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Chapter 1

Introduction

DNA, or deoxyribonucleic acid, is known as one of the most interesting

and mysterious biological molecules. It belongs to a class of biopolymer and

has a very important biological function especially its ability to conserve and

transfer genetic information. In 1953, Watson and Crick [1] discovered the double

helix structure of DNA. It is composed of two linear polymers. Each polymer

consists of monomeric units called nucleotide. Each nucleotide is made up of

three components: sugar (furanose-derivative deoxyribose), phosphate (PO−
4 )

and one of the four bases, adenine (A), guanine (G), thymine (T ) and cytosine

(C). Two linear polymers are held together between some combinations of these

bases by hydrogen bonds which is called the Watson-Crick base pairing. They are

wound around a common axis to form a double helix (Fig.1.1). The A base only

pairs with T , and the G base only pairs with C. These pairs are the formation

of double helix. The diameter of the helix is 20 Å and the adjacent bases are 3.4

Å apart along the axis with 36o angle respect to one another.

In 1962, Eley and Spivey [2] were the first to suggest that DNA could
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Figure 1.1: Diagram showing the double helix structure of DNA [3].

be a conductor because of the formation of a π- band across the different bases.

Recently, physicists and chemists have become increasingly interested in the elec-

tronic properties of the DNA. The process of a charge transfer, the movement of

a charge from one molecule to another molecule or one end of the molecule to the

other is one of the most fundamental concept in chemistry and material science.

They are widely used in studying corrosion and photosynthesis.

Many experiments are conducted in order to find the first clue about the

charge transfer mechanisms in DNA. Indirect measurements of the charge transfer

in DNA and direct measurements of Current–Voltage or I-V characteristics are

the two major experiments being investigated.
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Fink et al. [4] performed the first direct measurement of the conducting

properties of DNA. The resulting I-V characteristics are shown in Fig.(1.2). It

was found that λ-DNA (a DNA of virus named lamda) is a good conductor, with

a resistance comparable to that of conducting polymers. The experiment was

done in vacuum, where a drop of solution containing DNA was placed onto a

gold-covered carbon foil with 2 µm holes. The holes were imaged with a low-

energy electron point source (LEEPS) microscope, which is claimed that it does

not radioactively damage DNA [4, 5].

Figure 1.2: Diagram showing I-V characteristics of DNA ropes. (a) I-V curve for
a single rope 600 nm long. (b) I-V curve for two ropes in parallel [5].
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In other direct measurements, researchers have found that DNA acts as

a large band gap semiconductor. For instance, Porath et al. [6] measured the

conductivity in poly(dG)-poly(dC) DNA. The homogenous sequence of DNA is

ideal for overlap of π-orbital in adjacent base pairs. These experiments were done

using a 10.4-nm-long DNA and electrostatically trapping technique to position

single DNA molecules between two electrodes. The I-V characteristics of these

experiments are shown in Fig.(1.3). It can be seen that poly(dG)-poly(dC) DNA

behaved like a semiconductor with a large band gap.
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Figure 1.3: Diagram showing I-V characteristics for poly(dG)-poly(dC) DNA
molecule. The difference curves show repeated measurements. The upper inset
shows the experimental set up and the lower inset shows the electrodes separated
by a 8 nm gap [6] .

Recently, Pablo et al.[7] have performed measurements on the resistance
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of λ-DNA and their results suggested that λ-DNA is an insulator. The contradic-

tory results arise from many experimental conditions i.e, base sequences, lengths,

temperatures, experimental techniques and so on.

Over the past several years, many theoretical models for the charge trans-

fer have been proposed to account for differing experimental results. For instance,

the coherent tunnelling have been proposed by Eley and Spivey in 1962, the in-

coherent phonon-assisted hopping have been proposed by Ly et al.[8] in 1996 and

Jortner [9] in 1998, the classical diffusion under thermal fluctuations have been

proposed by Bruinsma et al. in 2000 [10], the variable range hopping between

localized state have been proposed by Yu and Song [11] in 2001 and the charge

carriers assisted by polarons have been proposed by Conwell et al.[12] in 2000 and

Rakhmanova et al. [13] in 2001.

In this work, we are interested in an electron moving in DNA. The DNA

molecule is usually immersed in some thermal bath. The base pairs which are

held together with a weak hydrogen are vibrated by thermal bath. We propose

a model Hamiltonian for an electron moving in DNA, consisting of three parts:

the kinetic energy of the electron, the energy of the base pair vibrations which

are modelled simply as the harmonic oscillators, and the interaction between the

electron and the base pair vibrations. In this model, it is easy to evaluate the
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ground state energy and the effective mass of the electron by using Feynman’s

path integral which has been applied widely to other problems and various fields

of theoretical physics, such as the polaron problem [14] of which the ground state

energy and the effective mass can be evaluated successfully .

In this thesis, Feynman’s path integral method with an example is pre-

sented in Chapter 2. In Chapter 3, our model Hamiltonian for an electron moving

in DNA is presented. The approximate propagator and the density matrix in-

cluding the off-diagonal part will also be calculated by using a variational method

with the two-particle model trial action introduced by Samathiyakanit [15] . In

Chapter 4, the ground state energy and the effective mass of the electron are

obtained from the density matrix from Chapter 3 as well as numerical results and

discussions. Conclusion for our model Hamiltonian and the results are given in

the last chapter.



Chapter 2

Feynman’s Path Integral Theory

To solve the problem of electron moving in DNA the powerful technique

of Feynman’s path integral is chosen. Using this method, the problem can be

simplified from many body problem into one body problem by exact integrating

over harmonic oscillator coordinates. The ground state energy and the effective

mass can be evaluated analytically. Before we present our calculation in the

next chapter, we would like to review the Feynman’s path integral and some

applications which can be applied to our work.

2.1 The classical action

In classical mechanics, the principle of least action expresses the condition that

determines the particular path xcl(t) out of all the possible paths for a particle,

from an initial point xa at time ta to a final point xb at time tb. Therefore, a

certain quantity S for each path can be computed. Moreover, the classical path

xcl(t) is the path that S is extremum. Then the value of S is unchanged in the
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first order if the path xcl(t) is modified slightly. The action S is expressed as

S =

∫ tb

ta

L (ẋ,x, t) dt, (2.1)

where L is the Lagrangian of the system. For a particle of mass m moving in a

potential V (x, t) , the Lagrangian is a function of position and time:

L =
m

2
ẋ2 − V (x, t) . (2.2)

2.2 The quantum-mechanical amplitude

In quantum mechanics, the total amplitude to go from a point a to another point

b is contributed by every paths, including the classical path, xcl(t), and every

paths gets the same weight, nevertheless, contributes at different phase. The

phase of contribution from each path is S/~. The probability P (b, a) to go from

a point xa at the time ta to a point xb at time tb is

P (b, a) = |K (b, a)|2 . (2.3)

The K (b, a) , which is called the propagator, is an amplitude to go from a to b,

is the sum of contribution φ [x (t)] from each path, thus the propagator is

K (b, a) =
∑

over all paths
from a to b

φ [x (t)] , (2.4)
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where the phase is proportional to the action S as

φ [x (t)] = const. exp

{
i

~
S [x (t)]

}
. (2.5)

The constant term is a normalizing factor. Fig.(2.1) shows the continuum of paths

linking the end points. In classical approximation, each path has a different action

and contributes with a different phase. The contributions of the paths essentially

cancel each other, so that no net contribution arises. On the other hand for the

special path xcl(t), which S is an extremum, a small change in path produces, in

first order at least, no change in S. In this region, all the contributions from the

paths are closely in phase (Scl). For this reason, only for paths in the vicinity of

xcl(t) is important. In this way the classical laws of motion originate from the

quantum laws

2.3 The sum over paths

Actually, the way to evaluate the propagator in Eq.(2.4), which is called path

integration, is very complicated. In 1948 Feynman [16] proposed another way to

perform a new formalism of propagator [K (b, a)], by dividing the time intervals

into small interval, i,e. ε → 0. This provides, a set of times t1, t2, t3... between

the values ta and tb, where ti+1 = ti+ε . At each time , ti, one selects some special

point xi and constructs a path by a straight line. This is shown in Fig.(2.2). It
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2

1

1

4

3

t

x

)t(x

)t(xδ

Figure 2.1: Diagram showing the classical path 1, x̄(t), which has the action
S minimum. If the path is varied by δx (t), to path 2, the integral suffers no
first-order change.

is possible to define a sum over all paths constructed in this manner by taking a

multiple integral over all values of xi for i from 1 to N − 1, where

Nε = tb − ta, ε = ti+1 − ti,

t0 = ta, tN = tb,

x0 = xa,xN = xb. (2.6)

The resulting equation is

K (b, a) = lim
ε→0

1

A

∫ ∫
· · ·

∫
exp

{
i

~
S [b, a]

}
dx1

A

dx2

A
...

dxN−1

A
, (2.7)
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xa xbxi xi+1
x

t

ta

ti

ti+1

tb

Figure 2.2: A diagram showing the sum over all paths.

where

S [b, a] =

∫ tb

ta

L (ẋ,x, t) dt, (2.8)

and the normalizing factor is

A =

(
2πi~ε

m

)1/2

(2.9)

Eq.(2.7) is suggested by Feynman in a less restrictive notation as

K (b, a) =

∫
Dx (t) exp

{
i

~
S [b, a]

}
. (2.10)

It is called the Feynman’s path integral. The symbol
∫ Dx (t) refers to an inte-

gration over all possible paths connecting the point (xb, tb) to point (xa, ta) .
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2.3.1 Path integral of a free particle

The first example is a free particle with the Lagrangian

L =
m

2
ẋ2 (t) . (2.11)

From previous section, the one dimensional propagator is presented as

K (xb, tb;xa, ta) = lim
ε→0

∫
exp

[
im

2~ε

N∑
i=1

(xi − xi−1)
2

]
dx1...dxN−1

(
2πi~ε

m

)−N/2

.

(2.12)

This is an integral of the form
∫∞
−∞ dx exp [−ax2 + bx], which is called a gaussian

integral. Since the integral of gaussian is again gaussian, we may carry out the

integrations on one variable after the other with the help of the formula

∞∫

−∞

dx1

[
m

2πi~ (ε)

]−2/2

exp

{[
m

2πi~ (ε)

] [
(x2 − x1)

2 − (x1 − x0)
2]

}

=

[
m

2πi~ (2ε)

]1/2

exp

{[
m

2πi~ (2ε)

] [
(x2 − x0)

2]
}

. (2.13)

When the integration is finished, and the limit is taken, the result is.

K (xb, tb;xa, ta) =

[
m

2πi~ (tb − ta)

]1/2

exp

{[
im

2~ (tb − ta)

]
(xb − xa)

2

}
. (2.14)

2.4 The quadratic Lagrangian

In general, since the path integral is still in gaussian form, it is possible to carry

out the integral over all paths by the method that described in the previous



13

section. Nevertheless, in general problem which it is complicated to perform, for

example, the forced harmonic oscillator problem. Consequently, some additional

mathematical techniques will be introduced, which help us to sum over paths in

some certain situations. Generally, the Lagrangian will be in the quadratic form

which the corresponding action S contains the path x (t) up to the second power.

Accordingly, to explain how the method work in such cases so we starting with

the Lagrangian in the form,

L(x, ẋ, t) = a (t) ẋ2 + b (t)xẋ + c (t)x2 + d (t) ẋ + e (t)x + f (t) , (2.15)

where the action is the integral of this Lagrangian with respect to time between

two fixed end points. Certainly the propagator that we wish to determine is

K (xb, tb;xa, ta) =

∫
Dx (t) exp





i

~

tb∫

ta

L (ẋ,x, t) dt



 , (2.16)

This is the integral over all paths which go from position xa at time ta to position

xb at time tb. Therefore, a different way to solve this difficult problem is required.

Now let us start with the classical path between the specified end points, xcl(t),

which the corresponding action S is extremum. Moreover, any path x(t) can be

expressed as the sum of the classical path, xcl(t), and a new variable y (t). That

is

x(t) = xcl(t) + y (t) . (2.17)
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Because the classical path is completely fixed, dxi = dyi and the path differential

Dx (t) can be replaced by Dy (t) . That is to say, instead of defining a point on the

path by its distance x(t) from an arbitrary coordinate axis, we measure instead

the deviation y (t) from the classical path shown in Fig.(2.3) The function y (t)

satisfies under the condition

y (ta) = y (tb) = 0. (2.18)

y(t)

x(t)

xcl(t)

b

a

x

t

Figure 2.3: Difference between the classical path xcl(t) and the some possible
alternative paths x(t) is a function of y (t) with fixed end points .

Here, we start with the time t = ta and end at time t = tb. So that the
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the action S can be written as,

S [x (t)] = S [xcl(t) + y (t)]

=

tb∫

ta

{
a (t)

[
ẋ2

cl(t) + 2ẋcl(t)ẏ (t) + ẏ2 (t)
]
+ ...f (t)

}
dt. (2.19)

It is obvious that the integral of all terms involving exclusively xcl(t) is exactly

the classical action and the integral of all terms that are linear in y (t) precisely

vanishes. So, all the remaining terms in the integral are second-order terms in

y (t) only. That is

S [x (t)] = S [xcl(t)] +

tb∫

ta

dt
[
a (t) ẏ2 (t) + b (t) ẏ (t)y (t) + c (t)y2 (t)

]
. (2.20)

The integral over paths does not depend upon the classical path, so that the

propagator becomes

K (xb, tb;xa, ta) = exp

{
i

~
S [xcl(t)]

}

×
∫
Dy (t) exp





i

~

tb∫

ta

dt

[
a (t) ẏ2 (t)

+b (t) ẏ (t)y (t) + c (t)y2 (t)

]

 .

(2.21)

Since all paths y (t) start from and return to the point y = 0, the integral over

paths can be an only function of time, at the end points. This means that the

propagator can be expressed as,

K (xb, tb;xa, ta) = F (tb, ta) exp

{
i

~
Scl(xb,xa)

}
. (2.22)
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Accordingly, the propagator is determined except for multiplying factor

F (tb, ta) , which may be determined by some other known properties of the so-

lution. However, for a quadratic Lagrangian, Van-Vleck and Pauli had verified

that the pre-factor F (tb, ta) can be evaluated exactly by using the formula

F (tb, ta) =

√
det

[
i

2π~
∂2

∂xb∂xa

Scl(xb,xa)

]
. (2.23)

So that Eq.(2.22) becomes

K (xb, tb;xa, ta) =

√
det

[
i

2π~
∂2

∂xb∂xa

Scl(xb,xa)

]
× exp

{
i

~
Scl(xb,xa)

}
. (2.24)

It is interesting to note that the expression K ∼ exp
{

i
~Scl

}
is exact for the case

that S is in quadratic form.

2.5 The path integral formulation of density ma-

trices

The density matrix can be written in the form

ρ (x′,x) =
∑

i

φi (x
′) φ∗i (x) e−βEi , (2.25)

where β = 1
kT

, T is the absolute temperature. It is remarkable that the above

expression bears a close resemblance to the general expression for the propagator

which is written as

K (xb, tb;xa, ta) =
∑

j

φj (xb) φ∗j (xa) e−(i/~)Ej(tb−ta). (2.26)
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The validity of this expression is restricted to situations in which the Hamiltonian

is constant in time and tb > ta. However, this situation is implied in statistical

mechanics; for only if the Hamiltonian is constant in time can equilibrium be

achieved. The difference between the form of Eq.(2.25) and that of Eq.(2.26) is

in the argument of the exponential. If the time difference tb − ta of Eq.(2.26)

is replaced by −iβ~, we see that expression for the density matrix is formally

identical to the expression for the propagator corresponding to an imaginary

negative time interval.

We can develop the similarity between these two expression from another

point of view. Suppose we write the density matrix in a way which makes it look

a little bit more like a propagator, thus, k (xb, tb;xa, ta) for ρ (xb,xa) , where

k (xb, tb;xa, ta) =
∑

i

φi (xb) φ∗i (xa) e−[(ub−ua)/~]Ei . (2.27)

Then the Eq.(2.27) becomes identical with Eq.(2.25) if xb= x′, xa= x, ub = β~

and ua = 0. If we differentiate k partially with respect to ub, we get

−~ ∂k

∂ub

=
∑

i

φi (xb) φ∗i (xa) e−[(ub−ua)/~]Ei . (2.28)

Now we recall that Eiφi (x
′) = Hφi (x

′) and let Hb imply operations only upon

the variables xb ,we can write

−~∂k (b, a)

∂ub

= Hbk (b, a) , (2.29)
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or, to put the same thing another way

−∂ρ (b, a)

∂β
= Hbρ (b, a) , (2.30)

with simple Hamiltonian involving only momenta and coordinates, we have been

able to write the propagator as a path integral. For example, if the Hamiltonian

is given by

H =
~2

2m

d2

dx2
+ V (x) , (2.31)

then the solution for then propagator over a very short time interval t2 − t1 = ε

is

G (b, a) =
( m

2πi~ε

)1/2

exp

[
im

2~
(xb − xa)

2

ε
− i

~
εV

(
xb + xa

2

)]
, (2.32)

which can be directly verified by substitution Eq.(2.32) into Eq.(2.31). By build-

ing up a product of many propagators of Eq.(2.32) and taking the limit as the

time interval ε goes to 0 and the number of terms in the product becomes infinite,

we have produced a path integral describing the propagator over a finite period of

time. We can produce a solution to Eq.(2.29) in the same manner. The solution

for an infinitesimal interval of ub − ua = η is given by substituting ε = iη into

Eq.(2.32). Thus

k (xb,η;xa, 0) =

(
m

2π~η

)1/2

exp

[
−(m/2η) (xb−xa)

2 + ηV [(xb+xa) /2]

~

]
.

(2.33)
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Where this is a valid solution of Eq.(2.29) and can be demonstrated by direct

substitution of Eq.(2.33) into Eq.(2.29). The rule for the combination of functions

defined for successive values of u is the same as the rule for the combination of

propagators for successive intervals of time. That is,

k (b, a) =

∫
k (b, c) k (c, a) dxc. (2.34)

That this result still holds follows from the fact that Eq.(2.28) is a first-order

derivative in u. This rule can be used to obtain the path integral to define k (b, a)

as

k (xb, ub;xa, ua) =

∫ [
exp

{
−

N−1∑
i=0

[
m

2~η
(xi+1 − xi)

2 +
η

~
V (xi)

]}]N−1

i=1

dxi

a
.

(2.35)

The normalizing constant a now becomes

a =

(
2π~η
m

)1/2

, (2.36)

and the integral is carried out over all paths going from xa to xb ( that is, xi

is xa for i = 0 and xb for i = N ) in the interval ub − ua = Nη. The result

of this derivation is that if we consider a path x (u) as a function which gives a

coordinate in terms of the parameter u, and if we call ẋ the derivative dx/du,

then

ρ (xb,xa) =

∫ [
exp

{
−1

~

∫ β~

0

[m

2
ẋ2 (u) + V (x)

]
du

}]
Dx (u) . (2.37)
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It is noticed that Eq.(2.37) can be obtained by just substituting −iu and

−iβ~ into τ and tb respectively of the propagator G (xb, tb;xa, ta) as follows

ρ (xb,xa) = G (xb, tb = −iβ~;xa, ta = 0) . (2.38)

In Feynman’s path integral, the very important quantity is the propagator

which contains all informations of the system such as wave function, ground state

energy, effective mass and so on. To evaluate the propagator the Largargian is

modelled and the action is obtained. For quadratic Lagrangian the propagator

can be evaluated exactly by integrating over all paths and the density matrix can

be obtained from the propagator directly.



Chapter 3

The model Hamiltonian for an
electron moving along DNA

In this chapter, the one dimensional model Hamiltonian for an electron

moving in DNA is presented. In order to approximate our model propagator the

Feynman’s path integral and a variational method are applied. In the last section

the density matrix corresponding to our model is evaluated.

3.1 An electron moving along DNA model

In our simplified model, the helicoidal structure of DNA is modelled as a long

cylinder where each base pair vibrates classically and harmonically. In this model

we consider an electron moving in the axial direction along DNA in one dimension

and interacting with the base pair vibrations while localizing on them. The

Hamiltonian model for an electron moving along DNA consists of three parts,

H = Hel + Hhar + Hint. (3.1)
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e
-

Figure 3.1: A model of an electron moving and interacting with the base pair
vibrations (A− T, G− C).

The first part Hel represents the kinetic energy of an electron moving over the

base pairs,

Hel =
1

2
mẋ2 (t) , (3.2)

where m is the mass of an electron in DNA and x(t) presents the coordinate of an

electron with respect to the origin. ẋ(t) is the velocity of an electron. The second

part Hhar describes the dynamics of the base pair vibrations as the harmonic

oscillators,

Hhar =
1

2
M ′ ∑

k

[
ẏ2

k (t) + Ω2y2
k (t)

]
, (3.3)
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where index k denotes the kth base pair or an oscillator. The reduced mass and

the vibration frequency of each base pair are M ′ and Ω, respectively. Also, yo,k(t)

is the displacement of a kth oscillator from its equilibrium. The last term Hint

represents the interaction between an electron and the oscillators which modelled

as a Dirac delta function,

Hint = M ′Ω2α
∑

k

yk (t) δ [x (t)− y0,k] . (3.4)

The coefficient α is a coupling constant and y0,k represents the position of the

kth oscillator from the origin.

x-axis 

e
-

origin 

yk

y0,kx

Figure 3.2: Sketch of the helicoidal structure of DNA model, the base pairs being
presented by the ellipses. The parameters x, y0,k and yk are as indicated.

Then the Lagrangian corresponding to the Hamiltonian in Eq.(3.1) can

be easily evaluated using Legendre transform, as followed

L =
∑

i

piq̇i −H. (3.5)
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Therefore,

L =
1

2
mẋ2 (t) +

1

2
M ′ ∑

k

[
ẏ2

k (t)− Ω2y2
k (t)

]−M ′Ω2α
∑

k

yk (t) δ [x (t)− y0,k] .

(3.6)

Next, the oscillator coordinates yk can be eliminated by defining the transforma-

tion function for the electron and the oscillators, from an initial point at time

t = 0 to a final point at time t = T and with the boundary conditions x (0) = xa,

x (T ) = xb and yk (0) = yk (T ) = yk. Thus, we have

〈xb, y1, ...yN , T ; xa, y1, ...yN , 0; 〉

=

∫ xb

xa

Dx (t)

∫ y1

y1

Dy1 (t) ...

∫ yN

yN

DyN (t) exp[
i

h̄
S],

=

∫ xb

xa

Dx (t) exp

[
i

h̄

∫ T

0

dt
1

2
mẋ2 (t)

] ∏

k

∫ yk

yk

Dyk (t) exp

[
i

h̄

∫ T

0

dtS (yk)

]
,

(3.7)

where

S =

∫ T

0

dt

{
1

2
mẋ2 (t) +

1

2
M ′ ∑

k

[
ẏ2

k (t)− Ω2y2
k (t)

]−M ′Ω2α
∑

k

yk (t) δ [x (t)− y0,k]

}
,

(3.8)

and

S (yk) =

∫ T

0

dt

{
1

2
M ′ [ẏ2

k (t)− Ω2y2
k (t)

]−M ′Ω2αyk (t) δ [x (t)− y0,k]

}
. (3.9)

The path integrals over the oscillator coordinates yk can be performed using the

result [1] for the forced harmonic oscillator of which the Lagrangian is equal to
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1
2
M ′ [ẏ2

k (t)− Ω2y2
k (t)] − f (t) yk (t) . The time dependent force, in this case, is

f (t) = M ′Ω2αδ [x (t)− y0,k]. After integrating over the oscillator coordinates the

transformation function can be written as

〈xb, T ; xa, 0; 〉 =

∫ ∞

−∞
〈xb, y1, ...yN , T ; xa, y1, ...yN , 0; 〉 dy1dy2...dyN ,

=

[
2i sin

(
ΩT

2

)]−N ∫
Dx (t) exp

{
i

h̄

∫ T

0

dt
1

2
m′ẋ2 (t)

+
i

h̄

M ′Ω3α2

4

∑

k

∫ T

0

∫ T

0

dtdsδ [x (t)− y0,k] δ [x (s)− y0,k]

×cos
[
Ω

(
T
2
− |t− s|)]

sin
(
ΩT

2

)
}

. (3.10)

Because the interested quality is the effect of the coupling between an

electron and the oscillators, the prefactor in Eq.(3.10) can be ignored. Therefore

the transformation function without the prefactor is now called “our model’s

propagator K (xb, xa; T )”. From the relation
∑

k δ [x (t)− y0,k] δ [x (s)− y0,k] =

ρδ [x (t)− x (s)] where ρ is a number of the oscillators per length, the propagator

K (xb, xa; T ) can be written as

K (xb, xa; T ) =

∫
Dx (t) exp

(
i

h̄
SD

)
, (3.11)

where SD is the action of our model

SD =

∫ T

0

dt
1

2
mẋ2 (t)+

1

4
M ′Ω3α2ρ

∫ T

0

∫ T

0

dtdsδ [x (t)− x (s)]
cos

[
Ω

(
T
2
− |t− s|)]

sin
(
ΩT

2

) .

(3.12)
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Since an integral representation of the δ function is [17]

δ [x (t)− x (s)] =
1

2π

∫ ∞

−∞
dq exp {iq [x (t)− x (s)]} , (3.13)

an action of our model SD can be written in a new form,

SD =

∫ T

0

dt
1

2
mẋ2 (t)+C

∫ T

0

∫ T

0

dtds

∫ ∞

−∞
dq exp {iq [x (t)− x (s)]} cos

[
Ω

(
T
2
− |t− s|)]

sin
(
ΩT

2

) ,

(3.14)

where C = 1
8π

M ′Ω3α2ρ.

3.2 Variational method

Since our model’s action SD in Eq.(3.14) is not in a quadratic form, our model’s

propagator K (xb, xa; T ) cannot be evaluated exactly. To perform further calcu-

lations, a variational method is applied to carry out the path integral for the

propagator K (xb, xa; T ). A trial action S0 is chosen so that the propagator in

Eq.(3.11) can be approximated [18] as

K (xb, xa; T ) = K0 (xb, xa; T )

〈
exp

{
i

h̄
(SD − S0)

}〉

S0

, (3.15)

where the propagator K0 (xb, xa; T ) is defined as

K0 (xb, xa; T ) =

∫
Dx (t) exp

(
i

h̄
S0

)
, (3.16)

and the average over S0, 〈O〉S0
is defined as

〈O〉S0
=

∫ Dx (t) exp
(

i
h̄
S0

)
O∫ Dx (t) exp

(
i
h̄
S0

) , (3.17)
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where O is the quantity to be averaged.

The averaged quantity in Eq.(3.15) is expanded using the cumulant ex-

pansion. To approximate the propagator, the first-order cumulant approximation

is chosen, because the first-order term is the averaged but the next terms are the

fluctuation. That is

〈
exp

{
i

h̄
(SD − S0)

}〉

S0

∼ exp

{
i

h̄
〈SD − S0〉S0

}
, (3.18)

therefore, the approximate propagator K1 (xb, xa; T ) can be obtained as

K (xb, xa; T ) ≈ K1 (xb, xa; T ) ,

K1 (xb, xa; T ) = K0 (xb, xa; T ) exp

〈
i

h̄
(SD − S0)

〉

S0

. (3.19)

3.3 The trial action

In this problem we choose a trial action with two variation parameters S0 (κ, ω)

following Samathiyakanit [7] . This trial action is modelled from a free electron

interacting harmonically with a fictitious particle of mass M with κ is a spring

constant and the harmonic frequency is ω =
√

κ/M. The Lagrangian correspond-

ing to this model is

L0 (κ,M) =
m

2
ẋ2 (t) +

M

2
ẏ2 (t)− κ

2
|x (t)− y (t)|2 , (3.20)
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where y (t) is a coordinate of fictitious particle. The coordinate y (t) can be

eliminated by using the path integral for a forced harmonic oscillator and setting

ya (t) = yb(t), where ya (t) and yb(t) are the starting point and the ending point

respectively . After integrating over y(t) by using the Gaussian formula

∫ ∞

−∞
dpe−ap2+bp =

√
π

a
e

b2

4a , (3.21)

the trial action of this model is

S0 (κ, ω) =

∫ T

0

dt
1

2
mẋ2 (t)− κω

8

∫ T

0

∫ T

0

dtds |x (t)− x (s)|2 cos
[
ω

(
T
2
− |t− s|)]

sin
(
ω T

2

) ,

(3.22)

where κ and ω are two variational parameters. The propagator K0 (xb, xa; T )

associating to the trial action in Eq.(3.22) has already been evaluated exactly by

Samathiyakanit [7]. That is

K0 (xb, xa; T ) =
( m

2πih̄T

)1/2
[

υ sin
(

ωT
2

)

ω sin
(

υT
2

)
]

exp

{
i

h̄

[
µυ

4
cot

(
υT

2

)
+

( mµ

2MT

)]
|xb − xa|2

}
,

(3.23)

where a reduced mass µ =
mM

m + M
and a frequency υ =

√
κ/µ and υ2 = ω2+κ/m.

3.4 The approximate propagator

The approximate propagator K1 (xb, xa; T ) can be evaluated by first evaluating

this quantity 〈SD − S0〉S0
, where

〈SD − S0〉S0
= 〈SD〉S0

− 〈S0〉S0
. (3.24)
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Noting that the kinetic energy term 1
2
mẋ2 (t) is canceled out. From

Eq.(3.22) the first term of the right hand side in Eq.(3.24) is

〈SD〉S0
= C

∫ T

0

∫ T

0

dtds

∫ ∞

−∞
dq

cos
[
Ω

(
T
2
− |t− s|)]

sin
(
ΩT

2

) 〈exp {iq [x (t)− x (s)]}〉S0
,

(3.25)

and from Eq.(3.14) the second term of the right hand side in Eq.(3.24) is

〈S0〉S0
= −κω

8

∫ T

0

∫ T

0

dtds
cos

[
ω

(
T
2
− |t− s|)]

sin
(
ω T

2

) 〈|x (t)− x (s)|2〉
S0

. (3.26)

The quantity 〈exp{iq[x(t)−x(s)]}〉S0 in Eq.(3.25) is expanded using the cumulant

expansion. Because the trial action S0 is a quadratic action, the valid terms are

the first and the second order terms and the next terms vanish. Thus the quantity

〈exp {iq [x (t)− x (s)]}〉S0
can be approximated as

〈exp {iq [x (t)− x (s)]}〉S0
≈ exp

{
iq 〈x (t)− x (s)〉S0

−q2

2

(〈
[x (t)− x (s)]2

〉
S0
− 〈x (t)− x (s)〉2S0

) }
.

(3.27)

Next, for evaluating the two quantities 〈x (t)− x (s)〉S0
and

〈
[x (t)− x (s)]2

〉
S0

the generating functional must be taken into account (see Appendix A). From

this technique we obtain

〈x (t)− x (s)〉S0
= A (xb − xa) , (3.28)
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and

〈
[x (t)− x (s)]2

〉
S0

= B + A2 (xb − xa)
2 (3.29)

where

A = µ

{
sin

[
ν
2
(t− s)

]
cos

[
ν
2
(T − (t + s))

]

m sin
(

ν
2
T

) +
(t− s)

MT

}
, (3.30)

and

B =
ih̄µ

mν2

{
2ν sin

[
ν
2
(t− s)

]
sin

[
ν
2
(T − |t− s|)]

m sin
(

ν
2
T

) +
ν2

MT
|t− s| (T − |t− s|)

}
.

(3.31)

From Eq.(3.27), Eq.(3.28), Eq.(3.29), Eq.(3.30) and Eq.(3.31), the averaged quan-

tities 〈S0〉S0
and 〈SD〉S0

in Eqs.(3.25) and (3.26) can be evaluated. Therefore, we

obtained

〈SD〉S0
− 〈S0〉S0

. = C

∫ T

0

∫ T

0

dtds

∫ ∞

−∞
dq

cos
[
Ω

(
T
2
− |t− s|)]

sin
(
ΩT

2

)

× exp

[
iqA (xb − xa)− q2

2
B

]

+
κω

8

∫ T

0

∫ T

0

dtds
cos

[
ω

(
T
2
− |t− s|)]

sin
(
ω T

2

) [
B + A2(xb − xa)

2
]
.

(3.32)

Substituting the averaged quantity in Eq.(3.32) into Eq.(3.19) the approximate
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propagator of our model K1 (xb, xa; T ) can be written as

K1 (xb, xa; T ) = K0 (xb, xa; T )× exp

{
i

h̄
C

∫ T

0

∫ T

0

dtds

∫ ∞

−∞
dq

cos
[
Ω

(
T
2
− |t− s|)]

sin
(
ΩT

2

)

× exp

[
iqA (xb − xa)− q2

2
B

]

+
i

h̄

κω

8

∫ T

0

∫ T

0

dtds
cos

[
ω

(
T
2
− |t− s|)]

sin
(
ω T

2

) [
B + A2(xb − xa)

2
]
}

.

(3.33)

3.5 The density matrix

For convenience in taking a limit for finding the interested quantity such as the

ground state energy and the effective mass, the approximate propagator has to

be transformed into the density matrix by just replacing T, t, s as T → −iβh̄, t →

−it and s → −is. After performing this process the density matrix ρ1 (xb, xa; β)

which corresponds to the approximate propagator K1 (xb, xa; T ) will be obtained.

ρ1 (xb, xa; β) = ρ0 (xb, xa; β)× exp

{
C

h̄

∫ βh̄

0

∫ βh̄

0

dtds

∫ ∞

−∞
dq

cosh
[
Ω

(
βh̄
2
− |t− s|)]

sinh
(
Ωβh̄

2

)

× exp

[
iq (xb − xa) A1 − q2h̄

2mν2
f (|t− s| , β)

]

+
1

2

(
1− ω2

ν2

) [ν

2
βh̄ coth

(ν

2
βh̄

)
− 1

]

+
κω

8h̄

∫ βh̄

0

∫ βh̄

0

cosh
[
ω

(
βh̄
2
− |t− s|)]

sinh
(
ω βh̄

2

) A2
1 (xb − xa)

2

}
, (3.34)
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where ρ0 (xb, xa; β) is the density matrix which corresponds to the propagator

K0 (xb, xa; T ) ,

ρ0 (xb, xa; β) =

(
m

2πβh̄2

)1/2
[

υ sinh
(

ω
2
βh̄

)

ω sinh
(

υ
2
βh̄

)
]

× exp

{
−1

h̄

[
µυ

4
coth

(υ

2
βh̄

)
+

(
mµ

2Mβh̄

)]
|xb − xa|2

}
,

(3.35)

A1 = µ

{
sinh

[
ν
2
(t− s)

]
cosh

[
ν
2
(βh̄− (t + s))

]

m sinh
(

ν
2
βh̄

) +
(t− s)

Mβh̄

}
, (3.36)

and

f (|t− s| , β) = µ

{
2ν sinh

[
ν
2
(t− s)

]
sinh

[
ν
2
(βh̄− |t− s|)]

m sinh
(

ν
2
βh̄

)

+
ν2

Mβh̄
|t− s| βh̄− |t− s|

}
. (3.37)

Noting that the term 1
2

(
1− ω2

ν2

) [
ν
2
βh̄ coth

(
ν
2
βh̄

)− 1
]

in Eq.(3.35) has

been derived using the expansion

κω

8

µ

mν2

∫ βh̄

0

∫ βh̄

0

dtds
cosh

[
ω

(
βh̄
2
− |t− s|)]

sinh
(
ω βh̄

2

)

×
{

2ν sinh
[

ν
2
(t− s)

]
sinh

[
ν
2
(βh̄− |t− s|)]

m sinh
(

ν
2
βh̄

) +
ν2

Mβh̄
|t− s| (βh̄− |t− s|)

}
,

by setting |t− s| = u and using the relation

∫ β

0

∫ β

0

dtdsg (|t− s|) = 2

∫ β

0

du (β − u) g (u) . (3.38)
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In this chapter, the model Hamiltonian for an electron moving along DNA

is proposed and the Lagrangian is obtained using Legendre transform. The os-

cillator coordinates are eliminated using the path integrals over the oscillator

coordinates. To evaluate the propagator, a variational method is applied by

choosing a trial action S0. The first cumulant approximation is chosen to approx-

imate the propagator. Lastly, the density matrix is obtained from the propagator

by replacing T by −iβh̄.

















































Appendices



Appendix A:

The generating function

The average over quantities like 〈x (t)〉 or 〈x (t) x (s)〉 can be evaluated

from the generating functional

〈
exp[

i

h̄

∫
f (t) x (t) dt]

〉

S0

=

∫ Dx (t) exp[ i
h̄

(
S +

∫ T

0
dtf (t) x (t)

)
]

∫ Dx (t) exp( i
h̄
S)

, (A.1)

with end point condition x (T ) = xb, x (0) = xa and f (t) is a time- dependent

arbitrary function. By following the standard way of evaluation of the path

integration from Feynman and Hibbs [1] the path integral on the right-hand side

of above equation can be reduced to an exponential of a two classical function,

that is
〈

exp[
i

h̄

∫
f (t) x (t) dt]

〉

S0

=

∫
Dx (t) exp[

i

h̄

(
Sf

cl − Scl

)
], (A.2)

where Sf
cl is the classical action which corresponds to the action Sf ,

Sf = S +

∫ T

0

dtf (t) x (t)

and Scl is the classical action which corresponds to the action S.

The interesting quantities 〈x (t)〉 and 〈x (t) x (s)〉 can be obtained by dif-

ferentiating Eq.(A.2) with respect to the function f (t) and setting it to zero.
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That is

〈
x (t) exp[

i

h̄

∫
f (t) x (t) dt]

〉

S0

=
h̄

i

∂

∂f (t)

{
exp[

i

h̄

(
Sf

cl − Scl

)
]

}
,

=
∂Sf

cl

∂f (t)

{
exp[

i

h̄

(
Sf

cl − Scl

)
]

}
.

Therefore, by evaluating both sides when f (t) = 0, we obtain

〈x (t)〉S0
=

∂Sf
cl

∂f (t)

∣∣∣∣∣
f=0

. (A.3)

We can continue this process to get the second derivative as

〈x (t) x (s)〉 =

(
h̄

i

)2
∂2

∂f (t) ∂f (s)
exp[

i

h̄

(
Sf

cl − Scl

)
]

∣∣∣∣∣
f=0

. (A.4)



Appendix B:
Numerical part
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Figure B.1: The curve surface of the ground state energy E0 and the two varia-
tional parameters ν and r where α equal to 10.
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