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We propose the notion of general essential closures in an axiomatic way
and develop the theory of essential closures. In the process, we introduce the
notions of essential closedness and essential compactness analogous to the no-
tions of topological closedness and topological compactness, respectively. We also
introduce the notion of essentiality which is the core of the theory of essential clo-
sures. It is what distinguishes the notion of essential closures from the notion of
topological closures. For applications, we construct concrete examples of essential
closures via the notion of submeasures, which are restrictions of outer measures,
and use them as tools to study supports of absolutely continuous measures and
supports of multivariate copulas, and to introduce the notion of essential supports

of functions.
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NOTATIONS

C the set of complex numbers

R the set of real numbers

Q the set of rational numbers

N the set of natural numbers

P(X) the collection of subsets of the set X

Int A the interior of the set A

N(x) the collection of open neighborhoods of the point z
An the n-dimensional Lebesgue measure

Ar the n-dimensional Lebesgue outer measure

Tw the orthogonal projection onto the subspace W
j the orthogonal projection onto the j-th axis
H® the s-dimensional Hausdorff measure

dimy the Hausdorff dimension

gr f the graph of the function f

XA the indicator function of the set A

diam(A) the diameter of the set A

B(z,e)  the open ball of radius € centered at the point



CHAPTER I
INTRODUCTION

In this research, we introduce the notion of general essential closures, which is
formally postulated in Chapter 2. Our notion of essential closures is modeled after
the notion of topological closures and the notion of essential closure introduced
by Gesztesy et al. in [13]. To see the motivation behind the notion of general
essential closures, we explore basic properties and interpretations of topological
closures and the essential closure.

The topological closure of a set can be viewed as the collection of points which
are near (or close to) the set in a topological sense, i.e., each neighborhood of those
points intersects with the set. A topological closure cl: P(X) — P(X) satisfies

the following properties for all sets A, B C X:
(i) cl(©) = 2,
(ii) A Ccl(A),
(iii) cl(AU B) = cl(A) Ucl(B),
(iv) cl(cl(A)) = cl(A).

Let us note that this set of properties completely characterizes the topological
closure, i.e., if there is a unary operation on P(X) satisfying the above properties,
then there is a topology on X with respect to which the unary operation is the

L since every point in a set

topological closure. Topological closures are extensive
is close to itself, hence included in the topological closure of that set. In this case,
we can say that every point in a set is essential to the set. But this is not the case

for the essential closure.

'A set-valued function f is said to be extensive if A C f(A) for each A in the
domain.




In their work, Gesztesy et al. introduce the notion of essential closure as a
tool to study absolutely continuous spectra of some linear operators. The essential

closure of a Lebesgue measurable set A C R is defined by
A°={zeR:foralle>0,\((z—ez+e) NA) >0}

Likewise, the essential closure of a set can be viewed as the collection of points
which are near (or close to) a positive Lebesgue measure portion of the set in a
topological sense, i.e., the intersection of each neighborhood of those points with
the set is of positive Lebesgue measure. The essential closure satisfies the following

properties for all Lebesgue measurable sets A, B C R:

(i) A° is closed,

(i) A" C A,
(iii) AUB"=A“UB",
(iv) A=A

Notice that the essential closure, unlike topological closures, is not extensive. For
example, Q° = @. In this case, we can say that only positive Lebesgue measure
subsets are essential to the set. Compared with the case of topological closures,
this is exactly the motivation which gives rise to the notion of essentiality in our
research. Also notice that the second property of the essential closure implies that
the essential closure of the empty set is the empty set itself. Moreover, notice that
the first and the second properties of the essential closure are conditional to the
underlying topology which, in this case, is the standard topology on the real line.
These two properties are, in fact, due to the aforementioned interpretation of the
essential closure.

Our notion of essential closures is a generalization of both the notion of topo-
logical closures and the notion of essential closure introduced in [13]. Roughly
speaking, a general essential closure can be viewed a unary operation mimicking
topological closures but not necessarily extensive. Moreover, like in the case of

the essential closure on the real line, we want to have the notion of topological



nearness, hence an underlying topological structure is required. To ensure some
degree of compatibility between the underlying topological structure and a general
essential closure, some additional conditions are included, i.e., we require that an
essential closure of a set is closed and is included in the topological closure of that
set. These are exactly the first and the second properties of the essential closure
on the real line.

However, an approach to postulating the notion of essential closures which
concentrates only on the core properties should not assume any a priori topological
structure. Such approach starts from postulating essential closure operators in the
same spirit as that of topological closure operators.

Recall the definition of a topological closure operator on a space X, which is a
unary operation cl: P(X) — P(X) satisfying the following properties for all sets
A B CX:

(i) (@) = 2,
(ii) A C cl(A),

(iii) cl(AU B) = cl(A) Ucl(B),
(iv) cl(cl(A)) = cl(A).

Recall that this is the set of properties which characterizes the topological
closure. We call a unary operation (whose domain and codomain are reduced to
some suitable collection of sets) satisfying all but the second property above an
essential closure operator and is formally postulated in Chapter 2. Similar to the
fact that a topological closure operator naturally induces a (unique) topological
closure, an essential closure operator also induces, in a natural way, an essential
closure. One difference between the notion of topological closure operators and the
notion of essential closure operators is that an essential closure operator induces an
essential closure, but not unique in general due to the fact that there can be several
compatible topological structures. The other difference is that an essential closure
can be defined on a collection of subsets of the space satisfying some conditions

similar to how a measure is defined on a g-algebra of measurable sets.



During the process of developing the theory of essential closures, we intro-
duce a few notions related to the notion of essential closures: essential sets and
nonessential sets, essential closedness, and essential compactness. We obtain that,
for a certain kind of essential closure, the collection of nonessential sets acts as
a generator of its corresponding essential closure. Moreover, given any collection
of sets, if some conditions are met, there is an essential closure whose collection
of nonessential sets is generated by the given collection of sets. In addition, if
the collection of sets is closed under taking subsets and countable unions, then
it is exactly the collection of nonessential sets of that essential closure. In other
words, there is an essential closure which detects exactly the given collection of
sets. Such collections include the collection of measure zero sets, the collection
of shy sets introduced in [15], the collection of sets of first category, etc. For the
notion of essential closedness, we obtain that an essentially closed set is closed
and locally essential. Moreover, the notion of essential closedness and the notion
of topological compactness characterizes the notion of essential compactness in a
Hausdorff space equipped with a certain kind of essential closure.

It turns out that well-behaved essential closures are strongly related to the no-
tion of submeasures introduced in Chapter 3, which are restrictions of outer mea-
sures onto some o-algebras. Besides developing the theory of essential closures,
we focus mainly on essential closures defined via submeasures, called submeasure
closures, and their applications. A submeasure closure of a set is defined to be the
collection of points which are near (or close to) a positive submeasure portion of
the set in a topological sense, i.e., the intersection of each neighborhood of those
points with the set is of positive submeasure. However, a submeasure closure is
not always an essential closure. Two sufficient conditions, which guarantee that a
submeasure closure is an essential closure, are given in Chapter 3. One is a condi-
tion on the topological structure of the space while the other is a condition on the
submeasure. Moreover, if one of the aforementioned sufficient conditions is satis-
fied, the submeasure closure becomes the essential closure which detects exactly

the collection of corresponding submeasure zero sets. For applications of submea-



sure closures, we study supports of submeasures, especially supports of absolutely
continuous measures. We also introduce the notion of essential supports of func-
tions, which is more suitable than the notion of topological supports of functions
in some cases, especially functions that are only defined almost everywhere, e.g.,
Radon-Nikodym derivatives.

In the last chapter, we study supports of multivariate copulas. We observe
that the topological closure is too coarse to use. Essential closures are almost
always finer than the topological closure. There are two kinds of essential closures
we pick to use in the study of supports of multivariate copulas. One is a family
of submeasure closures defined via Hausdorff measures. This kind of essential
closure is fit to study the local Hausdorff dimension of supports of multivariate
copulas. The other is a family of submeasure closures defined via outer measures
constructed according to the nature of multivariate copulas. This kind of essential
closure is fit to study supports of multivariate copulas whose underlying random
variables are related in a specific way, i.e., one set of random variables is com-
pletely dependent on the rest. Such multivariate dependence structure of random
variables is introduce in Chapter 4. We derive explicit formulas of supports of
such multivariate copulas and interpret the result to obtain a geometric necessary

condition for a set to be a support of a multivariate copula.



CHAPTER 11
ESSENTIAL CLOSURES

In the sequel, we often use notations A — A and € to denote both essential
closures and essential closure operators. Moreover, we often use notations A — A

and cl to denote both topological closures and topological closure operators.

2.1 A set of postulates for essential closures

An essential closure can be roughly viewed as a unary operation mimicking the
topological closure but not necessarily extensive. Moreover, two conditions are
included to establish some degree of compatibility between the essential closure

and the underlying topological structure.

Postulate 2.1. Let (X, 7,9) be a topological space equipped with an algebra!.

We say that a unary operation
A A:Q—Q

is an essential closure if, for each A, B € (), the following hold:

(i) Ais a closed set,

(i) ACA,

Remark 2.2. A restriction of an essential closure to any subalgebra invariant

under the essential closure is still an essential closure.

'An algebra over a set X is a nonempty collection of subsets of X which is
closed under complementation and finite unions.



Proposition 2.3. Let £ be an essential closure on (X,7,8). Let S € Q be a
subset of X such that £(S) C S, i.e., S is E-invariant. Define

(i) 75 to be the subspace topology on S,

(ii) Qg to be the algebra (or o-algebra if Q is a o-algebra) generated by the
collection {ANS: AeQ}, and

(i) € = &|qs.
Then Es is an essential closure on (S, Ts,s).

Proof. Observe that Q2g C 2 and &g is a unary operation on (g since, for each
AeQg, AcQand AC 5,50 E(A) € Qand E(A) C E(S) C S, which implies
that

Es(A)=E(A)=E(A) NS € Qs.

It is left to verify the four properties of essential closures. Let A, B € 0. Then
the following hold.

(i) Es(A) = E(A) is closed with respect to 7 and is contained in S, hence closed

with respect to 7g.

(i) Es(A) = E(A) = E(A)NS C cl(A) NS = clg(A) where cl denotes the
topological closure with respect to 7 and clg denotes the topological closure

with respect to 7g.
(ili) Es(AUB) =E(A)UE(B) =Es(A) U Es(B).
(iv) E5(Es(A)) = E(E(A)) = E(A) = Es(A).
Hence £g is an essential closure on (5, g, Qg). ]

The essential closure g can be regarded as a natural restriction of £ onto the
E-invariant subspace S. Note that the topological closedness of S is sufficient to
guarantee that S is E-invariant because if S is closed, then £(S) C cl(S) = S by

the second property of essential closures.



Remark 2.4. With respect to set inclusion, an essential closure is increasing.
This can be shown by the fact that essential closures are distributive over finite
unions. Let A — A be an essential closure on Q. Assume that A, B € Q and

A C B, then write B= AU B. Thus

~ ~ ~ —_— ~

ACAUB=AUB=B.

Definition 2.5. An essential closure 4 — A on € is said to be strong if for each

A, A-—A=0.

—~—

The set A — A can be viewed as the nonessential part of A. Thus A — A=go
can be interpreted as the nonessential part of A being small with respect to the

essential closure.

Remark 2.6. Let A — A be an essential closure on Q. Then for each A € Q, if

A—Ez@, we have

—_—~—

A=A—AUANA=ANACA CA=A.

Hence, for each A € Q, A — A= implies A =A. However, the converse is not

true in general.

Example 2.7. Let X = {0,1}, 7 = {@,{0}, X}, and Q@ = P(X). Define a
function £: Q@ — Q by £(A) = @ if A is empty and £(A) = {1} otherwise. Let
A, B C X. The following are readily verified.

(i) £(A) is closed.
(ii) £(A) C A since {0} = X.
(iii) £(AUB) = E(A) U &(B) since both sides are {1} unless A = B = @.
(iv) It is straightforward to show that £(E(A)) = E(A).
Thus £ is an essential closure. Moreover, observe that
EX -EX) =X -{1}) ={1} 72

Hence & is not strong.



Proposition 2.8. Let A — A be an essential closure on Q) C P(X) and suppose
that X = X. Then the following hold:

(i) (A)C Ac for each A € Q,

(ii) G = G for each open set G € Q,

(iii) Tnt A C A for each A € Q such that Int A € €.
Proof. Recall the properties of essential closures in Postulate 2.1.
(i) Observe that X = X = AUA® = AU Ac. Hence (A)e C Ae.

(ii) Observe that

Hence G C G. Since G C G C G and G is closed, we have G=0G.

(iii) Since Int A € Q is open, Int A =Int A C A. O

Remark 2.9. A topological closure restricted to an algebra containing the open
sets is an essential closure on that algebra. Moreover, it is the unique extensive

essential closure on the algebra.

2.2 Nonessential sets

In this section, we introduce one of the most important notions related to essential
closures: the notion of essentiality. The notion of essential closures is a tool created
to detect certain types of sets. To be precise, it is a tool used to detect whether

a set is essential or nonessential.

Definition 2.10. Let £ be an essential closure on 2. Then a set A € Q is said
to be nonessential if £(A) = & otherwise A is said to be essential. The collection

of nonessential sets is denoted by Nq/(E).

Theorem 2.11. Let £ be a strong essential closure on 2. Then, for any A € €,

E(A) is the intersection of closed sets F' € Q such that A — F' is nonessential.
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Proof. Since € is strong, E(A — E(A)) = @ and hence £(A) is in the intersection.
Moreover, for any closed set F' € Q with £(A — F') = &, observe that

E(A)=EANF)UEA-F)=EANF)CEF)CF=F
This completes the proof. O

According to Theorem 2.11, one can see that the collection of nonessential sets
acts as a generator of its corresponding strong essential closure. To study strong
essential closures, it suffices to study their nonessential sets. The following result

follows directly from Theorem 2.11.

Corollary 2.12. Suppose & and & are strong essential closures on ) such that

Na(&1) = No(&). Then the two essential closures coincide.

Example 2.13. Recall the essential closure defined in Example 2.7. One can
check that the essential closure is not generated by means of Theorem 2.11. Thus

the assumption that the essential closure is strong is necessary in Theorem 2.11.

Definition 2.14. An essential closure on €2 is said to be o-nonessential if € is a

o-algebra? and every countable union of nonessential sets is nonessential.

Lemma 2.15. Let € be an essential closure on an algebra Q and x € E(A). If

G € Q is an open neighborhood of x, then G N A is essential.

Proof. Suppose there exists G € 91(z) N Q with £(G N A) = @. Observe that
E(A)=E(ANGY) CEA)NEGY) CEA)NGe=E(A) -G,
contradicting the fact that £(A) — G C E(A) —{z} is a proper subset of £(A). O

The following result requires a technical assumption that for each G' € 2M(x),
there is O € M(x) with O C G. A topological space with such property is said
to be regular (i.e., T3). More information on regular spaces can be found in

Munkres’s book [18].

2A o-algebra over a set X is a nonempty collection of subsets of X which is
closed under complementation and countable unions.
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Theorem 2.16. Let £ be a o-nonessential essential closure defined on a regular

measurable space’ where the o-algebra contains the Borel sets*. Then
S(LJJ&) =J ).
i=1 i=1

Proof. 1f x € 5<UAi> and G € M(z), then there exists O € N(x) such that
i=1

O C G. By Lemma 2.15,

5(6(00&)) :5<OHQAi> + .

i=1
Since the essential closure is o-nonessential, there exists A; with £(O N A;) # @.

Hence

@%swmAﬁgﬁQMSMﬂQGH&A&QGHGSMJ

1=1

This implies z € U E(A;). The other inclusion follows easily from the facts that £

=1
is increasing with respect to set inclusion and that the images of £ are closed. [

An essential closure on a g-algebra is not necessarily o-nonessential. This fact

is shown in the following example.

Example 2.17. Let X = N, 7 = {&, {1}, X} and Q@ = P(X). Define a unary
operation £: ) — Q by

g if1¢ Aand A is finite
E(A) =

{1} otherwise.

Observe that &£ satisfies the following for all A, B C X.
(i) £(A) is closed.

(i) £(A) C Asince A= X if A # @, {1}.

3A regular measurable space is a regular space equipped with a o-algebra.
“A Borel set is an element of the Borel o-algebra, the smallest o-algebra con-
taining the open sets.
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(iii) Observe that

E(AUB)=9 < 1¢ AUB and AU B is finite
< 1¢ A 1¢ B, Ais finite, and B is finite
& E(A) =2 and E(B) =9
= E(A)UEB)=o.

Hence E(AUB) = &(A)UE(B).
(iv) If £(A) = @, then £(E(A)) = @. If E(A) = {1}, then E(E(A)) = {1}.
Therefore, £(E(A)) = E(A).

Thus £ is an essential closure on 2. However,

EX ~{1h)={1} #2 =] e({a}).

r#1
Hence there exists an essential closure on a o-algebra that is not o-nonessential.

Moreover, this essential closure is not strong either since

EX —E(X) = (1)) = {1} £ .

The following two examples suggest that the notions of strong essential closures
and o-nonessential essential closures are not related in an obvious way since one

does not imply the other.

Example 2.18. Let X = N, 7 = {&,X} and Q = P(X). Define a unary
operation £: 2 — € by

@ if A is finite
E(A) =

X otherwise.

Observe that £ satisfies the following for all A, B C X.
(i) £(A) is closed.

(ii) £(A) C Asince A= X if A # 2.
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(iii) Observe that

E(AUB) =9 < AU B is finite
< A is finite, and B is finite
& E(A) =2 and E(B) =9
= E(A)UEB)=o.

Hence E(AUB) = £(A) U E(B).

(iv) If E(A) = @, then E(A—-E(A)) = 2. If E(A) = X, then E(A - E(A)) = @.
Therefore, E(A — £(A)) = @.

Thus £ is a strong essential closure on ). However,

EX)=X+o=]&({s}).

zeX

Hence, there is a strong essential closure on a o-algebra that is not o-nonessential.

Example 2.19. Let X = R, 7 = {&,(—00,0),X} and 2 = P(X). Define a
unary operation £: (2 — Q by

1%} if A is countable
E(A) =

[0,00) otherwise.

Observe that &£ satisfies the following for all A, B C X.
(i) £(A) is closed.
(ii) £(A) C A since £(A) C [0, 00).

(iii) Observe that

E(AUB) =0 < AU B is countable
< A is countable, and B is countable
& E(A)=2and E(B) =2
S E(A)UEB) =02.

Hence E(AU B) = E(A) UE(B).



14

(iv) If E(A) = @, then E(E(A)) = @. If E(A) = [0, 00), then E(E(A)) = [0, 00).
Therefore, E(E(A)) = E(A).

Thus £ is an essential closure on 2. Moreover, £ is clearly o-nonessential by

definition. However, observe that
E(X - &(X)) = &((=0,0)) = [0,00) # @.
Hence, there is a o-nonessential essential closure that is not strong.

More concrete examples of essential closures are constructed and discussed
thoroughly in Chapters 3 and 4. Our next aim is to find a way to generate an

essential closure from a given collection of sets.

Definition 2.20. Let @ # S C Q C P(X) where 2 is a o-algebra over X. Define
Na(S) to be the smallest collection which satisfies the following conditions for all

B e Q) and A,Al,AQ, SRS NQ(S)
(i) S CNa(S) CQ,

(ii) B C A implies B € Nq(S),

(i) | J An € Na(S).

Remark 2.21. Note that §2 is one such collection satisfying the above conditions.
Moreover, it can be readily verified that nonempty intersections of collections which
satisfy the above conditions still satisfy the conditions. Hence Ng(S) exists and

1s the intersection of all collections satisfying the conditions in Definition 2.20.

Collections of sets satisfying the conditions in Definition 2.20 can be viewed as
collections of small sets. Such collections appear in various fields of mathematics,
e.g., the collection of measure zero sets, the collection of shy sets introduced in

[15], the collection of sets of first category®, etc.

°A subset of a topological space X is said to be of first category if it can be
written as a countable union of nowhere dense subsets of X.



15

In the sequel, we often demand that every subset of the space be Lindelof.

Such a topological space is called hereditarily Lindelof. Some examples of these

spaces are second countable spaces, Suslin spaces, etc. More information on Suslin
spaces can be found in Kechris’s book [16]. More information on Lindel6f spaces

and second countable spaces can be found in Munkres’s book [18].

Theorem 2.22. Let (X, 1) be a hereditarily Lindeldf space. Given any o-algebra €
over X containing the Borel sets and any nonempty collection S C €1, there exists
a unique o-nonessential strong essential closure whose collection of nonessential

sets is exactly No(S).

Proof. The idea is from the result of Theorem 2.11. Define, for each A € Q,
A= {F €Q: Fis closed and A — F € No(S)}.

Observe that, for each A € 2,

A—g:A—m{FGQ:FisclosedandA—FeNQ(S)}

=A— ﬂ{Fn € Q: F, is closed and A — F,, € No(9)}

n=1

= U{A — F,: F, € Qis closed and A — F,, € No(9)}

n=1
for some countable subcollection {F, },en by the Lindelof property. Since Nq(S)

is closed under countable unions, we have A — A € Ny(S). Now, let A, B € Q.

(i) A is closed since it is an intersection of closed sets. Consequently, A — Alis

a self-mapping since the o-algebra contains the Borel sets.

(i) A C A since, for any closed set F' such that A C F, we have F € Q and
A—FZ@ENQ(S).

e~

(iii) AUB C AU B since if Fy, F5 € Q are closed sets such that A— Fy, B—F5 €
Na(S), then F = Fy U Fy € Q is a closed set and

(AUB)—FC(A—F)U(B - F) € Na(S).



16

Moreover, it is straightforward to show that A — A s increasing with

respect to set inclusion. Consequently, AUB CAUB.

e~ —

(iv) Since A — A € Ng(S), we have A — A = @ by construction.

Thus A — A is a strong essential closure on Q. Moreover, if A € Ny(S), then
A=0o by construction. On the other hand, if A= J, then A=A — Ae Na(S).
Therefore,

A =@ if and only if A € N(59).

Thus the collections Ng(A — A) and No(S) coincide. In addition, since No(S)
is closed under countable union, the induced essential closure is o-nonessential.
The uniqueness part is obvious since the collection of nonessential sets completely

determines the corresponding strong essential closure. O]

In Theorem 2.22, the assumption that the o-algebra contains the Borel sets is

necessary. This is demonstrated in the following example.

Example 2.23. Let X = {a,b,c}, 7 = {9, {a}, {b},{a,b}, X}, S = {&} and
Q= {2,{a},{b,c}, X}. Observe that (X, 7) is hereditarily Lindel6f, 2 does not
contain 7 and Np(S) = {@}. Using the same construction as in Theorem 2.22,

we have
@ = X while {a} = {a, c}.

Hence the induced mapping is not an essential closure since it violates the second

property of essential closures.

2.3 Essential closedness

In this section, we introduce another important notion related to essential closures:

the notion of essential closedness.

Definition 2.24. Let £ be an essential closure on 2. A set F' € Q is said to be
essentially closed if and only if £(F) = F. We denote the collection of essentially
closed sets by Cq(&).
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Similar to the result obtained in Theorem 2.11, we derive that an essential
closure of a set A can also be written as the intersection of essentially closed sets

F such that A — F' is nonessential.

Proposition 2.25. Let & be a strong essential closure on 2. Then, for any A € €,
E(A)={F €Ca(l): A—F € No(E)}.
Proof. Since & is strong, £(A) is in the intersection. Moreover, for any F' € Cq(E)
with A — F € No(€), we have
EA)=E(ANFI)UEA—-F)=E(ANF)CE(F)=F.
This completes the proof. ]

The following proposition gives an interpretation of the notion of essential

closedness: an essentially closed set is closed and locally essential.

Proposition 2.26. Let £ be an essential closure on an algebra 2 and F' € Q. If
F is essentially closed, then F' is closed and, for any open set G € ) intersecting

F, GNF is essential.

Proof. 1f F is essentially closed, then F' = E(F) is closed. Observe that
EF-G)CF-G=F-G¢F.

Moreover, F'=E(F) =E(F —G)UE(FNG). Thus E(FNG) # 2. O

Proposition 2.27. Let £ be a strong essential closure on an algebra ) and F' € ).

If F is closed and, for any open set G € Q intersecting F', GNF' is essential, then

I is essentially closed.

Proof. Since F is closed, £(F) C F = F. Suppose F N (E(F))* = F — &(F) # @.
Then E(F—E(F)) # @ by assumption, contradicting the fact that £ is strong. [

Combining Propositions 2.26 and 2.27 gives a characterization of the notion

of essential closedness for strong essential closures.
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Corollary 2.28. Let £ be a strong essential closure on an algebra Q) and F € 2.
Then F is essentially closed if and only if F' is closed and, for any open set G € 2

intersecting F', G N F' is essential.

Example 2.29. Recall the essential closure defined in Example 2.7. Choose
F = X. One can see that, for any nonempty open set G € Q, E(GNF) # o.
However, E(F) = {1} # F, i.e., F is not essentially closed. Thus the assumption

that the essential closure is strong is necessary in Proposition 2.27.

2.4 Essential compactness

We define the notion of essential compactness via the notion of essential covering,
which is analogous to how the notion of topological compactness is defined via

the notion of open covering.

Definition 2.30. Let A — A be an essential closure on €. An essential cover

{Ea}aca of aset A € Q is an open cover of A such that, for each « € A, E, N A

is either empty or essential.

Definition 2.31. Let A — A be an essential closure on €. A set K € Q is said

to be essentially compact if and only if, for each open cover of K, there exists a

finite essential subcover.

Theorem 2.32. Let A — A be an essential closure on Q and K € . If K s

compact and essentially closed, then K is essentially compact.

Proof. Assume that K is compact and essentially closed. Let {E,}q4eca be an open
cover of K. Then there exists a finite subcover: {Ej,..., E,}. By Proposition
2.26, for each i such that E;NK # &, we have m # &. Hence, K is essentially

compact. ]

The converse of Theorem 2.32 requires an additional assumption, for example,
that the space is Hausdorff (i.e., T3). In particular, every compact set is closed.

More information on Hausdorff spaces can be found in Munkres’s book [18].
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Theorem 2.33. Let (X,7) be a Hausdorff space, A — A be a strong essential
closure on 2, and K € Q. If K is essentially compact, then K is compact and

essentially closed.

Proof. The case where K = @ is trivial since @ is compact, essential closed and
essentially compact. Assume that K # @ and each open cover {E, },eca of K has
a finite essential subcover. Then K is compact since an essential cover is an open
cover. It is left to show that K is essentially closed.

Suppose K # K. Since K is compact, hence closed, K C K = K. Thus
there exists 2 € K such that 2 ¢ K. Observe that {(K), {x}°} is an open cover
of K and any subcover of it is itself unless K = &. (Note that K cannot be

empty otherwise {X} is an open cover of K and X N K # & but XNK = &,
contradicting the fact that K is essentially compact.) Therefore, {(K)¢, {z}¢} is
an essential cover of K. Since K — K #+ &, we have K — K # &, contradicting

the fact that the essential closure is strong. Thus K is essentially closed. O]

Combining Theorems 2.32 and 2.33, we obtain a characterization of the notion

of essential compactness.

Corollary 2.34. Let X be a Hausdorff space, A — Abea strong essential closure
on ), and K € Q). Then K s essentially compact if and only if K is compact and

essentially closed.

To conclude, in a Hausdorff space equipped with a strong essential closure,
the notion of essential compactness is completely characterized by the notions of

essential closedness and topological compactness.

2.5 An ordering on the class of essential closures

A natural way to compare two functions on a common space is to compare them
in a pointwise fashion. In this section, we introduce a natural partial ordering on

the class of set-valued functions on a common space.
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Definition 2.35. Let & and &; be set-valued functions on a common space. Then
we say that &£ is finer than or equal to & or &£ is coarser than or equal to &,

denoted by & < &, if £1(A) C E(A) for each element A in the domain.

Proposition 2.36. Assume that £ and & are essential closures on a common

space such that & < E. Then
(1) 52 @) 81 = 51 and

(11) 51 ‘\< 51 o} 82 4 (92.

Proof. Observe that £(A) = & (E1(A)) C E(E1(A)) C &E(A) = &1 (A). Moreover,
observe that & (A) = E1(E1(A)) C E1(E(A)) C E3(E(A)) = E(A). O

Proposition 2.37. Assume that & and & are essential closures on a common
space such that & < &. If F is E -essentially closed, then F' is Ey-essentially

closed.
Proof. If & (F) = F, then F is closed and F = £, (F) C &(F) C F = F. O

Proposition 2.38. Let & and & be strong essential closures on a common space.
Then & < & if and only if the collection of & -nonessential sets contains the

collection of E;-nonessential sets.

Proof. The implication is obvious and the converse follows directly from Theorem

2.11. [l

2.6 Completions of essential closure spaces

In this section, we introduce the notion of complete essential closure spaces. The
idea is similar to the notion of complete measure spaces. Our objective is to
expand the domain and then extend the essential closure so that every subset of

a nonessential set is also nonessential.

Definition 2.39. A quadruple (X, 7,2,€) consisting of a nonempty set X, a
topology 7, an algebra 2, and an essential closure £ on (X, 7,0Q) is called an

essential closure space.
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Theorem 2.40. Given a o-nonessential essential closure space (X, 1,8, E), define
Q={FEUF: Ec€QandF is a subset of some E-nonessential set}.
Then Q is a o-algebra generated by Q and all subsets of €-nonessential sets.

Proof. Clearly, @ € Q. Now, let A, Ay, Ay, --- € Q. Then there are F € Q and F
a subset of an £-nonessential set N such that A = F U F. Thus

A= FE°nF°=E°N(N°U(F°— N°)) = (EUN)°U (E°N (N — F)).

Observe that (EU N)¢ € Q and E°N (N — F) C N. Hence A° € Q. Moreover,
there are F; € () and F; a subset of an £-nonessential set IV; such that A; = E;UF;

for each 7. Therefore,

o

QAiIU(Equi) . (QE) U (QF) cq

i=1
since  is a o-algebra and & is g-nonessential. Thus € is a o-algebra.

Observe that Q contains 2 and all subsets of £-nonessential sets. Moreover,
by construction, 2 is contained in the o-algebra generated by  and all subsets

of £-nonessential sets. O

Theorem 2.41. Given a o-nonessential essential closure space (X, 1,8, E), define

a set function € on Q by

Z(EUF) = £(E)

for each E € Q and F a subset of an E-nonessential set. Then & is a o-
nonessential essential closure on Q whose nonessential sets are exactly the subsets
of E-nonessential sets. Moreover, € is the unique essential closure on € which

extends &.

Proof. First of all, £ is well-defined. To see this, let AU B = A’ U B’ where
A, A" € Q and B and B’ are subsets of £-nonessential sets C' and C’, respectively.
Then A’ C AU B’ C AU C, which implies £(A") C £(A). Similarly, we have
E(A) C E(A'). Moreover, £ is a self-mapping on Q since Q C Q.
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Now, for each A, B € Q, there are E,G € § and subsets F and H of &-
nonessential sets N and M, respectively, such that A= FUF and B = G U H.

The following are readily verified.
(i) £(A) is closed.
(ii) E(A) =E(E) C EC A
(iii) Observe that

E(AUB) = E((FEUG)U(FUH)) = E(EUG) = E(E)UE(G) = E(A)UE(B).
(iv) Observe that
E(E(A)) = E(E(R)) = E(E(E)) = £(E) = E(A).

Therefore, & is an essential closure on Q. Moreover, it is easy to see that £(A) = @
if and only if A is a subset of an £-nonessential set. As a consequence, since & is
o-nonessential, € is also o-nonessential.

In addition, let £ be another essential closure on Q which extends £ and let
A € Q. Then there are £ € Q and F a subset of £-nonessential set N such that
A= FEUF. Thus

E'(A)=E(EUF)CEE)UE(N)=E(E)=E(A).
On the other hand,
E'(A)=E(FUF)D&(E)=E(E)=E(A).

Hence € is the unique essential closure on € which extends &. 0

Definition 2.42. Given a o-nonessential essential closure space (X, 7,9Q,&), we
define the completion of (X, 7,€, &) to be the essential closure space (X, 7, &)
whose o-algebra Q and essential closure € are defined in Theorems 2.40 and 2.41,

respectively.
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Proposition 2.43. The completion of a o-nonessential strong essential closure

space is a o-nonessential strong essential closure space.

Proof. Let (X,7,Q, &) be the completion of an essential closure space (X, 7,9, )
where & is strong. Then, for each A € Q, there exist E € Q and F a subset of an
E-nonessential set such that A = EF'U F. Thus

E(A-E(A)=E(EUF)-EEUF))
=E((EUF) - &(B))
=E((E—~E(B) U (F - £(B))
=E(E—£E(E))
= .
Hence & is strong. O

Example 2.44. Assume that (X, 7) is Lindel6f. Let Q be a o-algebra over X
containing the Borel sets. If an essential closure space (X, 7,0, &) is associated
with a measure, then the completion (X, 7,2, &) is the essential closure space
associated with the completion of that measure. This is due to Theorem 3.10 and
Corollary 3.11 in Chapter 3 that, in a Lindelof space, if an essential closure is
associated with a measure, then it is o-nonessential and the nonessential sets are

exactly the measure zero sets.

Similar to the case of o-nonessential essential closure spaces, if we instead
start with an algebra () and an essential closure &£, then we may take an algebraic
completion of €2 to be the algebra generated by 2 and all subsets of £-nonessential
sets and take an algebraic completion of £ to be the unique extension of £ on
the algebraic completion of €2. Notice that we do not require any additional
assumption on the algebra or on the essential closure in this case. However, since
we rarely encounter algebras in practice, algebraic completions of essential closure
spaces may have less practical uses compared to completions of o-nonessential

essential closure spaces. Nevertheless, it is theoretically interesting.
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Theorem 2.45. Given an essential closure space (X, 1,9, E), define
Q={EUF: EcQandF is a subset of some E-nonessential set}.
Then  is an algebra generated by Q0 and all subsets of £-nonessential sets.

Proof. Clearly, @ € Q. Now, let A, Aq,..., A, € Q. Then there are E € Q and F
a subset of an £-nonessential set N such that A = E U F. Thus

A=E‘NF=EN(NU(F°—N))=(FUN)U(E°N(N—F)).
Observe that (EU N)¢ € Q and E°N (N — F) C N. Hence A° € Q. Moreover,
there are F; €  and F; a subset of an £€-nonessential set IN; such that A; = E;UF;
for each i. Therefore,

QAizQ(EiUFi)Z (QEO U (ZQE) cQ

since Q is an algebra and & is distributive over finite unions. Thus (2 is an algebra.
Observe that Q contains € and all subsets of £-nonessential sets. Moreover,
by construction, € is contained in the algebra generated by  and all subsets of

E-nonessential sets. O]

Theorem 2.46. Given an essential closure space (X, 1,8, &), define a set function
E onQ by

S(EUF) = &(E)

for each E € Q and F a subset of an £-nonessential set. Then & is an essential
closure on Q whose nonessential sets are exactly the subsets of £-nonessential sets.

Moreover, € is the unique essential closure on Q which extends E.

Proof. First of all, £ is well-defined. To see this, let AU B = A’ U B’ where
A, A" € Q and B and B’ are subsets of £-nonessential sets C' and C’, respectively.
Then A’ C AU B C AU C, which implies £(A") C £(A). Similarly, we have
E(A) C E(A"). Moreover, & is a self-mapping on 2 since Q2 C Q.

Now, for each A,B € Q, there are E,G € Q and subsets F and H of &-
nonessential sets N and M, respectively, such that A= FU F and B= G U H.

The following are readily verified.



25

(i) £(A) is closed.
(i) E(A)=E(E)C EC A
(iii) Observe that

E(AUB) = E((FUG)U(FUH)) = E(EUG) = E(E)UE(GQ) = E(A)UE(B).
(iv) Observe that
E(E(A)) = E(E(E)) = E(E(E)) = E(E) = E(A).

Therefore, £ is an essential closure on Q. Moreover, it is easy to see that £(A4) = @
if and only if A is a subset of an £-nonessential set.

In addition, let £ be another essential closure on Q which extends £ and let
A € Q. Then there are £ € Q and F a subset of £-nonessential set N such that
A=FEUF. Thus

E'(A)=E(EUF)CE(B)UE(N)=EE)=E(A).
On the other hand,
E'(A)=E(EUF)DE(E)=EE)=E(A).
Hence £ is the unique essential closure on € which extends &. [l

Definition 2.47. Given an essential closure space (X, 7,9, &), we define the

algebraic completion of (X, 7,2, &) to be the essential closure space (X, 7,8, &)
whose algebra Q and essential closure € are defined in Theorems 2.45 and 2.46,

respectively.

Proposition 2.48. The algebraic completion of a strong essential closure space

1s a strong essential closure space.

Proof. Let (X, 7,9, &) be the algebraic completion of an essential closure space
(X,7,9,&) where &€ is strong. Then, for each A € Q, there exist £ € Q and F a
subset of an £-nonessential set such that A = F U F. Thus
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Hence £ is strong. 0

Proposition 2.49. The algebraic completion of a o-nonessential essential closure

space is a o-nonessential essential closure space.

Proof. Let (X,7,9Q,€) be the algebraic completion of an essential closure space
(X,7,9Q,&) where € is o-nonessential. Let A;, Ay, --- € Q such that A; is a subset

of an £-nonessential set NNV, for each i. Let

=] =1

Thus A is a subset of an E-nonessential set. N. By construction, £(A) = &, which

implies that £ is o-nonessential. [l

2.7 Essential closure operators

In this section, we provide an alternative approach to postulating the notion of
essential closures. It is an approach which concentrates on the core properties of
essential closures. An advantage of this approach is that we need not assume any
a priori topological structure.

Similar to the notion of essential closures, an essential closure operator can be
roughly viewed as a unary operation mimicking the topological closure operator
but not necessarily extensive. Since there is no underlying topological structure,

no additional conditions are included.
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Postulate 2.50. Let X be a nonempty set and {2 be an algebra over X. An

essential closure operator on (X, {2) is a unary operation

A A Q=0

which satisfies the following conditions for all sets A, B € €

Remark 2.51. We choose the domain of an essential closure or an essential
closure operator to be an algebra for our convenience in stating the conditions in
our results. In fact, we may define an essential closure or an essential closure
operator on a more general domain, namely, a collection of sets which is closed

under finite unions. Note that every result in this section still holds.

Remark 2.52. A topological closure operator restricted to any algebra invari-
ant under the topological closure operator is indeed an essential closure operator.

Moreover, it is the unique essential closure operator which is extensive.

Given an essential closure operator, our objective is to induce a topology with
respect to which the essential closure operator is an essential closure. To guarantee

the existence of the induced topology, we need the following lemmas.

Lemma 2.53. Let X be a nonempty set and €2 be an algebra over X. Suppose
that A A: Q — Q satisfies the following conditions for all sets A, B € Q:

(iv) 4 = 4.

Then A — A can be extended to a topological closure operator on X.



28

Proof. With a slight abuse of notation, define cl: P(X) — P(X) by

CDA

First of all, we check that cl is indeed an extension. Suppose that A € €). Then
we have
dd(d)=(CcAc ()CT<C () C=d(
CDA CDA CDA
where the first inclusion follows from the fact that A is in the intersection, the
second inclusion is obvious, and the last inclusion follows from the fact that A C C
implies A C C. Hence, cl is an extension of A — A. Moreover, observe the

following properties of the unary operation cl: P(X) — P(X).
(i) cl(@) =@ = & since & € Q.

(i) AC () C =cl(A).
CDA
(iii) Observe that

ol ﬁuE:(ﬂE)u(ﬂE).

CDAUB DDA,EDB DDA EDB

Hence cl(AU B) C cl(A) Ucl(B). Moreover, it is straightforward to verify
that cl is increasing with respect to set inclusion. It readily follows that

cl(A)ucl(B) C cl(AU B).

(iv) If A C C, then cl(A) C cl(C) = C = C since C € Q. Hence

cl(cl(A)) = CcC () C=d(A)

CDcl(A) CDA

On the other hand, cl(A) C cl(cl(A)) since A C cl(A).
Therefore, cl is a topological closure operator on X. O

Remark 2.54. An extension in Lemma 2.53 is not unique.
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Lemma 2.55. Let A — A be an essential closure operator on an algebra §2 over
a nonempty set X. Then there exists a topology on X with respect to which A s

closed and contained in the topological closure of A for each A € €.
Proof. Define A= AU A for each A € Q. Observe that, for each A, B € ,

(i) 2=0UQ =2,

(i) ACAUA=4,

—_———

BUAUB=(AUA)U(BUB)=A4UB, and

(i) AUB= A

-

(iv) A =AUAUAUA=AUAUAUA =AUA=A.
According to Lemma 2.53, the unary operation A — A: Q — Q can be extended
to a topological closure operator on X. Let cl be a topological closure operator
extended from A — A: Q — Q and let 7 be the topology induced by cl. Since

Ae ), we have
d(A)=AUA = A,

Hence A is closed in (X, 7) for each A € Q. Moreover, A C AU A = cl(A) for
each A € Q. H

Given an essential closure, if we take out its underlying topological structure,
what we get is an essential closure operator. Conversely, the following theorem
shows that there is a natural way to induce an underlying topology from a given
essential closure operator. However, it is not guaranteed that the induced topology
is the same as the give topology. There are cases where the induced topology
coincides with the given topology. A nice characterization of such cases will be
derived at the end of this chapter.

Let us note that an arbitrary intersection of topologies is again a topology.
So, a natural way to induce an underlying topology from a given essential closure
operator is to take the (nonempty) intersection of all topologies satisfying the

conditions in Lemma 2.55.
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Theorem 2.56. Let A — A be an essential closure operator on §). Define
TQ = ﬂTa, where the nonempty intersection is taken over all topologies T, on
X satisfying the conditions in Lemma 2.55, and let clg be the topological closure
induced by Tq. Then, A — A:Q—=Q satisfies the following conditions for all sets
A, BeQ:

(i) A is closed in (X, 1q),

(i) A C clg(A),

In other words, A — A is an essential closure on (X, 10,Q). Furthermore, 1q is

generated by the collection {(A)°} scq.

Proof. To show that A — A is an essential closure, it suffices to show that Ais
closed in (X, 7o) and A C clg(A) since it is already an essential closure operator.
First of all, A is closed in (X, 7q) since (A)¢ € 7, for cach a. So, (A)° € 7.
Moreover, A C clo(A) C clg(A) since 7 C Ta.

Furthermore, let 7 be the topology generated by {(A)¢}acq. Since A is closed
in (X, 1q) for each A € Q, we have 7 C 7. Consequently, clg(A) C ¢l (A) for
cach A € Q. Therefore, A C clg(A) C cl.(A4) for each A € Q. Moreover, A is
closed in (X, 7) for each A € Q since 7 is generated by {(A)¢}acq. Hence 7 is
a topology satisfying the conditions in Lemma 2.55, which implies that 7q C 7.

Thus the two topologies coincide. [l

Remark 2.57 (Consistency). Let A~ A be a topological closure operator, hence
an essential closure operator. One can see that the topology induced by A — A as
an essential closure operator is the same as the topology induced by A — A as a

topological closure operator.

Given an essential closure operator £ on (X, ). Any topology 7 containing

Tq with the property that £(A) C cl(A) for all A € Q, where cl is the topological
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closure induced by 7, is said to be compatible with the given essential closure
operator. Notice that 7 is a compatible topology if and only if (X, 7,0, &) is an
essential closure space.

There can be several compatible topologies on a given essential closure operator
space. The induced topology 7 in Theorem 2.56 is the smallest of such topologies

and is called the canonical topology.

Example 2.58. Recall the essential closure space (X, 7,2, E) defined in Example
2.17. According to Theorem 2.56, the canonical topology 7q is generated by the
collection {{1}¢, X'}. Hence the given topology 7 = {@, {1}¢, X'} is canonical.
Let 7% = {@, {1}, {2}, {1, 2}¢, X}, which is another topology on X. Observe
that 7 C 7* and it is straightforward to check that, for each A € Q, £(A) is
contained in the topological closure (with respect to 7*) of the set A. Therefore,
(X, 7%,Q, ) is an essential closure space. Hence 7* is a compatible topology which

is not canonical.

Example 2.59. Recall the definition of the essential closure (A — A°) on the
real line defined in [13]. This is an essential closure (with respect to the standard
topology 75) on the Lebesgue o-algebra £(R). If we temporarily take out the
standard topology and view the essential closure as an essential closure operator
on £(R), then the canonical topology (i.e., the induced topology T¢(r) in Theorem
2.56) is indeed the given standard topology.

First of all, observe that A° is closed with respect to the standard topology for
each A € £(R). Hence 7gr) C 7. On the other hand, it suffices to show that each
nonempty bounded open interval is of the form (A°)¢ for some A € £(R). Let
(a,b) C R where a < b. Choose A = (—00, a]U[b, 00). Then A° = (—o0, a]U[b, 00).
Thus (A%)° = (a,b) as desired. Hence 7, C Tg(r). Observe that A+ A° restricted
to B(R), the Borel o-algebra over R, is also an essential closure. Similarly, it can

be shown that 7o) = 7 as well.

We end this chapter with the following result, which gives a characterization

of canonical topologies.
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Theorem 2.60. Let £ be an essential closure on (X, 7,Q). Then T is the canonical

topology if and only if there exists a subbase of T whose elements are of the form

(E(A))¢ where A € Q.

Proof. If T is canonical, then 7 is generated by {(€(A))}acq. Conversely, if 7 is
generated by a subcollection of {(£(A))°}acq, then 7 C 7. On the other hand,
for each A € Q, E(A) is closed in (X, 7) since & is an essential closure on (X, 7, §2).

Thus 7o C 7. Therefore, 7 is the canonical topology. O]



CHAPTER II1
SUBMEASURE CLOSURES

In this chapter, we construct concrete examples of essential closures via submea-
sures and demonstrate their applications, especially in the study of supports of
measures and the notion of essential supports of functions. First, we introduce

the notion of submeasures which generalizes both measures and outer measures.

Definition 3.1. Let 2 be a g-algebra over a set X. A submeasure on 2 is a set

function p: Q — [0, co] satisfying:

(ii)) pu(A) < u(B) for any A, B € 2 such that A C B,

(ii) N(UAi) <) p(Ay) for any Ay, Ay, € Q.
i=1 i=1

Remark 3.2. There is a classical notion of submeasures which is different from
our definition. The classical notion of submeasures were introduced in the study of
one of the classical problems in measure theory known as the control measure prob-
lem. Unlike our definition of submeasures, classical submeasures are defined on
algebras, finitely additive, and finite. More information on classical submeasures

and the control measure problem can be found in [5, 6, 10].

One can see that our notion of submeasures is a generalization of both the
notions of measures and outer measures. However, they behave more like an
outer measure than a measure. In fact, every submeasure on a o-algebra can
be extended, though not uniquely, to an outer measure. In other words, every
submeasure is a restriction of some outer measure. A proof of this fact is given,

in details, in the following proposition.
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Proposition 3.3. Every submeasure can be extended to an outer measure.

Proof. Let p be a submeasure on (2. Define

p(A) =inf{> u(B;): B; € Qand AC| B}
=1

=1

Let A € €. On one hand, p*(A) < p(A) since A € Q covers itself. On the
other hand, u*(A) > p(A) since p is countably subadditive. Thus u* extends p.
Consequently, we have p*(@) = u(@) = 0. In addition, if A C B, then a covering
of B is also a covering of A. Hence p*(A) < p*(B). It is left to show that u* is
countably subadditive.

Let € > 0. Then for each i € N, there exists a covering {B;; }ien of A; such
that B;; € Q2 and

il €
> (By) < p(A) + 5
j=1

Thus {Bj;}i jen covers A and

pr(A) <D uBy) < Z (A +e.

i=1 j=1

Since € is arbitrary, u* is countably subadditive. O]

Definition 3.4. A submeasure is said to be trivial if the space is of submeasure

zero and is said to be normalized if the space is of submeasure one.

Every nontrivial submeasure can be normalized, i.e., given any nontrivial sub-
measure, there is a normalized submeasure with the same collection of submeasure

zero sets.
Proposition 3.5. Every nontrivial submeasure can be normalized.

Proof. Let u be a nontrivial submeasure on a measurable space (X, €2). Define /'
on (X,Q) by p/(A) = 01if u(A) = 0 and p/(A) = 1 otherwise. Then p/(X) =1

since p is nontrivial. Let Ay, Ay, -+ € Q.
(i) p/(@) = 0 since u(@) = 0.

(ii) Suppose A; C As. If u(Ay) =0, then pu(A;) = 0. Thus p/(A;) = p/(As). If
w(Az) > 0, then p/'(As) = 1. Hence /(A1) < 1/(Ag).
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(iii) If u(A;) = 0 for all 4, then “(U A;) = 0 by the subadditivity. Consequently,

i=1

w(Ja)=0=3(A

If u(A;) > 0 for some j, then p/(A;) = 1. Consequently,

UAgsi::

Hence 4/ is a submeasure on (X, 2). Moreover, the collections of submeasure zero

sets coincide by construction. O]

In practice, when we deal with a topological measurable space, we rarely en-
counter an open set which is not measurable. This is because open sets are
considered to be well-behaved. It would be peculiar if they were not measurable.
So for every topological measurable space in the sequel, the o-algebra is assumed

to contain the Borel sets, i.e., the open sets are measurable.

3.1 Definition and properties

Definition 3.6. Let (X, 7,99, 1) be a topological submeasure space!. For any
measurable set A € M, we say that z € A" if 4(G N A) > 0 for every G € N(z).
The set A" is called the p-closure of A.

A measure v is said to be absolutely continuous with respect to a measure p

on a common measurable space, denoted by v < p, if for every measurable set A,

1(A) = 0 implies v(A) = 0.

Remark 3.7. Suppose v and p are measures on a common topological measurable
space with v < . Then the v-closure is finer than or equal to the p-closure, i.e.,

A" C A" for each measurable set A.

LA topological submeasure space is a topological measurable space equipped
with a submeasure.
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A submeasure closure is not always an essential closure. One such example is

given below.

Example 3.8. Let X = (—00,0]. Let 7 be the topology on X generated by
the collection of singletons {x} where x € (—o00,0). Notice that every point
x € (—00,0) has a neighborhood that is countable, namely, the singleton {x}.
However, the only neighborhood of 0 is X, which is uncountable. Let us remark
that X is, in fact, compact since every open cover of X has to contain X itself.
Consider the Borel g-algebra 98B(X) generated by the topology 7. Define a
measure g for each Borel measurable set A by u(A) = 0 if A is countable and

w(A) = oo otherwise. Observe that
X" = {0} while X" = 2.

Thus the p-closure is not idempotent. Hence it is not an essential closure. Nev-
ertheless, we would like to point out that every submeasure closure satisfies the

other three properties in Postulate 2.1.

Note that, by inner regular measure, we mean a measure p on a Hausdorff
space equipped with a g-algebra containing the Borel sets for which the measure
of a measurable set can be approximated from within by compact subsets, i.e., for

each measurable set A,
w(A) = sup{u(K): K is compact and K C A}.

Two sufficient conditions which guarantee that a submeasure closure is a strong
essential closure are given in the following theorem. Omne is a condition on the

space while the other is a condition on the submeasure.

Theorem 3.9. Assume that (X, 7,9, p) is either a hereditarily Lindelof submea-

2

sure space” or an mner regular measure space3

. Then the p-closure is a strong

essential closure.

2A hereditarily Lindelof submeasure space is a topological submeasure space
where every subset is Lindelof.

3An inner regular measure space is a Hausdorff measurable space equipped
with an inner regular measure.
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Proof. Let A and B be measurable sets.

()

(iv)

Ifz € A" and G € N(z), then GNA" # @. Let y € GNA". Thus G € N(y)
and y € A", Therefore, u(G N A) > 0. Hence z € A”. Consequently, A" is

closed.

If + ¢ A, then there exists G € M(x) such that G N A = &. Thus we have
W(GNA) =0.Soxz¢ A"

If 2 ¢ A" and = ¢ B", then there exist Gy, Gy € N(x) with u(Gy N A) =0
and p(Ga N A) = 0. Choose G = G NGy € N(z). Thus

w(GN(AUB)) < u(GiNA)+ u(Gen B) = 0.

So z ¢ AU B". Moreover, it is straightforward to show that the p-closure is

increasing with respect to set inclusion. Consequently, A"uB" c AUuB".

If (X,7,90, 1) is a hereditarily Lindel6f submeasure space, consider each
z € A— A" We have = ¢ A— A" otherwise € A". Then there exists
{G.},en_ 7+ such that G, € M(x) and (G, N (A — A")) = 0. Notice that
{G.},ca_5» is an open cover of A — A", which is Lindelsf. Hence there

exists a countable subcover: {Gy, G, ...}. Thus

A =A%) < Z pGin (A =A%) =o0.

Therefore, A — Z“# =J.

If (X, 7,90, 1) is an inner regular measure space, consider any compact set
KCA-—A" Forany z € K, z € A— A", Therefore, = ¢ A —a Then
there exists {G}.ex such that G, € M(x) and

WG NK) < (G N (A—A") =o.

Notice that {G,}.cx is an open cover of K, which is compact. So there

exists a finite subcover: {Gy,...,G,}. Thus
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plK) <3 (G K) = 0.

i=1
Therefore, (A — Z“) = 0 by the inner regularity. Thus A — ZMM =g. O

The following result gives a characterization of submeasure zero sets via the
corresponding submeasure closure, which shows that a submeasure closure can be

used to detect the collection of submeasure zero sets if the conditions are met.

Theorem 3.10. Assume that (X, 7,9, 1) is either a Lindeldf submeasure space

or an inner reqular measure space. Then A" = & if and only if u(A) =0.

Proof. The converse follows directly from the definition of submeasure closures.
So, it is left to show the implication. Let A" = &.

If (X,7,90, 1) is a Lindelof submeasure space, then for each x € X, there
exists G, € MN(z) such that u(G,MNA) = 0. Thus there exists a countable subcover
{G1,Gs, ...} of X. Therefore,

HA) < 3 (G A) = 0.

If (X, 7,90, i) is an inner regular measure space, then let K be any compact
subset of A. It is straightforward from the definition of submeasure closures that
K" ¢ A" = @. Thus, for each € X, there exists G, € M(x) such that
w(Gx N K) = 0. Since K is compact and {G,}.cx covers K, there exists a finite
subcover {G,...,G,} of K. Therefore,

W(K) < 3 plGiNK) = 0.

i=1

By the inner regularity, pu(A) = 0. O

Corollary 3.11. Assume that (X, 7,9, u) is either a Lindelof submeasure space
or an inner reqular measure space. If the u-closure is an essential closure, then it

18 o-nonessential.

4A Lindeléf submeasure space is a Lindelof space equipped with a o-algebra
and a submeasure.
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Proof. Let {A;}32, be a countable collection of p-nonessential sets. By Theorem

3.10, we have u(A4;) = 0. Consequently,
M(UA¢> <> (A =0.
i=1 i=1

Therefore, U A; is p-nonessential. O

i=1
Corollary 3.12. Assume that (X, 7,90, 1) is either a Lindeldf submeasure space
or an inner reqular measure space. If the p-closure is a strong essential closure,

then

u(A") = p(A)
for each A € .

Proof. By Theorem 3.10 and the fact that the p-closure is a strong essential
closure, we have j(A — A") = 0. Then

u(A) < u(ANA") + p(A-A"

< p(A").
This completes the proof. [l

On a hereditarily Lindel6f measurable space®, Theorem 3.9 and Corollary 3.11
imply that every submeasure closure is strong and o-nonessential. In fact, the

converse also holds.

Theorem 3.13. On a hereditarily Lindelof measurable space, an essential closure

1s strong and o-nonessential if and only if it is a submeasure closure.

Proof. Let (X, ,90) be a hereditarily Lindel6f measurable space. The case where
X = @ is trivial. Assume that X # &. Suppose A — A is a o-nonessential strong
essential closure on 9. Define p: M — [0, 00] by pu(A) = 0 if A = &, otherwise
1(A) = 1. To see that p is a submeasure on (X,9M), let {A;}2, be a countable

collection of 9Mt-measurable sets.

°A hereditarily Lindel6f measurable space is a hereditarily Lindelof space
equipped with a o-algebra.
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(i) Since @ is nonessential, u(2) = 0.

(ii) Suppose A; C A,. Then :471 C ANQ If A, is nonessential, then A; is nonessen-
tial, hence pu(A;) = 0 = p(Az2). If Ay is essential, then p(A;) <1 = p(As).

(iii) If there is an essential set A; in the collection, then
(Ua) s1=3
i=1 i=1

oo
If every A; is nonessential, then U A; is also nonessential. So, we have
i=1

M(QA,-) e gumi).

Therefore, 1 is a submeasure on (X, 91) and, consequently, the p-closure defined
on (X, 7,9) is a o-nonessential strong essential closure by Theorem 3.9 and Corol-
lary 3.11. It is left to show that A A and the p~closure coincide. According to
Corollary 2.12; it suffices to show that

Nan(A = A) = Nap(A — A™).

By Theorem 3.10, A" = @ if and only if ;(A) = 0, which is equivalent to A=0o
by construction. So the two essential closures coincide. The converse follows from

Theorem 3.9 and Corollary 3.11. [

Remark 3.14. In the proof of Theorem 3.13, the essential closure induces a
normalized submeasure if the space is essential. Otherwise, it induces the trivial

submeasure.

Corollary 3.15. Assume that (X, 7,9M) is a hereditarily Lindeldf measurable
space. Then every o-nonessential strong essential closure on (X, 7,9) can be

extended to a o-nonessential strong essential closure on (X, T, P(X)).

Proof. Given a o-nonessential strong essential closure on (X, 7,9), by Theorem
3.13, the essential closure induces a submeasure closure, say the p-closure. By

Proposition 3.3, p can be extended to an outer measure p* on P(X). Since pu*
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is also a submeasure, the induced p*-closure is a o-nonessential strong essential
closure on (X, 7,P(X)). Moreover, it is straightforward from the definition of

submeasure closures that the p-closure and the p*-closure coincide on 1. O

For set-valued functions on a common space, we may define a union of such
functions in an element-wise fashion. One can verify that a finite union of two es-
sential closures is still an essential closure. Moreover, a finite union of submeasure

closures is still a submeasure closure.

Proposition 3.16. Given two submeasure closures, i1 -closure and ps-closure, on

a common topological measurable space, the set function
A A UA"

is, in fact, the (u1 + po)-closure. Moreover, if both the uy-closure and the -

closure are essential closures, then so is the (1 + pe)-closure.

Proof. Let = p1 + po, which is still a submeasure. If = ¢ A", then there exists
G € N(x) such that u(GN A) =0. Thus 1 (GNA) =0= puy(GNA). Therefore,
z ¢ A" UA™. Conversely, if 2 ¢ A" UA"  then there exist Gy, Gy € N(x) such
that p1(Gh N A) = 0 and pua(Gy N A) = 0. Choose G = G; N Gy € N(z). Then
11 (G N A) = 0= py(GNA). Consequently, u(GNA)=0. Hence 2 ¢ A", O

Example 3.17. We know that m“ = &, which means A— A" is a nonessen-
tial set, as long as the p-closure is a strong essential closure. But A" — A can be
an essential set, meaning it can be large with respect to the submeasure pu.

To see this, take p = Aq, the 1-dimensional Lebesgue measure on [0, 1], and
take the set A = [0, 1] — C, where C' is a positive Lebesgue measure Cantor set on
[0,1]. (For more information on positive Lebesgue measure Cantor sets, see [1].)
Then, for each z € [0, 1] and G € DN(z), GN A contains a nonempty open interval.
Hence A\ (G N A) > 0. Therefore, M= [0,1]. Thus

AM —A=10,1-A=C,

which is of positive Lebesgue measure. By Theorem 3.10, AM — A is essential

with respect to ;.
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3.2 Applications

In this section, we demonstrate some of the applications of submeasure closures,
especially the study of supports of measures and the notion of essential supports

of functions.

3.2.1 Supports of measures

The support of a submeasure can be defined analogous to the definition of the

support of a measure.

Definition 3.18. Let (X, 7,9, 1) be a topological submeasure space. Then the
support of u, denoted by supp u, is defined to be the complement of the union of
all open sets G such that u(G) = 0.

Example 3.19. Consider the real line R equipped with the discrete topology 7
and the o-algebra P(R). Define a measure p on (R, 7, P(R)) by pu(A) =0 if A is
countable and p(A) = oo otherwise. Observe that each singleton is an open set of
p-measure zero. Hence supp u = &. Consequently, u((supp p)¢) = oo. So, there

is a measure whose complement of the support is of positive measure.

Proposition 3.20. Assume that (X, 7,9, 1) is either a hereditarily Lindeldf sub-

measure space or an inner reqular measure space. Then

pu((supp 1)) = 0.

Proof. If the space is a hereditarily Lindelof submeasure space, then for each x €
(supp )¢, there exists G, € 91(x) such that u(G,) = 0. Therefore, {G}re(supp )
is an open cover of (supp )¢, which is Lindel6f. Thus there is a countable subcover:

{G1,Gs,...}. Then
p((supp 1)) < iN(Gi) =0.

If the space is an inner regular space. Consider a compact set K C (supp u)c.

For each x € K, since = ¢ supp u, there exists G, € M(z) such that u(G,) = 0.
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Therefore, {G;}.ex is an open cover of K, which is compact. Thus there is a

finite subcover: {Gy,...,G,}. Then
p(K) <> u(Gy) =0.
i=1
By the inner regularity, p((supp p)€) = 0. O

An essential closure can be viewed as a tool to eliminate the nonessential part
and collect the essential part of a set. In the case of submeasure closures, one can
expect that eliminating the nonessential part of the space should give the support

of that submeasure.

Theorem 3.21. Let (X, 7,9, 1) be a topological submeasure space. Then we have

supp it = B"

for any M-measurable set B such that u(B°) = 0. In particular, if the u-closure

1s an essential closure, then supp p is p-essentially closed.

Proof. 1f x ¢ supp u, then there exists G € (z) such that pu(G) = 0. Then
(G N B) = 0 for any M-measurable set B. Hence - ¢ B". Conversely, if 2 ¢ B",
then there exists G € DM(z) such that u(G' N B) = 0. Since u(B¢) = 0, we have
w(G) < u(GN B) + u(GnN B¢ = 0. Therefore, x ¢ supp p. O

The following result gives a characterization of u-essentially closed sets on a
hereditarily Lindel6f measure space. Notice the repeated use of Proposition 3.20

in the proof.

Theorem 3.22. Suppose (X, 7,9, 1) is a hereditarily Lindeldf measure space.
Then a set A € M is p-essentially closed if and only if there is a measure v such

that v < p and suppv = A.

Proof. Let A be a p-essentially closed set. For each 9-measurable set B, define
v(B) = u(ANB). Observe that v < p. It is left to show that suppr = A. On one
hand, observe that A is closed and v(A°) = pu(A N A°) = 0. Hence supprv C A.
On the other hand, observe that



44

w((suppv)N A) = v((suppr)®) = 0.

Suppose (suppr)°N A # @. Let x € (suppr)° N A. Then (suppr)® € MN(z)
and z € A = A", Therefore, pu((suppr)® N A) > 0, a contradiction. Hence
(suppr)°N A = @. In other words, A C supp v.

Conversely, it suffices to show that suppv C suppv*. If z ¢ suppv*, then

there exists G € N(x), u(G Nsuppr) = 0. By absolute continuity, we have
v(G) < v(GNsuppv) + v((supprv)®) = 0.
So = ¢ suppv. Hence supp v is u-essentially closed. [l

If we instead assume that the space is an inner regular measure space, we

obtain a result similar to Theorem 3.22. But first, we need the following lemma.

Lemma 3.23. Let p be an inner reqular measure on a Hausdorff measurable space

and let A be measurable. Define, for each measurable set B,
pa(B) = p(AN B).
Then pa s inner reqular and pa << [
Proof. Let B be a measurable set. Observe that
14(B) = (AN B)

> sup{u(ANK): K is compact and K C B}

= sup{pa(K): K is compact and K C B}.

On the other hand, if K is a compact set such that K C AN B, then K C B and
(AN K) = pu(K). Hence

pa(B) = p(AN B)
= sup{pu(K): K is compact and K C AN B}
<sup{pu(ANK): K is compact and K C B}

= sup{pa(K): K is compact and K C B}.

Therefore, 14 is inner regular. Moreover, it is clear that ps < p. O



45

The above result is probably known to experts. But to the best of our knowl-
edge, no proof has been given. So we give one for completeness of this thesis.

The following corollary can be proved in the same manner as the proof of
Theorem 3.22. Notice the difference in the inner regularity of the measures p and

v compared to the ones in Theorem 3.22.

Corollary 3.24. Suppose (X, 7,9, p) is an inner regular measure space. Then a
set A € M 1s p-essentially closed if and only if there is an inner reqular measure

v such that v < p and supprv = A.

Proof. For each 9t-measurable set B, define v(B) = (AN B). By Lemma 3.23,
v is inner regular and v < p. It is left to show that suppr = A. On one hand,
observe that A is closed and v(A°) = u(A N A°) = 0. Hence suppr C A. On the
other hand, observe that

p((suppv)® N A) = v((suppv)?) = 0.
Suppose (suppr)*N A # @. Let z € (suppr)°N A. Then (suppr)® € N(x)
and z € A = A", Therefore, u((suppr)® N A) > 0, a contradiction. Hence
(suppr)°N A = &. In other words, A C supp v.
Conversely, it suffices to show that supprv C suppr*. If x ¢ suppr*, then

there exists G € MN(z), u(G Nsuppr) = 0. By absolute continuity,
v(G) < v(GNsuppr)+ v((suppr)) = 0.
So = ¢ suppv. Hence supp v is u-essentially closed. 0

Measures v and p on a common measurable space are said to be singular,
denoted by v L pu, if there is a measurable partition {A, B} of the space such
that u(A) = 0 while v(B) = 0. Recall that a o-finite measure can be uniquely
decomposed, with respect to another o-finite measure on a common measurable
space, into two parts: absolutely continuous part and singular part. This result

is known as Lebesgue’s decomposition theorem (see [20, page 278]).



46

Theorem 3.25 (Lebesgue’s decomposition theorem). For any o-finite measures
uoand v on a common measurable space, there exist unique o-finite measures v,

and vy such that
(i) v =v,+ s,
(il) ve < i,

(i) ws L p.

Consider the Lebesgue decomposition of a o-finite measure with respect to
an underlying o-finite measure on a hereditarily Lindelof measurable space. If
the support of the singular part is negligible, then the support of the absolutely
continuous part can be determined via the submeasure closure induced by the

underlying measure.

Theorem 3.26. Assume that p and n are o-finite measures on a hereditarily

Lindelof measurable space with the Lebesgue decomposition n = n,+ns with respect

to p. If p(suppns) = 0, then suppn, = Suppn*.

Proof. First of all, we claim that suppn = suppn, Usuppn,. Note that this holds

in general, not just for the Lebesgue decomposition. Since n((suppn)¢) = 0, we
have 7q((supp 7)) = 0 = ns((suppn)°). Hence

(suppn)® € (suppna)° N (suppns)*.
On the other hand, if z ¢ suppn, U supp 7, then there exist G, Gy € M(z) such
that 7,(G1) = 0 = n5(G2). Choose G = G1NG2 € N(x). Then n,(G) = 0 = ns(G).
Thus 7(G) = 0. Therefore, = ¢ suppn. We conclude that

supp n = supp 7, U supp ;.

By Theorem 3.10, since u(suppns) = 0, we have supp7;# = &. Therefore,

suppn* = supp 7, Usupp 7, = supp 7, *.

Thus supp n# = supp 7, since supp 7, is p-essentially closed by Theorem 3.22 []
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Example 3.27. Suppose i and n are o-finite measures on a hereditarily Lindelof
measurable space with the Lebesgue decomposition n = n, +ns with respect to pu.

If p(suppn) = 0, then

p(suppns) < p(suppn) =0

since suppns C suppn. By Theorems 3.10 and 3.26, suppn, = Suppn* = .
Thus 71, = 0, which implies that 7 is singular with respect to .

3.2.2 Essential supports of functions

In this section, we introduce the notion of essential supports of functions, which is
partly motivated by the study of supports of Radon-Nikodym derivatives. We are
particularly interested in the study of Radon-Nikodym derivatives via techniques
from geometric measure theory.

6 v and p on a Euclidean space R" (equipped

For any pair of Radon measures
with a o-algebra containing the Borel sets) such that v < p, it was shown in [17,
Theorem 2.12] that the function

Dile) = lim 25
is defined for p-almost everywhere on R™ and coincides p-almost everywhere with
the Radon-Nikodym derivative of v with respect to p.

Similarly, for any locally finite measure v defined on the Borel o-algebra over
R™ such that v < A, it was shown in [3, Theorem 2.3.8] that the function
is defined for Lebesgue almost everywhere on R™ and coincides Lebesgue almost
everywhere with the Radon-Nikodym derivative of v with respect to \,,.

From the two examples above, we propose a more general definition for a

o-finite measure to be differentiable with respect to another o-finite measure as

follows.

6See Definition 1.5 and Corollary 1.11 in Mattila’s book [17].
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Definition 3.28. Let v and p be o-finite measures on a metric measurable space”

(X,d,9). We say that v is differentiable with respect to p if v < p and

. v(BEo)
e—0t+ p(B(z,€))

is defined for p-almost everywhere and coincides p-almost everywhere with the

Radon-Nikodym derivative of v with respect to u.

Proposition 3.29. Let v and p be o-finite measures on a metric measurable space

such that v s differentiable with respect to . Then

supp D, ,, = supp v.

Proof. If x ¢ suppwv, then there exists € > 0 such that v(B(z,¢)) = 0. Hence
D, ,(z) =0. So we have {z: D, (x) # 0} C supp v. Therefore,

supp D,,,, € suppv.

On the other hand, if « ¢ supp D, ,, then there is G € 9(z) such that D, , =0
on G. Observe that v(G) = / D, dp=0. Thus = ¢ suppv. Hence
&

suppv C supp D, ;.

Therefore, supp D,,,, = supp v. O]

Radon-Nikodym derivatives are unique up to sets of measure zero. As a result,
the notion of topological supports fails to detect essential parts of such functions.

We demonstrate an extreme case in the following example.

Example 3.30. Consider the trivial measure v = 0 on the Lebesgue o-algebra
L(R), which is absolutely continuous with respect to the 1-dimensional Lebesgue
measure. Observe that both f = 0 and g = xg are the Radon-Nikodym derivative
of v with respect to \;. However, supp f = & while supp g = R.

In the above example, observe that even though Q is negligible since it has

Lebesgue measure zero, it is dense in R. This is the cause of the problem.

"A metric measurable space is a metric space equipped with a o-algebra con-
taining the Borel sets.
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Definition 3.31. Let f be an extended real-valued 9-measurable function on a

topological submeasure space (X, 7,9, ). Define the essential support of f with

respect to u by

ess supp, f = {r € X: f(x) # 0+

From the definition, one can see that the essential support of a function is
always contained in the topological support of that function. An extreme case is
presented in the following example.

Similar to the notion of almost everywhere for measures, for the case of sub-

measures, we say that a property holds almost everywhere if the set of elements

for which the property does not hold is a submeasure zero set.

Proposition 3.32. Let [ and g be extended real-valued 9M-measurable functions
on a topological submeasure space (X, 7,9, u). If f and g are equal p-almost

everywhere, then

ess supp,, f = ess supp,, g.

Proof. Since f = g p-almost everywhere, we have

p({z € X g(x) #0}) = u({r € X: f(x) #0}),

which implies that the essential supports of f and g coincide. O
Theorem 3.33. Assume that (X, 7,9, ) is either a hereditarily Lindeldf sub-
measure space or an inner reqular measure space. For each extended real-valued
M-measurable function f, let [f], denote the class of extended real-valued 9-

measurable functions on X which are equal to f p-almost everywhere. Then there

exists fo € [f], such that

supp fo = ess supp,, f

which 1s p-essentially closed.
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Proof. Define fy to be the function which coincides with f on ess supp,, f and

vanishes everywhere else. Since the p-closure is a strong essential closure,

{zreX :f(a)# fol)} = {z € X : f(x) # 0} — ess supp,, f
—{reX : f2)#0}—{reX : fx) £0}"

is p-nonessential. Hence pu({x € X : f(x) # fo(x)}) = 0 by Theorem 3.10. Thus
f and fy are equal p-almost everywhere, i.e., fy € [f],. By Proposition 3.32, we
have ess supp,, f = ess supp,, fo-

If fo(x) # 0, then = € ess supp,, f by construction. Therefore, we have that
{r € X: fo(z) # 0} C ess supp,, f. Hence

supp fo C ess supp,, [ = ess supp,, fo C supp fo.

Thus supp fo = ess supp,, fo = ess supp,, /. In particular, supp fy is p-essentially
closed. []

Proposition 3.34. Let v and p be o-finite measures on (X, 7,9M) with v <
and let Zl_Z denote the Radon-Nikodym derivative. Then

ess supp,, g—l’: = supp V.

Proof. Let f denote j—:. If = ¢ suppv, then there exists G € 9(x) such that
v(G) = 0. Thus f = 0 p-almost everywhere on G. Therefore, we have that
w(GN{r € X: f(x) # 0}) = 0. Hence x ¢ ess supp, f. Conversely, if v ¢
ess supp,, f, then x ¢ {x € X: f(r) # 0}". Therefore, there exists G € N(x)
such that u(GN{z € X: f(x) #0}) = 0. Thus f = 0 p-almost everywhere on G.

Hence v(G) = 0. So = ¢ suppv. O

Corollary 3.35. Let v and p be o-finite measures on a metric measurable space

such that v is differentiable with respect to . Then
ess supp,, D, , = supp D, .

Proof. This follows directly from Proposition 3.29 and Proposition 3.34. [
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Example 3.36. There exists an absolutely continuous measure v < p with full
support such that p is not absolutely continuous with respect to v. To see this,
let 11 be the 1-dimensional Lebesgue measure on [0, 1] and let v be a measure on
[0, 1] defined, for each Lebesgue measurable set B C [0, 1], by v(B) = A\ (B N A)
where A is a positive Lebesgue measure Cantor set on [0, 1]. Obviously, we have

v < A1 by construction. Moreover, by Proposition 3.34,
SUpp ¥ = ess suppy, Xac = AN = [0, 1].

Therefore, v has full support. However, v(A) = A;(AN A°) = 0 while A\;(A4) > 0.

So A is not absolutely continuous with respect to v.

Example 3.37. Let (X, 7,90, 1) be a hereditarily Lindeléf measure space and let

f be an extended real-valued 91-measurable function. We already know that

/Xf d /Suppff .

For each = ¢ ess supp,, f, there is G, € M(x) with u(G,N{f # 0}) = 0. Then the
collection {Gy }ueess supp,, f)° 1S an open cover of (ess supp,, f)°. Let {G1,Go, ...}
be a countable subcover. By the countable subadditivity of measures, we can

show that p((ess supp, f)°N{f # 0}) = 0. Thus
/fdM:/ fduz/ Jo dp
X ess supp,, f supp fo
where fj is a representative of the class [f], in Theorem 3.33. Also note that

supp fo = ess supp,, f C supp f.

In this case, we see that f; is indeed a good representative of the class [f],.

3.3 Existing and related notions

There are various notions related to the notion of essential closures. In this section,
we pick a few of them to discuss in details, most of which are related to submeasure

closures.
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3.3.1 Lebesgue closures

Recall that the essential closure introduced in [13], which we call the Lebesgue

closure to avoid confusion, of a Lebesgue measurable set A C R is defined by

A°={zeR:foralle >0, \((z —e,x+€e)NA) >0}

It is easy to see that the Lebesgue closure coincides with the Ai-closure on the
Lebesgue o-algebra. Also recall in [13] the definition of the Lebesgue closure
defined on S!, the unit circle centered at the origin in R2.

According to Theorem 265F in Fremlin’s book [12], we have that the pushfor-
ward of the 1-dimensional Lebesgue measure on S! (with respect to the canonical
map, 6 — €) coincides with the 1-dimensional Hausdorff measure on S'. As a
consequence, the Lebesgue closure coincides with the H!-closure on the induced

o-algebra on S?.

3.3.2 Lebesgue density closures

To avoid confusion, the essential closures cl* in Buczolich and Pfeffer’s work [4]

and in Fremlin’s book [11], defined for each Lebesgue measurable set A C R™ by

_ M(B(x,e) N A)
cl"A={x €R": limsu - > 0},
{ e—>0+p )\n(B<x7 6)) }

will be called Lebesgue density closures. Note that Lebesgue density closures fail

to satisfy at least the first property of essential closures.
For each A,-density closure cl* on the Lebesgue o-algebra L(R"), define the
modified A,-density closure of A € L(R") by A = cI* A. As a consequence of

taking the topological closure of cl* A, the modified \,-density closure is forced
to satisfy the first property of essential closures. The question is whether the
modified \,-density closure satisfies the other three properties, which makes it
an essential closure. Surprisingly, it can be shown that the modified \,-density
closure is, in fact, the \,-closure defined on £(R").

First, we show that the modified \,-density closure and the \,-closure coincide

on the Borel o-algebra B(R"™). Let A C R™ be Borel measurable. For each Borel
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measurable set B C R"™, define A4(B) = \,(B N A). It is clear that A4 is o-finite
and Ay < A, on the Borel g-algebra. According to Theorem 2.3.8 in Ash’s book

[3], A4 is differentiable with respect to A,. As a result,

o Aa(B(x,€)) — Jimsup A (B(x,€) N A)
0+ A\ (B(x,€)) ot Aa(B(z,€))

defines the Radon-Nikodym derivative of A4 with respect to A,,. By Theorem 3.21
and Proposition 3.29, we have

~ = —A

A=cl"* A=supp Dy, ., =suppis = A"

Moreover, it is straightforward to verify that AM =A™ Hence A = A™ for each
Borel measurable set A C R™.

Finally, we extend the result to the Lebesgue o-algebra L(R™). Let A C R" be
Lebesgue measurable. There is a Borel measurable set B C R” such that A C B
and A\, (B — A) = 0. According to Lemma 475C in Fremlin’s book [11], cl® is

distributive over finite unions and cl*(A) = @ if A\,(A4) = 0. As a result,

c"(A) = cI*(A) Ul (B — A) = cl*(B).

Similarly, =B Therefore, A = cI*(A) = cI*(B) = B = B =A™ for each

Lebesgue measurable set A C R"™.

3.3.3 Essential range

Recall the definition of the essential range of a complex-valued M-measurable

function f: (X,9M, u) — C, which is defined to be the set
S={ze€C: p({r e X: |f(z) — 2| <€}) >0 for all € > 0}.

Let py: Be — [0, 00] be the pushforward of p, i.e., pus(B) = p(f~1(B)) for each

Borel measurable set B. Then
S={z2€C: usp(B(z,€)>0foralle>0} =C".

Consequently, by Theorem 3.21, the essential range of f is the support of py.
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3.3.4 Prevalence

Prevalence is a measure-theoretic approach to define what it means for a state-
ment to hold almost everywhere in a possibly infinite-dimensional complete metric
vector space. It was proved by Hunt et al. in [15] that the notion of prevalence ex-
tends that of Lebesgue almost everywhere in finite-dimensional Euclidean spaces.

It is well-known that there is no nontrivial translation-invariant measure in
infinite-dimensional spaces. So the question is whether we can find something
weaker, e.g., a nontrivial translation-invariant submeasure whose submeasure zero
sets are exactly the shy sets, i.e., the complements of the prevalent sets. Via the
notion of prevalence and the theory of essential closures, such a submeasure can
be constructed. Let us recall some basic properties of shy sets derived in [15]. Let

A Ay, Ay, ... be shy sets and let v be a vector. Then the following hold:
(i) A+ v is shy,

(ii) B € A implies B is shy,

(iii) ] An is shy.

n=1
Observe that, with a suitable underlying o-algebra, the collection of shy sets
satisfies the conditions in Definition 2.20. In the sequel, let V' be a hereditarily

Lindelof complete metric vector space.

Theorem 3.38. There exists a finite nontrivial translation-invariant submeasure
on V' whose submeasure zero sets are exactly the shy sets. Moreover, the induced

submeasure closure commutes with the translations.

Proof. We call the g-algebra generated by the open subsets and the shy subsets
of V' the prevalence g-algebra, denoted by L£(V'). According to Hunt et al., the

collection of shy sets on V satisfies the conditions in Definition 2.20 with respect
to L(V). By Theorem 2.22, there exists a unique o-nonessential strong essential
closure whose collection of nonessential sets is exactly the collection of shy sets.

We call the induced essential closure the prevalence closure.
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By Theorem 3.13, the prevalence closure induces a submeasure on L(V'). Note
that an induced submeasure is not unique. We call such a submeasure a prevalence
submeasure. Moreover, by Theorem 3.10, the collection of nonessential sets, which
is the collection of shy sets, is exactly the collection of prevalence submeasure zero
sets. In addition, it is worth mentioning that the vector space V is essential and
essentially closed with respect to the prevalence closure. This is due to the fact
that nonempty open sets are not shy, hence are of positive prevalence submeasure.

To conclude, we have a prevalence submeasure on L£(V') whose prevalence
submeasure zero sets are exactly the shy sets on V. Moreover, it is straightforward
to verify that the prevalence closure commutes with the translations. However, a
prevalence submeasure is generally not translation-invariant. Nevertheless, there
is a special prevalence submeasure which is translation-invariant.

Recall the proof of Theorem 3.13, we call the normalized submeasure obtained

from the prevalence closure the normalized prevalence submeasure, denoted by

fp. For each vector v € V', p,,(A+v) = 0 if and only if p,(A)=0 by the definition

of u,. Since p, assumes the value of either 0 or 1, i, is translation-invariant. [



CHAPTER IV
STOCHASTIC CLOSURES

We begin this chapter with a short introduction containing a handful of notions
and results with which mathematicians outside the field are probably unfamiliar.
Detailed explanations shall be given along the way as we proceed.

It is known that the class of doubly stochastic measures on [0, 1)? fully describes
the class of joint distributions of two random variables uniformly distributed on
0, 1] (see [19]). For decades, the supports of doubly stochastic measures have been
extensively studied by many mathematicians because the support of a doubly
stochastic measure tells us where the mass of the measure is concentrated. A
handful of necessary conditions and sufficient conditions for a set to be the support
of a doubly stochastic measure have been obtained (see, for example, [14, 24, 25]).

Analogously, it is also known that the class of n-stochastic measures on [0, 1]"
fully describes the class of joint distributions of n random variables uniformly
distributed on [0, 1]. In this chapter, we study the supports of multivariate copu-
las, equivalently the supports of multivariate stochastic measures, from a different
approach. We introduce the notion of stochastic closures, which are submeasure
closures on a hereditarily Lindelof space [0, 1], hence strong and o-nonessential.
We obtain geometric necessary conditions via the notion of essential closedness.
Moreover, in some special cases, it turns out that an explicit formula of the sup-
port can be derived in terms of stochastic closures. One such case is the case
of doubly stochastic measures whose underlying continuous random variables are
mutually completely dependent, i.e., each one of them is a Borel measurable func-
tion of the other almost surely!. In that case, if we further assume that the

underlying random variables are uniformly distributed on [0, 1], then there is a

LA property is said to hold almost surely if the set on which the property holds
has probability one.
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measure-preserving bijective Borel measurable function connecting the two ran-
dom variables. It has been observed that the graph of such function and the
support of the corresponding doubly stochastic measure are closely related. For
instance, it has been shown in [2] that the mass of a doubly stochastic mea-
sure v, which is a Borel probability measure, is concentrated on the graph of a
corresponding function, i.e., v(gr f) = 1. In addition to deriving the geometric
necessary conditions, we also introduce a notion of complete dependence in higher
dimensions and study the supports of multivariate stochastic measures whose un-
derlying continuous random variables are completely dependent.

To study multivariate stochastic measures, it is more convenient to use the
notion of multivariate copulas. It is well-known that there is a one-to-one corre-
spondence between the collection of n-stochastic measures and the collection of
n-copulas. Among them, doubly stochastic measures and copulas (i.e., 2-copulas)
are most studied. More information on copulas and multivariate copulas can be

found in Nelsen’s book [19].

Definition 4.1. For an integer n > 2, an n-copula is a function C': [0, 1]* — [0, 1]

satisfying
(1) C’(ul,...,ui,l,O,uiH,...,un) :O,
(ii) C(1,...,1,u,1,...,1) = u, and

(iii) C is n-increasing, i.e., for each hyperrectangle B = x™_, [x;, ;] C [0, 1]",

Ve(B)= > (-)"PC(2) >0,

zexP_{ziyi}

where N(z) denotes the size of the set {k: 2z, = z1}.
Example 4.2. Given a copula C, we have
Ve([zy, za] X [y1,y2]) = C(x2,42) — C(22,51) — C(21,92) + C(w1,91) > 0

foreach 0 <z <o <land 0 <y <yp <1
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The set function Vi is a Borel probability measure on [0, 1]" and is often

called C-volume. In fact, Vi is an n-stochastic measure, i.e., it pushes forward to

the 1-dimensional Lebesgue measure on each axis: for each Borel measurable set

A C[0,1] and for each kK =0,1,...,n— 1,
Ve([0,1]F x A x [0, 1]"7F1) = A\ (A).
Moreover, the support of C' is defined to be the support of the measure V.

Remark 4.3. An n-copula C' induces an n-stochastic measure on [0,1]" via the

C-volume. Conversely, given an n-stochastic measure v on [0,1]", the function

C:[0,1]" — [0, 1] defined by
C(x1, .. .yxn) = v([0,21] X -+ % [0, 2,))
s an n-copula.

The support of a copula C' can be used to compute values of the copula at
some, if not all, points (z,y) € [0,1}2. We demonstrate such a technique in the

following example.

Example 4.4 ([21], Example 1.5). Let C' be a copula whose support is shown in
the figure below.

Figure 4.1: the support of C'

For any point (zg,yo) in the upper left area, let A denote the rectangle whose
vertices are (0, o), (Zo,%0), (o, 1) and (0, 1) and let B denote the rectangle whose
vertices are (0,0), (zo,0), (20, y0) and (0,yo). Then Vi(A) = 0 since it does not

intersect the support of C. Moreover,
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Ve(AU B) = C(xg, 1) — C(x,0) — C(0,1) + C(0,0) = x.
Then, Vo (B) = Ve(AU B) — Vie(A) = xy. Hence,
C(wo, yo) = Ve (B) + C(0,y0) + C (o, 0) — C(0,0) = 0.
The values of C' at the points in the lower right area can be computed similarly.

A multivariate copula can be viewed as a joint distribution of uniform [0, 1]
random variables. This fact is shown in one of the most important theorems in

copula theory.

Theorem 4.5 (Sklar’s theorem). Let Xi,..., X, be random variables on a com-
mon probability space. Let H be the joint distribution and F; be the marginal
distribution of X;. Then there is an n-copula C' such that

H(zy,...xp) = C(Fi(x1),..., Fy(z,)).
Moreover, if Xy,..., X, are continuous, C' is unique and is denoted by Cx,,  x,-

In theoretical practices, the most important copulas are the Fréchet-Hoeffding
upper and lower bounds and the independence copula. Their formulas are given,

respectively, by

Ms(u,v) = min(u, v),
Wa(u,v) = max(u +v —1,0),

s (u, v) = uv.

These copulas represent comonotonicity, countermonotonicity and independence,
respectively, between the two random variables. The support of M, is the set
{(z,z): x € [0,1]}, the support of W is the set {(z,1—2z): x € [0, 1]}, and II, has

full support. In higher dimensions, these three formulas are defined analogously:

M, (uy, ..., u,) = min(ug, ..., uy,),
Wi (ug, ..., u,) = max(ug + -+ -+ u, —n+ 1,0),

I (ugy .y ty) = U .. Uy
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Note that W, is no longer an n-copula unless n = 2 while M,, and 11,, are n-copulas
for each integer n > 2.

Another important class of copulas is known as the class of shuffles of M.
A shuffle of M, can be viewed as a special pushforward of the doubly stochastic
measure induced by the copula M,. This way of defining shuffies of M5 involves
measure-theoretic techniques, which makes it complicated. So, in the following
definition, we present a simpler way of defining shuffies of M. More information
on shuffles of copulas can be found in, e.g., Durante et al.’s work [7] and the first

author et al.’s work [23].

Definition 4.6 ([21], Definition 1.8). A copula C' is a shuffle of M, if there exist

a positive integer n, partitions
0:so<51<--~<sn:1and0:to<t1<-~~<tn:1

of [0,1], and a permutation o on the set {1,2,...,n} such that each rectangle
(8i—1,8i) X (to@i)-1, toi)) is a square of C-volume s; — s,_; and its intersection with

the support of C'is one of the diagonals of the square.

Figure 4.2: the support of a shuffle of My where o = (1 3 2)

Remark 4.7. Because of a special characteristic of the supports of shuffles of Mo,
each of them is uniquely determined by its support via the technique demonstrated

i Example 4.4.
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4.1 Multivariate complete dependence

Multivariate dependence structures are much more complex than 2-dimensional
dependence structures. In this section, we introduce a special kind of complete
dependence in higher dimensions where one set of random variables is completely
dependent on another set of random variables. This kind of dependence structure
often occurs in practice, such as the case where a set of random variables is used

to predict another set of random variables.

Definition 4.8. Given two nonempty finite sets A and B of random variables on

a common probability space, we say that A is completely dependent on B (viewed

as a random vector) if, for every X € A, there exists a Borel measurable function

f such that X = f(B) almost surely.

We would like to mention that there is a similar notion of multivariate complete
dependence introduced by Tasena and Dhompongsa in [26, Definition 2.2]. In their

work, a random vector (X7,...,X,,) is said to be completely dependent on the

i-th coordinate if each X; is a Borel measurable function of X; for each j # i.
Compared to our definition of multivariate complete dependence, their definition
means exactly that {Xy,..., X;-1, Xj41,..., X} is completely dependent on X;.

So, our notion of multivariate complete dependence is more general.

Definition 4.9. A bipartite dependence n-copula C' is the n-copula of continu-

ous random variables Xi, ..., X,, where the continuous random variables can be

partitioned into two sets so that one set is completely dependent on the other.

In two dimensions, a bipartite dependence copula is simply a copula whose
underlying random variables are completely dependent, i.e., one random variable
is a Borel measurable function of the other almost surely. We observe that the
support of such copula and the graph of a corresponding Borel measurable function
are closely related. The following example is an attempt to compute the support
of a complete dependence copula from the graph of a Borel measurable function

connecting the underlying random variables.
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Example 4.10. Let f: [0,1] — [0,1] be such that f(z) = «x if x is irrational and
f(z) =1 —x otherwise. Let U be a uniform [0, 1] random variable and V' = f(U)
almost surely. So V' is also a uniform [0, 1] random variable since f is measure-
preserving. Notice that the topological closure of the graph of f, shown in Figure
4.3, is the union of the sets {(z,z): x € [0,1]} and {(z,1 — x): z € [0,1]}. But
since V' = f(U) = U almost surely, the copula of the random vector (U,V) is
the 2-dimensional Fréchet-Hoeffding upper bound M, whose support, shown in
Figure 4.3, is just the set {(x,z): z € [0,1]}. Therefore, the topological closure
is not a suitable type of essential closure to use in this case. The cause of this is
the thin part in the graph of f, namely, the set {(z,1—z): x € Q}. Even though
{(z,1—x): x € Q} is negligible since Q@ has Lebesgue measure zero, it is dense
in {(x,1 —x): z €[0,1]}. This is a hindrance to the effectiveness of applying the
topological closure to the graph of f.

Figure 4.3: the support of Cyy and the topological closure of the graph of f

4.2 Supports of multivariate copulas

We know very little about supports of multivariate copulas compared to what we
know about supports of bivariate copulas. One reason is the lack of tools to study
them. A suitable tool to study supports of multivariate copulas (or equivalently,
supports of multivariate stochastic measures) should be constructed according to
the nature of multivariate stochastic measures, i.e., the nature of pushing forward

to 1-dimensional Lebesgue measure on each axis.
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Definition 4.11. For each integers 1 < d < n, define an outer measure S; on

P([0,1]™) as follows: for each A C [0, 1],
Sa(A) =" Ny(mw(A)),
w

where the sum is taken over all d-dimensional standard subspaces? W of R".
Define the d-stochastic closure to be the submeasure closure on P([0, 1]*) induced

by Sd.

Remark 4.12. FEquivalently, © € A% if and only if, for each G € N(x), there
is a d-dimensional standard subspace W such that \j(mw (G N A)) > 0. Moreover,
since each stochastic closure is a submeasure closure on a Fuclidean space, it is

both strong and o-nonessential.

Remark 4.13. For each integers 1 < e < d, the d-stochastic closure is finer than

or equal to the e-stochastic closure, i.e., A \ CA & for each set A.
Theorem 4.14. For every n-copula C, supp C' is 1-stochastic essentially closed.

Proof. For any Borel set A C [0, 1]™, write
Ve(A) = Ve(Ansupp C) + Ve (AN (supp C)°).

Observe that Vo (A N (supp C)¢) < Ve((supp C)¢) = 0. Consequently, we have
Ve(A) = Ve(ANsupp O).

Since supp C' is closed, it follows that W& C suppC = suppC. It is
left to show that supp C' C W&. By the definition of stochastic closures, if
T ¢ W&, then there exists G € M(z) such that A\;(m (G NsuppC)) = 0.

Since V¢ is n-stochastic,

Vo(G) = V(G nsupp C)
< Ve(m (G Nsupp C) x [0,1]"71)
= A (m (G NsuppC)) = 0.

So = ¢ supp C. O

2A standard subspace is a subspace of a Euclidean space spanned by a set of
standard basis elements.
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Proposition 4.15. Let C' be an n-copula. Then, for any open set G intersecting
the support of C, the intersection cannot be a subset of an (n — 1)-dimensional

hyperplane perpendicular to an axis.

Proof. Let W C R" be an (n — 1)-dimensional hyperplane perpendicular to an
axis. It suffices to show that W N [0,1]" has Vo-measure zero. Suppose W is

perpendicular to the i-th axis at a point x € [0, 1]. Since Vi is n-stochastic,
Ve(W N [0,1]") = \({z}) = 0.
Therefore, any Borel subset of W inside [0, 1]" also has Vi-measure zero. O

Theorem 4.14 and Proposition 4.15 give geometric necessary conditions for a
set to be the support of a multivariate copula. However, these necessary conditions
are not sufficient. For example, a hairpin-like set is 1-stochastic essentially closed

but not always the support of a copula as mentioned in [25].

Example 4.16. As a consequence of Proposition 4.15, the set shown in Figure 4.4
cannot be the support of a copula because it contains a line segment perpendicular

to an axis.

Figure 4.4: a set that is not the support of a copula

In the next section, we explore a special case in which it is possible to explicitly

determine the supports via stochastic closures.
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4.3 Supports of bipartite dependence multivariate copulas

Definition 4.17. Let A C [0, 1]" and ¢ be a permutation on {1,2,...,n}. Define

the coordinate permutation of A with respect to o by

AU = {(:Uo(l),xg(g), e ,:Eg(n)): (xl,asg, - ,xn) € A}

Proposition 4.18. Let o be a permutation on {1,2,....n}. Let C' be the n-
copula of uniform [0,1] random variables X1, ..., X, and let C, be the n-copula

of uniform [0, 1] random variables Xy, ..., Xo@m). Then supp Cy = (supp C),-.
Proof. Observe that, for each open set G C [0, 1],

Ve(G) = P((X,. .., Xn) € G)
= P((Xo1), - - - Xom)) € Go)

As a result, x € supp C if and only if z, € supp C,. O]

According to Proposition 4.18, in the case of bipartite dependence n-copulas,
we may rearrange the random variables so that, for some k, each random variable

X;, 5 € {k+1,...,n},is completely dependent on the random vector (X, ..., Xj).

Definition 4.19. A function F: [0, 1]" — [0, 1]™ with Borel coordinate functions

is said to have a Borel essential refinement if there is F*: [0,1]" — [0, 1]™ with

Borel coordinate functions such that each corresponding pair of coordinate func-

tions of F* and F are equal Lebesgue almost everywhere and, for any open set

G C R™™  the following holds:
A (Tw (G Ngr F*)) = 0 implies Ay (m;(G Ngr F*)) =0 for all j > n
where W) is the subspace spanned by the first n standard basis elements.

Remark 4.20. A function with Borel coordinate functions is Borel measurable.

Hence its graph is a Borel measurable set.
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The notion of Borel essential refinements is introduced in order to deal with

certain wild functions. An example of such functions is as follows.

Example 4.21. Let A denote the Cantor ternary set on [0, 1] and f: [0, 1] — [0, 1]
denote the Cantor function. Define g: [0,1] — [0, 1] by

g=1[f—f xae

Observe that g is Borel measurable and g = 0 Lebesgue almost everywhere but
the range of ¢ is of Lebesgue measure one. This is because f is constant on each
of the open intervals contained in A°. Roughly speaking, this is an example of
a function whose graph has a portion with negligible projection image on the

domain but non-negligible projection image on the codomain.

This type of wild function is a hindrance to the effectiveness of applying
stochastic closures to their graphs. Fortunately, the following theorem guarantees
that a function with Borel coordinate functions can always be Borel essentially

refined.

Theorem 4.22. Every function F: [0,1]" — [0, 1]™ with Borel coordinate func-

tions has a Borel essential refinement.

Proof. The idea is to redefine F on a set of Borel measure zero. Let W denote
the subspace spanned by the first n standard basis elements of R"™™. Let

V=V,

a€A

where the union is taken over all open sets V, such that \,(my, (Vo NegrF)) =0
while A\ (7;(VoNgr F)) > 0 for some j > n. By the Lindelof property of Euclidean
spaces, there exists a countable subcollection with the same union: {V;,V5,...}.
Then we have

An(mw, (VN gr F)) <> Aulmw, (Vi Ngr F)) = 0.

i=1
Thus there exists a Borel measure zero set B C R™ with 7y, (VNgr F) C B. Define

F*=F —F-xg, ie., F is redefined on B to be identically zero. Consequently,
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the coordinate functions of F* are Borel measurable and each corresponding pair
of coordinate functions of F* and F are equal almost everywhere.

Suppose there is an open set G € R"™™ with \,(mw,(G N grF*)) = 0 while
A (mj (G NgrF*)) > 0 for some j > n. Observe that the projection images
T, (G N grF) and mw, (G N gr F*) differ by a subset of B, which is of Borel
measure zero. Moreover, 7;(G N grF) contains 7;(G N gr F*) — {0} due to the
redefining. Thus

An(Twy (G N gr F)) = 0 while Ay (m;(G Ngr F)) > 0.
Hence G C V. This means that the points inside G N gr F have been redefined.

As a consequence, \;(m;(G N grF*)) = A\ ({0}) = 0, which is a contradiction.

Therefore, F* is a Borel essential refinement of F. O]

Remark 4.23. Our results often assume that the random variables are uniformly
distributed on [0,1]. This is by no means restrictive since, for given continuous
random variables Xi,..., X, each U; = F;(X;) is uniform on [0,1] for each i.

Moreover,

So, it suffices to study only uniform [0, 1] random variables.

In the following theorem, we derive an explicit formula of the support of a

bipartite dependence multivariate copula in terms of a stochastic closure.

Theorem 4.24. Let Uy, Us, ..., U,y be uniform [0,1] random variables and C
be their multivariate copula. Let U denote the random vector (Uy,Us, ..., U,).
Suppose that N, < Vo, < A if n > 2. If, for each i € {1,2,...,m}, U,y; is
completely dependent on the random vector U, i.e., there exist Borel measurable

functions f;: [0,1]™ — [0,1] such that U,.; = f;(U) almost surely, then

supp C' = gr F* Sn

where F* = (ff,..., ) is a Borel essential refinement of F = (f1,..., fm)-
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Proof. First of all, since ff = f; Lebesgue almost everywhere, f*(U) = f;(U)
almost surely. Hence C' = Cy r-(u). Let Wy be the subspace spanned by the
first » standard basis elements of R"*™. For a given open set G C R™ it is

straightforward to show that

Ve(G)

P((U,F*(U)) € G)

(U, F (U)) e GNngrF)

P
P(U € mw,(GNgrFr))

since (U, F*(U)) € gr F* almost surely. Moreover, since A, < Vo, < A, if n > 2,
we have

P(U € my,(GNgrF*)) >0 if and only if A\, (mw, (G NgrF*)) > 0.

Thus supp C C gr F* Sn

Conversely, let G C R"™™ be an open set such that A\, (my (G NgrF*)) > 0
for some n-dimensional standard subspace W. Then there exists j > n such that
A (m;(GNgrF*)) > 0. Consequently, A, (mw, (G NgrF*)) > 0 since F* is a Borel

essential refinement. We have previously shown in the proof that
Vo(G) > 0 if and only if A, (my, (G Ngr F*)) > 0.
Thus gr F* Sn Csupp C. O
Remark 4.25. In Theorem 4.24, if Uy, ..., U, are independent, then Cy 1is the
independence n-copula 11,,. Thus, for Borel measurable sets Ay, ..., A, C[0,1],
Vog(Ar x -+ x A,)=PUe€ A x---xA,)
=PU, € A)...PU, € A,)
=M(A1) ... M(A)
=M(A; X+ X Ap)
which implies that Vo, = Ay, t.e., Ay < Vo < Ay

Example 4.26. This example demonstrates a way to extract a transformation,
connecting the two uniform [0, 1] random variables, from the support of a shuffle

of MQ.
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Figure 4.5: the support of a shuffle of M,

Observe that the support of a shuffle of M, looks like the graph of a function.
In fact, removing a few points from the support of a shuffle of M, gives us the
graph of some function. This can be done in many ways. One way to do it is to
simply remove the rightmost point from each linear piece except the last piece.
One can see that the remaining set is the graph of a function whose explicit
formula can be derived. Then, by Theorem 4.24 and the fact that shuffles of
M, are uniquely determined by their supports, it ensures that we have the right
function since the 1-stochastic closure of the graph of that function is equal to the

support we started with.

Example 4.27. Write M3 = Cyyp for some uniform [0, 1] random variable U.
In this case, choose F = (idp1),idpq7). Thus M3y = Cy rw). Moreover, gr F is

1-stochastic essentially closed. Therefore,
supp My = gr F = {(z, 2, x): © € [0, 1]},

which is the main diagonal of the unit cube [0, 1]3. Similarly, supp M, is the main
diagonal of the hypercube [0,1]". Let us remark that even though this result is
intuitively known to experts, to the best of our knowledge, no rigorous proof has
ever been given. This example is probably the first.

Notice that we need to carefully choose a bipartition in order to apply Theorem
4.24. For example, we can view the last random variable as being completely
dependent on the first two. In this case, there are many functions which connect

them, e.g., fi(x,y) = x—;y, fo(z,y) = \/xy, etc. Certainly, we cannot apply the
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theorem and one reason is because the copula of the first two random variables is

M, whose induced measure is not absolutely continuous with respect to As.

4.4 Local Hausdorff dimension

We end this chapter with the notion of local Hausdorff dimension and the notion
of Hausdorff closures, which is yet another type of essential closure suitable for
the study of supports of multivariate copulas.

The Hausdorff dimension is a generalization of the notion of dimension of
vector spaces, i.e., the Hausdorff dimension of an n-dimensional inner product
space is equal to n. The Hausdorff dimension is defined, for all metric spaces, via
a class of outer measures called Hausdorff measures. Since Hausdorff measures are
outer measures, hence submeasures, they induce submeasure closures which we call
Hausdorff closures. In addition to the basic properties of submeasure closures, we
derive a connection between Hausdorff closures and the local Hausdorff dimension.
More details on Hausdorff measures and the Hausdorff dimension can be found in

Falconer’s book [8] and Fremlin’s book [12].

Definition 4.28. Let (X, d) be a metric space and let dimy denote the Hausdorff

dimension. Then A C X is said to have local Hausdorff dimension at least s if,

for every open set GG intersecting A, dimy(G N A) > s.

Let us remark that, in our research, it is not necessary to know the exact value
of the local Hausdorff dimension of a set. Knowing a lower bound of the local
Hausdorff dimension of the set is sufficient. This is why we use the above definition

instead of the one that gives the exact value of the local Hausdorff dimension.

Definition 4.29. Let (X, d) be a metric space and let 7; denote the topology
induced by the metric d. The s-Hausdorff closure is defined to be the submeasure

closure on (X, 74, P(X)) induced by H*.

Basic properties and most applications of Hausdorff closures are analogous

to the basic properties and applications of submeasure closures. Moreover, the
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aforementioned connection between Hausdorfl closures and the local Hausdorff

dimension is demonstrated in the following result.

Lemma 4.30. If A is s-Hausdorff essentially closed, then A has local Hausdorff

dimension at least s.

Proof. Suppose there exist z € A and G € N(x) such that dimg(G N A) < s.
Then H3(G N A) = 0, contradicting the fact that # € A = A " O

Theorem 4.31. Let v be an n-stochastic measure. Then supp v is 1-Hausdorff
essentially closed. In particular, suppv has local Hausdorff dimension at least

one.

Proof. 1t suffices to show that suppv C 'SWW. If x ¢ suppv ™', then there
exists G € M(x) such that H'(G Nsuppv) = 0. Note that v(G) = v(G Nsuppv).
If v(GNsuppr) > 0, then H'(m (G Nsuppr)) = A (m (G Nsuppr)) > 0. Thus
HY(G Nsuppr) > 0. So v(G) = v(GNsuppv) = 0. Hence z ¢ supp v. Therefore,
supp v = supp v H' Hence supp v is 1-Hausdorff essentially closed. Consequently,

by Lemma 4.30, supp v has local Hausdorff dimension at least one. [l

Example 4.32. In [9, Theorem 1|, Fredricks et al. show that for each value
s € (1,2), there is a copula with fractal support of Hausdorff dimension s. In fact,
there are copulas with supports of Hausdorff dimension one and two, which are
the 2-dimensional Fréchet-Hoeftding upper bound and the independence copula,
respectively. Moreover, Theorem 4.31 implies, in particular, that the support of a
copula has Hausdorff dimension at least one. Together with the result of Fredricks
et al., we can conclude that supports of copulas have Hausdorff dimension at least
one and for each possible value s € [1,2], there is a copula whose support is of

Hausdorff dimension s.
Lemma 4.33. Let A be a subset of a Euclidean space. Then

for any orthogonal projection myy .
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Proof. Tt suffices to show that for any d-cover {C,}aeca of the set A, there exists
a d-cover { Dy }aca of my (A) such that diam(D,,) < diam(C,), which implies that
He (mw (A)) < HP(A) for each s.

Let {C,}aen be a d-cover of A. Choose D, = my (Cy). It is clear that { Dy }aea

covers my (A). Moreover,
diam(D,,) < diam(C,) < ¢

since my is an orthogonal projection. Hence {D, }aca is a d-cover of my (A) O

As a consequence of Theorem 4.24, the support of a bipartite dependence
multivariate copula is essentially closed with respect to the associated stochastic
closure. The following result gives a geometric interpretation derived directly from
the essential closedness of the support of the bipartite dependence multivariate

copula.

Theorem 4.34. Let C' be the bipartite dependence multivariate copula defined in
Theorem 4.24. Then supp C' is an n-stochastic essentially closed set. In particular,

supp C' has local Hausdorff dimension at least n.

Proof. Since supp C can be written as an n-stochastic closure of some set, it is
n-stochastic essentially closed. Suppose there exists an open set G C R"*™ such
that G NsuppC # @ and dimy(G NsuppC) < n. By Lemma 4.33, for each
n-dimensional standard subspace W, dimy(my (G N supp C)) < n which implies
An(mw (G Nsupp C)) = 0. Consequently, Wnppc&l = @&, contradicting with
Lemma 2.15. 0
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