การสังเคราะห์อนุภาคระดับนาโนเมตรของตัวเร่งปฏิกิริยาเชิงแสงซิงก์ออกไซด์จากกากของเสียฝุ่น สังกะสีด้วยวิธีไฮโดรเทอร์มัล

นางสาวกรกมล เนตรชลายุทธ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเซรามิก ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

SYNTHESIS OF ZINC OXIDE PHOTOCATALYST NANOPARTICLES FROM Zn-DUST WASTE BY HYDROTHERMAL METHOD

Miss Kornkamol Natrchalayuth

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Ceramic Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การสังเคราะห์อนุภาคระดับนาโนเมตรของตัวเร่ง
	ปฏิกิริยาเชิงแสงซิงก์ออกไซด์จากกากของเสียฝุ่นสังกะสี
	ด้วยวิธีไฮโดรเทอร์มัล
โดย	นางสาวกรกมล เนตรชลายุทธ
สาขาวิชา	เทคโนโลยีเซรามิก
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร. พรนภา สุจริตวรกุล

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

> คณบดีคณะวิทยาศาสตร์ (ศาสตราจารย์ ดร.สุพจน์ หารหนองบัว)

คณะกรรมการสอบวิทยานิพนธ์

.....ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.ศิริธันว์ เจียมศิริเลิศ)

..... อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร. พรนภา สุจริตวรกุล)

.....กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร. ธนากร วาสนาเพียรพงศ์)

.....กรรมการ

(อาจารย์ ดร. กานต์ เสรีวัลย์สถิตย์)

.....กรรมการภายนอกมหาวิทยาลัย

(ดร. ศิริพร ลาภเกียรติถาวร)

กรกมล เนตรชลายุทธ : การสังเคราะห์อนุภาคระดับนาโนเมตรของตัวเร่งปฏิกิริยาเชิง แสงซิงก์ออกไซด์จากกากของเสียฝุ่นสังกะสี่ด้วยวิธีไฮโดรเทอร์มัล. (SYNTHESIS OF ZINC OXIDE PHOTOCATALYST NANOPARTICLES FROM Zn-DUST WASTE BY HYDROTHERMAL METHOD) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร. พรนภา สุจริตวรกุล, 126 หน้า.

งานวิจัยนี้ศึกษาการสังเคราะห์ซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนเมตรจากกากของเสีย ้ฝุ่นสังกะสีที่ได้จากอุตสาหกรรมการชุบเคลือบสังกะสีแบบจุ่มร้อน มาใช้เป็นสารตั้งต้นด้วย กระบวนการไฮโดรเทอร์มัล โดยศึกษาตัวแปรต่างๆ ในการสังเคราะห์ ได้แก่ ชนิดของกรดที่ใช้ใน การละลายสารตั้งต้น ค่าความเป็นกรดด่าง ในการตกตะกอน อุณหภูมิ เวลา และการเติมสารช่วย กระจายตัวเอชพีซี ต่อสมบัติทาง เฟส สัณฐานของอนุภาค พื้นที่ผิว และ สมบัติการเป็นตัวเร่ง ปฏิกิริยาเชิงแสงโดยการย่อยสลายสารละลายเมทิลีนบลู จากผลการวิเคราะห์ พบว่าการละลาย สารตั้งต้นด้วยกรดในตริกและซัลฟีวริกให้ซิงก์ออกไซด์ที่มีสัณฐานต่างกัน ซิงก์ออกไซด์ที่ได้จากการ เตรียมด้วยกรดในตริกมีความบริสุทธิ์และสมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสงสูงกว่า โดยพีเอชใน การตกตะกอนเป็นตัวแปรสำคัญที่มีผลต่อสัณฐาน ขนาดและพื้นที่ผิวของอนุภาค ซึ่งส่งผลโดยตรง ต่อสมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง นอกจากนี้อุณหภูมิและเวลาในการไฮโดรเทอร์มัลที่ เหมาะสมช่วยส่งเสริมความเป็นผลึกของซิงก์ออกไซด์ และส่งเสริมประสิทธิภาพการเป็นตัวเร่ง ปฏิกิริยาเชิงแสง ส่วนผลการเติม HPC พบว่าการเติมปริมาณที่เหมาะสมช่วยส่งเสริมให้อนุภาค กระจายตัวดีและเพิ่มประสิทธิภาพในการย่อยสลายเมทิลีนบลู แต่การเติมในปริมาณน้อยหรือมาก เกินไปทำให้อนุภาคเกิดการเกาะกลุ่มกัน จากการศึกษานี้พบว่าอนุภาคซิงก์ออกไซด์บริสุทธิ์รูปร่าง แท่งมีขนาดเส้นผ่านศูนย์กลางประมาณ 63 นาโนเมตร ความยาวประมาณ 121 นาโนเมตร และ พื้นที่ผิว 15.10 ตารางเมตรต่อกรัม ซึ่งเตรียมจากการละลายฝุ่นสังกะสีด้วยกรดในตริก ปรับค่าพี เอชในการตกตะกอนที่ 12 เติมเอชพีซี 0.025 กรัม และผ่านกระบวนการไฮโดรเทอร์มัลที่อุณหภูมิ 170 องศาเซลเซียส เป็นเวลา 8 ชั่งโมง แสดงสมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสงในการย่อย สลายสารละลายเมทิลีนบลูสูงที่สุด และแสดงสมบัติการยับยั้งการเจริญเติบโตของแบคทีเรียที่ดี โดยทดสอบกับเชื้อ E.coli

ภาควิชา <u>วัสดุศาสตร์</u>	ลายมือชื่อนิสิต
สาขาวิชา <u>เทคโนโลยีเซรามิก</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา <u>2554</u>	

5372204223 : MAJOR CERAMIC TECHNOLOGY

KEYWORDS: Zn-DUST WASTE / ZINC OXIDE / HYDROTHERMAL / PHOTOCATALYST KORNKAMOL NATRCHALAYUTH : SYNTHESIS OF ZINC OXIDE PHOTOCATALYST NANOPARTICLES FROM Zn-DUST WASTE BY HYDROTHERMAL METHOD. ADVISOR : ASST. PROF. PORNAPA SUJARIDWORAKUN, Ph.D., 126 pp.

This research studied on the synthesis of nano sized zinc oxide particles using zinc dust waste from hot-dip galvanizing process as a starting material via hydrothermal method. The effects of synthesis parameters, i.e. types of precursors, precipitation pH, temperature and time, on phase, morphology, surface area and photocatalytic activity for degradation of methylene blue solution of synthesized powders were investigated. As the results, it was found that by using nitrate and sulfate precursors, the phase purity and difference in particle morphology was obtained. The purity and photocatalytic activity of ZnO obtained from a nitrate precursor had higher than that obtained from a sulfate. The precipitation pH had played an important role on morphology and surface area of synthesized ZnO which had direct effect on photoacatalytic activity. Moreover, it was shown that the proper hydrothermal reaction temperature and time could promote the crystallization and crystallinity of ZnO resulted in the improvement in photocatalytic activity. In addition, by adding the optimum amount of HPC, the photocatalytic activity was enhanced due to better particle dispersion. While adding of less or excessive amount of HPC brought about particle agglomeration. From this work, it was obtained that high purity crystalline ZnO nanorod with 63 nm in diameter, 121 nm in length and surface area of 15.10 m²/g synthesized from nitric precursor at pH 12 with HPC 0.025g and then hydrothermally at 170°C for 8 h showed the highest photocatalytic activity. Moreover, the synthesized ZnO powder had good antibacterial activity tested by colony count method with *E.Coli*.

Department : Materials Science	Student's Signature
Field of Study : Ceramic Technology	Advisor's Signature
Academic Year : <u>2011</u>	

۹

กิตติกรรมประกาศ

วิทยานิพนธ์เล่มนี้สำเร็จลุล่วงได้ดี เนื่องจากได้รับความอนุเคราะห์ การสนับสนุนและ ความช่วยเหลือทั้งในด้านวิชาการ และการดำเนินการวิจัย จากท่านทั้งหลายและหน่วยงานต่างๆ ที่เกี่ยวข้อง ดังนี้

ผู้ช่วยศาสตราจารย์ ดร. พรนภา สุจริตวรกุล อาจารย์ที่ปรึกษาวิทยานิพนธ์ ที่กรุณาให้ ความรู้ คำแนะนำ ความช่วยเหลือและการแก้ไขปัญหาตลอดระยะเวลาการดำเนินงานวิจัยมา ด้วยดี

คณะกรรมการสอบวิทยานิพนธ์ และคณาจารย์ทุกท่าน ที่กรุณาเสียสละเวลาอันมีค่า มา ให้ความรู้ คำชี้แนะเกี่ยวกับแนวทางในงานวิจัย และแก้ไขข้อบกพร่องของรูปเล่มวิทยานิพนธ์ให้ ถูกต้องและสมบูรณ์มากยิ่งขึ้น

หน่วยปฏิบัติการวิจัยเซรามิกขั้นสูง ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย ที่ให้การสนับสนุนทั้งทางด้านบุคลากร สถานที่และเครื่องมือในระหว่างทำวิจัย

ศูนย์ความเป็นเลิศแห่งชาติด้านปิโตรเลียม ปิโตรเคมี และวัสดุขั้นสูง และบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย สำหรับทุนการศึกษาและทุนวิจัย

บริษัท แปซิฟิกไพพ์ จำกัด (มหาชน) ที่เอื้อเฟื้อฝุ่นผงสังกะสี

ขอขอบคุณพี่ๆ น้องๆ และเพื่อนในสาขาวิชาเทคโนโลยีเซรามิก ภาควิชาวัสดุศาสตร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัยทุกท่าน ที่คอยเป็นกำลังใจ ให้คำปรึกษา แลกเปลี่ยนความ คิดเห็น และให้ช่วยเหลือมาโดยตลอด

สุดท้ายนี้ ขอขอบพระคุณ บิดา มารดา และครอบครัวของผู้เขียนที่คอยอบรมสั่งสอน เป็น กำลังใจและให้การสนับสนุนในทุกๆ ด้าน ทำให้การศึกษาสำเร็จลุล่วงได้ด้วยดี

สารบัญ

หน้	, L
บทคัดย่อภาษาไทย	٩
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ର
สารบัญ	Ĩ
สารบัญตาราง	ฏ
สารบัญภาพ	ฏ
บทที่ 1 บทนำ	1
1.1 ความเป็นมาและความสำคัญของปัญหา	1
1.2 วัตถุประสงค์ของการวิจัย	2
1.3 ขอบเขตของการวิจัย	2
1.4 ประโยชน์ที่คาดว่าจะได้รับ	2
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	3
2.1 อุตสาหกรรมชุบโลหะ	3
2.1.1 กรรมวิธีการผลิตการชุบสังกะสีแบบจุ่มร้อน (hot dip galvanizing)	4
2.2 ซึ่งก์ออกไซด์ (Zinc Oxide)	7
2.3 กระบวนการเตรียมซิงก์ออกไซด์	8
2.4 ตัวเร่งปฏิกิริยาเชิงแสง (Photocatalyst)1	0
2.4.1 หลักการของตัวเร่งปฏิกิริยาเชิงแสง (photocatalytic process)1	0
2.4.2 พลังงานแสง	1
2.4.3 ชนิดของตัวคะตาลิสต์1:	2
2.4.4 กลไกในการเกิดตัวเร่งปฏิกิริยาเชิงแสง (Photocatalyst)14	4
2.5 การกระจายตัวของอนุภาคในสารแขวนลอย1	6
2.6 สารช่วยกระจายตัว (dispersant)1	9
2.7 สมบัติการต้านแบคทีเรีย	0
2.7.1 Escherichia coli	0
2.7.2 สารต้านแบคทีเรีย2	1
2.7.3 สารต้านแบคทีเรียอนินทรีย์นาโน	2

หน้า
2.8 งานวิจัยที่เกี่ยวข้อง
บทที่ 3 วิธีดำเนินงานวิจัย
3.1 สารเคมีและวัตถุดิบที่ใช้ในการทดลอง32
3.2 วิธีการวิจัยและแผนผังงานวิจัย
3.2.1 ศึกษาสมบัติเฉพาะของสารตั้งต้น (ฝุ่นผงสังกะสีจากกระบวนการชุบสังกะสี
แบบจุ่มร้อน)
3.2.2 การเตรียมสารละลายตั้งต้น
3.2.3 ศึกษาผลของตัวแปรต่างๆ ในกระบวนการเตรียมอนุภาคซิงก์ออกไซด์
3.2.4 ศึกษาผลการเติมสารช่วยกระจายตัว (HPC)
3.3 วิเคราะห์สมบัติเฉพาะของผงซิงก์ออกไซด์ที่สังเคราะห์ได้
3.3.1 วิเคราะห์โครงสร้างและเฟสองค์ประกอบของผงซิงก์ออกไซด์
3.3.2 โครงสร้างผลึกและขนาดผลึก
3.3.3 วิเคราะห์สัณฐานวิทยา (morphology) และขนาดอนุภาคของผงซิงก์ออกไซด์ 39
3.3.4 วิเคราะห์พื้นที่ผิวจำเพาะ (specific surface area)
3.3.5 สมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง (Photocatalytic activity)
3.3.6 วิเคราะห์ประจุที่ผิวของอนุภาค41
3.3.7 ขนาดและการกระจายของขนาดอนุภาค (particle size distribution)41
3.3.8 สมบัติการต้านการเติบโตของแบคทีเรีย41
3.3.8.1 การวิเคราะห์สมบัติการต้านแบคที่เรียด้วยวิธี Spread plate
บทที่ 4 ผลการทดลองและการวิเคราะห์ผล44
4.1 ผลการศึกษาสมบัติของสารตั้งต้น
4.1.1 ผลวิเคราะห์เฟสองค์ประกอบ44
4.1.2 ผลวิเคราะห์องค์ประกอบทางเคมี45
4.2 ผลการศึกษาการเตรียมซิงก์ออกไซด์จากการละลายสารตั้งต้นด้วยกรดซัลฟิวริก46
4.2.1 ผลวิเคราะห์เฟสองค์ประกอบตะกอนสารตั้งต้นที่ไม่ละลายในกรดซัลฟิวริก46
4.2.2 ผลของค่าพีเอชในการตกตะกอน47
4.2.2.1 ผลวิเคราะห์เฟสองค์ประกอบ
4.2.2.2 ผลวิเคราะห์โครงสร้างจุลภาค ขนาดและพื้นที่ผิวของอนุภาค

หน้า
1 00 1

ಹಿ ಹಿ	55
4.2.3 ผลของอุณหภูมิไฮโดรเทอร์มัล	57
4.2.3.1 ผลวิเคราะห์เฟสองค์ประกอบ	57
4.2.3.2 ผลวิเคราะห์ลักษณะสัณฐาน ขนาดและพื้นที่ผิวของอนุภาค	58
4.2.3.3 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง	59
4.2.4 ผลของเวลาในการไฮโดรเทอร์มัล	60
4.2.4.1 ผลวิเคราะห์เฟสองค์ประกอบ	60
4.2.4.2 ผลวิเคราะห์ลักษณะสัณฐาน ขนาดและพื้นที่ผิวของอนุภาค	62
4.2.4.3 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง	64
4.2.5 องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้	65
4.2.6 ผลการทดสอบความสามารถในการต้านแบคที่เรียของผงซิงก์ออกไซด์	
ที่สังเคราะห์ได้	66
4.3 ผลการศึกษาการเตรียมซิงก์ออกไซด์จากการละลายสารตั้งต้นด้วยกรดในตริก	67
4.3.1 ผลวิเคราะห์เฟสองค์ประกอบตะกอนสารตั้งต้นที่ไม่ละลายในกรดไนตริก	67
4.3.2 ผลของพีเอชในการตกตะกอน	68
4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง	68 75
4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล	68 75 77
4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ	68 75 77 78
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ 4.3.2.4 ผลของเวลาไฮโดรเทอร์มัล 	68 75 77 78 80
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ 4.3.2.4 ผลของเวลาไฮโดรเทอร์มัล 4.3.3 ความสามารถในการต้านแบคทีเรียของผงตัวอย่างที่สังเคราะห์ได้ 	68 75 77 78 80 84
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ 4.3.2.4 ผลของเวลาไฮโดรเทอร์มัล 4.3.3 ความสามารถในการต้านแบคทีเรียของผงตัวอย่างที่สังเคราะห์ได้ 4.3.4 องค์ประกอบทางเคมี 	68 75 77 78 80 84 85
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ 4.3.2.4 ผลของเวลาไฮโดรเทอร์มัล 4.3.3 ความสามารถในการต้านแบคทีเรียของผงตัวอย่างที่สังเคราะห์ได้ 4.3.4 องค์ประกอบทางเคมี 4.4 ผลของการเติมสารช่วยกระจายตัวไฮดรอกซีโพรพิลเซลลูโลส (hydroxypropyl) 	68 75 77 78 80 84 85
 4.3.2 ผลของพีเอชในการตกตะกอน	68 75 77 78 80 85 85
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล	68 75 77 78 80 85 85 85
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล	68 75 77 78 80 84 85 85 86 87
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ 4.3.2.4 ผลของเวลาไฮโดรเทอร์มัล 4.3.3 ความสามารถในการต้านแบคทีเรียของผงตัวอย่างที่สังเคราะห์ได้ 4.3.4 องค์ประกอบทางเคมี 4.4 ผลของการเติมสารช่วยกระจายตัวไฮดรอกซีโพรพิลเซลลูโลส (hydroxypropyl cellulose, HPC) 4.4.1 ผลการศึกษาเฟสและขนาดผลึก	68 75 77 78 80 84 85 85 85 87 90
 4.3.2 ผลของพีเอชในการตกตะกอน 4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง 4.3.2.2 ผลของอุณหภูมิในการไฮโครเทอร์มัล 4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ 4.3.2.4 ผลของเวลาไฮโครเทอร์มัล 4.3.3 ความสามารถในการต้านแบคทีเรียของผงตัวอย่างที่สังเคราะห์ได้ 4.3.4 องค์ประกอบทางเคมี 4.4 ผลของการเติมสารช่วยกระจายตัวไฮดรอกซีโพรพิลเซลลูโลส (hydroxypropyl cellulose, HPC) 4.4.1 ผลการศึกษาเฟสและขนาดผลึก 4.4.2 ผลการศึกษาเล้ณฐาน ขนาดอนุภาคและพื้นที่ผิว 4.4.3 ผลการศึกษากรกระจายขนาดของอนุภาค 4.4.4 ผลการศึกษาสมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง 	68 75 77 78 80 80 85 85 85 85 85 85 90 92

4.5 ผลการศึกษาผลของพีเอชสารละลายเมทิลีนลูต่อสมบัติความเป็นตัวเร่งปฏิกิริยา	
เชิงแสงของซิงก์ออกไซด์	. 95
4.5.1 ผลการศึกษาประจุที่ผิวของอนุภาคด้วยเครื่อง Zeta potential	95
4.5.2 ผลการศึกษาผลของพีเอชสารละลายเมทิลีนบลูต่อประสิทธิภาพของ	
ตัวเร่งปฏิกิริยาเชิงแสงซิงก์ออกไซด์	. 97
บทที่ 5 สรุปผลการวิจัย และข้อเสนอแนะ	. 98
5.1 สรุปผลการวิจัย	. 98
5.2 ข้อเสนอแนะสำหรับงานวิจัยเพิ่มเติม	. 99
รายการอ้างอิง	100
ภาคผนวก	107
ภาคผนวก ก	108
ภาคผนวก ข	123
ภาคผนวก ค	125
ประวัติผู้เขียนวิทยานิพนธ์	126

หน้า

สารบัญตาราง

	หน้า
ตารางที่ 2.1	ค่าพลังงานแถบช่องว่างของสารกึ่งตัวนำชนิดต่างๆ
ตารางที่ 2.2	แสดงกลไกในการต่อต้านแบคทีเรียของวัสดุนาโนต่างๆ และการนำไปใช้งาน 23
ตารางที่ 2.3	งานวิจัยที่สังเคราะห์ซิงก์ออกไซด์ด้วยกระบวนการไฮโดรเทอร์มัลที่ภาวะต่างๆ26
ตารางที่ 4.1	องค์ประกอบทางเคมีในฝุ่นผงสังกะสี
ตารางที่ 4.2	พื้นที่ผิวจำเพาะและขนาดผลึกของสารตัวอย่างที่เตรียมที่พีเอชต่างๆ51
ตารางที่ 4.3	พื้นที่ผิวจำเพาะ (Specific surface area) ของผงตัวอย่างที่เตรียมด้วย
	กระบวนการไฮโดรเทอร์มัลที่อุณหภูมิต่างๆ58
ตารางที่ 4.4	พื้นที่ผิวจำเพาะ (specific surface area) ของผงตัวอย่างที่เตรียมด้วย
	กระบวนการไฮโดรเทอร์มัลที่เวลาต่างๆ62
ตารางที่ 4.5	องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้
ตารางที่ 4.6	พื้นที่ผิวจำเพาะของผงตัวอย่างที่เตรียมที่พีเอชต่างๆ หลังการไฮโดรเทอร์มัล72
ตารางที่ 4.7	พื้นที่ผิวจำเพาะ (specific surface area) ของสารตัวอย่างที่เตรียมด้วย
	กระบวนการไฮโดรเทอร์มัลที่อุณหภูมิต่างๆ
ตารางที่ 4.8	พื้นที่ผิวจำเพาะ (specific surface area) ของผงตัวอย่างที่เตรียมด้วย
	กระบวนการไฮโดรเทอร์มัลที่เวลาต่างๆ81
ตารางที่ 4.9	องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้
ตารางที่ 4.10	พื้นที่ผิวจำเพาะ (specific surface area) ของสารตัวอย่างที่เติม
	สารช่วยกระจายตัว HPC ที่ปริมาณต่างๆ ด้วยกระบวนการไฮโดรเทอร์มัล86
ตารางที่ 4.11	ค่า zeta potential ของซิงก์ออกไซด์ที่เตรียมด้วยการเติมและ
	ไม่เติม HPC

สารบัญภาพ

	หน้า
ภาพที่ 2.1	ภาพขยายของชิ้นผิวเคลือบสังกะสีประกอบด้วยชั้นของเหล็กที่เป็นชิ้นงาน
	อยู่ด้านในถัดมาเป็นชั้นโลหะผสมเหล็กสังกะสี (zinc alloy) และเป็นชั้นสังกะสี
	อยู่ผิวนอกสุด4
ภาพที่ 2.2	ชั้นผิวเคลือบของการซุบสังกะสีแบบจุ่มร้อน5
ภาพที่ 2.3	ขั้นตอนวิธีการชุบเคลือบสังกะสีแบบจุ่มร้อน6
ภาพที่ 2.4	ฝุ่นผงสังกะสีจากระบวนการชุบสังกะสีแบบจุ่มร้อน6
ภาพที่ 2.5	โครงสร้างผลึกของซิงก์ออกไซด์ (ก) เวิร์ทไซด์ (ข) ซิงก์เบลน และ (ค) ร็อกซอล์ท 7
ภาพที่ 2.6	พลังงานของการเกิดปฏิกิริยาของสารอินทรีย์10
ภาพที่ 2.7	องค์ประกอบของรังสียูวี
ภาพที่ 2.8	- กระบวนการการเป็นตัวเร่งปฏิกิริยาด้วยแสงของซิงก์ออกไซด์
ภาพที่ 2.9	ความสัมพันธ์ของพลังงานศักย์ระหว่างอนุภาค17
ภาพที่ 2.10	การ stabilization ของอนุภาคเซรามิก (ก) Electrostatic stabilization
ภาพที่ 2.11	ลักษณะของแบคทีเรีย Escherichia coli21
ภาพที่ 2.12	กลไกการต้านแบคทีเรียของอนุภาคนาโน24
ภาพที่ 2.13	ลักษณะ flower-like rod ของอนุภาคซิงก์ออกไซด์
ภาพที่ 2.14	ภาพถ่าย FE-SEM ของซิงก์ออกไซด์ (hexagonal pyramid)
ภาพที่ 2.15	ภาพถ่าย TEM ของซิงก์ออกไซด์ (ZnO nanorods)
ภาพที่ 2.16	แบบจำลองของการเคลือบด้วย oleic acid ที่ผิวของซิงก์ออกไซด์
	ขนาดนาโนเมตร
ภาพที่ 2.17	ภาพถ่าย FE-SEM ของซิงก์ออกไซด์ ไฮโดรเทอร์มัลที่เวลา 6 ชั่วโมง
ภาพที่ 2.18	ภาพถ่าย SEM แสดงผลของชนิดและปริมาณสารช่วยกระจายตัวต่อรูปร่างของ31
ภาพที่ 3.1	แผนผังแสดงขั้นตอนการเตรียมสารละลายตั้งต้น
ภาพที่ 3.2	แผนผังแสดงขั้นตอนการเตรียมผงซิงก์ออกไซด์
ภาพที่ 3.3	แผนผังแสดงสูตรโครงสร้างของพอลิเมอร์ HPC
ภาพที่ 3.4	แผนผังแสดงขั้นตอนการเตรียมสารประกอบซิงก์ออกไซด์ที่เติม
	สารช่วยกระจายตัว
ภาพที่ 3.5	วิธีการทำให้เชื้อกระจาย (Spread plate)42

		หน้า
ภาพที่ 3.6	ขั้นตอนการเจือจางแบคทีเรียแบบ serial dilution	43
ภาพที่ 4.1	กราฟ XRD ของฝุ่นผงสังกะสี (Zinc-dust waste)	45
ภาพที่ 4.2	กราฟ XRD ของส่วนประกอบของฝุ่นผงสังกะสีในส่วน	46
ภาพที่ 4.3	กราฟ XRD ของผงตัวอย่างที่เตรียมที่พีเอชต่างๆ ก่อนการไฮโดรเทอร์มัล	47
ภาพที่ 4.4	กราฟ XRD ของผงตัวอย่างที่เตรียมได้ที่พีเอชต่างๆ หลังจากผ่านการ	
	ไฮโดรเทอร์มัล	48
ภาพที่ 4.5	สัดส่วนของ Zn (II) ions species ที่พีเอชต่างๆ วัดที่ 25°C	49
ภาพที่ 4.6	ภาพถ่าย SEM ที่กำลังขยาย 30,000 เท่า ของผงตัวอย่างที่เตรียมได้	52
ภาพที่ 4.7	ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS	53
ภาพที่ 4.8	ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS	54
ภาพที่ 4.9	อัตราเร็วการเกิดปฏิกิริยาการย่อยสลายเมทิลีนบลูของ	56
ภาพที่ 4.10	อัตราเร็วการเกิดปฏิกิริยาการย่อยสลายเมทิลีนบลูของผงซิงก์ออกไซด์	56
ภาพที่ 4.11	กราฟ XRD ของผงตัวอย่างที่เตรียมที่พีเอช 12 และผ่านการไฮโดรเทอร์มัล	
	ที่อุณหภูมิต่างๆ (ก) 120 (ข) 150 และ (ค) 170 องศาเซลเซียส	57
ภาพที่ 4.12	ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัล	
	ที่อุณหภูมิต่างๆ (ก) 120 (ข) 150 และ (ค) 170 องศาเซลเซียส	58
ภาพที่ 4.13	อัตราเร็วในการย่อยสลายเมทิลีนบลู	59
ภาพที่ 4.14	กราฟ XRD ของผงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัล	60
ภาพที่ 4.15	ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัล	62
ภาพที่ 4.16	ภาพ TEM ที่กำลังขยายสูงของผงซิงก์ออกไซด์	63
ภาพที่ 4.17	อัตราเร็วในการย่อยสลายเมทิลีนบลูของ	64
ภาพที่ 4.18	จำนวนแบคทีเรียชนิด <i>E.coli</i> ที่เหลือหลังจากทำการ incubate	66
ภาพที่ 4.19	กราฟ XRD ของส่วนประกอบของฝุ่นผงสังกะสีในส่วน	67
ภาพที่ 4.20	กราฟ XRD ของผงตัวอย่างที่เตรียมได้ที่ค่าพีเอชต่างๆ ก่อนการไฮโดรเทอร์มัล	68
ภาพที่ 4.21	กราฟ XRD ของผงตัวอย่างที่เตรียมได้ที่ค่าพีเอชต่างๆ หลังจากผ่านการ	
	ไฮโดรเทอร์มัล	69
ภาพที่ 4.22	ภาพถ่าย SEM ที่กำลังขยาย 30,000 เท่า ของผงตัวอย่างที่เตรียมได้	71
ภาพที่ 4.23	ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS	73

ภาพที่ 4.24	ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS	.74
ภาพที่ 4.25	ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลูของ	. 76
ภาพที่ 4.26	ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลูของ	. 76
ภาพที่ 4.27	กราฟ XRD แสดงผลของอุณหภูมิในการไฮโดรเทอร์มัลต่อการเกิดผลึก	
	ของซิงก์ออกไซด์	. 77
ภาพที่ 4.28	โครงสร้างจุลภาคด้วย SEM ของผงตัวอย่างที่เตรียมได้ที่อุณหภูมิ	
	ไฮโดรเทอร์มัลต่างๆ	. 78
ภาพที่ 4.29	ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลู	. 79
ภาพที่ 4.30	กราฟ XRD ของผงตัวอย่างที่เตรียมจากการไฮโดรเทอร์มัลที่เวลาต่างๆ	. 80
ภาพที่ 4.31	ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมได้ที่เวลาไฮโดรเทอร์มัลต่างๆ	. 81
ภาพที่ 4.32	ภาพ TEM ที่กำลังขยายสูงของผงซิงก์ออกไซด์	. 82
ภาพที่ 4.33	ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลู	. 82
ภาพที่ 4.34	จำนวนแบคทีเรียชนิด <i>E.coli</i> ที่เหลือหลังจากทำการ incubate สัมผัสกับ	
	ผงตัวอย่าง	. 84
ภาพที่ 4.35	ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน	. 84 . 86
ภาพที่ 4.35 ภาพที่ 4.36	ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ	. 84 . 86 . 87
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37	ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ	. 84 . 86 . 87 . 88
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38	ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ที่กำลังขยายสูงของอนุภาคซิงก์ออกไซด์ที่เตรียม	. 84 . 86 . 87 . 88 . 89
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39	ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ที่กำลังขยายสูงของอนุภาคซิงก์ออกไซด์ที่เตรียม การกระจายขนาดนุภาคของผงตัวอย่างที่เตรียมได้ โดยเติมสารช่วยกระจายตัว.	. 84 . 86 . 87 . 88 . 89 . 90
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40	 ผงตัวอย่าง	. 84 . 86 . 87 . 88 . 89 . 90 . 92
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40 ภาพที่ 4.41	 ผงตัวอย่าง	. 84 . 86 . 87 . 88 . 89 . 90 . 92 . 93
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40 ภาพที่ 4.41 ภาพที่ 4.42	 ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ที่กำลังขยายสูงของอนุภาคซิงก์ออกไซด์ที่เตรียม การกระจายขนาดนุภาคของผงตัวอย่างที่เตรียมโดยเติมได้ โดยเติมสารช่วยกระจายตัว	. 84 . 86 . 87 . 88 . 89 . 90 . 92 . 93 . 93
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40 ภาพที่ 4.41 ภาพที่ 4.42 ภาพที่ 4.43	 ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ ภาพถ่าย TEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ	. 84 . 86 . 87 . 88 . 89 . 90 . 92 . 93 . 93 . 95
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40 ภาพที่ 4.41 ภาพที่ 4.42 ภาพที่ 4.43 ภาพที่ 4.43 ภาพที่ 4.44	 ผงตัวอย่าง กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ	. 84 . 86 . 87 . 88 . 89 . 90 . 92 . 93 . 93 . 95
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40 ภาพที่ 4.41 ภาพที่ 4.42 ภาพที่ 4.43 ภาพที่ 4.43	 ผงตัวอย่าง	. 84 . 86 . 87 . 88 . 89 . 90 . 92 . 93 . 93 . 95
ภาพที่ 4.35 ภาพที่ 4.36 ภาพที่ 4.37 ภาพที่ 4.38 ภาพที่ 4.39 ภาพที่ 4.40 ภาพที่ 4.41 ภาพที่ 4.42 ภาพที่ 4.43 ภาพที่ 4.43	 ผงตัวอย่าง	. 84 . 86 . 87 . 88 . 89 . 90 . 92 . 93 . 93 . 95

หน้า

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

อุตสาหกรรมการผลิตเหล็กแผ่นหรือท่อโลหะมีกระบวนการชุบโลหะด้วยสังกะสีแบบจุ่ม ร้อนเพื่อช่วยในเรื่องความสวยงามและการป้องกันการกัดกร่อนของโลหะและเพื่อยืดอายุการใช้ งานให้นานมากขึ้น จากกระบวนการดังกล่าวนี้จะได้ฝุ่นผงที่ประกอบไปด้วยโลหะและออกไซด์ของ ้สังกะสีเป็นองค์ประกอบหลัก เป็นกากของเสียในปริมาณมากแต่ละปี ซึ่งจะถูกส่งขายไปยังโรงงาน ถลุงในราคาถูกเพื่อทำให้บริสุทธิ์และหลอมเป็นแท่งเพื่อขายให้อุตสาหกรรมต่างๆ ต่อไป ดังนั้นจึงมี แนวคิดในการเพิ่มมูลค่าแก่ฝุ่นผงสังกะสีที่ได้นี้ โดยนำมาเป็นสารตั้งต้นในการสังเคราะห์ซิงก์ ้ออกไซด์ที่มีอนุภาคขนาดนาโนเมตร เนื่องจากซิงก์ออกไซด์เป็นวัสดุที่มีสมบัติเด่นหลายประการ และถูกนำไปใช้ในอุตสาหกรรมหลากหลาย⁽¹⁾ เช่น อุตสาหกรรมสี ยาง สิ่งทอ เซรามิก เครื่องสำอาง ยา เป็นต้น โดยเฉพาะซิงก์ออกไซด์อนุภาคขนาดนาโนเมตรจะแสดงสมบัติการเป็นตัวเร่งปฏิกิริยา เชิงแสงและต้านเชื้อแบคทีเรียได้^(2, 3) ทำให้นำไปใช้งานได้มีประสิทธิภาพมากขึ้น โดยการ ้สังเคราะห์ซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนเมตรมีรายงานการเตรียมด้วยกันหลายวิธี เช่น ้วิธีการตกตะกอน ไมโครเวฟ โซล-เจล การสลายตัวทางความร้อน สเปรย์ไพโรไลซิส^(4,5)ซึ่ง ึกระบวนการส่วนใหญ่เหล่านี้มีข้อจำกัด อาทิ เป็นกระบวนการเตรียมที่ซับซ้อน ต้องการการ ควบคุมพิเศษ ใช้อุณหภูมิการเตรียมสูง ใช้สารตั้งต้นราคาสูงที่เป็นเกลือของสังกะสี ดังนั้นงานวิจัย ้นี้จึงศึกษาการสังเคราะห์ซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนเมตรด้วยวิธีไฮโดรเทอร์มัล เนื่องจาก เป็นวิธีที่ง่าย ใช้อุณหภูมิในการเตรียมต่ำโดยไม่ต้องผ่านการเผาแคลไซน์ที่อุณหภูมิสูงเพื่อให้เกิด ้ผลึก จึงเป็นการบวนการที่ใช้พลังงานต่ำ นอกจากนี้สารที่ได้มีความบริสุทธิ์สูงและสามารถควบคุม ขนาดและรูปร่างผลึกได้ดี การเตรียมโดยใช้กากของเสียจากกระบวนการชุบสังกะสีแบบจุ่มร้อนนี้ เป็นสารตั้งต้น นับว่าเป็นการใช้ทรัพยากรที่มีอยู่อย่างคุ้มค่าและเพิ่มมูลค่าให้กับกากของเสีย อุตสาหกรรม ซึ่งยังไม่มีรายงานการศึกษามาก่อน

งานวิจัยนี้ทำการศึกษาผลของตัวแปรในกระบวนการเตรียม ได้แก่ ความเข้มข้นของสารที่ ใช้ตกตะกอน ค่าความเป็นกรดด่างในการตกตะกอน อุณหภูมิที่ใช้ในการไฮโดรเทอร์มัลและผลการ เติมสารช่วยกระจายตัว ต่อสมบัติทางกายภาพ สมบัติทางการเป็นตัวเร่งปฏิกิริยาเชิงแสง และ สมบัติการต้านการเจริญเติบโตของเชื้อแบคทีเรีย เพื่อให้ได้วัสดุที่มีประสิทธิภาพในการนำไปใช้ งานต่อไป

1.2 วัตถุประสงค์ของการวิจัย

เพื่อศึกษาการสังเคราะห์อนุภาคระดับนาโนเมตรซิงก์ออกไซด์จากฝุ่นสังกะสีที่เป็นกาก ของเสียจากกระบวนการชุบสังกะสีแบบจุ่มร้อน ด้วยวิธีไฮโดรเทอร์มัล เพื่อการใช้งานทางด้านการ เป็นตัวเร่งปฏิกิริยาเชิงแสงและต้านเชื้อแบคทีเรีย

1.3 ขอบเขตของการวิจัย

 ศึกษาผลของค่าความเป็นกรดด่าง อุณหภูมิและเวลาที่ใช้ในการเตรียม ต่อสมบัติทาง กายภาพความเป็นตัวเร่งปฏิกิริยาเชิงแสงและความสามารถในการต้านเชื้อแบคทีเรียของอนุภาค ซิงก์ออกไซด์ขนาดนาโนเมตรที่เตรียมได้ด้วยวิธีไฮโดรเทอร์มัล

 สึกษาผลของการเติมสารช่วยกระจายตัวของอนุภาค HPC ต่อสมบัติทางกายภาพและ ความเป็นตัวเร่งปฏิกิริยาด้วยแสงของอนุภาคซิงก์ออกไซด์ที่สังเคราะห์ได้ด้วยวิธีไฮโดรเทอร์มัล

1.4 ประโยชน์ที่คาดว่าจะได้รับ

ได้ซิงก์ออกไซด์อนุภาคขนาดนาโนเมตรซึ่งเตรียมจากฝุ่นสังกะสีที่เป็นของเสียจาก กระบวนการชุบสังกะสีแบบจุ่มร้อนที่มีสมบัติโฟโตคะตะลิสต์และต้านเชื้อแบคทีเรีย

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ในปัจจุบันซิงก์ออกไซด์เป็นที่รู้จักกันอย่างแพร่หลายและสามารถนำไปใช้ประโยชน์ได้ มากมายทางด้านอุตสาหกรรมต่างๆ ทำให้มีการศึกษาเกี่ยวกับการสังเคราะห์อนุภาคระดับนาโน เมตรของซิงก์ออกไซด์กันอย่างแพร่หลาย ซึ่งงานวิจัยนี้มีวัตถุประสงค์ในการ สังเคราะห์ซิงก์ ออกไซด์ขนาดนาโนเมตร ด้วยวิธีการไฮโดรเทอร์มัลจากกากของเสียฝุ่นสังกะสีที่ได้จาก กระบวนการชุบโลหะด้วยสังกะสีแบบจุ่มร้อน เพื่อการใช้งานทางด้านตัวเร่งปฏิกิริยาเชิงแสงและ ต้านเชื้อแบคทีเรีย หรือนำไปประยุกต์ใช้ในด้านการลดมลภาวะทางน้ำและอากาศ เป็นต้น โดยใน บทนี้จะกล่าวถึงอุตสาหกรรมกระบวนการชุบเคลือบสังกะสี สมบัติทั่วไปของชิงก์ออกไซด์ กระบวนการต่างๆ ที่ใช้ในการสังเคราะห์ชิงก์ออกไซด์และปัจจัยต่างๆ ที่ส่งผลต่อสมบัติของซิงก์ ออกไซด์ด้านตัวเร่งปฏิกิริยาเชิงแสง รวมถึงสมบัติการต้านแบคทีเรียด้วยชิงก์ออกไซด์ และงานวิจัย ผ่านมาที่เกี่ยวข้อง

2.1 อุตสาหกรรมชุบโลหะ

อุตสาหกรรมชุบโลหะเป็นอุตสาหกรรมที่ช่วยป้องการเกิดสนิมหรือการกัดกร่อนของเหล็ก และเหล็กกล้าเมื่อวางทิ้งไว้ในอากาศ สนิมเหล็กคือสารประกอบเหล็กออกไซด์จะเกิดเมื่อเหล็ก สัมผัสน้ำและออกซิเจน จนเกิดปฏิกิริยาออกซิเดชั่นและปฏิกิริยารีดักชั่นขึ้นที่เนื้อเหล็ก ดังนั้นวิธีที่ จะป้องกันเหล็กหรือเหล็กกล้าไม่ให้มีการสัมผัสกับสิ่งแวดล้อมภายนอกคือ การเคลือบสารปิดทับ ผิวเหล็กไว้ จุดประสงค์ในการเคลือบผิวของเหล็กคือ เพื่อตกแต่งผิวของผลิตภัณฑ์ให้เกิดความ สวยงาม แวววาว เพื่อป้องกันการกัดกร่อน เพิ่มความทนทาน นอกจากนั้นยังช่วยยืดอายุการใช้ งานให้นานมากขึ้นและเพื่อวัตถุประสงค์เฉพาะ ได้แก่ การนำไฟฟ้า (electrical conductivity), การ ช่วยในงานเชื่อมประสานโลหะ (solder ability) และเพิ่มความทนทานต่อสารเคมี เป็นต้น⁽⁶⁾

สารเคลือบที่ใช้มีด้วยกันหลายชนิด สังกะสีก็เป็นสารเคลือบชนิดหนึ่งที่นิยมใช้เหล็กที่ได้ จากการชุบเคลือบสังกะสีเรียกว่า เหล็กกล้าชุบเคลือบสังกะสี (galvanized steel) อุตสาหกรรมชุบ เคลือบสังกะสีนี้มีด้วยกันหลายวิธี เช่น การชุบเคลือบสังกะสีแบบจุ่มร้อน (hot dip galvanizing), การเคลือบสังกะสีด้วยไฟฟ้า (electrogalvanizing), การเคลือบด้วยวิธีทางกล (mechanical coatings), การพ่นเคลือบด้วยเปลวความร้อน (zinc spraying), การทาด้วยสีฝุ่นสังกะสี (zincrich paints), การชุบเคลือบสังกะสีแบบจุ่มร้อนด้วยกระบวนการต่อเนื่อง (continuous hot dip galvanizing) และการเคลือบด้วยเทคนิคเซอร์ราไดซ์ซิ่ง (sherardizing) ซึ่งในงานวิจัยนี้สารตั้งต้น ที่ใช้ในการสังเคราะห์ซิงก์ออกไซด์มาจากกระบวนการชุบเคลือบสังกะสีแบบจุ่มร้อน จึงเน้นเฉพาะ กระบวนการนี^{้(7)}

2.1.1 กรรมวิธีการผลิตการชุบสังกะสีแบบจุ่มร้อน (hot dip galvanizing)

การชุบเคลือบสังกะสีแบบจุ่มร้อน จะเคลือบผิวชิ้นงานซึ่งส่วนใหญ่จะเป็นเหล็กกล้าและ เหล็กหล่อด้วยโลหะสังกะสี เพื่อเพิ่มความทนทานต่อการกัดกร่อน การขูดขีดของชิ้นงาน และเพื่อ ยืดอายุการใช้งาน นอกจากนั้นยังช่วยในเรื่องความสวยงาม การชุบเคลือบด้วยวิธีการจุ่มร้อนนี้ เป็นวิธีที่อุตสาหกรรมนิยมใช้กัน เพราะเป็นวิธีที่มีต้นทุนการผลิตต่ำและเป็นวิธีที่ป้องกันการผุกร่อน ของชิ้นงานได้ดีที่สุดในปัจจุบัน เนื่องจากในขั้นตอนการจุ่มชิ้นงานลงในบ่อชุบที่มีสังกะสีหลอม ละลายอยู่โดยมีอุณหภูมิสูง ถึง 400 ถึง 460 องศาเซลเซียส จะเกิดปฏิกิริยาการสร้างชั้น (layer) ของโลหะผสมสังกะสี-เหล็ก (zinc-iron alloy) ยึดติดกันแน่นกับผิวของชิ้นงานเกิดเป็นชั้นๆ โดย ชั้นนอกสุดจะเป็นชั้นของสังกะสีที่บริสุทธิ์เคลือบไว้ ดังแสดงในภาพที่ 2.1⁽⁷⁾ และส่วนชั้นที่ 2, 3 และ 4 จะเป็นชั้นที่มีความแข็งแรงมากกว่าชิ้นงาน โดยทั้งสามชั้นนี้จะเป็นชั้นที่ทนทานต่อการขูด ขีดและการกัดกร่อนได้ดี⁽⁷⁾

ภาพที่ 2.1 ภาพขยายของชิ้นผิวเคลือบสังกะสีประกอบด้วยชั้นของเหล็กที่เป็นชิ้นงานอยู่ด้านในถัด มาเป็นชั้นโลหะผสมเหล็กสังกะสี (zinc alloy) และเป็นชั้นสังกะสีอยู่ผิวนอกสุด

ภาพที่ 2.2 ชั้นผิวเคลือบของการชุบสังกะสีแบบจุ่มร้อน

ขั้นตอนการชุบเคลือบสังกะสีแบบจุ่มร้อน มีดังนี้

 การกำจัดสิ่งสกปรก (soil and grease removal – caustic cleaning) โดยใช้ สารละลายด่างล้างสิ่งสกปรก คราบไขมันต่างๆ ตลอดจนถึงเศษดินออกให้สะอาด

2. การล้างด้วยน้ำ (rinsing) ใช้น้ำสะอาดล้างชิ้นงานที่ผ่านการแช่สารละลายด่าง และ สารละลายกรดเพื่อกำจัดสภาพด่างและกรดออกจากผิวชิ้นงาน

การกัดด้วยกรด (pickling) ใช้สารละลายกรด เช่น กรดซัลฟิวริก กรดไฮโดรคลอริก ทำ
 ความสะอาดผิวโลหะ เพื่อกำจัดฟิล์มออกไซด์และสิ่งปนเปื้อนผิวโลหะออกไป

4. การแช่น้ำยาประสาน (fluxing) นำชิ้นงานเหล็กมาแช่ในน้ำยาประสาน (สารละลายซิงก์ แอมโมเนียมคลอไรด์ – zinc ammonium chloride solution) เพื่อปรับความตึงผิวของเหล็กให้มี ความเหมาะสมกับการเคลือบด้วยสังกะสีหลอมเหลว

5. การชุบเคลือบสังกะสี (galvanizing) นำชิ้นงานที่จะชุบเคลือบไปแช่ในอ่างสังกะสี หลอมเหลว (อุณหภูมิประมาณ 435 ถึง 455 องศาเซลเซียส) สังกะสีจะเคลือบติดกับเนื้อเหล็กหนา ขึ้นตามเวลาที่ทำการแช่

 การตกแต่งสำเร็จ (finishing) เหล็กที่ชุบเคลือบสังกะสีเสร็จแล้ว จะถูกนำมากำจัดเอา สังกะสีส่วนเกินออกโดยใช้วิธีการเขย่า (vibrating) หรือการล้าง (draining) หรือการหมุนเหวี่ยง (centrifuging) จากนั้นลดอุณหภูมิชิ้นงานโดยนำไปเป่าลมเย็น หรือนำไปชุบของเหลว (quenching) ซึ่งในขั้นตอนนี้จะได้ฝุ่นผงสังกะสีที่นำมาเป็นสารตั้งต้นในการสังเคราะห์ในงานวิจัย นี้ ลักษณะของฝุ่นผงสังกะสีซึ่งได้จากการทดลองแสดงในภาพที่ 2.4

การตรวจสอบ (inspection) ชิ้นงานที่เคลือบสังกะสีแล้วจะถูกส่งมาตรวจสอบความหนา ของชั้นชุบเคลือบและสภาพผิวเคลือบโดยขั้นตอนการชุบจะแสดงในภาพที่ 2.3⁽⁷⁾

ภาพที่ 2.3 ขั้นตอนวิธีการชุบเคลือบสังกะสีแบบจุ่มร้อน

ภาพที่ 2.4 ฝุ่นผงสังกะสีจากระบวนการชุบสังกะสีแบบจุ่มร้อน

2.2 ซึ่งก์ออกไซด์ (Zinc Oxide)

ซิงก์ออกไซด์เป็นวัสดุในกลุ่มโลหะออกไซด์ ที่มีการนำมาใช้งานในรูปแบบของวัสดุนาโน มี ลักษณะเป็นสีขาว มีความหนาแน่น 5.61 กรัมต่อลูกบาศก์เมตร มวลโมเลกุล 8.14 ซิงก์ออกไซด์ สามารถทำหน้าที่ได้ทั้งกรดและเบส แทบจะไม่ละลายน้ำและแอลกอฮอล์ รูปผลึกของซิงก์ออกไซด์ แบ่งออกได้เป็น 3 ชนิด ดังต่อไปนี้^(8,9)

1. เฮกซะโกนอล เวิร์ทไซด์ (hexagonal wurtzite) เป็นโครงสร้างที่มีความเสถียรมากที่สุด ที่สภาวะปกติ จึงเป็นรูปแบบที่พบมากที่สุด ดังแสดงในภาพที่ 2.5 (ก)⁽¹⁰⁾

 คิวบิก ซึ่งก์เบลน (cubic zincblend) เป็นรูปแบบที่สามารถสร้างขึ้นโดยการปลูกซิงก์ ออกไซด์ขึ้นบนซับสเตรตด้วยโครงสร้างผลึกแบบคิวบิก

3. คิวบิก ร็อกซอล์ท (cubic rocksalt)⁽¹¹⁾ จะพบได้ที่ความดันสูงประมาณ 10 จิกะปาส กาล (GPa) เท่านั้น

ภาพที่ 2.5 โครงสร้างผลึกของซิงก์ออกไซด์ (ก) เวิร์ทไซด์ (ข) ซิงก์เบลน และ (ค) ร็อกซอล์ท

นอกจากนั้นซิงก์ออกไซด์ยังเป็นวัสดุที่มีสมบัติเป็นสารกึ่งตัวนำ มีสมบัติทางไฟฟ้า (electronic) และทางแสง (photonic) ที่ยอดเยี่ยม และมีสมบัติเด่นต่างๆ มากมาย⁽¹²⁾ เช่น มี ช่องว่างแถบ (bandgap) กว้างโดยกว้างประมาณ 3.37 อิเล็กตรอนโวลต์⁽¹³⁾ มีความโปร่งใสสูง มี ค่าสภาพเคลื่อนที่ได้ของอิเล็กตรอนสูง (electron mobility) มีสมบัติการเปล่งแสง (luminescence) ที่อุณหภูมิห้องที่ดี และมีสมบัติด้านเพียโซอิเล็กทริก (piezoelectric) ที่ดีอีกด้วย เนื่องจากคุณสมบัติต่างๆ เหล่านี้ ซิงก์ออกไซด์จึงมีความน่าดึงดูดใจ เป็นอย่างมากที่จะนำไป ประยุกต์ใช้ในงานต่างๆ เช่น เซนเซอร์ (sensors) เซลล์แสงอาทิตย์ (solar cells) อุปกรณ์เพียโซอิเล็กทริก (piezoelectric devices) และไดโอดเปล่งแสง (light-emitting diodes)⁽⁵⁾ เป็นต้น อย่างไรก็ตามซิงก์ออกไซด์ยังมีสมบัติที่ดีในด้านอื่นๆ อีกมากมาย ได้แก่ มีดัชนีการหักเห แสงที่สูง มีค่าความจุความร้อนและสภาพการนำความร้อนสูงการขยายตัวเนื่องจากความร้อนต่ำ มีอุณหภูมิการหลอมเหลวสูง มีความเสถียรทางเคมี (chemical stability) สูง^(14, 15) มีสมบัติในการ ด้านแบคทีเรียที่ดี⁽³⁾ นอกจากฆ่าแบคทีเรียแล้วยังช่วยป้องกันและยับยั้งการแบ่งเซลล์ของแบคทีเรีย ด้วยเหตุผลนี้ ซิงก์ออกไซด์จึงเป็นหนึ่งในสารที่สำคัญในการใช้เป็นยาต้านแบคทีเรีย มีสมบัติใน การป้องกันรังสียูวีที่ดี โดยสามารถป้องกันได้ทั้งรังสียูวีเอ (UV-A) ที่มีความยาวคลื่นในช่วง 320 ถึง 400 นาโนเมตร และรังสียูวีบี (UV-B) ที่ความยาวคลื่น 280 ถึง 320 นาโนเมตร⁽¹⁶⁾ ดังนั้นซิงก์ ออกไซด์จึงถูกใช้เป็นส่วนผสมในสารกันแดด โดยที่ซิงก์ออกไซด์จะไม่เกิดการดูดกลืนเข้าไปใน ผิวหนัง นอกจากนี้ผงซิงก์ออกไซด์มักถูกใช้เป็นสารตัวเติม ลงในวัสดุและผลิตภัณฑ์ต่างๆ เช่น พลาสติก แก้ว ซีเมนต์ ยาง สารหล่อลื่น สี กาวอาหาร แบตเตอรี่ เป็นต้น

2.3 กระบวนการเตรียมซิงก์ออกไซด์

การเตรียมซิงก์ออกไซด์ในปัจจุบันมีการศึกษาด้วยกันหลายวิธี ได้แก่

วิธีโซล-เจล (sol-gel method) เป็นกระบวนการที่นิยมใช้กันมาก เนื่องจากใช้เครื่องมือไม่ ซับซ้อน ได้สารที่มีความบริสุทธิ์สูง สารตั้งต้นที่ใช้ทั่วไปเป็นพวกประกอบอัลคอกไซด์ จะเตรียมให้ เกิดปฏิกิริยา hydrolysis เพื่อให้ได้โซลของโลหะออกไซด์ที่มีขนาดนาโนเมตร โดยโซลจะยึดเกาะ ตัวกันเป็นร่างแหแบบไม่เป็นระเบียบทำให้เกิดเป็นเจล ทิ้งให้เจลแห้ง จากนั้นนำไปเผาที่อุณหภูมิ สูงเพื่อให้สารมีความเป็นผลึกมากขึ้น การสังเคราะห์ด้วยวิธีนี้เป็นวิธีที่มีประสิทธิภาพมาก แต่มี ข้อเสียที่โลหะอัคคอกไซด์มีความไวต่อความชื้น ความร้อนและแสง อีกทั้งมีราคาที่แพง จึงทำให้ ขั้นตอนการสังเคราะห์ต้องทำในสภาวะที่แห้งและเฉื่อยต่อการทำปฏิกิริยาทำให้มีการเก็บรักษา ยาก^(17, 18)

วิธีการการตกตะกอน (precipitation method) เป็นวิธีการสังเคราะห์ที่ไม่ต้องใช้เครื่องมือ ที่ซับซ้อน สังเคราะห์สารได้ในปริมาณมาก แต่เนื่องจากต้องใช้อุณหภูมิที่สูงในการเผาแคลไซน์ จึง ทำให้สารเกิดการเกาะตัวรวมกันของอนุภาคได้ สารตั้งต้นที่ใช้ในวิธีนี้ส่วนมากเป็นสารละลายเกลือ ของสังกะสี เช่น ซิงก์ซัลเฟต (ZnSO₄) ซิงก์อะซีเตต (Zn(CH₃COO)₂) และ ซิงก์ไนเตรต (Zn(NO₃)₂) เป็นต้น⁽¹⁹⁾ วิธี flame spray pyrolysis เป็นวิธีการสังเคราะห์ที่สามารถผลิตอนุภาคขนาดนาโนเมตร ได้ นอกจากนั้นยังสามารถควบคุมความบริสุทธิ์และขนาดของสารได้ อย่างไรก็ตามเครื่องมือที่ใช้ ในการสังเคราะห์ด้วยวิธีนี้จำเป็นต้องเป็นเครื่องมือที่มีลักษณะเฉพาะ ซึ่งมีราคาค่อนข้างสูง อีกทั้ง วิธีนี้ต้องใช้การฉีดพ่นด้วยเปลวไฟและมีการใช้ก๊าซเชื้อเพลิงเพื่อให้เกิดการเผาไหม้ จึงต้องมีความ ชำนาญในการสังเคราะห์มาก^(5, 20)

วิธีไฮโดรเทอร์มัล (hydrothermal method) เป็นวิธีสังเคราะห์สารโดยใช้สารละลายตั้งต้น ใส่ในภาชนะปิดทรงกระบอกที่เรียกว่า autoclave หลังจากนั้นจะให้ความร้อนกับสารตั้งต้นที่อยู่ใน Autoclave อุณหภูมิที่ใช้อยู่ในช่วง 100 ถึง 350 องศาเซลเซียส ขึ้นกับความสามารถในการทนต่อ อุณหภูมิของเทปลอนที่ใช้สังเคราะห์ แล้วปล่อยให้เกิดปฏิกิริยาจนได้สารตามต้องการจากนั้นนำ สารที่ได้ไปกรองและล้างแล้วอบให้แห้ง การสังเคราะห์สารด้วยวิธีนี้ เนื่องจากเป็นวิธีที่ง่าย ไม่ต้อง อาศัยเครื่องมือพิเศษ อุณหภูมิที่ใช้ในการเตรียมต่ำและเป็นกระบวนการที่นับได้ว่าเป็นมิตรกับ สิ่งแวดล้อม นอกจากนั้นยังสามารถควบคุมขนาดและสัณฐานวิทยา (morphology) ของอนุภาค ได้ดี^(12, 13)

จากงานวิจัยที่ผ่านมากระบวนการส่วนใหญ่เตรียมจากสารเคมีตั้งต้นที่เป็นสารละลาย เกลือของโลหะซิงก์ เช่น ซิงก์อะซีเตต (Zn(CH₃COO)₂) ซิงก์ไนเตรต (Zn(NO₃)₂) ซิงก์ซัลเฟต (ZnSO₄) เป็นต้น ดังนั้นงานวิจัยนี้จึงทำการศึกษาการสังเคราะห์ซิงก์ออกไซด์ที่มีอนุภาคขนาดนา โนเมตรด้วยวิธีไฮโดรเทอร์มัล โดยใช้กากฝุ่นสังกะสีจากกระบวนการซุบสังกะสีแบบจุ่มร้อนเป็นสาร ตั้งต้น โดยเตรียมสารตั้งต้นให้อยู่ในรูปของสารละลายเกลือซิงก์ซัลเฟตและซิงก์ไนเตรต สาเหตุที่ เลือกวิธีไฮโดรเทอร์มัลมาใช้ในการสังเคราะห์ เนื่องจากเป็นวิธีที่ง่าย ใช้อุณหภูมิในการเตรียมต่ำ โดยไม่ต้องผ่านการเผาแคลไซน์ที่อุณหภูมิสูงเพื่อให้เกิดผลึก สารที่ได้มีความบริสุทธิ์สูงและ สามารถควบคุมขนาดและรูปร่างผลึกได้ดี

2.4 ตัวเร่งปฏิกิริยาเชิงแสง (Photocatalyst)

2.4.1 หลักการของตัวเร่งปฏิกิริยาเชิงแสง (photocatalytic process)

กระบวนการของตัวเร่งปฏิกิริยาเชิงแสง^(17, 20-24) เป็นการเร่งปฏิกิริยาที่กระตุ้นด้วยแสง โดย ใช้ตัวคะตาลิสต์ (catalyst) ซึ่งทำหน้าที่ลดพลังงานกระตุ้น (activation Energy, E_a) ของการ เกิดปฏิกิริยา ดังแสดงในภาพที่ 2.6⁽²⁴⁾ จากภาพจะแสดงพลังงานการกระตุ้นของปฏิกิริยาที่มีและ ไม่มีตัวคะตาลิสต์ จะพบว่าปฏิกิริยาที่ไม่มีตัวคะตาลิสต์พลังงานกระตุ้น จะมีค่ามาก และพลังงาน ของผลิตภัณฑ์จะต่ำกว่าพลังงานของสารอินทรีย์ พลังงานกระตุ้นนี้จะลดลงเมื่อมีตัวคะตาลิสต์ใน ปฏิกิริยา ในขณะที่พลังงานของสารอินทรีย์และผลิตภัณฑ์จะมีเท่าเดิม โดยตัวคะตาลิสต์นี้จะช่วย เพิ่มอัตราเร็วของปฏิกิริยาและลดพลังงานการกระตุ้น อีกทั้งตัวคะตาลิสต์ยังตอบสนองต่อแสง คือ เมื่อได้รับแสงจะเกิดการกระตุ้นให้มีพลังงานมากกว่าแถบช่องว่าง (energy band gap, E_a)

การเกิดปฏิกิริยาโฟโตคะตาไลซิสต้องมีองค์ประกอบ ดังนี้

- 1. ตัวคะตาลิสต์ เช่น สารกึ่งตัวนำ
- 2. พลังงานแสง ซึ่งมีค่ามากกว่าหรือเท่ากับพลังงานโฟตอนของตัวคะตาลิสต์
- 3. ออกซิเจน
- 4. น้ำ

ภาพที่ 2.6 พลังงานของการเกิดปฏิกิริยาของสารอินทรีย์

2.4.2 พลังงานแสง

พลังงานในการกระตุ้นให้เกิดปฏิกิริยาในกระบวนการของตัวเร่งปฏิกิริยาเชิงแสง ซึ่ง พลังงานดังกล่าวจะอยู่ในรูปของพลังงานโฟตอน (photon energy) หรือเรียกว่า พลังงานกระตุ้น สามารถคำนวณได้จากสมการ

$$\mathsf{E} = h\nu = \frac{hc}{\lambda} \tag{(aunts 2.1)}$$

เมื่อ E คือ พลังงานควอนตัม (Quantum Energy), จูล

- h คือ ค่าคงที่ของพลังค์ (Planck's Contant) = 6.625×10⁻³⁴, จูล-วินาที
- ห คือ ความถี่ของคลื่นแสง, เฮิรตซ์ หรือ วินาที⁻¹
- λ คือ ความยาวคลื่นแสง, นาโนเมตร
- c คือ ความเร็วของคลื่นแสง = 2.997×10⁸, เมตร/วินาที

แสงที่ได้รับความสนใจในกระบวนการของตัวเร่งปฏิกิริยาเชิงแสง คือ รังสียูวี มีความยาว คลื่นของแสงอัลตร้าไวโอเลท (UV light) อยู่ในช่วง 100 ถึง 400 นาโนเมตร และความยาวคลื่นแสง ที่คนสามารถมองเห็น (visible หรือ แสงขาว) อยู่ในช่วง 380 ถึง 770 นาโนเมตร ดังแสดงในภาพ ที่ 2.7⁽²⁵⁾ รังสียูวีนี้ แบ่งออกได้เป็น 3 ช่วง คือ

- 1. คลื่นยาว (Long Wave UV, UV-A) อยู่ในช่วง 400 ถึง 320 นาโนเมตร
- 2. คลื่นกลาง (Middle Wave UV, UV-B) อยู่ในช่วง 320 ถึง 280 นาโนเมตร
- 3. คลื่นสั้น (Short Wave UV, UV-C) อยู่ในช่วง 280 ถึง 200 นาโนเมตร

แสงอาทิตย์มีช่วงความยาวของคลื่นกว้างมาก ความเข้มของแสงยูวีและแสงขาวที่ส่องลง มายังพื้นผิวโลกจะถูกทำให้ลดลงอย่างมาก ในชั้นบรรยากาศจากการถูกดูดกลืนและการกระเจิง แสง ที่ความยาวของคลื่นแสงต่ำกว่า 320 นาโนเมตร ความเข้มของแสงจะลดลงอย่างรวดเร็ว เนื่องจากการถูกดูดกลืนโดยโอโซนในบรรยากาศชั้นสตราโตสเฟียร์ (สูงจากพื้นผิวโลกในช่วง ประมาณ 10 ถึง 35 ไมล์) และที่ความยาวคลื่นต่ำกว่า 288 นาโนเมตร มีรังสีที่แผ่มาถึงพื้นโลก น้อย ดังนั้นแสงยูวีที่ส่องมายังพื้นโลกจึงมีขีดจำกัด

ภาพที่ 2.7 องค์ประกอบของรังสี่ยูวี

2.4.3 ชนิดของตัวคะตาลิสต์

สารที่ใช้เป็นตัวคะตาลิสต์ในปฏิกิริยาโฟโตคะตาไลซิส ได้แก่

1. โลหะตัวน้ำ (Transition Metal) เช่น ทองแดง โครเมียม และนิเกิล เป็นต้น

2. สารกึ่งตัวน้ำ (Semiconductor) เช่น ซิงก์ออกไซด์ ไททาเนียมไดออกไซด์ แคดเมียม ซัลไฟด์และเฟอริกออกไซด์

องค์ประกอบของโลหะตัวนำและสารกึ่งตัวนำ ประกอบด้วยแถบเวเลนซ์ (valence band, V_b) และแถบการนำ (conduction band, C_b) ในโลหะตัวนำจะมีแถบเวเลนซ์และแถบการนำ เรื่อดิกัน โดยจะมีแถบช่องว่าง (Band gap, E_{bg}) ขั้นกลางอยู่ระหว่าง แถบเวเลนซ์และแถบการนำ เมื่ออิเล็กตรอนถูกกระตุ้นด้วยโฟตอนที่มีพลังงานมากกว่าพลังงาน ของแถบช่องว่าง โดยพลังงานแถบช่องว่างจะมีพลังงานที่แตกต่างกันขึ้นกับชนิดของสารกึ่งตัวนำจะไม่ติดกัน โดยจะมีแถบช่องว่าง (Band gap, E_{bg}) ขั้นกลางอยู่ระหว่าง แถบเวเลนซ์และแถบการนำ เมื่ออิเล็กตรอนถูกกระตุ้นด้วยโฟตอนที่มีพลังงานมากกว่าพลังงาน ของแถบช่องว่าง โดยพลังงานแถบช่องว่างจะมีพลังงานที่แตกต่างกันขึ้นกับชนิดของสารกึ่งตัวนำ สามารถดูได้ค่าพลังงานการกระตุ้นของแถบช่องว่าง จากตารางที่ 2.1⁽²⁶⁾ จากนั้นจะเกิดคู่ของ อิเล็กตรอน (e) และโฮล (h⁺) โดยที่อิเล็กตรอนจากแถบเวเลนซ์จะกระโดดไปยังแถบการนำ เกิด เป็นโฮลในแถบเวเลนซ์ ซึ่งโฮลสามารถเคลื่อนที่ได้อย่างอิสระในแถบเวเลนซ์ อิเล็กตรอนก็เช่นกัน สามารถเคลื่อนที่ได้ทั่วแถบการนำ จากข้อมูลดังกล่าวอิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปมา ระหว่างแถบเวเลนซ์และแถบการนำได้ง่าย เนื่องจากในโลหะตัวนำไม่มีแถบช่องว่างกั้นอยู่ ด้วย สาเหตุนี้ อิเล็กตรอนและโฮล จึงสามารถกลับมารวมตัวกันใหม่ได้ง่ายเรียกว่า รีคอมบิเนชั่น (recombination) แต่ในสารกิ่งตัวนำอิเล็กตรอนและโฮลจะกลับมารวมตัวกัน เพราะมีแถบช่องว่างกั้นอยู่ระหว่างแถบเวเลนซ์ และแถบการนำ

สารกึ่งตัวนำ	Band gap energy (eV)	ช่วงความยาวคลื่นที่มีผลต่อ แถบพลังงาน (nm)
TiO ₂ (anatase)	3.2	390
TiO ₂ (rutile)	3.0	413
WO ₃	2.8	443
SrTiO ₃	3.4	365
Fe ₂ O ₃	2.2	565
ZnO	3.3	390
ZnS	3.7	336
CdSe	1.7	730
CdS	2.5	497
BaTiO ₃	3.3	375

ตารางที่ 2.1 ค่าพลังงานแถบช่องว่างของสารกึ่งตัวนำชนิดต่างๆ

2.4.4 กลไกในการเกิดตัวเร่งปฏิกิริยาเชิงแสง (Photocatalyst)

การเกิดกระบวนการเกิดตัวเร่งปฏิกิริยาเชิงแสง^(20-22, 27) โดยสารกึ่งตัวนำจะมีแถบพลังงาน ซึ่งประกอบด้วยแถบเวเลนซ์ (v_b) ที่มีอิเล็กตรอนบรรจุอยู่เต็มและมีแถบการนำ (c_b) ที่ว่างอยู่ โดยที่ แถบทั้งสองมีตำแหน่งของพลังงานกระตุ้นที่แตกต่างกันขึ้นกับชนิดของสารกึ่งตัวนำ การส่งผ่าน อิเล็กตรอนจากแถบเวเลนซ์ไปยังแถบการนำ ต้องการพลังงานจากพลังงานแสงภายนอก พลังงาน นี้มีค่าเท่ากับหรือมากกว่าพลังงานแถบช่องว่าง (E_{bg}) ซึ่งในสารกึ่งตัวนำซิงก์ออกไซด์มีค่าเท่ากับ 3.37 eV^(5, 21) ในการการดูดกลืนโฟตอนที่มีพลังงานเท่ากับหรือมากกว่าพลังงานแถบช่องว่าง จะ ทำให้อิเล็กตรอนย้ายจากแถบเวเลนซ์ไปสู่แถบการนำ ก่อให้เกิด photoelectron, e⁻_{CB} และ positive hole, h⁺_{vB} ที่ตำแหน่งแถบการนำและแถบเวเลนซ์ ตามลำดับ

เมื่อมีพลังงานแสงจากภายนอกมากระตุ้น เกิดคู่ของอิเล็กตรอนและโฮลเกิดขึ้น แสดงดัง สมการต่อไปนี้

Semiconductor + h
$$\nu \longrightarrow e_{CB} + h_{VB}^+$$
 (สมการ 2.2)

จากนั้นที่แถบการนำจะเกิดปฏิกิริยาขึ้น โดยอิเล็กตรอนที่เกิดขึ้นจะทำปฏิกิริยากับ โมเลกุลของออกซิเจน (O₂) ในอากาศเกิดเป็นซูเปอร์ออกไซด์แรดดิคัล (Superoxide radical, O₂ •) โดยเกิดเป็นปฏิกิริยารีดักชั่น (Reduction) ดังแสดงในสมการที่ 2.3-2.5

 $e_{CB} + O_2 \longrightarrow O_2^{\bullet}$ (สมการ 2.3)

$$O_2^{\bullet \bullet} + 2H_2O \longrightarrow 2H_2O_2$$
 (สมการ 2.4)

$$H_2O_2 \longrightarrow 2OH^2$$
 (สมการ 2.5)

ส่วนที่แถบเวเลนซ์ที่มีโฮลจะจับและทำปฏิกิริยากับน้ำ (H₂O) และหมู่ไฮดรอกซิล (OH) เกิดเป็นไฮดรอกซิลแรดดิคัล (hydroxyl radical, OH) จะเกิดปฏิกิริยาออกซิเดชั่น (oxidation) ดัง แสดงในสมการที่ 2.6-2.7

$$h^{+}_{VB}$$
 + $H_{2}O$ → OH^{-} + H^{+} (สมการ 2.6)
 h^{+}_{VB} + OH^{-} → OH^{-} (สมการ 2.7)

ซึ่งการเกิดซูเปอร์ออกไซด์แรดดิคัลและไฮดรอกซิลแรดดิคัล ทั้งสองตัวนี้จะมีความสามารถ ในการสลายสารอินทรีย์ต่างๆ ได้และผลิตภัณฑ์สุดท้ายจะเหลือแต่คาร์บอนไดออกไซด์ (CO₂) และ น้ำ (H₂O) ซึ่งเป็นสารที่ไม่เป็นอันตรายกับสิ่งแวดล้อม ดังแสดงกลไกการเกิดกระบวนการโฟโตคะ ตาไลซิสในภาพที่ 2.8⁽²⁸⁾

การรวมตัวกันใหม่ของอิเล็กตรอนและโฮล (electron- hole recombination)

 $e_{CB}^{-} + h_{VB}^{+} \longrightarrow ZnO + heat$ (สมการ 2.8)

ภาพที่ 2.8 กระบวนการการเป็นตัวเร่งปฏิกิริยาด้วยแสงของซิงก์ออกไซด์

จากการศึกษาที่ผ่านมาพบว่าปัจจัยที่มีผลต่อ สมบัติของตัวเร่งปฏิกิริยาเชิงแสง มีหลาย ประการ เช่น ลักษณะความเป็นผลึก (crystallinity) ความบริสุทธิ์ (purity) ขนาดอนุภาค (particle size) และ พื้นที่ผิวจาเพาะ (specific surface area) เป็นต้น

ในแต่ละวิธีของการเตรียมมีหลายปัจจัยที่เป็นตัวควบคุมลักษณะของสมบัติทางกายภาพ ของผงซิงก์ออกไซด์ ที่ส่งผลต่อประสิทธิภาพความเป็นตัวเร่งปฏิกิริยาด้วยแสง ได้แก่

ขนาด โดยพบว่าขนาดอนุภาคที่เล็ก จะมีประสิทธิภาพในการเป็นคะตะลิสต์ที่ดี เนื่องจาก มีพื้นที่ผิวจำเพาะสูง จึงทำให้ปฏิกิริยาที่ถูกเร่งด้วยแสง ซึ่งจะเกิดที่บริเวณผิวของอนุภาค มีได้มาก ดังนั้นจึงมีความเป็นตัวเร่งปฏิกิริยาเชิงแสงที่ดี⁽²⁶⁾ **ความเป็นผลึก** โดยพบว่าประสิทธิภาพของสมบัติดังกล่าวจะเกิดขึ้นกับผงซิงก์ออกไซด์ที่ มีความ เป็นผลึกที่สมบูรณ์ เนื่องจากผลึกที่สมบูรณ์จะมีประสิทธิภาพในการทำปฏิกิริยาที่สูง⁽²⁹⁾

ค่า zeta potential ที่ผิวของอนุภาคผงซิงก์ออกไซด์เป็นค่าที่บอกถึงขนาดประจุบนผิว อนุภาค หากมีค่ามากก็จะเกิดการผลักหรือดึงดูดกันได้มากซึ่งใช้อธิบายความคงตัวของอนุภาคที่ แขวนลอย⁽³⁰⁾

การกระจายตัวของอนุภาค พบว่าผงซิงก์ออกไซด์ที่มีการกระจายตัวของอนุภาคที่ดี ไม่ เกาะกลุ่มกัน (flocculate) ส่งผลให้อนุภาคมีขนาดเล็ก และมีพื้นที่ผิวจำเพาะสูง ทำให้เพิ่มการ เกิดปฏิกิริยาที่ผิวมากขึ้น ความสามารถในการเป็นตัวเร่งปฏิกิริยาด้วยแสงจึงมีประสิทธิภาพ⁽³¹⁾

เนื่องจากซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนมีคุณสมบัติที่ดีกว่าซิงก์ออกไซด์ขนาดปกติ จึงทำให้เป็นที่สนใจต่อการศึกษาการสังเคราะห์ซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนอย่าง กว้างขวาง โดยเฉพาะการศึกษาการกระจายตัวของอนุภาค

2.5 การกระจายตัวของอนุภาคในสารแขวนลอย

การเตรียมสารแขวนลอยโดยการเติมผงของอนุภาคลงในของเหลว⁽³¹⁾ อนุภาคขนาดเล็ก หรืออนุภาคระดับนาโนเมตร จะมีแนวโน้มที่จะเข้ารวมตัวและเกาะตัวกันเป็นกลุ่มอนุภาคที่มีขนาด ใหญ่และจะไม่สามารถกระจายตัวได้ดี ซึ่งส่งผลให้มีพื้นที่ผิวในการทำปฏิกิริยาลดลง ดังนั้นจึง จำเป็นต้องมีการเติมสารช่วยกระจายตัวลงไปในสารละลายที่มีอนุภาคขนาดเล็กเพื่อลดปัญหา ดังกล่าว

จากทฤษฎี DLVO ได้อธิบายเสถียรภาพของการแขวนลอยของอนุภาคในตัวกลางว่า ขึ้นอยู่กับพลังงานศักย์รวม ดังสมการนี้

$$V_T = V_A + V_B$$
 (สมการ 2.9)

เมื่อ V_T = พลังงานศักย์รวม (total potential energy) มีหน่วยเป็น joule

V_R = พลังงานศักย์ผลัก (repulsive potential energy)

ความสัมพันธ์จากสมการข้างต้นจะแสดงด้วยกราฟพลังงานศักย์ระหว่างอนุภาคดังภาพที่ 2.9⁽³¹⁾ เมื่ออนุภาคอยู่ใกล้กันมากๆ พลังงานดึงดูด (V_A) จะมีค่ามากและทำให้พลังงานศักย์รวม (V_T) มีค่าติดลบ แต่เมื่ออนุภาคอยู่ห่างกันมากขึ้น พลังงานศักย์ผลัก⁽¹⁴⁾ จะมีค่ามาก จึงทำให้ พลังงานศักย์รวม (V_T) มีค่าเป็นบวก และเมื่ออนุภาคอยู่ห่างจากกันออกไปอีกพลังงานศักย์ดึงดูด และพลังงานศักย์ผลัก จะมีอิทธิพลต่อพลังงานศักย์รวมเท่ากัน ดังนั้น V_T จึงมีค่าเข้าใกล้ศูนย์ ทฤษฏี DLVO อธิบายว่าหากอนุภาคสองอนุภาคที่เคลื่อนที่เข้ามาชนกันด้วยพลังงานจลน์ที่มีค่า มากพอที่จะเอาชนะพลังงานศักย์ผลักได้⁽³¹⁾ ทำให้อนุภาคทั้งสองเข้ามาอยู่ใกล้กันมาก ทำให้ พลังงานศักย์ดึงดูดดึงให้อนุภาคทั้งสองเข้ามาชิดกันแล้วเกิดการดูดจับกัน คือ เกิดการรวมกัน (agglomerate) ของอนุภาคและเกิดเป็นอนุภาคขนาดใหญ่

ภาพที่ 2.9 ความสัมพันธ์ของพลังงานศักย์ระหว่างอนุภาค

แรงระหว่างอนุภาคสามารถแบ่งออกได้เป็น 3 ประเภท⁽³²⁾ ดังนี้

 แรงดึงดูดชนิด van der waals เป็นแรงดึงดูดทางไฟฟ้าแบบอ่อนๆ ที่เกิดจากแรงดึงดูด ระหว่างขั้วคู่ชนิดถาวรและขั้วคู่ชนิดเหนี่ยวนำ (permanent and induced dipoles) ที่อยู่บนพื้นผิว ของอนุภาค

2. แรงผลักทางไฟฟ้า (electrostatic force) เป็นแรงผลักทางไฟฟ้าระหว่างอนุภาคที่พื้นผิว มีประจุชนิดเดียวกันหรือแรงดึงดูดระหว่างประจุเดียวกัน แรงผลักชนิด steric force เป็นแรงผลักที่เกี่ยวข้องกับสายโซ่พอลิเมอร์ที่เกาะอยู่บนผิว ของอนุภาค แรงผลักจะเกิดขึ้นเมื่ออนุภาคเข้าใกล้กันมากจนกระทั่งสายโซ่พอลิเมอร์ซ้อนทับกัน

จะเห็นได้ว่าในทางทฤษฏีถ้าหากแรงมีแรงดึงดูดมากกว่าแรงผลักจะทำให้อนุภาคเกิดการ ดึงดูดกันและจับตัวกันเกิดเป็นอนุภาคที่มีขนาดใหญ่ขึ้น (flocculation) แต่ถ้ามีแรงผลักมากกว่า แรงดึงดูดก็จะทำให้อนุภาคเคลื่อนที่ออกห่างจากกัน ไม่จับตัวกันและสามารถกระจายตัวได้ดีเป็น อนุภาคเดี่ยว (single unit)

กระบวนการที่ทำให้อนุภาคกระจายตัวได้ดี และมีการเกาะตัวกันน้อยลง สามารถทำได้ โดยการเติมสารช่วยกระจายตัวลงไปในสารละลาย จะช่วยให้ไม่เกิดการรวมตัวกันขณะที่ ตกตะกอน เรียกว่า "stabilization" ซึ่งแบ่งได้ 3 แบบ คือ

 Electrostatic stabilization เป็นการทำให้อนุภาคกระจายตัว ไม่รวมตัวกันด้วยแรงผลัก ทางไฟฟ้าระหว่างประจุไฟฟ้าที่เกิดขึ้นรอบ ๆ ผิวของอนุภาค ดังแสดงในภาพที่ 2.10 (ก) อนุภาคที่ มีประจุชนิดเดียวกันเกิดการผลักกัน ไม่เกาะกันเป็นกลุ่มอนุภาคขนาดใหญ่

 Steric stabilization เป็นการทำให้อนุภาคแยกออกจากกันและกระจายตัวใน สารละลายได้อย่างเสถียร ด้วยชั้นเคลือบของพอลิเมอร์ที่อยู่บนพื้นผิวของอนุภาค ดังแสดงในภาพ ที่ 2.10 (ข) ชั้นของพอลิเมอร์จะเป็นตัวทำหน้าที่เหมือนกับเกราะกันชนไม่ให้อนุภาคเข้าใกล้กัน อนุภาคจึงไม่เกิดการดูดจับกันเป็นกลุ่มอนุภาคขนาดใหญ่ โดยพอลิเมอร์ที่เติมเพื่อช่วยกระจายตัว อนุภาค ด้านหนึ่งจะชอบเกาะอยู่กับอนุภาคส่วนอีกด้านจะยืดตัวอยู่ในสารละลาย พอลิเมอร์ที่เติม เพื่อช่วยให้อนุภาคกระจายตัวได้ดีได้แก่ Darvan 7, hydroxypropyl cellulose (HPC), Dispex A40(commercial PAA, MW 10,000) เป็นต้น⁽³³⁾

3. Electrosteric stabilization เป็นการทำให้อนุภาคกระจายตัวและแขวนลอยได้อย่าง เสถียรในตัวกลาง โดยอาศัยหลักการของวิธีที่ 1 และ 2 รวมกัน กล่าวคือ ใช้สารช่วยกระจายตัว ประเภทพอลิอิเล็กโตรไลท์ ซึ่งสามารถแตกตัวให้ประจุลบหรือบวกได้ อนุภาคจะถูกแยกออกจาก กันด้วยแรงผลัก electrostatic จากประจุและแรงผลัก steric จากความยาวของสายโซ่พอลิเมอร์ ดังแสดงในภาพที่ 2.10 (ค) พอลิเมอร์ที่เติมเพื่อช่วยให้อนุภาคกระจายตัวได้ดีได้แก่ poly (acrylic acid), poly (acrylic acid-co-maleic acid), poly (acrylamide), sodium carboxymethyl cellulose, ammonium polyacrylate และ sulphonic acid เป็นต้น⁽³⁴⁾

ภาพที่ 2.10 การ stabilization ของอนุภาคเซรามิก (ก) Electrostatic stabilization (ข) Steric stabilization และ (ค) Electrosteric stabilization

2.6 สารช่วยกระจายตัว (dispersant)

การสังเคราะห์สารอนุภาคขนาดนาโนเมตรโดยทั่วไปอนุภาคจะเกิดปัญหาการเกาะตัวกัน เป็นอนุภาคขนาดใหญ่ส่งผลให้สมบัติที่ต้องการนำไปใช้งานมีประสิทธิภาพลดลง เช่น พื้นที่ผิว ลดลงส่งผลให้ความสามารถในการย่อยสลายสารละลายเมทิลีนบลูน้อยลงและสมบัติการดูดซับ แสงยูวีลดลง การช่วยให้อนุภาคขนาดนาโนเมตรแยกออกจากกันและกระจายตัวอย่างเสถียรทำได้ โดยการเติมสารตัวกระจายตัว ที่มีความสามารถในการปรับพื้นผิวระหว่างสารที่มีเฟสต่างกัน โดยสารช่วยกระจายตัวสามารถจัดเรียงตัวไปตามขั้วของเฟสที่ตรงข้ามกัน คือ ส่วนที่มีขั้ว (polar/hydrophilic) และส่วนที่ไม่มีขั้ว (nonpolar/lipophilic) ซึ่งส่วนที่มีขั้วก็จะจับกับเฟสที่ไม่มีขั้ว ส่วนที่ไม่มีขั้วก็จะจับกับเฟสที่ไม่มีขั้ว⁽³⁵⁾

การแบ่งประเภทของสารช่วยกระจายตัวในที่นี้จะแบ่งตามความเป็น ionic และ nonionic ของสาร โดยจะแบ่งสารช่วยกระจายตัวออกเป็น 4 ประเภท ได้แก่

 สารช่วยกระจายตัวประเภท amphoteric เป็นสารช่วยกระจายตัวที่ประจุไฟฟ้าบนส่วน ที่ชอบน้ำ (hydrophilic) สามารถเป็นได้ทั้งประจุบวกและลบ ขึ้นอยู่กับสภาพความเป็นกรด-ด่าง ของสภาวะแวดล้อม ถ้าเป็นด่าง ประจุไฟฟ้าบน hydrophilic จะเป็นลบ ถ้าสภาวะเป็นกรด จะเป็น บวกและถ้าสภาวะที่เป็นกลางจะไม่เกิดประจุไฟฟ้าบน hydrophilic ตัวอย่างของสารในกลุ่มนี้ ได้แก่ alkylamido alkyl amines และ alkyl substituted amino acid

2. สารช่วยกระจายตัวประเภท anionic เป็นสารช่วยกระจายตัวที่ประจุไฟฟ้าบนส่วนที่ ชอบน้ำ (hydrophilic) เป็นประจุลบ ส่วนมากแสดงอยู่ในรูป carboxylate, sulfate, sulfonate หรือ phosphate ตัวอย่างของสารในกลุ่มนี้ได้แก่ acylated amino acids and และ acyl peptides carboxylic acids

 สารช่วยกระจายตัวประเภท cationic เป็นสารช่วยกระจายตัวที่ประจุไฟฟ้าบนส่วนที่ ชอบน้ำ (hydrophilic) เป็นประจุบวก ส่วนมากเป็นพวก quaternary ammonium สารช่วยกระจาย ตัวประเภทนี้จะไม่สามารถทำงานได้ในสภาวะที่เป็นสูง (pH10 -11) เนื่องจาก ammonium salt จะ มีการสูญเสียประจุบวก ทำให้เกิดการตกตะกอนได้ ตัวอย่างของสารในกลุ่มนี้ ได้แก่ quaternaries และ alkyl imidazolines

4. สารช่วยกระจายตัวประเภท nonionic surfactant สารช่วยกระจายตัวประเภทนี้จะต่าง จากสารช่วยกระจายตัวประเภท anionic และ cationic ตรงที่เป็นโมเลกุลที่ไม่มีประจุ โดยมีพวก polyether หรือ polyhydroxyl เป็นกลุ่มที่แสดงสมบัติคล้ายพวกที่มีประจุ ตัวอย่างของสารในกลุ่ม นี้ ได้แก่ alcohols และ alkanolamides

2.7 สมบัติการต้านแบคทีเรีย

เนื่องจากสภาพแวดล้อมและมลภาวะรอบตัวของเรามีเชื้อโรคอยู่เป็นจำนวนมาก แต่ที่ใกล้ ตัวเราที่สุดก็คือแบคทีเรีย ที่มักจะสะสมอยู่ในเสื้อผ้าเครื่องนุ่งห่ม อาหาร⁽³⁶⁾ หรือสิ่งต่างๆ ที่ใช้ใน ชีวิตประจำวัน ทำให้เป็นอันตรายต่อสุขภาพและมีความเสี่ยงต่อการเกิดโรคต่างๆ ที่มีสาเหตุจาก เชื้อแบคทีเรีย⁽³⁷⁾ ส่งผลให้มีคนใส่ใจเรื่องนี้กันมากขึ้น จึงมีการศึกษาเกี่ยวกับการต้านแบคทีเรีย ด้วยวิธีต่างๆ เพื่อที่จะป้องกันไม่ให้เกิดการแพร่กระจายโรคมาสู่คนทำให้คนมีสุขภาพดี ซึ่งใน งานวิจัยนี้ได้นำผงซิงก์ออกไซด์ที่สังเคราะห์ได้จากกากของเสียที่เป็นฝุ่นผงสังกะสี มาศึกษาการ ต้านเชื้อแบคทีเรียชนิด Escherichia coli

2.7.1 Escherichia coli

Escherichia coli หรือ E. coli⁽³⁶⁾ เป็นแบคทีเรียในกลุ่มโคลิฟอร์ม และถูกจัดอยู่ในกลุ่ม แบคทีเรียแกรมลบ (gram-negative) ลักษณะเซลล์ E. coli จะมีรูปร่างเป็นแท่งคล้ายทรงกระบอก มีความยาวประมาณ 2 ไมครอน และเส้นผ่านศูนย์กลาง 0.5 ไมครอน ส่วนประกอบ ในเซลล์ E. coli จะมี flagella ซึ่งมีลักษณะเป็นเส้นยาวๆ อยู่รอบเซลล์รูปทรงกระบอกเพื่อช่วยให้ E. coli เคลื่อนที่ได้ ลักษณะของเชื้อแบคทีเรีย แสดงในภาพที่ 2.11 (ภาพถ่ายจากงานวิจัยนี้) และ เชื้อแบคทีเรียชนิดนี้สามารถพบได้ในสิ่งแวดล้อม เช่น น้ำ พืช อากาศและดิน เป็นต้น

ภาพที่ 2.11 ลักษณะของแบคทีเรีย Escherichia coli

2.7.2 สารต้านแบคทีเรีย

สารต้านแบคทีเรีย⁽³⁸⁾ แบ่งออกเป็น 2 กลุ่ม ได้แก่ สารต้านแบคทีเรียกลุ่มอินทรีย์ เช่น ไคโต ชาน เป็นสารที่สามารถสังเคราะห์จากธรรมชาติได้ จึงมีความเป็นพิษน้อย สามารถใช้กับ กระบวนการผลิตอาหาร เวชภัณฑ์หรือเวชสำอางได้ แต่ข้อจำกัดของการใช้สารต้านแบคทีเรียกลุ่ม อินทรีย์คือ ไม่สามารถนำไปใช้กับกระบวนการผลิตที่ต้องใช้อุณหภูมิสูง เพราะจะเกิดการสลายตัว และสารต้านแบคทีเรียอีกกลุ่มคือ กลุ่มอนินทรีย์ กลไกในการทำงานของกลุ่มอนินทรีย์จะเข้าไป ทำลายระบบการทำงานของดีเอ็นเอและเอ็นไซม์ภายในเซลล์ของแบคทีเรีย และทำให้ปฏิกิริยา ต่างๆ ในเซลล์ของแบคทีเรียล้มเหลวและตายในที่สุด ได้แก่ โลหะและออกไซด์ของโลหะบางชนิด เช่น ซิลเวอร์ คอบเปอร์ ซิงก์ หรือ ออกไซด์ของซิงก์ออกไซด์ และไทเทเนียมไดออกไซด์ ข้อดีของ สารต้านแบคทีเรียกลุ่มนี้คือ ทนต่ออุณหภูมิสูง สามารถประยุกต์ใช้กับกระบวนการผลิตที่มี อุณหภูมิสูงได้ เช่นอุตสาหกรรมการผลิตแก้วหรือกระจก อุตสาหกรรมการผลิตยาหรือเวชภัณฑ์ เป็นต้น แต่มีข้อจำกัดคือ เนื่องจากกลไกในการทำงานของสารต้านแบคทีเรียกลุ่มอนินทรีย์มีผลต่อ เซลล์โดยตรง จึงอาจส่งผลต่อการทำงานของเซลล์ข้างเคียงหรือเซลล์ที่ไม่ต้องการทำลายได้ โอกาสเกิดความเป็นพิษในเซลล์มีสูง

2.7.3 สารต้านแบคทีเรียอนินทรีย์นาโน

สารต้านแบคทีเรียชนิดอนินทรีย์ ได้แก่ กลุ่มโลหะและออกไซด์โลหะ เช่น ไทเทเนียมได ออกไซด์ ซิลเวอร์และซิงก์ออกไซด์ โดยกลไกการต้านแบคทีเรียและการนำไปประยุกต์ใช้งานของ สารอนินทรีย์ชนิดต่างๆ จะแสดงในตารางที่ 2.2⁽³⁾ สารอนินทรีย์พวกนี้จะมีความเป็นพิษกับเชื้อ แบคทีเรีย แต่จะมีผลน้อยมากกับคนและเซลล์สัตว์^(38, 39) ยกตัวอย่าง เช่น ซิงก์ออกไซด์ที่มีอนุภาค ขนาดนาโนเมตร สามารถนำไปประยุกต์ใช้กับยา อาหาร เครื่องสำอาง และวัสดุทางการแพทย์ ^(40, 41) โดยที่ซิงก์ออกไซด์นั้นมีข้อดีที่เหนือกกว่าซิลเวอร์ตรงที่ซิงก์ออกไซด์มีอนุภาคขนาดนาโนเมตร มี ราคาที่ถูกกว่า ซึ่งมีลักษณะผงเป็นสีขาวและนิยมนำไปใช้เป็นส่วนผสมกับผลิตภัณฑ์ครีมกันแดด (UV-blocking)^(9, 42) อนุภาคที่มีขนาดนาโนเมตรของซิงก์ออกไซด์จะเป็นสารที่มีอนุภาคขนาดเล็ก และมีพื้นที่ผิวต่อปริมาตรสูง จึงสามารถเข้าไปสัมผัสกับเชื้อแบคทีเรียได้อย่างทั่วถึง ส่งผลให้การ ต้านแบคทีเรียมีประสิทธิภาพสูง โดยจะเข้าไปทำปฏิกิริยากับโปรตีนของแบคทีเรีย ซึ่งจะส่งผลให้ ระบบเมทาโบลิซึมในเซลล์ของเชื้อแบคทีเรียมีหยุดทำงาน โดยสารต้านแบคทีเรียจะทำลายระบบ หายใจและระบบขนย้ายอิเล็กตรอนในกระบวนการเมทาโบลิซึมและเซลล์ก็จะตายในที่สุด อย่างไร ก็ตามสารต้านเชื้อแบคทีเรียนี้ ยังสามารถช่วยลดการเพิ่มจำนวนของแบคทีเรียได้อีกด้วย⁽³⁸⁾

ซิงก์ออกไซด์ขนาดนาโนเมตรสามารถต้านแบคทีเรียได้ ด้วยกลไกสองแบบด้วยกัน แบบ แรก คือ อาศัยแสง (photocatalyst) โดยเกิด reactive oxygen species (ROS) เมื่อได้รับแสง กระตุ้นจะเกิดปฏิกิริยาของตัวเร่งเชิงแสง เกิดไฮโดรเจนเปอร์ออกไซด์ (hydrogen peroxide) ที่เป็น ตัวออกซิไดซ์ทำลายเซลล์แบคทีเรียและซากของสารอินทรีย์โดยการย่อยสลายหมดไป และแบบที่ สอง คือ ไม่ต้องอาศัยแสง โดยไอออนของโลหะ (heavy metal ions) คือ ซิงก์ไอออน (Zn²⁺) จะ เจาะเข้าผนังเซลล์ (cell membrane) ของแบคทีเรีย เพื่อเข้าไปจับกับ –SH ของโปรตีนซึ่งเป็นตัว ควบคุมกระบวนการเมตาบอลิซึมของเซลล์ ทำให้เซลล์หยุดทำงาน เกิดการปรับเปลี่ยนโครงสร้าง ของโปรตีน ของเหลวภายในเซลล์จะรั่วไหลออกมาภายนอกและเซลล์ก็จะตายในที่สุด กลไกการ ต้านแบคทีเรียที่กล่าวมาข้างต้นดังแสดงในภาพที่ 2.12⁽³⁾
Nanomaterial	Antimicrobial mechanism	Clinical and industrial applications
Ag NPs	Release of Ag ⁺ ions; disruption of cell membrane and electron transport; DNA damage	Dressing for surgical wound and diabetic foot; coatings for medical devices; portable water filters; antibacterial agent; antifungal agent
ZnO NPs	Intracellular accumulation of NPs; cell membrane damage; H_2O_2 production; release of Zn^{2+} ions	Antibacterial creams; lotions and ointment; surface coating of medical device; mouthwash
TiO ₂ NPs	Production of ROS; cell membrane and wall damage	Antibacterial agent; food sterilizing agent; air purifiers; water treatment systems
Au NPs	Interaction with cell membranes; strong electrostatic attraction	Photothermal therapy with near infrared light; adjuvant treatment after serious infections antibacterial agent; antifungal agent
Chitosan	Increased permeability and rupture of membrane; chelation of trace metals; enzyme inactivation	Drinking water disinfectants; bacteria immobilizer; microbiocide in biomedical products
Fullerenes	Destruction of cell membrane integrity; enhancing activity of infiltrating neutrophil	Potential disinfection applications
CNTs	Cell membrane damage by ROS; oxidation of cell membrane proteins and lipids	Antibacterial agent; biofouling-resistant membranes; water filter; surface-coating
NO-releasing NPs	NO release and production of ROS	Infected wound and diabetic foot treatment
Nanoemulsion	Membrane disruption; disruption of the spore coat	Antimicrobial inhaler; anti-biofilm agent; nasal application; vaccine delivery agents

ตารางที่ 2.2 แสดงกลไกในการต่อต้านแบคทีเรียของวัสดุนาโนต่างๆ และการนำไปใช้งาน

ภาพที่ 2.12 กลไกการต้านแบคทีเรียของอนุภาคนาโน.

2.8 งานวิจัยที่เกี่ยวข้อง

C.Hariharan⁽²¹⁾ ได้ศึกษาสมบัติ Photocatalyst ของซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโน ที่ เตรียมด้วยวิธีโซล-เจล โดยทดสอบการย่อยสลายสารละลาย aromatics และ chloroaromatics ซึ่งเป็นสารละลายในกลุ่ม organic contaminants พบว่า ซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโน จาก การเผาแคลไซน์ที่อุณหภูมิ 500 องศาเซลเซียส สามารถย่อยสลายสาร organic contaminants เหล่านี้ได้

L. S. Panchakarla และคณะ⁽⁴³⁾ ได้ศึกษาการเตรียมซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโน ด้วยวิธีโซลโวเทอร์มัล (solvothermal) จากโลหะซิงก์ ด้วยการทำปฏิกิริยาของอะลิฟาติก แอลกอฮอล์ (aliphatic alcohols) เช่น methanol ethanol และ t-butanol กับผงสังกะสี (zinc metal) ที่อุณหภูมิ 300 องศาเซลเซียส พบว่า t-butanol สามารถสังเคราะห์ได้ซิงก์ออกไซด์ขนาด นาโนเมตร โดยจะเกิดพันธะระหว่าง C-O ของแอลกอฮอล์

Y. Chen และคณะ⁽⁴⁴⁾ ได้ศึกษาการสังเคราะห์ซิงก์ออกไซด์ขนาดนาโนเมตร ด้วยวิธีไฮโดร เทอร์มัล ที่อุณหภูมิ 150 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จากสารละลายซิงก์ไนเตรตไฮเดรต (Zn(NO₃)₂·6H₂O) ไฮดราซีน ไฮเดรต (N₂H₄H₂O, 85%) และและโพแทสเซียม ไอโอไดต์ (KI) สังเคราะห์ได้อนุภาคที่มีลักษณะเป็นดอกไม้ (flower-like rod) ซึ่งมีขนาดผลึก 200 ถึง 500 นาโน เมตร ดังแสดงในภาพที่ 2.13 พบว่าโพแทสเซียม ไอโอไดต์ มีผลกับสารลดแรงตึงผิว (surfactant) ในความเป็นผลึกของซิงก์ออกไซด์ที่สังเคราะห์ได้

ภาพที่ 2.13 ลักษณะ flower-like rod ของอนุภาคซิงก์ออกไซด์

งานวิจัยที่ผ่านมาได้ศึกษาผลของสารตั้งต้น สารลดแรงตึงผิว และภาวะในการเตรียมใน กระบวนการไฮโดรเทอร์มัล ต่อรูปร่างสัณฐานของซิงก์ออกไซด์ดังแสดงในตารางที่ 2.3⁽⁴⁴⁾ ตารางที่ 2.3 งานวิจัยที่สังเคราะห์ซิงก์ออกไซด์ด้วยกระบวนการไฮโดรเทอร์มัลที่ภาวะต่างๆ

Starting materials	Surfactant	Conditions	Structure	Morphology
Zn(NO ₃) ₂ ·6H ₂ O, ammonia ⁽⁴⁵⁾	PEG (10000)	200°C for 10 h	Hexagonal structure	Regular whiskers with 150 nm in diameter, 2-4 µm in length
$Zn(Ac)_2 \cdot 2H_2O,$ $(NH_2)_2CO^{(46)}$	-	150°C for 24 h	Hexagonal structure	Rosette-like nanocrystals
ZnSO ₄ , NaOH ⁽⁴⁷⁾	Carbamide (CO(NH ₂) ₂)	160°C for 12 h	Hexagonal structure	Nanobelts arranged in bush-like
Zn(NO ₃) ₂ ·6H ₂ O, (NH ₄) ₂ CO ₃ ⁽⁴⁸⁾	PEG (10000)	200°C for 10 h	Hexagonal structure	Nanowires with 50-80 nm in diameter, 6 µm in length
Zn(Ac) ₂ ·2H₂O, NaOH ⁽⁴⁹⁾	-	110°C for 13 h	Hexagonal structure	Bush-like with 60-120 nm in diameter, 200-400 nm in length
Zn(Ac)₂·2H₂O, NaOH ⁽⁵⁰⁾	-	200°C for 20 h	Hexagonal structure	Flower-like, disc-like
ZnCl ₂ , KOH ⁽⁵¹⁾	CTAB	120°C for 5 h	Hexagonal structure	Rod-like
Zn(Ac) ₂ ·2H ₂ O, NaOH, N ₂ H₄·H ₂ O ⁽⁵²⁾	-	160°C for 48 h	Hexagonal structure	Hexagonal prism shape with 2-4 μm in diameter, 2- 5 μm in length
$Zn(NO_3)_2 \cdot 6H_2O,$ $N_2H_4 \cdot H_2O$	-	180°C for 24 h	Hexagonal structure	Flower-like, cauliflower-like clusters
Zn(Ac)₂·2H₂O, NaOH	PEG (400)	140°C for 24 h	Hexagonal structure	One-dimensional rods
Zn(NO ₃) ₂ ·6H ₂ O, N ₂ H ₄ ·H ₂ O	KI	150°C for 24 h	Hexagonal structure	Rods cover from 200-500 nm in diameter and 2-5 nm in length. The diameter shrunk in the middle.

S. Music และคณะ⁽¹⁹⁾ ได้ศึกษาการเตรียมซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนเมตรด้วยวิธี ไฮโดรเทอร์มัลที่อุณหภูมิ 20 และ 160 องศาเซลเซียส เป็นเวลา 15 30 และ 35 นาที กับ 2 และ 72 ชั่วโมง โดยใช้สารละลายซิงก์ไนเตรต (Zn(NO₃)₂) และใช้โซเดียมไฮดรอกไซด์ (NaOH) เป็นสารที่ ทำให้ตกตะกอน และปรับพีเอชเท่ากับ 6 7 และ 13 ลักษณะของอนุภาคที่ปรับพีเอชเท่ากับ 6 และ 7 จะมีลักษณะเป็นแผ่น (plate like) ซึ่งตรงกับเฟสของ Zn₅(OH₈)(NO₃)₂(H₂O)₂ และที่พีเอช 13 อนุภาคจะมีลักษณะเป็นเฮกซะโกนอล พีระมิด (hexagonal pyramid) แสดงดังดังภาพที่ 2.14 โดยศึกษาผลของอุณหภูมิและเวลาที่ใช้ในการทำปฏิกิริยาและความเข้มข้นของสารที่ใช้ตกตะกอน พบว่ามีผลต่อขนาดของอนุภาคและองค์ประกอบทางเคมี/เฟส ของนาโนซิงก์ออกไซด์ที่เตรียมได้

ภาพที่ 2.14 ภาพถ่าย FE-SEM ของซึงก์ออกไซด์ (hexagonal pyramid)

M. A. Shah และคณะ ⁽⁵³⁾ ได้ศึกษาการเตรียมซิงก์ออกไซด์ที่มีอนุภาคขนาดนาโนด้วยวิธี ไฮโดรเทอร์มัล จากสารตั้งต้นที่เป็นผงโลหะสังกะสีที่อุณหภูมิ 200 องศาเซลเซียส เป็นเวลา 24 และ 48 ชั่วโมง กับเอทานอล พบว่าที่เวลา 24 ชั่วโมง ได้ซิงก์ออกไซด์ขนาดนาโนเมตรที่มีอนุภาค ขนาดเส้นผ่านศูนย์กลางเฉลี่ย 100 นาโนเมตร ที่เวลา 48 ชั่วโมง ได้ซิงก์ออกไซด์อนุภาคเฉลี่ย 200 นาโนเมตร ซึ่งอนุภาคที่ได้มีลักษณะเป็นแท่ง (nanorods) โดยเกิดจากปฏิกิริยาระหว่างพันธะ C-O ของเอทานอล B. S. Yu และคณะ⁽⁵⁴⁾ ได้ศึกษาการเตรียมซิงก์ออกไซด์จากสารตั้งต้นที่เป็นของเสียจาก electric arc furnace dust (EAFD) ด้วยวิธีไฮโดรเทอร์มัล โดยศึกษาผลของอุณหภูมิ เวลา ความ เป็นกรดเป็นด่าง และอัตราส่วนของของแข็งต่อของเหลว ได้ซิงก์ออกไซด์ที่มีอนุภาคขนาดเส้นผ่าน ศูนย์กลางขนาด 22 นาโนเมตรและได้ซิงก์ออกไซด์ที่มีความบริสุทธิ์สูงถึง 99% อย่างไรก็ดี การ เตรียมด้วยวิธีตกตะกอนสารละลายเกลือของสังกะสีนั้นอนุภาคของตะกอนที่ได้มักจะมีการเกาะ กลุ่มกัน ทำให้สารที่เตรียมได้มีอนุภาคที่ใหญ่ จากปัญหาดังกล่าวจึงได้มีการปรับปรุงโดยการเติม สารจำพวกพอลิเมอร์เพื่อช่วยให้อนุภาคกระจายตัวได้ดีขึ้น

Y. Wang และคณะ⁽⁵⁵⁾ ได้ศึกษาการสังเคราะห์ซิงก์ออกไซด์ขนาดนาโนเมตร ด้วยวิธีไฮโดร เทอร์มัล ที่อุณหภูมิ 140 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง โดยใช้ ซิงก์อะซิเตท: Zn(CH₃COO)₂· 2H₂O PEG 400 และตกตะกอนด้วยโซเดียมไฮดรอกไซด์ ลักษณะของอนุภาคเป็นแท่ง (nanorods) ของเฮกซะโกนอล เวิร์ทไซด์ (hexagonal wurtzite) ขนาดผลึกประมาณ 60 ถึง 120 นาโนเมตร ดังแสดงในภาพที่ 2.15 ซึ่งแสดงให้เห็นว่าการเติม PEG400 สามารถสังเคราะห์ซิงก์ ออกไซด์ ที่มีรูปร่างเป็นแท่งขนาดนาโนเมตรได้

ภาพที่ 2.15 ภาพถ่าย TEM ของซิงก์ออกไซด์ (ZnO nanorods)

R. Hong และคณะ⁽⁵⁶⁾ ได้ศึกษาผลของการเติมสาร SiO₂ ต่อขนาดอนุภาคของซิงก์ ออกไซด์ที่เตรียมด้วยวิธีตกตะกอนจากสารละลายซิงก์อะซีเตท (zinc acetate) และใช้ แอมโมเนียมคาร์บอเนต ((NH₄)₂CO₃) เป็นตัวตกตะกอน แคลไซน์ที่อุณหภูมิ 450 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง พบว่าผงซิงก์ออกไซด์ที่เติม SiO₂ ในปริมาณที่เหมาะสม จะไปเคลือบเกิดเป็น ฟิล์มบางที่ผิวของอนุภาคซิงก์ออกไซด์ ทำให้อนุภาคกระจายตัวดี ไม่เกาะตัวกัน แต่ประสิทธิภาพ ของตัวเร่งปฏิกีริยาเชิงแสงจะลดลงเมื่อเทียบกับการสังเคราะห์ที่ไม่มี SiO₂ เคลือบที่ผิวของอนุภาค ซิงก์ออกไซด์ และศึกษาการปรับแต่งผิวอนุภาคด้วย oleic acid พบว่าปริมาณในการเติมผีผลต่อ การกระจายตัว การเติมในปริมาณความเช้มข้นที่พอเหมาะสมทำให้เกิด saturation ของsinglemolecular layer ดูดซับที่ผิวอนุภาคซึ่งช่วยให้อนุภาคมีการกระจายตัวดีขึ้น แบบจำลองการเคลือบ ที่ผิวของอนุภาคแสดงดังภาพที่ 2.16 แต่การเติมในความเข้มข้นไม่พอเหมาะจะไม่ได้ช่วยในการ ปรับปรุงการกระจายตัว

ภาพที่ 2.16 แบบจำลองของการเคลือบด้วย oleic acid ที่ผิวของซิงก์ออกไซด์ขนาดนาโนเมตร

R. Wahab และคณะ⁽⁵⁷⁾ ได้ศึกษาการสังเคราะห์ชิงก์ออกไซด์ขนาดนาโนเมตร ด้วย refluxing process ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 6 12 18 และ 24 ชั่วโมง โดย ใช้ ซิงก์อะซิเตท ไดไฮเดรต: Zn(CH₃COO)₂·2H₂O อนุภาคของซิงก์ออกไซด์ที่สังเคราะห์ได้มี ลักษณะเป็นแท่ง (nanorods) แสดงในภาพที่ 2.17 โดยมีความกว้างในช่วง 50 ถึง 100 นาโนเมตร และ ความยาวอยู่ในช่วง 6 ถึง 7 ไมโครเมตร

ภาพที่ 2.17 ภาพถ่าย FE-SEM ของซิงก์ออกไซด์ ไฮโดรเทอร์มัลที่เวลา 6 ชั่วโมง

A. M. Zobir และคณะ⁽⁵⁸⁾ ได้ศึกษาการสังเคราะห์ซิงก์ออกไซด์โดยวิธีเอทิลีนไกลคอล ไฮโดรเทอร์มัล (ethylene glycol-hydrothermal) โดยศึกษาผลการกระจายตัวของอนุภาคและ พื้นที่ผิวจำเพาะจากการเติม polyvinyl alcohol (PVA) ซึ่งพบว่าสามารถเพิ่มการกระจายตัวของ อนุภาคได้และอนุภาคที่ได้มีขนาด 5 ถึง 8 นาโนเมตรและช่วยเพิ่มพื้นที่ผิวจำเพาะได้ถึง 50 เปอร์เซ็นต์

Aimable และคณะ⁽³³⁾ ได้ศึกษากระบวนการเตรียมซิงก์ออกไซด์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 90 องศาเซลเซียส โดยศึกษาผลของขนาดและการกระจายของอนุภาคจากการเติม polyvinylpyrrolidone (PVP Mw~40,000), fructose, hydroxypropylmethylcellulpse (HPMC), poly acrylic acid (PAA Mw 2,000) และ sodium dodecylsulfate (SDS) พบว่าสารช่วยกระจาย ตัวของอนุภาค PAA มีประสิทธิภาพดีที่สุดเมื่อเทียบกับสารช่วยกระจายตัวชนิดอื่น ดังแสดง ลักษณะของอนุภาคดังภาพที่ 2.18 จึงมีการศึกษาเพิ่มเติมโดยเพิ่มความเป็นด่างมากขึ้น และ พบว่าสามารถเปลี่ยนรูปร่างจากอนุภาคกลม (roundish nanoparticles) กลายเป็นอนุภาคดอกไม้ (branched flower-like particles) ได้

(a) ZnO_[0.11]

(c) ZnO_[fru]

(e) ZnO_[PVP8000]

(g) ZnO_[Disp]

(h) ZnO_[PAA]

ภาพที่ 2.18 ภาพถ่าย SEM แสดงผลของชนิดและปริมาณสารช่วยกระจายตัวต่อรูปร่างของ ซิงก์ออกไซด์

(f) ZnO_[PVP40000]

บทที่ 3 วิธีดำเนินงานวิจัย

ในบทนี้จะกล่าวถึงสารเคมี วัตถุดิบ การอธิบายขั้นตอนและแผนงานวิจัย ตลอดจน กระบวนการวิเคราะห์และทดสอบของสารตั้งต้นฝุ่นผงสังกะสีและผงซิงออกไซด์อนุภาคระดับนาโน เมตรที่เราสังเคราะห์ได้ ดังแสดงรายละเอียดดังต่อไปนี้

3.1 สารเคมีและวัตถุดิบที่ใช้ในการทดลอง

- ฝุ่นผงสังกะสีจากกระบวนการชุบสังกะสีแบบจุ่มร้อน (Zinc-dust waste, Pacific
 Pipe Public Co., Ltd.)
- กรดซัลฟิวริกเข้มข้น (H₂SO₄, 98% AR grade, Merck)
- กรดในตริกเข้มข้น (HNO₃, 65% AR grade, Merck)
- โซเดียมไฮดรอกไซด์ (NaOH, AR grade, Ajax Finechem)
- เมทิลีนบลู (Methelene blue, BDH Certistain)
- เอทานอล (Ethanol absolute, Carlo errba)
- ในโตรเจนเหลว (สำหรับการวัดพื้นที่ผิวจำเพาะ)
- ไฮดรอกซีโพรพิลเซลลูโลส (Hydroxypropyl cellulose : HPC, MW 100,000, Aldrich Chem)

3.2 วิธีการวิจัยและแผนผังงานวิจัย

3.2.1 ศึกษาสมบัติเฉพาะของสารตั้งต้น (ฝุ่นผงสังกะสีจากกระบวนการชุบสังกะสี แบบจุ่มร้อน)

นำฝุ่นผงสังกะสีไปศึกษาองค์ประกอบเฟส ด้วยเทคนิค X-ray Diffraction (XRD; D8-Advance, Bruker AXS Model D8 Discover) โดยใช้มุม 2-theta จาก 10 ถึง 70 องศา และ องค์ประกอบทางเคมีด้วย X-ray fluorescence (Philips PE 2400, wavelength dispersive)

3.2.2 การเตรียมสารละลายตั้งต้น

เตรียมสารละลายเกลือของสังกะสีไอออน โดยการนำฝุ่นผงสังกะสีที่ได้จากกระบวนการ ชุบสังกะสีแบบจุ่มร้อนมาละลายในกรดซัลฟิวริก หรือกรดไนตริก โดยเติมน้ำกลั่น 20 มิลลิลิตร ลง ในผงสังกะสี 2 กรัม จากนั้นกวนให้เข้ากันด้วยเครื่องกวนแม่เหล็ก (magnetic stirrer) เป็นเวลา 10 นาที แล้วค่อยๆ หยดกรดซัลฟิวริกเข้มข้น 98% (conc H₂SO₄) ลงไปโดยให้ได้อัตราส่วนของกรด ต่อน้ำเป็น 1:5 โดยปริมาตร ในขณะที่กรดไนตริกเข้มข้น 65% (conc HNO₃) จะใช้อัตราส่วนของ กรดต่อน้ำเป็น 1:2.22 จากนั้นกวนต่อไปอีกประมาณ 150 นาที กรองส่วนที่ไม่ละลายออกด้วย กระดาษกรองเบอร์42 ดังแสดงในภาพที่ 3.1

ภาพที่ 3.1 แผนผังแสดงขั้นตอนการเตรียมสารละลายตั้งต้น

3.2.3 ศึกษาผลของตัวแปรต่างๆ ในกระบวนการเตรียมอนุภาคซิงก์ออกไซด์

ตัวแปรที่ทำการศึกษา ได้แก่ ค่าพีเอช อุณหภูมิ และเวลาในกระบวนการไฮโดรเทอร์มัล โดยมีวิธีการเตรียมดังต่อไปนี้ นำสารละลายเกลือของโลหะซิงก์ที่เตรียมได้ ไปตกตะกอนด้วย โซเดียมไฮดรอกไซด์ (NaOH) ที่ความเข้มข้น 12 โมลาร์ โดยตกตะกอนที่ค่าพีเอซ⁽⁵⁹⁾ 8 10 12 และ 14 ภายใต้การกวนต่อเนื่อง จากนั้นเทสารละลายที่ปรับพีเอชแล้วปริมาตร 20 มิลลิลิตร ลงใน ภาชนะเทฟลอนที่บรรจุอยู่ในหม้อนึ่งอัดไอ (autoclave) สแตนเลสสตีล โดยปิดฝาให้สนิท แล้วจึง นำเข้าเตาอบที่อุณหภูมิ 120 150 และ170 องศาเซลเซียส เป็นเวลา 4 6 และ 8 ชั่วโมง แล้วจึงนำ หม้อนึ่งอัดไอออกจากเตาอบ ทิ้งให้เย็นจนถึงอุณหภูมิห้อง จากนั้นนำสารที่ได้ไปกรองและล้าง ตะกอนที่ได้ด้วยน้ำกลั่นและเอทานอลแล้วอบตะกอนให้แห้งที่อุณหภูมิ 80 องศาเซลเซียส เป็น เวลา 24 ชั่วโมง แล้วบดด้วยโกร่ง จะได้ผงตัวอย่างเพื่อเตรียมวิเคราะห์ต่อไป

ภาพที่ 3.2 แผนผังแสดงขั้นตอนการเตรียมผงซิงก์ออกไซด์

3.2.4 ศึกษาผลการเติมสารช่วยกระจายตัว (HPC)

สารช่วยกระจายตัวของอนุภาคที่ใช้ ในงานวิจัยนี้คือ ไฮดรอกซีโพรพิลเซลลูโลส (Hydroxypropyl cellulose ; HPC, MW 100,000 Aldrich Chem)⁽⁶⁰⁾ เป็นสารช่วยกระจายตัวชนิด non-ionic polymer ละลายได้ที่อุณหภูมิ 45 องศาเซลเซียสขึ้นไป เมื่อละลายจะให้ความเป็นขั้ว ออกมาในสารละลาย^(61, 62) และสามารถช่วยกระจายตัวได้แบบ steric stabilization ดังที่กล่าวไป แล้วในบทที่ 2 และมีสูตรโครงสร้างของสารพอลิเมอร์ HPC แสดงในภาพที่ 3.3⁽⁶²⁾

ภาพที่ 3.3 แผนผังแสดงสูตรโครงสร้างของพอลิเมอร์ HPC

เตรียมสารละลายไฮดรอกซี่โพรพิลเซลลูโลสในปริมาณ 0.0125 0.025 และ0.0375 กรัม โดยละลายผง HPC ในน้ำกลั่นปริมาตร 5 มิลลิลิตร และกวนให้เข้ากันด้วยเครื่องกวนแม่เหล็กที่ อุณหภูมิ 60 องศาเซลเซียสเป็นเวลา 20 นาที จนได้สารละลายใส ทิ้งให้เย็นจนถึงอุณหภูมิห้อง และนำไปหยดลงในสารละลายเกลือของสังกะสีที่เตรียมไว้ปริมาณ 20 มิลลิลิตร จากนั้นนำ สารละลายที่เตรียมได้ ไปตกตะกอนด้วยสารละลายโซเดียมไฮดรอกไซด์ที่มีความเข้มข้น 12 โมลาร์ ปรับค่าความเป็นกรดด่าง ให้ได้ค่าพีเอช 12 ภายใต้การกวนอย่างต่อเนื่อง จากนั้นจึงนำเข้าเตาอบ ที่อุณหภูมิ 170 องศาเซลเซียส (ได้จากการเตรียมในข้อ 3.2.3) จากนั้นนำไปกรองและล้างตะกอน ที่ได้ด้วยน้ำกลั่นและเอทานอล แล้วอบตะกอนให้แห้งที่อุณหภูมิ 80 องศาเซลเซียส

ภาพที่ 3.4 แผนผังแสดงขั้นตอนการเตรียมสารประกอบซิงก์ออกไซด์ที่เติมสารช่วยกระจายตัว

3.3 วิเคราะห์สมบัติเฉพาะของผงซิงก์ออกไซด์ที่สังเคราะห์ได้

3.3.1 วิเคราะห์โครงสร้างและเฟสองค์ประกอบของผงซิงก์ออกไซด์

วิเคราะห์เฟสองค์ประกอบของซิงก์ออกไซด์ทั้งก่อนและหลังการไฮโดรเทอร์มัล ด้วยเทคนิค การเลี้ยวเบนของรังสีเอ็กซ์โดยเครื่อง X-ray diffraction (XRD; D8- Advance, Bruker AXS Model D8 Discover) โดยมี Cu-Kα (λ = 0.154 นาโนเมตร) เป็นแหล่งกำเนิดแสง X-ray ที่ค่า ความต่างศักย์เป็น 40 กิโลโวลต์ และกระแสไฟฟ้าเป็น 25 มิลลิแอมแปร์ อัตราการวิเคราะห์เฟล เป็น 0.2 องศา/วินาที โดยใช้มุม 2θ จาก10 ถึง 70 องศา

3.3.2 โครงสร้างผลึกและขนาดผลึก

นำผงตัวอย่างซิงก์ออกไซด์ที่สังเคราะห์ได้มาศึกษาโครงสร้างผลึกด้วยเทคนิค X-ray diffraction โดยใช้มุม 2 θ จาก 10 ถึง 70 องศา แล้วนำกราฟดิฟแฟรกโตแกรม และระยะห่าง ระหว่างระนาบที่ได้มาทำการเปรียบเทียบกับกราฟดิฟแฟรกโตแกรม และข้อมูลมาตรฐานจาก ฐานข้อมูลของ JCPDS file (Joint Committee on Powder Diffraction Standard file) และ คำนวณหาขนาดผลึกด้วยสมการ Scherrer

Scherrer :
$$D_c = \frac{K\lambda}{\beta\cos\theta}$$
 (สมการ 3.1)

เมือ	D_c	คือ	ขนาดผลึกเฉลี่ย
	K	คือ	ค่าคงที่ Scherrer มีค่าเท่ากับ 0.89
	λ	คือ	ความยาวคลื่น X-ray มีค่าเท่ากับ 0.154 nm
	β	คือ	ความกว้างของความสูงครึ่งหนึ่งของพีค XRD
			(full width at half-maximum (FWHM))
	θ	คือ	มุมเลี้ยวแบน (diffraction angle)

3.3.3 วิเคราะห์สัณฐานวิทยา (morphology) และขนาดอนุภาคของผงซิงก์ออกไซด์

วิเคราะห์ลัณฐานวิทยาและขนาดอนุภาคของผงซิงก์ออกไซด์ที่เตรียมได้ ด้วยเทคนิคการ ส่องกราดของอิเล็กตรอนด้วยเครื่องมือ Scanning Electron Microscope (SEM รุ่น JSM-64 80LV, JEOL, Japan) และ Transmission electron microscope (TEM; JEOL JEM-2010) การ เตรียมเพื่อวิเคราะห์สัณฐานวิทยาและขนาดอนุภาคของซิงก์ออกไซด์ ของการทดสอบด้วย เครื่องมือ Scanning Electron Microscope ทำโดยตัดกระจกสไลด์ให้เป็นชิ้นเล็กขนาดประมาณ 5×5 มิลลิเมตร นำกระจกที่ได้ไปทำความสะอาดโดยการสั่นด้วยอัลตราโซนิค ในน้ำกลั่นและเอทา นอลเป็นเวลาอย่างละ10 นาที นำผงซิงก์ออกไซด์ที่เตรียมได้ 0.01 กรัม ใส่ลงในเอทานอลปริมาตร 10 มิลลิลิตร และนำไปเข้าเครื่องอัลตราโซนิค (ultrasonic probe) เป็นเวลา 5 นาที จากนั้นนำ สารละลายที่ได้ไปหยดลงบนกระจกที่เตรียมไว้ ทิ้งไว้ให้แห้งที่อุณหภูมิห้องและอบที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 1 คืน จากนั้นนำตัวอย่างที่เตรียมไว้ไปติดกับแท่นรองที่มีเทปคาร์บอนติด อยู่แล้วนำไปเคลือบผิวบางๆ ด้วยทองเพื่อให้เกิดการนำไฟฟ้าและทำให้เห็นภาพโครงสร้างระดับ จุลภาคชัดขึ้น จากนั้นนำไปวิเคราะห์ด้วยเครื่อง SEM โดยใช้ศักย์ไฟฟ้าที่ 15 kV และถ่ายภาพที่ กำลังขยายต่างๆ ส่วนการทดสอบด้วยเครื่องมือ Transmission electron microscope จะเตรียม เหมือนกับวิธีที่กล่าวมาข้างข้น แต่จะหยดสารละลายลงบนกริดคอปเปอร์ (grid) ทิ้งให้แห้งและเก็บ ใน descicator ที่อุณหภูมิห้องเป็นเวลา 1 คืน

3.3.4 วิเคราะห์พื้นที่ผิวจำเพาะ (specific surface area)

วิเคราะห์พื้นที่ผิวจำเพาะโดยใช้เทคนิค Brunauer Emmett Teller (BET; Coulter SA 3100) ใช้ผงตัวอย่างประมาณ 0.15 กรัม ใส่ลงหลอดแก้ว BET จากนั้น นำเข้าเครื่อง BET ใน ตำแหน่งที่ทำให้แห้งและเป็นสุญญากาศ (out gas) ที่อุณหภูมิ 150 องศาเซลเซียส เป็นเวลา 30 นาทีต่อ 1 ตัวอย่าง จากนั้นย้ายหลอด BET ไปที่ตำแหน่งวิเคราะห์ ซึ่งจุ่มลงในไนโตรเจนเหลวเพื่อ วัดความสามารถในการดูดซับไนโตรเจนที่ผิว

3.3.5 สมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง (Photocatalytic activity)

ศึกษาสมบัติตัวเร่งปฏิกิริยาเชิงแสง ด้วยวิธีการทดสอบการย่อยสลายสารละลายเมพิลีนบลู ภายใต้แสงยูวีด้วยเครื่อง UV-VIS spectrophotometer (Perkin Elmer Lambda 35) โดยนำผง ซิงก์ออกไซด์ที่สังเคราะห์ได้มา 0.02 กรัม ใส่ในบีกเกอร์ขนาด 25 มิลลิลิตร แล้วเติมสารละลายเมพิ ลีนบลู (Methylene blue) เข้มข้น 0.02 มิลลิโมลาร์ ปริมาตร 20 มิลลิลิตร ผสมกันโดยทำการกวน อย่างต่อเนื่องในที่มีดด้วยเครื่องกวนแม่เหล็ก (Magnetic stirrer) 30 นาที จากนั้นนำไปหมุนเหวี่ยง ด้วยเครื่องเซนตริฟิวก์ (centrifuge) 10 นาที แล้วแยกเอาเฉพาะส่วนที่เป็นสารละลายใสไป วิเคราะห์ค่าดูดกลืนแสงยูวีที่ความยาวคลื่น 664 nm ด้วยเครื่อง UV-VIS spectrophotometer โดยจะทำการวิเคราะห์ในช่วง UV-Visible wavelengths (300 ถึง 800 นาโนเมตร) ทำซ้ำเป็น จำนวน 3 ครั้ง หรือจนค่าการดูดกลืนไม่เปลี่ยนแปลง จากนั้นนำผงชิงก์ออกไซด์ที่ผสมกับ สารละลายเมทิลีนบลูไปทำการกวนด้วยเครื่องกวนแม่เหล็ก (magnetic stirrer) พร้อมกับฉายแสง ยูวี (UV-A) ที่ความเข้มแสง 2 mW/cm² เป็นเวลา 30 นาที ตามด้วยนำไปหมุนเหวี่ยงด้วยเครื่อง เซนตริฟิวก์ 10 นาที แล้วแยกเอาเฉพาะส่วนที่เป็นสารละลายใสไปวิเคราะห์ค่าดูดกลืนแสงยูวี ด้วย เครื่อง UV-VIS spectrophotometer และทำซ้ำทุก 30 นาที จนสีของสารละลายเมทิลีนบลู เปลี่ยน จากสีฟ้ากลายเป็นสารละลายใสไม่มีสี

จากนั้นนำค่าการดูดกลืนแสงที่เวลาต่างๆ ไปเปลี่ยนเป็นค่าความเข้มข้น (C) ซึ่งการ คำนวณหาอัตราเร็วในการย่อยสลายเมทิลีนบลู สามารถคำนวณได้จากสมการ 3.2 โดยการ plot กราฟระหว่าง $\ln \frac{C_o}{C_r}$ กับ เวลาในการย่อยสลายเมทิลีนบลู (t) และค่าความชันของกราฟที่ได้ คือ ค่าอัตราเร็วในการย่อยสลายเมทิลีนบลู (*k*)

$$kt = \ln \frac{C_o}{C_t}$$
 (สมการ 3.2)

โดยที่ C₀ = ความเข้มข้นเริ่มต้นของสารละลายเมทิลีนบลู (มิลลิโมลาร์) C_t = ความเข้มข้นของสารละลายเมทิลีนบลูที่เวลาต่างๆ (มิลลิโมลาร์) k = อัตราเร็วในการย่อยสลายสารละลายเมทิลีนบลู (นาที⁻¹) t = เวลาที่ใช้ในการฉายแสง (นาที)

3.3.6 วิเคราะห์ประจุที่ผิวของอนุภาค

วิเคราะห์ค่า zeta potential เพื่อศึกษาประจุที่ผิวของอนุภาคด้วยเครื่อง Zeta potential Analyzer (ZetaPALS, Brookhaven Instrument) เพื่อหาค่าประจุที่ผิวของอนุภาคที่ค่าพีเอชของ สารแขวนลอยจาก 6 ถึง 12 โดยเตรียมสารแขวนลอยจากผงของซิงก์ออกไซด์ที่สังเคราะห์ได้ในน้ำ ที่มีปริมาณของของแข็ง 0.01% โดยน้ำหนัก ใช้ตัวปรับความเป็นกรดด้วย HNO₃ ที่ความเข้มข้น 0.01M และ 0.1M และตัวปรับความเป็นเบสด้วย NaOH ที่ความเข้มข้น 0.01M และ 0.1M

3.3.7 ขนาดและการกระจายของขนาดอนุภาค (particle size distribution)

วิเคราะห์ขนาดและการกระจายของขนาดอนุภาคด้วยเทคนิค laser light scattering (Mastersizer 2000, Malvern Instruments) โดยนำผงซิงก์ออกไซด์ที่สังเคราะห์ได้ 0.01 กรัม ใส่ ในบีกเกอร์ขนาด 25 มิลลิลิตร แล้วเติมน้ำกลั่นปริมาตร 10 มิลลิลิตร จากนั้นนำบีกเกอร์ใส่ลงใน เครื่องอัลตราโซนิค (ultrasonic bath) เพื่อทำให้อนุภาคกระจายตัวก่อนนำสารละลายไปทำการ วิเคราะห์

3.3.8 สมบัติการต้านการเติบโตของแบคทีเรีย

การศึกษาสมบัติการต้านแบคทีเรียของผงซิงก์ออกไซด์ที่สังเคราะห์ได้โดยทำการทดสอบ ประสิทธิภาพและความสามารถของผงซิงก์ออกไซด์ต่อการต้านแบคทีเรียชนิด Escherichia coli ATCC 25922 (E.coli)

3.3.8.1 การวิเคราะห์สมบัติการต้านแบคทีเรียด้วยวิธี Spread plate

วิธีการกระจายเชื้อ (spread plate)⁽⁶³⁾ ซึ่งอ้างอิงตามมาตรฐานของ JIS Z 2801 เป็นการ ทดสอบในเชิงปริมาณ (quantitative analysis) ซึ่งเป็นวิธีที่นิยมใช้เนื่องจากใช้เครื่องมือน้อย สะดวก และรวดเร็ว โดยเริ่มจากการนำผงซิงก์ออกไซด์ 0.05 กรัม ลงในขวดเลี้ยงเชื้อที่มีปริมาตร 20 มิลลิลิตรและมีจำนวนแบคทีเรียเป็น 10⁶ CFU/ml (จำนวนเชื้อตั้งต้น) จากนั้นนำขวดดังกล่าว ไปทำการสั่นด้วยเครื่องเขย่าควบคุมอุณหภูมิ (incubator shaker, GYROMAX[™] 737) ที่อุณหภูมิ 35 ถึง 37 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง เมื่อครบตามเวลาแล้วจะดูดเชื้อจากขวดปริมาณ 1 มิลลิลิตร มาเจือจางด้วยสารละลายบัฟเฟอร์ (serial dilution) ที่ปราศจากเชื้อและทราบปริมาณที่ แน่นอน ให้อยู่ในระดับความเข้มข้นประมาณ 10⁻⁴ เพื่อให้จำนวนโคโลนีอยู่ในช่วงที่กำหนด คือ ช่วง 30 ถึง 99 โคโลนี โดยแต่ละโคโลนีจะเจริญมาจากเซลล์เซลล์เดียว ดังนั้นการนับเซลล์โคโลนีจึงเป็น การนับเซลล์ที่มีชีวิตเท่านั้น จากนั้นนำแบคทีเรียที่ผ่านการเจือจางแล้วปริมาณ 0.1 มิลลิลิตร หยด ลงบนจานเพาะเชื้อที่มีอาหารเลี้ยงเซื้ออยู่ จากนั้นนำแท่งแก้วรูปตัวแอล (L-spreader) ที่ผ่านการ ฆ่าเชื้อโดยทำการจุ่มแอลกอฮอล์ 95 เปอร์เซ็นต์ แล้วลนไฟจนแอลกอฮอล์แห้งหมดไปและทิ้งให้ เย็นซักครู่ จากนั้นนำแท่งแก้วมาเกลี่ยเชื้อให้ทั่วทั้งจานอาหารวุ้นเพื่อเป็นการทำให้เซลล์ต่างๆ แยก และกระจายออกจากกัน ดังแสดงในภาพที่ 3.5⁽⁶⁴⁾ ต่อมานำจานเพาะเชื้อไปบ่มไว้ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 24 ชั่วโมงแล้วตรวจผลโดยการนับจำนวนโคโลนี (colony) ของแบคทีเรีย ที่รอดชีวิตด้วยตาเปล่าโดยรายงานเป็นจำนวน colony Forming Unit/mI (CFU/mI)⁽³⁸⁾ และนำมา หาค่าเฉลี่ยของจำนวนเชื้อในแต่ละเงื่อนไข จากนั้นนำไปคำนวณเปอร์เซ็นต์การลดลงของ แบคทีเรีย (% reduction)⁽⁶⁵⁾ ตามสมการ 3.3

R =
$$\frac{100(A-B)}{A}$$
 (สมการ 3.3)

เมื่อ	R	คือ	เปอร์เซ็นต์การลดลงของแบคทีเรีย
	А	คือ	จำนวนแบคทีเรียที่เกิดขึ้นในจานเพาะเชื้อของจานควบคุม
	5	4	(untreated control specimen)
	В	คอ	จานวนแบคทเรยทเกดขนเนจานเพาะเชอของชนงานตวอยาง
			(treated test specimen)

ภาพที่ 3.5 วิธีการทำให้เชื้อกระจาย (spread plate)

การนับจำนวนโคโลนีของแบคทีเรียที่เจริญบนจานเพาะเชื้อจะต้องอาศัยวิธีการเจือจาง (serial dilution) เพื่อไม่ให้การนับจำนวนเซลล์มีจำนวนไม่มากหรือน้อยเกินไป ถ้าจำนวนเชื้อมี มากเกินไปจะทำให้ความถูกต้องแม่นยำในการนับลดลง ถ้าจำนวนเชื้อมีน้อยเกินไปจะไม่สามารถ เป็นตัวแทนของจำนวนเชื้อตั้งต้นได้เพราะว่าโอกาสผิดพลาดในการประเมินจำนวนของเชื้อที่ เจริญเติบโตจะมีสูงขึ้น โดยทั่วไปจะให้มีจำนวนเซลล์ระหว่าง 25 ถึง 250 เซลล์ ดังนั้นจึงควรทำ การเจือจางเชื้อลงที่ละ 10 เท่าก่อนจะนำไปทดสอบด้วยวิธีต่างๆ การรายงานผลโดยวิธีการนับ จำนวนแบคทีเรียในจานเพาะจะรายงานเป็น Colony Forming Unit (CFU)⁽⁶⁶⁾ เนื่องจากไม่ สามารถบอกได้อย่างชัดเจนว่า 1 โคโลนีมาจาก 1 เซลล์ ดังนั้นจากในแต่ละความเจือจางจึงดูดมา 0.1 มิลลิลิตร ใส่จานเพาะเชื้อที่มีอาหารวุ้นลงไป บ่มเชื้อไว้ให้เจริญเป็นโคโลนี เพื่อนับจำนวน โคโลนีที่เกิดขึ้นต่อมิลลิลิตร ในที่นี้จานที่ 4 นับได้ 17 โคโลนี แต่นำเชื้อมาเพียง 0.1 มิลลิลิตร จาก หลอดความเจือจาง 10⁻⁴ ดังนั้นเชื้อตั้งต้นจะมีจำนวนเชื้อ = 17 × 10 × 10⁴ = 1.7 × 10⁶ CFU/mI ดังแสดงในภาพที่ 3.6⁽³⁾ และ แสดงดังสมการที่ 3.4

(สมการ 3.4)

ภาพที่ 3.6 ขั้นตอนการเจือจางแบคทีเรียแบบ serial dilution

บทที่ 4 ผลการทดลองและการวิเคราะห์ผล

งานวิจัยนี้ศึกษาการสังเคราะห์อนุภาคระดับนาโนเมตรของซิงก์ออกไซด์จากฝุ่นสังกะสีที่ เป็นกากของเสียจากกระบวนการชุบสังกะสีแบบจุ่มร้อน ด้วยวิธีไฮโดรเทอร์มัล ซึ่งแบ่งผล การศึกษาออกเป็นหลายหัวข้อ ได้แก่ ศึกษาสมบัติก่อนและหลังการไฮโดรเทอร์มัล ชนิดของกรดที่ ใช้ในการละลาย ค่าความเป็นกรดด่างในการตกตะกอน อุณหภูมิ เวลาที่ใช้ในการไฮโดรเทอร์มัล และผลการเติมสารช่วยกระจายตัว ต่อสมบัติทางกายภาพ สมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง ของผงตัวอย่างที่สังเคราะห์ได้ นอกจากนี้มีการศึกษาถึงผลการต่อต้านแบคทีเรีย โดยผลการ ทดลองและการวิเคราะห์ผลแสดงรายละเอียดดังหัวข้อต่อไปนี้

4.1 ผลการศึกษาสมบัติของสารตั้งต้น

4.1.1 ผลวิเคราะห์เฟสองค์ประกอบ

ผลการตรวจสอบเฟสองค์ประกอบของสารตั้งต้นฝุ่นผงสังกะสีจากกระบวนการชุบสังกะสี แบบจุ่มร้อนด้วยเทคนิค X-ray diffraction แสดงในภาพที่ 4.1 พบว่าฝุ่นผงที่ได้มาจากกระบวนการ ชุบสังกะสีแบบจุ่มร้อนประกอบไปด้วยโลหะสังกะสี (Zn, JCPDS : 00-004-0831) และซิงก์ ออกไซด์ (ZnO, JCPDS : 36-1451) ปนอยู่ในปริมาณเล็กน้อย

ภาพที่ 4.1 กราฟ XRD ของฝุ่นผงสังกะสี (zinc-dust waste)

4.1.2 ผลวิเคราะห์องค์ประกอบทางเคมี

ผลการตรวจสอบองค์ประกอบทางเคมีของสารตั้งต้นฝุ่นผงสังกะสีจากกระบวนการซุบ สังกะสีแบบจุ่มร้อนด้วยเทคนิค X-ray fluorescence พบว่ามีโลหะสังกะสีเป็นองค์ประกอบหลัก และมีโลหะอื่นๆ ผสมอยู่ด้วยในปริมาณเล็กน้อย ดังตารางที่ 4.1

องค์ประกอบเคมี	ปริมาณ (wt.%)
Zn	97.48
SO ₃	1.48
Pb	0.41
CI	0.43
Fe ₂ O ₃	0.19

a	۲.	ත	
ตารางท 4 1	คงคำไระกค	าทางเคมไนต	ปนแงสงกะส

4.2 ผลการศึกษาการเตรียมซิงก์ออกไซด์จากการละลายสารตั้งต้นด้วยกรดซัลฟิวริก

4.2.1 ผลวิเคราะห์เฟสองค์ประกอบตะกอนสารตั้งต้นที่ไม่ละลายในกรดซัลฟิวริก

ผลการวิเคราะห์เฟสองค์ประกอบของกากตะกอนที่กรองได้จากการละลายสารตั้งต้น ฝุ่นผงสังกะสีในกรดซัลฟิวริกเข้มข้น 98% (conc H₂SO₄) เป็นเวลา 150 นาที แล้วนำไปอบแห้ง ดัง แสดงในภาพที่ 4.2 พบว่าตะกอนที่ได้ประกอบด้วยเฟสของ เลทซัลเฟต (Pb(SO₄), JCPDS : 01-082-1854) ซิงก์ซัลเฟตไฮเดรต (ZnSO₄·H₂O, JCPDS : 00-001-0621) และ ไอรอน ซัลเฟต ไฮเดรต (Fe₃(SO₄)₄·12H₂O, JCPDS : 00-004-0267) จากผล XRD เฟสที่พบสอดคล้องกับ องค์ประกอบเคมีที่พบในฝุ่นผงสังกะสีดังแสดงในผล XRF ของสารตั้งต้น ซึ่งโลหะซิงก์ส่วนใหญ่ ละลายในกรดเกิดเป็นสารละลายเกลือของซัลเฟต และเหลือตะกอนบางส่วนปริมาณเล็กน้อยที่ไม่ ละลาย ส่วนตะกั่วมีความสามารถในการละลายในกรดซัลฟิวริกต่ำ จะเกิดเป็นตะกอนของ Pb(SO₄) และโดยปกติในกระบวนการซุบเคลือบเหล็กด้วยซิงก์ ในขั้นตอน pickling ที่จุ่มเหล็กลง ในกรดซัลฟิวริกมักเกิด FeSO₄ เป็นผลพลอยได้จากกระบวนการ

ภาพที่ 4.2 กราฟ XRD ของส่วนประกอบของฝุ่นผงสังกะสีในส่วน ที่ไม่ละลายในกรดซัลฟิวริก

4.2.2.1 ผลวิเคราะห์เฟสองค์ประกอบ

ภาพที่ 4.3 กราฟ XRD ของผงตัวอย่างที่เตรียมที่พีเอชต่างๆ ก่อนการไฮโดรเทอร์มัล (ก) พีเอช 8 (ข) พีเอช 10 (ค) พีเอช 12 และ (ง) พีเอช14

ผลวิเคราะห์เฟสองค์ประกอบของผงตัวอย่างก่อนผ่านกระบวนการไฮโดรเทอร์มัล ที่เตรียม ได้จากการนำสารละลายที่ได้จากการละลายฝุ่นผงสังกะสีด้วยกรดซัลฟิวริกแล้วกรองตะกอนที่ไม่ ละลายออก และนำไปตกตะกอนโดยปรับค่าพีเอชที่ 8 ถึง14 แสดงดังในภาพที่ 4.3 พบว่าผง ตัวอย่างที่เตรียมได้ที่พีเอช 8 และ 10 ประกอบด้วยสารประกอบไฮดรอกไซด์และซัลเฟต ได้แก่ ซิงก์ ซัลเฟตไฮดรอกไซด์ไฮเดรต (6Zn(OH)₂·ZnSO₄·4H₂O, JCPDS : 00-011-0280) ซิงก์ออกไซด์ ซัลเฟตไฮเดรต (Zn₄O₃(SO₄)·7H₂O, JCPDS : 00-003-0797) เป็นเฟสหลักและมีเฟสของซิงก์ ออกไซด์ (ZnO, JCPDS : 00-036-1451) เกิดขึ้นเล็กน้อย เมื่อค่าพีเอชเพิ่มขึ้นเป็น 12 พบว่าเฟส ของซิงก์ออกไซด์เพิ่มขึ้นอย่างชัดเจน แต่ยังคงพบเฟสของซิงก์ออกไซด์ชัลเฟตไฮเดรต ซึ่งมีปริมาณ ที่ลดลงมากเมื่อเทียบกับที่พีเอช 8 และ 10 และเมื่อเพิ่มพีเอชถึง 14 จะพบเพียงเฟสของซิงก์ ออกไซด์เพียงเฟสเดียว

ภาพที่ 4.4 กราฟ XRD ของผงตัวอย่างที่เตรียมได้ที่พีเอชต่างๆ หลังจากผ่านการไฮโดรเทอร์มัล (ก) พีเอช 8 (ข) พีเอช 10 (ค) พีเอช 12 และ (ง) พีเอช14

หลังจากนำสารที่เตรียมได้จากการตกตะกอนที่พีเอช 8 ถึง14 ผ่านกระบวนการไฮโดรเทอร์ มัลที่อุณหภูมิ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง ไปศึกษาองค์ประกอบเฟสด้วยเทคนิค XRD ดังแสดงในภาพที่ 4.4 พบว่าที่พีเอช 8 ประกอบด้วยเฟสหลักคือ ซิงก์ไฮดรอกไซด์ (Zn(OH)₂, JCPDS : 00-012-0142) รองมาคือ ซิงก์ออกไซด์ และเฟสของซิงก์ออกไซด์ชัลเฟต (Zn₃O(SO₄)₂, JCPDS : 00-032-1475) เมื่อเพิ่มพีเอชถึง 10 พบว่ามีปริมาณของเฟสซิงก์ไฮดรอกไซด์ลดลง เฟส ของซิงก์ออกไซด์สูงขึ้น แต่ยังคงมีซิงก์ออกไซด์ชัลเฟต และเมื่อเพิ่มพีเอชไปถึง 12 และ 14 พบว่า เฟสของซิงก์ออกไซด์ชัลเฟตและซิงก์ไฮดรอกไซด์หายไปเหลือเพียงแต่เฟสของซิงก์ออกไซด์เพียง เฟสเดียว ด้วยกระบวนการ dissolution/reprecipitation ภายใต้ไฮโดรเทอร์มัล ดังนั้นหากต้องการ เตรียมให้ได้เฟสซิงก์ออกไซด์บริสุทธิ์ต้องปรับพีเอชในการตกตะกอนตั้งแต่พีเอช 12 เป็นต้นไป และ สังเกตเห็นว่าผงตัวอย่างที่เตรียมได้หลังจากผ่านการไฮโดรเทอร์มัลมีความบริสุทธิ์และความเป็น ผลึกของซิงก์ออกไซด์ที่สูงกว่า ซึ่งสอดคล้องกับงานวิจัยที่ผ่านมาในการเตรียมซิงก์ออกไซด์ด้วย กระบวนตกตะกอน หรือ ไฮโดรเทอร์มัล จะเกิดซิงก์ออกไซด์บริสุทธิ์ได้ที่พีเอชเป็นด่างสูงประมาณ 11 ถึง 13⁽¹⁹⁾ เป็นผลมาจากปริมาณของไฮดรอกซิลในสารละลายที่ไปจับกับไอออนบวกของซิงก์ที่ เหมาะสม โดยทั่วไปมีการอธิบายว่าขนาดและรูปร่างของอนุภาคซิงก์ออกไซด์ถูกควบคุมด้วย สถานะทางเคมี (chemical state) ของไอออนของซิงก์ (Zn²⁺ ions) ในสารละลาย นอกจากนี้การ เกิดการตกตะกอนของซิงก์ออกไซด์ยังขึ้นกับปัจจัยทางอุณหพลศาสตร์ (thermodynamic) และ จลนศาสตร์ (kinetic) ด้วย ซึ่งสถานะทางเคมีของไออนของซิงก์ในสารละลายขึ้นอยู่กับพีเอชและ ชนิดของไอออนลบ โดย species ของไอออนของซิงก์ที่พีเอชต่างๆ แสดงดังในภาพที่ 4.5⁽⁶⁷⁾ และ สามารถเขียนเป็นสมการ⁽⁶⁷⁾ ได้ดังต่อไปนี้

ภาพที่ 4.5 สัดส่วนของ Zn (II) ions species ที่พีเอชต่างๆ วัดที่ 25°C

$Zn^{2+}_{(aq)}$	+	OH	\leftrightarrow	$Zn(OH)^{+}_{(aq)}$	(สมการ 4.1)
$Zn(OH)^{+}_{(aq)}$	+	OH	\leftrightarrow	Zn(OH) _{2 (s)}	(สมการ 4.2)
$Zn(OH)_{2 (s)}$			\leftrightarrow	Zn(OH) _{2 (aq)}	(สมการ 4.3)
$Zn(OH)_{2 (s)}$			\leftrightarrow	$Zn^{2+}_{(aq)}$ + $2OH^{-}$	(สมการ 4.4)
$Zn(OH)_{2 (s)}$	+	OH	\leftrightarrow	Zn(OH) _{3 (aq)}	(สมการ 4.5)
$Zn(OH)_{2 (s)}$	+	20H	\leftrightarrow	Zn(OH) ₄ ²⁻ (aq)	(สมการ 4.6)

การเติมโซเดียมไฮดรอกไซด์ลงในสารละลายเกลือของซิงก์ไอออน จะเกิดสารประกอบ Zn(OH)⁺ และตามด้วยการตกตะกอนของ Zn(OH)₂ เมื่อพีเอชสูงขึ้นที่ 12 ถึง 14 เกิดการ dissolution ของตะกอนที่เกิดขึ้น เกิดเป็นสารประกอบ Zn(OH)₄²⁻ และสุดท้ายได้เป็นตะกอนของ ซิงก์ออกไซด์ (ZnO)

ดังนั้นสามารถเขียนปฏิกิริยาขั้นตอนการเกิดซิงก์ออกไซด์จากการละลายฝุ่นผงสังกะสีใน กรดซัลฟีวริก (conc H₂SO₄) เกิดเป็นสารละลายเกลือของซิงก์ซัลเฟตและตกตะกอนด้วย สารละลายโซเดียมไฮดรอกไซด์ แสดงได้ดังสมการ^(13, 19, 57, 68)ต่อไปนี้

Zn	+	H_2SO_4	\longrightarrow	Zn(SO ₄) +	H_2	(สมการ 4.7)
$Zn(SO_4)$	+	2NaOH	\longrightarrow	Zn(OH) ₂ +	Na_2SO_4	(สมการ 4.8)
Zn(OH) ₂	+	$2H_2O$	\longrightarrow	$Zn(OH)_{4}^{2-}$ +	$2H^+$	(สมการ 4.9)
Zn(OH) ₄ ²⁻			\longrightarrow	$ZnO + H_2O$	+ 20H ⁻	(สมการ 4.10)

4.2.2.2 ผลวิเคราะห์โครงสร้างจุลภาค ขนาดและพื้นที่ผิวของอนุภาค

นำผงตัวอย่างที่เตรียมได้โดยการละลายสารตั้งต้นด้วยกรดซัลฟิวริกและปรับค่าพีเอซเป็น 8 ถึง14 ไปศึกษาโครงสร้างจุลภาคด้วย SEM ที่กำลังขยาย 30,000 เท่า เปรียบเทียบระหว่างก่อน และหลังการไฮโดรเทอร์มัล ดังแสดงในภาพที่ 4.6 พบว่าผงตัวอย่างก่อนการไฮโดรเทอร์มัลที่ค่าพี เอซ 8 และ 10 อนุภาคมีลักษณะเป็นแผ่น (plate-like) ขนาดใหญ่ ระดับไมครอน ซึ่งน่าจะเป็น สารประกอบซิงก์ซัลเฟตไฮดรอกไซด์ไฮเดรตโดยอ้างอิงจากผล XRD และสอดคล้องกับผลการ รายงานที่ผ่านมาซึ่งพบเฟสและรูปร่างสัณฐานเช่นเดียวกัน⁽¹⁹⁾ ที่พีเอซ 10 เริ่มมีอนุภาคทรงกลม ขนาดเล็กเกิดขึ้น และเมื่อพีเอซเพิ่มขึ้นเป็น 12 และ 14 อนุภาคที่มีลักษณะเป็นแผ่นขนาดเล็กลง และมีอนุภาคที่เป็นแท่งเล็กๆ เกิดขึ้น ซึ่งคือซิงก์ออกไซด์

ผงตัวอย่างหลังจากผ่านการไฮโดรเทอร์มัลที่เตรียมที่พีเอช 8 ค่อนข้างต่างจากก่อนการ
ไฮโดรเทอมัล เนื่องจากเฟสที่เกิดขึ้นต่างกัน คือมีทั้งอนุภาคเล็กคล้ายทรงกลมเกาะอยู่ซึ่งน่าจะเป็น
ซิงก์ออกไซด์บนแผ่นของซิงก์ไฮดรอกไซด์ แต่ขนาดของแผ่นจะเล็กกว่าก่อนการไฮโดรเทอร์มัล และ
ที่พีเอช 10 และ 12 อนุภาคทรงกลมมีขนาดใหญ่ขึ้น เมื่อเพิ่มพีเอชถึง 14 พบว่าลักษณะคล้ายกับ
ก่อนไฮโดรเทอร์มัลเป็นแผ่นและแท่งขนาดเล็ก จากภาพถ่าย SEM พบว่าเมื่อปรับค่าพีเอชในช่วงพี
เอช 8 ถึง 12 อนุภาคจะมีแนวโน้มที่ขนาดลดลงและขนาดมีความสม่ำเสมอมากขึ้นโดยจากภาพ
SEM ภาพที่ 4.6 (ค) จะพบว่าที่ค่าพีเอช 12 ขนาดอนุภาคมีความสม่ำเสมอมากขึ้นโดยจากภาพ
SEM ภาพที่ 4.6 (ค) จะพบว่าที่ค่าพีเอช 12 ขนาดอนุภาคมีความสม่ำเสมอและมีขนาดเล็กที่สุด
เมื่อเทียบกับที่พีเอชอื่นๆ ซึ่งสอดคล้องกับผลวิเคราะห์พื้นที่ผิวดังแสดงในตารางที่ 4.2 พบว่าพื้นที่
ผิวจำเพาะมีค่าสูงขึ้นเมื่อพีเอซเพิ่มมากขึ้นในช่วงพีเอช 8 ถึง 12 คือ 10.51 12.73 และ 17.72
ตารางเมตรต่อกรัม ตามลำดับ และค่าพื้นที่ผิวจำเพาะกลับลดลงที่พีเอช 14 ค่าที่วัดได้คือ 15.73
ตารางเมตรต่อกรัม ผลการวิเคราะห์ธาตุด้วย EDS ดังแสดงในภาพที่ 4.7 และภาพที่ 4.8 ยืนยันว่า
สารที่สังเคราะห์ได้มีความบริสุทธิ์มีเพียงสเปคตรัมของ Zn (ส่วน สเปคตรัมของ Cu และ C มา
จากกริดในการเตรียมตัวอย่าง)

พีเอช	พื้นที่ผิวจำเพาะ (m²/g)	ขนาดผลึก (nm)
8	10.51	113.53
10	12.73	104.63
12	17.72	98.44
14	15.73	63.91

ਕ ਕੈਂ	aa 0	ය	v ۱	a a a	aa I
ตารางท 4.2 พน	ทผวจาเพาะแล	เะขนาดผลกของสารต	าวอยาง	เทเตรยม	ทพเอชตาง

o*.* .

O.Sum

ภาพที่ 4.6 ภาพถ่าย SEM ที่กำลังขยาย 30,000 เท่า ของผงตัวอย่างที่เตรียมได้ ที่ค่าพีเอชต่างๆ ทั้งก่อน (ซ้าย) และหลัง (ขวา) การไฮโดรเทอร์มัล (ก) พีเอช 8 (ข) พีเอช 10 (ค) พีเอช 12 และ (ง) พีเอช 14

ภาพที่ 4.7 ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS ของผงตัวอย่างที่เตรียมได้หลังผ่านการไฮโดรเทอร์มัล ที่พีเอช 8

ภาพที่ 4.8 ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS ของผงตัวอย่างที่เตรียมได้หลังผ่านการไฮโดรเทอร์มัล ที่พีเอช 12

4.2.2.3 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง

ผลการศึกษาสมบัติความเป็นตัวเร่งปฏิกิริยาเชิงแสงในการย่อยสลายเมทิลีนบลู ภายใต้ แสงยูวีของผงตัวอย่างที่สังเคราะห์ ได้ก่อนและหลังไฮโดรเทอร์มัล แสดงในภาพที่ 4.9 และภาพที่ 4.10 พบว่าซิงก์ออกไซด์ที่ตกตะกอนที่พีเอช 12 และ 14 ก่อนผ่านการไฮโดรเทอร์มัล มีอัตราเร็วใน การย่อยสลายเมทิลีนบลูมีเท่ากับ 7.51×10⁻³ และ 6.03×10⁻³ นาที ตามลำดับ ส่วนผงตัวอย่างที่ เตรียมที่พีเอช 8 ถึง 14 หลังผ่านการไฮโดรเทอร์มัล พบว่าผงตัวอย่างที่แสดงอัตราเร็วในการย่อย สลายเมทิลีนบลูสูงที่สุด คือ ซิงก์ออกไซด์ที่เตรียมที่พีเอช 12 มีค่าเท่ากับ 13.69×10⁻³ นาที รองลงมาได้แก่ ค่าพีเอชที่ 14, 10 และ 8 โดยมีค่าอัตราเร็วในการย่อยสลายเมทิลีนบลูเท่ากับ 11.16 9.42 และ 3.51×10⁻³ นาที ตามลำดับ ทั้งนี้ปัจจัยที่ส่งผลต่อประสิทธิภาพการย่อยสลายเมท ลีนบลูได้แก่ ความบริสุทธิ์ของผงตัวอย่าง เนื่องจากจากผงตัวอย่างที่เตรียมที่พีเอชต่ำ คือ 8 และ 10 มีเฟสของซิงก์ซัลเฟตและไฮดรอกไซด์เหลืออยู่ จึงมีประสิทธิภาพต่ำกว่าซิงก์ออกไซด์บริสุทธิ์ นอกจากนี้ขนาดและรูปร่างสัณฐานของอนุภาคที่ส่งผลต่อพื้นที่ผิวของสารเป็นปัจจัยสำคัญต่อการ เกิดปฏิกิริยาเมื่อถูกกระตุ้นด้วยแสง สารที่มีพื้นที่ผิวสูงจะช่วยส่งเสริมประสิทธิภาพการ เกิดปฏิกิริยาได้ดี และอีกปัจจัยหนึ่งคือ ความเป็นผลึก (crystallinity) ผลึกที่ไม่สมบูรณ์ มี จุดบกพร่อง (defect) หรือเป็นอสัณฐาน (amorphous) จะส่งเสริมการเกิดการรวมตัวกันของคู่ อิเล็กตรอน และโฮล (recombination) ที่เกิดขึ้นจากกลไกการกระตุ้นด้วยแสง เนื่องจาก คู่ ้อิเล็กตรอน และโฮล ที่เกิดขึ้นจะเป็นปัจจัยสำคัญที่ส่งผลต่อการเกิดตัวเร่งปฏิกิริยาเชิงแสงในการ ย่อยสลายสารอินทรีย์ที่ผิวของอนุภาค หากคู่อิเล็กตรอน และโฮล เกิดขึ้นและเกิดการกลับมา รวมตัวกัน จะทำให้อัตราการการเกิดปฏิกิริยาที่ผิวต่ำลง ซึ่งการวัดอัตราการเกิด recombination โดยตรงนั้นกระทำได้ยาก แต่ได้มีงานวิจัยมากมายที่มีการรายงานถึงผลของความเป็นผลึกต่อ ประสิทธิภาพของการเป็นตัวเร่งปฏิกิริยาเชิงแสง^(26, 29)

ดังนั้นอนุภาคซิงก์ออกไซด์ที่ผ่านกระบวนการไฮโดรเทอร์มัลมีความเป็นผลึกที่สูงกว่า อนุภาคที่ไม่ผ่านการไฮโดรเทอร์มัล จึงมีประสิทธิภาพสูงกว่าเมื่อเปรียบเทียบที่การเตรียมที่พีเอช เดียวกันสามารถอธิบายได้ด้วยเหตุผลข้างต้น

ภาพที่ 4.9 อัตราเร็วการเกิดปฏิกิริยาการย่อยสลายเมทิลีนบลูของ ของผงซิงก์ออกไซด์ที่เตรียมได้จากค่าพีเอช 12 และ 14 ก่อนการไฮโดรเทอร์มัล

ภาพที่ 4.10 อัตราเร็วการเกิดปฏิกิริยาการย่อยสลายเมทิลีนบลูของผงซิงก์ออกไซด์ ของผงตัวอย่างที่เตรียมที่พีเอชต่างๆ หลังผ่านการไฮโดรเทอร์มัล

4.2.3 ผลของอุณหภูมิไฮโดรเทอร์มัล

4.2.3.1 ผลวิเคราะห์เฟสองค์ประกอบ

เมื่อนำผงตัวอย่างที่เตรียมจากการละลายสารตั้งต้นด้วยกรดซัลฟิวริกและตกตะกอนที่พี เอซ 12 โดยผ่านวิธีการไฮโดรเทอร์มัลที่อุณหภมิ 120 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง มาศึกษา ด้วยเทคนิค XRD พบว่าเกิด ซิงก์ออกไซด์เกือบบริสุทธิ์และมีเฟสของซิงก์ออกไซด์ซัลเฟตกับซิงก์ ไฮดรอกไซด์เหลืออยู่เล็กน้อย เมื่อเพิ่มอุณหภูมิในการไฮโดรเทอร์มัลเป็น 150 จนถึง 170 องศา เซลเซียส จะเห็นได้ชัดว่ามีเฟสของซิงก์ออกไซด์เพียงเฟสเดียว โดยเฟสของซิงก์ออกไซด์ซัลเฟตกับ ซิงก์ไฮดรอกไซด์สลายไปเกิดซิงก์ออกไซด์สมบูรณ์ จากลักษณะกราฟ XRD ในภาพที่ 4.11 แสดง ให้เห็นชัดเจนว่าความเป็นผลึกของซิงก์ออกไซด์สูงขึ้น เมื่อผ่านอุณหภูมิไฮโดรเทอร์มัลสูงขึ้น โดย สังเกตจากอัตราส่วนระหว่างความสูงของพิคต่อความกว้างที่ครึ่งหนึ่งของความสูงมีค่าสูงขึ้น

ภาพที่ 4.11 กราฟ XRD ของผงตัวอย่างที่เตรียมที่พีเอช 12 และผ่านการไฮโดรเทอร์มัลที่อุณหภูมิ ต่างๆ (ก) 120 (ข) 150 และ (ค) 170 องศาเซลเซียส

4.2.3.2 ผลวิเคราะห์ลักษณะสัณฐาน ขนาดและพื้นที่ผิวของอนุภาค

ภาพที่ 4.12 ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัลที่อุณหภูมิ ต่างๆ (ก) 120 (ข) 150 และ (ค) 170 องศาเซลเซียส

ตารางที่ 4.3 พื้นที่ผิวจำเพาะ (Specific surface area) ของผงตัวอย่างที่เตรียมด้วยกระบวนการ ไฮโดรเทอร์มัลที่อุณหภูมิต่างๆ

อุณหภูมิ (°C)	พื้นที่ผิวจำเพาะ (m²/g)	ขนาดผลึก (nm)
120	13.22	68.72
150	16.72	63.43
170	17.72	98.44
จากการนำผงที่สังเคราะห์ได้ที่อุณหภูมิต่างๆ ไปศึกษาโครงสร้างจุลภาคด้วยเทคนิค SEM กำลังขยาย 30,000 เท่า ดังแสดงในภาพที่ 4.12 พบว่าที่อุณหภูมิไฮโดรเทอร์มัล 120 องศา เซลเซียส อนุภาคเป็นแผ่นซึ่งมีความเป็นไปได้ที่เป็นซิงก์ไฮดรอกไซด์หรือซัลเฟตที่ยังเหลืออยู่ และ อนุภาคทรงกลมเกาะบนแผ่นเป็นอนุภาคซิงก์ออกไซด์ เมื่อเพิ่มอุณหภูมิเป็น 150 องศาเซลเซียส พบว่าลักษณะที่เป็นแผ่นเปลี่ยนเป็นอนุภาคมีลักษณะค่อนข้างกลมและเกาะกลุ่มกัน และที่ อุณหภูมิ 170 องศาเซลเซียส พบว่าอนุภาคซิงก์ออกไซด์เป็นทรงกลมขนาดใกล้เคียงกับที่ผ่านการ ไฮโดรเทอร์มัล 150 องศาเซลเซียส แต่เกาะตัวกันน้อยกว่า จากนั้นศึกษาพื้นที่ผิวจำเพาะด้วย เทคนิค BET ดังแสดงในตารางที่ 4.3 พบว่าผงที่เตรียมได้มีพื้นที่ผิวจำเพาะอยู่ในช่วง 13.22 ถึง 17.72 ตารางเมตรต่อกรัม ซึ่งค่าที่อุณหภูมิ 150 และ 170 องศาเซลเซียส ถือว่าไม่ต่างกันมากนัก อุณหภูมิในช่วงที่ทำการศึกษานี้มีผลเพียงเล็กน้อยต่อพื้นที่ผิวจำเพาะที่สังเคราะห์ได้เนื่องจาก ขนาดและรูปร่างอนุภาคที่ใกล้เคียงกัน

มาพท 4.13 อตราเราเนการยอยสลายเมทลนบลู ของผงซิงก์ออกไซด์ที่เตรียมโดยผ่านการไฮโดรเทอร์มัลที่อุณหภูมิต่างๆ

ผลการศึกษาสมบัติความเป็นของตัวเร่งปฏิกิริยาเชิงแสง ด้วยการทดสอบอัตราเร็วในการ ย่อยสลายเมทิลีนบลู แสดงในภาพที่ 4.13 พบว่าที่อุณหภูมิ 170 องศาเซลเซียส มีประสิทธิภาพ การย่อยสลายเมทิลีนบลูดีที่สุด รองมาได้แก่ ที่อุณหภูมิ 150 และ 120 องศาเซลเซียส ตามลำดับ ผลดังกล่าวอธิบายได้ด้วยเหตุผล คือ การเพิ่มอุณหภูมิปฏิกิริยาไฮโดรเทอร์มัลเป็นการส่งเสริม ความสมบูรณ์ของผลึก เมื่ออุณหภูมิสูงขึ้นความเป็นผลึกก็เพิ่มสูงขึ้น ประสิทธิภาพการเป็นตัวเร่ง เชิงแสงจึงสูงขึ้น

4.2.4 ผลของเวลาในการไฮโดรเทอร์มัล

4.2.4.1 ผลวิเคราะห์เฟสองค์ประกอบ

ภาพที่ 4.14 กราฟ XRD ของผงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัล ที่ 170 องศาเซลเซียส เป็นเวลาต่างๆ โดย (ก) 4 (ข) 6 และ (ค) 8 ชั่วโมง

จากการศึกษาเฟสของสารที่สังเคราะห์ได้จากการเตรียมสารละลายที่พีเอช 12 และ อุณหภูมิในการไฮโดรเทอร์มัล 170 องศาเซลเซียส ที่เวลา 4 6 และ 8 ชั่วโมงด้วยเทคนิค XRD ดัง แสดงในภาพที่ 4.14 พบว่าที่เวลา 4 ชั่วโมง ยังมีเฟสของซิงก์ซัลเฟตและซิงก์ไฮดรอกไซด์ซึ่งเป็น เฟสที่ไม่เสถียรเหลืออยู่เล็กน้อย ร่วมกับเฟสหลักคือซิงก์ออกไซด์ และเมื่อเพิ่มเวลามากขึ้นเป็น 6 และ 8 ชั่วโมง ซิงก์ซัลเฟตและซิงก์ไฮดรอกไซด์เปลี่ยนเป็นซิงก์ออกไซด์สมบูรณ์ โดยที่เมื่อเวลา เพิ่มขึ้นเป็นเวลา 8 ชั่วโมง อนุภาคซิงก์ออกไซด์โตขึ้นโดยจะเห็นความสูงของพีคเพิ่มขึ้นชัดเจน ดังนั้นการสังเคราะห์ด้วยเวลาที่เหมาะสมเพียงพอต่อการเกิดปฏิกิริยาช่วยให้สามารถเตรียมซิงก์ ออกไซด์ที่บริสุทธิ์ได้

4.2.4.2 ผลวิเคราะห์ลักษณะสัณฐาน ขนาดและพื้นที่ผิวของอนุภาค

ภาพที่ 4.15 ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัล ที่ 170 องศาเซลเซียส เป็นเวลาต่างๆ โดย (ก) 4 (ข) 6 และ (ค) 8 ชั่วโมง

ตารางที่ 4.4 พื้นที่ผิวจำเพาะ (specific surface area) ของผงตัวอย่างที่เตรียมด้วยกระบวนการ ไฮโดรเทอร์มัลที่เวลาต่างๆ

เวลา (ชั่วโมง)	พื้นที่ผิวจำเพาะ (m²/g)	ขนาดผลึก (nm)
4	10.76	77.94
6	14.61	76.75
8	17.72	98.44

ภาพที่ 4.16 ภาพ TEM ที่กำลังขยายสูงของผงซิงก์ออกไซด์ ที่เตรียมที่พีเอช 12 ไฮโดรเทอร์มัลที่ 170 องศาเซลเซียส เป็นเวลา 8 ขั่วโมง

จากการศึกษาผงตัวอย่างที่เตรียมได้ที่ค่าพีเอช 12 อุณหภูมิในการไฮโดรเทอร์มัล 170 องศาเซลเซียส ที่เวลาต่างๆ ด้วย SEM แสดงดังในภาพที่ 4.15 พบว่าที่เวลาในการไฮโดรเทอร์มัล 4 ชั่วโมง อนุภาคมีลักษณะเกาะกันเป็นแผ่นและมีอนุภาคทรงกลมกระจายอยู่ เมื่อเพิ่มเวลามากขึ้น เป็น 6 และ 8 ชั่วโมง พบว่าอนุภาคทรงกลมมีขนาดเล็กเกิดเพิ่มขึ้นและขณะที่อนุภาคที่เป็นแผ่น ค่อยๆ หายไป

จากการศึกษาพื้นที่ผิวจำเพาะด้วยเทคนิค BET ดังแสดงในตารางที่ 4.4 พบว่ามีความ สอดคล้องกับผลจาก SEM ที่เวลาการไฮโดรเทอร์มัล 8 ชั่วโมง มีพื้นที่ผิวจำเพาะที่มีค่ามากที่สุด คือ 17.72 ตารางเมตรต่อกรัม ซึ่งมีอนุภาคทรงกลมขนาดเล็กและกระจายตัวดี รองลงมาคือที่เวลา 6 และ 4 ชั่วโมง ค่าพื้นที่ผิวจำเพาะคือ 14.61 และ 10.76 ตารางเมตรต่อกรัม ตามลำดับ เพื่อ ยืนยันขนาดและรูปร่างสัณฐานของอนุภาคจึงไปศึกษาด้วย TEM ดังแสดงในภาพที่ 4.16 พบว่า เมื่อทำการถ่ายภาพที่กำลังขยายสูง พบว่าค่าระยะห่างระหว่างระนาบ (D-spacing) มีค่าเท่ากับ 0.26 นาโนเมตร ซึ่งตรงกับระนาบ (002)⁽²⁶⁾ ของซิงก์ออกไซด์ (ภาคผนวก ก) และตรงกับงานวิจัยที่ มีการรายงานมา⁽²⁶⁾ 4.2.4.3 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง

แงตัวอย่างที่เตรียมที่พีเอช 12 ผ่านการไฮโดรเทอร์มัลที่เวลาต่างๆ

ผลการศึกษาสมบัติความเป็นของตัวเร่งปฏิกิริยาเชิงแสง พบว่าที่ซิงก์ออกไซด์ที่เตรียมได้ที่ เวลาไฮโดรเทอร์มัลเป็น 8 ชั่วโมง มีอัตราเร็วในการย่อยสลายเมทิลีนบลูดีที่สุดมีค่าเท่ากับ

12.01×10⁻³ นาที ตามมาด้วยที่เวลา 4 และ 6 ชั่วโมงมีค่าใกล้เคียงกัน คือ 9.22×10⁻³ และ 10.41 ×10⁻³ นาที ตามลำดับ จากข้อมูลดังกล่าวพบว่าเมื่อเพิ่มเวลาในการไฮโดรเทอร์มัลจะมี ความเป็นผลึกมากขึ้น ดัง นั้นในการศึกษานี้เวลาที่ 8 ชั่วโมงจึงเป็นเวลาการไฮโดรเทอร์มัลที่ เหมาะสมในการสังเคราะห์ซิงก์ออกไซด์

4.2.5 องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้

ผลการตรวจสอบองค์ประกอบทางเคมีของผงตัวอย่างด้วยเทคนิค X-ray fluorescence พบว่ามีซิงก์ออกไซด์เป็นองค์ประกอบหลัก มีความบริสุทธิ์ 94 เปอร์เซ็นต์ และมีออกไซด์อื่นผสม อยู่ด้วยเล็กน้อยในปริมาณต่างกัน แสดงดังตารางที่ 4.5

องค์ประกอบเคมี	ปริมาณ (wt.%)
ZnO	94.144
SO ₃	5.7
Fe_2O_3	0.088
SiO ₂	0.069

ตารางที่ 4.5 องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้

4.2.6 ผลการทดสอบความสามารถในการต้านแบคทีเรียของผงซิงก์ออกไซด์ที่ สังเคราะห์ได้

ภาพที่ 4.18 จำนวนแบคทีเรียชนิด *E.coli* ที่เหลือหลังจากทำการ incubate เป็นเวลา 3 ชั่วโมงของ (ก) ไม่เติมผง ZnO และ (ข) เติมผง ZnO ที่สังเคราะห์ได้

จากการศึกษาสมบัติการต้านแบคทีเรียของผงซิงก์ออกไซด์ที่เตรียมได้ จากการละลายสาร ตั้งต้นด้วยกรดซัลฟิวริกและปรับค่าความเป็นกรดด่างที่พีเอช 12 โดยไฮโดรเทอร์มัลที่อุณหภูมิ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง ดังแสดงในภาพที่ 4.18 เปรียบการทดสอบกับจานที่ไม่มีการเติม ผงซิงก์ออกไซด์ โดยให้เชื้อแบคทีเรียสัมผัสกับผงซิงก์ออกไซด์เป็นเวลา 3 ชั่วโมง พบว่าผงซิงก์ ออกไซด์สามารถต้านแบคทีเรียได้ 100 เปอร์เซ็นต์ (ภาคผนวก ค) จะสังเกตเห็นว่าไม่มี colony สี ขาวของแบคทีเรียเหลืออยู่เลยในจานที่เติมผงซิงก์ออกไซด์

4.3 ผลการศึกษาการเตรียมซิงก์ออกไซด์จากการละลายสารตั้งต้นด้วยกรดไนตริก

4.3.1 ผลวิเคราะห์เฟสองค์ประกอบตะกอนสารตั้งต้นที่ไม่ละลายในกรดในตริก

ผลการตรวจสอบเฟสองค์ประกอบกากตะกอนของสารตั้งต้นฝุ่นผงสังกะสี ในส่วนที่ไม่ ละลายในกรดไนตริกเข้มข้น 65% (conc HNO₃) ในเวลา 150 นาที โดยผ่านการกรองแยกออก จากสารละลายซิงก์ไนเตรตและอบให้แห้งแล้วไปตรวจวิเคราะห์เฟสด้วยเทคนิค XRD ดังแสดงผล ในภาพที่ 4.19

ที่ไม่ละลายในกรดในตริก

ผลการวิเคราะห์ด้วยเทคนิค XRD พบว่า ประกอบด้วยเฟสของซิงก์ไฮเดรตไนเตรต (Zn₃(OH)₄(NO₃)₂, JCPDS : 01-070-1361) เป็นเฟสหลักและมีเฟสของ ตะกั่วออกไซด์ (PbO, JCPDS : 01-085-1739), เฟสของซิงก์อลูมินัมซิลิเกต (Zn₂Al₄Si₅O₁₈, JCPDS : 00-032-1456) และซิงก์ไฮโดรเจน ซัลเฟต (Zn(HSO₄)₂, JCPDS : 01-078-2208) เป็นเฟสรอง ดังแสดงในภาพที่ 4.19

4.3.2 ผลของพีเอชในการตกตะกอน

นำผงตัวอย่างที่เตรียมได้จากการปรับค่าพีเอชตั้งแต่ 8 ถึง 14 มาวิเคราะห์ลักษณะเฉพาะ ด้วยเทคนิคต่างๆ เพื่อศึกษาองค์ประกอบ โครงสร้างจุลภาค พื้นที่ผิวจำเพาะและสมบัติความเป็น ตัวเร่งปฏิกิริยาเชิงแสง รวมถึงสมบัติการต้านแบคทีเรีย เพื่อให้ได้ภาวะที่เหมาะสมในการ สังเคราะห์ซิงก์ออกไซด์ ดังมีรายละเอียดการวิเคราะห์ทดสอบดังต่อไปนี้

ภาพที่ 4.20 กราฟ XRD ของผงตัวอย่างที่เตรียมได้ที่ค่าพีเอชต่างๆ ก่อนการไฮโดรเทอร์มัล (ก) พีเอช 8 (ข) พีเอช 10 (ค) พีเอช 12 และ (ง) พีเอช14

จากการนำสารละลายที่ปรับค่าความเป็นกรดด่างที่พีเอช 8 ถึง 14 ที่ได้จากการละลาย สารตั้งต้นฝุ่นผงสังกะสีด้วยกรดไนตริก ไปศึกษาองค์ประกอบเฟสด้วยเทคนิค XRD ก่อนนำ สารละลายเข้าสู่กระบวนการไฮโดรเทอร์มัล ดังแสดงในภาพที่ 4.20 พบว่าสารตัวอย่างที่เตรียมได้ ที่ค่าพีเอช 8 และ10 ประกอบด้วยกันหลายเฟส แต่มีเฟสหลักๆ คือ เฟสของซิงก์ออกไซด์ (ZnO, JCPDS : 00-016-1451) และพบเฟสของซิงก์ไฮดรอกไซด์ไนเตรทไฮเดรต (Zn₅(OH)₈(NO₃)₂(H₂O), JCPDS : 01-072-0627) ซิงก์ไฮดรอกไซด์ ไนเตรท (Zn₃(OH)₄(NO₃)₂, JCPDS : 01-070-1361) เจือปนอยู่ในปริมาณน้อย เมื่อเพิ่มพีเอชเป็น 12 และ 14 จะพบเฟสของซิงก์ไฮดรอกไซด์ไนเตรท ไฮเดรตและซิงก์ไฮดรอกไซด์ ไนเตรท หายไป เหลือเฟสของซิงก์ออกไซด์เพียงเฟสเดียว แสดงว่า พีเอชตั้งแต่ 12 ขึ้นไปมีผลต่อการเกิดซิงก์ออกไซด์มากขึ้น

ภาพที่ 4.21 กราฟ XRD ของผงตัวอย่างที่เตรียมได้ที่ค่าพีเอชต่างๆ หลังจากผ่านการไฮโดรเทอร์มัล (ก) พีเอช 8 (ข) พีเอช 10 (ค) พีเอช 12 และ (ง) พีเอช14

สารตัวอย่างที่เตรียมที่พีเอช 8 ถึง14 ภายใต้กระบวนการไฮโดรเทอร์มัลที่อุณหภูมิ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง องค์ประกอบเฟสวิเคราะห์ด้วยเทคนิค XRD ดังแสดงในภาพที่ 4.21 พบว่ามีรูปแบบพีคตรงกับซิงก์ออกไซด์เพียงเฟสเดียวที่ทุกพีเอช และสังเกตเห็นว่าเมื่อพีเอช สูงขึ้นความสูงของพีคซิงก์ออกไซด์ก็สูงขึ้นด้วย แสดงว่าการเพิ่มพีเอชส่งผลให้เกิดซิงก์ออกไซด์มาก ขึ้นและมีความเป็นผลึกสูงขึ้น

การเกิดซิงก์ออกไซด์ด้วยการละลายผงโลหะซิงก์ในกรดไนตริก (conc HNO₃) และ ตกตะกอนด้วยสารละลายโซเดียมไฮดรอกไซด์ สามารถเขียนแสดงได้ดังสมการ^(13, 19, 57, 68) ต่อไปนี้

Zn	+	$2HNO_3$	\longrightarrow	$Zn(NO_3)_2$ +	H ₂	(สมการ 4.7)
Zn(NO ₃) ₂	+	2NaOH	\longrightarrow	Zn(OH) ₂ +	2NaNO ₃	(สมการ 4.8)
Zn(OH) ₂	+	$2H_2O$	\longrightarrow	$Zn(OH)_{4}^{2-} +$	$2H^+$	(สมการ 4.9)
Zn(OH) ₄ ²⁻			\longrightarrow	$ZnO + H_2O$	+ 20H ⁻	(สมการ 4.10)

ภาพที่ 4.22 ภาพถ่าย SEM ที่กำลังขยาย 30,000 เท่า ของผงตัวอย่างที่เตรียมได้ ที่ค่าพีเอชต่างๆ ทั้งก่อน (ซ้าย) และหลัง (ขวา) การไฮโดรเทอร์มัล (ก) พีเอช 8 (ข) พีเอช 10 (ค) พีเอช 12 และ (ง) พีเอช 14

พีเอช	พื้นที่ผิวจำเพาะ (m²/g)	ขนาดผลึก (nm)		
		ยาว (nm)	กว้าง (nm)	
8	6.04	455	224	
10	9.17	170	62	
12	17.92	152	61	
14	18.83	133	36	

ตารางที่ 4.6 พื้นที่ผิวจำเพาะของผงตัวอย่างที่เตรียมที่พีเอชต่างๆ หลังการไฮโดรเทอร์มัล

จากการนำผงตัวอย่างที่ได้จากการตกตะกอนสารละลายตั้งต้นที่เตรียมจากกรดไนตริก และปรับค่าพีเอชตั้งแต่ 8 ถึง 14 ด้วยโซเดียมไฮดรอกไซด์มาศึกษาโครงสร้างจุลภาคด้วย SEM ที่ กำลังขยาย 30,000 เท่า ดังแสดงในภาพที่ 4.22 พบว่าผงตัวอย่างที่พีเอช 8 อนุภาคมีลักษณะเป็น แท่งขนาดใหญ่ขนาดไม่สม่ำเสมอ เมื่อเพิ่มพีเอชเป็น 10 และ 12 อนุภาคมีขนาดเล็กลง จนกระทั่ง ที่พี่เอช 14 อนุภาคเล็กลงและลักษณะคล้ายทรงกลม

เมื่อนำตะกอนข้างต้นไปผ่านกระบวนการไฮโดรเทอร์มัลที่ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง พบว่าลักษณะสัณฐานของอนุภาคที่เกิดขึ้นที่แต่ละพีเอซสอดคล้องกับก่อนการไฮโดรเทอร์มัล แต่หลังผ่านการไฮโดรเทอร์มัลอนุภาคมีลักษณะสัณฐานที่ชัดเจนและสม่ำเสมอมากขึ้น อีกทั้ง ขนาดยังลดลง โดยเฉพาะที่พีเอซ 8 อนุภาคมีลักษณะเป็น แท่งหกเหลี่ยม (Hexagonal prism) อย่างชัดเจน แสดงให้เห็นว่ากระบวนการไฮโดรเทอร์มัลช่วยส่งเสริมความเป็นผลึกและสัณฐานของ อนุภาค และค่าพีเอซในการตกตะกอนเป็นตัวแปรสำคัญส่งผลต่อขนาดและการเกิดสัณฐานของ อนุภาค ผลวิเคราะห์พื้นที่ผิวด้วย BET ดังแสดงในตารางที่ 4.6 สอดคล้องกับขนาดของอนุภาคที่ เกิดขึ้นที่ค่าพีเอซต่างๆ กล่าวคือ ค่าของพื้นที่ผิวของผงตัวอย่างที่เตรียมได้เพิ่มขึ้นจาก 6.04 ถึง 18.83 ตารางเมตรต่อกรัม เมื่อพีเอซเพิ่มขึ้นจาก 8 ถึง 14 เนื่องจากขนาดอนุภาคที่เล็กลง ตามลำดับ

ภาพที่ 4.23 ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS ของผงตัวอย่างที่เตรียมได้หลังผ่านการไฮโดรเทอร์มัล ที่พีเอช 8

ภาพที่ 4.24 ภาพถ่าย TEM และธาตุองค์ประกอบวิเคราะห์ด้วยเทคนิค EDS ของผงตัวอย่างที่เตรียมได้หลังผ่านการไฮโดรเทอร์มัล ที่พีเอช 12

ภาพถ่าย TEM ในภาพที่ 4.23 และภาพที่ 4.24 แสดงขนาดและสัณฐานของอนุภาค ขัดเจน ซึ่งก็สอดคล้องกับภาพถ่าย SEM ข้างต้น และเห็นได้ชัดเจนว่าอนุภาคทั้งหมดลักษณะเป็น แท่ง โดยอนุภาคที่เตรียมที่พี่เอช 8 มีขนาดเส้นผ่านศูนย์กลางประมาณ 200 นาโนเมตรและความ ยาวประมาณ 500-600 นาโนเมตร อนุภาคที่เตรียมได้ที่พีเอช 10 มีขนาดเส้นผ่านศูนย์กลาง ประมาณ 10 นาโนเมตรและความยาวประมาณ 28 นาโนเมตร อนุภาคที่เตรียมได้ที่พีเอช 12 มี ขนาดเส้นผ่านศูนย์กลางประมาณ 7 นาโนเมตรและความยาวประมาณ 20 นาโนเมตร

ผลการวิเคราะห์ด้วย EDS ดังแสดงในภาพที่ 4.23 ของผงตัวอย่างที่เตรียมได้ที่พีเอช 12 พบเพียงสเปคตรัมของซิงก์ ซึ่งยืนยันถึงความบริสุทธิ์ของสารที่เตรียมได้

4.3.2.1 ผลวิเคราะห์อัตราการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาเชิงแสง

ผลการศึกษาสมบัติความเป็นของตัวเร่งปฏิกิริยาเชิงแสง โดยการทดสอบความสามารถใน การย่อยสลายเมทิลีนบลูภายใต้แสงยูวี แบ่งออกเป็น 2 กลุ่ม คือ ผงตัวอย่างซิงก์ออกไซด์ก่อนการ ไฮโดรเทอร์มัลที่เตรียมที่พีเอช 12 และ 14 ดังแสดงในภาพที่ 4.25 พบว่าผงตัวอย่างมีประสิทธิภาพ ในการย่อยสลายได้ โดยมีค่าอัตราเร็วในการย่อยสลายเมทิลีนบลูเท่ากับ 7.25×10⁻³และ 4.66×10⁻³ นาที ตามลำดับ แต่ประสิทธิภาพต่ำกว่าผงตัวอย่างซิงก์ออกไซด์ที่ผ่านการไฮโดรเทอร์ มัลมาก เมื่อเทียบกับที่เตรียมที่พีเอชเดียวกัน ทั้งนี้เนื่องจากผงตัวอย่างก่อนการไฮโดรเทอร์มัล ถึงแม้จะเป็นซิงก์ออกไซด์แต่มีความเป็นผลึกยังไม่สมบูรณ์ เมื่อเทียบกับซิงก์ออกไซด์ที่ผ่านการ ไฮโดรเทอร์มัลซึ่งความสมบูรณ์ของผลึกหรือจุดบกพร่องในผลึก เป็นปัจจัยหนึ่งที่สำคัญต่อ ประสิทธิภาพในการเกิดปฏิกิริยาเชิงแสงของสาร

ผงตัวอย่างที่แสดงประสิทธิภาพในการย่อยสลายสารละลายเมทิลีนบลูสูงที่สุดคือ ซึงก์
ออกไซด์ที่ผ่านการไฮโดรเทอร์มัลโดยเตรียมที่พีเอช 12 ซึ่งมีอัตราการเกิดปฏิกิริยาเท่ากับ
17.37×10⁻³ นาที รองลงมาคือ ที่พีเอช 10, 14 และ 8 โดยอัตราการเกิดปฏิกิริยาที่วัดได้คือ 9.78,
7.83 และ 5.54×10⁻³ นาที ตามลำดับ จากข้อมูลดังกล่าวจะพบว่าประสิทธิภาพการย่อยสลาย
สารละลายเมทิลีนบลูของผงตัวอย่างที่สังเคราะห์ได้ขึ้นอยู่กับความเป็นผลึกและขนาดของอนุภาค
ซึ่งส่งผลต่อพื้นที่ผิวในการเกิดปฏิกิริยา

ภาพที่ 4.25 ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลูของ ของผงตัวอย่างที่เตรียมได้ที่ค่าพีเอช 12 และ 14 ก่อนการไฮโดรเทอร์มัล

ภาพที่ 4.26 ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลูของ ของผงตัวอย่างที่เตรียมที่ค่าพีเอชต่างๆ หลังจากผ่านการไฮโดรเทอร์มัล

4.3.2.2 ผลของอุณหภูมิในการไฮโดรเทอร์มัล

ภาพที่ 4.27 กราฟ XRD แสดงผลของอุณหภูมิในการไฮโดรเทอร์มัลต่อการเกิดผลึกของซิงก์ออกไซด์ (ก) 120 (ข) 150 และ (ค) 170 องศาเซลเซียส

เนื่องจากค่าพีเอชในการตกตะกอนที่ 12 ให้เฟสซิงก์ออกไซด์บริสุทธิ์และให้ผลการทดสอบ ประสิทธิภาพการเป็นตัวเร่งปฏิกิริยาเชิงแสงที่ดีที่สุดดังแสดงข้างต้น จึงเลือกที่พีเอชนี้มาใช้ใน การศึกษาผลของอุณหภูมิในการไฮโดรเทอร์มัล โดยศึกษาที่อุณหภูมิ 120 150 เทียบกับที่ 170 องศาเซลเซียส ที่เวลา 8 ชั่วโมง จากภาพที่ 4.27 พบว่าผงตัวอย่างที่เตรียมได้จากทั้งสามอุณหภูมิ ประกอบด้วยเฟสของซิงก์ออกไซด์เพียงเฟสเดียว และสังเกตชัดเจนว่าอุณหภูมิที่เพิ่มขึ้น ความสูง ของพีคก็สูงเพิ่มขึ้นไปด้วย ซึ่งโดยปกติการเพิ่มอุณหภูมิในการไฮโดรเทอร์มัลเป็นการส่งเสริมความ เป็นผลึกหรือความสมบูรณ์ของผลึกของออกไซด์

4.3.2.3 ผลการศึกษาสัณฐานวิทยาและพื้นที่ผิวจำเพาะ

ภาพที่ 4.28 โครงสร้างจุลภาคด้วย SEM ของผงตัวอย่างที่เตรียมได้ที่อุณหภูมิไฮโดรเทอร์มัลต่างๆ (ก) 120 (ข) 150 และ (ค) 170 องศาเซลเซียส

ตารางที่ 4.7 พื้นที่ผิวจำเพาะ (specific surface area) ของสารตัวอย่างที่เตรียมด้วยกระบวนการ ไฮโดรเทอร์มัลที่อุณหภูมิต่างๆ

อุณหภูมิ	ส้ เรื่อื่อ (m²/д)	ขนาดผล	ลึก (nm)
(องศาเซลเซียส)	имим за њи 12 (III /g)	ยาว (nm)	กว้าง (nm)
120	13.50	179	63
150	15.98	158	58
170	17.92	152	61

ภาพที่ 4.29 ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลู ของผงตัวอย่างที่เตรียมได้จากการไฮโดรเทอร์มัลที่อุณหภูมิต่างๆ

จากการนำสารตัวอย่างที่เตรียมได้ ที่ปรับค่าพีเอซเท่ากับ 12 และใช้อุณหภูมิในการไฮโดร เทอร์มัลที่ 120 150 และ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง มาศึกษาโครงสร้างจุลภาค ด้วย SEM ที่กำลังขยาย 30,000 เท่า ดังแสดงในภาพที่ 4.28 พบว่าที่อุณหภูมิ 120 องศาเซลเซียส อนุภาคเป็นแผ่นเกาะตัวกัน เมื่อเพิ่มอุณหภูมิที่ 150 องศาเซลเซียส อนุภาคที่เป็นแผ่นลดลง กลายเป็นอนุภาคที่มีลักษณะเป็นแท่งเกิดขึ้น และเมื่อเพิ่มอุณหภูมิไปที่ 170 องศาเซลเซียส พบว่า อนุภาคมีลักษณะเป็นแท่งและมีขนาดที่เล็ก เมื่อเทียบกับอุณหภูมิไปที่ 170 องศาเซลเซียส พบว่า อนุภาคมีลักษณะเป็นแท่งและมีขนาดที่เล็ก เมื่อเทียบกับอุณหภูมิ 150 องศาเซลเซียส ผลจากการ ดูโครงสร้างจุลภาคด้วย SEM สอดคล้องกับผลของพื้นที่ผิวจำเพาะของผงตัวอย่าง โดยเมื่อ อุณหภูมิเพิ่มมากขึ้นขนาดของอนุภาคลดลง ในขณะที่พื้นผิวจำเพาะมีค่าเพิ่มขึ้น ดังแสดงใน ตารางที่ 4.7 จากนั้นนำผงตัวอย่างมาทำการศึกษาสมบัติความเป็นตัวเร่งปฏิกิริยาเชิงแสง แสดง ในภาพที่ 4.29 พบว่าอัตราเร็วในการเกิดปฏิกิริยาที่อุณหภูมินี้ มีอนุภาคขนาดเล็กส่งผลให้มีพื้นที่ผิว จำเพาะที่มาก ทำให้มีพื้นที่ผิวในการทำปฏิกิริยามาก รองลงมาคือ ที่อุณหภูมิ 150 และ 120 องศา เซลเซียส อัตราในการย่อยสลายเมทิลีนบลูคือ 6.01×10⁻³ และ 4.53×10⁻³ นาที ตามลำดับ

4.3.2.4 ผลของเวลาไฮโดรเทอร์มัล

ภาพที่ 4.30 กราฟ XRD ของผงตัวอย่างที่เตรียมจากการไฮโดรเทอร์มัลที่เวลาต่างๆ (ก) 4 (ข) 6 และ (ค) 8 ชั่วโมง

จากการศึกษาเฟสของสารที่เตรียมได้จากการปรับความเป็นกรดด่างที่พีเอช 12 และ อุณหภูมิในการไฮโดรเทอร์มัล 170 องศาเซลเซียส ที่เวลา 4 6 และ 8 ชั่วโมง ด้วยเทคนิค XRD พบว่าทั้งสามสภาวะพบเฟสของซิงก์ออกไซด์เพียงเฟสเดียว นอกจากนั้นยังพบว่าเมื่อเวลานาน มากขึ้นความสูงของพีคก็จะเพิ่มมากขึ้น โดยจะเห็นว่าที่เวลา 8 ชั่วโมง จะมีความสูงมากที่สุด รองลงมาคือที่เวลา 6 และ 4 ชั่วโมง ตามลำดับ จากความแตกต่างของความสูงของพีค พบว่า ความสูงของพีคส่งผลต่อความเป็นผลึกของซิงก์ออกไซด์ที่สังเคราะห์ได้ คือเมื่อเวลาในการไฮโดร เทอร์มัลมากขึ้น ความเป็นผลึกก็จะเพิ่มสูงขึ้น ดังแสดงในภาพที่ 4.30

ภาพที่ 4.31 ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมได้ที่เวลาไฮโดรเทอร์มัลต่างๆ (ก) 4 (ข) 6 และ (ค) 8 ชั่วโมง

ตารางที่ 4.8 พื้นที่ผิวจำเพาะ (specific surface area) ของผงตัวอย่างที่เตรียมด้วยกระบวนการ ไฮโดรเทอร์มัลที่เวลาต่างๆ

เวลา (ชั่วโมง)	พื้นที่ผิวจำเพาะ (m²/g)	ขนาดผลึก (nm)		
		ยาว (nm)	กว้าง (nm)	
4	13.47	190	72	
6	15.21	165	55	
8	17.92	152	61	

ภาพที่ 4.32 ภาพ TEM ที่กำลังขยายสูงของผงซิงก์ออกไซด์ ที่เตรียมที่พีเอช 12 ไฮโดรเทอร์มัลที่ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง

ภาพที่ 4.33 ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลู ของผงตัวอย่างที่เตรียมได้จากการไฮโดรเทอร์มัลที่เวลาต่างๆ

จากการน้ำผงตัวคย่างที่เตรียมได้จากการละลายของสารตั้งต้นด้วยกรดในตริก และปรับ ค่าพีเอชเป็น 12 และเข้าสู่การไฮโดรเทอร์มัลที่อุณหภูมิ 170 องศาเซลเซียส ที่เวลา 4 6 และ 8 ชั่วโมง ไปศึกษาโครงสร้างจลภาคด้วยเทคนิค SEM ดังแสดงในภาพที่ 4.31 พบว่าเวลาในการ ไฮโดรเทอร์มัลที่ 4 ชั่วโมง อนุภาคที่เป็นแผ่นเกาะตัวรวมกัน มีขนาดเล็ก ส่วนที่ 6 ชั่วโมง อนุภาคมี ลักษณะเป็นแท่ง โดยอนุภาคที่เกาะตัวรวมกันลดลง และเมื่อเพิ่มเวลาในการไฮโดรเทอร์มัลไปที่ 8 ้ชั่วโมง พบว่าอนุภาคมีลักษณะเป็นแท่ง มีขนาดเล็กลง อยู่ในระดับนาโนเมตร และนำผงตัวอย่าง มาศึกษาผลของพื้นที่ผิวจำเพาะด้วยเทคนิค BET ดังแสดงในตารางที่ 4.8 พบว่าค่าพื้นที่ผิว ้จำเพาะที่วัดได้มีค่าเท่ากับ 13.47 15.21 และ 17.92 ตารางเมตรต่อกรัม ตามลำดับ ถือว่าไม่ ต่างกันมากนัก แสดงว่าการเพิ่มเวลาในการไฮโดรเทอร์มัลจากเวลาที่ 4 6 และ 8 ชั่วโมง มีผลเพียง เล็กน้อยต่อพื้นที่ผิวของอนุภาคผงตัวอย่างที่เตรียมได้ จากนั้นเมื่อทดสอบด้วยกำลังขยายที่สูง ดัง แสดงในภาพที่ 4.32 พบว่าค่าระยะห่างระหว่างระนาบมีค่าเท่ากับ 0.26 นาโนเมตร ซึ่งตรงกับ ระนาบ (002)⁽²⁶⁾ ของซิงก์ออกไซด์ (ภาคผนวก ก) หลังจากนั้นศึกษาตัวเร่งปฏิกิริยาเชิงแสงของผง ตัวอย่างที่เตรียมได้ ดังแสดงในภาพที่ 4.33 พบว่าที่ 4 ชั่วโมง มีความสามารถในการย่อย ้สารละลายเมทิลีนบลูต่ำที่สุด คือ 8.36×10⁻³ นาที ส่วนที่เวลา 6 ชั่วโมง คือ 8.79×10⁻³ นาที และที่ เวลา 8 ชั่วโมง มีประสิทธิภาพในการย่อยสลายเมทิลีนบลูมากที่สุด คือ 17.34×10⁻³ นาที จาก ข้อมูลข้างต้นพบว่าเวลาในการไฮโดรเทอร์มัล มีผลต่อประสิทธิภาพในการย่อยสลายสารละลาย เมทิลีนบลูของผงตัวอย่างที่สังเคราะห์ได้ เนื่องจากที่เวลา 8 ชั่วโมง มีผลึกที่มีขนาดเล็กพื้นที่ผิว ้จำเพาะสูงและความเป็นสมบรูณ์ของผลึก จึงประสิทธิภาพมากที่สุดในสภาวะนี้

4.3.3 ความสามารถในการต้านแบคทีเรียของผงตัวอย่างที่สังเคราะห์ได้

ภาพที่ 4.34 จำนวนแบคทีเรียชนิด *E.coli* ที่เหลือหลังจากทำการ incubate สัมผัสกับผงตัวอย่าง เป็นเวลา 3 ชั่วโมงของ (ก) ก่อนเติมผงตัวอย่าง และ (ข) หลังเติมผงซิงก์ออกไซด์ที่สังเคราะห์ได้

การทดลองนี้ได้ศึกษาความสามารถในการต้านแบคทีเรียชนิด Escherichia coli (E.coli) ด้วยเทคนิคการกระจายเชื้อเป็นการทดสอบเชิงปริมาณเพื่อวิเคราะห์ว่าผงซิงก์ออกไซด์ที่สังเคราะห์ ได้ด้วยวิธีไฮโดรเทอร์มัล มีประสิทธิภาพในการต้านแบคทีเรียได้มากน้อยเพียงใด จากภาพที่ 4.34 โดยเลือกตัวอย่างซิงก์ออกไซด์ที่เตรียมที่พีเอช 12 ไฮโดรเทอร์มัลที่อุณหภูมิ 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมงไปทดสอบการต้านแบคทีเรีย เปรียบเทียบกับที่ไม่มีการเติมผงซิงก์ออกไซด์ (blank) พบว่าจานที่เติมผงซิงก์ออกไซด์ ที่สังเคราะห์ได้ แสดงประสิทธิภาพการต้านแบคทีเรียสูง ถึง 100 เปอร์เซ็นต์ คือ ไม่พบโคโลนีของแบคทีเรียเหลืออยู่ (ภาคผนวก ก)

4.3.4 องค์ประกอบทางเคมี

ผลการวิเคราะห์องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้จากการละลายสารตั้ง ต้นด้วยกรดในตริก โดยเทคนิค X-ray fluorescence พบว่าผงตัวอย่างซิงก์ออกไซด์ที่เตรียมได้มี ความบริสุทธิ์สูงถึง 99.8 เปอร์เซ็นต์ และมีออกไซด์โลหะอื่นๆ ได้แก่ Fe₂O₃ และ NiO ปนเปื้อนอยู่ ปริมาณน้อยมาก แสดงดังตารางที่ 4.9 ซึ่งซิงก์ออกไซด์ที่เตรียมได้มีความบริสุทธิ์สูงกว่าที่เตรียม จากกรดซัลฟิวริกเนื่องจากไม่มีซัลเฟต แต่มีปริมาณออกไซด์ของเหล็กที่สูงกว่าเล็กน้อยเนื่องจาก เหล็กละลายในกรดในตริกได้ดีจึงละลายอยู่ในสารละลายที่นำมาเตรียม และไม่พบในตะกอนที่ กรองจากสารตั้งต้น

องค์ประกอบเคมี	ปริมาณ (wt.%)
ZnO	99.8
Fe ₂ O ₃	0.16
NiO	0.04

ตารางที่ 4.9 องค์ประกอบทางเคมีของผงตัวอย่างที่สังเคราะห์ได้

4.4 ผลของการเติมสารช่วยกระจายตัวไฮดรอกซีโพรพิลเซลลูโลส (hydroxypropyl cellulose, HPC)

เนื่องจากปัญหาที่เกิดขึ้นในการสังเคราะห์อนุภาคระดับนาโน คือการเกาะตัวกันของ อนุภาคทำให้พื้นที่ผิวลดลง จึงทำการศึกษาผลของการเติมสารช่วยกระจายตัว คือ HPC (hydroxypropyl cellulose) ซึ่งมีสมบัติเป็น steric stabilization โดยการเติมในปริมาณต่างๆ และหาปริมาณที่เหมาะสม ในการทำให้อนุภาคกระจายตัวและช่วยปรับปรุงสมบัติการเป็นตัวเร่ง ปฏิกิริยาเชิงแสงของอนุภาคซิงก์ออกไซด์ ซึ่งเลือกศึกษาการเติมในสารละลายที่เตรียมจากการ ละลายในกรดไนตริก และตกตะกอนที่พีเอช 12 ไฮโดรเทอร์มัลที่อุณหภูมิ 170 องศาเซลเซียส เป็น เวลา 8 ชั่วโมง

ภาพที่ 4.35 กราฟ XRD ของผงตัวอย่างที่เตรียมโดยการเติม HPC ปริมาณต่างๆ กัน (ก) ไม่เติม (ข) 0.0125 (ค) 0.025 และ (ง) 0.0375 กรัม

ตารางที่ 4.10 พื้นที่ผิวจำเพาะ (specific surface area) ของสารตัวอย่างที่เติมสารช่วยกระจายตัว HPC ที่ปริมาณต่างๆ ด้วยกระบวนการไฮโดรเทอร์มัล

งโลงเวณ HDC (ออัง)	ສັ ຢູ່ລຸດດາຍພວະ (m ² /α)	ขนาดผลึก (nm)	
	мылычым і∞ (ш /g)	ยาว (nm)	กว้าง (nm)
no HPC	17.92	152	61
0.0125	12.94	394	67
0.025	15.10	121	63
0.0375	9.53	342	67

ผลการศึกษาเฟสองค์ประกอบด้วย XRD ดังแสดงในภาพที่ 4.35 พบว่าผงตัวอย่างที่ไม่ เติมและเติม HPC ที่ปริมาณต่างกันคือ 0.0125, 0.025 และ 0.0375 กรัม มีเฟสของซิงก์ออกไซด์ เพียงเฟสเดียวในทุกสภาวะ ดังนั้นการเติมสารช่วยกระจายตัว HPC ลงในการเตรียมจึงไม่มีผลต่อ การเกิดเฟสอื่นนอกจากซิงก์ออกไซด์ แต่ส่งผลต่อขนาดและความเป็นผลึกโดยสังเกตจากลักษณะ ของพีค จากการวิเคราะห์พื้นที่ผิวดังแสดงในตารางที่ 4.10 พบว่าการเติมสารช่วยกระจายอนุภาค ทำให้พื้นที่ผิวต่ำลง โดยเฉพาะการเติมในปริมาณที่ต่ำคือ 0.0125 กรัม และสูง คือ 0.0375 กรัม ส่วนการเติมที่ 0.025 กรัม สารที่ได้มีพื้นที่ผิวจำเพาะที่ใกล้เคียงกับการเตรียมโดยไม่เติม

4.4.2 ผลการศึกษาลักษณะสัณฐาน ขนาดอนุภาคและพื้นที่ผิว

ภาพที่ 4.36 ภาพถ่าย SEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ (ก) ไม่เติม (ข) 0.0125 (c) 0.025 และ (d) 0.0375 กรัม ภาพถ่าย SEM ภาพที่ 4.36 แสดงผลของการเติม HPC ต่อลักษณะสัณฐานของอนุภาค ซิงก์ออกไซด์ ซึ่งพบว่าอนุภาคก่อนการเติมสารช่วยกระจายตัวมีรูปร่างเป็นแท่งที่มีขนาดเล็ก ระดับ นาโนเมตร แต่เมื่อเติม HPC ปริมาณ 0.0125 และ 0.0375 กรัม อนุภาคมีลักษณะเป็นแท่งที่มี ขนาดใหญ่ขึ้นโดยสัดส่วนความยาวต่อเส้นผ่านศูนย์กลางของอนุภาคสูงขึ้นมาก เมื่อเทียบกับ อนุภาคที่ไม่มีการเติม HPC ทำให้พื้นที่ผิวมีค่าลดลง จาก 17.92 เป็น 12.94 และ 9.53 ตารางเมตร ต่อกรัม ตามลำดับ ดังแสดงในตารางที่ 4.10 ส่วนการเติม HPC ปริมาณ 0.025 กรัม รูปร่างและ ขนาดอนุภาคไม่แตกต่างจากที่ไม่เติม HPC ซึ่งทำให้มีค่าพื้นที่ผิวที่ใกล้เคียงกัน คือ 15.10 ตาราง เมตรต่อกรัม

ภาพที่ 4.37 ภาพถ่าย TEM ของผงตัวอย่างที่เตรียมโดยเติม HPC ที่ปริมาณต่างๆ (ก) ไม่เติม (ข) 0.0125 (ค) 0.025 และ (ง) 0.0375 กรัม

ภาพที่ 4.38 ภาพถ่าย TEM ที่กำลังขยายสูงของอนุภาคซิงก์ออกไซด์ที่เตรียม โดยการเติม HPC กรัม

ภาพถ่าย TEM ในภาพที่ 4.37 และภาพที่ 4.38 ยืนยันผลการศึกษาด้วย SEM ถึงผลของ ปริมาณการเติม HPC ต่อลักษณะสัณฐานของอนุภาคซิงก์ออกไซด์ ซึ่งเห็นการกระจายของอนุภาค และสามารถวัดขนาดอนุภาคได้ชัดเจน พบว่าอนุภาคที่ไม่เติมและเติม HPC ที่ 0.025 กรัม ได้ อนุภาคขนาดใกล้เคียงกัน ส่วนที่เติม HPC ที่ 0.0125 กรัม ขนาดใหญ่ที่สุดมีเส้นผ่านศูนย์กลาง 11 นาโนเมตรและความยาว 65 นาโนเมตร ซึ่งมีขนาดใกล้เคียงกับเมื่อเติม HPC ที่ 0.0375 กรัม และ เมื่อศึกษาที่กำลังขยายสูงเพื่อคำนวณระยะห่างระหว่างระนาบ (D-spacing) พบว่ามีค่าเท่ากับ 0.28 นาโนเมตร ซึ่งตรงกับระนาบ (100)⁽⁶⁹⁾ ของซิงก์ออกไซด์ (ภาคผนวก ก) โดยผลึกมีการโตใน ทิศทางแกน c (c-axis)^(26, 55, 69)

4.4.3 ผลการศึกษาการกระจายขนาดของอนุภาค

ภาพที่ 4.39 การกระจายขนาดนุภาคของผงตัวอย่างที่เตรียมได้ โดยเติมสารช่วยกระจายตัว ที่ปริมาณต่างๆ ด้วยกระบวนการไฮโดรเทอร์มัล

เพื่อศึกษาผลของการเติม HPC ต่อการกระจายตัวของอนุภาค จึงทำการศึกษาขนาดและ การกระจายขนาดอนุภาคด้วยเทคนิค Laser light scattering ของผงตัวอย่างที่เตรียมได้ทั้งก่อน เติมและหลังเติมสารช่วยกระจายตัว HPC ที่ปริมาณต่างๆ ดังแสดงในภาพที่ 4.39 พบว่าผง ตัวอย่างที่เติม HPC 0.025 กรัม มีการกระจายตัวขนาดของอนุภาคที่ดีที่สุดมีขนาดเล็กที่สุด เมื่อ เทียบกับที่ไม่มีการเติม HPC หรือเติมที่ปริมาณมากหรือน้อยกว่า โดยอนุภาคที่เติม HPC 0.025 กรัม มีการกระจายขนาดเป็นสองช่วงคือ ขนาดในช่วง 0.05 ถึง 0.5 ไมครอน และ 0.5 ถึง 5 ไมครอน ส่วนอนุภาคที่ไม่เติม HPC มีการกระจายขนาดสองช่วงคือ ในช่วง 0.5 ถึง 5 ไมครอน และ 5 ถึง 20 ไมครอนในปริมาณที่พอกัน เมื่อเติม HPC 0.0125 กรัม การกระจายขนาดแบ่งเป็นสาม ช่วง คือ มีขนาดในช่วง 0.05 ถึง 0.5 ไมครอน เล็กน้อย ขนาดในช่วงกลาง 0.5 ถึง 5 ไมครอนลดลง และ 5 ถึง 20 ไมครอน เพิ่มขึ้น แต่เมื่อเพิ่ม HPC เป็น 0.0375 กรัม พบว่าอนุภาคมีขนาดใหญ่ขึ้น อย่างชัดเจนโดยมีการกระจายขนาดอนุภาคในช่วง 5 ถึง 20 ไมครอน เพิ่มสูงขึ้น และขนาดในช่วง ที่เล็กหายไป แสดงถึงการรวมตัวกันของอนุภาคเล็กเป็นอนุภาคใหญ่ขึ้น (ภาคผนวก ข) ดังนั้นจึง แสดงให้เห็นอย่างขัดเจนว่าปริมาณ HPC ที่เติมลงไปส่งผลต่อการกระจายตัวขนาดของอนุภาค โดยในการศึกษานี้พบว่าการเติม HPC 0.025 กรัม เป็นปริมาณที่เหมาะสม ที่ช่วยให้อนุภาคเกิด การกระจายตัวได้ดีขึ้นและลดการเกาะกลุ่มกันของอนุภาคได้อย่างมีประสิทธิภาพ

ผลของปริมาณการเติม HPC สามารถอธิบายได้ว่า การเติมในปริมาณที่น้อยไปสายโซ่ของ พอลิเมอร์เข้าไปล้อมรอบอนุภาคได้ไม่ทั่วถึง จึงไม่ได้ช่วยแยกอนุภาคออกจากกัน และอนุภาคที่ ไม่ได้ล้อมรอบด้วยพอลิเมอร์ เกิดการเกาะตัวกันทำให้มีขนาดใหญ่ขึ้น เมื่อมีการเติมในปริมาณที่ เหมาะสมสายโซ่พอลิเมอร์จะเข้าไปล้อมรอบได้ทั่วผิวอนุภาคเกิดแรงผลักระหว่างอนุภาคแบบ steric stabilization ป้องกันการรวมตัวกันของอนุภาค แต่หากเติมในปริมาณที่มากเกินไปกลับ ส่งเสริมการเกาะตัวกันของอนุภาค เนื่องจากทำให้เกิดขั้นของพอลิเมอร์ที่หนามากกว่าหนึ่งขั้น เคลือบรอบๆ ผิวของอนุภาค สายโซ่พอลิเมอร์จึงเกี่ยวพันกันมากขึ้นทำให้อนุภาคเกิดการเกาะกัน เป็นขนาดใหญ่ขึ้น ดังนั้นชั้นของพอลิเมอร์ที่ปริมาณเหมาะสมและเคลือบผิวอนุภาคพอดีจะไปกั้น ไม่ให้อนุภาคมารวมตัวกันได้ และอนุภาคกระจายตัวไม่เกาะกลุ่มกัน โดยประสิทธิภาพการ กระจายตัวที่ดีจะขึ้นอยู่กับระยะยืดของสายโซ่พอลิเมอร์ ถ้าสายโซ่ยาวและมีการยืดตัวที่ดี ก็จะ ส่งผลให้การกระจายตัวของอนุภาคดีมากขึ้น^(33, 62) 4.4.4 ผลการศึกษาสมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง

ภาพที่ 4.40 ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลูของผงซิงก์ออกไซด์ ที่ไม่เติมและเติมสารช่วยกระจายตัวที่ปริมาณต่างๆ

ผลจากการนำผงตัวอย่างไปศึกษาสมบัติความเป็นของตัวเร่งปฏิกิริยาเชิงแสงของผง ตัวอย่างที่เติมและไม่เติมสารช่วยกระจายตัว HPC ดังแสดงในภาพที่ 4.40 พบว่าอัตราเร็วในการ ย่อยสลายเมทิลีนบลูของผงตัวอย่างที่เติมสารช่วยกระจายตัว HPC ที่ปริมาณ 0.025 กรัม มี ประสิทธิภาพมากที่สุดคือ 19.83×10⁻³ นาที รองลงมาคือ ที่ HPC ปริมาณ 0.0125 กรัม ผงตัวอย่าง ที่ไม่เติม และเติมที่ปริมาณ 0.0375 กรัม มีค่าเท่ากับ 16.66×10⁻³, 18.98×10⁻³ และ 13.08 ×10⁻³ นาที ตามลำดับ สาเหตุที่ปริมาณ 0.025 กรัม ของ HPC มีความสามารถในการย่อยสลายมากที่สุด เนื่องจากการเติมสารช่วยกระจายตัวในปริมาณที่เหมาะสม ช่วยให้การเกาะกลุ่มของอนุภาคลดลง ดังแสดงผลการกระจายขนาดอนุภาคข้างต้น จึงส่งเสริมให้พื้นที่ผิวในการเกิดปฏิกิริยาของอนุภาค มากขึ้น 4.4.5 ผลการศึกษาสมบัติการต้านเชื้อแบคทีเรีย

ภาพที่ 4.41 จำนวนแบคทีเรียชนิด *E.coli* ที่เหลือหลังจากทำการ incubate สัมผัสกับผงตัวอยางเป็นเวลา 3 ชั่วโมง (ก) ไม่เติม ZnO และ (ข) เติม ZnO (HPC 0.025 กรัม)

ภาพที่ 4.42 โครงสร้างจุลภาคลักษณะของเซลล์ *E.coli* (ก) ไม่เติมผง ZnO และ (ข) เติมผง ZnO (HPC 0.025 กรัม) จากการทดสอบความสามารถในการต้านแบคทีเรียเชื้อ E.Coli ด้วยเทคนิคการกระจาย เชื้อแสดงในภาพที่ 4.41 ของผงซิงก์ออกไซด์ที่เตรียมจากการละลายสารตั้งด้วยกรดไนตริก จากนั้นเติมสารช่วยกระจายตัว HPC 0.025 กรัม และปรับค่าพีเอชเป็น 12 อุณหภูมิที่ใช้ในการ ไฮโดรเทอร์มัล 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง พบว่าสามารถต้านแบคทีเรียได้มี ประสิทธิภาพดี โดยแบคทีเรียลดลง 100 เปอร์เซ็นต์ และนำไปศึกษาโครงสร้างเซลล์ของเชื้อ แบคทีเรียที่ก่อนและหลังการเติมผงตัวอย่างด้วย SEM ดังแสดงในภาพที่ 4.42 พบว่าเซลล์ แบคทีเรียที่ไม่สัมผัสกับผงซิงก์ออกไซด์มีรูปร่างเป็นทรงกระบอก ซึ่งเป็นลักษณะของเซลล์ที่ สมบรูณ์ แสดงดังภาพที่ 4.42 (ก) และลักษณะของเซลล์ที่สัมผัสกับผงซิงก์ออกไซด์ พบว่าเซลล์ ของแบคทีเรียถูกทำลายผนังเซลล์ (cell membrane) โดยจะเห็นได้ชัดว่าเซลล์มีลักษณะลีบ ผนัง เซลล์แตกและเซลล์ฉีกขาดออกจากกัน
4.5 ผลการศึกษาผลของพีเอชสารละลายเมทิลีนลูต่อสมบัติความเป็นตัวเร่งปฏิกิริยาเชิง แสงของซิงก์ออกไซด์

4.5.1 ผลการศึกษาประจุที่ผิวของอนุภาคด้วยเครื่อง Zeta potential

ภาพที่ 4.43 ค่า zeta potential ของผงซิงก์ออกไซด์ที่สังเคราะห์ได้ที่พีเอชต่างๆ

ตารางที่ 4.11 ค่า zeta potential ของซิงก์ออกไซด์ที่เตรียมด้วยการเติมและไม่เติมHPC

ตัวอย่าง	Zeta potential pH7	Zeta potential pH12
no HPC	10.76	-27.09
0.025 กรัม	24.81	-35.31

การวัดประจุที่ผิวของอนุภาค (surface charge) ซึ่งก็ออกไซด์ที่สังเคราะห์ได้ ที่เตรียมโดย ไม่เติม และที่เติม HPC ในปริมาณที่เหมาะสม คือ HPC 0.025 กรัม ทดสอบด้วยเครื่อง zeta potential และปรับค่าพีเอซในช่วง 6 ถึง 12 ดังแสดงในภาพที่ 4.43 พบว่าอนุภาคที่ไม่เติมและที่ เติม HPC 0.025 กรัม มีค่า point of zero charge (pzc) คือ ประจุที่พื้นผิวมีค่าเป็นศูนย์ ที่พี่เอซ ประมาณ 8.5 และ 9.5 ตามลำดับ ซึ่งใกล้เคียงกับค่า pzc ของซิงก์ออกไซด์ที่รายงานโดยทั่วไปอยู่ ที่ประมาณ 9⁽⁶⁷⁾ โดยความเป็นประจุที่ผิวของอนุภาคออกไซด์ในน้ำที่พีเอชต่ำและสูงกว่าที่จุด pzc จะมีค่าเป็นบวกและลบ ตามลำดับซึ่งแสดงดังสมการ

จากกราฟในภาพที่ 4.43 ที่พีเอช 7 และ 12 ประจุที่ผิวมีค่าเป็นบวกและลบสูงสุด ตามลำดับ และค่าของอนุภาคซิงก์ออกไซด์ที่เตรียมโดยการเติมสารช่วยกระจายตัว HPC มีค่าสูง กว่าที่ไม่เติม ทำให้อนุภาคในสารแขวนลอยน่าจะมีความเสถียรและเกิดการผลักกันระหว่าง อนุภาคให้เกิดการกระจายตัวดีกว่า ดังแสดงค่าประจุที่ผิวในตารางที่ 4.11 จากข้อมูลในตาราง เมื่อพิจารณาความเป็นประจุที่ผิวซึ่งน่าจะเป็นปัจจัยทีส่งผลต่อความสามารถในการดูดซับ สารละลายเมทิลีนบลูที่ผิว เนื่องจากเมทิลีบลูเป็น cationic die ที่มีประจุเป็นบวก ดังนั้นจึง ทำการศึกษาผลของค่าความเป็นประจุที่ผิวอนุภาคต่อการเกิดปฏิกิริยาการย่อยสลายด้วยการ กระตุ้นด้วยแสง โดยทำการปรับพีเอซของสารละลายเมทลีนบลู ซึ่งปกติมีค่าอยู่ที่ประมาณ 7 เป็น พีเอช 12 เพื่อเปรียบเทียบผล

4.5.2 ผลการศึกษาผลของพีเอชสารละลายเมทิลีนบลูต่อประสิทธิภาพของตัวเร่ง ปฏิกิริยาเชิงแสงซิงก์ออกไซด์

เมื่อเรานำผงตัวอย่างที่เตรียมได้มาศึกษาความสามารถในการดูดซับสารละลายเมทิลีน บลู โดยปรับค่าความเป็นกรดด่างของเมทิลีนบลูให้มีค่าพีเอซเป็น 12 ดังแสดงในภาพที่ 4.44 พบว่าการดูซับเมทลีนบลูในที่มืดมีประสิทธิภาพมากขึ้นกว่าเมทิลีนบลูที่ไม่ได้ปรับค่าพีเอซ (ประมาณ 7) อย่างเห็นได้ชัดโดยสังเกตจากค่า absorbance ที่ลดลง เนื่องจากสารละลายเมทิ ลีนบลูเป็น cationic dye⁽²³⁾ และซิงก์ออกไซด์มีประจุทีผิวเป็นบวกที่พีเอซ 7 แต่ซิงก์ออกไซด์จะมี ประจุที่ผิวเป็นลบเมื่ออยู่ในสภาวะที่พีเอซสูงกว่าจุด PZC⁽³⁰⁾ และเป็นลบมากขึ้นเรื่อยๆจนมีค่าลบ มากที่สุดที่พีเอซ 12 ซึ่งทำให้ความสามารถในการดูดซับเมทลีนบลุที่มีประจุตรงข้ามที่ผิวสูงขึ้น และความสามารถในการดูดซับที่สูงช่วยส่งเสริมปฏิกิริยาการย่อยสลายเมทิลีนบลูที่ผิวได้ดีขึ้น ทำ ให้ความเข้มข้นของสารละลายเมทิลีนบลูลดลงอย่างรวดเร็วหลังฉายแสง ดังนั้นพีเอซของ สารละลายส่งผลต่อความเป็นประจุที่ผิวของซิงก์ออกไซด์ซึ่งส่งผลต่อปฏิกิริยาการย่อยสลายที่ผิว

ภาพที่ 4.44 ผลการศึกษาอัตราเร็วในการย่อยสลายเมทิลีนบลู ซึ่งมีค่าพีเอชเป็น 12 ของตัวเร่ง ปฏิกิริยาของผงตัวอย่างที่ก่อนและหลังเติมสารช่วยกระจายตัวที่ปริมาณต่างๆ

บทที่ 5 สรุปผลการวิจัย และข้อเสนอแนะ

5.1 สรุปผลการวิจัย

งานวิจัยนี้สามารถเตรียมซิงก์ออกไซด์ระดับนาโนเมตรที่มีสมบัติของตัวเร่งปฏิกิริยาเชิง แสง โดยใช้กากฝุ่นสังกะสีจากกระบวนการชุบสังกะสีแบบจุ่มร้อนเป็นสารตั้งต้น โดยวิธีไฮโดรเทอร์ มัล โดยศึกผลของตัวแปรต่างๆ ในการเตรียม ได้แก่ การละลายตั้งต้นด้วยกรดซัลฟิวริกและไนตริก ค่าพีเอชในการตกตะกอน อุณหภูมิ เวลา และผลการเติมเอซพีซี ต่อสมบัติต่างๆ ของสารที่เตรียม ได้ ดังสรุปผลได้ดังต่อไปนี้

 การเตรียมสารละลายตั้งต้นด้วยกรดในตริกและซัลฟิวริกให้ซิงก์ออกไซด์ที่มีสมบัติ ต่างกัน โดยซิงก์ออกไซด์เตรียมจากกรดในตริกมีความบริสุทธิ์สูงกว่า ขนาดอนุภาคเล็กกว่า และให้ ประสิทธิภาพในการย่อยสลายสารละลายเมทิลีนบลูที่สูงกว่าการเตรียมจากกรดซัลฟิวริก

 ค่าพีเอชในการตกตะกอนเป็นตัวแปรสำคัญที่ส่งผลต่อการเกิดซิงก์ออกไซด์ที่บริสุทธิ์ ซึ่ง จากผลการทดลองพบว่าการเตรียมจากสารละลายกรดซัลฟิวริกจะได้ ซิงก์ออกไซด์เฟสเดียวที่พี เอช 12 ส่วนการเตรียมจากสารละลายกรดในตริกเฟสเดียวตั้งแต่พีเอช 8 ทั้งนี้พีเอชยังส่งผลสำคัญ ต่อ รูปร่างสัณฐาน ความเป็นผลึกและขนาดของอนุภาค ซึ่งสมบัติเหล่านี้มีผลต่อสมบัติการเป็น ตัวเร่งปฏิกิริยาเชิงแสง

 กระบวนการไฮโดรเทอร์มัลช่วยส่งเสริมความบริสุทธิ์ ความเป็นผลึก และความ สม่ำเสมอของอนุภาคซิงก์ออกไซด์ ภายใต้อุณหภูมิ และเวลาที่เพียงพอในการเกิดปฏิกิริยาที่ สมบูรณ์ ซึ่งช่วยส่งเสริมประสิทธิภาพของปฏิกิริยาเร่งเชิงแสง

 การเติม HPC ในปริมาณที่เหมาะสมช่วยส่งเสริมให้อนุภาคกระจายตัวดีและเพิ่ม ประสิทธิภาพในการย่อยสลายเมทิลีนบลู แต่หากเติมในปริมาณน้อยหรือมากเกินจะส่งเสริมให้ อนุภาคเกิดการเกาะกลุ่มกันและทำให้ประสิทธิภาพลดลง นอกจากนี้การเติมเอชพีซียังส่งผลต่อ รูปร่างสัณฐานอนุภาคด้วย

5. จากการศึกษานี้พบว่าอนุภาคซิงก์ออกไซด์ที่แสดงสมบัติการเป็นตัวเร่งปฏิกิริยาเชิงแสง ในการย่อยสลายสารละลายเมทิลีนบลูสูงที่สุดที่เตรียมได้มีรูปร่างเป็นแท่ง มีขนาดความกว้าง ประมาณ 121 นาโนเมตร ความยาว 63 นาโนเมตรและพื้นที่ผิว 15.10 ตารางเมตรต่อกรัม ซึ่ง เตรียมจากการละลายฝุ่นสังกะสีด้วยกรดในตริก ปรับค่าพีเอชในการตกตะกอนที่ 12 เติมเอชพีซี 0.025 กรัม และผ่านกระบวนการไฮโดรเทอร์มัลที่ 170 เซลเซียส เป็นเวลา 8 ชั่วโมง 6. อนุภาคซิงก์ออกไซด์ที่เตรียมได้แสดงความสามารถในการต้านแบคทีเรียโดยไม่ต้อง ฉายแสงได้มีประสิทธิภาพโดยการทดสอบกับเชื้อ E.Coli ด้วยการกระจายเชื้อ

 พีเอชของสารละลายเมทิลีนบลูส่งผลต่อความเป็นประจุที่ผิวของซิงก์ออกไซด์ทำให้ ความสามารถในการดูดซับสารละลายเมทลีนบลูที่ผิวเปลี่ยนไปซึ่งมีผลต่อปฏิกิริยาการย่อยสลาย ภายใต้การฉายแสง

5.2 ข้อเสนอแนะสำหรับงานวิจัยเพิ่มเติม

ในงานวิจัยและการทดลองนี้สามารถทำการปรับปรุงและพัฒนาได้ดังนี้

- ศึกษาการใช้สารช่วยกระจายตัวอื่นที่เหมาะสมกับอนุภาคที่เตรียม เพื่อช่วยให้อนุภาค กระจายตัวได้ดีขึ้นซึ่งจะช่วยส่งเสริมประสิทธิภาพของตัวเร่งปฏิกิริยาเชิงแสงให้ดีขึ้น
- 2. นำผงซิงก์ออกไซด์ที่สังเคราะห์ไปประยุกต์ใช้งานในด้านต่างๆ เช่น การบำบัดน้ำเสีย

รายการอ้างอิง

- Po-Yi, W., Jenna, P., Feng, Z. and Siu-Wai, C., Low-Temperature Synthesis of Zinc Oxide Nanoparticles. <u>International journal of Applied Ceramic</u> <u>Technology</u> 3 (2006): 272-278.
- Hirota, K., et al., Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. <u>Ceramics International</u> 36 (2010): 497-506.
- (3) Huh, A. J. and Kwon, Y. J., "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. <u>Journal of Controlled Release</u> 156 (2011): 128-145.
- (4) Chen, C., Liu, P. and Lu, C., Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. <u>Chemical Engineering Journal</u> 144 (2008): 509-513.
- Moezzi, A., McDonagh, A. M. and Cortie, M. B., Zinc oxide particles: Synthesis, properties and applications. <u>Chemical Engineering Journal</u> 185–186 (2012): 1-22.
- กรมโรงงานอุตสาหกรรม. ความเป็นมาของอุตสาหกรรมชุบโลหะ [Online]. 2552.
 Available from: http://www2.diw.go.th/I_Standard/Web/pane_files/Industry26.asp [24 มิถุนายน 2554]
- (7) บุญรักษ์ กาญจนวรวณิชย์. <u>ความรู้ทั่วไปเกี่ยวกับเหล็กชุบเคลือบสังกะสี</u> [Online]. 2551. Available from: http://www.mtec.or.th/index.php?option=com_content&task=view&id=70&Ite mid=36 [18 สิงหาคม 2554]
- (8) ดร. สุพิณ แสงสุข. <u>ผลเสียของซิงก์ออกไซด์</u> [Online]. 2010. Available from:
 http://ryusaki.siam2web.com/?cid=627782 [28 กุมภาพันธ์ 2555]
- (9) Morkoc, H. and Özgür, Ü. <u>Zinc Oxide: Fundamentals, Materials and Device</u> <u>Technology</u>. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009.

- (10) Chemexplore. <u>Electron-Doped Antifluorites as Superconductors</u> [Online]. 2010.
 Available from: http://www.chemexplore.net/antifluorites.htm [2012, May 3]
- (11) Andrew, R., Barron, K. and Carissa, S. <u>Crystal Structure</u> [Online]. 2010. Available from: http://cnx.org/content/m16927/latest/ [2012, May 3]
- (12) Baruwati, B., Kumar, D. K. and Manorama, S. V., Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. <u>Sensors and Actuators B: Chemical</u> 119 (2006): 676-682.
- (13) Xu, H., et al., Hydrothermal synthesis of zinc oxide powders with controllable morphology. <u>Ceramics International</u> 30 (2004): 93-97.
- (14) Zhang, P., Xu, F., Navrotsky, A., Lee, J. S., Kim, S. T., and Liu, J., Surface enthalpies of nanophase ZnO with different morphologies. <u>Chemistry of</u> <u>Materials</u> 19 (2007): 5687-5693.
- (15) Salavati-Niasari, M., Davar, F., and Fereshteh, Z., Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. <u>Chemical</u> <u>Engineering Journal</u> 146 (2009): 498-502.
- (16) Kuo, C.-L., et al., Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. <u>Ceramics International</u> 36 (2010): 693-698.
- (17) Fatimah, I., Wang, S. and Wulandari, D., ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. <u>Applied Clay Science</u> 53 (2011): 553-560.
- (18) Hayat, K., Gondal, M. A., Khaled, M. M., Ahmed, S. and Shemsi, A. M., Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. <u>Applied Catalysis A: General</u> 393 (2011): 122-129.
- (19) Music, S., Dragcevic, D. and Popovic, S., Influence of synthesis route on the formation of ZnO particles and their morphologies. <u>Journal of Alloys and</u> <u>Compounds</u> 429 (2007): 242-249.
- (20) Fujishishima, A., hashimoto, K., watanabe, T. <u>TiO2 Photocataysis Fundamental</u> <u>and aplications</u>. BKC, Inc., 1999.

- Hariharan, C., Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. <u>Applied Catalysis A: General</u> 304 (2006): 55-61.
- (22) ผศ.ดร.พรนภา สุจริตวรกุล, ไททาเนียมไดออกได้โฟโตคะตะลิสต์กับชีวิตประจำวัน, in: ห. ภ. ค. จุฬาลงกรณ์มหาวิทยาลัย '(Ed.)'^'(Eds.)', 2548.
- (23) Kaneko, M. and Okura, I. <u>Photocatalysis Science and Technology</u>. February 2002.
- (24) Food network solution. <u>Catalyst</u> [Online]. 2010. Available from: http://www.foodnetworksolution.com/vocab/wordcap/ [2012, March 15]
- (25) Carryboy. <u>ozone [Online]</u>. 2011. Available from: http://www.ozonefilm.com/filminfo.php [2012, March 17]
- (26) Zhu, Z., Yang, D. and Liu, H., Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances. <u>Advanced Powder Technology</u> 22 (2011): 493-497.
- (27) Pare, B., Sarwan, B. and Jonnalagadda, S. B., Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCI activated by visible light under ambient condition. <u>Applied Surface Science</u> 258 (2011): 247-253.
- (28) Centre for Research in Engineering Surface Technoligy. <u>Semiconductor</u> <u>Nanomaterials Group</u> [Online]. 2010. Available from: http://www.crestdit.com/research/rgroup_semic.html [2012, April 10]
- (29) M.Kaneko and Okura, I. <u>Photocatalysis Science and Technology</u>. 2002.
- (30) Ying, K.-L., Hsieh, T.-E. and Hsieh, Y.-F., Colloidal dispersion of nano-scale ZnO powders using amphibious and anionic polyelectrolytes. <u>Ceramics</u> <u>International</u> 35 (2009): 1165-1171.
- (31) Srilomsak, S., Stabilization of Ceramic Slip I and II. <u>Suranaree Journal of Science</u> and Technology 13(3) (2006): 259-270.

- (32) P. Davide, C., Andreas, K. and Horst, W., Low-temperature synthesis of soluble and processable organic-capped anatase TiO₂ nanorods. <u>Journal of the</u> <u>American Chemical Society</u> 125 (2003): 14539–14548.
- (33) Aimable, A., Buscaglia, M. T., Buscaglia, V. and Bowen, P., Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. Journal of the European Ceramic Society 30 (2010): 591-598.
- (34) P.Greil, D. H. a. <u>Materials Science and Engineering</u> 1995.
- (35) เล็ก สีคง. <u>Engineering ceramic</u>. ภาควิชาวิศวกรรมเหมืองแร่และวัสดุ มหาวิทยาลัย สงขลานครินทร์, 2545.
- (36) วรวุฒิ เจริญศีริ. <u>เซื้ออีโคไล คืออะไร</u> [Online]. 2553. Available from: http://www.bangkokhealth.com/index.php/2009-01-19-04-20-20/951-o157h7 [18 มีนาคม 2555]
- (37) Chang, J. M. and Fang, T. J., Survival of Escherichia coli O157:H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and antimicrobial effect of rice vinegar against E. coli O157:H7. <u>Food Microbiol</u> 24 (2007): 745-751.
- (38) Bauman, R. W. <u>Microbiology with Diseases by Taxonomy</u>. San Francisco, USA, 2010.
- (39) Roberta, B., et al., Toxicological Impact Studies Based on Escherichia coli
 Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. <u>Nano Letters</u> 6 (2006): 866-870.
- (40) Jun, Z., Ningsheng, X. and Zhong L., W., Dissolving Behavior and Stability of ZnOWires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. <u>Advanced Materials</u> 18 (2006): 2432-2435.
- (41) Peng, J., et al., Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays. <u>Advanced Functional Materials</u> 17 (2007): 1303-1310.
- (42) Dastjerdi, R. and Montazer, M., A review on the application of inorganic nanostructured materials in the modification of textiles: focus on anti-microbial properties. <u>Colloids and Surfaces B: Biointerfaces</u> 79 (2010): 5-18.

- L.S. Panchakarla, A. G., and C. N. R. Rao. Formation of ZnO Nanoparticles by the Reaction of Zinc Metal with Alcohols. <u>Journal of Cluster Science</u> 18 (2007): 660-670.
- (44) Chen, Y., Yu, R., Shi, Q., Qin, J. and Zheng, F., Hydrothermal synthesis of hexagonal ZnO clusters. <u>Materials Letters</u> 61 (2007): 4438-4441.
- (45) Wang, J. and Gao, L., Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties. <u>Journal of Crystal Growth</u> 262 (2004): 290-294.
- (46) Zou, G., et al., Controlled synthesis of ZnO nanocrystals with column-, rosetteand fiber-like morphologies and their photoluminescence property. <u>Materials</u> <u>Chemistry and Physics</u> 88 (2004): 150-154.
- (47) Zhang, X. Y., et al., Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence. <u>Chemical Physics Letters</u> 393 (2004): 17-21.
- (48) Wang, J. and Gao, L., Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. <u>Solid State Communications</u> 132 (2004): 269-271.
- (49) Wei, H., Wu, Y., Lun, N. and Hu, C., Hydrothermal synthesis and characterization of ZnO nanorods. <u>Materials Science and Engineering: A</u> 393 (2005): 80-82.
- (50) Zhang, H., et al., Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process. <u>Materials Letters</u> 59 (2005): 1696-1700.
- (51) Ni, Y.-h., Wei, X.-w., Hong, J.-m. and Ye, Y., Hydrothermal preparation and optical properties of ZnO nanorods. <u>Materials Science and Engineering: B</u> 121 (2005): 42-47.
- (52) Wen, F., Li, W., Moon, J.-H. and Kim, J. H., Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process. <u>Solid State</u> <u>Communications</u> 135 (2005): 34-37.
- (53) Shah, M. A. and Al-Shahry, M., Zinc Oxide Nanoparticles Prepared by the Reaction of Zinc Metal with Ethanol. <u>Journal of king Abdulaziz University</u> 21 (2007): 61-67.

- (54) Yu, B.-S., Wang, Y.-R. and Chang, T.-C., Hydrothermal treatment of electric arc furnace dust. <u>Journal of Hazardous Materials</u> 190 (2011): 397-402.
- (55) Wang, Y. and Li, M., Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods. <u>Materials Letters</u> 60 (2006): 266-269.
- (56) Hong, R., Pan, T., Qian, J. and Li, H., Synthesis and surface modification of ZnO nanoparticles. <u>Chemical Engineering Journal</u> 119 (2006): 71-81.
- (57) Rizwan, W., Young-Soon, K. and Hyung-Shik, S., Fabrication, Characterization and growth mechanism of heterostructured zinc oxide nanostructure via solution method. <u>Current Applied Physics</u> 11 (2011): 334-340.
- (58) Zobir, S. A. M., Zainal, Z. and Hussein, M. Z., The effect of polyvinyl alcohol addition on the physicochemical properties of ZnO synthesized by ethylene glycol-hydrothermal method. <u>Materials Chemistry and Physics</u> 124 (2010): 477-481.
- (59) Tamaekong, N., Liewhiran, C., Wisitsoraat, A. and Phanichphant, S., Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. <u>Sensors and Actuators B: Chemical</u> 152 (2011): 155-161.
- (60) Zhu, L., Seburg, R. A. and Tsai, E. W., Determination of surface-bound hydroxypropylcellulose (HPC) on drug particles in colloidal dispersions using size exclusion chromatography: A comparison of ELS and RI detection. <u>Journal of Pharmaceutical and Biomedical Analysis</u> 40 (2006): 1089-1096.
- (61) Rossi, S., Luckham, P. F. and Tadros, T. F., Influence of non-ionic polymers on the rheological behaviour of Na+-montmorillonite clay suspensions—I Nonylphenol–polypropylene oxide–polyethylene oxide copolymers. <u>Colloids</u> <u>and Surfaces A: Physicochemical and Engineering Aspects</u> 201 (2002): 85-100.
- (62) Mezdour, S., Lepine, A., Erazo-Majewicz, P., Ducept, F. and Michon, C., Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and

mixed with lecithin: Contribution to emulsion stability. <u>Colloids and Surfaces</u> <u>A: Physicochemical and Engineering Aspects</u> 331 (2008): 76-83.

- (63) Kamp, H. <u>Spread plate</u> [Online]. 2009. Available from: http://www.microbelibrary.org/ASMOnly/details.asp?id=2320&Lang [2011, February 20]
- (64) <u>Introductory microbiology lab</u> [Online]. 15 December 2011. Available from: http://people.rit.edu/~gtfsbi/IntroMicro/20071images/06_F10
- (65) นงลักษณ์ สุวรรณพินิจ และ ปรีชา สุวรรณพินิจ. <u>จุลชีววิทยาทั่วไป</u>. 2542.
- (66) Tortora, G. J., Funke, B. R., and Case, C. L. <u>Microbiology</u>. San Fancisco, USA: Benjamin Cummings, 2005.
- (67) Degen, A. and Kosec, M., Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. <u>Journal of the European Ceramic Society</u> 20 (2000): 667-673.
- (68) Zhengzhi, Z., Yong, D., Xihong, Z. and Yulin, D., ZnO spheres and nanorods formation: their dependence on agitation in solution synthesis. <u>Journal of</u> <u>Nanoparticle Research</u> 13 (2011): 1689-1696.
- (69) Rai, P., et al., Microwave assisted hydrothermal synthesis of single crystalline
 ZnO nanorods for gas sensor application. <u>Materials Letters</u> 68 (2012): 90-93.

ภาคผนวก

ภาคผนวก ก

ตารางที่ ก-1 แสดงค่า 2*e*, intensity และ hkl ของ Zinc Oxide ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-036-1451

	Pattern : 00-036-1451		Radiation =	1.5405	98			Quality : High
	ZnO Zinc Oxide Zinctie, syn Also called: chinese white, zinc white		2th 31.770 34.422 36.253 47.539 56.603 62.864 66.380 67.963 69.100 72.552 76.955 76.955 76.955	/ 57 44 100 23 32 29 4 23 11 2 4	h 101111212021	k 0000100100000000000000000000000000000	/ 021203021424	
Ó	Lam/ce : Hexagonal S.G. : P63mc (186) a = 3.24982 c = 5.20661 Z = 2	Mol. weight = 81.38 Volume [CD] = 47.62 Dx = 5.675	89,607 92,784 95,304 98,613 102,946 104,134 107,430 110,392 116,279 125,188 133,932 136,513 142,918	736425138413123	222121232302122	0 1 1 1 1 0 0 1 0 0 0 1 2	1301425403265640	
0	Sample source or locality: The sample Co., Bethlehem, Pennsylvania, USA. Color: Coloriess General comments: The structure was of Abrahams, Bernstein (2). Polymorphism: A high pressure cubic N al. (3) and a cubic, sphalentle type is repo Temperature of data collection: The ap collection was 26 C. Additional pattern: To replace 5-664 (5) Powder data (additional reference): Re found in reference (5). Optical data: B-2.013, Q-2.029, Sign+ Data collection flag: Amblent.	was obtained from the New Jersey Zinc tetermined by Bragg (1) and refined by aCI-type of ZnO is reported by Bates et riced by Radozewski, Schicht (4). proximate temperature of data terences to other early patterns may be						
	McMurdie, H., Morris, M., Evans, E., Pare Hubbard, C., Powder Diffraction, volume CAS Number: 1314-13-2	etzkin, B., Wong-Ng, W., Ettlinger, L., 1, page 76 (1986)						
	Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F27-131(0.0071,29)	Filter : Monochromator crystal d-sp : Diffractometer						

ตารางที่ ก-2 แสดงค่า 2*θ*, intensity และ hkl ของ Zinc ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-004-0831

	Pattern : 00-004-0831			Radiation =	1.5405	98			Quality : High			
	Zn Zinc Zinc, syn			2th 36.297 38.993 43.232 54.337 70.652 77.029 82.105 83.767 86.560 89.923 94.903 94.903 109.132	/ 53 40 100 28 25 21 2 23 5 17 3 5 8	h 0111110122122	k 0000101000000000000000000000000000000	/ 2012304201423				
	S.G. : P63/mmc (194)		Volume [CD] = 30.43	115.003 116.390 124.054	11 5	1	1	4 0				
	a = 2.66500		Dx = 7.136	127.492 131.847 138.218	9 2 1	2	1 0 0	1 4 6				
	c = 4.94700		Dm = 7.050	138.955	9	2	1	2				
0	Z=	2	<i>M</i> cor = 3.80									
0	Sample source or locality: Sa Hill, New Jersey, USA. Temperature of data collectio Metring point: 420° Optical data: B-2.58 Color: Bluish white Analysis: Spectroscopic analys Data collection flag: Ambient.	ample from New Je vn: Pattern taken a sis shows faint tra	ersey Zinc Company, Sterling at 26 C. ces of Pb, Cu, Mg, Si.									
	Swanson, Tatge., Natl. Bur. Sta CAS Number: 7440-66-6	and. (U.S.), Circ. 5	39, volume I, page 16 (1953)									
	Radiation : CuKa1 Lambda : 1.54050 SS/FOM : F20- 55(0.0182,20)	Filter : d-sp :	Beta Not given									
						-	-		-	-	-	

ตารางที่ ก-3 แสดงค่า 2*e*, intensity และ hkl ของ Lead Sulfate ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-082-1854

	Pattern : 01-082-1854			Radiation =	1.5408	598			Quality : Alt	emate			
	Pb(SO ₄)			2111	1	h	k	ı	2 1 h	,	h	k	ı
	Lead Suttate			16.466 20.811 20.937 23.328 24.568 25.580 26.717 27.690 29.688 32.356 33.169 33.284	25 806 403 546 199 289 864 685 999 375 458 284	1 2 1 2 1 2 1 2 1 2 1 2	0 1 0 1 0 1 1 1 2 0	1 1 0 1 1 2 0 2 1 2 0 2	75.065 75.509 76.183 76.183 76.484 77.009 77.388 78.236 79.385 79.385 79.385 79.578 79.910	14 14 15 17 46 17 17 78 3 2 16	2 0 3 1 5 5 6 2 4 2	4 4 2 0 4 3 2 2 0 4 2 3	1 2 5 2 4 1 3 3 2 4 4
	Lanice : Orthorhombic	•	Mol. weight = 303.26	34.214 37.324	91 170	3	0	1	"79.910 80.404	16	3	4	1
	S.G. : Pnma (62)		Volume [CD] = 318.49	38.168 39.553	19 181	3	1	1	80.885 81.110	20 36	2	2	5
	a = 8.47920		Dx = 6.324	40.275	46 59	1	8	3	81.672	6	6	1	2
	b = 5.39750			41.709 42.350	254 52	0	2	2	82.919	46	4	0	5
	c = 6.95900			42.616	6 814	4	ġ	0	83.234	34	ŏ	ŏ	6
0	a/b = 1.57095	Z= 4	<i>Vicor</i> = 4.20	*43.762	814	1	1	3	84.165	6	3	4	2
	c/b = 1.28930			44.651 45.959	476 196	4	Ó	1	84.678 *84.678	38 38	7	03	2
				47.699 *47.699	35 35	2	2	23	85.648 86.580	12 48	3	2	5
	ICSD collection code.	075055		47.882 48.394	20 62	4	1	1	86.580 86.993	48 18	4	4	1
	Temperature factor: IT	IF mblent		50.883	159	0	3	3	86.993	18	6	3	0
0	Data collection flag: A	mbient		53,129 53,334 53,342 53,331 55,433 55,433 55,453 56,586 56,586 56,738 57,121 58,526 58,744 59,923 60,703 62,591 62,591 63,578 64,269 66,428 66,551 67,243 57,243	7 25 101 123 123 123 123 123 123 123 123 123 12	14133251242512533350136513	21021301223131023012210233	32423014311124231424440132	88.810 89.159 89.366 89.989	14 23 23 31 13	06625	33013	51463
	Andreev, Yu.G., J. Appl Calculated from ICSD u Radiation : CuKa1 Lambda : 1.54060	I. Crystallogr., vol	ume 27, page 288 (1994) + (1997) Filter : Not specified d-sp : Calculated spacings	67,587 67,731 68,328 68,481 68,589 69,520 69,718 69,331 70,089 70,723 70,269 70,273 70,969 71,255 72,075 72,075 72,075	16 15 54 70 59 51 33 56 14 30 56 14 30 16 2 2 9	62456020461552614	02301431311210041	14030035115235214					
	SS/FOM : F30-335(0.0	0024,37)		73.703	42	24	1	52					
				74.512 74.675	16 30	6 3	1 3	2 3					

ตารางที่ ก-4 แสดงค่า 2*e*ุ intensity และ hkl ของ Zinc Sulfate Hydrate ซึ่งเป็นข้อมูลมาตรฐาน จาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-001-0621

ZnSO4H2O 2th 1 h k 1 Zno Sutfale Hydrate 22,169 100 23,537 40 35,537 40 Zno Sutfale Hydrate 36,537 40 35,537 41,537 10 41,147 11 41,147 11 41,147 11 41,147 11 41,147 11 41,147 11 41,147 11 41,147 11 41,147 11 41,147 11 11,157 11 11,157 11 11,157 11,157 11,157 11,157 11,157 11,157 11,157 11,157 11,157 11,157		Paxem : 00-001-0621		Radiation =	1.5405	98			Quality : Del	eted	
Lattice : Not assigned Mol. wwight = 179.45 8 S.G. : (255) 0 0 Dm = 3.195 64.679 2 Column 0 0 0 Delined and rejected by: Deiele: Weissman, February 1961, see 12-781. 0 0 Delined and rejected by: Deiele: Weissman, February 1961, see 12-781. 0 0 Data collection flag: Ambient. 0 0 0 Hanawait. et al., Anat. Chem., volume 10, page 475 (1538) 0 0 0		ZnSO4:H2O Zinc Sulfate Hydrate		2th 18.469 23.391 26.189 29.160 35.597 37.422 38.439 41.187 43.038 44.142 46.035	64 11 100 40 40 6 11 14 10 5 13	h	k	1			
Deleted and rejected by: Delete: Weissman, February 1961, see 12-781. Metring point: 238d Data collection flag: Ambient.	0	Lattice : Not assigned S.G. : (255)	Mol. weight = 179.45	47.569 50.375 53.888 54.936 56.783 58.357 60.459 61.799 64.678 66.229 68.999 70.785 73.997 75.374	8 3 11 8 2 5 5 2 2 2 3 3						
Hanawatt. et al., Anal. Chem., volume 10, page 475 (1938)		Deleted and rejected by: Delete: Weiss Metring point: 238d Data collection flag: Ambient.	man, February 1961, see 12-781.								
Radiation : MoKa1 Filter : Beta Lambda : 0.70900 d-sp : Not given	0	Hanawait. et al., Anal. Chem., volume 10 Radiation : MoKa1 Lambda : 0.70900	0, page 475 (1938) Filter : Beta d-sp : Notgiven								

ตารางที่ ก-5 แสดงค่า 2*e*, intensity และ hkl ของ Iron Sulfate Hydrate ซึ่งเป็นข้อมูลมาตรฐาน จาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-004-0267

	Pattern : 00-004-0267		Radiation =	1.5405	98			Quality : De	leted	
	Fe ₃ (SO ₄) ₄ ·12H ₂ O /FeSO4·Fe ₂ (SO ₄) ₃ ·12H ₂ O Iron Sulfate Hydrate Roementie <i>Also called</i> : Iron (II, III)		2th 17.653 18.666 21.874 26.507 27.421 28.494 29.356 30.378 31.589 34.467 35.597	60 100 100 10 10 30 30 20 30 20	h	k	I			
0	Latzice : Not assigned S.G. : (255)	Mol. weight = 767.95 Dm = 2.174	37,768 40,991 43,038 48,104	20 20 20 20						
(Deleted and rejected by: Delete: Berry Februa Optical data: A-1.522, B-1.571, Q-1.582, Sign Color: Brownish Sample source or locality: Specimen from Chi Data collection flag: Ambient.	y 23, 1962, for Set 13. , 2V-45° ie.								
U	Michigan Alkali Co., Wyandotte, Michigan, USA.	, Private Communication								
	Radiation : CuKa Filter Lambda : 1.54000 d-sp :	: Not specified Not given								

ตารางที่ ก-6 แสดงค่า 2*e*, intensity และ hkl ของ Zinc Sulfate Hydroxide Hydrate ซึ่งเป็น ข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-011-0280

	Pazern : 00-011-0280		Radiation =	1.5405	98			Quality: No	t Indexe	ed	
	6Zn(OH)2-ZnSO4-4H2O		2th	1	h	k	1				٦
	Zinc Sulfate Hydroxide Hydrate		10.278 11.790 13.612 16.372 19.029 21.187 23.205 24.232 26.189 26.914 27.769 31.704	6 100 4 6 4 12 6 15 15 6 4							
0	Lamice : Not assigned S.G. : (0)	Mol. weight = 829.87	32,655 34,196 34,743 35,744 37,281 40,606 43,254 44,600 45,306 48,763 49,498 51,627	6 60 70 2 10 15 2 8 4 15 10 6							
0			52.423 56.479 58.519 59.812 60.987 63.932	4 40 20 4							
	Data collection flag: Ambient.		67.143 68.482 69.87 72.160 73.729 77.775	1266442							
0											
	New Jersey Zinc Company, New Jersey, USA,	Private Communication									
	Radiation : Filte d-sp	r : Not specified : Not given									

ตารางที่ ก-7 แสดงค่า 2*θ*, intensity และ hkl ของ Zinc Oxide Sulfate Hydrate ซึ่งเป็นข้อมูล มาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-003-0797

	Pazem : 00-003-0797		Radiation =	1.5408	598			Quality : De	leted	
	Zn ₄ O ₃ (SO ₄)-7H ₂ O Zinc Oxide Sulfate Hydrate		2th 21,290 25,281 32,902 35,023 41,989 50,375 52,553 58,357 68,999 80,678 96,811	12 4 100 32 16 4 80 4 2 4	h	k	1			
0	Lamice : Not assigned S.G. : (0)	Mol. weight = 531.68								
0	Deleted and rejected by: Delete: see Bi Data collection flag: Ambient.	eny comments January 31, 1957.								
, ,	New Jersey Zinc Co., Palmerton, PA, US Radiation : MoKa1 Lambda : 0.70926	A., Private Communication Fitter : Not specified d-sp : Not given								

ตารางที่ ก-8 แสดงค่า 2*θ*, intensity และ hkl ของ Zinc Hydroxide ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-012-0142

	Pamern : 00-012-0142		Radiation =	1.5405	98			Quality : De	leted	
	Zn(OH) ₂		2th	'	h	k	ı			
	Zinc Hydroxide		11.886 12.690 13.067 18.666 20.165 20.985 23.580 23.967 25.502 27.507 28.871	5 100 10 10 20 10 10 15 10 30						
	Lazzice : Not assigned S.G. : (0)	Mol. weight = 99.39	30.064 31.362 32.412 33.280 34.868	30 10 20 20						
			37.572 38.662 45.619	5 5 5						
_			54.653	5						
0										
	Deleted and rejected by: Deleted: see 12-	479.								
	Data collection flag: Amblent.									
_										
U										
	Roy, Mumpton., Econ. Geol., volume 51, pa	ige 432 (1956)								
		iter Bota								
	Lambda: 1.54200 d	ner: Deta -sp: Notgiven								

ตารางที่ ก-9 แสดงค่า 2*e*, intensity และ hkl ของ Zinc Oxide Sulfate ซึ่งเป็นข้อมูลมาตรฐาน จาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-016-0821

	Pamern : 00-016-0821		Radiation =	1.5405	598			Quality : Del	eted	
	Zn ₃ O(SO ₄) ₂		2th 8.257 12.708 13.633	40 50	h	k	1			
	Zinc Oxide Sulfale		19.071 22.549 22.783 24.232 25.577 25.558	40 50 50 80 60						
			27.594 29.655 30.064	50 30 100						
	Lattice : Not assigned S.G. : (0)	Mol. weight = 404.25	35.251 35.759 36.343 37.281 42.952	60 70 100 80 50						
0										
	Deleted and rejected by: Deleted by 32- Data collection flag: Ambient.	1475 and 31-1469.								
О										
	Ingraham, Keliogg., Trans. Am. Inst. Min.	Eng., volume 227, page 1419 (1963)								
	Radiation : Co Lambda : 1.78897	Filter : Not specified d-sp : Not given								

ตารางที่ ก-10 แสดงค่า 2*θ*, intensity และ hkl ของ Zinc Hydroxide Nitrate ซึ่งเป็นข้อมูล มาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-070-1361

	Pazem : 01-070-1361		Radiation =	1.540600		Quality : Cald	culated			
	Zn3(OH)4(NO3)2 Zinc Hydroxide Nitrate		22h 12.166 12.362 15.757 16.134 16.360 18.378 *18.378 18.364 20.072 20.785 22.444 *22.444 *23.022 24.4357 25.4557 25.4577 25.4577 25.4577 25.4577 25.4577 25.4577 25.45777 25.45777 25.4577777777777777777777777777777777777	h 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	k 100021222112021221	22h 52.965 53.174 53.514 53.514 53.675 54.675 54.676 54.676 54.676 54.496 54.496 54.496 54.496 54.496 54.496 55.557	5315377442220444	A 404001401110000000	K 03125413503343444	
0	Lazzice : Monocilnic S.G. : P21/c (14) a = 7.03800 b = 9.65800 c = 11.18200 a/b = 0.72872 c/b = 1.15780 Lazzice : Monocilnic beta = 100 z = 4	Mol. weight = 388.18 Volume [CD] = 746.21 Dx = 3.455 Dm = 3.410 Vicor = 4.33	25,765 25,274 27,386 27,736 27,736 27,736 28,975 29,975 29,975 20	사ү 수상사상 = ~~~ = ~~ 수상사 = ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0(4 + - 0(4 - 0(+ - 0) - 0) - 0) - 0 (4 - 1) 0 0 - 0 (4 - 1) 0	55.357 55.488 55.488 55.488 56.255 56.255 56.255 56.814 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.971 55.072 56.073 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 56.075 57.975 56.075 56.075 56.075 57.975 56.075 56.075 57.975 56.075 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 57.975 56.075 57.975 56.075 57.975 56.075 57.975 57.975 57.975 56.075 57.975 57.975 56.075 57.975 57.975 56.075 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 56.075 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 57.975 56.075 57.975 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 57.975 56.075 56.075 56.075 56.075 56.075 56.075 57.975 56.075 57.075 57	48854422191488494444552229992		~~~~~~~~~~~	**************
0	ICSD collection code: 002605 Remarks from ICSD/CSD/CSD: ATOM unit cell. Test from ICSD: Calc. density unusu Test from ICSD: Al least one TF mis Temperature factor: ITF Data collection flag: Amblent.	H 1+1 16.00 Atoms not located in Ial but tolerable. sing.	35.867 37.458 37.759 39.803 40.957 40.359 40.359 40.359 40.359 40.359 40.359 40.359 40.359 40.359 40.359 41.359 42.174 42.259 42.259 42.259 42.259 42.350 42.350 42.350 43.3500 43.3500 43.3500 43.3500 43.35	1	2 4 4 4 0 4 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1	39,864 39,864 39,864 39,972 50,224 50,224 50,224 50,224 50,224 50,224 50,224 50,224 51,226 51,226 51,226 51,985	N1710882211192228811114424421995155555555	- 5444 544 444 - 444 - 444 - 444 - 444 - 444 - 444 - 444	031834214232503321155584288455511835348	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Louer, M., Grandjean, D., Weigel, D., 1703 (1973) Calculated from ICSD using POWD-1	Acta Crystallogr., Sec. B, volume 29, page 12++ (1997)	417,21 477,250 477,460 477,740 45,354 46,354 46,354 46,354 46,378 46,278 46,278 46,37846,378 46,378 46,378 46,378 46,378 46,378 46,378 46,37846,378 46,378 46,378 46,378 46,37846,378 46,378 46,378 46,37846,378 46,378 46,37846,378 46,378 46,37846,378 46,378 46,37846,378 46,378 46,37846,378 46,37846,378 46,378 46,37846,378 46,378 46,37846,378 46,378 46,37846,378 46,378 46,37846,378 46,478 46,47846,478 46,478 46,47846,478 46,478 46,47846,478 46,478 46,478478 46,478 46,4788478 46,47846,478 46,47846,478 46,47846,4	**************************************	* 4 4 1 1 1 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	65.957 765.3571 66.371 765.504 765.504 765.504 67.069 767.069	22 15 5 9 9 9 9 2 2 2	uto a contraction of the	4132402487	N> N> 0N 0 0 0 0
	Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F30-223(0.0036,37)	Filter : Not specified d-sp : Calculated spacings	50.370 50.867 50.960 51.93 51.581 51.868 52.375 52.738 *52.738 *52.877		41 2 2 3 3 8 2 8 8 1 5 3 1 0 0 2 1 1				25	

ตารางที่ ก-11 แสดงค่า 2₀, intensity และ hkl ของ Lead Oxide ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-085-1739

	Pamern : 01-085-1739		Radiation =	1.5405	98			Quality : Alternate	
	PbO Lead Oxide Litharge, syn		2th 17.643 28.628 31.836 35.722 36.628 42.554 45.643 48.592 49.301 54.769 54.769 54.769	/ 40 999 307 104 1 14 140 217 7 256 256 256	h 0110112202	k 001010010100	1 1 0 2 1 2 0 2 1 1 3 2		
0	Lamice : Tetragonal S.G. : P4/mm (129) a = 3.97200 c = 5.02300 Z = 2	Mol. weight = 223.20 Volume [CD] = 79.25 Dt = 9.354 Dm = 9.300 Vicor = 22.67	59.903 64.166 64.771 66.532 69.439 73.979 75.652 77.872 78.428 78.428 80.083 82.248 84.434 86.579	84 6 10 35 2 44 44 42 30 62 6 1 19 52	1212232302321313	0112200102110011	3230113042134242		
0	ICSD collection code: 070127 Remarks from ICSD/CSD: REM M PDF Test from ICSD: Calc. density unusual but th Test from ICSD: No R value given. Test from ICSD: At least one TF missing. Additional partern: See PDF 85-1289. Data collection flag: Ambient.	5-561, distorted NaCI-type. lolerable.							
	Bystroem, A., Ark. Kemi, Mineral. Geol., volu Calculated from ICSD using POWD-12++ (19	ume 20, page 1 (1945) 997)							
	Radiation : CuKa1 Fill Lambda : 1.54060 d-4 SS/FOM : F24-407(0.0021,28)	Iter : Not specified							

ตารางที่ ก-12 แสดงค่า 2*e*, intensity และ hkl ของ Zinc Aluminum Silicate ซึ่งเป็นข้อมูล มาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-032-1456

	Pamern : 00-032-1456		Radiation =	1.5405	98			Quality : High		
	Zn ₂ Al4Si ₅ O ₁₈ Zinc Aluminum Silicate		2nh 10.548 21.712 26.550 29.706 34.102 37.053 38.502 50.838 54.452	/ 60 70 30 50 30 15 10 2 10	h 1 1 2 2 2 2 0 3 2	k 0 1 0 1 1 2 0 0 2	/ 022221 20444			
0	Lande : Hexagonal S.G. : P6/mcc (192) a = 9.69900 c = 9.35200 Z = 2	Mol. weight = 667.10 Volume [CD] = 761.88 Dx = 2.908								
	Color: White Sample preparation: Synthesized by reheating composition Zn Al2 Si2 O8 +10% ZnO to about high-quartz solid solution. Structure: Phase has high-cordiente structure Data collection flag: Ambient.	g of devitrified glass of 840 C. Extra phase present is type.								
0	von Berg, Behruzi, Institut fur Krist., Technische ICDD Grant-In-Ald (1981)	e Hochschule, Aachen, Germany.,								
	Radiation : CuKa1 Filter Lambda : 1.54055 d-sp SS/FOM : F10= 21(0.0138,34) F10= 21(0.0138,34)	r: Beta : Gulnier								

ตารางที่ ก-13 แสดงค่า 2*e*, intensity และ hkl ของ Zinc Hydrogen Sulfate ซึ่งเป็นข้อมูล มาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-078-2208

	Pagern : 01-078-2208		Radiation =	1.540600		Quality : Cal	culated			
	Zn(HSO ₄) ₂ Zinc Hydrogen Sulfate		22h) 16.338 20.565 21.255 22.167 22.167 23.4762 24.762 24.762 24.762 26.064 27.777 28.753 29.761 30.767 32.119 33.767 34.554 35.857	I h 990 1 141 0 585 -1 447 2 291 2 291 2 291 2 292 2 291 2 292 2 291 2 292 2 292 2 291 2 295 -1 1111 1 25 1 55 1	K 101110010101111001	2th \$8,444 \$8,859 \$60,022 \$60,023 \$70,966 \$70,966 \$70,966 \$71,966 \$72,440 \$73,440 \$73,440 \$73,440 \$73,440 \$74,440	45 287 7 9 9 9 22 17 17 14 8 3 3 1 4 8 17 1		K 15233424506565206.	
	Lattrice : Monoclinic S.G. : P21/n (14)	Mol. weight = 259.51 Volume [CD] = 290.57	36.035 37.262 *37.262 38.473 38.823	10 -2 248 0 248 0 12 -1 98 0	2 1 2 3 1 3 1 2	72.805 72.953 73.967 73.918	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 www	1 65 1	110134
	a = 7.21600 b = 8.34500 c = 4.88300	Dx = 2.966	39.023 39.385 39.563 39.972 40.382 41.091 *1.091 41.835	105 -1 30 3 11 -3 82 2 6 1 95 -3 95 2 1 -2	1 0 0 1 1 1 0 0 2 1 1 1 0 0 2 1 1 1 0 0 2 1 1 1 0 0 2 1 1 1 0 0 2 1 1 1 0 0 2 1 1 0 0 0 0	74.154 74.418 74.629 74.731 *74.731 *74.731 74.802 75.528	20 * 7 7 7 7 1 1		*****	
0	a/b = 0.86471 Z = 2 c/b = 0.58514	<i>Ul</i> cor = 1.77	42.727 43.278 *43.278 43.457 43.859 43.859 43.859 44.989 45.251 45.369 45.251	1 -2 0 -1 -2 3 3 1 - 3 3 42 12 12 12 12 13 15 18 8	1 1 4 2 3 2 0 4 2 1	75.548 75.849 76.442 78.442 78.639 78.903 77.955 77.230	0020070440	undhundau	*********	
0	ICSD collection code: 053418 ICSD space group comment: ICSD P21/n Temperature factor: ITF Data collection flag: Amblent.	SG: P121/N1 IT is: 14 SG short form:	47 7088 47 7388 47 7386 46 7405 50 0055 50 0055 50 0055 50 0055 50 0055 50 0055 50 0055 50 0055 50 0055 50 0055 51 2022 51 4378 52 0465 53 2056 53 2056 53 2056 53 2056 54 453 55 815 56 25 25 56 25 25 5	- 松松 小 米米 小 松崎 総称 2 5 10 1 4 55 85 8 5 2 5 5 5 1 1 4 4 4 20 1 1 4 4 20 20 1 4 4 4 20 20 20 20 20 20 20 20 20 20 20 20 20		77 255 78 478 78 604 70 675 70 675 70 675 70 675 80 356 80 386 80 386 80 386 80 386 80 386 80 386 81 677 81 677 81 677 81 857 81 857 84 55 84 55 84 55 84 55 84 75 84 75 85 76 85 76 8	724177111151517111919992144658812778911111122155	+ # * * * * * * * * * * * * * * * * * *		***************************************
	Troyanov, S.I., Stmonov, M.A., Krist Calculated from ICSD using POWD-	alografiya, volume 34, page 233 (1989) 12++ (1997)	80.908 81.218 81.218 81.218 81.822 81.809 82.020 82.020 82.020 82.020 82.020 82.020 82.020 83.205 83.205 83.205 84.780 85.289 85.289 85.289 85.289 85.289 85.289 85.289	1	8 8 8 4 1 4 1 4 1 4 1 8 4 1 8 1 8 8 4 8 4	85,549 87,095 87,795 87,782 88,098 88,735 88,735 98,735 98,735	34423334888	440000	5232422143	*******
	Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F30-182(0.0047,35)	Filter : Not specified d-sp : Calculated spacings	*65.800 66.335 68.455 67.182 67.182 67.262 67.262 67.262 67.861 68.331 *68.331	47 14 19 23 29 20 4 30 20 4 30 20 4 30 20 4 30 20 4 30 20 5 1	511 334834535					

ตารางที่ ก-14 แสดงค่า 2*ศ*ุ intensity และ hkl ของ Zinc Hydroxide Nitrate Hydrate ซึ่งเป็น ข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-072-0627

	Pattern : 01-072-0627		Radiation =	1.540598	Qu	aliny : Calcul	ated		1
	Zn5(OH)8(NO3)2(H2O)2 Zinc Hydroxide Nitrate Hydrate		2th 9.087 16.079 18.035 18.335 18.335 21.365 21.365 22.163 23.857 25.084 25.084 25.085 27.485 26.599 26.599 27.485 26.599	I h k 960 2 0 1 0 0 15 -2 0 15 -2 0 22 3 1 57 -4 0 91 -3 1 91 -3 1 115 5 1 115 0 0 24 0 0	0011101011110000	27h 62,494 63,861 64,052 64,338 64,872 65,030 65,313 65,313 65,313 65,278 66,278 66,574 766,574	h 4119707412481128798	K 4131234040124312	
0	Lattice : Base-centered monocilnic S.G. : C2/m (12) a = 19.48000 b = 6.23800 c = 5.51700 a/b = 3.12280 c/b = 0.88442	Mol. weight = 623.00 Volume [CD] = 669.31 Dx = 3.091 Mcor = 5.00	20.265 30.275 31.51 32.261 32.245 32.2455 33.274 34.126 34.126 34.126 34.352 35.377 35.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.377 36.686 36.677 36.686 36.677 36.686 36.677 36.686 36.677 36.686 36.677 36.686 36.677 36.686 36.677 36.687 36.686 36.677 36.686 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.677 36.777 37.777 36.7777 37.777 37.777 37.7777 37.7777 37.7777 37.77777 37.77777777	216 4 5 0 8 0 2 0 2 2 0 2 1 1 1 0 8 0 7 7 4 4 3 4 226 4 5 0 8 0 2 7 7 4 2 2 7 7 1 1 4 8 7 7 7 4 4 3 4 2822 7 5 5 5 19 70 3 4 5 3 9 12 7 10 8 32 3 12 3 30 32 2 4	01112117107107770711777	67.516 67.516 68.030 68.189 68.189 68.189 68.435 68.435 68.435 68.435 68.435 68.435 68.435 68.435 68.425 69.425 60.295 70.247 70.499	1410-1012-2-81412 0-882-2-211-4-2-9-13-3-1411 1410-1012-2-81412 0-882-2-211-4-2-9-13-3-1411	0 1 1 0 1 0 4 0 0 4 1 4 0 4 1 0 4 1 1 1 1	
0	ICSD collection code: 016023 Remarks from ICSD/CSD: ATOM unit cell. Temperature factor: ATF Data collection flag: Amblent.	1 1+1 24.00 Atoms not located in	59,846 40,0846 41,415 41,1845 41,175 42,215 44,187 44,085 44,085 44,085 44,085 46,087 47,040 47,740 47,740 47,740 47,740 48,856 48,856 48,856 49,158 49,515 50,055 51,5555 51,5555 51,5555 51,5555 51,55555 5	1 - 2 0 - 0 2 - 2 2 - 2 2 2 2 0 - 2 1 4 2 0 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		71.808 71.807 71.807 72.304 72.307 72.507 72.974 72.974 72.974 72.974 73.004 73.075 73.071 73.071 73.071 73.071 73.071 73.075 75.025 75.025 75.025 75.725 75.725 75.725 75.725 77.440 77.917 77.850 77.850 77.850 77.855 77.757 77.855 77.757 77.855 77.757 77.855 77.757 77.855 77.757 77.855 77.757 77.855 77.757 77.855 77.757 77.8557 77.8557 77.8557 77.8557 77.85577 77.855777 77.85577777777		- 40 40 - 110 770 - 41 70 - 4 17 - 70 11 - 110 - 110 - 110 - 10 10 11 - 470 110 -	~~~~~
	Staehlin, W., Oswaid, H.R., Acta Crys (1970) Calculated from ICSD using POWD-1:	allogr., Sec. B, volume 26, page 860 2++ (1997)		4 4 3 7 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	~~~~~	73.970 80.224 80.421 80.705 80.844 80.844 81.118 81.118 81.118 81.344 81.578 81.858	3 3 4 3 1 1 0 5 7 4 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 715 3 4 51 3 0 41	***********
	Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F30-652(0.0015,31)	Filter : Not specified d-sp : Calculated spacings	*59,200 59,518 59,767 59,782 80,033 *80,033 60,408 80,638 *80,638 81,449 *81,449	30 0 2 15 2 0 2 15 10 2 4 10 2 4 2 10 1 1 4 2 7 7 -7 5 3 4 -8 0 0	03 7470 - 3 343	8			

ตารางที่ ก-15 แสดงค่า 2*e*, intensity และ hkl ของ Zinc Hydroxide Nitrate ซึ่งเป็นข้อมูล มาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-070-1361

	Pazem : 01-070-1361		Radiation = 1	.540600		Quality : Cal	culated			
	Zn ₃ (OH)4(NO ₃)2 Zinc Hydroxide Nitrate		2th 12.166 12.862 16.757 16.134 16.500 18.578 18.578 18.578 18.504 20.0783 20.07853 20.0783 20.07853 20.0783 20.0783 2	h 011010101011011011011011011011011011011	k = 0 = 1 = 0 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	2th 50.965 51.744 51.514 51.514 51.514 51.514 51.517 51.517 54.078 54.078 54.078 54.200 54.488 54.857 55.061 55.051	5315377444422228444	h 40400140,11100,000	K 03125413503343444	- 000004000004-4000
0	Lazzice : Monoclinic Mol. weight = 388.18 S.G. : P21/c (14) Volume [CD] = 746.21 a = 7.03800 Dx = 3.455 b = 9.65800 beta = 100.96 Dm = 3.410 c = 11.18200 a/b = 0.72872 Z = 4 Ulcor = 4.33 c/b = 1.15780		26,294 26,2949 27,139 27,739 28,105 30,829 30,829 31,455 31,456 31,456 31,455 32,249 33,155 32,249 33,155 32,249 33,154 33,155 33,154 33,155 33,154 33,15533,155 33,155 33,155 34,155 34,155 34,155 34,155 34,15534,155 34,155 34,155 34,155 34,15534,155 34,155 34,155 34,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,15534,155 34,155 34,15534,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,155 34,15534,155 34,15534,155 34,155 34,15534,155 34,15534,155 34,15534,155 34,15534,155 34,15534,155 34,15534,155 3	12	0 (1 = = 0 0 , 1 = 0 = 0 = = 0 (1 = 0) = 0 (1 = 0) 0	55.357 55.486 55.486 55.486 55.486 55.486 56.255 56.815 56.815 55.814 55.257 57.151 57.713 57.713 57.713 57.713 55.271 58.0202 58.0202 58.8460 59.8460	4 8 8 8 4 4 4 9 9 1 2 2 2 2 2 2 4 4 4 9 2 1 4 4 4 9 2 2 2 2 2 2 4 4 4 9 2 2 2 2 2 2		~~~~~	***************
0	ICSD collection code: 002605 Remarks from ICSD/CSD: ATOM unit cell. Test from ICSD: Calc. density unusu Test from ICSD: At least one TF mis Temperature factor: ITF Data collection flag: Amblent.	H 1+1 16.00 Atoms not located in al but tolerable. sing.	37787 37787 38.781 38.841 39.078 39.853 40.553 40.553 40.553 40.553 40.5555 40.5555 40.5555 40.5555 40.55555 40.555555 40.5555555555	1.8.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	100 A 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	59 804 59 912 60 294 50 295 50 295 51	171712181822211132222222111442244219951333332653	- **********************************	n - & n 4 A - 4 A n An On 0 n n A	***************************************
	Louer, M., Grandjean, D., Weigel, D., 1703 (1973) Calculated from ICSD using POWD-1	Acta Crystallogr., Sec. B, volume 29, page 2++ (1997)	47 211 47 359 47 480 47 774 45 359 46 359 48 354 48 354 48 355 48 378 48 378 48 355 48 378 48 355 48 378 48 355 48 3555 48 3555 48 3555 48 3555 48 3555 48 3	・	1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	65.957 65.967 76.371 76.371 76.371 76.504 76.504 76.504 76.504 76.959 76.959 76.959	25.6 6 6 6 6 7 2 2 2	uine he he he	4132402482	1 Nr Nr 0 N N N N N
	Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F30-223(0.0036,37)	d-sp : Calculated spacings	50.887 *50.980 51.103 51.581 51.868 52.375 52.738 *52.738	*******	3453100211					

ภาคผนวก ข

แสดงการกระจายขนาดของอนุภาคด้วยเครื่อง Particle size Analyzer รุ่น 2000 ผลิตโดยบริษัท Malvern โดยใช้เทคนิค Laser Light Scattering

ภาพที่ ข-1 การกระจายขนาดอนุภาคของผงซิงก์ออกไซด์ที่สังเคราะห์ได้ (พีเอช12 อุณหภูมิในการไฮโดรเทอร์มัล 170 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง)

ภาพที่ ข-2 การกระจายขนาดอนุภาคของผงซิงก์ออกไซด์ที่สังเคราะห์ได้ (เติม HPC 0.0125 กรัม)

ภาพที่ ข-3 การกระจายขนาดอนุภาคของผงซิงก์ออกไซด์ที่สังเคราะห์ได้ (เติม HPC 0.025 กรัม)

ภาคผนวก ค

ตารางที่ ค-1 ผลการทดสอบการต้านแบคทีเรีย *E. coli* ของซิงก์ออกไซด์ขนาดนาโนเมตรที่เตรียม จากภาวะต่างๆ

Sample	The number of bacteria CFU/ml, (3h)	% Reduction			
Blank	9.7 x 106	-			
H ₂ SO ₄ _12M pH12 170°C 8h	0	100			
HNO ₃ _12M pH12 170°C 8h	0	100			
HNO ₃ _HPC 0.025g_12M pH12 170°C 8h	0	100			

ประวัติผู้เขียนวิทยานิพนธ์

นางสาวกรกมล เนตรชลายุทธ เกิดวันที่ 30 พฤศจิกายน พ.ศ. 2530 ที่จังหวัด กรุงเทพมหานคร สำเร็จการศึกษามัธยมตอนปลาย จากโรงเรียนสารวิทยา สำเร็จการศึกษาระดับ ปริญญาตรี หลักสูตรวิทยาศาสตรบัณฑิต ภาควิชาฟิสิกส์ สาขาวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยธรรมศาสตร์ เดือนกุมภาพันธ์ พ.ศ. 2552 และเข้าศึกษาต่อในหลักสูตรวิทยาศาสตร มหาบัณฑิต ภาควิชาวัสดุศาสตร์ สาขาเทคโนโลยีเซรามิก คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย ในปีการศึกษา 2552 และสำเร็จการศึกษาในปี 2554

การนำเสนอผลงานทางวิชาการระดับนานาชาติแบบ Oral presentation เรื่อง "Hydrothermal Synthesis of Zinc Oxide Nanoparticle from Zinc-Dust Waste for Photocatalytic and Antibacterial Applications" ในการประชุมทางวิชาการ Chiang Mai International Conference on Biomaterials & Applications (CMICBA 2011) วันที่ 9-10 สิงหาคม พ.ศ. 2554 จัดโดย มหาวิทยาลัยเซียงใหม่ ณ โรงแรมดิ เอ็มเพรส เซียงใหม่ และได้รับ การตีพิมพ์ผลงานแบบ Journal ของ Advanced Materials Research Vol. 506 (2012) pp 78-81

การนำเสนอผลงานทางวิชาการระดับนานาชาติแบบ Poster presentation เรื่อง "Effects of Hydrothermal Conditions on Properties of ZnO Photocatayst Using Zn-dust waste as Starting Materials" ในการประชุมทางวิชาการ The 7th Mathematics and Physical Sciences Graduate Congress (MPSGC) ระหว่างวันที่ 12-14 ธันวาคม พ.ศ. 2554 จัดโดย National University of Singapore และได้รับรางวัล Best Poster Presentation Award (Chemistry Session)

การนำเสนอผลงานทางวิชาการระดับนานาชาติแบบ Poster presentation เรื่อง "Photocatalytic activity of ZnO nano powder synthesized from Zn-dust waste via hydrothermal process" ในการประชุมทางวิชาการ The 3rd Research Symposium on Petrochemical and Materials Technology and The 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers ในวันที่ 24 เมษายน 2555 จัดโดย ศูนย์ความเป็นเลิศแห่งชาติ ด้านปิโตรเลียม ปิโตรเคมี และวัสดุขั้นสูง ร่วมกับวิทยาลัยปิโตรเลียมและ ปิโตรเคมี จุฬาลงกรณ์ มหาวิทยาลัย ณ ศูนย์ประชุมแห่งชาติสิริกิติ์ และได้รับรางวัล Gold Poster Presentation Award