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NOTATIONS
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CHAPTER I

INTRODUCTION

In this research, we introduce the notion of general essential closures, which is

formally postulated in Chapter 2. Our notion of essential closures is modeled after

the notion of topological closures and the notion of essential closure introduced

by Gesztesy et al. in [13]. To see the motivation behind the notion of general

essential closures, we explore basic properties and interpretations of topological

closures and the essential closure.

The topological closure of a set can be viewed as the collection of points which

are near (or close to) the set in a topological sense, i.e., each neighborhood of those

points intersects with the set. A topological closure cl : P(X) → P(X) satisfies

the following properties for all sets A,B ⊆ X:

(i) cl(∅) = ∅,

(ii) A ⊆ cl(A),

(iii) cl(A ∪ B) = cl(A) ∪ cl(B),

(iv) cl(cl(A)) = cl(A).

Let us note that this set of properties completely characterizes the topological

closure, i.e., if there is a unary operation on P(X) satisfying the above properties,

then there is a topology on X with respect to which the unary operation is the

topological closure. Topological closures are extensive1 since every point in a set

is close to itself, hence included in the topological closure of that set. In this case,

we can say that every point in a set is essential to the set. But this is not the case

for the essential closure.

1A set-valued function f is said to be extensive if A ⊆ f(A) for each A in the
domain.
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In their work, Gesztesy et al. introduce the notion of essential closure as a

tool to study absolutely continuous spectra of some linear operators. The essential

closure of a Lebesgue measurable set A ⊆ R is defined by

A
e
= {x ∈ R : for all ǫ > 0, λ1((x− ǫ, x+ ǫ) ∩ A) > 0}.

Likewise, the essential closure of a set can be viewed as the collection of points

which are near (or close to) a positive Lebesgue measure portion of the set in a

topological sense, i.e., the intersection of each neighborhood of those points with

the set is of positive Lebesgue measure. The essential closure satisfies the following

properties for all Lebesgue measurable sets A,B ⊆ R:

(i) A
e
is closed,

(ii) A
e ⊆ A,

(iii) A ∪ B
e
= A

e ∪ B
e
,

(iv) A
e e

= A
e
.

Notice that the essential closure, unlike topological closures, is not extensive. For

example, Q
e
= ∅. In this case, we can say that only positive Lebesgue measure

subsets are essential to the set. Compared with the case of topological closures,

this is exactly the motivation which gives rise to the notion of essentiality in our

research. Also notice that the second property of the essential closure implies that

the essential closure of the empty set is the empty set itself. Moreover, notice that

the first and the second properties of the essential closure are conditional to the

underlying topology which, in this case, is the standard topology on the real line.

These two properties are, in fact, due to the aforementioned interpretation of the

essential closure.

Our notion of essential closures is a generalization of both the notion of topo-

logical closures and the notion of essential closure introduced in [13]. Roughly

speaking, a general essential closure can be viewed a unary operation mimicking

topological closures but not necessarily extensive. Moreover, like in the case of

the essential closure on the real line, we want to have the notion of topological
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nearness, hence an underlying topological structure is required. To ensure some

degree of compatibility between the underlying topological structure and a general

essential closure, some additional conditions are included, i.e., we require that an

essential closure of a set is closed and is included in the topological closure of that

set. These are exactly the first and the second properties of the essential closure

on the real line.

However, an approach to postulating the notion of essential closures which

concentrates only on the core properties should not assume any a priori topological

structure. Such approach starts from postulating essential closure operators in the

same spirit as that of topological closure operators.

Recall the definition of a topological closure operator on a space X, which is a

unary operation cl : P(X) → P(X) satisfying the following properties for all sets

A,B ⊆ X:

(i) cl(∅) = ∅,

(ii) A ⊆ cl(A),

(iii) cl(A ∪ B) = cl(A) ∪ cl(B),

(iv) cl(cl(A)) = cl(A).

Recall that this is the set of properties which characterizes the topological

closure. We call a unary operation (whose domain and codomain are reduced to

some suitable collection of sets) satisfying all but the second property above an

essential closure operator and is formally postulated in Chapter 2. Similar to the

fact that a topological closure operator naturally induces a (unique) topological

closure, an essential closure operator also induces, in a natural way, an essential

closure. One difference between the notion of topological closure operators and the

notion of essential closure operators is that an essential closure operator induces an

essential closure, but not unique in general due to the fact that there can be several

compatible topological structures. The other difference is that an essential closure

can be defined on a collection of subsets of the space satisfying some conditions

similar to how a measure is defined on a σ-algebra of measurable sets.
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During the process of developing the theory of essential closures, we intro-

duce a few notions related to the notion of essential closures: essential sets and

nonessential sets, essential closedness, and essential compactness. We obtain that,

for a certain kind of essential closure, the collection of nonessential sets acts as

a generator of its corresponding essential closure. Moreover, given any collection

of sets, if some conditions are met, there is an essential closure whose collection

of nonessential sets is generated by the given collection of sets. In addition, if

the collection of sets is closed under taking subsets and countable unions, then

it is exactly the collection of nonessential sets of that essential closure. In other

words, there is an essential closure which detects exactly the given collection of

sets. Such collections include the collection of measure zero sets, the collection

of shy sets introduced in [15], the collection of sets of first category, etc. For the

notion of essential closedness, we obtain that an essentially closed set is closed

and locally essential. Moreover, the notion of essential closedness and the notion

of topological compactness characterizes the notion of essential compactness in a

Hausdorff space equipped with a certain kind of essential closure.

It turns out that well-behaved essential closures are strongly related to the no-

tion of submeasures introduced in Chapter 3, which are restrictions of outer mea-

sures onto some σ-algebras. Besides developing the theory of essential closures,

we focus mainly on essential closures defined via submeasures, called submeasure

closures, and their applications. A submeasure closure of a set is defined to be the

collection of points which are near (or close to) a positive submeasure portion of

the set in a topological sense, i.e., the intersection of each neighborhood of those

points with the set is of positive submeasure. However, a submeasure closure is

not always an essential closure. Two sufficient conditions, which guarantee that a

submeasure closure is an essential closure, are given in Chapter 3. One is a condi-

tion on the topological structure of the space while the other is a condition on the

submeasure. Moreover, if one of the aforementioned sufficient conditions is satis-

fied, the submeasure closure becomes the essential closure which detects exactly

the collection of corresponding submeasure zero sets. For applications of submea-
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sure closures, we study supports of submeasures, especially supports of absolutely

continuous measures. We also introduce the notion of essential supports of func-

tions, which is more suitable than the notion of topological supports of functions

in some cases, especially functions that are only defined almost everywhere, e.g.,

Radon-Nikodym derivatives.

In the last chapter, we study supports of multivariate copulas. We observe

that the topological closure is too coarse to use. Essential closures are almost

always finer than the topological closure. There are two kinds of essential closures

we pick to use in the study of supports of multivariate copulas. One is a family

of submeasure closures defined via Hausdorff measures. This kind of essential

closure is fit to study the local Hausdorff dimension of supports of multivariate

copulas. The other is a family of submeasure closures defined via outer measures

constructed according to the nature of multivariate copulas. This kind of essential

closure is fit to study supports of multivariate copulas whose underlying random

variables are related in a specific way, i.e., one set of random variables is com-

pletely dependent on the rest. Such multivariate dependence structure of random

variables is introduce in Chapter 4. We derive explicit formulas of supports of

such multivariate copulas and interpret the result to obtain a geometric necessary

condition for a set to be a support of a multivariate copula.



CHAPTER II

ESSENTIAL CLOSURES

In the sequel, we often use notations A 7→ Ã and E to denote both essential

closures and essential closure operators. Moreover, we often use notations A 7→ A

and cl to denote both topological closures and topological closure operators.

2.1 A set of postulates for essential closures

An essential closure can be roughly viewed as a unary operation mimicking the

topological closure but not necessarily extensive. Moreover, two conditions are

included to establish some degree of compatibility between the essential closure

and the underlying topological structure.

Postulate 2.1. Let (X, τ,Ω) be a topological space equipped with an algebra1.

We say that a unary operation

A 7→ Ã : Ω → Ω

is an essential closure if, for each A,B ∈ Ω, the following hold:

(i) Ã is a closed set,

(ii) Ã ⊆ A,

(iii) Ã ∪ B = Ã ∪ B̃,

(iv)
˜̃
A = Ã.

Remark 2.2. A restriction of an essential closure to any subalgebra invariant

under the essential closure is still an essential closure.

1An algebra over a set X is a nonempty collection of subsets of X which is
closed under complementation and finite unions.
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Proposition 2.3. Let E be an essential closure on (X, τ,Ω). Let S ∈ Ω be a

subset of X such that E(S) ⊆ S, i.e., S is E-invariant. Define

(i) τS to be the subspace topology on S,

(ii) ΩS to be the algebra (or σ-algebra if Ω is a σ-algebra) generated by the

collection {A ∩ S : A ∈ Ω}, and

(iii) ES = E|ΩS
.

Then ES is an essential closure on (S, τS,ΩS).

Proof. Observe that ΩS ⊆ Ω and ES is a unary operation on ΩS since, for each

A ∈ ΩS, A ∈ Ω and A ⊆ S, so E(A) ∈ Ω and E(A) ⊆ E(S) ⊆ S, which implies

that

ES(A) = E(A) = E(A) ∩ S ∈ ΩS.

It is left to verify the four properties of essential closures. Let A,B ∈ ΩS. Then

the following hold.

(i) ES(A) = E(A) is closed with respect to τ and is contained in S, hence closed

with respect to τS.

(ii) ES(A) = E(A) = E(A) ∩ S ⊆ cl(A) ∩ S = clS(A) where cl denotes the

topological closure with respect to τ and clS denotes the topological closure

with respect to τS.

(iii) ES(A ∪ B) = E(A) ∪ E(B) = ES(A) ∪ ES(B).

(iv) ES(ES(A)) = E(E(A)) = E(A) = ES(A).

Hence ES is an essential closure on (S, τS,ΩS).

The essential closure ES can be regarded as a natural restriction of E onto the

E-invariant subspace S. Note that the topological closedness of S is sufficient to

guarantee that S is E-invariant because if S is closed, then E(S) ⊆ cl(S) = S by

the second property of essential closures.
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Remark 2.4. With respect to set inclusion, an essential closure is increasing.

This can be shown by the fact that essential closures are distributive over finite

unions. Let A 7→ Ã be an essential closure on Ω. Assume that A,B ∈ Ω and

A ⊆ B, then write B = A ∪ B. Thus

Ã ⊆ Ã ∪ B̃ = Ã ∪ B = B̃.

Definition 2.5. An essential closure A 7→ Ã on Ω is said to be strong if for each

A ∈ Ω, Ã− Ã = ∅.

The set A− Ã can be viewed as the nonessential part of A. Thus Ã− Ã = ∅

can be interpreted as the nonessential part of A being small with respect to the

essential closure.

Remark 2.6. Let A 7→ Ã be an essential closure on Ω. Then for each A ∈ Ω, if

Ã− Ã = ∅, we have

Ã = Ã− Ã ∪ Ã ∩ Ã = Ã ∩ Ã ⊆ ˜̃
A ⊆ Ã = Ã.

Hence, for each A ∈ Ω, Ã− Ã = ∅ implies
˜̃
A = Ã. However, the converse is not

true in general.

Example 2.7. Let X = {0, 1}, τ = {∅, {0}, X}, and Ω = P(X). Define a

function E : Ω → Ω by E(A) = ∅ if A is empty and E(A) = {1} otherwise. Let

A,B ⊆ X. The following are readily verified.

(i) E(A) is closed.

(ii) E(A) ⊆ A since {0} = X.

(iii) E(A ∪B) = E(A) ∪ E(B) since both sides are {1} unless A = B = ∅.

(iv) It is straightforward to show that E(E(A)) = E(A).

Thus E is an essential closure. Moreover, observe that

E(X − E(X)) = E(X − {1}) = {1} 6= ∅.

Hence E is not strong.
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Proposition 2.8. Let A 7→ Ã be an essential closure on Ω ⊆ P(X) and suppose

that X̃ = X. Then the following hold:

(i) (Ã)c ⊆ Ãc for each A ∈ Ω,

(ii) G̃ = G for each open set G ∈ Ω,

(iii) IntA ⊆ Ã for each A ∈ Ω such that IntA ∈ Ω.

Proof. Recall the properties of essential closures in Postulate 2.1.

(i) Observe that X = X̃ = Ã ∪ Ac = Ã ∪ Ãc. Hence (Ã)c ⊆ Ãc.

(ii) Observe that

X = X̃ = G̃ ∪Gc = G̃ ∪ G̃c ⊆ G̃ ∪Gc = G̃ ∪Gc.

Hence G ⊆ G̃. Since G ⊆ G̃ ⊆ G and G̃ is closed, we have G̃ = G.

(iii) Since IntA ∈ Ω is open, IntA = ĨntA ⊆ Ã.

Remark 2.9. A topological closure restricted to an algebra containing the open

sets is an essential closure on that algebra. Moreover, it is the unique extensive

essential closure on the algebra.

2.2 Nonessential sets

In this section, we introduce one of the most important notions related to essential

closures: the notion of essentiality. The notion of essential closures is a tool created

to detect certain types of sets. To be precise, it is a tool used to detect whether

a set is essential or nonessential.

Definition 2.10. Let E be an essential closure on Ω. Then a set A ∈ Ω is said

to be nonessential if E(A) = ∅ otherwise A is said to be essential. The collection

of nonessential sets is denoted by NΩ(E).

Theorem 2.11. Let E be a strong essential closure on Ω. Then, for any A ∈ Ω,

E(A) is the intersection of closed sets F ∈ Ω such that A− F is nonessential.
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Proof. Since E is strong, E(A− E(A)) = ∅ and hence E(A) is in the intersection.

Moreover, for any closed set F ∈ Ω with E(A− F ) = ∅, observe that

E(A) = E(A ∩ F ) ∪ E(A− F ) = E(A ∩ F ) ⊆ E(F ) ⊆ F = F.

This completes the proof.

According to Theorem 2.11, one can see that the collection of nonessential sets

acts as a generator of its corresponding strong essential closure. To study strong

essential closures, it suffices to study their nonessential sets. The following result

follows directly from Theorem 2.11.

Corollary 2.12. Suppose E1 and E2 are strong essential closures on Ω such that

NΩ(E1) = NΩ(E2). Then the two essential closures coincide.

Example 2.13. Recall the essential closure defined in Example 2.7. One can

check that the essential closure is not generated by means of Theorem 2.11. Thus

the assumption that the essential closure is strong is necessary in Theorem 2.11.

Definition 2.14. An essential closure on Ω is said to be σ-nonessential if Ω is a

σ-algebra2 and every countable union of nonessential sets is nonessential.

Lemma 2.15. Let E be an essential closure on an algebra Ω and x ∈ E(A). If

G ∈ Ω is an open neighborhood of x, then G ∩ A is essential.

Proof. Suppose there exists G ∈ N(x) ∩ Ω with E(G ∩ A) = ∅. Observe that

E(A) = E(A ∩Gc) ⊆ E(A) ∩ E(Gc) ⊆ E(A) ∩Gc = E(A)−G,

contradicting the fact that E(A)−G ⊆ E(A)−{x} is a proper subset of E(A).

The following result requires a technical assumption that for each G ∈ N(x),

there is O ∈ N(x) with O ⊆ G. A topological space with such property is said

to be regular (i.e., T3). More information on regular spaces can be found in

Munkres’s book [18].

2A σ-algebra over a set X is a nonempty collection of subsets of X which is
closed under complementation and countable unions.
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Theorem 2.16. Let E be a σ-nonessential essential closure defined on a regular

measurable space3 where the σ-algebra contains the Borel sets4. Then

E
( ∞⋃

i=1

Ai

)
=

∞⋃

i=1

E(Ai).

Proof. If x ∈ E
( ∞⋃

i=1

Ai

)
and G ∈ N(x), then there exists O ∈ N(x) such that

O ⊆ G. By Lemma 2.15,

E
( ∞⋃

i=1

(O ∩ Ai)

)
= E

(
O ∩

∞⋃

i=1

Ai

)
6= ∅.

Since the essential closure is σ-nonessential, there exists Aj with E(O ∩Aj) 6= ∅.

Hence

∅ 6= E(O ∩ Aj) ⊆ E(O) ∩ E(Aj) ⊆ O ∩ E(Aj) ⊆ G ∩
∞⋃

i=1

E(Ai).

This implies x ∈
∞⋃

i=1

E(Ai). The other inclusion follows easily from the facts that E

is increasing with respect to set inclusion and that the images of E are closed.

An essential closure on a σ-algebra is not necessarily σ-nonessential. This fact

is shown in the following example.

Example 2.17. Let X = N, τ = {∅, {1}c, X} and Ω = P(X). Define a unary

operation E : Ω → Ω by

E(A) =




∅ if 1 /∈ A and A is finite

{1} otherwise.

Observe that E satisfies the following for all A,B ⊆ X.

(i) E(A) is closed.

(ii) E(A) ⊆ A since A = X if A 6= ∅, {1}.
3A regular measurable space is a regular space equipped with a σ-algebra.
4A Borel set is an element of the Borel σ-algebra, the smallest σ-algebra con-

taining the open sets.
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(iii) Observe that

E(A ∪B) = ∅ ⇔ 1 /∈ A ∪B and A ∪ B is finite

⇔ 1 /∈ A, 1 /∈ B,A is finite, and B is finite

⇔ E(A) = ∅ and E(B) = ∅

⇔ E(A) ∪ E(B) = ∅.

Hence E(A ∪ B) = E(A) ∪ E(B).

(iv) If E(A) = ∅, then E(E(A)) = ∅. If E(A) = {1}, then E(E(A)) = {1}.
Therefore, E(E(A)) = E(A).

Thus E is an essential closure on Ω. However,

E(X − {1}) = {1} 6= ∅ =
⋃

x6=1

E({x}).

Hence there exists an essential closure on a σ-algebra that is not σ-nonessential.

Moreover, this essential closure is not strong either since

E(X − E(X)) = E({1}c) = {1} 6= ∅.

The following two examples suggest that the notions of strong essential closures

and σ-nonessential essential closures are not related in an obvious way since one

does not imply the other.

Example 2.18. Let X = N, τ = {∅, X} and Ω = P(X). Define a unary

operation E : Ω → Ω by

E(A) =




∅ if A is finite

X otherwise.

Observe that E satisfies the following for all A,B ⊆ X.

(i) E(A) is closed.

(ii) E(A) ⊆ A since A = X if A 6= ∅.
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(iii) Observe that

E(A ∪ B) = ∅ ⇔ A ∪ B is finite

⇔ A is finite, and B is finite

⇔ E(A) = ∅ and E(B) = ∅

⇔ E(A) ∪ E(B) = ∅.

Hence E(A ∪ B) = E(A) ∪ E(B).

(iv) If E(A) = ∅, then E(A− E(A)) = ∅. If E(A) = X, then E(A− E(A)) = ∅.

Therefore, E(A− E(A)) = ∅.

Thus E is a strong essential closure on Ω. However,

E(X) = X 6= ∅ =
⋃

x∈X

E({x}).

Hence, there is a strong essential closure on a σ-algebra that is not σ-nonessential.

Example 2.19. Let X = R, τ = {∅, (−∞, 0), X} and Ω = P(X). Define a

unary operation E : Ω → Ω by

E(A) =




∅ if A is countable

[0,∞) otherwise.

Observe that E satisfies the following for all A,B ⊆ X.

(i) E(A) is closed.

(ii) E(A) ⊆ A since E(A) ⊆ [0,∞).

(iii) Observe that

E(A ∪ B) = ∅ ⇔ A ∪ B is countable

⇔ A is countable, and B is countable

⇔ E(A) = ∅ and E(B) = ∅

⇔ E(A) ∪ E(B) = ∅.

Hence E(A ∪ B) = E(A) ∪ E(B).
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(iv) If E(A) = ∅, then E(E(A)) = ∅. If E(A) = [0,∞), then E(E(A)) = [0,∞).

Therefore, E(E(A)) = E(A).

Thus E is an essential closure on Ω. Moreover, E is clearly σ-nonessential by

definition. However, observe that

E(X − E(X)) = E((−∞, 0)) = [0,∞) 6= ∅.

Hence, there is a σ-nonessential essential closure that is not strong.

More concrete examples of essential closures are constructed and discussed

thoroughly in Chapters 3 and 4. Our next aim is to find a way to generate an

essential closure from a given collection of sets.

Definition 2.20. Let ∅ 6= S ⊆ Ω ⊆ P(X) where Ω is a σ-algebra over X. Define

NΩ(S) to be the smallest collection which satisfies the following conditions for all

B ∈ Ω and A,A1, A2, · · · ∈ NΩ(S):

(i) S ⊆ NΩ(S) ⊆ Ω,

(ii) B ⊆ A implies B ∈ NΩ(S),

(iii)
∞⋃

n=1

An ∈ NΩ(S).

Remark 2.21. Note that Ω is one such collection satisfying the above conditions.

Moreover, it can be readily verified that nonempty intersections of collections which

satisfy the above conditions still satisfy the conditions. Hence NΩ(S) exists and

is the intersection of all collections satisfying the conditions in Definition 2.20.

Collections of sets satisfying the conditions in Definition 2.20 can be viewed as

collections of small sets. Such collections appear in various fields of mathematics,

e.g., the collection of measure zero sets, the collection of shy sets introduced in

[15], the collection of sets of first category5, etc.

5A subset of a topological space X is said to be of first category if it can be
written as a countable union of nowhere dense subsets of X.
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In the sequel, we often demand that every subset of the space be Lindelöf.

Such a topological space is called hereditarily Lindelöf. Some examples of these

spaces are second countable spaces, Suslin spaces, etc. More information on Suslin

spaces can be found in Kechris’s book [16]. More information on Lindelöf spaces

and second countable spaces can be found in Munkres’s book [18].

Theorem 2.22. Let (X, τ) be a hereditarily Lindelöf space. Given any σ-algebra Ω

over X containing the Borel sets and any nonempty collection S ⊆ Ω, there exists

a unique σ-nonessential strong essential closure whose collection of nonessential

sets is exactly NΩ(S).

Proof. The idea is from the result of Theorem 2.11. Define, for each A ∈ Ω,

Ã =
⋂{F ∈ Ω: F is closed and A− F ∈ NΩ(S)}.

Observe that, for each A ∈ Ω,

A− Ã = A−
⋂

{F ∈ Ω: F is closed and A− F ∈ NΩ(S)}

= A−
∞⋂

n=1

{Fn ∈ Ω: Fn is closed and A− Fn ∈ NΩ(S)}

=
∞⋃

n=1

{A− Fn : Fn ∈ Ω is closed and A− Fn ∈ NΩ(S)}

for some countable subcollection {Fn}n∈N by the Lindelöf property. Since NΩ(S)

is closed under countable unions, we have A− Ã ∈ NΩ(S). Now, let A,B ∈ Ω.

(i) Ã is closed since it is an intersection of closed sets. Consequently, A 7→ Ã is

a self-mapping since the σ-algebra contains the Borel sets.

(ii) Ã ⊆ A since, for any closed set F such that A ⊆ F , we have F ∈ Ω and

A− F = ∅ ∈ NΩ(S).

(iii) Ã ∪ B ⊆ Ã∪ B̃ since if F1, F2 ∈ Ω are closed sets such that A−F1, B−F2 ∈
NΩ(S), then F = F1 ∪ F2 ∈ Ω is a closed set and

(A ∪ B)− F ⊆ (A− F1) ∪ (B − F2) ∈ NΩ(S).
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Moreover, it is straightforward to show that A 7→ Ã is increasing with

respect to set inclusion. Consequently, Ã ∪ B̃ ⊆ Ã ∪ B.

(iv) Since A− Ã ∈ NΩ(S), we have Ã− Ã = ∅ by construction.

Thus A 7→ Ã is a strong essential closure on Ω. Moreover, if A ∈ NΩ(S), then

Ã = ∅ by construction. On the other hand, if Ã = ∅, then A = A− Ã ∈ NΩ(S).

Therefore,

Ã = ∅ if and only if A ∈ NΩ(S).

Thus the collections NΩ(A 7→ Ã) and NΩ(S) coincide. In addition, since NΩ(S)

is closed under countable union, the induced essential closure is σ-nonessential.

The uniqueness part is obvious since the collection of nonessential sets completely

determines the corresponding strong essential closure.

In Theorem 2.22, the assumption that the σ-algebra contains the Borel sets is

necessary. This is demonstrated in the following example.

Example 2.23. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}, S = {∅} and

Ω = {∅, {a}, {b, c}, X}. Observe that (X, τ) is hereditarily Lindelöf, Ω does not

contain τ and NΩ(S) = {∅}. Using the same construction as in Theorem 2.22,

we have

{̃a} = X while {a} = {a, c}.

Hence the induced mapping is not an essential closure since it violates the second

property of essential closures.

2.3 Essential closedness

In this section, we introduce another important notion related to essential closures:

the notion of essential closedness.

Definition 2.24. Let E be an essential closure on Ω. A set F ∈ Ω is said to be

essentially closed if and only if E(F ) = F . We denote the collection of essentially

closed sets by CΩ(E).
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Similar to the result obtained in Theorem 2.11, we derive that an essential

closure of a set A can also be written as the intersection of essentially closed sets

F such that A− F is nonessential.

Proposition 2.25. Let E be a strong essential closure on Ω. Then, for any A ∈ Ω,

E(A) = ⋂{F ∈ CΩ(E) : A− F ∈ NΩ(E)}.

Proof. Since E is strong, E(A) is in the intersection. Moreover, for any F ∈ CΩ(E)
with A− F ∈ NΩ(E), we have

E(A) = E(A ∩ F ) ∪ E(A− F ) = E(A ∩ F ) ⊆ E(F ) = F .

This completes the proof.

The following proposition gives an interpretation of the notion of essential

closedness: an essentially closed set is closed and locally essential.

Proposition 2.26. Let E be an essential closure on an algebra Ω and F ∈ Ω. If

F is essentially closed, then F is closed and, for any open set G ∈ Ω intersecting

F , G ∩ F is essential.

Proof. If F is essentially closed, then F = E(F ) is closed. Observe that

E(F −G) ⊆ F −G = F −G ( F .

Moreover, F = E(F ) = E(F −G) ∪ E(F ∩G). Thus E(F ∩G) 6= ∅.

Proposition 2.27. Let E be a strong essential closure on an algebra Ω and F ∈ Ω.

If F is closed and, for any open set G ∈ Ω intersecting F , G∩F is essential, then

F is essentially closed.

Proof. Since F is closed, E(F ) ⊆ F = F . Suppose F ∩ (E(F ))c = F − E(F ) 6= ∅.

Then E(F−E(F )) 6= ∅ by assumption, contradicting the fact that E is strong.

Combining Propositions 2.26 and 2.27 gives a characterization of the notion

of essential closedness for strong essential closures.
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Corollary 2.28. Let E be a strong essential closure on an algebra Ω and F ∈ Ω.

Then F is essentially closed if and only if F is closed and, for any open set G ∈ Ω

intersecting F , G ∩ F is essential.

Example 2.29. Recall the essential closure defined in Example 2.7. Choose

F = X. One can see that, for any nonempty open set G ∈ Ω, E(G ∩ F ) 6= ∅.

However, E(F ) = {1} 6= F , i.e., F is not essentially closed. Thus the assumption

that the essential closure is strong is necessary in Proposition 2.27.

2.4 Essential compactness

We define the notion of essential compactness via the notion of essential covering,

which is analogous to how the notion of topological compactness is defined via

the notion of open covering.

Definition 2.30. Let A 7→ Ã be an essential closure on Ω. An essential cover

{Eα}α∈Λ of a set A ∈ Ω is an open cover of A such that, for each α ∈ Λ, Eα ∩ A

is either empty or essential.

Definition 2.31. Let A 7→ Ã be an essential closure on Ω. A set K ∈ Ω is said

to be essentially compact if and only if, for each open cover of K, there exists a

finite essential subcover.

Theorem 2.32. Let A 7→ Ã be an essential closure on Ω and K ∈ Ω. If K is

compact and essentially closed, then K is essentially compact.

Proof. Assume that K is compact and essentially closed. Let {Eα}α∈Λ be an open

cover of K. Then there exists a finite subcover: {E1, . . . , En}. By Proposition

2.26, for each i such that Ei∩K 6= ∅, we have Ẽi ∩K 6= ∅. Hence, K is essentially

compact.

The converse of Theorem 2.32 requires an additional assumption, for example,

that the space is Hausdorff (i.e., T2). In particular, every compact set is closed.

More information on Hausdorff spaces can be found in Munkres’s book [18].
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Theorem 2.33. Let (X, τ) be a Hausdorff space, A 7→ Ã be a strong essential

closure on Ω, and K ∈ Ω. If K is essentially compact, then K is compact and

essentially closed.

Proof. The case where K = ∅ is trivial since ∅ is compact, essential closed and

essentially compact. Assume that K 6= ∅ and each open cover {Eα}α∈Λ of K has

a finite essential subcover. Then K is compact since an essential cover is an open

cover. It is left to show that K is essentially closed.

Suppose K 6= K̃. Since K is compact, hence closed, K̃ ⊆ K = K. Thus

there exists x ∈ K such that x /∈ K̃. Observe that {(K̃)c, {x}c} is an open cover

of K and any subcover of it is itself unless K̃ = ∅. (Note that K̃ cannot be

empty otherwise {X} is an open cover of K and X ∩ K 6= ∅ but X̃ ∩K = ∅,

contradicting the fact that K is essentially compact.) Therefore, {(K̃)c, {x}c} is

an essential cover of K. Since K − K̃ 6= ∅, we have K̃ − K̃ 6= ∅, contradicting

the fact that the essential closure is strong. Thus K is essentially closed.

Combining Theorems 2.32 and 2.33, we obtain a characterization of the notion

of essential compactness.

Corollary 2.34. Let X be a Hausdorff space, A 7→ Ã be a strong essential closure

on Ω, and K ∈ Ω. Then K is essentially compact if and only if K is compact and

essentially closed.

To conclude, in a Hausdorff space equipped with a strong essential closure,

the notion of essential compactness is completely characterized by the notions of

essential closedness and topological compactness.

2.5 An ordering on the class of essential closures

A natural way to compare two functions on a common space is to compare them

in a pointwise fashion. In this section, we introduce a natural partial ordering on

the class of set-valued functions on a common space.



20

Definition 2.35. Let E1 and E2 be set-valued functions on a common space. Then

we say that E1 is finer than or equal to E2 or E1 is coarser than or equal to E2,
denoted by E1 4 E2, if E1(A) ⊆ E2(A) for each element A in the domain.

Proposition 2.36. Assume that E1 and E2 are essential closures on a common

space such that E1 4 E2. Then

(i) E2 ◦ E1 = E1 and

(ii) E1 4 E1 ◦ E2 4 E2.

Proof. Observe that E1(A) = E1(E1(A)) ⊆ E2(E1(A)) ⊆ E1(A) = E1(A). Moreover,

observe that E1(A) = E1(E1(A)) ⊆ E1(E2(A)) ⊆ E2(E2(A)) = E2(A).

Proposition 2.37. Assume that E1 and E2 are essential closures on a common

space such that E1 4 E2. If F is E1-essentially closed, then F is E2-essentially
closed.

Proof. If E1(F ) = F , then F is closed and F = E1(F ) ⊆ E2(F ) ⊆ F = F .

Proposition 2.38. Let E1 and E2 be strong essential closures on a common space.

Then E1 4 E2 if and only if the collection of E1-nonessential sets contains the

collection of E2-nonessential sets.

Proof. The implication is obvious and the converse follows directly from Theorem

2.11.

2.6 Completions of essential closure spaces

In this section, we introduce the notion of complete essential closure spaces. The

idea is similar to the notion of complete measure spaces. Our objective is to

expand the domain and then extend the essential closure so that every subset of

a nonessential set is also nonessential.

Definition 2.39. A quadruple (X, τ,Ω, E) consisting of a nonempty set X, a

topology τ , an algebra Ω, and an essential closure E on (X, τ,Ω) is called an

essential closure space.
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Theorem 2.40. Given a σ-nonessential essential closure space (X, τ,Ω, E), define

Ω = {E ∪ F : E ∈ Ω and F is a subset of some E-nonessential set}.

Then Ω is a σ-algebra generated by Ω and all subsets of E-nonessential sets.

Proof. Clearly, ∅ ∈ Ω. Now, let A,A1, A2, · · · ∈ Ω. Then there are E ∈ Ω and F

a subset of an E-nonessential set N such that A = E ∪ F . Thus

Ac = Ec ∩ F c = Ec ∩ (N c ∪ (F c −N c)) = (E ∪N)c ∪ (Ec ∩ (N − F )).

Observe that (E ∪ N)c ∈ Ω and Ec ∩ (N − F ) ⊆ N . Hence Ac ∈ Ω. Moreover,

there are Ei ∈ Ω and Fi a subset of an E-nonessential set Ni such that Ai = Ei∪Fi

for each i. Therefore,
∞⋃

i=1

Ai =
∞⋃

i=1

(Ei ∪ Fi) =

( ∞⋃

i=1

Ei

)
∪
( ∞⋃

i=1

Fi

)
∈ Ω

since Ω is a σ-algebra and E is σ-nonessential. Thus Ω is a σ-algebra.

Observe that Ω contains Ω and all subsets of E-nonessential sets. Moreover,

by construction, Ω is contained in the σ-algebra generated by Ω and all subsets

of E-nonessential sets.

Theorem 2.41. Given a σ-nonessential essential closure space (X, τ,Ω, E), define
a set function E on Ω by

E(E ∪ F ) = E(E)

for each E ∈ Ω and F a subset of an E-nonessential set. Then E is a σ-

nonessential essential closure on Ω whose nonessential sets are exactly the subsets

of E-nonessential sets. Moreover, E is the unique essential closure on Ω which

extends E .

Proof. First of all, E is well-defined. To see this, let A ∪ B = A′ ∪ B′ where

A,A′ ∈ Ω and B and B′ are subsets of E-nonessential sets C and C ′, respectively.

Then A′ ⊆ A′ ∪ B′ ⊆ A ∪ C, which implies E(A′) ⊆ E(A). Similarly, we have

E(A) ⊆ E(A′). Moreover, E is a self-mapping on Ω since Ω ⊆ Ω.
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Now, for each A,B ∈ Ω, there are E,G ∈ Ω and subsets F and H of E-
nonessential sets N and M , respectively, such that A = E ∪ F and B = G ∪H.

The following are readily verified.

(i) E(A) is closed.

(ii) E(A) = E(E) ⊆ E ⊆ A.

(iii) Observe that

E(A∪B) = E((E∪G)∪(F ∪H)) = E(E∪G) = E(E)∪E(G) = E(A)∪E(B).

(iv) Observe that

E(E(A)) = E(E(E)) = E(E(E)) = E(E) = E(A).

Therefore, E is an essential closure on Ω. Moreover, it is easy to see that E(A) = ∅

if and only if A is a subset of an E-nonessential set. As a consequence, since E is

σ-nonessential, E is also σ-nonessential.

In addition, let E ′ be another essential closure on Ω which extends E and let

A ∈ Ω. Then there are E ∈ Ω and F a subset of E-nonessential set N such that

A = E ∪ F . Thus

E ′(A) = E ′(E ∪ F ) ⊆ E ′(E) ∪ E ′(N) = E(E) = E(A).

On the other hand,

E ′(A) = E ′(E ∪ F ) ⊇ E ′(E) = E(E) = E(A).

Hence E is the unique essential closure on Ω which extends E .

Definition 2.42. Given a σ-nonessential essential closure space (X, τ,Ω, E), we
define the completion of (X, τ,Ω, E) to be the essential closure space (X, τ,Ω, E)
whose σ-algebra Ω and essential closure E are defined in Theorems 2.40 and 2.41,

respectively.
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Proposition 2.43. The completion of a σ-nonessential strong essential closure

space is a σ-nonessential strong essential closure space.

Proof. Let (X, τ,Ω, E) be the completion of an essential closure space (X, τ,Ω, E)
where E is strong. Then, for each A ∈ Ω, there exist E ∈ Ω and F a subset of an

E-nonessential set such that A = E ∪ F . Thus

E(A− E(A)) = E((E ∪ F )− E(E ∪ F ))

= E((E ∪ F )− E(E))

= E((E − E(E)) ∪ (F − E(E))

= E(E − E(E))

= ∅.

Hence E is strong.

Example 2.44. Assume that (X, τ) is Lindelöf. Let Ω be a σ-algebra over X

containing the Borel sets. If an essential closure space (X, τ,Ω, E) is associated

with a measure, then the completion (X, τ,Ω, E) is the essential closure space

associated with the completion of that measure. This is due to Theorem 3.10 and

Corollary 3.11 in Chapter 3 that, in a Lindelöf space, if an essential closure is

associated with a measure, then it is σ-nonessential and the nonessential sets are

exactly the measure zero sets.

Similar to the case of σ-nonessential essential closure spaces, if we instead

start with an algebra Ω and an essential closure E , then we may take an algebraic

completion of Ω to be the algebra generated by Ω and all subsets of E-nonessential
sets and take an algebraic completion of E to be the unique extension of E on

the algebraic completion of Ω. Notice that we do not require any additional

assumption on the algebra or on the essential closure in this case. However, since

we rarely encounter algebras in practice, algebraic completions of essential closure

spaces may have less practical uses compared to completions of σ-nonessential

essential closure spaces. Nevertheless, it is theoretically interesting.
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Theorem 2.45. Given an essential closure space (X, τ,Ω, E), define

Ω = {E ∪ F : E ∈ Ω and F is a subset of some E-nonessential set}.

Then Ω is an algebra generated by Ω and all subsets of E-nonessential sets.

Proof. Clearly, ∅ ∈ Ω. Now, let A,A1, . . . , An ∈ Ω. Then there are E ∈ Ω and F

a subset of an E-nonessential set N such that A = E ∪ F . Thus

Ac = Ec ∩ F c = Ec ∩ (N c ∪ (F c −N c)) = (E ∪N)c ∪ (Ec ∩ (N − F )).

Observe that (E ∪ N)c ∈ Ω and Ec ∩ (N − F ) ⊆ N . Hence Ac ∈ Ω. Moreover,

there are Ei ∈ Ω and Fi a subset of an E-nonessential set Ni such that Ai = Ei∪Fi

for each i. Therefore,
n⋃

i=1

Ai =
n⋃

i=1

(Ei ∪ Fi) =

( n⋃

i=1

Ei

)
∪
( n⋃

i=1

Fi

)
∈ Ω

since Ω is an algebra and E is distributive over finite unions. Thus Ω is an algebra.

Observe that Ω contains Ω and all subsets of E-nonessential sets. Moreover,

by construction, Ω is contained in the algebra generated by Ω and all subsets of

E-nonessential sets.

Theorem 2.46. Given an essential closure space (X, τ,Ω, E), define a set function

E on Ω by

E(E ∪ F ) = E(E)

for each E ∈ Ω and F a subset of an E-nonessential set. Then E is an essential

closure on Ω whose nonessential sets are exactly the subsets of E-nonessential sets.
Moreover, E is the unique essential closure on Ω which extends E .

Proof. First of all, E is well-defined. To see this, let A ∪ B = A′ ∪ B′ where

A,A′ ∈ Ω and B and B′ are subsets of E-nonessential sets C and C ′, respectively.

Then A′ ⊆ A′ ∪ B′ ⊆ A ∪ C, which implies E(A′) ⊆ E(A). Similarly, we have

E(A) ⊆ E(A′). Moreover, E is a self-mapping on Ω since Ω ⊆ Ω.

Now, for each A,B ∈ Ω, there are E,G ∈ Ω and subsets F and H of E-
nonessential sets N and M , respectively, such that A = E ∪ F and B = G ∪H.

The following are readily verified.
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(i) E(A) is closed.

(ii) E(A) = E(E) ⊆ E ⊆ A.

(iii) Observe that

E(A∪B) = E((E∪G)∪(F ∪H)) = E(E∪G) = E(E)∪E(G) = E(A)∪E(B).

(iv) Observe that

E(E(A)) = E(E(E)) = E(E(E)) = E(E) = E(A).

Therefore, E is an essential closure on Ω. Moreover, it is easy to see that E(A) = ∅

if and only if A is a subset of an E-nonessential set.
In addition, let E ′ be another essential closure on Ω which extends E and let

A ∈ Ω. Then there are E ∈ Ω and F a subset of E-nonessential set N such that

A = E ∪ F . Thus

E ′(A) = E ′(E ∪ F ) ⊆ E ′(E) ∪ E ′(N) = E(E) = E(A).

On the other hand,

E ′(A) = E ′(E ∪ F ) ⊇ E ′(E) = E(E) = E(A).

Hence E is the unique essential closure on Ω which extends E .

Definition 2.47. Given an essential closure space (X, τ,Ω, E), we define the

algebraic completion of (X, τ,Ω, E) to be the essential closure space (X, τ,Ω, E)
whose algebra Ω and essential closure E are defined in Theorems 2.45 and 2.46,

respectively.

Proposition 2.48. The algebraic completion of a strong essential closure space

is a strong essential closure space.

Proof. Let (X, τ,Ω, E) be the algebraic completion of an essential closure space

(X, τ,Ω, E) where E is strong. Then, for each A ∈ Ω, there exist E ∈ Ω and F a

subset of an E-nonessential set such that A = E ∪ F . Thus
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E(A− E(A)) = E((E ∪ F )− E(E ∪ F ))

= E((E ∪ F )− E(E))

= E((E − E(E)) ∪ (F − E(E))

= E(E − E(E))

= ∅.

Hence E is strong.

Proposition 2.49. The algebraic completion of a σ-nonessential essential closure

space is a σ-nonessential essential closure space.

Proof. Let (X, τ,Ω, E) be the algebraic completion of an essential closure space

(X, τ,Ω, E) where E is σ-nonessential. Let A1, A2, · · · ∈ Ω such that Ai is a subset

of an E-nonessential set Ni for each i. Let

A =
∞⋃

i=1

Ai ⊆
∞⋃

i=1

Ni = N .

Thus A is a subset of an E-nonessential set N . By construction, E(A) = ∅, which

implies that E is σ-nonessential.

2.7 Essential closure operators

In this section, we provide an alternative approach to postulating the notion of

essential closures. It is an approach which concentrates on the core properties of

essential closures. An advantage of this approach is that we need not assume any

a priori topological structure.

Similar to the notion of essential closures, an essential closure operator can be

roughly viewed as a unary operation mimicking the topological closure operator

but not necessarily extensive. Since there is no underlying topological structure,

no additional conditions are included.
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Postulate 2.50. Let X be a nonempty set and Ω be an algebra over X. An

essential closure operator on (X,Ω) is a unary operation

A 7→ Ã : Ω → Ω

which satisfies the following conditions for all sets A,B ∈ Ω:

(i) ∅̃ = ∅,

(ii) Ã ∪ B = Ã ∪ B̃,

(iii)
˜̃
A = Ã.

Remark 2.51. We choose the domain of an essential closure or an essential

closure operator to be an algebra for our convenience in stating the conditions in

our results. In fact, we may define an essential closure or an essential closure

operator on a more general domain, namely, a collection of sets which is closed

under finite unions. Note that every result in this section still holds.

Remark 2.52. A topological closure operator restricted to any algebra invari-

ant under the topological closure operator is indeed an essential closure operator.

Moreover, it is the unique essential closure operator which is extensive.

Given an essential closure operator, our objective is to induce a topology with

respect to which the essential closure operator is an essential closure. To guarantee

the existence of the induced topology, we need the following lemmas.

Lemma 2.53. Let X be a nonempty set and Ω be an algebra over X. Suppose

that A 7→ A : Ω → Ω satisfies the following conditions for all sets A,B ∈ Ω:

(i) ∅ = ∅,

(ii) A ⊆ A,

(iii) A ∪ B = A ∪B,

(iv) A = A.

Then A 7→ A can be extended to a topological closure operator on X.
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Proof. With a slight abuse of notation, define cl : P(X) → P(X) by

cl(A) =
⋂

C⊇A

C.

First of all, we check that cl is indeed an extension. Suppose that A ∈ Ω. Then

we have

cl(A) =
⋂

C⊇A

C ⊆ A ⊆
⋂

C⊇A

C ⊆
⋂

C⊇A

C = cl(A)

where the first inclusion follows from the fact that A is in the intersection, the

second inclusion is obvious, and the last inclusion follows from the fact that A ⊆ C

implies A ⊆ C. Hence, cl is an extension of A 7→ A. Moreover, observe the

following properties of the unary operation cl : P(X) → P(X).

(i) cl(∅) = ∅ = ∅ since ∅ ∈ Ω.

(ii) A ⊆
⋂

C⊇A

C = cl(A).

(iii) Observe that

⋂

C⊇A∪B

C ⊆
⋂

D⊇A,E⊇B

D ∪ E =

( ⋂

D⊇A

D

)
∪
( ⋂

E⊇B

E

)
.

Hence cl(A ∪ B) ⊆ cl(A) ∪ cl(B). Moreover, it is straightforward to verify

that cl is increasing with respect to set inclusion. It readily follows that

cl(A) ∪ cl(B) ⊆ cl(A ∪ B).

(iv) If A ⊆ C, then cl(A) ⊆ cl(C) = C = C since C ∈ Ω. Hence

cl(cl(A)) =
⋂

C⊇cl(A)

C ⊆
⋂

C⊇A

C = cl(A).

On the other hand, cl(A) ⊆ cl(cl(A)) since A ⊆ cl(A).

Therefore, cl is a topological closure operator on X.

Remark 2.54. An extension in Lemma 2.53 is not unique.
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Lemma 2.55. Let A 7→ Ã be an essential closure operator on an algebra Ω over

a nonempty set X. Then there exists a topology on X with respect to which Ã is

closed and contained in the topological closure of A for each A ∈ Ω.

Proof. Define A = A ∪ Ã for each A ∈ Ω. Observe that, for each A,B ∈ Ω,

(i) ∅ = ∅ ∪ ∅̃ = ∅,

(ii) A ⊆ A ∪ Ã = A,

(iii) A ∪ B = A ∪B ∪ Ã ∪B = (A ∪ Ã) ∪ (B ∪ B̃) = A ∪ B, and

(iv) A = A ∪ Ã ∪ Ã ∪ Ã = A ∪ Ã ∪ Ã ∪ ˜̃
A = A ∪ Ã = A.

According to Lemma 2.53, the unary operation A 7→ A : Ω → Ω can be extended

to a topological closure operator on X. Let cl be a topological closure operator

extended from A 7→ A : Ω → Ω and let τ be the topology induced by cl. Since

Ã ∈ Ω, we have

cl(Ã) = Ã ∪ ˜̃
A = Ã.

Hence Ã is closed in (X, τ) for each A ∈ Ω. Moreover, Ã ⊆ A ∪ Ã = cl(A) for

each A ∈ Ω.

Given an essential closure, if we take out its underlying topological structure,

what we get is an essential closure operator. Conversely, the following theorem

shows that there is a natural way to induce an underlying topology from a given

essential closure operator. However, it is not guaranteed that the induced topology

is the same as the give topology. There are cases where the induced topology

coincides with the given topology. A nice characterization of such cases will be

derived at the end of this chapter.

Let us note that an arbitrary intersection of topologies is again a topology.

So, a natural way to induce an underlying topology from a given essential closure

operator is to take the (nonempty) intersection of all topologies satisfying the

conditions in Lemma 2.55.
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Theorem 2.56. Let A 7→ Ã be an essential closure operator on Ω. Define

τΩ =
⋂

τα, where the nonempty intersection is taken over all topologies τα on

X satisfying the conditions in Lemma 2.55, and let clΩ be the topological closure

induced by τΩ. Then, A 7→ Ã : Ω → Ω satisfies the following conditions for all sets

A,B ∈ Ω:

(i) Ã is closed in (X, τΩ),

(ii) Ã ⊆ clΩ(A),

(iii) Ã ∪ B = Ã ∪ B̃,

(iv)
˜̃
A = Ã.

In other words, A 7→ Ã is an essential closure on (X, τΩ,Ω). Furthermore, τΩ is

generated by the collection {(Ã)c}A∈Ω.

Proof. To show that A 7→ Ã is an essential closure, it suffices to show that Ã is

closed in (X, τΩ) and Ã ⊆ clΩ(A) since it is already an essential closure operator.

First of all, Ã is closed in (X, τΩ) since (Ã)c ∈ τα for each α. So, (Ã)c ∈ τΩ.

Moreover, Ã ⊆ clα(A) ⊆ clΩ(A) since τΩ ⊆ τα.

Furthermore, let τ be the topology generated by {(Ã)c}A∈Ω. Since Ã is closed

in (X, τΩ) for each A ∈ Ω, we have τ ⊆ τΩ. Consequently, clΩ(A) ⊆ clτ (A) for

each A ∈ Ω. Therefore, Ã ⊆ clΩ(A) ⊆ clτ (A) for each A ∈ Ω. Moreover, Ã is

closed in (X, τ) for each A ∈ Ω since τ is generated by {(Ã)c}A∈Ω. Hence τ is

a topology satisfying the conditions in Lemma 2.55, which implies that τΩ ⊆ τ .

Thus the two topologies coincide.

Remark 2.57 (Consistency). Let A 7→ A be a topological closure operator, hence

an essential closure operator. One can see that the topology induced by A 7→ A as

an essential closure operator is the same as the topology induced by A 7→ A as a

topological closure operator.

Given an essential closure operator E on (X,Ω). Any topology τ containing

τΩ with the property that E(A) ⊆ cl(A) for all A ∈ Ω, where cl is the topological
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closure induced by τ , is said to be compatible with the given essential closure

operator. Notice that τ is a compatible topology if and only if (X, τ,Ω, E) is an
essential closure space.

There can be several compatible topologies on a given essential closure operator

space. The induced topology τΩ in Theorem 2.56 is the smallest of such topologies

and is called the canonical topology.

Example 2.58. Recall the essential closure space (X, τ,Ω, E) defined in Example

2.17. According to Theorem 2.56, the canonical topology τΩ is generated by the

collection {{1}c, X}. Hence the given topology τ = {∅, {1}c, X} is canonical.

Let τ ∗ = {∅, {1}c, {2}c, {1, 2}c, X}, which is another topology on X. Observe

that τ ⊆ τ ∗ and it is straightforward to check that, for each A ∈ Ω, E(A) is

contained in the topological closure (with respect to τ ∗) of the set A. Therefore,

(X, τ ∗,Ω, E) is an essential closure space. Hence τ ∗ is a compatible topology which

is not canonical.

Example 2.59. Recall the definition of the essential closure (A 7→ A
e
) on the

real line defined in [13]. This is an essential closure (with respect to the standard

topology τs) on the Lebesgue σ-algebra L(R). If we temporarily take out the

standard topology and view the essential closure as an essential closure operator

on L(R), then the canonical topology (i.e., the induced topology τL(R) in Theorem

2.56) is indeed the given standard topology.

First of all, observe that A
e
is closed with respect to the standard topology for

each A ∈ L(R). Hence τL(R) ⊆ τs. On the other hand, it suffices to show that each

nonempty bounded open interval is of the form (A
e
)c for some A ∈ L(R). Let

(a, b) ⊆ R where a < b. Choose A = (−∞, a]∪[b,∞). Then A
e
= (−∞, a]∪[b,∞).

Thus (A
e
)c = (a, b) as desired. Hence τs ⊆ τL(R). Observe that A 7→ A

e
restricted

to B(R), the Borel σ-algebra over R, is also an essential closure. Similarly, it can

be shown that τB(R) = τs as well.

We end this chapter with the following result, which gives a characterization

of canonical topologies.
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Theorem 2.60. Let E be an essential closure on (X, τ,Ω). Then τ is the canonical

topology if and only if there exists a subbase of τ whose elements are of the form

(E(A))c where A ∈ Ω.

Proof. If τ is canonical, then τ is generated by {(E(A))c}A∈Ω. Conversely, if τ is

generated by a subcollection of {(E(A))c}A∈Ω, then τ ⊆ τΩ. On the other hand,

for each A ∈ Ω, E(A) is closed in (X, τ) since E is an essential closure on (X, τ,Ω).

Thus τΩ ⊆ τ . Therefore, τ is the canonical topology.



CHAPTER III

SUBMEASURE CLOSURES

In this chapter, we construct concrete examples of essential closures via submea-

sures and demonstrate their applications, especially in the study of supports of

measures and the notion of essential supports of functions. First, we introduce

the notion of submeasures which generalizes both measures and outer measures.

Definition 3.1. Let Ω be a σ-algebra over a set X. A submeasure on Ω is a set

function µ : Ω → [0,∞] satisfying:

(i) µ(∅) = 0,

(ii) µ(A) ≤ µ(B) for any A,B ∈ Ω such that A ⊆ B,

(iii) µ

( ∞⋃

i=1

Ai

)
≤

∞∑

i=1

µ(Ai) for any A1, A2, · · · ∈ Ω.

Remark 3.2. There is a classical notion of submeasures which is different from

our definition. The classical notion of submeasures were introduced in the study of

one of the classical problems in measure theory known as the control measure prob-

lem. Unlike our definition of submeasures, classical submeasures are defined on

algebras, finitely additive, and finite. More information on classical submeasures

and the control measure problem can be found in [5, 6, 10].

One can see that our notion of submeasures is a generalization of both the

notions of measures and outer measures. However, they behave more like an

outer measure than a measure. In fact, every submeasure on a σ-algebra can

be extended, though not uniquely, to an outer measure. In other words, every

submeasure is a restriction of some outer measure. A proof of this fact is given,

in details, in the following proposition.
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Proposition 3.3. Every submeasure can be extended to an outer measure.

Proof. Let µ be a submeasure on Ω. Define

µ∗(A) = inf{
∞∑

i=1

µ(Bi) : Bi ∈ Ω and A ⊆
∞⋃

i=1

Bi}.

Let A ∈ Ω. On one hand, µ∗(A) ≤ µ(A) since A ∈ Ω covers itself. On the

other hand, µ∗(A) ≥ µ(A) since µ is countably subadditive. Thus µ∗ extends µ.

Consequently, we have µ∗(∅) = µ(∅) = 0. In addition, if A ⊆ B, then a covering

of B is also a covering of A. Hence µ∗(A) ≤ µ∗(B). It is left to show that µ∗ is

countably subadditive.

Let ǫ > 0. Then for each i ∈ N, there exists a covering {Bij}i∈N of Ai such

that Bij ∈ Ω and
∞∑

j=1

µ(Bij) < µ∗(Ai) +
ǫ

2i
.

Thus {Bij}i,j∈N covers A and

µ∗(A) ≤
∞∑

i=1

∞∑

j=1

µ(Bij) <
∞∑

i=1

µ∗(Ai) + ǫ.

Since ǫ is arbitrary, µ∗ is countably subadditive.

Definition 3.4. A submeasure is said to be trivial if the space is of submeasure

zero and is said to be normalized if the space is of submeasure one.

Every nontrivial submeasure can be normalized, i.e., given any nontrivial sub-

measure, there is a normalized submeasure with the same collection of submeasure

zero sets.

Proposition 3.5. Every nontrivial submeasure can be normalized.

Proof. Let µ be a nontrivial submeasure on a measurable space (X,Ω). Define µ′

on (X,Ω) by µ′(A) = 0 if µ(A) = 0 and µ′(A) = 1 otherwise. Then µ′(X) = 1

since µ is nontrivial. Let A1, A2, · · · ∈ Ω.

(i) µ′(∅) = 0 since µ(∅) = 0.

(ii) Suppose A1 ⊆ A2. If µ(A2) = 0, then µ(A1) = 0. Thus µ′(A1) = µ′(A2). If

µ(A2) > 0, then µ′(A2) = 1. Hence µ′(A1) ≤ µ′(A2).
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(iii) If µ(Ai) = 0 for all i, then µ(
∞⋃

i=1

Ai) = 0 by the subadditivity. Consequently,

µ′(
∞⋃

i=1

Ai) = 0 =
∞∑

i=1

µ′(Ai).

If µ(Aj) > 0 for some j, then µ′(Aj) = 1. Consequently,

µ′(
∞⋃

i=1

Ai) ≤ 1 ≤
∞∑

i=1

µ′(Ai).

Hence µ′ is a submeasure on (X,Ω). Moreover, the collections of submeasure zero

sets coincide by construction.

In practice, when we deal with a topological measurable space, we rarely en-

counter an open set which is not measurable. This is because open sets are

considered to be well-behaved. It would be peculiar if they were not measurable.

So for every topological measurable space in the sequel, the σ-algebra is assumed

to contain the Borel sets, i.e., the open sets are measurable.

3.1 Definition and properties

Definition 3.6. Let (X, τ,M, µ) be a topological submeasure space1. For any

measurable set A ∈ M, we say that x ∈ A
µ
if µ(G ∩ A) > 0 for every G ∈ N(x).

The set A
µ
is called the µ-closure of A.

A measure ν is said to be absolutely continuous with respect to a measure µ

on a common measurable space, denoted by ν ≪ µ, if for every measurable set A,

µ(A) = 0 implies ν(A) = 0.

Remark 3.7. Suppose ν and µ are measures on a common topological measurable

space with ν ≪ µ. Then the ν-closure is finer than or equal to the µ-closure, i.e.,

A
ν ⊆ A

µ
for each measurable set A.

1A topological submeasure space is a topological measurable space equipped
with a submeasure.
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A submeasure closure is not always an essential closure. One such example is

given below.

Example 3.8. Let X = (−∞, 0]. Let τ be the topology on X generated by

the collection of singletons {x} where x ∈ (−∞, 0). Notice that every point

x ∈ (−∞, 0) has a neighborhood that is countable, namely, the singleton {x}.
However, the only neighborhood of 0 is X, which is uncountable. Let us remark

that X is, in fact, compact since every open cover of X has to contain X itself.

Consider the Borel σ-algebra B(X) generated by the topology τ . Define a

measure µ for each Borel measurable set A by µ(A) = 0 if A is countable and

µ(A) = ∞ otherwise. Observe that

X
µ
= {0} while X

µ µ

= ∅.

Thus the µ-closure is not idempotent. Hence it is not an essential closure. Nev-

ertheless, we would like to point out that every submeasure closure satisfies the

other three properties in Postulate 2.1.

Note that, by inner regular measure, we mean a measure µ on a Hausdorff

space equipped with a σ-algebra containing the Borel sets for which the measure

of a measurable set can be approximated from within by compact subsets, i.e., for

each measurable set A,

µ(A) = sup{µ(K) : K is compact and K ⊆ A}.

Two sufficient conditions which guarantee that a submeasure closure is a strong

essential closure are given in the following theorem. One is a condition on the

space while the other is a condition on the submeasure.

Theorem 3.9. Assume that (X, τ,M, µ) is either a hereditarily Lindelöf submea-

sure space2 or an inner regular measure space3. Then the µ-closure is a strong

essential closure.

2A hereditarily Lindelöf submeasure space is a topological submeasure space
where every subset is Lindelöf.

3An inner regular measure space is a Hausdorff measurable space equipped
with an inner regular measure.
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Proof. Let A and B be measurable sets.

(i) If x ∈ A
µ
and G ∈ N(x), then G∩Aµ 6= ∅. Let y ∈ G∩Aµ

. Thus G ∈ N(y)

and y ∈ A
µ
. Therefore, µ(G ∩ A) > 0. Hence x ∈ A

µ
. Consequently, A

µ
is

closed.

(ii) If x /∈ A, then there exists G ∈ N(x) such that G ∩ A = ∅. Thus we have

µ(G ∩ A) = 0. So x /∈ A
µ
.

(iii) If x /∈ A
µ
and x /∈ B

µ
, then there exist G1, G2 ∈ N(x) with µ(G1 ∩ A) = 0

and µ(G2 ∩ A) = 0. Choose G = G1 ∩G2 ∈ N(x). Thus

µ(G ∩ (A ∪ B)) ≤ µ(G1 ∩ A) + µ(G2 ∩ B) = 0.

So x /∈ A ∪ B
µ
. Moreover, it is straightforward to show that the µ-closure is

increasing with respect to set inclusion. Consequently, A
µ ∪B

µ ⊆ A ∪ B
µ
.

(iv) If (X, τ,M, µ) is a hereditarily Lindelöf submeasure space, consider each

x ∈ A − A
µ
. We have x /∈ A− A

µ µ

otherwise x ∈ A
µ
. Then there exists

{Gx}x∈A−A
µ such that Gx ∈ N(x) and µ(Gx ∩ (A − A

µ
)) = 0. Notice that

{Gx}x∈A−A
µ is an open cover of A − A

µ
, which is Lindelöf. Hence there

exists a countable subcover: {G1, G2, . . . }. Thus

µ(A− A
µ
) ≤

∞∑

i=1

µ(Gi ∩ (A− A
µ
)) = 0.

Therefore, A− A
µ µ

= ∅.

If (X, τ,M, µ) is an inner regular measure space, consider any compact set

K ⊆ A− A
µ
. For any x ∈ K, x ∈ A− A

µ
. Therefore, x /∈ A− A

µ µ

. Then

there exists {Gx}x∈K such that Gx ∈ N(x) and

µ(Gx ∩K) ≤ µ(Gx ∩ (A− A
µ
)) = 0.

Notice that {Gx}x∈K is an open cover of K, which is compact. So there

exists a finite subcover: {G1, . . . , Gn}. Thus
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µ(K) ≤
n∑

i=1

µ(Gi ∩K) = 0.

Therefore, µ(A−A
µ
) = 0 by the inner regularity. Thus A− A

µ µ

= ∅.

The following result gives a characterization of submeasure zero sets via the

corresponding submeasure closure, which shows that a submeasure closure can be

used to detect the collection of submeasure zero sets if the conditions are met.

Theorem 3.10. Assume that (X, τ,M, µ) is either a Lindelöf submeasure space

or an inner regular measure space. Then A
µ
= ∅ if and only if µ(A) = 0.

Proof. The converse follows directly from the definition of submeasure closures.

So, it is left to show the implication. Let A
µ
= ∅.

If (X, τ,M, µ) is a Lindelöf submeasure space, then for each x ∈ X, there

exists Gx ∈ N(x) such that µ(Gx∩A) = 0. Thus there exists a countable subcover

{G1, G2, . . . } of X. Therefore,

µ(A) ≤
∞∑

i=1

µ(Gi ∩ A) = 0.

If (X, τ,M, µ) is an inner regular measure space, then let K be any compact

subset of A. It is straightforward from the definition of submeasure closures that

K
µ ⊆ A

µ
= ∅. Thus, for each x ∈ X, there exists Gx ∈ N(x) such that

µ(Gx ∩K) = 0. Since K is compact and {Gx}x∈K covers K, there exists a finite

subcover {G1, . . . , Gn} of K. Therefore,

µ(K) ≤
n∑

i=1

µ(Gi ∩K) = 0.

By the inner regularity, µ(A) = 0.

Corollary 3.11. Assume that (X, τ,M, µ) is either a Lindelöf submeasure space4

or an inner regular measure space. If the µ-closure is an essential closure, then it

is σ-nonessential.

4A Lindelöf submeasure space is a Lindelöf space equipped with a σ-algebra
and a submeasure.
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Proof. Let {Ai}∞i=1 be a countable collection of µ-nonessential sets. By Theorem

3.10, we have µ(Ai) = 0. Consequently,

µ

( ∞⋃

i=1

Ai

)
≤

∞∑

i=1

µ(Ai) = 0.

Therefore,
∞⋃

i=1

Ai is µ-nonessential.

Corollary 3.12. Assume that (X, τ,M, µ) is either a Lindelöf submeasure space

or an inner regular measure space. If the µ-closure is a strong essential closure,

then

µ(A
µ
) ≥ µ(A)

for each A ∈ M.

Proof. By Theorem 3.10 and the fact that the µ-closure is a strong essential

closure, we have µ(A− A
µ
) = 0. Then

µ(A) ≤ µ(A ∩ A
µ
) + µ(A− A

µ
)

≤ µ(A
µ
).

This completes the proof.

On a hereditarily Lindelöf measurable space5, Theorem 3.9 and Corollary 3.11

imply that every submeasure closure is strong and σ-nonessential. In fact, the

converse also holds.

Theorem 3.13. On a hereditarily Lindelöf measurable space, an essential closure

is strong and σ-nonessential if and only if it is a submeasure closure.

Proof. Let (X, τ,M) be a hereditarily Lindelöf measurable space. The case where

X̃ = ∅ is trivial. Assume that X̃ 6= ∅. Suppose A 7→ Ã is a σ-nonessential strong

essential closure on M. Define µ : M → [0,∞] by µ(A) = 0 if Ã = ∅, otherwise

µ(A) = 1. To see that µ is a submeasure on (X,M), let {Ai}∞i=1 be a countable

collection of M-measurable sets.

5A hereditarily Lindelöf measurable space is a hereditarily Lindelöf space
equipped with a σ-algebra.
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(i) Since ∅ is nonessential, µ(∅) = 0.

(ii) Suppose A1 ⊆ A2. Then Ã1 ⊆ Ã2. If A2 is nonessential, then A1 is nonessen-

tial, hence µ(A1) = 0 = µ(A2). If A2 is essential, then µ(A1) ≤ 1 = µ(A2).

(iii) If there is an essential set Aj in the collection, then

µ

( ∞⋃

i=1

Ai

)
≤ 1 ≤

∞∑

i=1

µ(Ai).

If every Ai is nonessential, then
∞⋃

i=1

Ai is also nonessential. So, we have

µ

( ∞⋃

i=1

Ai

)
= 0 =

∞∑

i=1

µ(Ai).

Therefore, µ is a submeasure on (X,M) and, consequently, the µ-closure defined

on (X, τ,M) is a σ-nonessential strong essential closure by Theorem 3.9 and Corol-

lary 3.11. It is left to show that A 7→ Ã and the µ-closure coincide. According to

Corollary 2.12, it suffices to show that

NM(A 7→ Ã) = NM(A 7→ A
µ
).

By Theorem 3.10, A
µ
= ∅ if and only if µ(A) = 0, which is equivalent to Ã = ∅

by construction. So the two essential closures coincide. The converse follows from

Theorem 3.9 and Corollary 3.11.

Remark 3.14. In the proof of Theorem 3.13, the essential closure induces a

normalized submeasure if the space is essential. Otherwise, it induces the trivial

submeasure.

Corollary 3.15. Assume that (X, τ,M) is a hereditarily Lindelöf measurable

space. Then every σ-nonessential strong essential closure on (X, τ,M) can be

extended to a σ-nonessential strong essential closure on (X, τ,P(X)).

Proof. Given a σ-nonessential strong essential closure on (X, τ,M), by Theorem

3.13, the essential closure induces a submeasure closure, say the µ-closure. By

Proposition 3.3, µ can be extended to an outer measure µ∗ on P(X). Since µ∗
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is also a submeasure, the induced µ∗-closure is a σ-nonessential strong essential

closure on (X, τ,P(X)). Moreover, it is straightforward from the definition of

submeasure closures that the µ-closure and the µ∗-closure coincide on M.

For set-valued functions on a common space, we may define a union of such

functions in an element-wise fashion. One can verify that a finite union of two es-

sential closures is still an essential closure. Moreover, a finite union of submeasure

closures is still a submeasure closure.

Proposition 3.16. Given two submeasure closures, µ1-closure and µ2-closure, on

a common topological measurable space, the set function

A 7→ A
µ1 ∪ A

µ2

is, in fact, the (µ1 + µ2)-closure. Moreover, if both the µ1-closure and the µ2-

closure are essential closures, then so is the (µ1 + µ2)-closure.

Proof. Let µ = µ1 + µ2, which is still a submeasure. If x /∈ A
µ
, then there exists

G ∈ N(x) such that µ(G ∩ A) = 0. Thus µ1(G ∩ A) = 0 = µ2(G ∩ A). Therefore,

x /∈ A
µ1 ∪A

µ2

. Conversely, if x /∈ A
µ1 ∪A

µ2

, then there exist G1, G2 ∈ N(x) such

that µ1(G1 ∩ A) = 0 and µ2(G2 ∩ A) = 0. Choose G = G1 ∩ G2 ∈ N(x). Then

µ1(G ∩ A) = 0 = µ2(G ∩ A). Consequently, µ(G ∩ A) = 0. Hence x /∈ A
µ
.

Example 3.17. We know that A− A
µ µ

= ∅, which means A−A
µ
is a nonessen-

tial set, as long as the µ-closure is a strong essential closure. But A
µ − A can be

an essential set, meaning it can be large with respect to the submeasure µ.

To see this, take µ = λ1, the 1-dimensional Lebesgue measure on [0, 1], and

take the set A = [0, 1]−C, where C is a positive Lebesgue measure Cantor set on

[0, 1]. (For more information on positive Lebesgue measure Cantor sets, see [1].)

Then, for each x ∈ [0, 1] and G ∈ N(x), G∩A contains a nonempty open interval.

Hence λ1(G ∩ A) > 0. Therefore, A
λ1

= [0, 1]. Thus

A
λ1 − A = [0, 1]− A = C,

which is of positive Lebesgue measure. By Theorem 3.10, A
λ1 − A is essential

with respect to λ1.
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3.2 Applications

In this section, we demonstrate some of the applications of submeasure closures,

especially the study of supports of measures and the notion of essential supports

of functions.

3.2.1 Supports of measures

The support of a submeasure can be defined analogous to the definition of the

support of a measure.

Definition 3.18. Let (X, τ,M, µ) be a topological submeasure space. Then the

support of µ, denoted by suppµ, is defined to be the complement of the union of

all open sets G such that µ(G) = 0.

Example 3.19. Consider the real line R equipped with the discrete topology τ

and the σ-algebra P(R). Define a measure µ on (R, τ,P(R)) by µ(A) = 0 if A is

countable and µ(A) = ∞ otherwise. Observe that each singleton is an open set of

µ-measure zero. Hence suppµ = ∅. Consequently, µ((suppµ)c) = ∞. So, there

is a measure whose complement of the support is of positive measure.

Proposition 3.20. Assume that (X, τ,M, µ) is either a hereditarily Lindelöf sub-

measure space or an inner regular measure space. Then

µ((suppµ)c) = 0.

Proof. If the space is a hereditarily Lindelöf submeasure space, then for each x ∈
(suppµ)c, there exists Gx ∈ N(x) such that µ(Gx) = 0. Therefore, {Gx}x∈(suppµ)c

is an open cover of (suppµ)c, which is Lindelöf. Thus there is a countable subcover:

{G1, G2, . . . }. Then

µ((suppµ)c) ≤
∞∑

i=1

µ(Gi) = 0.

If the space is an inner regular space. Consider a compact set K ⊆ (suppµ)c.

For each x ∈ K, since x /∈ suppµ, there exists Gx ∈ N(x) such that µ(Gx) = 0.
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Therefore, {Gx}x∈K is an open cover of K, which is compact. Thus there is a

finite subcover: {G1, . . . , Gn}. Then

µ(K) ≤
n∑

i=1

µ(Gi) = 0.

By the inner regularity, µ((suppµ)c) = 0.

An essential closure can be viewed as a tool to eliminate the nonessential part

and collect the essential part of a set. In the case of submeasure closures, one can

expect that eliminating the nonessential part of the space should give the support

of that submeasure.

Theorem 3.21. Let (X, τ,M, µ) be a topological submeasure space. Then we have

suppµ = B
µ

for any M-measurable set B such that µ(Bc) = 0. In particular, if the µ-closure

is an essential closure, then suppµ is µ-essentially closed.

Proof. If x /∈ suppµ, then there exists G ∈ N(x) such that µ(G) = 0. Then

µ(G∩B) = 0 for any M-measurable set B. Hence x /∈ B
µ
. Conversely, if x /∈ B

µ
,

then there exists G ∈ N(x) such that µ(G ∩ B) = 0. Since µ(Bc) = 0, we have

µ(G) ≤ µ(G ∩B) + µ(G ∩ Bc) = 0. Therefore, x /∈ suppµ.

The following result gives a characterization of µ-essentially closed sets on a

hereditarily Lindelöf measure space. Notice the repeated use of Proposition 3.20

in the proof.

Theorem 3.22. Suppose (X, τ,M, µ) is a hereditarily Lindelöf measure space.

Then a set A ∈ M is µ-essentially closed if and only if there is a measure ν such

that ν ≪ µ and supp ν = A.

Proof. Let A be a µ-essentially closed set. For each M-measurable set B, define

ν(B) = µ(A∩B). Observe that ν ≪ µ. It is left to show that supp ν = A. On one

hand, observe that A is closed and ν(Ac) = µ(A ∩ Ac) = 0. Hence supp ν ⊆ A.

On the other hand, observe that
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µ((supp ν)c ∩ A) = ν((supp ν)c) = 0.

Suppose (supp ν)c ∩ A 6= ∅. Let x ∈ (supp ν)c ∩ A. Then (supp ν)c ∈ N(x)

and x ∈ A = A
µ
. Therefore, µ((supp ν)c ∩ A) > 0, a contradiction. Hence

(supp ν)c ∩ A = ∅. In other words, A ⊆ supp ν.

Conversely, it suffices to show that supp ν ⊆ supp ν µ. If x /∈ supp ν µ, then

there exists G ∈ N(x), µ(G ∩ supp ν) = 0. By absolute continuity, we have

ν(G) ≤ ν(G ∩ supp ν) + ν((supp ν)c) = 0.

So x /∈ supp ν. Hence supp ν is µ-essentially closed.

If we instead assume that the space is an inner regular measure space, we

obtain a result similar to Theorem 3.22. But first, we need the following lemma.

Lemma 3.23. Let µ be an inner regular measure on a Hausdorff measurable space

and let A be measurable. Define, for each measurable set B,

µA(B) = µ(A ∩B).

Then µA is inner regular and µA ≪ µ.

Proof. Let B be a measurable set. Observe that

µA(B) = µ(A ∩ B)

≥ sup{µ(A ∩K) : K is compact and K ⊆ B}

= sup{µA(K) : K is compact and K ⊆ B}.

On the other hand, if K is a compact set such that K ⊆ A∩B, then K ⊆ B and

µ(A ∩K) = µ(K). Hence

µA(B) = µ(A ∩ B)

= sup{µ(K) : K is compact and K ⊆ A ∩ B}

≤ sup{µ(A ∩K) : K is compact and K ⊆ B}

= sup{µA(K) : K is compact and K ⊆ B}.

Therefore, µA is inner regular. Moreover, it is clear that µA ≪ µ.
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The above result is probably known to experts. But to the best of our knowl-

edge, no proof has been given. So we give one for completeness of this thesis.

The following corollary can be proved in the same manner as the proof of

Theorem 3.22. Notice the difference in the inner regularity of the measures µ and

ν compared to the ones in Theorem 3.22.

Corollary 3.24. Suppose (X, τ,M, µ) is an inner regular measure space. Then a

set A ∈ M is µ-essentially closed if and only if there is an inner regular measure

ν such that ν ≪ µ and supp ν = A.

Proof. For each M-measurable set B, define ν(B) = µ(A ∩ B). By Lemma 3.23,

ν is inner regular and ν ≪ µ. It is left to show that supp ν = A. On one hand,

observe that A is closed and ν(Ac) = µ(A ∩ Ac) = 0. Hence supp ν ⊆ A. On the

other hand, observe that

µ((supp ν)c ∩ A) = ν((supp ν)c) = 0.

Suppose (supp ν)c ∩ A 6= ∅. Let x ∈ (supp ν)c ∩ A. Then (supp ν)c ∈ N(x)

and x ∈ A = A
µ
. Therefore, µ((supp ν)c ∩ A) > 0, a contradiction. Hence

(supp ν)c ∩ A = ∅. In other words, A ⊆ supp ν.

Conversely, it suffices to show that supp ν ⊆ supp ν µ. If x /∈ supp ν µ, then

there exists G ∈ N(x), µ(G ∩ supp ν) = 0. By absolute continuity,

ν(G) ≤ ν(G ∩ supp ν) + ν((supp ν)c) = 0.

So x /∈ supp ν. Hence supp ν is µ-essentially closed.

Measures ν and µ on a common measurable space are said to be singular,

denoted by ν ⊥ µ, if there is a measurable partition {A,B} of the space such

that µ(A) = 0 while ν(B) = 0. Recall that a σ-finite measure can be uniquely

decomposed, with respect to another σ-finite measure on a common measurable

space, into two parts: absolutely continuous part and singular part. This result

is known as Lebesgue’s decomposition theorem (see [20, page 278]).
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Theorem 3.25 (Lebesgue’s decomposition theorem). For any σ-finite measures

µ and ν on a common measurable space, there exist unique σ-finite measures νa

and νs such that

(i) ν = νa + νs,

(ii) νa ≪ µ,

(iii) νs ⊥ µ.

Consider the Lebesgue decomposition of a σ-finite measure with respect to

an underlying σ-finite measure on a hereditarily Lindelöf measurable space. If

the support of the singular part is negligible, then the support of the absolutely

continuous part can be determined via the submeasure closure induced by the

underlying measure.

Theorem 3.26. Assume that µ and η are σ-finite measures on a hereditarily

Lindelöf measurable space with the Lebesgue decomposition η = ηa+ηs with respect

to µ. If µ(supp ηs) = 0, then supp ηa = supp η µ.

Proof. First of all, we claim that supp η = supp ηa ∪ supp ηs. Note that this holds

in general, not just for the Lebesgue decomposition. Since η((supp η)c) = 0, we

have ηa((supp η)
c) = 0 = ηs((supp η)

c). Hence

(supp η)c ⊆ (supp ηa)
c ∩ (supp ηs)

c.

On the other hand, if x /∈ supp ηa ∪ supp ηs, then there exist G1, G2 ∈ N(x) such

that ηa(G1) = 0 = ηs(G2). ChooseG = G1∩G2 ∈ N(x). Then ηa(G) = 0 = ηs(G).

Thus η(G) = 0. Therefore, x /∈ supp η. We conclude that

supp η = supp ηa ∪ supp ηs.

By Theorem 3.10, since µ(supp ηs) = 0, we have supp ηs
µ = ∅. Therefore,

supp η µ = supp ηa
µ ∪ supp ηs

µ = supp ηa
µ.

Thus supp η µ = supp ηa since supp ηa is µ-essentially closed by Theorem 3.22
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Example 3.27. Suppose µ and η are σ-finite measures on a hereditarily Lindelöf

measurable space with the Lebesgue decomposition η = ηa+ ηs with respect to µ.

If µ(supp η) = 0, then

µ(supp ηs) ≤ µ(supp η) = 0

since supp ηs ⊆ supp η. By Theorems 3.10 and 3.26, supp ηa = supp η µ = ∅.

Thus ηa ≡ 0, which implies that η is singular with respect to µ.

3.2.2 Essential supports of functions

In this section, we introduce the notion of essential supports of functions, which is

partly motivated by the study of supports of Radon-Nikodym derivatives. We are

particularly interested in the study of Radon-Nikodym derivatives via techniques

from geometric measure theory.

For any pair of Radon measures6 ν and µ on a Euclidean space Rn (equipped

with a σ-algebra containing the Borel sets) such that ν ≪ µ, it was shown in [17,

Theorem 2.12] that the function

Dν,µ(x) = lim
ǫ→0+

ν(B(x, ǫ))

µ(B(x, ǫ))

is defined for µ-almost everywhere on Rn and coincides µ-almost everywhere with

the Radon-Nikodym derivative of ν with respect to µ.

Similarly, for any locally finite measure ν defined on the Borel σ-algebra over

Rn such that ν ≪ λn, it was shown in [3, Theorem 2.3.8] that the function

Dν,λn
(x) = lim

ǫ→0+

ν(B(x, ǫ))

λn(B(x, ǫ))

is defined for Lebesgue almost everywhere on Rn and coincides Lebesgue almost

everywhere with the Radon-Nikodym derivative of ν with respect to λn.

From the two examples above, we propose a more general definition for a

σ-finite measure to be differentiable with respect to another σ-finite measure as

follows.

6See Definition 1.5 and Corollary 1.11 in Mattila’s book [17].
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Definition 3.28. Let ν and µ be σ-finite measures on a metric measurable space7

(X, d,M). We say that ν is differentiable with respect to µ if ν ≪ µ and

Dν,µ(x) = lim
ǫ→0+

ν(B(x, ǫ))

µ(B(x, ǫ))

is defined for µ-almost everywhere and coincides µ-almost everywhere with the

Radon-Nikodym derivative of ν with respect to µ.

Proposition 3.29. Let ν and µ be σ-finite measures on a metric measurable space

such that ν is differentiable with respect to µ. Then

suppDν,µ = supp ν.

Proof. If x /∈ supp ν, then there exists ǫ > 0 such that ν(B(x, ǫ)) = 0. Hence

Dν,µ(x) = 0. So we have {x : Dν,µ(x) 6= 0} ⊆ supp ν. Therefore,

suppDν,µ ⊆ supp ν.

On the other hand, if x /∈ suppDν,µ, then there is G ∈ N(x) such that Dν,µ ≡ 0

on G. Observe that ν(G) =

∫

G

Dν,µ dµ = 0. Thus x /∈ supp ν. Hence

supp ν ⊆ suppDν,µ.

Therefore, suppDν,µ = supp ν.

Radon-Nikodym derivatives are unique up to sets of measure zero. As a result,

the notion of topological supports fails to detect essential parts of such functions.

We demonstrate an extreme case in the following example.

Example 3.30. Consider the trivial measure ν ≡ 0 on the Lebesgue σ-algebra

L(R), which is absolutely continuous with respect to the 1-dimensional Lebesgue

measure. Observe that both f ≡ 0 and g = χQ are the Radon-Nikodym derivative

of ν with respect to λ1. However, supp f = ∅ while supp g = R.

In the above example, observe that even though Q is negligible since it has

Lebesgue measure zero, it is dense in R. This is the cause of the problem.

7A metric measurable space is a metric space equipped with a σ-algebra con-
taining the Borel sets.
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Definition 3.31. Let f be an extended real-valued M-measurable function on a

topological submeasure space (X, τ,M, µ). Define the essential support of f with

respect to µ by

ess suppµ f = {x ∈ X : f(x) 6= 0}µ
.

From the definition, one can see that the essential support of a function is

always contained in the topological support of that function. An extreme case is

presented in the following example.

Similar to the notion of almost everywhere for measures, for the case of sub-

measures, we say that a property holds almost everywhere if the set of elements

for which the property does not hold is a submeasure zero set.

Proposition 3.32. Let f and g be extended real-valued M-measurable functions

on a topological submeasure space (X, τ,M, µ). If f and g are equal µ-almost

everywhere, then

ess suppµ f = ess suppµ g.

Proof. Since f = g µ-almost everywhere, we have

µ({x ∈ X : g(x) 6= 0}) = µ({x ∈ X : f(x) 6= 0}),

which implies that the essential supports of f and g coincide.

Theorem 3.33. Assume that (X, τ,M, µ) is either a hereditarily Lindelöf sub-

measure space or an inner regular measure space. For each extended real-valued

M-measurable function f , let [f ]µ denote the class of extended real-valued M-

measurable functions on X which are equal to f µ-almost everywhere. Then there

exists f0 ∈ [f ]µ such that

supp f0 = ess suppµ f

which is µ-essentially closed.
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Proof. Define f0 to be the function which coincides with f on ess suppµ f and

vanishes everywhere else. Since the µ-closure is a strong essential closure,

{x ∈ X : f(x) 6= f0(x)} = {x ∈ X : f(x) 6= 0} − ess suppµ f

= {x ∈ X : f(x) 6= 0} − {x ∈ X : f(x) 6= 0}µ

is µ-nonessential. Hence µ({x ∈ X : f(x) 6= f0(x)}) = 0 by Theorem 3.10. Thus

f and f0 are equal µ-almost everywhere, i.e., f0 ∈ [f ]µ. By Proposition 3.32, we

have ess suppµ f = ess suppµ f0.

If f0(x) 6= 0, then x ∈ ess suppµ f by construction. Therefore, we have that

{x ∈ X : f0(x) 6= 0} ⊆ ess suppµ f . Hence

supp f0 ⊆ ess suppµ f = ess suppµ f0 ⊆ supp f0.

Thus supp f0 = ess suppµ f0 = ess suppµ f . In particular, supp f0 is µ-essentially

closed.

Proposition 3.34. Let ν and µ be σ-finite measures on (X, τ,M) with ν ≪ µ

and let dν
dµ

denote the Radon-Nikodym derivative. Then

ess suppµ
dν
dµ

= supp ν.

Proof. Let f denote dν
dµ
. If x /∈ supp ν, then there exists G ∈ N(x) such that

ν(G) = 0. Thus f = 0 µ-almost everywhere on G. Therefore, we have that

µ(G ∩ {x ∈ X : f(x) 6= 0}) = 0. Hence x /∈ ess suppµ f . Conversely, if x /∈
ess suppµ f , then x /∈ {x ∈ X : f(x) 6= 0}µ

. Therefore, there exists G ∈ N(x)

such that µ(G∩{x ∈ X : f(x) 6= 0}) = 0. Thus f = 0 µ-almost everywhere on G.

Hence ν(G) = 0. So x /∈ supp ν.

Corollary 3.35. Let ν and µ be σ-finite measures on a metric measurable space

such that ν is differentiable with respect to µ. Then

ess suppµ Dν,µ = suppDν,µ.

Proof. This follows directly from Proposition 3.29 and Proposition 3.34.
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Example 3.36. There exists an absolutely continuous measure ν ≪ µ with full

support such that µ is not absolutely continuous with respect to ν. To see this,

let µ be the 1-dimensional Lebesgue measure on [0, 1] and let ν be a measure on

[0, 1] defined, for each Lebesgue measurable set B ⊆ [0, 1], by ν(B) = λ1(B ∩Ac)

where A is a positive Lebesgue measure Cantor set on [0, 1]. Obviously, we have

ν ≪ λ1 by construction. Moreover, by Proposition 3.34,

supp ν = ess suppλ1
χAc = Ac

λ1

= [0, 1].

Therefore, ν has full support. However, ν(A) = λ1(A ∩ Ac) = 0 while λ1(A) > 0.

So λ1 is not absolutely continuous with respect to ν.

Example 3.37. Let (X, τ,M, µ) be a hereditarily Lindelöf measure space and let

f be an extended real-valued M-measurable function. We already know that

∫

X

f dµ =

∫

supp f

f dµ.

For each x /∈ ess suppµ f , there is Gx ∈ N(x) with µ(Gx∩{f 6= 0}) = 0. Then the

collection {Gx}x∈(ess suppµ f)c is an open cover of (ess suppµ f)
c. Let {G1, G2, . . . }

be a countable subcover. By the countable subadditivity of measures, we can

show that µ((ess suppµ f)
c ∩ {f 6= 0}) = 0. Thus

∫

X

f dµ =

∫

ess suppµ f

f dµ =

∫

supp f0

f0 dµ

where f0 is a representative of the class [f ]µ in Theorem 3.33. Also note that

supp f0 = ess suppµ f ⊆ supp f .

In this case, we see that f0 is indeed a good representative of the class [f ]µ.

3.3 Existing and related notions

There are various notions related to the notion of essential closures. In this section,

we pick a few of them to discuss in details, most of which are related to submeasure

closures.
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3.3.1 Lebesgue closures

Recall that the essential closure introduced in [13], which we call the Lebesgue

closure to avoid confusion, of a Lebesgue measurable set A ⊆ R is defined by

A
e
= {x ∈ R : for all ǫ > 0, λ1((x− ǫ, x+ ǫ) ∩ A) > 0}.

It is easy to see that the Lebesgue closure coincides with the λ1-closure on the

Lebesgue σ-algebra. Also recall in [13] the definition of the Lebesgue closure

defined on S1, the unit circle centered at the origin in R2.

According to Theorem 265E in Fremlin’s book [12], we have that the pushfor-

ward of the 1-dimensional Lebesgue measure on S1 (with respect to the canonical

map, θ 7→ eiθ) coincides with the 1-dimensional Hausdorff measure on S1. As a

consequence, the Lebesgue closure coincides with the H1-closure on the induced

σ-algebra on S1.

3.3.2 Lebesgue density closures

To avoid confusion, the essential closures cl∗ in Buczolich and Pfeffer’s work [4]

and in Fremlin’s book [11], defined for each Lebesgue measurable set A ⊆ Rn by

cl∗ A = {x ∈ Rn : lim sup
ǫ→0+

λn(B(x, ǫ) ∩ A)

λn(B(x, ǫ))
> 0},

will be called Lebesgue density closures. Note that Lebesgue density closures fail

to satisfy at least the first property of essential closures.

For each λn-density closure cl∗ on the Lebesgue σ-algebra L(Rn), define the

modified λn-density closure of A ∈ L(Rn) by Ã = cl∗ A. As a consequence of

taking the topological closure of cl∗ A, the modified λn-density closure is forced

to satisfy the first property of essential closures. The question is whether the

modified λn-density closure satisfies the other three properties, which makes it

an essential closure. Surprisingly, it can be shown that the modified λn-density

closure is, in fact, the λn-closure defined on L(Rn).

First, we show that the modified λn-density closure and the λn-closure coincide

on the Borel σ-algebra B(Rn). Let A ⊆ Rn be Borel measurable. For each Borel
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measurable set B ⊆ Rn, define λA(B) = λn(B ∩ A). It is clear that λA is σ-finite

and λA ≪ λn on the Borel σ-algebra. According to Theorem 2.3.8 in Ash’s book

[3], λA is differentiable with respect to λn. As a result,

DλA,λn
(x) = lim

ǫ→0+

λA(B(x, ǫ))

λn(B(x, ǫ))
= lim sup

ǫ→0+

λn(B(x, ǫ) ∩ A)

λn(B(x, ǫ))

defines the Radon-Nikodym derivative of λA with respect to λn. By Theorem 3.21

and Proposition 3.29, we have

Ã = cl∗ A = suppDλA,λn
= suppλA = A

λA
.

Moreover, it is straightforward to verify that A
λA

= A
λn
. Hence Ã = A

λn
for each

Borel measurable set A ⊆ Rn.

Finally, we extend the result to the Lebesgue σ-algebra L(Rn). Let A ⊆ Rn be

Lebesgue measurable. There is a Borel measurable set B ⊆ Rn such that A ⊆ B

and λn(B − A) = 0. According to Lemma 475C in Fremlin’s book [11], cl∗ is

distributive over finite unions and cl∗(A) = ∅ if λn(A) = 0. As a result,

cl∗(A) = cl∗(A) ∪ cl∗(B − A) = cl∗(B).

Similarly, A
λn

= B
λn
. Therefore, Ã = cl∗(A) = cl∗(B) = B̃ = B

λn
= A

λn
for each

Lebesgue measurable set A ⊆ Rn.

3.3.3 Essential range

Recall the definition of the essential range of a complex-valued M-measurable

function f : (X,M, µ) → C, which is defined to be the set

S = {z ∈ C : µ({x ∈ X : |f(x)− z| < ǫ}) > 0 for all ǫ > 0}.

Let µf : BC → [0,∞] be the pushforward of µ, i.e., µf (B) = µ(f−1(B)) for each

Borel measurable set B. Then

S = {z ∈ C : µf (B(z, ǫ)) > 0 for all ǫ > 0} = C
µf
.

Consequently, by Theorem 3.21, the essential range of f is the support of µf .
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3.3.4 Prevalence

Prevalence is a measure-theoretic approach to define what it means for a state-

ment to hold almost everywhere in a possibly infinite-dimensional complete metric

vector space. It was proved by Hunt et al. in [15] that the notion of prevalence ex-

tends that of Lebesgue almost everywhere in finite-dimensional Euclidean spaces.

It is well-known that there is no nontrivial translation-invariant measure in

infinite-dimensional spaces. So the question is whether we can find something

weaker, e.g., a nontrivial translation-invariant submeasure whose submeasure zero

sets are exactly the shy sets, i.e., the complements of the prevalent sets. Via the

notion of prevalence and the theory of essential closures, such a submeasure can

be constructed. Let us recall some basic properties of shy sets derived in [15]. Let

A,A1, A2, . . . be shy sets and let v be a vector. Then the following hold:

(i) A+ v is shy,

(ii) B ⊆ A implies B is shy,

(iii)
∞⋃

n=1

An is shy.

Observe that, with a suitable underlying σ-algebra, the collection of shy sets

satisfies the conditions in Definition 2.20. In the sequel, let V be a hereditarily

Lindelöf complete metric vector space.

Theorem 3.38. There exists a finite nontrivial translation-invariant submeasure

on V whose submeasure zero sets are exactly the shy sets. Moreover, the induced

submeasure closure commutes with the translations.

Proof. We call the σ-algebra generated by the open subsets and the shy subsets

of V the prevalence σ-algebra, denoted by L(V ). According to Hunt et al., the

collection of shy sets on V satisfies the conditions in Definition 2.20 with respect

to L(V ). By Theorem 2.22, there exists a unique σ-nonessential strong essential

closure whose collection of nonessential sets is exactly the collection of shy sets.

We call the induced essential closure the prevalence closure.
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By Theorem 3.13, the prevalence closure induces a submeasure on L(V ). Note

that an induced submeasure is not unique. We call such a submeasure a prevalence

submeasure. Moreover, by Theorem 3.10, the collection of nonessential sets, which

is the collection of shy sets, is exactly the collection of prevalence submeasure zero

sets. In addition, it is worth mentioning that the vector space V is essential and

essentially closed with respect to the prevalence closure. This is due to the fact

that nonempty open sets are not shy, hence are of positive prevalence submeasure.

To conclude, we have a prevalence submeasure on L(V ) whose prevalence

submeasure zero sets are exactly the shy sets on V . Moreover, it is straightforward

to verify that the prevalence closure commutes with the translations. However, a

prevalence submeasure is generally not translation-invariant. Nevertheless, there

is a special prevalence submeasure which is translation-invariant.

Recall the proof of Theorem 3.13, we call the normalized submeasure obtained

from the prevalence closure the normalized prevalence submeasure, denoted by

µp. For each vector v ∈ V , µp(A+ v) = 0 if and only if µp(A)=0 by the definition

of µp. Since µp assumes the value of either 0 or 1, µp is translation-invariant.



CHAPTER IV

STOCHASTIC CLOSURES

We begin this chapter with a short introduction containing a handful of notions

and results with which mathematicians outside the field are probably unfamiliar.

Detailed explanations shall be given along the way as we proceed.

It is known that the class of doubly stochastic measures on [0, 1]2 fully describes

the class of joint distributions of two random variables uniformly distributed on

[0, 1] (see [19]). For decades, the supports of doubly stochastic measures have been

extensively studied by many mathematicians because the support of a doubly

stochastic measure tells us where the mass of the measure is concentrated. A

handful of necessary conditions and sufficient conditions for a set to be the support

of a doubly stochastic measure have been obtained (see, for example, [14, 24, 25]).

Analogously, it is also known that the class of n-stochastic measures on [0, 1]n

fully describes the class of joint distributions of n random variables uniformly

distributed on [0, 1]. In this chapter, we study the supports of multivariate copu-

las, equivalently the supports of multivariate stochastic measures, from a different

approach. We introduce the notion of stochastic closures, which are submeasure

closures on a hereditarily Lindelöf space [0, 1]n, hence strong and σ-nonessential.

We obtain geometric necessary conditions via the notion of essential closedness.

Moreover, in some special cases, it turns out that an explicit formula of the sup-

port can be derived in terms of stochastic closures. One such case is the case

of doubly stochastic measures whose underlying continuous random variables are

mutually completely dependent, i.e., each one of them is a Borel measurable func-

tion of the other almost surely1. In that case, if we further assume that the

underlying random variables are uniformly distributed on [0, 1], then there is a

1A property is said to hold almost surely if the set on which the property holds
has probability one.
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measure-preserving bijective Borel measurable function connecting the two ran-

dom variables. It has been observed that the graph of such function and the

support of the corresponding doubly stochastic measure are closely related. For

instance, it has been shown in [2] that the mass of a doubly stochastic mea-

sure ν, which is a Borel probability measure, is concentrated on the graph of a

corresponding function, i.e., ν(gr f) = 1. In addition to deriving the geometric

necessary conditions, we also introduce a notion of complete dependence in higher

dimensions and study the supports of multivariate stochastic measures whose un-

derlying continuous random variables are completely dependent.

To study multivariate stochastic measures, it is more convenient to use the

notion of multivariate copulas. It is well-known that there is a one-to-one corre-

spondence between the collection of n-stochastic measures and the collection of

n-copulas. Among them, doubly stochastic measures and copulas (i.e., 2-copulas)

are most studied. More information on copulas and multivariate copulas can be

found in Nelsen’s book [19].

Definition 4.1. For an integer n ≥ 2, an n-copula is a function C : [0, 1]n → [0, 1]

satisfying

(i) C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0,

(ii) C(1, . . . , 1, u, 1, . . . , 1) = u, and

(iii) C is n-increasing, i.e., for each hyperrectangle B = ×n
i=1[xi, yi] ⊆ [0, 1]n,

VC(B) =
∑

z∈×n
i=1

{xi,yi}

(−1)N(z)C(z) ≥ 0,

where N(z) denotes the size of the set {k : zk = xk}.

Example 4.2. Given a copula C, we have

VC([x1, x2]× [y1, y2]) = C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0

for each 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1.
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The set function VC is a Borel probability measure on [0, 1]n and is often

called C-volume. In fact, VC is an n-stochastic measure, i.e., it pushes forward to

the 1-dimensional Lebesgue measure on each axis: for each Borel measurable set

A ⊆ [0, 1] and for each k = 0, 1, . . . , n− 1,

VC([0, 1]
k × A× [0, 1]n−k−1) = λ1(A).

Moreover, the support of C is defined to be the support of the measure VC .

Remark 4.3. An n-copula C induces an n-stochastic measure on [0, 1]n via the

C-volume. Conversely, given an n-stochastic measure ν on [0, 1]n, the function

C : [0, 1]n → [0, 1] defined by

C(x1, . . . , xn) = ν([0, x1]× · · · × [0, xn])

is an n-copula.

The support of a copula C can be used to compute values of the copula at

some, if not all, points (x, y) ∈ [0, 1]2. We demonstrate such a technique in the

following example.

Example 4.4 ([21], Example 1.5). Let C be a copula whose support is shown in

the figure below.

A

B

1

10 x0

y0

Figure 4.1: the support of C

For any point (x0, y0) in the upper left area, let A denote the rectangle whose

vertices are (0, y0), (x0, y0), (x0, 1) and (0, 1) and let B denote the rectangle whose

vertices are (0, 0), (x0, 0), (x0, y0) and (0, y0). Then VC(A) = 0 since it does not

intersect the support of C. Moreover,
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VC(A ∪B) = C(x0, 1)− C(x0, 0)− C(0, 1) + C(0, 0) = x0.

Then, VC(B) = VC(A ∪ B)− VC(A) = x0. Hence,

C(x0, y0) = VC(B) + C(0, y0) + C(x0, 0)− C(0, 0) = x0.

The values of C at the points in the lower right area can be computed similarly.

A multivariate copula can be viewed as a joint distribution of uniform [0, 1]

random variables. This fact is shown in one of the most important theorems in

copula theory.

Theorem 4.5 (Sklar’s theorem). Let X1, . . . , Xn be random variables on a com-

mon probability space. Let H be the joint distribution and Fi be the marginal

distribution of Xi. Then there is an n-copula C such that

H(x1, . . . xn) = C(F1(x1), . . . , Fn(xn)).

Moreover, if X1, . . . , Xn are continuous, C is unique and is denoted by CX1,...,Xn
.

In theoretical practices, the most important copulas are the Fréchet-Hoeffding

upper and lower bounds and the independence copula. Their formulas are given,

respectively, by

M2(u, v) = min(u, v),

W2(u, v) = max(u+ v − 1, 0),

Π2(u, v) = uv.

These copulas represent comonotonicity, countermonotonicity and independence,

respectively, between the two random variables. The support of M2 is the set

{(x, x) : x ∈ [0, 1]}, the support of W2 is the set {(x, 1−x) : x ∈ [0, 1]}, and Π2 has

full support. In higher dimensions, these three formulas are defined analogously:

Mn(u1, . . . , un) = min(u1, . . . , un),

Wn(u1, . . . , un) = max(u1 + · · ·+ un − n+ 1, 0),

Πn(u1, . . . , un) = u1 . . . un.
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Note thatWn is no longer an n-copula unless n = 2 whileMn and Πn are n-copulas

for each integer n ≥ 2.

Another important class of copulas is known as the class of shuffles of M2.

A shuffle of M2 can be viewed as a special pushforward of the doubly stochastic

measure induced by the copula M2. This way of defining shuffles of M2 involves

measure-theoretic techniques, which makes it complicated. So, in the following

definition, we present a simpler way of defining shuffles of M2. More information

on shuffles of copulas can be found in, e.g., Durante et al.’s work [7] and the first

author et al.’s work [23].

Definition 4.6 ([21], Definition 1.8). A copula C is a shuffle of M2 if there exist

a positive integer n, partitions

0 = s0 < s1 < · · · < sn = 1 and 0 = t0 < t1 < · · · < tn = 1

of [0, 1], and a permutation σ on the set {1, 2, . . . , n} such that each rectangle

(si−1, si)× (tσ(i)−1, tσ(i)) is a square of C-volume si− si−1 and its intersection with

the support of C is one of the diagonals of the square.

s0 s3s1 s2
t0

t1

t2

t3

Figure 4.2: the support of a shuffle of M2 where σ = (1 3 2)

Remark 4.7. Because of a special characteristic of the supports of shuffles of M2,

each of them is uniquely determined by its support via the technique demonstrated

in Example 4.4.
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4.1 Multivariate complete dependence

Multivariate dependence structures are much more complex than 2-dimensional

dependence structures. In this section, we introduce a special kind of complete

dependence in higher dimensions where one set of random variables is completely

dependent on another set of random variables. This kind of dependence structure

often occurs in practice, such as the case where a set of random variables is used

to predict another set of random variables.

Definition 4.8. Given two nonempty finite sets A and B of random variables on

a common probability space, we say that A is completely dependent on B (viewed

as a random vector) if, for every X ∈ A, there exists a Borel measurable function

f such that X = f(B) almost surely.

We would like to mention that there is a similar notion of multivariate complete

dependence introduced by Tasena and Dhompongsa in [26, Definition 2.2]. In their

work, a random vector (X1, . . . , Xn) is said to be completely dependent on the

i-th coordinate if each Xj is a Borel measurable function of Xi for each j 6= i.

Compared to our definition of multivariate complete dependence, their definition

means exactly that {X1, . . . , Xi−1, Xi+1, . . . , Xn} is completely dependent on Xi.

So, our notion of multivariate complete dependence is more general.

Definition 4.9. A bipartite dependence n-copula C is the n-copula of continu-

ous random variables X1, . . . , Xn where the continuous random variables can be

partitioned into two sets so that one set is completely dependent on the other.

In two dimensions, a bipartite dependence copula is simply a copula whose

underlying random variables are completely dependent, i.e., one random variable

is a Borel measurable function of the other almost surely. We observe that the

support of such copula and the graph of a corresponding Borel measurable function

are closely related. The following example is an attempt to compute the support

of a complete dependence copula from the graph of a Borel measurable function

connecting the underlying random variables.
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Example 4.10. Let f : [0, 1] → [0, 1] be such that f(x) = x if x is irrational and

f(x) = 1− x otherwise. Let U be a uniform [0, 1] random variable and V = f(U)

almost surely. So V is also a uniform [0, 1] random variable since f is measure-

preserving. Notice that the topological closure of the graph of f , shown in Figure

4.3, is the union of the sets {(x, x) : x ∈ [0, 1]} and {(x, 1 − x) : x ∈ [0, 1]}. But

since V = f(U) = U almost surely, the copula of the random vector (U, V ) is

the 2-dimensional Fréchet-Hoeffding upper bound M2 whose support, shown in

Figure 4.3, is just the set {(x, x) : x ∈ [0, 1]}. Therefore, the topological closure

is not a suitable type of essential closure to use in this case. The cause of this is

the thin part in the graph of f , namely, the set {(x, 1− x) : x ∈ Q}. Even though

{(x, 1 − x) : x ∈ Q} is negligible since Q has Lebesgue measure zero, it is dense

in {(x, 1− x) : x ∈ [0, 1]}. This is a hindrance to the effectiveness of applying the

topological closure to the graph of f .

0 1

1

0 1

1

Figure 4.3: the support of CU,V and the topological closure of the graph of f

4.2 Supports of multivariate copulas

We know very little about supports of multivariate copulas compared to what we

know about supports of bivariate copulas. One reason is the lack of tools to study

them. A suitable tool to study supports of multivariate copulas (or equivalently,

supports of multivariate stochastic measures) should be constructed according to

the nature of multivariate stochastic measures, i.e., the nature of pushing forward

to 1-dimensional Lebesgue measure on each axis.
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Definition 4.11. For each integers 1 ≤ d ≤ n, define an outer measure Sd on

P([0, 1]n) as follows: for each A ⊆ [0, 1]n,

Sd(A) =
∑

W

λ∗
d(πW (A)),

where the sum is taken over all d-dimensional standard subspaces2 W of Rn.

Define the d-stochastic closure to be the submeasure closure on P([0, 1]n) induced

by Sd.

Remark 4.12. Equivalently, x ∈ A
Sd

if and only if, for each G ∈ N(x), there

is a d-dimensional standard subspace W such that λ∗
d(πW (G∩A)) > 0. Moreover,

since each stochastic closure is a submeasure closure on a Euclidean space, it is

both strong and σ-nonessential.

Remark 4.13. For each integers 1 ≤ e ≤ d, the d-stochastic closure is finer than

or equal to the e-stochastic closure, i.e., A
Sd ⊆ A

Se
for each set A.

Theorem 4.14. For every n-copula C, suppC is 1-stochastic essentially closed.

Proof. For any Borel set A ⊆ [0, 1]n, write

VC(A) = VC(A ∩ suppC) + VC(A ∩ (suppC)c).

Observe that VC(A ∩ (suppC)c) ≤ VC((suppC)c) = 0. Consequently, we have

VC(A) = VC(A ∩ suppC).

Since suppC is closed, it follows that suppC
S1 ⊆ suppC = suppC. It is

left to show that suppC ⊆ suppC
S1

. By the definition of stochastic closures, if

x /∈ suppC
S1

, then there exists G ∈ N(x) such that λ1(π1(G ∩ suppC)) = 0.

Since VC is n-stochastic,

VC(G) = VC(G ∩ suppC)

≤ VC(π1(G ∩ suppC)× [0, 1]n−1)

= λ1(π1(G ∩ suppC)) = 0.

So x /∈ suppC.

2A standard subspace is a subspace of a Euclidean space spanned by a set of
standard basis elements.
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Proposition 4.15. Let C be an n-copula. Then, for any open set G intersecting

the support of C, the intersection cannot be a subset of an (n − 1)-dimensional

hyperplane perpendicular to an axis.

Proof. Let W ⊆ Rn be an (n − 1)-dimensional hyperplane perpendicular to an

axis. It suffices to show that W ∩ [0, 1]n has VC-measure zero. Suppose W is

perpendicular to the i-th axis at a point x ∈ [0, 1]. Since VC is n-stochastic,

VC(W ∩ [0, 1]n) = λ1({x}) = 0.

Therefore, any Borel subset of W inside [0, 1]n also has VC-measure zero.

Theorem 4.14 and Proposition 4.15 give geometric necessary conditions for a

set to be the support of a multivariate copula. However, these necessary conditions

are not sufficient. For example, a hairpin-like set is 1-stochastic essentially closed

but not always the support of a copula as mentioned in [25].

Example 4.16. As a consequence of Proposition 4.15, the set shown in Figure 4.4

cannot be the support of a copula because it contains a line segment perpendicular

to an axis.

0 1

1

Figure 4.4: a set that is not the support of a copula

In the next section, we explore a special case in which it is possible to explicitly

determine the supports via stochastic closures.
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4.3 Supports of bipartite dependence multivariate copulas

Definition 4.17. Let A ⊆ [0, 1]n and σ be a permutation on {1, 2, . . . , n}. Define
the coordinate permutation of A with respect to σ by

Aσ = {(xσ(1), xσ(2), . . . , xσ(n)) : (x1, x2, . . . , xn) ∈ A}.

Proposition 4.18. Let σ be a permutation on {1, 2, . . . , n}. Let C be the n-

copula of uniform [0, 1] random variables X1, . . . , Xn and let Cσ be the n-copula

of uniform [0, 1] random variables Xσ(1), . . . , Xσ(n). Then suppCσ = (suppC)σ.

Proof. Observe that, for each open set G ⊆ [0, 1]n,

VC(G) = P ((X1, . . . , Xn) ∈ G)

= P ((Xσ(1), . . . , Xσ(n)) ∈ Gσ)

= VCσ
(Gσ).

As a result, x ∈ suppC if and only if xσ ∈ suppCσ.

According to Proposition 4.18, in the case of bipartite dependence n-copulas,

we may rearrange the random variables so that, for some k, each random variable

Xj, j ∈ {k+1, . . . , n}, is completely dependent on the random vector (X1, . . . , Xk).

Definition 4.19. A function F : [0, 1]n → [0, 1]m with Borel coordinate functions

is said to have a Borel essential refinement if there is F∗ : [0, 1]n → [0, 1]m with

Borel coordinate functions such that each corresponding pair of coordinate func-

tions of F∗ and F are equal Lebesgue almost everywhere and, for any open set

G ⊆ Rn+m, the following holds:

λn(πW0
(G ∩ grF∗)) = 0 implies λ1(πj(G ∩ grF∗)) = 0 for all j > n

where W0 is the subspace spanned by the first n standard basis elements.

Remark 4.20. A function with Borel coordinate functions is Borel measurable.

Hence its graph is a Borel measurable set.
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The notion of Borel essential refinements is introduced in order to deal with

certain wild functions. An example of such functions is as follows.

Example 4.21. Let A denote the Cantor ternary set on [0, 1] and f : [0, 1] → [0, 1]

denote the Cantor function. Define g : [0, 1] → [0, 1] by

g = f − f · χAc .

Observe that g is Borel measurable and g ≡ 0 Lebesgue almost everywhere but

the range of g is of Lebesgue measure one. This is because f is constant on each

of the open intervals contained in Ac. Roughly speaking, this is an example of

a function whose graph has a portion with negligible projection image on the

domain but non-negligible projection image on the codomain.

This type of wild function is a hindrance to the effectiveness of applying

stochastic closures to their graphs. Fortunately, the following theorem guarantees

that a function with Borel coordinate functions can always be Borel essentially

refined.

Theorem 4.22. Every function F : [0, 1]n → [0, 1]m with Borel coordinate func-

tions has a Borel essential refinement.

Proof. The idea is to redefine F on a set of Borel measure zero. Let W0 denote

the subspace spanned by the first n standard basis elements of Rn+m. Let

V =
⋃

α∈Λ

Vα

where the union is taken over all open sets Vα such that λn(πW0
(Vα ∩ grF)) = 0

while λ1(πj(Vα∩grF)) > 0 for some j > n. By the Lindelöf property of Euclidean

spaces, there exists a countable subcollection with the same union: {V1, V2, . . . }.
Then we have

λn(πW0
(V ∩ grF)) ≤

∞∑

i=1

λn(πW0
(Vi ∩ grF)) = 0.

Thus there exists a Borel measure zero set B ⊆ Rn with πW0
(V ∩grF) ⊆ B. Define

F∗ = F − F · χB, i.e., F is redefined on B to be identically zero. Consequently,
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the coordinate functions of F∗ are Borel measurable and each corresponding pair

of coordinate functions of F∗ and F are equal almost everywhere.

Suppose there is an open set G ∈ Rn+m with λn(πW0
(G ∩ grF∗)) = 0 while

λ1(πj(G ∩ grF∗)) > 0 for some j > n. Observe that the projection images

πW0
(G ∩ grF) and πW0

(G ∩ grF∗) differ by a subset of B, which is of Borel

measure zero. Moreover, πj(G ∩ grF) contains πj(G ∩ grF∗) − {0} due to the

redefining. Thus

λn(πW0
(G ∩ grF)) = 0 while λ1(πj(G ∩ grF)) > 0.

Hence G ⊆ V . This means that the points inside G ∩ grF have been redefined.

As a consequence, λ1(πj(G ∩ grF∗)) = λ1({0}) = 0, which is a contradiction.

Therefore, F∗ is a Borel essential refinement of F .

Remark 4.23. Our results often assume that the random variables are uniformly

distributed on [0, 1]. This is by no means restrictive since, for given continuous

random variables X1, . . . , Xn, each Ui = Fi(Xi) is uniform on [0, 1] for each i.

Moreover,

CX1,...,Xn
= CU1,...,Un

.

So, it suffices to study only uniform [0, 1] random variables.

In the following theorem, we derive an explicit formula of the support of a

bipartite dependence multivariate copula in terms of a stochastic closure.

Theorem 4.24. Let U1, U2, . . . , Un+m be uniform [0, 1] random variables and C

be their multivariate copula. Let U denote the random vector (U1, U2, . . . , Un).

Suppose that λn ≪ VCU
≪ λn if n ≥ 2. If, for each i ∈ {1, 2, . . . ,m}, Un+i is

completely dependent on the random vector U, i.e., there exist Borel measurable

functions fi : [0, 1]
n → [0, 1] such that Un+i = fi(U) almost surely, then

suppC = grF∗ Sn

where F∗ = (f ∗
1 , . . . , f

∗
m) is a Borel essential refinement of F = (f1, . . . , fm).
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Proof. First of all, since f ∗
i = fi Lebesgue almost everywhere, f ∗

i (U) = fi(U)

almost surely. Hence C = CU,F∗(U). Let W0 be the subspace spanned by the

first n standard basis elements of Rn+m. For a given open set G ⊆ Rn+m, it is

straightforward to show that

VC(G) = P ((U,F∗(U)) ∈ G)

= P ((U,F∗(U)) ∈ G ∩ grF∗)

= P (U ∈ πW0
(G ∩ grF∗))

since (U,F∗(U)) ∈ grF∗ almost surely. Moreover, since λn ≪ VCU
≪ λn if n ≥ 2,

we have

P (U ∈ πW0
(G ∩ grF∗)) > 0 if and only if λn(πW0

(G ∩ grF∗)) > 0.

Thus suppC ⊆ grF∗ Sn
.

Conversely, let G ⊆ Rn+m be an open set such that λn(πW (G ∩ grF∗)) > 0

for some n-dimensional standard subspace W . Then there exists j > n such that

λ1(πj(G∩ grF∗)) > 0. Consequently, λn(πW0
(G∩ grF∗)) > 0 since F∗ is a Borel

essential refinement. We have previously shown in the proof that

VC(G) > 0 if and only if λn(πW0
(G ∩ grF∗)) > 0.

Thus grF∗ Sn ⊆ suppC.

Remark 4.25. In Theorem 4.24, if U1, . . . , Un are independent, then CU is the

independence n-copula Πn. Thus, for Borel measurable sets A1, . . . , An ⊆ [0, 1],

VCU
(A1 × · · · × An) = P (U ∈ A1 × · · · × An)

= P (U1 ∈ A1) . . . P (Un ∈ An)

= λ1(A1) . . . λ1(An)

= λn(A1 × · · · × An)

which implies that VCU
= λn, i.e., λn ≪ VCU

≪ λn.

Example 4.26. This example demonstrates a way to extract a transformation,

connecting the two uniform [0, 1] random variables, from the support of a shuffle

of M2.
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0 1

1

Figure 4.5: the support of a shuffle of M2

Observe that the support of a shuffle of M2 looks like the graph of a function.

In fact, removing a few points from the support of a shuffle of M2 gives us the

graph of some function. This can be done in many ways. One way to do it is to

simply remove the rightmost point from each linear piece except the last piece.

One can see that the remaining set is the graph of a function whose explicit

formula can be derived. Then, by Theorem 4.24 and the fact that shuffles of

M2 are uniquely determined by their supports, it ensures that we have the right

function since the 1-stochastic closure of the graph of that function is equal to the

support we started with.

Example 4.27. Write M3 = CU,U,U for some uniform [0, 1] random variable U .

In this case, choose F = (id[0,1], id[0,1]). Thus M3 = CU,F(U). Moreover, grF is

1-stochastic essentially closed. Therefore,

suppM3 = grF = {(x, x, x) : x ∈ [0, 1]},

which is the main diagonal of the unit cube [0, 1]3. Similarly, suppMn is the main

diagonal of the hypercube [0, 1]n. Let us remark that even though this result is

intuitively known to experts, to the best of our knowledge, no rigorous proof has

ever been given. This example is probably the first.

Notice that we need to carefully choose a bipartition in order to apply Theorem

4.24. For example, we can view the last random variable as being completely

dependent on the first two. In this case, there are many functions which connect

them, e.g., f1(x, y) = x+y

2
, f2(x, y) =

√
xy, etc. Certainly, we cannot apply the
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theorem and one reason is because the copula of the first two random variables is

M2 whose induced measure is not absolutely continuous with respect to λ2.

4.4 Local Hausdorff dimension

We end this chapter with the notion of local Hausdorff dimension and the notion

of Hausdorff closures, which is yet another type of essential closure suitable for

the study of supports of multivariate copulas.

The Hausdorff dimension is a generalization of the notion of dimension of

vector spaces, i.e., the Hausdorff dimension of an n-dimensional inner product

space is equal to n. The Hausdorff dimension is defined, for all metric spaces, via

a class of outer measures called Hausdorff measures. Since Hausdorff measures are

outer measures, hence submeasures, they induce submeasure closures which we call

Hausdorff closures. In addition to the basic properties of submeasure closures, we

derive a connection between Hausdorff closures and the local Hausdorff dimension.

More details on Hausdorff measures and the Hausdorff dimension can be found in

Falconer’s book [8] and Fremlin’s book [12].

Definition 4.28. Let (X, d) be a metric space and let dimH denote the Hausdorff

dimension. Then A ⊆ X is said to have local Hausdorff dimension at least s if,

for every open set G intersecting A, dimH(G ∩ A) ≥ s.

Let us remark that, in our research, it is not necessary to know the exact value

of the local Hausdorff dimension of a set. Knowing a lower bound of the local

Hausdorff dimension of the set is sufficient. This is why we use the above definition

instead of the one that gives the exact value of the local Hausdorff dimension.

Definition 4.29. Let (X, d) be a metric space and let τd denote the topology

induced by the metric d. The s-Hausdorff closure is defined to be the submeasure

closure on (X, τd,P(X)) induced by Hs.

Basic properties and most applications of Hausdorff closures are analogous

to the basic properties and applications of submeasure closures. Moreover, the
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aforementioned connection between Hausdorff closures and the local Hausdorff

dimension is demonstrated in the following result.

Lemma 4.30. If A is s-Hausdorff essentially closed, then A has local Hausdorff

dimension at least s.

Proof. Suppose there exist x ∈ A and G ∈ N(x) such that dimH(G ∩ A) < s.

Then Hs(G ∩ A) = 0, contradicting the fact that x ∈ A = A
Hs

.

Theorem 4.31. Let ν be an n-stochastic measure. Then supp ν is 1-Hausdorff

essentially closed. In particular, supp ν has local Hausdorff dimension at least

one.

Proof. It suffices to show that supp ν ⊆ supp ν H1

. If x /∈ supp ν H1

, then there

exists G ∈ N(x) such that H1(G ∩ supp ν) = 0. Note that ν(G) = ν(G ∩ supp ν).

If ν(G ∩ supp ν) > 0, then H1(π1(G ∩ supp ν)) = λ1(π1(G ∩ supp ν)) > 0. Thus

H1(G∩ supp ν) > 0. So ν(G) = ν(G∩ supp ν) = 0. Hence x /∈ supp ν. Therefore,

supp ν = supp ν H1

. Hence supp ν is 1-Hausdorff essentially closed. Consequently,

by Lemma 4.30, supp ν has local Hausdorff dimension at least one.

Example 4.32. In [9, Theorem 1], Fredricks et al. show that for each value

s ∈ (1, 2), there is a copula with fractal support of Hausdorff dimension s. In fact,

there are copulas with supports of Hausdorff dimension one and two, which are

the 2-dimensional Fréchet-Hoeffding upper bound and the independence copula,

respectively. Moreover, Theorem 4.31 implies, in particular, that the support of a

copula has Hausdorff dimension at least one. Together with the result of Fredricks

et al., we can conclude that supports of copulas have Hausdorff dimension at least

one and for each possible value s ∈ [1, 2], there is a copula whose support is of

Hausdorff dimension s.

Lemma 4.33. Let A be a subset of a Euclidean space. Then

dimH(A) ≥ dimH(πW (A))

for any orthogonal projection πW .
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Proof. It suffices to show that for any δ-cover {Cα}α∈Λ of the set A, there exists

a δ-cover {Dα}α∈Λ of πW (A) such that diam(Dα) ≤ diam(Cα), which implies that

Hs(πW (A)) ≤ Hs(A) for each s.

Let {Cα}α∈Λ be a δ-cover of A. Choose Dα = πW (Cα). It is clear that {Dα}α∈Λ
covers πW (A). Moreover,

diam(Dα) ≤ diam(Cα) ≤ δ

since πW is an orthogonal projection. Hence {Dα}α∈Λ is a δ-cover of πW (A)

As a consequence of Theorem 4.24, the support of a bipartite dependence

multivariate copula is essentially closed with respect to the associated stochastic

closure. The following result gives a geometric interpretation derived directly from

the essential closedness of the support of the bipartite dependence multivariate

copula.

Theorem 4.34. Let C be the bipartite dependence multivariate copula defined in

Theorem 4.24. Then suppC is an n-stochastic essentially closed set. In particular,

suppC has local Hausdorff dimension at least n.

Proof. Since suppC can be written as an n-stochastic closure of some set, it is

n-stochastic essentially closed. Suppose there exists an open set G ⊆ Rn+m such

that G ∩ suppC 6= ∅ and dimH(G ∩ suppC) < n. By Lemma 4.33, for each

n-dimensional standard subspace W , dimH(πW (G ∩ suppC)) < n which implies

λn(πW (G ∩ suppC)) = 0. Consequently, G ∩ suppC
Sn

= ∅, contradicting with

Lemma 2.15.
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