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Thesis Title GENERAL FRÉCHET FUNCTIONAL EQUATION

By Miss Patcharee Sumritnorrapong

Field of Study Mathematics

Thesis Advisor Associate Professor Patanee Udomkavanich, Ph.D.

Thesis Co-advisor Associate Professor Paisan Nakmahachalasint, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master Degree

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chairman

(Assistant Professor Nataphan Kitisin, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Thesis Advisor

( Associate Professor Patanee Udomkavanich, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Thesis Co-advisor

(Associate Professor Paisan Nakmahachalasint, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Examiner

(Keng Wiboonton, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .External Examiner

(Charinthip Hengkrawit, Ph.D.)



  
 
                                                                                                                                                                                   
                                                                                                                                                     iv 

 

               พัชรี สัมฤทธิ์นรพงศ : สมการเชิงฟงกชันเฟรเชในรูปทั่วไป. (GENERAL FRÉCHET   

             FUNCTIONAL EQUATION) อ. ที่ปรึกษาวิทยานิพนธหลัก : รศ. ดร. พัฒนี อุดมกะวานิช,  

             อ. ที่ปรึกษาวิทยานิพนธรวม : รศ.  ดร. ไพศาล นาคมหาชลาสินธุ, 25 หนา.  

 

              ให X และ Y เปนปริภูมิเชิงเสนเหนือฟลด ,   หรือ   กําหนดให 1 2, , , na a a  เปน 

สเกลารซึ่ง 0na ≠  เราไดพิสูจนวาผลเฉลย :f X Y→  ทั้งหมดของสมการเชิงฟงกชันเฟรเชในรูป

ทั่วไป 

1
( ) ( ) 0

n

k
k

f x a f x ky
=

+ + =∑       สําหรับทุก ,x y X∈  

เปนฟงกชันพหุนามวางนัยทั่วไป ซึ่งสามารถจําแนกดีกรีไดในรูปของ 1 2, , , na a a   

ภาควิชา  คณิตศาสตรและวิทยาการคอมพิวเตอร  ลายมือชื่อนิสิต                                                        .                                                       

                                                                                     สาขาวิชา                  คณิตศาสตร                          ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธหลัก                  .                                    

 ปการศึกษา                      2555                              ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธรวม                   . 

                                                                                             



v

##5472049423 : MAJOR MATHEMATICS

KEYWORDS : JENSEN’S FUNCTIONAL EQUATION / FRÉCHET FUNC-
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CHAPTER I

INTRODUCTION

In this chapter, we will give some general background of functional equation

and the motivation of our proposed problem.

1.1 Functional Equations

P.K. Sahoo and Pl. Kannappan [13] simply described that “Functional equa-

tions are equations in which the unknowns are functions.” One purpose of studying

a functional equation is to determine all functions satisfying the given equation.

The following examples illustrate how one may determine the general solution of

a given functional equation.

Example 1.1. Determine all functions f : R → R satisfying

f(x+ y) + 2f(y) = f(3y) + x for all x, y ∈ R. (1.1)

Solution. Assume that there exists a function f : R → R satisfying (1.1).

Setting x = 0 and y = 0 in (1.1), we have f(0) = 0.

Replacing y = 0 in (1.1), we obtain

f(x) + 2f(0) = f(0) + x for all x ∈ R.

Since f(0) = 0, we get

f(x) = x for all x ∈ R.

On the other hand, if a function f is defined by f(x) = x for all x ∈ R, then

f(x+ y) + 2f(y) = (x+ y) + 2y = 3y + x = f(3y) + x

That is, f(x) = x indeed satisfies the functional equation (1.1). Therefore, the

solution of (1.1) is the function f given by f(x) = x for all x ∈ R.
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Some functional equations may not have any solutions.

Example 1.2. Find all functions f : R → R satisfying

f(x+ y) = f(y) + x+ 1 for all x, y ∈ R. (1.2)

Solution. Assume that there exists a function f : R → R satisfying (1.2).

Substituting y = 0 in (1.2), we have

f(x) = f(0) + x+ 1 for all x ∈ R.

Setting c = f(0) + 1, we obtain f(x) = x+ c for all x ∈ R.

Conversely, if a function f is given by f(x) = x+ c for all x ∈ R, then we see that

the left-hand side of (1.2) becomes

f(x+ y) = x+ y + c

while the right-hand side of (1.2) is

f(y) + x+ 1 = y + c+ x+ 1 = x+ y + c+ 1.

Since c ̸= c+1, the function f does not satisfy (1.2). Therefore, there is no function

f : R → R satisfying (1.2).

A famous problem in functional equations is the additive functional equation

f(x+ y) = f(x) + f(y) for all x, y ∈ R. (1.3)

This additive functional equation was studied by many researchers but an impor-

tant result regarding its solution was proved by A.L. Cauchy [3] in 1821. Cauchy

proved that all continuous solutions f : R → R are of the form f(x) = cx for

all x ∈ R, where c is a real constant. The additive functional equation is later

recognized as the Cauchy functional equation. In general, every solution of the

Cauchy functional equation is said to be an additive function. In 1905, G. Hamel

[9] employed Hamel bases over Q to construct the discontinuous solution of the
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Cauchy functional equation. A remarkable property of a discontinuous additive

function is that the graph G(f) = {(x, f(x)) : x ∈ R} is dense in the plane R2,

that is, for all ε > 0 and for all (a, b) ∈ R2 there exists a point (x, f(x)) ∈ G(f)

such that (x− a)2 + (f(x)− b)2 < ε2, which indicates that the graph of f contain

points scattered all the plane R2. This result was also proved by E. Hewitt and

H.S. Zuckerman [10] without using Hamel basis in 1969.

Another functional equation that is closely related to the Cauchy functional

equation is the Jensen’s functional equation (for more information, please refer to

[1])

f

(
x+ y

2

)
=

f(x) + f(y)

2
for all x, y ∈ R. (1.4)

It can be seen that (1.4), under a suitable constant of translation, is equivalent

to the Cauchy functional equation; that is, if we set g(x) = f(x) − f(0), then

we can show that g(0) = 0, g(x
2
) = 1

2
g(x) and g(x+y

2
) = 1

2
(g(x) + g(y)) which

indicate that g is an additive function. The continuous solution of the Jensen’s

functional equation is of the form f(x) = c + ax for all x ∈ R, where a and c are

real constants. The general solution of the Jensen’s functional equation is of the

form f(x) = c+ A(x) where c is a real constants and A is an additive function.

If we replace y by x + 2y in the Jensen’s functional equation (1.4), then it

becomes

f(x)− 2f(x+ y) + f(x+ 2y) = 0 for all x, y ∈ R. (1.5)

On the other hand, if we replace y by y−x
2

in (1.5), then the functional equation

(1.5) becomes the Jensen’s functional equation. Hence, we can take (1.5) as an

equivalent form of (1.4).

In 1909, M. Fréchet [8] initiated a generalization of the Cauchy functional

equation. This functional equation can be written in an explicit form as

m+1∑
k=0

(−1)m+1−k

(
m+ 1

k

)
f(x+ kh) = 0 (1.6)

where m is a nonnegative integer. The functional equation (1.6) can be written in
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terms of a difference operator with a span h as

∆m+1
h f(x) = 0 (1.7)

More precisely, Fréchet proved that the continuous solution of (1.6) is an ordinary

of polynomial degree at most m. The functional equation (1.7) will be referred to

as the Fréchet functional equation. In 1967, M.A. McKiernan [11] gave the general

solution of the Fréchet functional equation (1.7) is of the form

f(x) = A0 + A1(x) + A2 + · · ·+ Am(x)

where A0 is a constant and Ak(x) is the diagonalization of a k-additive symmetric

function Ak : Rk → R for k = 1, 2, . . . ,m.

In 2003, J.K. Chung and P.K. Sahoo [4] determined the general solution of the

functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4 (f(x+ y) + f(x− y) + 6f(y)) (1.8)

for all x, y ∈ R. The next theorem gives a general solution of the functional equation

(1.8).

Theorem 1.3. The function f : R → R satisfies the functional equation (1.8) if

and only if f is of the form

f(x) = A4(x),

where A4(x) is the diagonalization of a 4-additive symmetric function A4 : R4 → R.

In 2004, P.K. Sahoo [12] solved the functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) (1.9)

for all x, y ∈ R. The general solution of (1.9) is shown in the following theorem.

Theorem 1.4. The function f : R → R satisfies the functional equation (1.9) if

and only if f is of the form

f(x) = A0 + A1(x) + A2(x) + A3(x)
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where A0 is an arbitrary constant and An(x) is the diagonalization of an n-additive

symmetric function An : Rn → R for n = 1, 2, 3.

In 2009, M. Eshaghi Gordji and H. Khodaei [7] found the general solution of

the following functional equation.

f(x+ ky) + f(x− ky) = k2f(x+ y) + k2f(x− y) + 2(1− k2)f(x) (1.10)

for fixed integers k with k ̸= 0,±1. The general solution of (1.10) is shown in the

next theorem.

Theorem 1.5. Let X and Y be real linear spaces. A function f : X → Y with

f(0) = 0 satisfies (1.10) for all x, y ∈ X if and only if for each k = 1, 2, 3, there

exists a k-additive symmetric function Ak : X
k → Y such that

f(x) = A1(x) + A2(x) + A3(x)

where Ak is the diagonalization of Ak.

In 2012, A. Thanyacharoen [14] solved the general solution of the functional

equation

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

= 13 (f(x+ y) + f(x− y)) + 168f(y)
(1.11)

for all x, y ∈ R. Before he established the general solution of the functional equation

(1.11), he proved an auxiliary lemma.

Lemma 1.6. If a function f : R → R satisfies the functional equation

f(x+4y)−14f(x+2y)+35f(x+y)−35f(x)+14f(x−y)−f(x−3y) = 0 (1.12)

for all x, y ∈ R, then f is of the form

f(x) = A0 + A1(x) + A2(x) + A3(x) + A4(x)

where A0 is an arbitrary constant and An(x) is the diagonalization of an n-additive

symmetric function An : Rn → R for n = 1, 2, 3, 4.
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The general solution of (1.11) is shown in the following theorem.

Theorem 1.7. A function f : R → R satisfies the functional equation (1.11) if

and only if it is of the form

f(x) = A4(x)

where A4(x) is the diagonalization of a 4-additive symmetric function A4 : R4 → R.

In 2005, J.A. Baker [2] found the general solution of a general functional equa-

tion
m∑
k=0

fk(αkx+ βky) = 0

as shown in the following theorem.

Theorem 1.8. Suppose that V and B are linear spaces over Q, R or C and

α0, β0, . . . , αm, βm are scalar such that αjβk − αkβj ̸= 0 whenever 0 ≤ j < k ≤ m.

If fk : V → B for 0 ≤ k ≤ m and

m∑
k=0

fk(αkx+ βky) = 0 for all x, y ∈ V, (1.13)

then each fk is a generalized polynomial function of degree at most m− 1.

1.2 Proposed Problem

Throughout this thesis, we let X and Y be linear spaces over Q,R or C and

f : X → Y be an arbitrary function and n be a positive integer. We will extend

the Fréchet functional equation to a more general form

n∑
k=0

akf(x+ ky) = 0 (1.14)

where a0, a1, a2, . . . , an are scalars with an ̸= 0.

We may assume that a0 ̸= 0. For suppose not, letm be the least positive integer

m such that am ̸= 0 and replace x by x−my in (1.14), we obtain

n−m∑
k=0

ak+mf(x+ ky) = 0.
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Thus (1.14) can be written as a sum involving n−m, instead of n, terms.

Since a0 ̸= 0, we divide (1.14) by a0. Then the coefficient of term f(x) is 1. Hence,

it can be assume that a0 = 1.

In this thesis, we will determine the general solution of

n∑
k=0

akf(x+ ky) = 0 for all x, y ∈ X

where a0 = 1 and a1, a2, . . . , an are scalars with an ̸= 0. This functional equation

will be referred to as the general Fréchet functional equation of order n.

It follows from Theorem 1.8 that the general solution of the general Fréchet

functional equation of order n is a generalized polynomial function of degree at

most n − 1. There are some cases that the degree of the solution does not reach

n − 1. One of these examples was shown in Lemma 1.6 which stated that the

general solution of the general Fréchet functional equation of order 7 is a generalized

polynomial of degree at most 4. For this reason, it is interesting to explore much

deeper on the degree of the solution.

In this thesis, we classify the degree of the general solution of the general

Fréchet functional equation of order n in term of a1, a2, . . . , an.



CHAPTER II

PRELIMINARIES

In this chapter, we will introduce definitions and theorems related to additive

functions, multi-additive functions and the difference operators which will be used

for this thesis.

First, we give the definition of an n-additive function, symmetric function and

its diagonalization.

Definition 2.1. A function An : Xn → Y is called an n-additive function if for

each 1 ≤ i ≤ n,

An(x1, . . . , xi + yi, . . . , xn)

= An(x1, . . . , xi−1, xi, xi+1 . . . , xn) + An(x1, . . . , xi−1, yi, xi+1 . . . , xn),

for all x1, . . . , xn, yi ∈ X.

A 1-additve function is said to be an additive function and a 2-additive function

will be called a bi-additive function.

Example 2.2. A function A2 : R2 → R defined by A2(x, y) = xA(y), for all

x, y ∈ R, where A is an additive function, is a bi-additive function.

Example 2.3. A function A3 : R3 → R defined by A3(x, y, z) = f(x)g(y)h(z), for

all x, y, z ∈ R, where f, g and h are additive functions, is a 3-additive function.

Definition 2.4. Let An : Xn → Y be a function. An is said to be symmetric

if An(x1, x2, . . . , xn) is invariant under any permutation of x1, . . . , xn, that is, for
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each x1, x2, . . . , xn ∈ X

An(x1, x2, . . . , xn) = An(xπ(1), xπ(2), . . . , xπ(n))

where π is any permutation of (1, 2, . . . , n).

Example 2.5. A functionAn : Rn → R defined byAn(x1, x2 . . . , xn) = cx1x2 · · · xn

for all x1, . . . , xn ∈ R, where c is a constant, is n-additive symmetric function.

Example 2.6. A function A2 : R2 → R defined by A2(x, y) = xA(y)− yA(x), for

all x, y ∈ R, where A is an additive function, is a bi-additive function but it is not

symmetric.

Definition 2.7. Let An : Xn → Y be a function. The function An : X → Y

defined by

An(x) = An(x, x, . . . , x),

for all x ∈ X, is called the diagonalization of An.

Example 2.8. Define a function An : Rn → R by An(x1, x2 . . . , xn) = x1x2 · · · xn

for all x1, . . . , xn ∈ R. The diagonalization of An is given by

An(x) = xn for all x ∈ R.

The following lemmas give properties of an n-additive function and its diago-

nalization (for details, please refer to [5]).

Lemma 2.9. Let An : Xn → Y be an n-additive function and let r be a rational

number. Then for each 1 ≤ i ≤ n,

An(x1, . . . , rxi, . . . , xn) = rAn(x1, . . . , xi, . . . , xn),

for all x1, . . . , xn ∈ X.
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Lemma 2.10. Let An : X → Y be a diagonalization of an n-additive function An.

Then

(i) For all x ∈ X and for all r ∈ Q,

An(rx) = rnAn(x).

(ii) For all x, y ∈ X,

An(x+ y) =
n∑

i=0

(
n

i

)
An(x, . . . , x︸ ︷︷ ︸

n−i

, y, . . . , y︸ ︷︷ ︸
i

).

Next, we give the definition of the difference operators and their properties.

Definition 2.11. The difference operator ∆h with the span h ∈ X is defined by

∆hf(x) = f(x+ h)− f(x),

for all x ∈ X.

For each m = 0, 1, 2, . . ., we define the iterates ∆m
h with the same span h ∈ X by

the recurrence relation

∆0
hf(x) = f(x) and ∆m+1

h f(x) = ∆h (∆
m
h f(x)) .

The composition of the difference operator with difference spans h1, h2, . . . , hn ∈ X

is denoted by ∆h1,h2,...,hnf(x), that is,

∆h1,h2,...,hnf(x) = ∆h1∆h2 · · ·∆hnf(x).

Example 2.12. For all x, h ∈ X,

∆2
hf(x) = ∆h(∆hf(x))

= ∆h(f(x+ h)− f(x))

= f(x+ 2h)− 2f(x+ h) + f(x).
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The following lemma and theorems are properties of the difference operator

(for details, please refer to [5]).

Lemma 2.13. For any h1, h2 ∈ X the difference operators ∆h1 ,∆h2 commute,

that is,

∆h1∆h2f = ∆h2∆h1f

Theorem 2.14. For all x, h1, h2, . . . , hn ∈ X,

∆h1,h2,...,hnf(x) =
∑

ε1,...,εn∈{0,1}

(−1)n−(ε1+···+εn)f(x+ ε1h1 + · · ·+ εnhn).

Theorem 2.15. For all x, h ∈ X,

∆n
hf(x) =

n∑
k=0

(−1)n−k

(
n

k

)
f(x+ kh).

Next theorem gives the relationship between the difference operator with the

same span and the difference operator with the difference spans proved by D.Ž.

Djoković [6].

Theorem 2.16. Let f : X → Y be a function and let h1, . . . , hn ∈ X be arbitrary.

For ε1, . . . , εn ∈ {0, 1} define

αε1,...,εn = −
n∑

r=1

εrhr

r
and bε1,...,εn =

n∑
r=1

εrhr.

Then for every x ∈ X,

∆h1,...,hnf(x) =
∑

ε1,...,εn∈{0,1}

(−1)ε1+···+εn∆n
αε1,...,εn

f(x+ bε1,...,εn).

Next, we give the definition of a generalized polynomial function.

Definition 2.17. [2] Let m be a nonnegative integer. A function f : X → Y

is called a generalized polynomial function of degree at most m if for each k =

0, 1, . . . ,m, there exists a k-additive symmetric function Ak : X
k → Y such that

f(x) = A0 + A1(x) + · · ·+ Am(x) for all x ∈ X,

where Ak is the diagonalization of Ak.
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Theorem 2.18. [6] Let m be a nonnegative integer. A function f : X → Y is

a generalized polynomial function of degree at most m if and only if f satisfies

∆h1,...,hm+1f(x) = 0 for all x, h1, h2, . . . , hm+1 ∈ X.

The following theorem states the general solution of Fréchet functional equa-

tion.

Theorem 2.19. [5] Let m be a nonnegative integer. A function f : X → Y

satisfies

∆m+1
h f(x) = 0 for all x, h ∈ X

if and only if f is a generalized polynomial function of degree at most m.



CHAPTER III

GENERAL JENSEN TYPE FUNCTIONAL EQUATIONS

In this chapter, we will extend the Jensen’s functional equation to a more

general form

f(x) + af(x+ y) + bf(x+ 2y) = 0 for all x, y ∈ X, (3.1)

where a and b are scalars with b ̸= 0, and will determine its general solution. The

functional equation (3.1) will be called a general Jensen type functional equation.

In order to determine the general solution of the general Jensen type functional

equation. We first consider the general solution of the functional equation of the

form

f(x) + af(x+ y) = 0 for all x, y ∈ X, (3.2)

where a is a nonzero scalar.

Lemma 3.1. The general solution of the functional equation (3.2) is as follows.

1. If a ̸= −1, then f(x) ≡ 0.

2. If a = −1, then f is a constant function.

Proof. 1. Assume that a ̸= −1. Setting y = 0 in (3.2), we get (1 + a)f(x) = 0

for all x ∈ X. Since a ̸= −1, we get f(x) = 0 for all x ∈ X. On the other

hand, it can be verified that f(x) ≡ 0 indeed satisfies (3.2).

2. Assume that a = −1. Then (3.2) becomes

f(x)− f(x+ y) = 0 for all x, y ∈ X. (3.3)

Replacing x = 0 in (3.3), we get f(y) = f(0) for all y ∈ X. Therefore, f is a

constant function.
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On the other hand, it can be verified that f(x) = c where c is a constant

satisfies (3.2).

In the next theorem gives the general solution of the general Jensen type func-

tional equation.

Theorem 3.2. The general solutions of the general Jensen type functional equation

(3.1) are the followings:

1. If a+ b ̸= −1, then f(x) ≡ 0.

2. Assume that a+ b = −1.

(i) If a ̸= −2, then f is a constant function.

(ii) If a = −2, then f(x) = c+ A(x) where c is a constant and A : X → Y

is an additive function.

Proof. 1. Assume that a+ b ̸= −1. Setting y = 0 in (3.1), we have

(1 + a+ b)f(x) = 0 for all x ∈ X.

Since a + b ̸= −1, we get f(x) = 0 for all x ∈ X. The function f(x) ≡ 0

obviously satisfies (3.1).

2. Assume that a+ b = −1. First, consider in the case a = 0. Then b = −1 and

(3.1) becomes

f(x)− f(x+ 2y) = 0 for all x, y ∈ X. (3.4)

Replacing y by y
2
in (3.4), we get f(x)− f(x+ y) = 0. By Lemma 3.1, f is a

constant function.

Assume that a ̸= 0. Substituting b = −1− a in (3.1), we get

f(x) + af(x+ y) + (−1− a)f(x+ 2y) = 0 (3.5)
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Replacing x by x+ y in (3.5) and multiplying by −a, we have

−af(x+ y)− a2f(x+ 2y)− a(−1− a)f(x+ 3y) = 0 (3.6)

Combining (3.5) and (3.6), we obtain

f(x) + (−1− a− a2)f(x+ 2y)− a(−1− a)f(x+ 3y) = 0 (3.7)

Replacing x by x+ 2y in (3.5) and multiplying by a2 + a+ 1, we have

(a2+a+1)f(x+2y)+a(a2+a+1)f(x+3y)+(−1−a)(a2+a+1)f(x+4y) = 0

(3.8)

Combining (3.7) and (3.8), we obtain

f(x) + a(a2 + 2a+ 2)f(x+ 3y) + (−1− a)(a2 + a+ 1)f(x+ 4y) = 0 (3.9)

Replacing y by 2y in (3.5), we have

f(x) + af(x+ 2y) + (−1− a)f(x+ 4y) = 0 (3.10)

Subtracting (3.10) from (3.9), then dividing the result by a, we get

−f(x+2y) + (a2 +2a+2)f(x+3y) + (−1− a)(a+1)f(x+4y) = 0 (3.11)

Replacing x by x− 2y in (3.11) and combining (3.5), we obtain

(a+ 1)(a+ 2)f(x+ y)− (a+ 1)(a+ 2)f(x+ 2y) = 0 (3.12)

(i) Assume that a ̸= −2.

Since it is presumed that b ̸= 0 and a + b = −1, we have a ̸= −1.

Therefore, (a+ 1)(a+ 2) ̸= 0. Setting x by x− y in (3.12) and dividing

by (a + 1)(a + 2), we have f(x)− f(x + y) = 0. By Lemma 3.1, f is a

constant function.

Substituting f(x) = c in (3.1) where c is a constant, we have

f(x) + af(x+ y) + bf(x+ 2y) = c+ ac+ bc = c(1 + a+ b) = 0

because a+ b = −1. Hence, f(x) = c satisfies (3.1).
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(ii) Assume that a = −2. Then b = −1− a = 1 and (3.1) becomes

f(x)− 2f(x+ y) + f(x+ 2y) = 0

which is an equivalent form of the Jensen’s functional equation.

Therefore, f(x) = c+ A(x) where c is a constant and A : X → Y is an

additive function.

Remark 3.3. The general Jensen type functional equation (3.1) where a = −2

and b = 1 reproduces the Jensen’s functional equation and the general solution is

of the form f(x) = c + A(x). While for all other values of a and b in (3.1), the

general solution is just a constant (may be zero in certain cases) function.



CHAPTER IV

GENERAL FRÉCHET FUNCTIONAL EQUATION

In this chapter, we will give the general solution and classify degree of the

general solution of the general Fréchet functional equation of order n,

n∑
k=0

akf(x+ ky) = 0 for all x, y ∈ X (4.1)

where a0 = 1 and a1, a2, . . . , an are scalars with an ̸= 0.

4.1 General Solution

In this section, we give the general solution of the general Fréchet functional equa-

tion of order n.

We note that our work is a special case of Baker’s result [2]. But our outstand-

ing point is that we use an elementary approach.

Theorem 4.1. If f : X → Y satisfies the general Fréchet functional equation of

order n, then f is a generalized polynomial function of degree at most n− 1.

Proof. Assume that f satisfies the general Fréchet functional equation of order n.

For each ε1, ε2, . . . , εn ∈ {0, 1}, we replace x with Xε1...εn = x + ε1y1 + · · · + εnyn

and y with Yε1...εn = −ε1y1 − 1
2
ε2y2 − · · · − 1

n
εnyn in (4.1). We obtain

n∑
k=0

akf(Xε1...εn + kYε1...εn) = 0. (4.2)

Multiplying (4.2) by (−1)n−(ε1+···+εn) and taking sum over all ε1, . . . , εn, to get

∑
ε1,...,εn∈{0,1}

(−1)n−(ε1+···+εn)

n∑
k=0

akf(Xε1...εn + kYε1...εn) = 0. (4.3)



18

Swapping the order of the summations in (4.3), we get

n∑
k=0

ak
∑

ε1,...,εn∈{0,1}

(−1)n−(ε1+···+εn)f(Xε1...εn + kYε1...εn) = 0. (4.4)

On the other hand, observe that

f(Xε1...εn + kYε1...εn) = f
(
x+ ε1(1− k)y1 + ε2(1−

k

2
)y2 + · · ·+ εn(1−

k

n
)yn

)
.

By Theorem 2.14, we have∑
ε1,...,εn∈{0,1}

(−1)n−(ε1+···+εn)f(Xε1...εn + kYε1...εn) = ∆(1−k)y1,(1− k
2
)y2,...,(1− k

n
)yn

f(x)

(4.5)

From (4.4) and (4.5), we obtain

n∑
k=0

ak∆(1−k)y1,(1− k
2
)y2,...,(1− k

n
)yn

f(x) = 0. (4.6)

For each k = 1, 2, . . . , n, let bk = ∆(1−k)y1,(1− k
2
)y2,...,(1− k

n
)yn

f(x). We can see that

b1 = ∆0,(1− 1
2
)y2,...,(1− 1

n
)yn

f(x),

bn = ∆(1−n)y1,(1−n
2
)y2,...,(1− n

n−1
)yn−1,0f(x)

and for each k = 2, 3, . . . , n− 1,

bk = ∆(1−k)y1,(1− k
2
)y2,...,(1− k

k−1
)yk−1,0,(1− k

k+1
)yk+1,...,(1− k

n
)yn

f(x).

Since the difference operators commute and ∆0f(x) = 0, we get bk = 0 for all

k = 1, 2, . . . , n. Hence, for each k = 1, 2, . . . , n,

∆(1−k)y1,(1− k
2
)y2,...,(1− k

n
)yn

f(x) = 0.

Therefore, the only term that survives in (4.6) is the term with k = 0, it follows

that (4.6) becomes

∆y1,y2,...,ynf(x) = 0.

Hence, f is a generalized polynomial function of degree at most n− 1.
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4.2 Classification of the Degree of the General Solution

In this section, we will classify degree of a generalized polynomial function which

is the general solution of the general Fréchet functional equation of order n.

Theorem 4.2. The general solution f : X → Y satisfying the general Fréchet

functional equation of order n are the followings.

1. If
n∑

k=0

ak ̸= 0, then f(x) ≡ 0.

2. If
n∑

k=0

ak = 0 and m = min

{
i ∈ {1, 2, . . . , n} :

n∑
k=1

kiak ̸= 0

}
, then f is a

generalized polynomial function of degree at most m− 1.

Proof. Define s0 =
n∑

k=0

ak.

1. Assume that s0 ̸= 0. Setting y = 0 in (4.1), we get s0f(x) = 0. Since s0 ̸= 0,

it follows that f(x) = 0 for all x ∈ X.

On the other hand, it can be verified that f(x) ≡ 0 indeed satisfies (4.1).

2. Assume that s0 = 0. Since f satisfies the general Fréchet functional equation

of order n, by Theorem 4.1, we have

f(x) = A0 + A1(x) + · · ·+ An−1(x) (4.7)

For each i ∈ {1, 2, . . . , n}, define si =
n∑

k=1

kiak.

If si = 0 for all i = 1, 2, . . . , n, then a1, a2, . . . , an satisfy the system of linear

equations

a1 + 2a2 + · · ·+ nan = 0

a1 + 22a2 + · · ·+ n2an = 0

...

a1 + 2na2 + · · ·+ nnan = 0.
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Therefore, a1 = a2 = · · · = an = 0 which is a contradiction. So, there exists

i ∈ {1, 2, . . . , n} such that si ̸= 0. Thus, we let

m = min{i ∈ {1, 2, . . . , n} : si ̸= 0}. (4.8)

For every i = 0, 1, 2, . . . , n− 1 and for all x, y ∈ X, let

Si(x, y) :=
n∑

k=0

akA
i(x+ ky). (4.9)

Substituting f from (4.7) into (4.1), we obtain

n−1∑
i=0

Si(x, y) = 0. (4.10)

For an arbitrary r ∈ Q, observe that Si(rx, ry) = riSi(x, y). Replacing (x, y)

with (rx, ry) in (4.10), we obtain

n−1∑
i=0

Si(x, y)r
i = 0

for all rational numbers r. Thus, for each i = 0, 1, 2, . . . , n− 1

Si(x, y) = 0. (4.11)

By Lemma 2.10, we know that

Ai(x+ ky) =
i∑

j=0

(
i

j

)
Ai(x, . . . , x︸ ︷︷ ︸

i−j

, ky, . . . , ky︸ ︷︷ ︸
j

).

Since Ai(x, . . . , x︸ ︷︷ ︸
i−j

, ky, . . . , ky︸ ︷︷ ︸
j

) = kjAi(x, . . . , x︸ ︷︷ ︸
i−j

, y, . . . , y︸ ︷︷ ︸
j

), we get

Ai(x+ ky) =
i∑

j=0

(
i

j

)
kjAi(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

). (4.12)

From (4.9) and (4.11), we have

n∑
k=0

akA
i(x+ ky) = 0. (4.13)
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Replacing Ai(x+ ky) from (4.12) in (4.13), we get

i∑
j=0

(
i

j

)
sjAi(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

) = 0. (4.14)

From the definition of m in (4.8) and s0 = 0, we know that

s0 = s1 = s2 = · · · = sm−1 = 0.

Therefore, for each i = m,m+ 1, . . . , n− 1,

i∑
j=m

(
i

j

)
sjAi(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

) = 0. (4.15)

Let r be a rational number. Replacing y by ry in (4.15), we obtain

i∑
j=m

((i

j

)
sjAi(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

)
)
rj = 0.

for all rational numbers r. Hence, for each j = m,m+ 1, . . . , i(
i

j

)
sjAi(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

) = 0. (4.16)

Setting y = x in (4.16) and dividing by
(
i
j

)
, we get sjA

i(x) = 0.

Taking j = m, we have smA
i(x) = 0.

Since sm ̸= 0, we conclude that Ai(x) = 0 for each i = m,m+ 1, . . . , n− 1.

Therefore, f(x) = A0 + A1(x) + A2(x) + · · ·+ Am−1(x).

On the other hand, replacing f(x) = A0 +
m−1∑
i=1

Ai(x) in (4.1), we obtain

n∑
k=0

akf(x+ ky) =
n∑

k=0

akA
0 +

n∑
k=0

ak

m−1∑
i=1

Ai(x+ ky). (4.17)

We know that

Ai(x+ ky) = Ai(x) +
i∑

j=1

kj

(
i

j

)
Ai(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

). (4.18)
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Substituting Ai(x+ ky) from (4.18) in (4.17), we have

n∑
k=0

akf(x+ ky) = s0A
0 + s0

m−1∑
i=1

Ai(x) +
m−1∑
i=1

i∑
j=1

sj

(
i

j

)
Ai(x, . . . , x︸ ︷︷ ︸

i−j

, y, . . . , y︸ ︷︷ ︸
j

).

Since s0 = s1 = s2 = · · · = sm−1 = 0, we obtain

n∑
k=0

akf(x+ ky) = 0.

Hence, f(x) = A0 + A1(x) + A2(x) + · · ·+ Am−1(x) indeed satisfies (4.1).

We apply Theorem 4.2 to find a general solution of functional equations that

illustrate in the following examples.

Example 4.3. We will prove Lemma 1.6 by using Theorem 4.2.

Replacing x by x+ 3y in (1.12), we obtain

f(x)−14f(x+2y)+35f(x+3y)−35f(x+4y)+14f(x+5y)−f(x+7y) = 0. (4.19)

The functional equation (4.19) is a general Fréchet functional equation of order 7

where a1 = 0, a2 = −14, a3 = 35, a4 = −35, a5 = 14, a6 = 0 and a7 = −1.

We can see that
7∑

k=0

ak = 0 and for each i = 1, 2, 3, 4

7∑
k=1

kiak = 0

and
7∑

k=1

k5ak = −840 ̸= 0. Therefore, by Theorem 4.2, we get

f(x) = A0 + A1(x) + A2(x) + A3(x) + A4(x).

Example 4.4. Find the general solution of the functional equation (1.10) in The-

orem 1.5 by using Theorem 4.2.
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We can assume that k is a positive integer with k ̸= 1.

Replacing x by x+ ky in (1.10), we have

f(x)−k2f(x+(k−1)y)−2(1−k2)f(x+ky)−k2f(x+(k+1)y)+f(x+2ky) = 0.

(4.20)

This functional equation is a general Fréchet functional equation of order 2k where

a0 = 1, ak−1 = −k2, ak = −2(1− k2), ak+1 = −k2, a2k = 1 and ai = 0 in otherwise.

We can compute that
2k∑
i=0

ai = 0 and for each j = 1, 2, 3

2k∑
i=1

ijai = 0

and
2k∑
i=1

i4ai = −2k2 + 2k4. Since k ̸= 1, we get −2k2 + 2k4 ̸= 0. Therefore, by

Theorem 4.2, we have

f(x) = A0 + A1(x) + A2(x) + A3(x).
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