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Chapter 1

Introduction

The proposal of general relativity by Albert Einstein in 1915 made it pos-

sible to apply the gravitational theory to the universe as a whole. At the time, it

was known that the universe is dominated by matter then the universe should be

expanding or contracting due to the predictions of general relativity. However,

from the limitation of astronomical apparatus, all accessible observations were

within our galaxy and therefore there was no evidence for expanding or contract-

ing universe. Einstein solved this shortcoming by introducing the cosmological

constant term, which provides the repulsive force for balancing the attractive

force from known matter in order to obtain a static universe, into his equation.

In 1922, Alexander Friedmann [1] found the cosmological solution which implies

an expansion (contraction) of the universe as a function of time. His solution

contradicts what people had believed so that his work received a little attention

until Edwin Hubble discovered the expansion of the universe by observing the

redshift of galaxies in 1929. Almost twenty years later, George Gamow and his

collaborators proposed the hot Big Bang model which assumes the universe must

begin in a very hot and dense state. From their hypothesis, the abundance of

light elements were predicted precisely from the theory of nucleosynthesis. They

also predicted that the universe after decoupling time should be filled with black-

body radiations which lead to the cosmic microwave background (CMB) at the

present time. Thus the discovery of CMB by Penzias and Wilson in 1965 is the

strong evidence for the standard Big Bang model. However, there are many se-

rious shortcomings in the Big Bang model such as the horizon problem and the

monopole problem; these motivated the idea of inflation originally proposed by

Alan Guth [2] for solving these problems. Since then, many models of inflationary

universe have been constructed and tested.
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In 1999, Lisa Randall and Raman Sundrum wrote two remarkable papers

[3, 4] proposing that our universe we live in could be a 4-dimensional subspace,

whose spatial part is called brane, of a 5-dimensional spacetime. What people

found very interesting in their models is that the gauge hierarchy problem in

particle physics could be solved beautifully. Actually, the idea that we live in

a spacetime with dimension higher than four is not new. The oldest one being

the Kaluza-Klein theory [5, 6] treats spacetime as a product space of our 4-

dimensional universe and the extra compact space whose size must be of the

order of the Planck length. The difference between the Randall-Sundrum models

and the Kaluza-Klein theory is that, in Randall-Sundrum models, the spacetime

is not a product space and the size of the 5th dimension needs not be small.

Moreover, gravity and matter are confined to the brane unlike the older idea of

Kaluza-Klein where the gravitational field and matter fields can propagate in the

extra dimensions. Since their discovery, a very large amount of research work

has been devoted to the investigation of its phenomenological implications [7]. In

particular, the cosmological consequences of their models are very important and

resulted in the subject called braneworld cosmology, or in short, brane cosmology.

The purpose of this thesis is to explore the basic ideas and results of brane

cosmology. The organization of this thesis is as follows. In Chapter 2, we will

explore the Einstein equations on the braneworld. The cosmological solutions to

the Einstein equations will then be obtained in Chapter 3. In Chapter 4, the

cosmological perturbations which is a very important topic in cosmology will be

discussed. Finally, the conclusions will be made in Chapter 5.



Chapter 2

The Einstein Equations on 3-Brane World

Many models with extra dimensions such as the Randall-Sundrum-type

models are constructed in the scheme of general relativity. To investigate these

models in the phenomenological aspect, we need to know whether the gravity

induced on our observable 4-dimensional universe (called 3-brane world) satisfies

the observational and experimental bounds.

In order to test the extra-dimensional models, we need to derive the

effective Einstein equation of the models on the 3-brane world. Fortunately,

the sought-after procedures are already known in general relativity since we can

project the Einstein equations from 5-dimensional spacetime to our 3-brane world

in the same way as to project the 4-dimensional Einstein equations to the 3-

dimensional hypersurface of the instant time in the initial value formulation [8, 9].

An alternative way to derive the Einstein equation on the 3-brane world

is to take advantage of the boundary-term calculations of the Lagrangian formu-

lation in general relativity [10, 11, 12, 13]. As will be shown, the important singu-

lar behavior of the energy-momentum tensor in the braneworld scenario, known

as the Israel’s junction condition [14], can be obtained from the non-vanishing

boundary term.

In this chapter we investigate the derivations of the Einstein field equa-

tions for a 3-brane world embedded in a 5-dimensional spacetime in detail by

using different procedures. We begin with the projection procedure by intro-

ducing the mathematical tools used in the initial value formulation such as the

Gaussian normal coordinates, the extrinsic curvature, etc. We then construct the

Gauss-Codacci equations, which plays the crucial role in projecting the Einstein

field equations on 3-brane. After that we reconsider the problem from the aspect

of the Lagrangian formulation by analyzing the conventional variational method
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in detail. We will show that the boundary term does not vanish as normally

assumed but is proportional to the scalar extrinsic curvature which leads to the

junction condition.

2.1 The Mathematical Techniques from the Ini-

tial Value Formulation of General Relativity

The initial value problems in general relativity have been studied extensively.

In particular we have the Arnowitt-Deser-Misner (ADM) [15] formulation that

directly investigates these problems. Interestingly enough, the techniques used

in the initial value formulation are exploited in some models in cosmology, for

example, the singularity theory [10, 11] and the cosmological perturbation [16,

17, 18, 19].

In the initial value formulation of general relativity, we divide spacetime

into “space” and “time” along which the space evolves. Once the initial condition

is given on an “initial” slice of “space,” the geometry of space at later time can

be obtained by solving the Einstein equations. In the mathematical language, we

consider our spacetime manifold M to be R × Σ where R represents the “time”

coordinate (t ∈ R) and Σ represents “space,” i.e., the hypersurface of instant

of time. The hypersurface Σ is thus a 3-dimensional submanifold embedded

in the 4-dimensional spacetime manifold. In general, the slicing defined as the

diffeomorphism

φ : M→ R× Σ (2.1)

is arbitrary provided that the hypersurface Σ is spacelike. Each diffeomorphism

therefore corresponds to a particular gauge choice [19, 20]. We will be concerned

with this gauge issue later in the topic of the cosmological perturbations.

In the braneworld cosmology, a similar thing happens: Our universe is

considered as a four (or more precisely, 3+1) dimensional submanifold embed-

ded in a five (indeed, 4+1) dimensional manifold. The similar mathematical
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techniques thus apply. We now see that the problems of initial value and the

projections of the Einstein equations on the 3-brane are almost the same, i.e.,

they are different only in the number of dimensions.

2.1.1 The Gaussian Normal Coordinates

In the initial value formulation, it is useful for calculation to use the Gaussian nor-

mal coordinates, or synchronous coordinates, in which the spacelike hypersurface

is always orthogonal to the congruence of timelike geodesics [10, 11].

Let Ṽp and Vp be the tangent spaces to the hypersurface Σ and the mani-

fold M, respectively. At each point p ∈ Σ, there will be a vector na ∈ Vp, unique

up to scaling, which is orthogonal to all vectors in Ṽp. Thus, from this vector, we

can define the induced metric hab on Σt, the instant hypersurface of time t, as

follows:

hab = gab + nanb. (2.2)

The normal vector na is timelike and can be normalized to have unit length,

nana = −1. (2.3)

Let the coordinate basis {Xa} span the tangent space Vp to M at the

point p. Then we can think of na as Xa
n which is orthogonal to the remaining

Xa
1 . . . Xa

n−1 that span the tangent space to the hypersurface Σt. It is easy to prove

that na at each point p on Σt is always orthogonal to all vectors in the tangent

space Ṽp for all the time t (that is, na is always orthogonal to Xa
1 . . . Xa

n−1 as Σt

evolves in time t) provided that na is the tangent vector to the timelike geodesic

passing through Σ. This can be done by showing that

nb∇b(naX
a) = 0. (2.4)

To prove the relation Eq. (2.4), we assume that naX
a = 0 at the initial time t = 0.

Then the relation Eq. (2.4) can be proved by using the fact that the commutation
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of any two basis vector fields in coordinate basis vanishes which implies nb∇bX
a =

Xb∇bn
a, and the transport equation which implies the preservation of the size of

na as Σt evolves along the geodesic.

2.1.2 The Projection of Tensors to a Submanifold

We now describe the method for projecting arbitrary tensor on the manifold to the

one living only on the hypersurface. Given any vector v ∈ Vp we can decompose

it into a component tangent to Σ, v‖ , and a normal component to Σ, v⊥ :

v = v⊥ + v‖ , (2.5)

where va
‖na = 0. We thus see that to project any vector v to the tangent space

Ṽp, we need to find a projection operator that, when acting on v, destroys its

normal component v⊥ . It turns out that the opertor that does the job is just the

induced metric ha
b ≡ gachcb. Indeed if va = ha

bv
b, then

vana = ha
bv

bna

= (ga
b + nanb)v

bna

= vbnb + (nana)v
bnb

= 0 (2.6)

which tells us that its normal component automatically vanishes. In general, for

arbitrary tensor T a1···ak
b1···bl

at p ∈ Σ, it is a tensor over the tangent space to Σ

at p if

T a1···ak
b1···bl

= ha1
c1 · · ·hak

ck
hd1

b1 · · ·hdl
bl
T c1···ck

d1···dl
. (2.7)

For the covariant derivative, things are not so simple as one might have

thought. Suppose one tries to define ha
b∇b as a projected covariant derivative on

the hypersurface. Then it is easy to see that, when acting on the above tensor

(over the tangent space to Σ), the normal components of the resulting object still
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survive. It was found that the desired covariant derivative operator, denoted by

Da, can be defined as

DcT
a1···ak

b1···bl
= ha1

d1 · · ·hak
dk

he1
b1 · · ·hel

bl
hf

c∇fT
d1···dk

e1···el
. (2.8)

We can see immediately that the obove object has no normal component. Fur-

thermore, with this covariant derivative, the metric compatibility condition on

the hypersurface is automatically satisfied:

Dahbc = ha
dhb

ehc
f∇d(gef + nenf ) = 0 (2.9)

since ∇dgef = 0 and habn
b=0. Thus, Da is the unique derivative operator associ-

ated with hab.

2.1.3 The Extrinsic Curvature

An understanding of the notion of the extrinsic curvature is crucial for the deriva-

tion of the Einstein equations on the 3-brane world. We will find later that the

Gauss-Codacci equations and the boundary term of the Lagrangian of the models

are in terms of the extrinsic curvature.

Not surprisingly, our conception of the curvature in everyday life is alike

the notion of the extrinsic curvature rather than the familiar notion of curvature

in general relativity which is indeed the intrinsic curvature. In everyday life, when

we think about curvature of the surface, we normally think of the way it bends.

That this “curvature” appears to our eyes is because the curved surface (math-

ematically speaking, a 2-dimensional manifold) is embedded in a 3-dimensional

flat space we live in. In differential geometry, such a curvature is known as the

extrinsic curvature which is the result of the embedding of the manifold in an-

other manifold of higher dimension. On the contrary, the intrinsic curvature is

the intrinsic property of the manifold itself and does not result from any kind of

embedding.
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In differential geometry the notion of intrinsic curvature comes from the

failure of successive differentiation on tensor fields to cummute,

[∇a,∇b]ωc = ∇a∇bωc −∇b∇aωc = Rabc
dωd, (2.10)

where Rabc
d is the Riemann curvature tensor. From the geometrical description

of the covariant derivative the commutator, [∇a,∇b], can be interpreted as the

parallel transportation around a small closed curve. By similar idea we can define

the extrinsic curvature from the failure of the normal vector to the surface, na,

at q to coincide with na at p after we parallel transport it along the surface. Note

that we generally think of this normal vector field as the tangent vectors to the

congruence of curves passing through the surface Thus the extrinsic curvature

Kab has the form

Kab = ha
c∇cnb (2.11)

and its trace is K ≡ Ka
a = habKab with hab being the induced metric on the

surface. It can be verified that Kab is symmetric in its two indices, i.e., Kab = Kba.

The concept of the extrinsic curvature does not only help us to understand

the procedure of the embedding of a surface in a higher dimensional manifold,

but also gives the deeper insight about the evolution of the surface. The evolution

of the surface along the congruence of geodesics passing through it is described

by the so-called Raychaudhuri equation [21, 22]. Let the normal vector na (the

tangent vector to the geodesic) be timelike and normalized to unit length, nana =

−1, as usual. Define Bab as

Bab = ∇bna. (2.12)

Let

θ ≡ Babhab, (2.13)

σab ≡ B(ab) − 1

3
θhab, (2.14)

ωab ≡ B[ab], (2.15)
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so that

Bab =
1

3
θhab + σab + ωab. (2.16)

The Raychaudhuri equation is

dθ

dτ
= −1

3
θ2 − σabσ

ab + ωabω
ab −Rcdn

cnd (2.17)

with τ being the parameter of the geodesic. If the congruence is orthogonal to the

hypersurface, then Bba = Kab so that K = θ and ωab = 0. Thus the Raychaudhuri

equation in this case,

dθ

dτ
= −1

3
θ2 − σabσ

ab −Rcdn
cnd, (2.18)

is nothing but the equation describing the evolution of the trace of the extrinsic

curvature.

Since Kab is symmetric,

Kab =
1

2
(∇anb +∇bna) (2.19)

=
1

2
£ngab (2.20)

=
1

2
£nhab (2.21)

where £n denotes the Lie derivative along the geodesic. Thus we see that Kab

measures the rate of change of the spatial metric as one moves along the con-

gruence. In other words, it measures the “bending” of the hypersurface Σ in the

spacetime manifold M. In Gaussian normal coordinate system,

Kab =
1

2

∂hab

∂τ
(2.22)

and its trace K = θ is the expansion of the geodesic congruence orthogonal to Σ.

2.1.4 The Gauss-Codacci Relations

It can be shown that some components of the Riemann curvature tensor depend

only on the extrinsic curvature and the intrinsic curvature of the hypersurface,
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(3)Rabc
d. The formulas that describe this are known as the Gauss-Codacci rela-

tions [10, 11]. The Gauss equation can be derived by using ha
b to project the

components of

Rabc
dωd = ∇a∇bωc −∇b∇aωc (2.23)

with ωa being a dual vector field on the hypersurface Σ. The result is

(3)Rabc
dωd = DaDbωc −DbDaωc

= Da(hb
dhc

e∇dωe)−Db(ha
dhc

e∇dωe)

= he
ahb

fhc
ghd

hRe
fgh + Ka

cKbd −Ka
dKbc (2.24)

which is known as the Gauss equation. A similar calculation gives the result

DaK
a
b −DbK = Refn

ehb
f (2.25)

known as the Codacci equation.

2.2 The Projection of the Einstien Field Equa-

tions on the 3-brane

We now use the Gauss-Codacci relations, Eqs. (2.24) and (2.25), to obtain the

effective Einstein equations on the 3-brane. In this case, the Gauss-Codacci rela-

tions describe the 5-dimensional Riemann tensor R̂a
bcd in the terms of the extrinsic

curvature Kab and the intrinsic curvature Ra
bcd our 4-dimensional universe, with

the metric gab, treated as a (3+1)-dimensional hypersurface (brane) embedded in

a (4+1)-dimensional spacetime (bulk) [8, 9].

We begin with Gauss equation for 3-brane,

Ra
bcd = ge

agb
fgc

ggd
hR̂e

fgh + Ka
cKbd −Ka

dKbc, (2.26)

where the extrinsic curvature Kab is defined as

Kab = ga
c∇cnb (2.27)
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with na being a normal vector to the brane. The Einstein tensor on the brane is

thus

Gab =

[
R̂ef +

1

2
gef R̂

]
ga

egb
f + R̂efn

enfgab + KKab −Ka
eKbe

−1

2
gab(K

2 −KefKef )− Ẽab (2.28)

where

Ẽab = R̂e
fghnen

gga
fgb

h. (2.29)

Since the formalism of general relativity is independent of the number of dimen-

sions for dimension d > 2, then the 5-dimensional Einstein equation takes the

familiar form,

Ĝab = R̂ab − 1

2
ĝabR̂ = κ2

5
T̂ab. (2.30)

The decomposition of the Riemann curvature tensor into the Weyl curvature, the

Ricci tensor and the scalar curvature is standard:

R̂abcd =
2

3

(
ĝa[cR̂d]b − ĝb[cR̂d]a

)
− 1

6
ga[cgd]bR̂ + Ĉabcd. (2.31)

Using Eqs. (2.30) and (2.31), the Einstein tensor on the brane now reads

Gab =
2κ2

5

3

(
T̂efga

egb
f +

(
T̂efn

enf − 1

4
T̂ e

e

)
gab

)
+ KKab −Ka

eKbe

−1

2

(
K2 −KefKef

)− Eab (2.32)

where the traceless tensor Eab is

Eab = Ĉe
fghnen

gga
fgb

h. (2.33)

From the Codacci equation,

∇aKb
a −∇bK = R̂efn

egb
f , (2.34)

we get

∇aKb
a −∇bK = κ2

5
Tefn

egb
f (2.35)



12

where we have used ĝefn
egb

f = 0. Decomposing the 5-dimensional energy-

momentum tensor as

T̂ab = −Λ5 ĝab + Sabδ(y) (2.36)

where Λ5 is a cosmological constant in the bulk, y is the coordinate of the 5th

dimension, and

Sab = −λgab + Tab (2.37)

is the energy-momentum tensor on the brane located at y = 0. Above, λ is

the vacuum energy (or cosmological constant) on the brane and Tab satisfying

Tabn
b = 0 is the energy-momentum tensor of matter fields confined to the brane.

Note that λ is the tension of brane in 5 dimensions. In general, Sab should be

evaluated by the variational principle of the 4-dimensional Lagrangian for matter

fields because the normal matter except for gravity is assumed to be living only

in the brane [3, 4].

The Israel’s junction conditions [14] across the brane are

[gab] = 0, (2.38)

[Kab] = −κ2
5

(
Sab − 1

3
gabS

)
, (2.39)

where [X] := limX→+0− limX→−0 = X+ − X− and S is the trace of Sab. These

conditions will be derived in the next section. Imposing the Z2-symmetry across

the brane, we get

K+
ab = −K−

ab = −1

2
κ2

5

(
Sab − 1

3
gabS

)
. (2.40)

Substituting the explicit form of Sab into Eq. (2.39), we find

[Kab] = −κ2
5

{
1

3
(λ− T )gab + Tab

}
. (2.41)

Putting all the things together, we finally obtain the effective Einstein equation

on the 3-brane:

Gab = −Λ4gab + 8πG
N
Tab + κ5

4Πab − Eab (2.42)
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where

Λ4 =
1

2
κ5

2(Λ5 +
1

6
κ5

2λ2), (2.43)

G
N

=
κ5

4λ

48π
, (2.44)

Πab = −1

4
TaeTb

e +
1

12
TTab +

1

8
gabTefT

ef − 1

24
gabT

2. (2.45)

The salient feature of the above result is that the right-hand-side of Eq. (2.42)

contains the term Πab which is bilinear in the energy-momentum tensor. As we

will see, this term will play an important role in cosmology.

2.3 The Lagrangian Formulation of General Rel-

ativity

As was conventionally done, to obtain the correct form of the 4-dimensional

Einstein equations from the Lagrangian formalism, the total divergence resulting

from the variation of the Einstein-Hilbert action was normally set to zero. Thus

we have to put some conditions to the boundary term depending on the physics

that we are interested in [10]. On the other hand, it is worth noting that we

might miss some crucial information that help us understand the dynamics of

the models when we treat the boundary term vanished. The Israel’s junction

condition in the braneworld scenario is a good example [10, 11, 12, 13].

The “spacetime” manifolds normally used in physics are oriented mani-

folds, then the volume form associated to ĝ is well defined. We can take the in-

tegrations overM and Σ with the natural volume elements
√−ĝ d5x and

√−g d4x,

respectively, in a local coordinate basis. Noting that the volume elements
√−ĝ d5x

and
√−g d4x are always attached to the integrals

∫
M and

∫
Σ

respectively, so we

can leave their notations from equations without lost of clarity.

The 5-dimensional Einstein-Hilbert action can be generalized from the

4-dimensional case as

S
Ĝ

=

∫

M
R̂. (2.46)
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The variation of S
Ĝ

with respect to the metric ĝab is

δS
Ĝ

=

∫

M

[√
−ĝ ĝabδR̂ab +

√
−ĝR̂abδg

ab + R̂δ
√
−ĝ

]
. (2.47)

Then we use

ĝabδR̂ab = Dava, (2.48)

where

va = Db(δĝab)− ĝcdDa(δĝcd), (2.49)

and

δ(
√
−ĝ) = −1

2

√
−ĝ ĝabδĝ

ab, (2.50)

to obtain

δS
Ĝ

=

∫

M
Dava +

∫

M

(
R̂ab +

1

2
R̂ĝab

)
ĝab. (2.51)

As the equations of motion come from varying the action with respect to the

metric ĝab, setting δS
Ĝ

= 0 and assuming the boundary term equal to zero, we

get

R̂ab +
1

2
R̂ĝab = 0, (2.52)

which is the usual vacuum gravitational field equation.

In reality, the boundary term may not be neglected. The Stoke’s theorem

tells us that ∫

M
Dava =

∫

Σ

van
a (2.53)

where Σ is the boundary of M. Using the relation

van
a = −nahbcDa(δĝbc) (2.54)

which we can be derived by assuming that δĝab = 0 on Σ and the variation of the

trace of the extrinsic curvature of the boundary,

δK = δ(ga
bDan

b) =
1

2
ncgadDc(δĝad), (2.55)
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Eq. (2.51) gets modified to

δS
Ĝ

=

∫

M
Ĝabδĝ

ab − 2

∫

Σ

δK. (2.56)

Using

δKab =
1

2
(Kab −Kgab) (2.57)

as can be easily verified, we finally obtain

δS
Ĝ

=

∫

M
Ĝabδĝ

ab −
∫

Σ

(Kab −Kgab)δg
ab (2.58)

with gab the metric on Σ as usual. In fact, the above equation continues to hold

if we relax the boundary variation to δgab = 0 instead of δĝab = 0. This can

be understood by using the fact that if δgab = 0 on the boundary, we can find

a gauge transformation δgab = D(alb) with lb = 0 on the boundary which makes

δĝab = 0. Since Eq. (2.58) holds for all variations with δĝab = 0 on Σ and since

all terms in it are invariant under such gauge transformations, this equation must

continue to hold for variations which merely satisfy δgab = 0 on the boundary.

Thus, the variation of S
Ĝ

with respect to variations with δĝab = 0 or δgab = 0

on the boundary contains an additional unwanted term. However, this can be

remedied by simply adding the Gibbons-Hawking term [23], 2
∫
Σ

K, to S
Ĝ
:

S
Ĝ
→ S ′

Ĝ
= S

Ĝ
+ 2

∫

Σ

K. (2.59)

As the variation of S ′
Ĝ

gives the Einstein equation, it is the appropriate action to

use for general relativity

So far, we have considered Σ to be the boundary of the manifold M.

However, the theory can easily be extended to the case where Σ is a hypersurface

(brane) embedded in M (bulk). In this case, Σ may be regarded as a common

boundary of two pieces, M1 andM2, ofM, and we should simply add the actions

of the form of the first term in Eq. (2.59) for these two pieces. Keeping in mind
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that the extrinsic curvatures of Σ in M1 and M2 are allowed to be different, the

total action is

S
Ĝ

=
2∑

i=1

(∫

Mi

R + 2

∫

Σi

K

)
(2.60)

where Σ1 and Σ2 are both Σ but viewed from different Mi. In varying S
Ĝ
, an

important thing that we must keep in mind is that δgab needs not vanish on Σ

as Σ is no longer the boundary of the whole manifold M. A straightforward

calculation reveals that the variation gets modified to

δ

(∫

Mi

R + 2δ

∫

Σi

K

)
= −

∫

Mi

Ĝabδĝab −
∫

Σi

(Kab −Kgab)δgab. (2.61)

If we add matter fields confined in the brane with the action

Sm =

∫

Σ

Lm (2.62)

whose variation is simply

δSm =

∫

Σ

T abδgab (2.63)

with the energy-momentum tensor

T ab ≡ 1√−g

δSm

δgab

, (2.64)

then the variation of the total action, δS = δSg + δSm, vanishes if

2∑
i=1

∫

Σi

(Kab −Kgab)δgab =

∫

Σ

T abδgab. (2.65)

Noting that
∫
Σ1

= − ∫
Σ2

, we finally obtain the Israel’s matching condition

[Kab −Kgab] = T ab. (2.66)

We end this chapter with the general 5-dimensional action with a 3-brane

Σ embedded:

S = m3
5

[∫

M
(R̂− 2Λ5) + 2

∫

Σ

K

]
+

∫

M
L5(ĝab, Φ) + m2

4

∫

Σ

(R− 2Λ4)

+

∫

Σ

L4(gab, φ). (2.67)

This action leads to all equations of motion considered in the rest of this thesis.



Chapter 3

The Cosmological Solutions

In this chapter, we will obtain the cosmological solutions to the braneworld

model with the scalar field as the matter field, putting an amphasis on the in-

flation solutions. We begin by discussing the standard 4-dimensional cosmology

and then proceed to discuss the braneworld inflation. This chapter will end

with the discussion of the Hamilton-Jacobi formulations, both in the standard

4-dimensional model and the braneworld model.

3.1 Basic Equations in the Friedmann-Lemaitre-

Robertson-Walker model

3.1.1 The Einstein Equations

From the cosmological principle, the universe is homogeneous and isotropic.

Therefore, in describing the spacetime geometry of the universe on the large

scale, we may choose the diffeomorphism, Eq. (2.1), such that the time co-

ordinate is separated and orthogonal to the spacelike hypersurface of constant

curvature with the conformal factor a(t). The result is known as the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric [24, 25, 26, 27]:

ds2 = gabdxadxb = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(3.1)

with k = 0,±1. Using the above metric in the Einstein equation, we obtain

the relations between the scale factor a(t) and the energy-momentum tensor Tab.

Roughly speaking, the evolution of the universe can be determined by the be-

havior of the scale factor a(t). We now go into some detail. Recall the Einstein

equation,

Gab = Rab − 1

2
gabR, (3.2)
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where Rab and R are the Ricci tensor and the scalar curvature defined by

Rab = Rc
acb R = Ra

a = gabRab, (3.3)

respectively. As is well known, the Riemann curvature tensor that describes the

curvature can be obtained from the Christoffel symbols as

Rd
abc = ∂bΓ

d
ca − ∂cΓ

d
ba + Γd

bfΓ
f
ca − Γd

cfΓ
f
ba, (3.4)

where the Christoffel symbol is defined by

Γc
ab =

1

2
gcf (∂agbf + ∂bgaf − ∂fgab). (3.5)

One can compute the Christoffel symbols from the metric, Eq. (3.1), as follows:

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = aȧr2 , Γ0
33 = aȧr2 sin2 θ ,

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 , = Γ3
03 = Γ3

30 =
ȧ

a
,

Γ1
22 = −r(1− kr2) , Γ1

33 = −r(1− kr2) sin2 θ ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
,

Γ2
33 = − sin θ cos θ , Γ3

23 = Γ3
32 = cot θ. (3.6)

Then the nonzero components of the Ricci tensor and the scalar curvature are

given by

R00 = −3
ä

a
,

R11 =
aä + 2ȧ2 + 2k

1− kr2
,

R22 = r2(aä + 2ȧ2 + 2k),

R33 = r2(aä + 2ȧ2 + 2k) sin2 θ,

R =
6

a2
(aä + ȧ2 + k). (3.7)

Introducing the maximally symmetric 3-dimensional metric γij , with either neg-

ative, vanishing or positive spatial curvature (respectively labeled by k = −1, 0
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or 1). The metric in Eq. (3.1) can be rewritten as

ds2 = −dt2 + gijdxidxj = −dt2 + a2(t)γijdxidxj, (3.8)

and the Ricci tensor for 3-dimensional spatial indices (i, j, k) takes the form

Rij = γija
2

[
ä

a
+ 2

ȧ2

a2
+

2k

a2

]
. (3.9)

We now compute the Einstein tensor, Eq. (3.2). The component G00 is

G00 = R00 − 1

2
g00R

= −3
ä

a
− 1

2
(−1)

6

a2
(aä + ȧ2 + k)

= 3H2 +
3k

a2
, (3.10)

where the Hubble parameter H is defined as

H =
ȧ

a
(3.11)

and the spatial components of the Einstein tensor Gij are

Gij = Rij − 1

2
gijR

= γij(aä + 2ȧ2 + 2k)− 1

2
(a2γij

6

a2
(aä + ȧ2 + k)

= a2γij

(
−2

ä

a
− ȧ

a2

)
− kγij. (3.12)

3.1.2 The Continuity Equation

In many cosmological models we can assume that matter and energy contained

in the universe are perfect fluid, which is isotropic in the local rest frame,

T00 = ρ,

Tij = pgij, (3.13)

where ρ and p are the energy density and pressure respectively. In the generic

inertial frame one can write down the energy-momentum tensor for the perfect

fluid by using the 4-velocity of the fluid, ua, as [19, 24, 25, 26, 27, 28]:

Tab = (ρ + p)uaub + pgab. (3.14)
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It is useful to consider the energy-momentum tensor in the comoving coordinates

in which ua = (1, 0, 0, 0), where the trace is given by

T = T a
a = −ρ + 3p. (3.15)

From the local conservation of the energy-momentum tensor, ∇aT
a
b = 0, the

b = 0 component in the FLRW spacetime takes the form

0 = ∂aT
a
0 + Γa

a0T
0
0 − Γf

a0T
a
f ,

= ρ̇ + 3H(ρ + p). (3.16)

We thus arrive at the continuity equation:

ρ̇ = −3H(ρ + p). (3.17)

Notice that if p = −ρ (such as in the case in which the cosmological constant

term is treated as the whole energy-momentum tensor), then the energy density

ρ does not change with time.

3.1.3 The Friedmann Equation

We now obtain a useful differential equation describing the dynamics of the scale

factor a(t), known as the Friedmann equation [19, 24, 25, 26, 27, 28]: , from the

relation between G00 and T00 in the Einstein equation,

Gab = 8πG
N
Tab =

1

m2
4

Tab, (3.18)

where the 4-dimensional gravitational constants, G
N

and κ4 , are related to the

4-dimensional Planck mass m4 by

κ2
4

= 8πG
N
, (3.19)

m4 = κ−1
4

. (3.20)
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Now we can write the 0-0 component explicitly,

G00 = 3H2 + 3
k

a2
,

=
1

m2
4

T00 =
1

m2
4

(ρ + m2
4
Λ4), (3.21)

where we have included the cosmological constant Λ4 in the energy-momentum

tensor, i.e., by replacing Tab → Tab +m2
4
Λ4gab [19, 24, 25, 26, 27, 29, 30]. We thus

obtain the 4-dimensional Friedmann equation:

H2 =
Λ4

3
+

1

3m2
4

ρ− k

a2
. (3.22)

3.1.4 The Raychaudhuri Equation

As we have seen in the Chapter 2, the Raychaudhuri equation describes the evo-

lution of the hypersurface along the congruence of geodesics passing through it

[10, 11, 21, 22]. Thus this equation can be derived directly by considering the

geodesic deviation of the congruence through the hypersurface without the ne-

cessity of using the Einstein equation . Interestingly, the Raychaudhuri equation

may be obtained from the Friedmann equation, Eq. (3.22), and the continuity

equation, Eq. (3.17), as follows:

2HḢ =
1

3m2
4

ρ̇ +
2kȧ

a3

Ḣ =
1

2H

[
1

3m2
4

3H(−ρ− p) +
k

a2
2H

]

= − 1

2m2
4

(ρ + p) +
1

3m2
4

ρ−H2 +
Λ4

3

= −H2 +
Λ4

3
− 1

6m2
4

(ρ + 3p). (3.23)

Above the continuity equation, Eq. (3.17), and the Friedmann equation, Eq.

(3.22), were used on the second and third lines respectively. We thus obtain the

Raychaudhuri equation:

Ḣ = −H2 +
Λ4

3
− 1

6m2
4

(ρ + 3p). (3.24)
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Note that the cosmological constant term, Λ4 , may be absorbed into the energy

density ρ so that Eq. (3.24) can be reduced to the usual form obtained in the

last chapter.

3.1.5 The Acceleration Equation

With the Raychaudhuri equation, the acceleration equation is easily derived as

ä

a
= Ḣ + H2 =

Λ4

3
− 1

6m4
2
(ρ + 3p). (3.25)

Note that the trace of the energy-momentum tensor, ρ + 3p, plays an important

role in the acceleration equation.

3.2 Basic Equations in the Braneworld Models

For the 5-dimensional braneworld models, we can apply the calculational meth-

ods used in last section to the 5-dimensional metric. However, the notable dif-

ference in this chapter is that we have to impose some conditions on the energy-

momentum tensor for separating the energy-momentum tensor into two parts:

one concentrated on the 3-brane and the other in the bulk. In addition, for the

Randall-Sundrum models, we need to impose a Z2 symmetry before solving the

Einstein equations [3, 4].

3.2.1 The Einstein Equations in the Braneworld Models

In the braneworld models, we consider our universe as an infinitesimally thin

wall of constant spatial curvature [8, 31, 32, 33, 34, 35, 36] . This means that

the 4-dimensional hypersurface describing our universe is still the FLRW model.

The general 5-dimensional metric which is compatible with the FLRW in four

dimensions can be written in appropriate coordinate systems in the form

dŝ2 = ĝ′ab(z
c)dzadzb + a2(zc)γijdxidxj, (3.26)
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where ĝ′ab is a two-dimensional metric depending only on the two coordinates, za,

which span time and the extra spatial dimension. For convenience we can choose

a Gaussian normal coordinate system such that the time coordinate is orthogonal

to the 5th dimension as

ĝ′abdzadzb = −n2(τ, y)dτ 2 + b2(τ, y)dy2. (3.27)

Then we can write the metric, Eq. (3.26), in a Gaussian normal coordinate system

where the brane is located at y = 0, in the form

dŝ2 = ĝabdxadxb = −n2(τ, y)dτ 2 + a2(τ, y)γijdxidxj + b2(τ, y)dy2. (3.28)

At y = 0, the metric Eq. (3.28) reduces to the FLRW metric,

ds2 = −dt2 + a2γijdxidyj, (3.29)

where we have set

n2(τ, 0)dτ 2 = dt2. (3.30)

In this coordinate system, the components of the Einstein tensor read

Ĝ00 = 3
ȧ2

a2
+ 3

kn2

a2
+

[
ȧḃ

ab
− n2

b2

(
a′′

a
+

a′

a

(
a′

a
− b′

b

))]
,

Ĝij =
a2

n2
γij

(
−2

ä

a
− ȧ2

a2

)
− kγij

+
a2

n2
γij

[
−2

˙ȧn

an
+

ḃ

b

(
−2

ȧ

a
+

ṅ

n

)
− b̈

b

]

+
a2

b2
γij

[
a′

a

(
a′

a
+ 2

n′

n

)
− b′

b

(
n′

n
+ 2

a′

a

)
+ 2

a′′

a
+

n′′

n

]
,

Ĝ05 = 3

(
n′

n

ȧ

a
+

a′

a

ḃ

b
− ȧ′

a

)
,

Ĝ55 = 3

[
a′

a

(
a′

a
+

n′

n

)
− b2

n2

(
ȧ

a

(
ȧ

a
− ṅ

n

)
+

ä

a

)
− k

b2

a2

]
, (3.31)

where a prime denotes a derivative with respect to the 5th coordinate y, and a dot

denotes a derivative with respect to time τ . As in the last section, the dynamics
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of the scale factor a(τ) comes from the 5-dimensional field equation:

Ĝab = κ2
5
T̂ab. (3.32)

It is convenient to decompose the energy-momentum tensor into two parts located

in the bulk and on the 3-brane repectively:

T̂ a
b = T̂ a

b|bulk
+ T a

b|brane
. (3.33)

We are interested in the universe which is dominated by a perfect fluid, then the

energy-momentum tensors of the bulk and the brane matter are assumed to be

of the form

T̂ a
b|bulk

= diag(−ρ
B
, p

B
, p

B
, p

B
, p

T
), (3.34)

T a
b|brane

=
δ(y)

b
diag(−ρ

b
, p

b
, p

b
, p

b
, 0). (3.35)

Note that the delta function in Eq. (3.35) comes from the discontinuous of the

first deivative with respect to y. With the energy-momentum tensor on the brane,

one obtains the Israel’s junction conditions as

[a′]
ab

∣∣∣
y=0

= −κ5

3
ρ

b
, (3.36)

[n′]
nb

∣∣∣
y=0

=
κ5

3
(2ρ

b
+ 3p

b
). (3.37)

In some braneworld models, especially the Randall-Sundrum models, the orbifold

nature of the extra dimension (specifically a Z2 symmetry across the brane) is

imposed [3, 4, 37, 38, 39]:

a(y) = a(−y), a′(y) = −a′(−y),

b(y) = b(−y), b′(y) = −b′(−y),

n(y) = n(−y), n′(y) = −n′(−y). (3.38)

Then Eqs. (3.36) and (3.37) become

a′

ab

∣∣∣
y=0

= −κ5

6
ρ

b
, (3.39)

n′

nb

∣∣∣
y=0

=
κ5

6
(2ρ

b
+ 3p

b
). (3.40)
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3.2.2 The Continuity Equation for the Braneworld Mod-
els

One commonly starts the derivation of the continuity equation from the relation

∇aT
a
0 = 0. However the Eqs. (3.39) and (3.40) provide a more interesting way

to obtain the equation.

We begin by differentiating both sides of Eq. (3.39),

−κ5

6
ρ̇

b
=

[
ȧ′

ab
− ȧa′

a2b
− a′ḃ

ab2

]
, (3.41)

and multiplying Eq. (3.40) with ȧ/a,

(
ȧ

a

) ∣∣∣
y=0

κ5

6
(2ρ

b
+ 3p

b
) =

ȧn′

abn

∣∣∣
y=0

. (3.42)

Combine these results together, we obtain

κ2
5

6
[ρ̇

b
+ 3H(ρ

b
+ p

b
)]

∣∣∣
y=0

= −
[

ȧ′

ab
− a′ȧ

a2b
− a′ḃ

ab2
− ȧn′

abn
+

a′ȧ
a2b

]∣∣∣∣∣
y=0

,

=
1

3b
Ĝ05. (3.43)

We see that the density energy ρ
b

and the pressure p
b

satisfy the 4-dimensional

continuity equation, Eq. (3.17), under the condition Ĝ05 = 0 which can be

satisfied if T̂05 = 0, i.e., when there is no energy flow in the extra dimension.

3.2.3 The Friedmann Equation

From the Einstein equations, Eq. (3.32), and the Einstein tensor, Eq. (3.31), we

can rewrite G00 in the form

F ′ =
2a′a3

3
κ2

5
T̂ 0

0, (3.44)

where the function F is defined as

F (τ, y) ≡ (a′a)2

b2
− (ȧa)2

n2
− ka2. (3.45)
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Since T̂ 0
0 = −ρ

B
is here independent of y, we can integrate Eq. (3.44) to obtain

F +
κ2

5

6
a4ρ

B
+ ε = 0, (3.46)

where ε is a constant of integration, or more explicitly,

(
ȧ

na

)2

=
κ2

5

6
ρ

B
+

(
a′

ab

)2

− k

a2
+

ε

a4
. (3.47)

At y = 0, we can use the explicit form of a′/ab in Eq. (3.39) and choose n(τ, 0) = 1

to obtain

ȧ2

a2

∣∣∣
y=0

= H2 =

[
κ2

5

6
ρ

B
+

κ4
5

36
ρ2

b
− k

a2
+

ε

a4

]∣∣∣∣
y=0

. (3.48)

As we will be mainly concerned with the equations on the 3-brane, then all the

following equations are understood to be evaluated on the brane (y = 0) and the

notation |y=0 will be dropped for convenience.

In the Randall-Sundrum scenario [3, 4], the brane tension λ plays the role

of the cosmological constant on brane. Treating the cosmological constant as a

part of the energy-momentum tensor on the brane, we may write [19, 25, 26, 27,

29, 34]

ρ
b

= ρ + λ, (3.49)

p
b

= p− λ, (3.50)

where ρ and p are the energy density and pressure of the matter concentrated

on the brane. In the Randall-Sundrum braneworld, the gravitational constant κ5

and the 5-dimensional Planck mass are related by

m5 = κ−2/3
5

. (3.51)

Another important property of the Randall-Sundrum models is that the bulk

contains only the 5-dimensional cosmological constant, Λ5 , without any matter,

so that

Λ5 = κ2
5
ρ

B
. (3.52)
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Subsituting Eqs. (3.51) and (3.52) into the Friedmann equation on the 3-brane,

Eq. (3.48), we obtain

H2 =
Λ5

6
+

1

36m6
5

(ρ2 + 2λρ + λ2)− k

a2
+

ε

a4

=
Λ4

3
+

1

3m2
4

ρ +
1

36m6
5

ρ2 − k

a2
+

ε

a4
, (3.53)

where the 4-dimenstional Planck mass, m4 , and the 4-dimensional cosmological

constant, Λ4 , are defined as

m2
4

=
6

λ
m6

5
, (3.54)

Λ4 =
Λ5

2
+

λ2

12m6
5

=
Λ5

2
+

λ

2m2
4

. (3.55)

We thus rewrite the Friedmann equation, Eq. (3.53), in terms of λ and m4 as

H2 =
1

3m2
4

ρ
(
1 +

ρ

2λ

)
+

Λ4

3
− k

a2
+

ε

a4
. (3.56)

The last term in the above equation appears as a form of “dark radiation” since

it is decoupled from matter on the brane. In the case of no dark radiation,

ε = 0, and in the low energy limit, λ → ∞, Eq. (3.56) reduces to the standard

4-dimensional Friedmann equation in the FLRW model.

3.2.4 The Raychaudhuri Equation

The Raychaudhuri equation for the braneworld can be obtained from the Fried-

mann equation, Eq. (3.53), as

Ḣ =
1

2H

[
ρ̇

(
1

3m2
4

+
ρ

18m6
5

)
+

k(2H)

a2
− 2ε(2H)

a4

]

= −H2 +
Λ4

3
− 1

6m2
4

(ρ + 3p)− 1

36m6
5

(2ρ2 + 3ρp)− ε

4
, (3.57)

or in terms of λ and m4 ,

Ḣ = −H2 +
Λ4

3
− 1

6m2
4

[
(ρ + 3p) +

1

λ
(2ρ2 + 3ρp)

]
− ε

4
. (3.58)

Again in the case of λ → ∞ and ε = 0, this equation reduces to the FLRW

Raychaudhuri equation in 4 dimensions.
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3.2.5 The Acceleration Equation

From the usual relation ä/a = Ḣ + H2 and the Raychaudhuri equation, Eq.

(3.57), we obtain the acceleration equation:

ä

a
=

Λ4

3
− 1

6m2
4

[
(ρ + 3p) +

1

λ
(2ρ2 + 3ρp)

]
− ε

4
. (3.59)

Notice that the extra term in the bracket apart from the trace of Tab (ρ + 3p)

is multiplied by 1/λ. This means that the effect from the bulk vanishes when

λ →∞, i.e., in the low energy limit [34, 35, 36, 40].

3.3 Basic Equations for the Scalar Fields

Nowadays most people agree that the inflationary cosmology is the most satis-

factory theory of the physics of early universe [41, 42, 43, 44, 45, 46]. Most of the

inflationary models use the scalar field φ, known as the inflaton field, for driving

the inflation. As the inflaton is just a regular scalar field, then its action in curved

spacetime takes the generic form [28, 47]:

Sφ =

∫
d4x

√−gL =

∫
d4x

√−g

[
1

2
∂aφ∂aφ + V (φ)

]
. (3.60)

From the action principle, the equation of motion can be obtained by setting the

variation δS = 0 with the result

φ̈ + 3Hφ− ∇2φ

a2
+ V ′(φ) = 0, (3.61)

where V ′(φ) denotes the derivative with respect to φ. During inflation we assume

a spatially homogeneous universe, then ∂iφ = 0 and the equation of motion for

the inflaton reduces to

φ̈ + 3Hφ̇ + V ′(φ) = 0 (3.62)

which is simply a harmonic oscillator equation with a damping term 3Hφ̇. The

corresponding energy-momentum tensor of the scalar field is well known:

Tab = ∂aφ∂bφ− gabL. (3.63)
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Then the energy density and the pressure of the scalar field are

ρ = T00 =
1

2
φ̇2 + V (φ), (3.64)

p = Tii =
1

2
φ̇2 − V (φ). (3.65)

Making use of Eqs. (3.64) and (3.65), we can write φ̇2 and V (φ) in terms of the

energy density and the pressure as

φ̇2 = ρ + p, (3.66)

V (φ) =
1

2
(ρ− p). (3.67)

Differentiating the energy density in Eq. (3.64), we obtain

ρ̇ = φ̇φ̈ + V ′φ̇. (3.68)

Using Eq. (3.62), we finally arrive at the continuity equation for the scalar field,

ρ̇ + 3H(ρ + p) = 0. (3.69)

Note that our derivation of the continuity equation holds for the scalar field with

the specified energy momentum tensor and does not depend on the spacetime

dimension.

3.4 The Slow-roll Parameters

From the definition of the Hubble parameter [18, 19, 28, 42],

ä

a
= Ḣ + H2

= (1− ε)H2, (3.70)

where we have defined the slow-roll parameter ε as

ε ≡ − Ḣ

H2
. (3.71)
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Now the condition for inflation to take place, ä > 0, is equivalent to the condition

that this slow-roll parameter is less than one (ε < 1). Thus the condition for

inflation can be written in the various forms as

Inflation ⇐⇒ ä > 0 ⇐⇒ d

dt

H−1

a
< 0 ⇐⇒ ε < 1. (3.72)

When one says that the inflation is a rapid expansion of the universe somehow

the definition of “rapid expansion” is not clear. What is the expansion rate that

should be called “rapid”? Then the comoving Hubble length, H−1/a, gives more

physical interpretation. If this characteristic scale is decreasing with time, it

means the observable universe becomes smaller when viewed in the coordinates

fixed with the expansion. That is inflation occurs.

Apart from ε, there are more slow-roll parameters that are commonly used

for analyzing the inflation models. We end this section by quoting two slow-roll

parameters, ε and η [18, 19, 28, 42]:

ε ≡ − Ḣ

H2
, (3.73)

η ≡ − φ̈

Hφ̇
. (3.74)

3.5 Conditions of the Inflation in the FLRW

Model

From the acceleration equation, Eq. (3.25),

ä

a
= − 1

3m2
4

(ρ + 3p), (3.75)

the inflation happens when ä > 0 or equivalently

p < −1

3
ρ. (3.76)

We can rewrite this condition in terms of the scalar field φ and the potential V (φ)

by making use of Eqs. (3.64) and (3.65) as

p < −1

3
ρ ⇐⇒ φ̇ < V. (3.77)
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We now consider the slow-roll conditions for the FLRW model. Taking

the extremely case of the condition (3.77),

φ̇ ¿ V (φ), (3.78)

then when the scalar field dominates the Friedmann equation, Eq. (3.22), be-

comes

H2 =
1

3m2
4

[
1

2
φ̇2 + V (φ)

]

' 1

3m2
4

V (φ) (3.79)

where we have used ' to denote equality within the slow-roll approximation.

Assuming the potential V (φ) is flat or more quantitatively φ̈ ¿ 3Hφ̇, then the

equation of motion of the scalar field gives another approximation:

3Hφ̇ ' −V ′(φ) =⇒ φ̇ ' −V ′(φ)

3H
. (3.80)

Rewriting these slow-roll conditions in terms of the potential V (φ):

φ̇2 ¿ V (φ) =⇒ V ′2

V
¿ H2, (3.81)

φ̈ ¿ 3Hφ̇ =⇒ V ′′ ¿ H2. (3.82)

Using the above results, one straightforwardly obtains the slow-roll parameters

in the slow-roll approximation as

ε
GR

≡ m2
4

2

(
V ′

V

)2

, (3.83)

η
GR

≡ m2
4

(
V ′′

V

)
. (3.84)

3.6 The Braneworld Inflation

The Friedmann equation in the braneworld in the absence of the dark energy

(ε = 0) can be written as [34, 40, 48]

H2 =
1

3m2
4

ρ
[
1 +

ρ

2λ

]
. (3.85)
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From the acceleration equation in the braneworld cosmology, Eq. (3.59),

ä

a
= − 1

6m2
4

[
(ρ + 3p) +

1

λ
(2ρ2 + 3ρp)

]
, (3.86)

the condition that makes ä > 0 reads

3p
(
1 +

ρ

λ

)
+ ρ

(
1 +

2ρ

λ

)
< 0. (3.87)

The inflation thus occurs when

ä > 0 ⇒ p < −
[
λ + 2ρ

λ + ρ

]
ρ

3
. (3.88)

As ρ/λ → ∞, the above condition reduces to the violation of the strong energy

condition

p < −1

3
ρ

⇐=

λ →∞ p < −
[
λ + 2ρ

λ + ρ

]
ρ

3

=⇒
ρ/λ →∞ p < −2

3
ρ.

(3.89)

When the only matter in the universe is a scalar field, we can rewrite the condition

for inflation, Eq. (3.87), as follows:

−3p− ρ− ρ

λ
(3p + 2ρ) > 0

2ρ− 3(ρ + p) +
2ρ

4λ
[2ρ− 6(ρ + p)] > 0. (3.90)

In terms of φ̇2 and V ,

φ̇2 + 2V − 3φ̇2 +
φ̇2 + 2V

4λ
(φ̇2 + 2V − 6φ̇2) > 0

−φ̇2 + V +
φ̇2 + 2V

8λ
(−5φ̇2 + 2V ) > 0

φ̇2 − V +
φ̇2 + 2V

8λ
(5φ̇2 − 2V ) < 0. (3.91)

This condition reduces to φ̇2 < V (φ) in the standard cosmology when

φ̇2 + 2V ¿ λ. (3.92)



33

We now consider the slow-roll parameters in the braneworld model. From

the Friedmann equation, Eq. (3.85), in case that the scalar field dominates, the

slow-roll approximations are [40, 48, 49, 50, 51, 52]

H2 ' 1

3m2
4

V

[
1 +

V

2λ

]
, (3.93)

φ̇ ' − V ′

3H
, (3.94)

where we have used ' to denote equality within the slow-roll approximation as

usual. To find the explicit form of the slow-roll parameter

ε ≡ − Ḣ

H2

as in Eq. (3.71), we need to evaluate Ḣ by using the slow-roll approximation for

H2. Differentiating H2 in Eq. (3.93), we get

H2 ' 1

3m2
4

[
V +

V 2

2λ

]
,

2HḢ ' 1

3m2
4

[
V ′φ̇ +

2V V ′φ̇
2λ

]
,

Ḣ ' 1

3m2
4

(
φ̇

2H

)
V ′

[
λ + V

λ

]
. (3.95)

In the above equation, one may use Eq. (3.94) to express the φ̇ term as

φ̇

2H
' − V ′

6H2
. (3.96)

From the Friedmann equation, Eq. (3.93),

1

H2
' (

3m2
4

) (
1

V

)[
2λ

2λ + V

]
. (3.97)

With the above results, one obtains the slow-roll parameter in the slow-roll ap-

proximation:

ε ≡ − Ḣ

H2
' −

(
1

m2
4

)(
−V ′2

6

)(
1

H2

)2 [
λ + V

λ

]

' (
3m2

4

) (
1

6

)(
V ′

V

)2
[(

2λ

2λ + V

)2 (
λ + V

λ

)]

' m2
4

2

(
V ′

V

)2 [
2λ(2λ + 2V )

(2λ + V )2

]
. (3.98)
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Similarly, one may obtain another slow-roll parameter η in the slow-roll ap-

proximation. We now quote our final forms of the slow-roll parameters for the

braneworld inflation [40, 49, 50, 53, 54] :

ε ≡ m2
4

2

(
V ′

V

)2 [
2λ(2λ + 2V )

(2λ + V )2

]
=

m2
4

2

(
V ′

V

)2 [
1 + V/λ

(2 + V/λ)2

]
, (3.99)

η ≡ m2
4

8π

(
V ′′

V

)[
2λ

2λ + V

]
. (3.100)

At low energy V ¿ λ, the above result reduces to the slow-roll parameters in

standard cosmology as it should,

ε
GR

≡ m2
4

2

(
V ′

V

)2

, (3.101)

η
GR

≡ m2
4

8π

(
V ′′

V

)
. (3.102)

At high energies λ ¿ V , the parameters however become

ε
high E

= ε
GR

[
λ

V

]
, (3.103)

η
high E

= η
GR

[
2λ

V

]
. (3.104)

By definition, the number of e-foldings during inflation is given by

N =

∫ tf

ti

Hdt

= H

∫ φf

φi

dφ

φ̇
. (3.105)

In the slow-roll limit, the number of e-foldings becomes

N ' −3H2

∫ φf

φi

dφ

V ′

' − 8φ

m2
4

∫ φf

φi

V

V ′

[
1 +

V

2λ

]
dφ. (3.106)

3.7 The Hamilton-Jacobi Formulation of Infla-

tion in the FLRW Model

So far, we have considered inflations only within the slow-roll approximation. It

is, however, well known that the slow-roll approximation is not always valid for
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all models of inflation. There are some models such as the inverted potential

inflation models and the complicated cases of the hybrid inflations in which the

slow-roll approximation breaks down at some point before the inflation ends [55].

However, there is another powerful way to analyze these models, that is, rewriting

the equation of motion during inflation in terms of the functions of the scalar field

φ rather than the time t. This method is called the Hamilton-Jacobi formulation

[19, 55, 56, 57] which we now consider.

In the slow-roll approximation, we think of the inflaton as rolling down

the potential hill in some specific direction. In other words, the scalar field in

this approximation is a strictly increasing function of time. Consequently, we can

treat the scalar field itself as the time variable to rewrite the whole set of inflation

equations in the solvable forms. We begin with the Friedmann equation when

the scalar field dominates,

H2 =
1

6m2
4

(
1

2
φ̇2 + V (φ)

)
. (3.107)

Differentiating Eq. (3.107) with respect to time,

2H(φ)H ′(φ)φ̇ =
1

3m2
4

(φ̈ + V ′(φ))φ̇, (3.108)

where the prime denotes differentiation with respect to φ, and substituting the

equation of motion V ′ + φ̈ = −3Hφ̇, we obtain

φ̇ = −2m2
4
H ′(φ). (3.109)

Substituting the expression for φ̇ in Eq. (3.109) into the Friedmann equation,

Eq. (3.107), we obtain the Friedmann equation in the Hamilton-Jacobi form,

1

2
φ̇2 − 3m2

4
H2(φ) = −V (φ)

[H ′(φ)]2 − 3

2m2
4

H2(φ) = − 1

2m4
4

V (φ). (3.110)
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Given the explicit form of V (φ), this equation can be solved for H(φ) as a function

of φ. Once the explicit form of H(φ) is obtained, Eq. (3.109) then gives φ̇ and

hence the energy density ρ as functions of φ.

In the Hamilton-Jacobi formalism, the continuity equation can be rewrit-

ten by subsituting ρ + p = φ̇2 into Eq. (3.69). We obtain

ρ̇ = −3Hφ̇2 =⇒ ρ′ = −3Hφ̇, (3.111)

where we have used ρ̇ = ρ′φ̇. Also from Eq. (3.109), we find

H ′ = − 1

2m2
4

φ̇ =⇒ H ′a′ = − 1

2m2
4

Ha. (3.112)

where the relation φ̇a′ = ȧ = Ha has been used. The slow-roll parameter εH in

this formalism can be derived in the usual way,

ä

a
= H ′φ̇ + H2

= H ′(−2m2
4
H ′) + H2

= H2(φ)(1− ε
H
(φ)), (3.113)

where we have defined the slow-roll parameter as

ε
H
(φ) ≡ 2m2

4

(
H ′(φ)

H(φ)

)2

. (3.114)

Similarly, one can define

η
H
(φ) ≡ 2m2

4

H ′′

H
. (3.115)

The relations between these parameters and the slow-roll parameters (ε, η) in the

slow-roll limit are not hard to derive. The result is

ε
H

' ε, (3.116)

η
H

' η − ε. (3.117)

Similarly, one can find the number of e-folding in the Hamilton-Jacobi

formalism,

N =

∫ φend

φ0

dφ
H

φ̇
= − 1

2m2
4

∫ φend

φ0

dφ
H

H ′ . (3.118)
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Note that we have used the fact that the Hubble parameter H(φ) is not exactly a

constant but varies as the field evolves along the potential, in contast with many

models which assume H(φ) constant during inflation. Thus it makes sense to

have H(φ) instead of V (φ) in the expressions for the slow-roll parameters and

the number of e-folding.

3.8 The Braneworld Cosmology in the Hamilton-

Jacobi Framework

We now turn to the Hamilton-Jacobi formalism of the braneworld cosmology.

Since the Friedmann equation in the braneworld model contains the square of the

energy density term, then it looks difficult to find an exact solution. However, by

introducing a new variable y as a function of the density, the simplest form of the

Friedmann equation, Eq. (3.85), can be solved exactly [58]. As we shall see, this

new variable turns out to play the same role as the Hubble parameter H(φ) does

in the Hamilton-Jacobi formulation of the 4-dimensional case, and the method

used in the previous section can be applied to formulate the slow-roll parameters

γ, β analogous to ε, η. The mimic Hamilton-Jacobi formulation in the braneworld

is convenient for the calculation of the energy scale of inflation [59].

We now go into the detail. Let x = ρ/2λ, then the Friedmann equation

on the braneworld, Eq. (3.85), reads

H2 =
2λ

3m2
4

x(1 + x). (3.119)

Since ρ can be expressed in terms of the scalar field φ and its time derivative, and

the equation of motion of φ is the same as in the FLRW case, then the method

analogous to the one used in the previous section leads to the equation analogous

to Eq. (3.110) for determining H as a function of φ, which in turn leads to the

expression of ρ (and hence x) as a function of φ.
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Introducing a new variable y defined as

x =
y2

1− y2
=⇒ x(x + 1) =

y4

(1− y2)2
, (3.120)

we obtain

H(y) =

(
2λ

3m2
4

)1/2
y

1− y2
. (3.121)

Note that the density energy ρ can be expressed as a function of y:

ρ = 2λx =
2λy2

1− y2
. (3.122)

From

φ̇ = − 1

3H
ρ′ (3.123)

where a prime denotes differentiation with respect to φ as usual, then using the

above results, we find

φ̇ = −
(

8λm2
4

3

)1/2
y′

1− y2
. (3.124)

We now obtain an important relation analogous to the relation H ′a′ = −Ha/2m2
4

in the FLRW case:

y′a′ = −(a′φ̇)

(
3

8λm2
4

)1/2

(1− y2)

= −
(

3

8λm2
4

)1/2 (
2λ

3m2
4

)1/2

(ȧ)
y

H(y)

= − 1

2m2
4

ya (3.125)

which can be integrated to give

a(φ) = exp

[
− 1

2m2
4

∫ φend

φ0

dφ
y

y′

]
. (3.126)

This means the number of e-foldings can be obtained once we know the explicit

form of y(φ).

Comparing the role of y(φ) in the above results with H(φ) in the FLRW

case, we see that they play very similar roles. Thus the slow-roll parameters in the
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Hamilton-Jacobi formalism for the braneworld model can be defined as follows:

ε
H
(φ) = 2m2

4

H ′2

H2
=⇒ β

H
≡ 2m2

4

y′2

y2
, (3.127)

η
H
(φ) = 2m2

4

H ′′

H
=⇒ γ

H
≡ 2m2

4

y′′

y
. (3.128)

Their relationships are

γ
H

= β
H
−

√
m2

4

2

β′
H√
β

H

, (3.129)

β
H

=

(
1− y2

1 + y2

)
ε, (3.130)

where

ε = −H ′/H2 (3.131)

is the slow-roll parameter in the FLRW Hamilton-Jacobi formalism. The number

of e-foldings can similarly be obtained:

N =
1

2m2
4

∫ φ
end

φ0

dφ
y

y′

=

√
1

2m2
4

∫ φ
end

φ0

dφ√
β

H
(φ)

. (3.132)

To end this section, we note that the parameters β
H

and γ
H

are useful

in analyzing the behaviour of the inflationary solutions [59]. However, Ramirez

and Liddle [60] found that the numerical values of funcions β
H

and γ
H

defined

above do not satisfy the expected values of the slow-roll parameters, for example,

β
H

is not exactly equal to one when the inflation ends. So they modified these

parameters by adding some correction terms in order to get the better numerical

values close to the standard ones.
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The Cosmological Perturbations

Having obtained the cosmological solutions in the previous chapter, we

now turn to the issue of cosmological perturbations which is a very important

topic in cosmology [19, 20, 61, 62, 63, 64]. We will begin with the discussion of

the perturbations for the flat FLRW model with the inflaton as the matter field.

We then proceed to discuss the issue of gauge invariance. Finally, we will end this

chapter with the discussion of the density perturbation in braneworld cosmology

[65, 66, 67, 68, 69, 70].

4.1 The Metric Perturbations for the Flat FLRW

Model

Consider the flat FLRW model (3.1) which describes the universe during inflation.

In terms of the conformal time τ defined by dτ = dt/a, the metric reads

ds2 = g
(0)
ab dxadxb = −a2(τ)

[
dτ 2 − δijdxidxj

]
. (4.1)

From the definition of τ , we find [19, 28]

a′ = ȧa =⇒ H =
ȧ

a
=

a′

a2
=
H
a

(4.2)

where a prime denotes differentiation with respect to τ . Here H plays the same

role as the Hubble constant H. The general form of the first order perturbed

metric is [28, 61, 20, 71]

ds2 = a2(τ)
[−(1 + 2A)dτ 2 + 2(B|i − Si)dτdxi + ((1− 2ψ)δij

+E|ij + Fi|j + Eij)dxidxj
]

(4.3)

where we have defined B|i ≡ ∇iB, Fi|j ≡ ∇jFi and a symmetric traceless tensor

E|ij = (∂i∂j − 1

3
δij∇2)E. (4.4)
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Here, Si and Fi are divergenceless (∇ · S = ∇ · F = 0) and Eij is transverse

traceless (∇iE
ij = Ei

i = 0). The functions A, B, ψ and E are known as the

scalar perturbations, the vectors Si and Fi are the vector perturbations, and

Eij is called the tensor perturbation. All of these functions are treated as small

perturbations so that, from now on, only terms up to the linear order in these

functions will be retained in all calculations. In this thesis, we will however pay

our attention only to the scalar perturbations, leaving the topics of vector and

tensor perturbations untouch.

4.2 The Scalar Perturbation of the Einstein Ten-

sor

Paying attention only to the scalar perturbations, the metric tensor in Eq. (4.3)

can be expressed in the matrix form as

gab = g
(0)
ab + δgab = a2

( −(1 + 2A) B|i
B|i (1− 2ψ)δij + E|ij

)
. (4.5)

We then can find the inverse metric from the identity

gacgcb = δa
b (4.6)

with the result

gab = g(0)ab + δgab = a2

( −1 + 2A B|
i

B|
i (1 + 2ψ)δij − E|

ij

)
. (4.7)

To write the Einstein equation in the perturbed metric, we need to evaluate the

perturbed Einstein tensor to the linear order in perturbations. Our first step is

to evaluate the perturbed Christoffel symbol, Γa
bc =

(0)
Γa

bc + δΓa
bc, where

δΓa
bc =

1

2
δgae

(
∂g

(0)
ec

∂xb
+

∂g
(0)
be

∂xc
− ∂g

(0)
bc

∂xe

)
+

1

2
g(0)ae

(
∂δgec

∂xb
+

∂δgbe

∂xc
− ∂δgbc

∂xe

)
.

(4.8)
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and the unperturbed connections take the forms

(0)

Γ0
00 =

a′

a
;

(0)

Γi
0j =

a′

a
δi

j

(0)

Γ0
ij =

a′

a
δij ;

(0)

Γi
00 =

(0)

Γ0
0i =

(0)

Γi
jk = 0. (4.9)

To calculate δΓa
bc requires some quite tedious but straightforward calculations.

For Γi
jk:

δΓi
jk =

1

2
δgie

(
∂g

(0)
ek

∂xj
+

∂g
(0)
je

∂xk
− ∂g

(0)
jk

∂xe

)
+

1

2
g(0)ie

(
∂δgek

∂xj
+

∂δgje

∂xk
− ∂δgjk

∂xe

)

=
1

2
δgi0

(
∂g

(0)
0k

∂xj
+

∂g
(0)
j0

∂xk
− ∂g

(0)
jk

∂x0

)
+

1

2
g(0)i0

(
∂δg0k

∂xj
+

∂δgj0

∂xk
− ∂δgjk

∂x0

)

+
1

2
δgil

(
∂g

(0)
lk

∂xj
+

∂g
(0)
jl

∂xk
− ∂g

(0)
jk

∂xl

)
+

1

2
g(0)il

(
∂δglk

∂xj
+

∂δgjl

∂xk
− ∂δgjk

∂xl

)

=
1

2

(
B|

i

a2

) {
2a2∂j∂kB − [2aa′((1− 2ψ)δjk + E|jk)− 2a2ψ′δjk + a2E ′

|jk]
}

+
1

2

(
B|

i

a2

) {
2a2∂j∂kB − [2aa′(−2ψδjk + E|jk)− 2a2ψ′δjk + a2E ′

|jk]
}

+
1

2a2
(2ψδil − E|

il)a2

{
−2ψ|jδlk +

∂E|lk
∂xj

− 2ψ|kδjl +
∂E|jl
∂xk

+ 2ψ|lδjk

−∂E|jk
∂xl

}
+

1

2a2

(
(1 + 2ψ)δil − E|

il
)
a2

{
− 2ψ|jδlk +

∂E|lk
∂xj

− 2ψ|kδjl

+
∂E|jl
∂xk

+ 2ψ|lδjk −
∂E|jk
∂xl

}
.

Keeping terms up to the first order in the perturbations, we obtain

δΓi
jk = −a′

a
B|

iδjk − ψ|jδ
i
k − ψ|kδ

i
j + ψ|

iδjk

+
1

2
∂jE|

i
k
+

1

2
∂kE|

i
j
− 1

2
∂iE|jk, (4.10)

which is just one component of δΓa
bc that we have to compute. By the same

calculation, we can obtain the remaining components as follows.

For Γ0
00:

δΓ0
00 =

1

2

(
2A

a2

) [−2aa′(1 + 2A)− 2a2A′] +
1

2a2
(−1 + 2A)
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[−4aa′A− 2a2A′] +
1

2

(
B|

i

a2

) [
4aa′B|i + 2a2B′

|i + 2a2A|i
]

+
1

2

(
B|

i

a2

)[
4aa′B|i + 2a2B′

|i + 2a2A|i
]
.

To the first order in perturbations,

δΓ0
00 = A′. (4.11)

For Γ0
0i:

δΓ0
0i =

1

2

(
2A

a2

) [−2a2A|i
]
+

1

2a2
(−1 + 2A)

[−2a2A|i
]

+
1

2

(
B|

j

a2

) [
2aa′((1− 2ψ)δji + E|ji)− 2a2ψ′δji + a2E ′

|ji
]

+
1

2

(
B|

j

a2

) [
2aa′(−2ψδji + E|ji)− 2a2ψ′δji + a2E ′

|ji
]
.

To the first order in perturbations,

δΓ0
0i = A|i +

a′

a
B|i. (4.12)

For Γi
00:

δΓi
00 =

1

2

(
B|

i

a2

) [−2aa′(1 + 2A)− 2a2A′]

+
1

2

(
B|

i

a2

) [−4aa′A− 2a2A′]

+
1

2a2
(2ψδij − E|

ij)
[
4aa′B|j + 2a2B′

|j + 2a2A|j
]

+
1

2a2

(
1 + 2ψ)δij − E|

ij
) [

4aa′B|j + 2a2B′
|j + 2a2A|j

]
.

To the first order in perturbations,

δΓi
00 =

a′

a
B|

i + B′
|
i
+ A|

i. (4.13)

Finally, for Γ0
ij:

δΓ0
ij =

1

2

(
2A

a2

) {
2a2∂i∂jB − [2aa′((1− 2ψ)δij + E|ij)
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−2a2ψ′δij + a2E ′
|ij]

}

+
1

2a2
(−1 + 2A)

{
2a2∂i∂jB − [2aa′(−2ψδij + E|ij)

−2a2ψ′δij + a2E ′
|ij]

}

+
1

2

(
B|

k

a2

)
a2

{
− 2ψ|iδkj +

∂E|kj

∂xi

−2ψ|jδik +
∂E|ik
∂xj

+ 2ψ|kδij −
∂E|ij
∂xk

}

+
1

2

(
B|

k

a2

)
a2

{
− 2ψ|iδkj +

∂E|kj

∂xi

−2ψ|jδik +
∂E|ik
∂xj

+ 2ψ|kδij −
∂E|ij
∂xk

}
.

To the first order in perturbations,

δΓ0
ij = −2

a′

a
Aδij − ∂i∂jB − 2

a′

a
ψδij +

a′

a
E|ij − ψ′δij +

1

2
E ′

|ij. (4.14)

Now we are so close to obtain the perturbed Einstein tensor,

Gab = Rab − 1

2
gabR =⇒ δGab = δRab − 1

2
δgab

(0)

R− 1

2
g

(0)
ab δR (4.15)

where
(0)

R is the unperturbed scalar curvature. Our remaining tasks are thus the

calculations of the unperturbed
(0)

Rab and the variations δRab and δR. For the

unperturbed
(0)

Rab, we can obtain it from the previous results in the last chapter

by replacing a′ → ȧa, or easily recalculate it again with the result:

(0)

R00 =
(0)

Γe
00|e −

(0)

Γe
0e|0 +

(0)

Γe
de

(0)

Γd
00 −

(0)

Γe
d0

(0)

Γd
0e

= −3

[
−

(
a′

a

)2

+
a′′

a

]
+

(
3
a′

a

) (
a′

a

)
− 3

(
a′

a

)2

= −3
a′′

a
+ 3

(
a′

a

)2

(0)

R0i =
(0)

Γe
0i|e −

(0)

Γe
ie|0 +

(0)

Γe
de

(0)

Γd
0i −

(0)

Γe
di

(0)

Γd
0e

=
(0)

Γj
0i|j = 0

(0)

Rij =

[
a′′

a
−

(
a′

a

)2
]

δij.
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With the above result, we obtain the unperturbed scalar curvature as

(0)

R =
6

a2

a′′

a
. (4.16)

As for the perturbation of the Ricci tensor, we have

δRab = δΓe
ab|e − δΓe

be|a + δΓe
de

(0)

Γd
ab +

(0)

Γe
deδΓ

d
ab

−δΓe
db

(0)

Γd
ae −

(0)

Γe
dbδΓ

d
ae. (4.17)

To the first order in perturbations, we find δRab and δR as

δR00 =
a′

a
∂i∂

iB + ∂i∂
iB′ + ∂i∂

iA + 3ψ′′ + 3
a′

a
ψ′ + 3

a′

a
A′ (4.18)

δR0i =
a′′

a
B|i +

(
a′

a

)2

B|i + 2ψ′|i + 2
a′

a
A|i +

1

2
∂kE

′
|
k

i
(4.19)

δRij =

(
−a′

a
A′ − 5

a′

a
ψ′ − 2

a′′

a
A− 2

(
a′

a

)2

A− 2
a′′

a
ψ

)
δij

−
(

2

(
a′

a

)2

ψ − ψ′′ + ∂k∂
kψ − a′

a
∂k∂

kB

)
δij

−∂i∂jB
′ +

a′

a
E ′

|ij +
a′′

a
E|ij +

(
a′

a

)2

E|ij

+
1

2
E ′′

|ij + ∂i∂jψ − ∂i∂jA− 2
a′

a
∂i∂jB

+
1

2
∂k∂iE|

k
j
+

1

2
∂k∂jE|

k
i
− 1

2
∂k∂

kE|ij (4.20)

δR =
1

a2

[
− 6

a′

a
∂i∂

iB − 2∂i∂
iB′ − 2∂i∂

iA− 6ψ′′ − 6
a′

a
A′

−18
a′

a
ψ′ − 12

a′′

a
A + 4∂i∂

iψ + ∂k∂
iE|

k
i

]
. (4.21)

Putting all the results together, we obtain the perturbation of the Einstein tensor:

δG00 = −2
a′

a
∂i∂

iB − 6
a′

a
ψ′ + 2∂i∂

iψ +
1

2
∂k∂

iE|
k
i

(4.22)

δG0i = −2
a′′

a
∂iB +

(
a′

a

)2

∂iB + 2∂iψ
′ +

1

2
∂kE

′
|
k

i
+ 2

a′

a
∂iA (4.23)

δGij =
[
2
a′

a
A′ + 4

a′

a
ψ′ + 4

a′′

a
A− 2

(
a′

a

)2

A + 4
a′′

a
ψ − 2

(
a′

a

)2

ψ + 2ψ′′

−∂k∂
kψ + 2

a′

a
∂k∂

kB + ∂k∂
kB′ + ∂k∂

kA +
1

2
∂k∂

mE|
k
m

]
δij. (4.24)
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Using the explicit form of the unperturbed Einstein tensor,

(0)

G00 = 3

(
a′

a

)2

(4.25)

(0)

G0i = 0 (4.26)

(0)

Gij =

(
−2

a′′

a
+

(
a′

a

)2
)

δij (4.27)

we can obtain δGa
b from

δGa
b = δ (gaeGeb) = δgae(0)

Geb + g(0)aeδGeb (4.28)

with the result:

δG0
0 = 6

(
a′

a

)2

A + 6
a′

a
ψ′ + 2

a′

a
∂i∂

iB − 2∂i∂
iψ − 1

2
∂k∂

iE|
k
i

(4.29)

δG0
i = −2

a′

a
∂iA− 2∂iψ

′ − 1

2
∂kE

′
|
k

i
(4.30)

δGi
j =

[
2
a′

a
A′ + 4

a′′

a
A− 2

(
a′

a

)2

A + ∂i∂
iA + 4

a′

a
ψ′ + 2ψ′′

−∂i∂
iψ + 2

a′

a
∂i∂

iB + ∂i∂
iB′ +

1

2
∂k∂

mE|
k
m

]
δi

j

−∂i∂jA + ∂i∂jψ − 2
a′

a
∂i∂jB − ∂i∂jB

′ +
a′

a
E ′

|
i

j
+

1

2
E ′′

|
i

j

+
1

2
∂k∂

iE|
k
j
+

1

2
∂k∂jE|

ik − 1

2
∂k∂

kE|
i
j
. (4.31)

4.3 The Perturbed Energy-Momentum Tensor

Having calculated the perturbed Einstein tensor, we now turn to considering the

source that causes the perturbations, the fluctuations of matter. As this thesis

is mainly concerned with the perturbations in the inflationary epoch, we pay our

attention to the matter that dominates in this epoch, i.e., the inflaton field. Then

during inflation, the energy-momentum tensor of the inflaton is

Tab = φ|aφ|b − gab

(
1

2
gedφ|eφ|d − V (φ)

)
. (4.32)

The explicit forms of its components, with the conformal time as the time coor-

dinate, are

T00 =
1

2
φ′2 + V (φ)a2 (4.33)
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T0i = 0 (4.34)

Tij =

(
1

2
φ′2 − V (φ)a2

)
δij. (4.35)

Allowing the inflaton field to fluctuate, i.e., letting φ → φ + δφ, causes the

fluctuations of the energy-momentum tensor,

δTab = (δφ)|aφ|b + φ|a(δφ)|b − δgab

(
1

2
gedφ|eφ|d − V (φ)

)

−gab

(
1

2
δgedφ|eφ|d +

1

2
ged(δφ)|eφ|d +

∂V

∂φ
δφ

)
. (4.36)

More explicitly, the components are

δT00 = δφ′φ′ + 2AV (φ)a2 + a2∂V

∂φ
δφ (4.37)

δT0i = (δφ)|iφ
′ +

1

2
B|iφ

′2 −B|iV (φ)a2 (4.38)

δTij =

(
δφ′φ′ − Aφ′2 − a2∂V

∂φ
δφ− ψφ′2 + 2ψV (φ)a2

)
δij

+
1

2
E|ijφ

′2 − E|ijV (φ)a2. (4.39)

By raising first index,

δT a
b = δ(gaeTeb) = δgaeTeb + gaeδTeb, (4.40)

we arrive at

δT 0
0 = Aφ′2 − δφ′φ′ − δφ

∂V

∂φ
a2 (4.41)

δT i
0 = B|

iφ′2 + (δφ)|
iφ′ (4.42)

δT 0
i = −(δφ)|

iφ′ (4.43)

δT i
j =

(
−Aφ′2 + δφ′φ′ − δφ

∂V

∂φ
a2

)
δi

j . (4.44)

4.4 Gauge Transformations in the FLRW Model

We now turn to the issue of gauge transformation in the cosmological pertur-

bation theory [20, 61, 72, 73, 74]. The motivation is quite simple: How do the
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perturbations introduced in the pervious section change under a coordinate trans-

formation? Suppose two or more coordinate systems give the same form of the

perturbed metric, but with different perturbation functions, then these coordi-

nate systems have to be treated on equal footing and this freedom in choosing

the coordinate system would be an imbiguity that we have to deal with when

formulating the cosmological perturbation theory.

Consider an infinitesimal coordinate (or gauge) transformation

xµ → x̃µ = xµ + δxµ. (4.45)

Formally speaking, xµ and x̃µ are just two diffeomorphisms on the same mani-

fold. Thus the corresponding transformation of the perturbation of an arbitrary

quantity Q is

δ̃Q = δQ + £δxQ0 (4.46)

where Q0 is the value on the background spacetime and £δx is the Lie derivative

of Q along the vector δxµ.

To be more specific, consider an infinitesimal transformation

τ̃ = τ + ξ0, (4.47)

x̃i = xi + ξ|
i + ξ̄i. (4.48)

Since

dξ0 = ξ0′dτ̃ + ξ0
|idx̃i, (4.49)

dξ|
i = ξ′|

i
dτ̃ + ξ|

i
j
dx̃j, (4.50)

dξ̄i = ξ̄i′dτ̃ + ξ̄i
|jdx̃j, (4.51)

then we find

dτ = dτ̃ − ξ0′dτ̃ − ξ0
|idx̃j, (4.52)

dxi = dx̃i − (ξ′|
i
+ ξ̄i′)dτ̃ − (ξ|

i
j
+ ξ̄i

|j)dx̃j. (4.53)



49

Choosing the background metric to be of the FLRW type, the transformation

rule analogous to Eq. (4.46) gives, for example,

a(τ) = a(τ̃)− ξ0a′(τ̃). (4.54)

We thus find that, in the new coordinate system, the perturbed metric becomes

ds2 = a2(τ̃)
{
− (1 + 2(A− a′

a
ξ0 − ξ0]))dτ̃ 2 + 2(B + ξ0 − ξ′)|idτ̃dx̃i

−2(Si + ξ̄′i)dτ̃dx̃i +
[
(1− 2(ψ +

a′

a
ξ0))δij + (E − ξ)|ij

+(Fi|j − ξ̄i|j) + Eij

]
dx̃idx̃j

}
(4.55)

which is of the same form as the original perturbed metric if we write

ds2 = a2(τ̃)
{
− (1 + 2Ã)dτ̃ 2 + 2(B̃|i − S̃i)dτ̃dx̃i (4.56)

[
(1− 2ψ̃)δij + Ẽ|ij + F̃i|j + Ẽij

]
dx̃idx̃j

}
, (4.57)

where

Ã = A− a′

a
ξ0 − ξ0′, (4.58)

ψ̃ = ψ +
a′

a
ξ0, (4.59)

B̃ = B + ξ0 − ξ′, (4.60)

Ẽ = E − ξ. (4.61)

Note that we have considered only the scalar perturbations. The corresponding

transformation rule for other types of perturbation can be derived in the same

way.

4.5 The Density Perturbations

The large-scale anisotropy in the cosmic microwave background (CMB) mainly

comes from the density perturbations which can be obtained directly from the
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metric perturbations initiated by Lifshitz in 1946 [71]. However, there is an-

other powerful approach for calculating the density perturbations developed by

Hawking in 1966 [16] which involves the coordinate-free dynamics of fluid. Even

though this approach is simpler than the metric perturbation formalism to obtain

the density perturbation, it is however difficult to obtain many important quan-

tities such as the tensor perturbation within this approach. The main idea of

this fluid flow approach is to construct gauge-invariant quantities from the fluid

flow equations in one hypersurface, usually the comoving hypersurface, and then

generalize the results to another type of hypersurface [18, 19].

In this section, we use another method developed by Wands et al. [75]

which is based on a gauge-invatiant quantity ζ. As will be shown, the value

of this quantity remains constant during inflation. Therefore this quantity is

more appropriate for representing the perturbation than other physical quantities

which change during inflation. To begin with, recall from Eq. (4.59) that the

perturbation ψ transforms according to

ψ → ψ +Hδτ = ψ + Hδt (4.62)

where H = a′/a. For the energy density, the corresponding transformation can

be obtained by using Eq. (4.46):

δρ → δρ− ρ′δτ = δρ− ρ̇δt. (4.63)

From these transformations, we can construct a gauge invariant quantity [61, 75]

ζ ≡ ψ − H

ρ̇
δρ . (4.64)

We note that constructing the gauge-invariant quantities is one way to cure the

gauge ambiguity metioned earlier. From the conservation of energy-momentum

tensor, ∇aTab = 0, the linear perturbation of the continuity equation is [61, 75]

δρ̇ + 3H(δρ + δp) + 3(ρ + p)ψ̇ = 0 (4.65)
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valid on large scales. On the uniform density hypersurfaces where δρ = 0 −→
ζ = ψ, then the continuity equation becomes

ζ̇ = −H
δp

ρ + p
. (4.66)

In any gauge, the pressure perturbation can be split into adiabatic and non-

adiabatic parts as follows [75]:

δp = c2
sδρ + δpnad, (4.67)

where c2
s ≡ ṗ/ρ̇. The non-adiabatic part is defined as [18, 19]

δpnad ≡ ṗ

(
δp

ṗ
− δρ

ρ̇

)
(4.68)

which is, by construction, a gauge-invariant quantity. Since δρ = 0, we get

ζ̇ = −H
δpnad

ρ + p
. (4.69)

Since this relation was derived from the local conservation of energy-momentum,

then it does not rely on any specific relativistic theory of gravity and we can thus

use it in the braneworld model. Note that ζ̇ = 0 and hence ζ is constant during

inflation since inflation is an adiabatic process.

In a special circumstance in which δφ/φ̇ = δρ/ρ̇ and in the spatially flat

gauge where ψflat = 0, Eq. (4.64) becomes

ζ = −Hδφ

φ̇
, (4.70)

where δφ comes from the inflaton fluctuations at the Hubble crossing k = aH

with k being the wavenumber of δφ. It can be shown that in the slow-roll limit

[18, 19]

〈δφ2〉 '
(

H

2π

)2

. (4.71)

Finally, we can calculate the amplitude of the scalar perturbation, an impor-

tant quantity used to determine the characteristic length scale of the scalar field
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fluctuations, from the relation [42]

A2
s =

4

25
〈ζ2〉. (4.72)

In the slow-roll limit,

A2
s =

4

25
〈ζ2〉 (4.73)

=
4

25

H2

φ̇2
〈δφ2〉|k=aH . (4.74)

In the case of braneworld cosmology, we find

A2
s ' 4

25

9H4

V ′2
H2

4π2
|k=aH

' 9

25π2

(
1

3m2
4

)3
V 3

V ′2

[
2λ + V

2λ

]3

|k=aH

'
(

64

75m2
4

)
V 3

V ′2

[
2λ + V

2λ

]3 ∣∣∣
k=aH

. (4.75)

This quantity plays a crucial role in comparing the large scale CMB anisotropy

predicted from inflation with observations [42].



Chapter 5

Conclusions

In this thesis, we have studied some aspects of brane cosmology. It

was found that the standard 4-dimensional cosmological equations were modified

due to the presence of the brane tension λ, which is just the constant energy-

momentum concentrated on the brane, and the effect of the localization of the

brane in the extra dimension. As we have seen, the ρ2 term in the modified Fried-

mann equation came from the discontinuity across the brane in the bulk. The

modified square term of the energy gives a significant change in the expansion

rate of the universe. This effect must occur only in the early universe, otherwise

it will alter the prediction after the nucleosynthesis era. Generally, the differ-

ences between the standard 4-dimensional theory and the braneworld one came

from the extra terms containing λ, such as ρ/λ. We found that the effects of the

braneworld disappear when we take the limit λ →∞
A nice thing that the brane tension gives us is that it eases the slow-roll

condition, so many potentials that cannot give inflation in the FLRW model can

do so in the braneworld scenario. One can interpret this as the brane tension

enhancement of the Hubble friction to make the slow-roll inflation possible for

the more steep potentials. However the model with too steep potential typically

ends with a kinetic-dominated term that can affect the nucleosynthesis.

When we took into account the cosmological density perturbations, it was

found that the brane tension increases the scalar power spectrum relative to the

one obtained from the standard model. However, the other types of perturbation

were not considered in this thesis; it is our hope that we will do so in the future.

In this thesis, we did not discuss the more realistic cases such as the effects

from the bulk or the other branes in the bulk. However, from the recent devel-

opment, the braneworld models cannot provide new phenomena that distinguish
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the braneworld inflation from the inflation in four dimensions. The braneworld

paradigm seemingly gives more parameter in the model that can be taken away in

some way. Whether the braneworld cosmological models are real certainly needs

experimental proof which we hope will be done in the near future.
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