observed that for speed v=5m/s the 
error between real and identified force is significant. In addition, similar error exists on 
the figure of reproduced displacement, while acceleration and velocity responses are 
quite accurate. However, for speed=40m/s, these errors cannot be observed neither at 
the figure of identified force or reproduced displacement.  
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Figure 4.36 Comparison of identified displacement at mid-span for v=5m/s and v=40m/s 

 

 
Figure 4.37 Comparison of identified displacement at mid-span for v=5m/s and v=40m/s  
 

It seems that higher speed of vehicle reduces the error between identified and 
real dynamic force. The reason is that for moving vehicle with high speed, the system 
has dynamic pattern as shown in Figure 4.37. The similar relation was observed in 
paragraph 4.5.1.2, which presented that for higher additional force, reproduction of 
responses was more accurate. 
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Table 4.12 Identification error for different speeds of vehicle 

Speed      
[m/s] 

Error[%] 

Front Rear Sum  ̈  ̇   

5 73.26 92.07 83.82 1.35 35.83 80.89 

10 33.47 62.61 45.75 5.29 32.56 37.96 

15 33.13 50.26 28.14 5.04 18.31 19.06 

20 38.20 49.75 21.37 7.37 11.94 11.47 

25 61.61 47.85 25.21 7.83 8.48 7.26 

30 47.62 51.62 20.49 7.38 6.03 6.05 

35 51.08 51.16 22.97 7.93 4.83 4.90 

40 50.99 51.82 22.98 7.56 3.73 4.39 
 
As shown in Table 4.12, the higher speed of vehicle, the more accurate 

identification of dynamic force is obtained. With the increase of the speed of vehicle, the 
accuracy of reproduced displacement and velocity increase, although the accuracy of 
acceleration response decreases significantly.  

For higher speeds the most accurate is summation of both axles. This suggests 
the use of summation of identified dynamic forces to approximate the weight of moving 
vehicle.  

In addition, the influence of time step on accuracy is checked. Since the axle loads 
identification is the most accurate for vehicle moving with the speed 40m/s, this speed is 
applied to the vehicle in the numerical example. Four time steps are investigated: 
dt=0.0002, 0.001, 0.0005 and 0.00025 s. 
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Table 4.13 Identification error for different time steps 

Time step      
[s] 

Error[%] 

Front Rear Sum 
   

0.002 43.33 92.01 51.19 12.76 8.85 10.49 

0.001 50.99 51.82 22.98 7.56 3.73 4.39 

0.0005 53.69 56.84 24.51 4.99 1.92 3.10 

0.00025 41.51 49.17 27.26 3.78 1.24 2.48 

The accuracy of force identification and response reproduction increases for smaller 
time steps. For time step equal to dt=0.001s, the accuracy of obtained results is 
satisfying, since acceleration error is less than 8%. Further reducing the size of time step 
seems to be impractical because the improvement in accuracy is not significant, while 
the computation time increases dramatically. Due to good accuracy for this time step 
dt=0.001, it is chosen as representative and is used in all simulations of weight 
estimation. 

4.5.2 Weight estimation 

This section studies weight estimation of moving vehicle over the bridge deck. The 
movement of vehicle over the bridge can be divided into three intervals. The 1st interval 
is from the time zero, when front axle enters the bridge to the time when rear axle enters 
the bridge. The 2nd interval is the time when two axles of the vehicle are on the bridge 
deck. The last interval is time when only rear axle is on the bridge deck. To identify 
weight of front and rear axle, the algorithm is divided into two parts. 

 
Figure 4.38 Weight estimation scheme 
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  ̂               ̂    (4.3) 
  ̂               ̂    (4.4) 

  ̂    ̂    ̂  (4.5) 
The first part covers force identification only when front axle is moving over the 

bridge (1st interval). To identify weight of front axle, central time period equal to 50% of 
whole interval is used to remove the undesirable influence of support conditions. The 
weight of front axle is assumed to be the average of identified dynamic force.  

In the second part, force identification covers all movement of vehicle over the 
bridge (three intervals together). Firstly the summation of identified axle forces is done. 
Then, time period equal to 50% of the 2nd interval (when two axles are on the bridge) is 
used to identify summation of forces. Finally subtraction between the average of 
summed identified forces and estimated weight of front axle from the 1st part is made to 
identify weight of rear axle as shown in Figure 4.38.  

The idea of using 50 % of interval gives better accuracy and reduces errors due to 
enter and exit of front and rear axles on the bridge. Additionally to study accuracy of 
identified weight, the relative percentage errors are calculated based on average 
identified force and real weight. 

       
‖  ̂    ‖

‖  ‖
      (4.6) 

       
‖  ̂    ‖

‖  ‖
      (4.7) 

       
‖  ̂    ‖

‖  ‖
      (4.8) 

Where  ̂ and   denote the average identified load and static weight of axle, 
respectively. The indices  ,   and   denote front axle, rear axle and summation of both 
axles, respectively. 
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4.5.2.1 Axle spacing 

The same properties of the vehicle are considered as in the 4.5.1.1. Three axle 
spacing are investigated: 0.5S, S and 1.5S, where S= 4.27m to address the accuracy of 
weight estimation for different width of axle spacing. 

 

 
Figure 4.39 Summation of identified forces for 0.5S 

 

 
Figure 4.40 Summation of identified forces for 1.5S 
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Table 4.14 Identification error for different axle spacing 

Axle 
spacing 

Error[%] 

Front Rear Sum 

0.5S -1.33 24.73 13.52 

S -0.21 19.09 10.78 

1.5S 2.55 13.67 8.88 

 
As shown above, the weight estimation of front axle is quite accurate for all axle 

spacing, no significant difference in error can be observed. For wider axle spacing, the 
accuracy of weight estimation of rear axle increases significantly. This indicates that 
weight estimation is more accurate for wide axle spacing. 

4.5.2.2 Mass of vehicle 

 
Figure 4.41 Summation of identified forces for Nt=100kN, Fadd=20% 
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Figure 4.42 Summation of identified forces for Nt=500kN, Fadd=20% 

 
 As shown in the figures above, the accuracy of weight estimation does not 
depend on the weight of the vehicle or the percentage of additional force applied to the 
system. The difference between the errors of summed weights between Nt = 100kN and 
Nt = 500kN is not significant, is around 1%. 
 
Table 4.15 Identification error for Nt = 100kN 

 Fadd 

Error[%] 

Nt = 100kN 

Front Rear Sum 

0 0.42 19.42 11.34 

10% -0.22 19.97 11.39 

20% -0.85 20.52 11.43 

Average -0.22 19.97 11.39 
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Table 4.16 Identification error for Nt = 200kN 

Fadd 

Error[%] 

Nt = 200kN 

Front Rear Sum 

0 0.42 19.23 11.15 

10% -0.22 19.78 11.20 

20% -0.85 20.34 11.25 

Average -0.22 19.78 11.20 

 
Table 4.17 Identification error for Nt = 300kN 

Fadd 

Error[%] 

Nt = 300kN 

Front Rear Sum 

0 0.42 18.53 10.74 

10% -0.21 19.09 10.78 

20% -0.85 19.65 10.83 

Average -0.21 19.09 10.78 

 
Table 4.18 Identification error for Nt = 400kN 

Fadd 

Error[%] 

Nt = 400kN 

Front Rear Sum 

0 0.42 18.02 10.43 

10% -0.21 18.58 10.48 

20% -0.85 19.13 10.52 

Average -0.21 18.58 10.48 

 



 

 

 

66 

Table 4.19 Identification error for Nt = 500kN 

Fadd 

Error[%] 

Nt = 500kN 

Front Rear Sum 

0 0.42 17.86 10.34 

10% -0.21 18.42 10.38 

20% -0.85 18.98 10.43 

Average -0.21 18.42 10.38 

 

4.5.2.3 Speed of vehicle  

This part will show the relation between the accuracy of identified weights and 
speed of vehicle. The same properties are considered in this numerical simulation as in 
4.5.1.3. 

 

 
Figure 4.43 Summation of identified forces for v=40m/s 
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Table 4.20 Identification error for different speeds of vehicle 

Speed           
[m/s] 

Error[%] 

Front Rear Sum 

5 6.51 136.25 80.41 

10 -1.87 66.16 36.88 

15 -0.55 33.07 18.60 

20 -0.21 19.09 10.78 

25 0.26 11.34 6.57 

30 0.21 8.68 5.03 

35 0.19 7.09 4.12 

40 0.36 6.37 3.78 

 
It seems that the speed of vehicle is a main factor which influences the accuracy of 

weight estimation as it was for dynamic force identification. For speed of vehicle higher 
than 10m/s, estimated weight of front axle is very accurate; the error is always less than 
1%. To estimate weight of rear axle, the speed of vehicle should be higher than 25m/s to 
obtain error less than 10%. That is why in future application the method should be used 
only when minimum speed limit is achieved.  

In conclusion, the accuracy of weight estimation depends greatly on the axle 
spacing and speed of vehicle. The relation between these factors and error of identified 
weight is shown in Figures 4.44, 4.45 and 4.46. It is clearly seen from these figures that 
weight estimation of front axle is accurate for any axle spacing and speed higher than 
5m/s, the error is less than 5%. The estimation of rear axle and summation of axles is the 
most accurate for high speed and wide axle spacing. It should be noted that speed of 
vehicle is the significant factor in weight estimation and the influence of axle spacing 
may not be considered. 
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Figure 4.44 Error of front axle for different axle spacing and speed 

 

 
Figure 4.45 Error of rear axle for different axle spacing and speed 
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Figure 4.46 Error of summation of axles for different axle spacing and speed 



 

 

5. Conclusion 

The average acceleration discrete algorithm is proposed to identify moving load 
passing over the bridge. Numerical analyses of four systems are conducted. Vehicle is 
simplified as a single point load or as 4 degrees of freedom model. Three models of 
bridge system consisting of SDOF, MODF with non-moving load and MDOF with moving 
load are investigated.  

For SDOF system, force identification is accurate for all considered load functions. 
The identification errors of less than 10% are expected. It is possible to identify not only 
continuous force, but also impact force in which its magnitude changes abruptly. Load 
identification for either constant or sinusoidal load functions reveals similar results. This 
implies that fluctuation of the load does not significantly affect the accuracy. 

For MDOF system with non-moving load, larger errors of the identified loads can be 
observed. This implies that the accurate load identification demands higher mode 
information to precisely reproduce the acceleration response of MDOF system. 

For MDOF system with moving load, unlike previous cases, the identification errors 
of the loads are found very large (>100%) although the errors of the acceleration are 
well within 10%. This is caused by the ill conditioned system when the load position is 
close to the bridge support. Although the reduction of time step size can enhance the 
identification accuracy, the required step size seems to be impractical.     

For MDOF system with moving vehicle, the impact of different vehicle properties on 
accuracy has been studied. To reduce the error connected with ill-conditioned system 
the optimal regularization parameter   was applied to the system. 

 For identification of dynamic interaction force and estimation of weight, the same 
conclusions have been made. Mass of vehicle and the additional force do not change 
the accuracy of identification. The most important factors are axle spacing and speed of 
vehicle. The best accuracy was obtained for the widest axle spacing and high speed. 
That is why, in application this method should be used only when minimum speed limit is 
guaranteed.
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