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CHAPTER I 

1 INTRODUCTION 

1.1 Background of the Study 

Recognized for its manufacturing capabilities and numerous multinational 

company investments, Thailand is continuously growing to be a key logistics hub in 

Mainland Southeast Asia (Yuen, 2015). Moreover, in light of the recently launched 

ASEAN Economic Community (AEC) in 2015, the country’s trade and commerce 

industry is expected to grow further. This means more growth potential for small and 

large businesses alike, more movement of goods inside Thailand’s major urban city 

center- Bangkok and thus, more demand for a sufficient and convenient transportation 

system of commodities. Particularly, in the field of logistics and commodity movement, 

this research focuses on a case of a pickup and delivery problem. Pickup and delivery 

services have become a common option in transportation of commodities which may 

also be attributed to the continuous rise of electronic commerce (e-commerce) 

(Ekvitthayavechnukul, 2016). More and more transactions are becoming easier and 

more convenient as businesses keep up with technological advancements and services 

become available online.  

 

In terms of pickup and delivery services, the growing demand for such services 

can be observed from offerings of different logistics companies in recent years. In 

March 2015, Grab, a company specializing in transportation services such as Grab Taxi 

and Grab Car, offered a next day delivery service in the form of Grab Express. The 

service assures pickup within three hours limited to some areas in Bangkok and 
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deliveries are made the next day. More recently in August 2015, an instant parcel and 

delivery service, also by Grab, was launched in the form of Grab Bike. The service 

claims to complete pickup and delivery requests within one hour inside Bangkok. 

Another pickup and delivery service by Kerry Express started in June 2015 in the form 

of Bangkok Sameday. The service focuses on documents and parcel delivery that 

guarantees a two-hour pickup and same-day delivery within areas in Bangkok. An 

almost similar kind of service was also offered in 2014 by Skootar Beyond Co. Ltd, a 

start-up company that developed a messenger service accommodating documents, 

invoices and small parcel delivery in Bangkok and suburban areas. The price of the 

service depended on actual distances between service points. On the other hand, 

Classic Express Services (CES) have also offered the same type of service since January 

2012 called Thailand Door-to-Door Parcel Delivery: City Express that deals with same-

day delivery requests ranging from document to multiple parcels, also within areas in 

Bangkok. Comparing the service of CES to Grab, Kerry Express, and Skootar, their 

offered services are calculated by weight and not by shipment with regard to actual 

distance. It is observed that through the years, improvements for the said type of 

pickup and delivery service are continuous and thus prices are also becoming more 

competitive among logistics companies. Some of the costs are summarized in Table 

1.1. The figures presented are based on the available information on the website of 

each respective company as of September 2016.  

 

Typically, the express services serve each request individually corresponding to 

one vehicle serving one request, depending on the nearest vehicle available and the 

time window required for each request to be completed. If all individual requests are 

considered as a whole, the overall cost can be huge. This research in turn focuses on 
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formulating a routing model for the said type of pickup and delivery services that 

combines two or more requests into a single route. The study would consider a 

multiple-depot setup with vehicles in each depot instead of the usual nearest-vehicle 

approach done in pickup and delivery services. Computational experiments are 

performed and the resulting solutions are compared using hypothetical networks from 

previous researches related to the study. 

 

Table 1.1 Several pickup and delivery services in Bangkok 

 
Source: ceslogistics.com; skootar.com; kerryexpress.com; grab.com 

Logistics Company Name of Service Location Cost

Thailand Door-to-Door 

Parcel Delivery: City Express

Bangkok

(Zone A Downtown, 

Zone B Surrounding)

First 1.0kg:

 180-220THB, 

Next 1.0kg: 

20THB

Skootar Messenger Service
Bangkok and 

suburban areas

Standard Price: 70 THB 

plus 10 THB per 

additional kilometre

Bangkok Sameday

Bangkok

Metropolitan

(16 Districts)

30THB minimum 

per shipment

GrabExpress: Next Day Delivery 

Service

Bangkok, Nonthaburi, 

Pratumtani, and 

Samut Prakan

30THB - 55THB 

based on dimensions

70THB - 120THB

in other provinces 

GrabBike: Instant Parcel and 

Delivery Service

Bangkok, Nonthaburi, 

Pratumtani, and 

Samut Prakan

20THB starting fare, 

9THB per aditional 

kilometer
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1.2 Problem Description 

Before proceeding, the following terms are defined first as to how they are 

used in this research. These important terms are enumerated as follows: 

 

 Static - all data such as pickup and delivery locations, distance and travel time 

between points, and other related data are known beforehand.  

 One-to-one - considering the pickup and delivery requests, each node will only 

be allowed to be either a pickup point or a delivery point. One delivery node 

is a specific destination for a certain pickup origin. All requests will be in the 

form of pairs.  

 Depot - no items are present in the depot. The word depot would only serves 

as a station where the vehicles would come from.  

 Request - refers to the request made by a certain customer. One request is 

equivalent to a combination of one pickup request and one delivery request.  

 Route - the sequence of serving the demands, a route would contain the 

requests and will start and end in the same depot.  

 Multi-vehicle - more than one vehicle will be allowed for usage in one depot. 

 

Given a set of pickup and delivery requests, generating one route to serve all 

demands may not be practical especially if requests must be served within a certain 

period of time. The set of requests may then be divided into subsets which can be 

served by different vehicles coming from different depots. The main goal is to design 

a set of least cost vehicle routes to satisfy all requests whose locations are already 

known in advanced. Routes are generated by combining the demands while 
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simultaneously assigning the most appropriate depot for each route. In Figure 1-1, a 

sample problem is illustrated. 

 

 
Figure 1-1 An illustrated sample problem 

 

In the sample problem, there are three given depots in red and six given 

requests: pickup points in blue and delivery points in green. The dashed arrows denote 

where the pickup point should be delivered. A certain number of requests is allowed 

in one route which will also determine the number of total routes that will be used 

in the solution. For example, if six requests are given and two requests are allowed 

per route, the solution would result into a set of three least cost routes. Each route 

should start and end in the same depot. More than one vehicle can come from one 

depot. All given demands should be served and each node should be visited only 

once. One challenge in this problem is including the two nodes of one request in one 

route and making sure that the pickup node comes first. In serving one demand, the 
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delivery point does not necessarily need to follow its corresponding pickup point right 

away. One route could visit all pickup points first and then deliver, depending on what 

will produce the least total cost. Another challenge is to make sure that the route will 

not result in a partial cycle. These problems are addressed in the formulation of the 

problem. For the illustrated problem, two requests are allowed per route which 

resulted in a total of three least cost routes to serve all demands. The resulting 

solution is shown in Figure 1-2.  

 

 
Figure 1-2 An optimal solution to the illustrated sample problem 

 

Notice that in the given solution, not all of the depots were used to complete 

the three least cost routes. In this example, only two depots completed the set of 
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routes. Two vehicles came from the first depot while one vehicle came from the 

second depot. No vehicle was chosen from the third depot. 

 

1.3 Research Objectives 

The main objective of this research is to formulate a routing model for the one-

to-one static multi-vehicle pickup and delivery problem with multiple depots. The 

research will have the following specific objectives: 

 To design a set of least cost vehicle routes through combining pickup and 

delivery demands and proper assignment to each of the multiple depots 

available. 

 To analyze the efficiency of the formulated model using a hypothetical 

network and hypothetical demands from previous studies. 

 

1.4 Motivation for the Multiple-Depot Setup 

In Bangkok, one of the most common public transportation modes is done 

through the use of “motorcycle taxis” as seen from Figure 1-3. These vehicles are 

present in almost every area in Bangkok and they can usually be found in convenient 

and accessible, designated stations.  

 

It is observed that these vehicles are mostly active in the peak hours in the 

morning where people go to school and work as well as in the peak hours in the 

evening where people head back home. During the middle of the day, less demand 

for ridership is observed with motorcycle taxis. This availability of the said vehicles may 

be put into use in the form of a pickup and delivery system especially for small 
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commodities such as documents and small parcels. An increasing demand for the said 

type of service may be seen from the recent offerings of various companies in Bangkok 

such as Classic Express Services, Grab, Skootar, and Kerry Express. Therefore, it is just 

right to provide more research on the subject matter which could then lead to more 

innovative logistics ways that do not just minimize costs but provide quality service as 

well. Since the motorcycle taxis are also present in multiple stations, the situation 

paves way as a good motivation for a research on a multiple-depot scenario of a pickup 

and delivery problem, a research area with few available related literature. Moreover, 

small vehicles such as motorcycles may be advantageous in the city center due to its 

maneuvering capacity between traffic and its ability to traverse narrow streets. Other 

possible benefits of the research may be its application to other urban delivery 

situations such as food deliveries, online shopping, and last-mile delivery problems. 

 

 
Figure 1-3 Motorcycle taxis in Bangkok (The Thailand Life, 2013) 
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1.5 Scope of Study 

The study mainly focused on the formulation of the static routing model for 

the one-to-one pickup and delivery problem having multiple depots. The formulated 

model was implemented in a General Algebraic Modelling System (GAMS) platform 

alone without the use of other programming languages. For computational 

experiments, instances were based on the modification of instances provided from 

previous researches. Since the motivation for the study are motorcycle taxis, only small 

commodities were assumed and thus, vehicle capacity was not considered. 

Furthermore, the problem in the study was also classified under the closed loop setup 

category of pickup and delivery services which means that the route formed should 

start and end in the same depot.  

 

1.6 Expected Benefits 

 This study aims to formulate a routing model that can combine multiple 

requests in one singular route. Upon completion of the model, it is expected that the 

research can be of use to logistics companies specializing in pickups and deliveries to 

improve their services through combining requests and by having a multi-depot setup. 

The study may also be beneficial to real-life applications of new transportation ways 

in relation with the messenger problem. Other than courier services, real-life 

applications may also include food delivery services involving multiple restaurants as 

well as electronic shopping that involves online transactions. Another key benefit of 

this study is its main academic contribution which is the exploration of the pickup and 

delivery problem in a multi-depot setup.  
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CHAPTER II 

2 LITERATURE REVIEW 

 This chapter discusses several related literature supporting this research. First, 

the pickup and delivery problem (PDP) and its general applications are reviewed. 

Second, different types of PDPs are discussed and the classification of the problem in 

this research is defined. The third part of this chapter reviews related literature about 

the one-to-one pickup and delivery problem as well as the solution approaches used 

for the said type of problem. Next to this part is a closely related problem to the study 

in the form of the ‘messenger problem’ based from the works of Fabry (2007, 2015) 

and Fábry and Kobzareva (2012). Lastly, the research gap is discussed to which this 

paper is based from.  

 

2.1 PDP in General 

  The Pickup and Delivery Problem (PDP) is an extended case of the Vehicle 

Routing Problem (VRP) which has been studied for approximately 50 years now. The 

study dates back from an optimum routing of a fleet of gasoline trucks known as the 

truck dispatching problem (Dantzig & Ramser, 1959). The research was based on a 

linear programming formulation with minimum total mileage as the objective. It is 

considered to be the one that introduced the VRP (Irnich, Toth, & Vigo). In 1964, an 

iterative procedure for finding optimal routes  was introduced by Clarke and Wright 

(1964). Both mentioned studies were described to be suitable for manual 

computations. Up to this day, research in the said field have already extended to 

complicated variations which are impossible to compute by hand. Different 
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mathematical models have been developed and various algorithms have also been 

formulated to solve different complications. This interest in solving VRPs can be 

attributed to the numerous applications that the problems have. Applications range 

from inter-modal transportation (Bräysy & Hasle), ship routing and scheduling 

(Christiansen & Fagerholt), disaster relief (Golden, Kovacs, & Wasil) and green vehicle 

routing (Eglese & Bekta¸s). Research has also improved alongside technological 

development especially with computing capabilities of computers, programming 

platforms, and various advanced software. In this study, the pickup and delivery 

problem will be in focus.  

 

  Pickup and delivery problems can mainly be for transportation of people 

(Battarra, Cordeau, & Iori) or transportation of goods (Doerner & Salazar-González). One 

main difference of dealing with transportation of people is that it includes additional 

factors for consideration such as delay reduction, convenience, and as well as noise 

and pollution. Dial-a-ride problems (DARP) such us those dealing with healthcare and 

transportation of handicapped and the elderly (Detti, Papalini, & Lara; Marković, Nair, 

Schonfeld, Miller-Hooks, & Mohebbi, 2015) are examples of PDPs for transportation of 

people. For transportation of goods, examples are those dealing with truck deliveries, 

distribution of beverages, collection of empty containers, as well as urban courier 

services and retail stores management (Doerner & Salazar-González). In general, the 

pickup and delivery problem is described as transportation requests that are satisfied 

through the construction of a set of routes to serve all given demands (M. W. 

Savelsbergh & Sol, 1995). According to M. W. Savelsbergh and Sol (1995), the General 

Pickup and Delivery Problem (GPDP) can be formulated as a mathematical program by 

introducing four variables as follows. 
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Variables: 

 𝑧𝑖
𝑘          (𝑖𝜖𝑁, 𝑘𝜖𝑀) 

 𝑥𝑖𝑗
𝑘           ((𝑖, 𝑗) 𝜖 (𝑉 x 𝑉) ∪ {(𝑘+, 𝑗)|𝑗𝜖 𝑉} ∪ {(𝑗, 𝑘−)| 𝑗𝜖 𝑉}, 𝑘𝜖𝑀 )  

 𝐷𝑖           (𝑖 𝜖 𝑉 ∪ 𝑊) 

 𝑦𝑖          (𝑖 𝜖 𝑉 ∪ 𝑊) 

   

  The variable zi
k is equal to 1 if transportation request i is assigned to vehicle k 

and 0 otherwise. Variable xij
k is equal to 1 if vehicle k travels from location i to location 

j and 0 otherwise. The departure time is denoted by Di while yi represents the load of 

the vehicle at vertex i. For all k ∈ M, qk+  = 0. 

  

Model parameters are summarized and defined as follows: 

V  set of all vertices 

N  set of transportation requests 

Ni
-  set of origins 

Ni
+  set of destinations 

qi  load size, positive for pickups and negative for deliveries 

M  set of vehicles 

M-  set of end locations 

M+  set of start locations 

W  set of all vehicle locations 

k  one vehicle (k ∈ M), start location k+, end location k- 

dij  denotes travel distance 

tij  denotes travel time 

cij  denotes travel cost 
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The objective function f(x) is then subjected to the following constraints. 

 

∑ 𝑧𝑖
𝑘 = 1𝑘∈𝑀   for all 𝑖 ∈ 𝑁 (2.1) 

∑ 𝑥𝑙𝑗
𝑘 =𝑗∈𝑉∪𝑊  ∑ 𝑥𝑗𝑙

𝑘
𝑗∈𝑉∪𝑊 =  𝑧𝑖

𝑘  for all 𝑖 ∈ 𝑁, 𝑙 ∈ 𝑁𝑖
+ ∪ 𝑁𝑖

−, 𝑘 ∈ 𝑀 (2.2) 

∑ 𝑥𝑘+𝑗
𝑘 = 1𝑗∈𝑉∪(𝑘−)   for all 𝑘 ∈ 𝑀 (2.3) 

∑ 𝑥𝑖𝑘−
𝑘 = 1𝑖∈𝑉∪(𝑘+)   for all 𝑘 ∈ 𝑀 (2.4) 

𝐷𝑘+ = 0  for all 𝑘 ∈ 𝑀 (2.5) 

𝐷𝑝 ≤ 𝐷𝑞  for all 𝑖 ∈ 𝑁, 𝑝 ∈ 𝑁𝑖
+, 𝑞 ∈ 𝑁𝑖

− (2.6) 

𝑥𝑖𝑗
𝑘 = 1 →  𝐷𝑖 +  𝑡𝑖𝑗 ≤  𝐷𝑗   for all 𝑖, 𝑗 ∈ 𝑉 ∪ 𝑊, 𝑘 ∈ 𝑀 (2.7) 

𝑦𝑘+ = 0  for all 𝑘 ∈ 𝑀 (2.8) 

𝑦𝑙 ≤ ∑ 𝑄𝑘𝑧𝑖
𝑘

𝑘∈𝑀   for all 𝑖 ∈ 𝑁, 𝑙 ∈ 𝑁𝑖
+ ∪ 𝑁𝑖

− (2.9) 

𝑥𝑖𝑗
𝑘 = 1 →  𝑦𝑖 +  𝑞𝑖 ≤  𝑦𝑗   for all 𝑖, 𝑗 ∈ 𝑉 ∪ 𝑊, 𝑘 ∈ 𝑀 (2.10) 

𝑥𝑖𝑗
𝑘 = (0, 1)  for all 𝑖, 𝑗 ∈ 𝑉 ∪ 𝑊, 𝑘 ∈ 𝑀 (2.11) 

𝑧𝑖𝑗
𝑘 = (0, 1)  for all 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀 (2.12) 

𝐷𝑖 ≥ 0  for all 𝑖 ∈ 𝑉 ∪ 𝑊 (2.13) 

𝑦𝑖 ≥ 0  for all 𝑖 ∈ 𝑉 ∪ 𝑊 (2.14) 

   

  M. W. Savelsbergh and Sol (1995) summarized all constraints as follows. 

Constraint (2.1) assigns each transportation request to exactly one vehicle. In constraint 

(2.2), a vehicle is only allowed to enter or leave a location l if it is an origin or a 

destination of the request assigned to the vehicle. Constraints (2.3) and (2.4) ensure 

that each vehicle starts and ends at the right location. The precedence constraints are 

formed by constraints (2.5), (2.6), (2.7), and (2.13) while the capacity constraints are 

formed by constraints (2.8), (2.9), (2.10), and (2.14).  
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  Pickup and delivery problems may further be complicated by different 

characteristics of transportation requests, various required time constraints, as well as 

the specified objective function (M. W. Savelsbergh & Sol, 1995). The objective function 

may minimize duration, completion time, travel time, route length, client convenience 

and total number of vehicles in completing all requests. On the other hand, profit may 

also be minimized in a pickup and delivery problem.  

 

2.2 Classifications of the PDP 

Different classifications of PDP are explored to identify existing solution 

approaches and be able to successfully formulate the model in this research. At 

present, various classifications have been made to identify different types of PDP. In a 

comprehensive survey conducted by Parragh, Doerner, and Hartl (2008a, 2008b) on 

PDP models, two main problem classes are identified namely the Vehicle Routing 

Problem with Backhauls (VRPB) and the Vehicle Routing Problem with Pickups and 

Deliveries (VRPPD).  

 

This study falls on the VRPPD classification specifically dealing with paired 

requests and thus more emphasis is put in reviewing related literature in the said field. 

The classification scheme is shown in Figure 2-1.  

 

Generally the VRPPD deals with problems wherein pickup points and delivery 

points are specified. The first VRPPD subclass accommodates homogeneous goods and 

thus each delivery demand may be fulfilled by any picked up good making the pickup 

and delivery locations unpaired. Some examples of unpaired pickup and delivery 
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problems are denoted as Pickup and Delivery Vehicle Routing Problem (PDVRP) and 

Pickup and Delivery Traveling Salesman Problem (PDTSP) which can further be 

classified depending on a multi-vehicle or single vehicle scenario, respectively. 

 

 
Figure 2-1 Classifications of pickup and delivery problems (Parragh et al., 2008b) 

 

On the other hand, the other classification of the VRPPD tackles the classical 

Pickup and Delivery Problem (PDP) which deals with transportation of goods as well 

as the Dial-A-Ride Problem (DARP) which deals with transportation of people. In each 

transportation request, there is a designated pickup location and delivery location. The 

objects transported are different resulting in paired pickup and delivery points. 

General Pickup 
and Delivery 

Problem (GPDP)

VRPB from/to a 
depot

TSPCB, VRPCB

TSPMB, VRPMB

TSPDDP, 
VRPDDP

TSPSDP, VRPSDP

VRPPD between 
customers

Unpaired

PDTSP, PDVRP

Paired

SPDP, PDP

SDARP, DARP
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Problems dealing with a single vehicle situation for PDP are denoted as SPDP while 

problems dealing with a single vehicle situation for DARP are denoted as SDARP. The 

VRPPD problem specified in this research is classified under the classical PDP with 

paired requests and multiple vehicles. Furthermore, this classification is widened by a 

classification scheme suggested by Berbeglia, Cordeau, Gribkovskaia, and Laporte 

(2007) as shown in Figure 2-2. The proposed classification structure specifically deals 

with the static case of the classical pickup and delivery problem. It is important to 

note that PDPs may still be distinguished based on two main cases: the static case and 

the dynamic case. In static cases of the problem, all information are known beforehand 

while in dynamic cases, new sets of information are considered over time.  The 

problem considered in this research is of the static case. 

 

In the classification of Berbeglia et al. (2007), static pickup and delivery 

problems were categorized into three main types namely many-to-many, one-to-

many-to-one, and one-to-one. Definitions of the said classes based on the work of 

Berbeglia et al. (2007) are enumerated as follows: 

 Many-to-many problems – For each commodity, there can be several 

origins and destinations. Two common examples for the said class type 

include the swapping problem and the one-commodity pickup and delivery 

traveling salesman problem. 

 One-to-many-to-one pickup and delivery problems – In this type of 

problem, commodities usually come from a depot and are sent to 

customer vertices while the customer vertices also has items to send back 

to the depot. The said type of problem is usually applied in reverse logistics 

where full containers are brought to customers and empty containers have 
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to be returned to the depot too. Variations of the one-to-many-to-one 

problem include single and combined demands as well as single and multi-

vehicle variations. 

 One-to-one problems – Every commodity in this case has only one pickup 

and one delivery vertex. There is always a one-to-one correspondence 

between the pickup and delivery vertices. Two of the most important 

problems under this class are vehicle routing problem with pickups and 

deliveries (VRPPD) and the Dial-a-Ride Problem (DARP). 

 

 
Figure 2-2 Static pickup and delivery problem classification (Berbeglia et al., 2007) 

 

Many-to-Many

The swapping 
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The research mainly falls to the static one-to-one pickup and delivery problem 

classification especially if the main application considered would be courier services 

and door-to-door type of services. With a wide variety of vehicle routing classification 

about pickup and delivery problems, it is important to be able to classify the specific 

group where this study belongs to, to be able to identify the previous studies that 

have already been done as well as the solution approaches that has been used to 

solve the problem. 

 

2.3 One-to-One PDP 

One of the most popular types of research falls under the one-to-one PDP 

classification. For a detailed survey of related literature on one-to-one static and 

pickup delivery problems, the work of Berbeglia et al. (2007) may be referred to. The 

authors divided the said type of problem into four categories namely the stacker crane 

problem, the vehicle routing problem with pickups and deliveries, the dial-a-ride 

problem, and the vehicle routing problem with pickups, deliveries and transshipments. 

Variations of the said sub-types of one-to-one PDP are done with the use of single or 

multi-vehicle, and the methods proposed in each classification. On the other hand, 

Jean-Françcois Cordeau, Laporte, and Ropke (2008) focused on reviewing recent 

models and algorithms for the one-to-one PDP case. In single vehicle pickup and 

delivery problems (SVPDPs), exact algorithms were reviewed such as branch-and-cut 

algorithms for both SVPDP with and without last-in-first-out (LIFO) constraints. The 

authors also reviewed heuristics for the SVPDP. On the other hand, for the multi-

vehicle pickup and delivery problems (MVPDPs), branch-and-cut algorithm and branch-

and-cut-and-price algorithm for the dial-a-ride problem (DARP) and the pickup and 



 

 

19 

delivery problem with time windows (PDPTW) were reviewed. Heuristics for the 

MVPDPs include tabu search for the DARP, hybrid heuristic and adaptive large 

neighborhood search heuristic for the PDPTW, and the double-horizon heuristic for the 

dynamic PDPTW. Jean-Françcois Cordeau et al. (2008) concluded that solutions based 

on branch-and-cut and branch-and-cut-and-price algorithms served as the best exact 

solution methodologies for the reviewed problem sets. Furthermore, the researchers 

also noted that the success of the proposed heuristics depends on its smart design. 

Recent studies involving one-to-one PDPs include the research of Hernández-Pérez 

and Salazar-González (2009) which considered the multi-commodity setup for the one-

to-one PDP. The problem was also defined as the capacitated version of the classical 

traveling salesman problem (TSP) with precedence constraints. The researchers 

presented two mixed integer linear programming models, describing a decomposition 

technique for each to find the optimal solution. Meanwhile, Berbeglia, Cordeau, and 

Laporte (2010) extended the one-to-one PDP to its dynamic case. The authors created 

a general framework for the dynamic one-to-one pickup and delivery problem. 

 

To summarize, the following solution approaches were tried to solve the one-

to-one pickup and delivery problem varying between single vehicle setup and multi-

vehicle setup. 

 

Single Vehicle Variation 

 Branch-and-Bound Algorithm 

 Dynamic Programming 

 Branch-and-Cut Algorithm 
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 Variable Neighborhood Search 

 

Multi-Vehicle Variation 

 Column Generation 

 Branch-and-Cut Algorithm 

 Branch-and-Cut-and-Price Algorithm 

 Tabu Search Heuristic 

 

It is observed that even though previous researches varied between single 

vehicle setup and multi-vehicle setup, most of these studies dealt with a single depot 

scenario. In this research, a multi-depot scenario is solved. Moreover, a one-to-one 

static case is discussed in this paper. A detailed review of recent models and algorithms 

for the one-to-one PDP may be referred to in the work of Jean-Françcois Cordeau et 

al. (2008). PDPs may further vary depending on the objective on which number of 

vehicles, vehicle capacity, load size, origin and destination, and time constraints may 

all be considered. 

 

2.4 The Messenger Problem 

With more recent research, the problem discussed in this paper may closely 

be comparable to the “messenger problem” referred to in the works of Fabry (2007, 

2015); Fábry and Kobzareva (2012).  

 



 

 

21 

The messenger problem, classified under the one-to-one PDP type, is defined 

as a special case of the traveling salesman problem (TSP) wherein both the pickup 

origin and the delivery destination comprise one complete request.  

 

From the static case of the messenger problem, Fabry (2007) extended his 

research to the dynamic case of the messenger problem. In his study in 2007, he used 

optimization, insertion algorithm and re-optimization techniques to solve the dynamic 

messenger problem. Fabry (2007) concludes that re-optimization algorithm can be 

used for problems with a small size and that huge problems would need heuristics. 

Moreover, insertion algorithm proved to be a simple and effective method for the 

dynamic messenger problem. Fabry (2007) also notes that models can be made closer 

to real messenger problems by also considering time windows, vehicle capacity, and 

number of vehicles.  

 

Fábry and Kobzareva (2012) solved a multiple messenger problem using 

modified nearest neighbor algorithm, modified insertion algorithm, and modified 

exchange algorithm. The study was able to generate multiple routes. Aside from 

determining efficiency of proposed methods, the research also focused on improving 

solutions through the use of modified exchange algorithm wherein shipments from 

other routes are exchanged with other routes to minimize total distance travelled by 

all messengers. 

 

The most recent work regarding the multiple messenger problem dealt with 

multiple depots which was solved using similar concepts namely insertion method, 

nearest neighbor algorithm, and exchange algorithm (Fabry, 2015). Results of the 
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study’s computational experiments showed higher efficiency of proposed insertion 

method over nearest neighbor algorithm and that significant improvements were made 

through the use of exchange algorithm.  

 

The most recent research of Fabry (2015) is the closest one to the problem 

tackled in this study although one main difference that can be distinguished is that in 

Fabry (2015)’s multi-depot setup, all depots must be included in the solution and only 

one vehicle can come from one depot. In this research, not all depots are required to 

be used. The study also allows multiple vehicles to come from a single depot.  

 

2.5 Research Gap 

With other studies related to this research, most variations observed are made 

between single-vehicle problems and multiple-vehicle problems using a singular depot. 

There are solution approaches that can deal with multiple depots but it is observed 

that the impact of the number of depots on the PDP network has received far less 

attention. Research on the single-vehicle PDP focused on methodologies such as exact 

algorithms related to branch-and-cut algorithm (Jean-François Cordeau, Iori, Laporte, 

& Salazar González, 2010; Dumitrescu, Ropke, Cordeau, & Laporte, 2008; Hernández-

Pérez & Salazar-González, 2003) and heuristic approaches using variable neighborhood 

search and insertion method techniques (Carrabs, Cordeau, & Laporte, 2007; 

Hernández-Pérez & Salazar-González, 2004). With the multiple-vehicle variation, static 

cases still depended on branch-and-cut algorithm (Ropke & Cordeau, 2009; Ropke, 

Cordeau, & Laporte, 2007) and the developed heuristics used tabu search and large 

neighborhood search techniques (Jean-François Cordeau & Laporte, 2003; Ropke & 
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Pisinger, 2006). Overall, it was concluded that solutions based on branch-and-cut and 

branch-and-cut-and price algorithms serve as the best exact solution methodologies 

for PDPs (Jean-Françcois Cordeau et al., 2008). Heuristics may vary depending on the 

objective and complexity of constraints of the formulation.  

 

  In summary, formulating the pickup and delivery problem may be a difficult 

task and the solution approach may further complicate the said problem especially if 

more depots are considered. Therefore, this paper mainly aims to formulate a routing 

model to the static case of a one-to-one pickup and delivery problem which includes 

both generation of routes as well as the depot assignment simultaneously. Typical 

PDP setup separates generation of routes from depot assignment. Furthermore, the 

research will also be of great contribution to the very limited amount of pickup and 

delivery problem resource handling multiple depots. The model can be of much 

benefit to logistics companies especially those specializing in pickup and delivery 

services. 
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CHAPTER III 

3 METHODOLOGY 

3.1. Overall Research Framework 

The overall design flow of this research is shown in Figure 3-1. In order to 

accomplish the objectives of the study, review of related literature was first done. 

Pickup and delivery problems and its classifications were studied. The problem in this 

research was then classified under the static case, one-to-one multi-vehicle PDP with 

multiple depots. Based on existing solution approaches, the routing model was 

formulated and solved by implementing the model in a General Algebraic Modelling 

System (GAMS) environment. Instances from previous studies were modified for 

computational experiments. Lastly, results were discussed and analyzed, arriving with 

final conclusions and recommendations. 

 
3.2. Formulation of Model 

The problem consists of n set of requests. Each request consists of one pickup 

origin and one delivery destination of a certain customer. Let K be the set of available 

depots and R be the set of routes. Considering k ∈ K depots in the problem, the total 

number of locations in the distribution network is 2(k+n). The starting depot and ending 

depot are designated into two separate nodes and are assigned with similar 

coordinates. A certain route r ∈ R should start and end in a similar depot. In one 

particular instance of the problem, the main objective of the model is to combine the 

given set of requests into r ∈ R set of routes resulting to the least possible total 

distance.  
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Figure 3-1 Overall design flow of research 
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The network considers Euclidean distances between each node and denotes 

cij as the shortest distance from location i to location j. The problem may be defined 

on a complete directed graph G = (V, A), where V = Ks ∪ P ∪ D ∪ Ke. Subset Ks = {1, ..., 

k}, subset P = {1+k, ..., k+n}, subset D = {1+k+n, ..., k+2n}, and subset Ke
 = {1+k+2n, ..., 

2(k+n)}. The subsets Ks and Ke represent the starting and ending depots, respectively, 

which are paired according to their similar coordinates. Meanwhile, subset P represents 

the pickup nodes and subset D represents the delivery nodes. The subsets P and D 

may be combined to subset C to represent both pickup and delivery nodes. 

 

 Based on the messenger problem by Fabry (2007), the mathematical model of 

the static one-to-one pickup and delivery problem in this paper can be formulated as 

the following mixed-integer program. 

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑟

𝑟∈𝑅𝑗∈𝐶∪𝐾𝑒𝑖∈𝐾𝑠∪𝐶

 (3.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗
𝑟  =  𝛼

𝑟∈𝑅

     ∀ 𝑖 ∈  𝐾𝑠  ∪  𝐶, 𝑗 ∈  𝐶 ∪  𝐾𝑒 (3.2) 

∑ 𝑥𝑖𝑗
𝑟

𝑖∈𝐶

 ≤ 1     ∀ 𝑗 ∈  𝐶 ∪  𝐾𝑒 , 𝑟 ∈  𝑅 (3.3) 

∑ 𝑥𝑖𝑗
𝑟

𝑗∈𝐶

 ≤ 1     ∀ 𝑖 ∈  𝐾𝑠 ∪  𝐶, 𝑟 ∈  𝑅 (3.4) 

∑ 𝑥𝑖𝑗
𝑟 = 1

𝑟∈𝑅

     ∀ 𝑖 ∈  𝐾𝑠, 𝑗 ∈  𝑃 (3.5) 

∑ 𝑥𝑖𝑗
𝑟 = 1

𝑟∈𝑅

     ∀ 𝑖 ∈  𝐷, 𝑗 ∈  𝐾𝑒 (3.6) 

∑ 𝑥𝑖𝑗 
𝑟  − 𝑥𝑝𝑞

𝑟

𝑟∈𝑅

=  0     ∀ 𝑖 ∈  𝐾𝑠, 𝑗 ∈  𝑃, 𝑝 ∈  𝐷, 𝑞 ∈  𝐾𝑒   (3.7) 

∑ ∑ 𝑥𝑖𝑗
𝑟   −  ∑ ∑ 𝑥𝑝𝑞

𝑟  =  0    ∀ 𝑗 ∈  𝐶 ∪ 𝐾𝑒 , 𝑝 ∈  𝐾𝑠  ∪  𝐶 

𝑟∈𝑅𝑞∈𝐶𝑟∈𝑅𝑖∈𝐶

 (3.8) 
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∑ 𝑥𝑖𝑗
𝑟 √𝛽𝑃  −  𝑥𝑝𝑗

𝑟 √𝛽𝐷 =  0      ∀ 𝑖 ∈  𝑃, 𝑝 ∈  𝐷, 𝑗 ∈  𝐶 ∪  𝐾𝑒

𝑟∈𝑅

 (3.9) 

∑ ∑ 𝑢𝑖  −  𝑢𝑗  + (2𝑛 + 1)𝑥𝑖𝑗
𝑟  ≤  2𝑛     ∀ 𝑟 ∈  𝑅

𝑗∈𝐶∪𝐾𝑒𝑖∈𝐶

 (3.10) 

𝑢𝑖  −  𝑢𝑗  ≤  0     ∀ 𝑖 ∈  𝐶, 𝑗 ∈  𝐷 (3.11) 

 

 

Model parameters are defined and summarized as follows: 

n total number of given requests; one request consists of one pickup 

point and one delivery point 

 α number of links in one route which is equivalent to 2n+1 

 q number of allowed requests in one route r 

 R number of routes needed to serve all demands equivalent to n/q 

K total number of depots in the network; a depot is considered as the 

station of vehicles 

 Ks reference for starting depots 

 Ke reference for ending depots 

 V total number of nodes in the network 

 P subset of V; reference for pickup nodes 

 D subset of V; reference for delivery nodes  

C subset of V; total number of pickup and delivery nodes equivalent to 

P+D 

βP a special integer number assigned to each pickup node to pair with 

corresponding delivery node 

βD a special integer number assigned to each delivery node to pair with 

corresponding pickup node 
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 i, p index of origin nodes    

 j, q index of destination nodes 

 r index of route used; r = 1, 2, ..., R 

 k index of depot/vehicle used; k = 1, 2, ..., K 

 

The decision variables are defined and enumerated as follows: 

 z the total cost of all the chosen routes to be implemented 

 xr
ij if link i to j is used for route r, 0 otherwise 

 u special integer variable used for sequencing purposes 

    

 The objective function (3.1) minimizes the total routing costs to serve all given 

requests. In constraint (3.2), the model forces a certain number of links into one route. 

The value of α may be computed depending on the given requests n and how it is 

divided to the desired number of requests q that one route is chosen to serve 

(α=2q+1). It is important to distinguish that n denotes the total number of requests in 

the network while q represents the desired number of requests to be served in one 

complete route. Constraints (3.3) and (3.4) ensure that in each node, there is only one 

incoming link and one outgoing link. In constraints (3.5) and (3.6), a starting depot and 

an ending depot are chosen for a particular route. Constraint (3.7) makes sure that the 

starting and ending depots are corresponding with each other. For the pickup nodes 

and their respective delivery nodes, constraints (3.8) and (3.9) are implemented to 

ensure that the pickup-delivery pair of nodes are included in one route. The 

parameters βP and βD are special integer numbers that are assigned to pickup nodes 

and delivery nodes, respectively for pairing purposes. Based on the work of Fabry 

(2007) using Miller-Tucker-Zemlin’s inequalities, constraint (3.10) is included to avoid 
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partial cycles in the solution. Lastly, constraint (3.11) ensures that the pickup node 

comes before the corresponding delivery node (Fabry, 2007). 

 

3.3. Modified Instances 

 All the instances used for the computational experiments were based on the 

instances provided by Ropke et al. (2007) in their previous research regarding models 

and branch-and-cut algorithms for pickup and delivery problems. The instances were 

generated as suggested by M. Savelsbergh and Sol (1998).  Coordinates of every pickup 

and delivery location were randomly chosen over a [0, 50] x [0, 50] square. The 

instances used the same format with the DARP instances generated in the work of 

Jean-François Cordeau (2006). One sample instance (AA30) is shown in Table 3.1. The 

sample instance contains 30 requests and has a given capacity of 15 for vehicles. The 

first column shows the number of nodes including the starting and ending node 

representing the depot. The second and third column show the coordinates of each 

pickup and delivery location. The fourth column shows the service time and the fifth 

column shows the demand. Finally, the last two columns shows the time windows for 

each of the nodes in the instance.  

 

Computational experiments started in handling six requests first and thus the 

instances were modified by using the first pickup points and their corresponding 

delivery locations. Since the model focuses on combining requests and each request 

only includes one item, capacity was not included in the research. Time windows were 

also not considered in solving the modified instances.  
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Table 3.1 Sample instance from Ropke et al. (2007) 

 

Node No. X Y Time Demand Start End

0 25 25 0 0 0 1000

1 19.942 16.269 0 7 175 235

2 13.131 45.499 0 9 522 582

3 41.105 42.288 0 15 256 316

4 29.622 23.653 0 5 529 589

5 20.387 33.75 0 12 469 529

6 8.195 24.765 0 5 436 496

7 39.947 22.762 0 10 517 577

8 32.184 39.039 0 8 414 474

9 46.07 49.15 0 11 28 88

10 15.395 23.92 0 12 96 156

11 38.336 13.008 0 8 169 229

12 49.706 28.635 0 14 54 114

13 17.748 22.292 0 15 423 483

14 42.549 29.924 0 8 112 172

15 44.178 9.661 0 11 511 571

16 26.591 36.243 0 11 36 96

17 3.855 9.895 0 5 24 84

18 37.401 26.569 0 11 293 353

19 45.989 20.442 0 7 402 462

20 35.511 15.228 0 10 496 556

21 39.026 12.034 0 13 477 537

22 28.364 23.084 0 10 299 359

23 40.399 46.524 0 10 267 327

24 42.439 43.835 0 14 61 121

25 48.019 11.272 0 10 410 470

26 7.711 35.675 0 13 300 360

27 12.451 19.724 0 6 538 598

28 11.466 10.009 0 8 378 438

29 31.894 3.068 0 9 549 609

30 31.193 29.453 0 11 64 124

31 35.573 46.733 0 -7 209 269

32 36.158 11.897 0 -9 562 622

33 43.76 46.624 0 -15 261 321

34 13.387 36.048 0 -5 549 609

35 21.442 34.131 0 -12 470 530

36 4.515 24.464 0 -5 439 499

37 14.379 35.446 0 -10 545 605

38 17.381 24.472 0 -8 434 494

39 43.627 19.724 0 -11 57 117

40 0.062 49.145 0 -12 125 185

41 42.389 13.101 0 -8 173 233

42 6.799 22.468 0 -14 97 157

43 24.429 6.787 0 -15 439 499

44 44.972 41.699 0 -8 124 184

45 30.09 18.098 0 -11 527 587

46 17.571 39.599 0 -11 45 105

47 30.378 32.49 0 -5 58 118

48 20.594 9.692 0 -11 316 376

49 19.93 25.913 0 -7 428 488

50 5.808 45.172 0 -10 538 598

51 0.497 25.269 0 -13 517 577

52 43.952 38.259 0 -10 320 380

53 13.843 16.968 0 -10 306 366

54 19.524 12.881 0 -14 99 159

55 30.948 13.248 0 -10 427 487

56 15.145 19.745 0 -13 317 377

57 18.778 35.536 0 -6 555 615

58 47.436 7.99 0 -8 414 474

59 6.843 25.729 0 -9 582 642

60 17.743 42.465 0 -11 82 142

61 25 25 0 0 0 1000
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Table 3.2 shows a sample modified instance containing n = 6 requests with 

each location’s coordinates. Containing three depots, the first three nodes and last 

three nodes are included to represent the starting depots and ending depots, 

respectively. The requests are color-coded with rows in blue representing pickup 

points and rows in green representing delivery points. If a request is picked up from 

location i¸ it will be delivered to location (i + n). In the fourth column, a special integer 

number is assigned per node to denote the pairing correspondence of each request. 

Figure 3-2 shows the plotted coordinates of the sample instance with six requests.  

 

Table 3.2 Sample modified instance with six requests 

 

Node X Y Pair No.

node1 20 30 0 1/16

node2 25 20 0 2/17

node3 30 30 0 3/18

node4 19.942 16.269 1 4

node5 8.195 24.765 2 5

node6 38.336 13.008 3 6

node7 26.591 36.243 4 7

node8 39.026 12.034 5 8

node9 7.711 35.675 6 9

node10 35.573 46.733 1 10

node11 4.515 24.464 2 11

node12 42.389 13.101 3 12

node13 17.571 39.599 4 13

node14 0.497 25.269 5 14

node15 15.145 19.745 6 15

node16 20 30 0 16

node17 25 20 0 17

node18 30 30 0 18
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Figure 3-2 Plot of sample modified instance with six requests 

 

 On the other hand, a sample instance containing twelve requests can be seen 

in Table 3.3 while the plotted coordinates of the said instance can be seen in Figure 

3-3. The sample instances shown, containing six requests and twelve requests, 

respectively, contain three depots having the same location: centered at the perimeter 

of the area. This location of depots is also modified as seen from Figure 3-4. Instances 

were varied between those having clustered depots and those of which having 

scattered depots. 
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Table 3.3 Sample modified instance with twelve requests 

 

Node X Y Pair No.

node1 20 30 0 1/28

node2 25 20 0 2/29

node3 30 30 0 3/30

node4 19.942 16.269 1 4

node5 13.131 45.499 2 5

node6 29.622 23.653 3 6

node7 20.387 33.75 4 7

node8 39.947 22.762 5 8

node9 15.395 23.92 6 9

node10 17.748 22.292 7 10

node11 26.591 36.243 8 11

node12 45.989 20.442 9 12

node13 28.364 23.084 10 13

node14 48.019 11.272 11 14

node15 11.466 10.009 12 15

node16 35.573 46.733 1 16

node17 36.158 11.897 2 17

node18 13.387 36.048 3 18

node19 21.442 34.131 4 19

node20 14.379 35.446 5 20

node21 0.062 49.145 6 21

node22 24.429 6.787 7 22

node23 17.571 39.599 8 23

node24 19.93 25.913 9 24

node25 43.952 38.259 10 25

node26 30.948 13.248 11 26

node27 47.436 7.99 12 27

node28 20 30 0 28

node29 25 20 0 29

node30 30 30 0 30
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Figure 3-3 Plot of sample modified instance with twelve requests 

 

 
Figure 3-4 Variation of instances containing three depots 
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Figure 3-5 Summary of depot variation with the instances 

 

 Moreover, the number of depots in each instance was also varied from one to 

three depots. This depot variation is as shown in Figure 3-5. A special instance having 

three aligned depots is also added to represent the usual setup of vehicle terminals 

in corners of alleys along main roads. 

 

3.4. General Algebraic Modelling System (GAMS) 

  To implement the formulated model in this research, General Algebraic 

Modelling System (GAMS) platform was used.  Chattopadhyay (1999) since regarded 

GAMS as a high level mathematical model language for developing concise algebraic 

statements.  The modeling language’s two most desirable features include (1) the 

capability to separate the mathematical problem from the solution method making it 

possible to implement different algorithms for the same problem without changing 
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the model and (2) the capability to separate data and logic which makes changes in a 

model easier especially in terms of increasing or decreasing the size of the problem 

(Chattopadhyay, 1999). In Figure 3-6, the different components of the general GAMS 

structure may be seen. With the said structure of the modelling language, main 

advantages include convenience in developing models, separation of data, model and 

algorithm as well as the provision of choices of a number of powerful commercial 

solvers. GAMS is further noted to have the flexibility of implementation in a wide 

variety of optimization problems (Chattopadhyay, 1999). 

 

 
Figure 3-6 Structure of GAMS model (Chattopadhyay, 1999) 

SETS
Declaration and assignment of members

DATA (Scalars, Parameters and Tables)
Declaration and assignment of values

DECISION VARIABLES
Declaration, assignment of type, bounds, initial values

EQUATIONS
Declaration and definition

OUTPUT
Display

MODEL AND SOLVE STATEMENTS
Declaration, assignment of appropriate solver
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 With GAMS’ capabilities, the study was able to test modified instances using 

CPLEX as the solver and branch-and-bound as the algorithm. Moreover, under the 

branch-and-bound algorithm, instances were also varied between best-bound search 

method and depth-first search method. 

 

3.5. Assumptions for Computational Experiments 

 Before proceeding to the discussion of results, it is important to remember the 

following assumptions that were made for the computational experiments conducted 

in this research. 

 The main objective of the model is to minimize the overall distance in serving 

a given set of pickup and delivery requests. This minimized distance is the 

Euclidean distance between nodes in the considered network. 

 Since the setup of the problem is classified under “one-to-one” pickup and 

delivery problem, each node is only limited to either one pickup job or one 

delivery job. The formulated does not support multiple commodities coming 

from one stop. 

 In generating the routes, aside from combining requests in separate routes, the 

model can also be used to combine all requests in one singular route.  

 The instances used only consider distances as the main parameter. Other 

parameters such as time windows and vehicle capacity are not considered.  

 All computational experimental results are based from modified instances from 

previous studies having hypothetical networks and hypothetical demands.  
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CHAPTER IV 

4 RESULTS AND DISCUSSION 

The formulated model for the static one-to-one PDP with multiple depots was 

implemented in a General Algebraic Modelling System (GAMS) platform with CPLEX as 

the solver. The default solution approach of branch-and-bound algorithm was used. 

Moreover, branch-and-bound algorithm was varied between best-bound search and 

depth-first search for each of the instances tested. The model was run on a 2.6 GHz 

Intel(R) Core(TM) i7-4720HQ CPU with 16.0 GB RAM. Instances from Ropke et al. (2007) 

were modified and problem sets comprising of 6 requests up to 12 requests were 

tested. 

 

This chapter is separated into six parts. First, a summary of the tested instances 

is provided. Second, the overall performance of the model implemented in GAMS is 

evaluated. The third part talks about the reduction of total distance travelled due to 

the combination of more than one request in one complete route. The fourth part 

discusses the effect of the depot variation that was implemented. Fifth, advantages 

and disadvantages of the proposed model are enumerated. Lastly, suggestions are 

made for using the proposed model in handling instances with a large amount of 

requests.  

 

4.1 Tested Instances 

In an instance with n requests, a number of desired q requests is specified 

beforehand to be combined in one r route. This in turn determines the total number 
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of R routes that are needed to serve the given demands (R = n/q).  Through the desired 

number of q requests, the number of total links needed to complete one route is also 

determined. The links needed to complete one r route with q desired requests is 

equivalent to α = 2q+1. These information are the primary input of each run of the 

tested instances aside from the node numbers, x-coordinates, y-coordinates and 

pairing designations. 

 

Table 4.1 Characteristics of instances with six requests 

 

Instance

(A & B)

Number of 

Requests (n) 

Number 

of Depots (K)
Depots

Allowed 

Requests per 

Route (q)

Total No.

of Nodes in 

Network (V)

Resulting

Routes (R) 

1-P/R 1 6

1-6/2 2 3

1-6/3 3 2

1-6/6 6 1

2(1)-P/R 1 6

2(1)-6/2 2 3

2(1)-6/3 3 2

2(1)-6/6 6 1

2(2)-P/R 1 6

2(2)-6/2 2 3

2(2)-6/3 3 2

2(2)-6/6 6 1

3(1)-P/R 1 6

3(1)-6/2 2 3

3(1)-6/3 3 2

3(1)-6/6 6 1

3(2)-P/R 1 6

3(2)-6/2 2 3

3(2)-6/3 3 2

3(2)-6/6 6 1

3(3)-P/R 1 6

3(3)-6/2 2 3

3(3)-6/3 3 2

3(3)-6/6 6 1

Scattered

1 Centered 14

2

Clustered

16

Scattered

Clustered

18

6

3

Aligned
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Table 4.2 Characteristics of instances with twelve requests 

 
  

Table 4.1 and Table 4.2 provide the characteristics of the tested instances. The 

first column provides the name of each case. The first number denotes the number 

of depots in the instance. The number of depots was varied from one to three depots. 

For instances with multiple depots, tests were performed between two sets: depots 

close to each other and depots which are far from each other. A number enclosed in 

Instance

(A, B, & C)

Number of 

Requests (n) 

Number 

of Depots (K)

Location

of Depots

Allowed 

Requests per 

Route (q)

Total No.

of Nodes in 

Network (V)

Resulting

Routes (R) 

1-P/R 1 12

1-12/2 2 6

1-12/3 3 4

1-12/12 12 1

2(1)-P/R 1 12

2(1)-12/2 2 6

2(1)-12/3 3 4

2(1)-12/12 12 1

2(2)-P/R 1 12

2(2)-12/2 2 6

2(2)-12/3 3 4

2(2)-12/12 12 1

3(1)-P/R 1 12

3(1)-12/2 2 6

3(1)-12/3 3 4

3(1)-12/12 12 1

3(2)-P/R 1 12

3(2)-12/2 2 6

3(2)-12/3 3 4

3(2)-12/12 12 1

3(3)-P/R 1 12

3(3)-12/2 2 6

3(3)-12/3 3 4

3(3)-12/12 12 1

Scattered

1 Centered 26

2

Clustered

28

Scattered

Clustered

12

3

Clustered

30
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parentheses in multi-depot instances denotes the clustered case (1) and the scattered 

case (2) of depots. Additionally, aside from clustered and scattered cases of depots, a 

third setup, (3) aligned case, is added. This is done to also represent the typical setup 

of vehicle terminals in corners of alleys along main roads. 

 

For the instances tested, two to three requests were combined in one route. 

The resulting routes from this combination is shown in the last column of Table 4.1 

and Table 4.2. All instances used for testing are symmetrical (cij = cji for every pair of 

locations i and j). The total number of nodes included in one instance of the network 

problem is also shown. Overall, there were three sets of instances tested (A, B & C). 

Each set contains two subsets, one with six requests and one with twelve requests. 

For each instance, both best-bound search method and depth-first search method are 

performed. In total, there were 288 instances tested in the research. 

 

4.2 Model Performance 

 In this section, the performance of the proposed model in GAMS using branch-

and-bound algorithm is evaluated.  

 

 4.2.1 Instances with six requests 

 

The computational results for the three sets of instances with six 

requests are shown in Table 4.3 (A), Table 4.4 (B), and Table 4.5 (C). The results 

from two separate methods of branch-and-bound algorithm namely best-

bound search and depth-first search are shown in separate parts. Generally, 
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the model was able to find optimal solutions with all the instances containing 

six requests. An asterisk preceding an objective function value indicates that 

the instance was solved to optimality.  

 

In each of the sets A, B, and C, respectively, both the best-bound search 

method and depth-first search method showed almost similar results with the 

total distance objective value as shown in the 2nd and 6th columns of each 

table. The similarity of results for both methods may be attributed to the small 

size of the instances tested.  

 

In set A6 of Table 4.3, 23 out of 24 instances showed similar objective 

value results from both best-bound search method and depth-first search 

method. One instance (A3(1)-6/3) showed a very minor difference of 0.07 

between the two branch-and-bound algorithm methods with both methods 

having a 0.99% gap from the lower bound value and the best-bound result 

having a lower objective value. For this set, the gaps of the objective values 

from the lower bound of all set A6 instances are about 1% or less. The 

recorded CPU run time for almost all A6 instances is less than 60 seconds. Only 

one A6 instance (A3(1)-6/3), same instance previously mentioned from depth-

first search recorded a CPU run time of about 71 seconds.  

 

In set B6 of Table 4.4, there are also 23 out of 24 instances which 

showed similar objective value results from both best-bound search method 

and depth-first search method.  One instance (B1-6/6) showed a minor 

difference of 0.70 but this time, the depth-first search method showed the 
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lower objective. However, it is important to note that the best-bound search 

in this particular instance was able to find a lower gap of 0.43% from the lower 

bound value than that of the 0.64% of the depth –first search. In set B6 of 

Table 4.4, the gaps of the objective values from the lower bound of all 

instances are also about 1% or less. The recorded CPU run time for all B6 

instances are about 47 seconds or less except one single instance (B3(3)-6/3) 

which recorded a CPU run time of about 90 seconds.  The highest CPU run time 

was found from a depth-first search run (B3(3)-6/3). 

 

In set C6 of Table 4.5, there are 21 out of 24 instances which showed 

similar objective value results for both best-bound search method and depth-

first search method. Three instances (C3(1)-6/2, C3(1)-6/6 and C3(3)-6/3) 

showed minor differences between the objective values found but for these 

instances, a lower gap from the lower bound value was usually observed from 

best-bound search method. Overall, the gaps recorded are also about 1% or 

less. Larger CPU run times are observed in this set of instances. The highest 

CPU run time recorded was about 201 seconds from best-bound search 

method (C3(1)-6/3). Generally, the higher CPU run times are found from 

instances that are constructing a higher number of routes. 

 

Overall, the performance of the model for the instances with six 

requests is excellent. Minor differences were found between the two branch-

and-bound algorithm methods: best-bound search and depth-first search. The 

model was also able to find a low gap of 1% or less from the lower bound 

value for all instances tested with six requests. 



 

 

 

Table 4.3 Summary of results for instances with six requests (A6) 

 
 

Instance
Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

A1-P/R *323.32 0.00% 0.02 *323.32 0.00% 0.00

A1-6/2 *229.19 0.16% 15.61 -29.11% *229.19 0.99% 15.39 -29.11%

A1-6/3 *194.76 1.00% 32.73 -39.76% *194.76 0.99% 21.05 -39.76%

A1-6/6 *147.39 0.72% 1.72 -54.41% *147.39 0.72% 1.47 -54.41%

A2(1)-P/R *301.74 0.00% 0.02 *301.74 0.00% 0.03

A2(1)-6/2 *216.37 0.99% 31.81 -28.29% *216.37 0.86% 26.02 -28.29%

A2(1)-6/3 *179.41 0.97% 27.84 -40.54% *179.41 0.99% 31.80 -40.54%

A2(1)-6/6 *134.72 0.00% 0.20 -55.35% *134.72 0.00% 0.13 -55.35%

A2(2)-P/R *353.69 0.00% 0.03 *353.69 0.00% 0.03

A2(2)-6/2 *239.47 0.99% 25.17 -32.29% *239.47 0.96% 25.64 -32.29%

A2(2)-6/3 *195.08 0.99% 26.69 -44.84% *195.08 1.00% 43.56 -44.84%

A2(2)-6/6 *148.90 0.75% 1.17 -57.90% *148.90 0.76% 2.36 -57.90%

A3(1)-P/R *292.77 0.00% 0.50 *292.77 0.00% 0.16

A3(1)-6/2 *217.43 0.97% 14.88 -25.73% *217.43 0.54% 21.89 -25.73%

A3(1)-6/3 *187.25 0.99% 47.41 -36.02% *187.32 0.99% 70.61 -36.04%

A3(1)-6/6 *142.27 0.86% 1.78 -51.41% *142.27 0.95% 1.64 -51.41%

A3(2)-P/R *305.64 0.00% 0.28 *305.64 0.00% 0.38

A3(2)-6/2 *227.93 1.00% 22.38 -25.43% *227.93 1.00% 37.02 -25.43%

A3(2)-6/3 *181.39 1.00% 31.59 -40.65% *181.39 0.99% 30.88 -40.65%

A3(2)-6/6 *148.04 0.86% 3.06 -51.56% *148.04 0.99% 3.11 -51.56%

A3(3)-P/R *316.37 0.34% 0.36 *316.37 0.34% 0.34

A3(3)-6/2 *229.19 1.00% 26.80 -27.56% *229.19 0.99% 25.13 -27.56%

A3(3)-6/3 *191.04 1.00% 46.30 -39.62% *191.04 0.97% 27.88 -39.62%

A3(3)-6/6 *147.39 0.99% 1.17 -53.41% *147.39 0.82% 1.11 -53.41%

Depth-First SearchBest-Bound Search
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Table 4.4 Summary of results for instances with six requests (B6) 

 
 

Instance
Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

B1-P/R *342.93 0.00% 0.02 *342.93 0.00% 0.06

B1-6/2 *239.50 0.95% 6.66 -30.16% *239.50 0.88% 6.39 -30.16%

B1-6/3 *213.25 0.98% 11.86 -37.82% *213.25 1.00% 21.20 -37.82%

B1-6/6 *160.58 0.43% 0.28 -53.17% *159.88 0.64% 0.28 -53.38%

B2(1)-P/R *312.58 0.00% 0.02 *312.58 0.00% 0.02

B2(1)-6/2 *235.01 0.99% 26.47 -24.82% *235.01 0.92% 16.89 -24.82%

B2(1)-6/3 *210.36 0.99% 35.19 -32.70% *210.36 1.00% 34.52 -32.70%

B2(1)-6/6 *155.84 0.00% 0.44 -50.14% *155.84 0.99% 0.59 -50.14%

B2(2)-P/R *321.77 0.00% 0.02 *321.77 0.00% 0.02

B2(2)-6/2 *243.21 0.98% 28.14 -24.41% *243.21 0.98% 39.25 -24.41%

B2(2)-6/3 *212.57 1.00% 42.56 -33.94% *212.57 1.00% 46.78 -33.94%

B2(2)-6/6 *168.22 0.93% 5.20 -47.72% *168.22 0.97% 4.72 -47.72%

B3(1)-P/R *324.31 0.99% 0.22 *324.31 0.99% 0.19

B3(1)-6/2 *234.65 1.00% 27.52 -27.65% *234.65 1.00% 19.05 -27.65%

B3(1)-6/3 *210.36 1.00% 32.67 -35.14% *210.36 0.99% 29.69 -35.14%

B3(1)-6/6 *155.84 0.87% 0.48 -51.95% *155.84 0.41% 0.48 -51.95%

B3(2)-P/R *354.18 0.00% 0.19 *354.18 0.00% 0.19

B3(2)-6/2 *244.80 0.99% 19.36 -30.88% *244.80 0.98% 33.06 -30.88%

B3(2)-6/3 *211.38 0.23% 32.97 -40.32% *211.38 0.99% 47.25 -40.32%

B3(2)-6/6 *168.22 0.89% 2.94 -52.50% *168.22 0.99% 3.52 -52.50%

B3(3)-P/R *284.57 0.00% 0.31 *284.57 0.00% 0.28

B3(3)-6/2 *232.82 0.99% 35.88 -18.19% *232.82 0.99% 44.06 -18.19%

B3(3)-6/3 *212.34 1.00% 92.64 -25.38% *212.34 1.00% 94.66 -25.38%

B3(3)-6/6 *159.88 0.76% 1.75 -43.82% *159.88 0.99% 2.84 -43.82%

Best-Bound Search Depth-First Search
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Table 4.5 Summary of results for instances with six requests (C6) 

 
 

Instance
Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

C1-P/R *408.99 0.00% 0.06 *408.99 0.00% 0.00

C1-6/2 *263.59 1.00% 28.89 -35.55% *263.59 0.96% 22.42 -35.55%

C1-6/3 *216.10 1.00% 62.75 -47.16% *216.10 0.95% 75.38 -47.16%

C1-6/6 *160.10 0.99% 8.61 -60.85% *160.10 1.00% 6.00 -60.85%

C2(1)-P/R *300.78 0.00% 0.02 *300.78 0.00% 0.08

C2(1)-6/2 *223.51 0.99% 43.77 -25.69% *223.51 0.99% 47.09 -25.69%

C2(1)-6/3 *194.16 1.00% 155.00 -35.45% *194.16 0.99% 145.00 -35.45%

C2(1)-6/6 *155.97 1.00% 23.30 -48.14% *155.97 0.99% 29.22 -48.14%

C2(2)-P/R *374.65 0.00% 0.08 *374.65 0.00% 0.02

C2(2)-6/2 *249.83 0.96% 24.56 -33.32% *249.83 0.98% 60.66 -33.32%

C2(2)-6/3 *207.28 1.00% 165.28 -44.67% *207.28 0.99% 105.94 -44.67%

C2(2)-6/6 *151.04 0.96% 5.16 -59.69% *151.04 0.97% 6.45 -59.69%

C3(1)-P/R *279.50 0.00% 0.48 *279.50 0.00% 0.50

C3(1)-6/2 *221.70 0.77% 123.70 -20.68% *221.05 0.99% 49.53 -20.91%

C3(1)-6/3 *189.98 1.00% 200.97 -32.03% *189.98 0.98% 168.19 -32.03%

C3(1)-6/6 *147.53 0.84% 11.11 -47.22% *147.72 0.99% 9.70 -47.15%

C3(2)-P/R *299.96 0.00% 0.31 *299.96 0.00% 0.36

C3(2)-6/2 *223.32 1.00% 66.63 -25.55% *223.32 1.00% 69.08 -25.55%

C3(2)-6/3 *188.01 1.00% 190.64 -37.32% *188.01 0.99% 159.61 -37.32%

C3(2)-6/6 *145.55 1.00% 11.41 -51.48% *145.55 1.00% 10.63 -51.48%

C3(3)-P/R *302.25 0.00% 0.03 *302.25 0.00% 0.08

C3(3)-6/2 *225.45 0.99% 43.94 -25.41% *225.45 0.99% 44.67 -25.41%

C3(3)-6/3 *196.24 1.00% 110.66 -35.07% *196.60 0.99% 151.81 -34.95%

C3(3)-6/6 *151.04 0.99% 8.75 -50.03% *151.04 0.99% 13.80 -50.03%

Best-Bound Search Depth-First Search
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In Figure 4-1 and Figure 4-2, a summary of CPU run time results for both 

best-bound search and depth-first search methods are shown for the three 

instances A, B and C having six requests. The bar graphs are grouped according 

to the number of requests allowed per one route: (1C) one request per route, 

(2C) two requests per route, (3C) three requests per route, and (AC) all requests 

in one route. Moreover, the number of depots and its corresponding setup is 

also specified in the figures: (CL) clustered, (SC) scattered, and (AL) aligned. The 

number before these designations represent the number of depots in that 

particular instance. In both figures, it could be observed that the highest CPU 

run times were recorded from routes having three requests combined in each. 

Instances with one request per route were all solved in almost no time. With 

instances wherein all requests were combined in one route, computational 

time was not much. This may be due to the single route that the model 

considers and thus, less combinations are made. In summary, for sets A, B, and 

C, the formulated model was able to find optimal solutions for all instances in 

all tested combinations. Gaps recorded are about 1% or less for all instances 

with six requests. Best bound-search method and depth-first search showed an 

almost similar performance. Overall, the CPU run times recorded with six 

requests are generally desirable.  

  

4.2.2 Instances with twelve requests 

 

A more varied set of results may be observed with instances containing 

12 requests. For Table 4.6, Table 4.7, and Table 4.8, the optimal solutions 
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found are shown with an asterisk in their objective function values. The 

objective values without an asterisk are the best lower bounds found for each 

instance that was not solved to optimality. Lower bounds are found from 

solving the LP relaxation of the problem. Given a larger amount of requests, 

each instance containing 12 requests was given a runtime limit of 21600 CPU 

seconds with a tolerance of 10% for the gap from the lower bound value.  

 

In set A12 of Table 4.6, there were 9 instances out of 24 instances from 

the best-bound search run that showed no optimal integer solutions. On the 

other hand, there were 2 instances out of 24 instances from the depth-first 

search run which was not solved to optimality. However, the set resource limit 

of 21600 CPU runtime was reached for most instances except the instances 

that served one route per request (P/R) as well as those instances that served 

all requests in one route (12/12). In set A12 of Table 4.6, most instances having 

no optimal integer solutions are found with instances having three depots, 6 of 

which are from best-bound search run and 2 instances from the depth-first 

search run. Comparing the gaps of both branch-and-bound methods having 

optimal solutions, best-bound search run was able to find better values 

showing lower gaps from the best lower bounds found. Putting the ‘per request’ 

(P/R) instances and the ‘all-in-one route’ (12/12) instances aside, gaps under 

the best-bound search range from 31.80% to 36.60% while the gaps under the 

depth-first search run range from 34.68% to 45.82%. Higher gaps are generally 

found with instances having more depots. However, even though the runs of 

best-bound search having optimal solutions showed lower gaps than those of 

depth-first search runs, it is still notable that the latter was able to find more 
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optimal solutions compared to its counterpart. Based on optimal solutions 

found, depth-first search is preferred in this set of instances over best-bound 

search.    

 

In set B12 of Table 4.7, there were 10 instances out of 24 instances from 

the best-bound search run that showed no optimal integer solutions. On the 

other hand, there were 4 instances out of 24 instances from the depth-first 

search run which were not solved to optimality. In this set of instances, the set 

resource limit of 21600 CPU runtime was also reach for instances having 

combined requests of two to three requests per route. The gaps found for ‘per 

request’ (P/R) instances and ‘all-in-one route’ instances (12/12) are about 10% 

or less. For instances with two to three request combination, there was only 

one instance wherein best-bound search and depth-first search both showed 

optimal solutions and best-bound search provided a lower gap from the lower 

bound found. Interestingly, there was one instance (B2(2)-12/2) wherein best-

bound search was able to find an optimal solution while depth-first search 

failed in finding one. Again, putting the ‘per request’ (P/R) instances and the 

‘all-in-one route’ (12/12) instances aside, gaps under the best-bound search 

range from 36.46% to 40.05% while the gaps under the depth-first search run 

range from 39.15% to 53.41%. Best-bound runs generally provided lower gaps 

from the lower bound but still, depth-first search was able to find more optimal 

solutions. 
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Table 4.6 Summary of results for instances with six requests (A12) 

 
 

Instance
Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

A1-P/R *668.42 0.00% 0.08 *668.42 0.00% 0.06

A1-12/2 *460.60 31.80% 21601.03 -31.09% *450.07 34.92% 21600.30 -32.67%

A1-12/3 266.94 - 21600.22 - *385.47 34.68% 21600.11 -42.33%

A1-12/12 *252.24 10.00% 413.30 -62.26% *248.26 10.00% 305.77 -62.86%

A2(1)-P/R *652.09 3.69% 0.17 *652.09 3.69% 0.09

A2(1)-12/2 *452.79 36.60% 21600.48 -30.56% *442.44 38.43% 21600.22 -32.15%

A2(1)-12/3 *386.72 35.47% 21600.33 -40.70% *419.71 44.36% 21600.20 -35.64%

A2(1)-12/12 *247.11 9.44% 300.28 -62.10% *244.70 10.00% 204.09 -62.47%

A2(2)-P/R *812.40 6.67% 0.13 *812.40 6.67% 0.02

A2(2)-12/2 338.46 - 21601.11 - *511.33 37.50% 21600.31 -37.06%

A2(2)-12/3 271.24 - 21600.69 - *447.81 42.43% 21600.17 -44.88%

A2(2)-12/12 *238.30 8.68% 243.14 -70.67% *239.24 10.00% 150.91 -70.55%

A3(1)-P/R *642.60 9.89% 0.75 *622.86 7.03% 0.70

A3(1)-12/2 266.55 - 21600.30 - *433.08 41.91% 21600.08 -30.47%

A3(1)-12/3 238.61 - 21600.91 - *412.24 45.69% 21601.23 -33.81%

A3(1)-12/12 *246.26 10.00% 321.00 -61.68% *246.02 9.87% 296.14 -60.50%

A3(2)-P/R *666.61 8.55% 0.70 *666.61 9.37% 1.63

A3(2)-12/2 260.41 - 21600.11 - *463.11 45.82% 21600.17 -30.53%

A3(2)-12/3 235.48 - 21600.27 - 215.14 - 21599.95 -

A3(2)-12/12 *244.69 10.00% 936.39 -63.29% *240.86 10.00% 319.28 -63.87%

A3(3)-P/R *677.37 9.59% 0.41 *677.37 9.59% 0.77

A3(3)-12/2 277.77 - 21601.22 - *449.90 42.05% 21600.63 -33.58%

A3(3)-12/3 234.71 - 21601.06 - 225.92 - 21599.98 -

A3(3)-12/12 *238.14 9.09% 260.03 -64.84% *240.40 8.67% 268.30 -64.51%

Best-Bound Search Depth-First Search
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Table 4.7 Summary of results for instances with six requests (B12) 

 
 

Instance
Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

B1-P/R *720.33 0.00% 0.06 *720.33 0.00% 0.02

B1-12/2 *502.19 40.05% 21600.19 -30.28% *493.89 42.65% 21600.16 -31.44%

B1-12/3 260.22 - 21600.53 - *454.02 45.42% 21600.19 -36.97%

B1-12/12 *259.01 10.00% 132.25 -64.04% *255.56 10.00% 175.39 -64.52%

B2(1)-P/R *678.19 0.69% 0.08 *678.19 0.69% 0.09

B2(1)-12/2 273.27 - 21600.14 - 263.92 - 21599.88 -

B2(1)-12/3 249.88 - 21600.69 - *444.75 47.81% 21600.11 -34.42%

B2(1)-12/12 *255.24 9.60% 239.30 -62.36% *254.98 9.85% 182.84 -62.40%

B2(2)-P/R *792.16 0.64% 0.13 *792.16 0.64% 0.14

B2(2)-12/2 *520.75 36.46% 21600.55 -34.26% 318.22 - 21599.91 -

B2(2)-12/3 276.50 - 21600.30 - *430.87 39.15% 21600.20 -45.61%

B2(2)-12/12 *259.21 9.55% 221.44 -67.28% *252.06 9.90% 128.11 -68.18%

B3(1)-P/R *697.49 8.92% 0.19 *697.49 8.92% 0.19

B3(1)-12/2 253.67 - 21600.42 - *479.59 47.69% 21600.22 -31.24%

B3(1)-12/3 238.66 - 21600.33 - 223.99 - 21599.95 -

B3(1)-12/12 *256.37 10.00% 255.42 -63.24% *249.65 9.99% 139.67 -64.21%

B3(2)-P/R *727.15 9.77% 1.39 *727.15 9.77% 1.33

B3(2)-12/2 268.31 - 21600.33 - *494.89 49.45% 21600.25 -31.94%

B3(2)-12/3 226.45 - 21600.45 - *463.06 53.41% 21600.14 -36.32%

B3(2)-12/12 *242.40 8.90% 74.17 -66.66% *247.98 10.00% 270.31 -65.90%

B3(3)-P/R *681.27 2.30% 0.11 *681.27 2.30% 0.16

B3(3)-12/2 264.65 - 21600.64 - *464.57 45.66% 21600.09 -31.81%

B3(3)-12/3 234.83 - 21600.30 - 226.96 - 21599.98 -

B3(3)-12/12 *261.29 10.00% 394.81 -61.65% *252.13 10.00% 184.69 -62.99%

Best-Bound Search Depth-First Search
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Table 4.8 Summary of results for instances with six requests (C12) 

 
 

Instance
Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

Objective

Function
Gap

CPU 

Time (s)

Distance 

Reduction

C1-P/R *961.39 0.00% 0.08 *961.39 0.00% 0.11

C1-12/2 *606.39 31.61% 21601.06 -36.93% *579.52 30.61% 21600.09 -39.72%

C1-12/3 322.51 - 21600.30 - *488.39 37.51% 21600.22 -49.20%

C1-12/12 *274.64 13.36% 21600.28 -71.43% *274.64 17.37% 21609.42 -71.43%

C2(1)-P/R *709.94 3.44% 0.13 *709.94 3.44% 0.41

C2(1)-12/2 291.77 - 21601.03 - *503.08 44.44% 21600.05 -29.14%

C2(1)-12/3 254.99 - 21600.25 - *445.49 44.44% 21600.17 -37.25%

C2(1)-12/12 *255.87 7.76% 3396.80 -63.96% *257.73 10.00% 1043.22 -63.70%

C2(2)-P/R *854.92 7.70% 0.13 *854.92 7.70% 0.19

C2(2)-12/2 305.89 - 21600.47 - *535.74 47.34% 21600.36 -37.33%

C2(2)-12/3 239.47 - 21600.22 - *468.17 51.11% 21600.22 -45.24%

C2(2)-12/12 *260.02 14.56% 21600.23 -69.59% *260.02 14.87% 21610.56 -69.59%

C3(1)-P/R *687.27 9.55% 0.61 *677.97 8.31% 0.55

C3(1)-12/2 284.64 - 21600.33 - 269.03 - 21599.92 -

C3(1)-12/3 249.58 - 21600.58 - 241.24 - 21599.88 -

C3(1)-12/12 *260.24 10.00% 1703.55 -62.13% *256.16 10.00% 770.92 -62.22%

C3(2)-P/R *738.34 9.45% 0.70 *738.34 9.45% 1.73

C3(2)-12/2 254.88 - 21601.11 - *534.54 54.09% 21600.09 -27.60%

C3(2)-12/3 230.71 - 21600.36 - 221.44 - 21599.98 -

C3(2)-12/12 *254.65 10.00% 1329.38 -65.51% *248.47 8.69% 1562.55 -66.35%

C3(3)-P/R *690.72 9.47% 0.77 *690.72 9.47% 0.63

C3(3)-12/2 256.96 - 21600.28 - *491.09 49.51% 21600.09 -28.90%

C3(3)-12/3 221.16 - 21600.45 - 210.32 - 21600.06 -

C3(3)-12/12 *248.47 10.84% 21600.66 -64.03% *260.02 16.79% 21600.23 -62.36%

Best-Bound Search Depth-First Search
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In set C12 of Table 4.8, there were 11 instances out of 24 instances 

under the best-bound search run which showed no optimal integer solutions. 

Depth-first search run on the other hand showed 4 instances out of 24 

instances with no optimal integer solutions. In set A12 and set B12, only those 

instances with two to three request combination reached the set resource time 

limit but in set C12, most of the instances reached the given 21 600 CPU run 

time limit including the instances with ‘all-in-one route’ variation. In the runs 

with best-bound search method, only one instance among the two to three 

combined request instances, showed an optimal solution which had a slightly 

higher gap from the lower bound than that of the depth-first search. Putting 

the ‘per request’ (P/R) instances and the ‘all-in-one route’ (12/12) instances 

aside, gaps under the depth-first search range from 30.61% to 54.09%.  

 

Table 4.9 Summary of model performance results for instances with 12 requests 

 
 

In summary, in terms of optimal solutions found, depth-first search 

performed better than best-bound search in solving instances with twelve 

requests.  A summary of model performance results may be seen from Table 

4.9. Depth-first search performed better than best-bound in about 28% of the 

time. However, in cases wherein both branch-and-bound algorithm methods 

No. of 

Instances 

Per Set

Best-

Bound

Search

%

Depth-

First

Search

% % Difference

A12 24 15 62.50% 22 91.67% 29.17%

B12 24 14 58.33% 20 83.33% 25.00%

C12 24 13 54.17% 20 83.33% 29.17%

27.78% AVERAGE
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were able to provide optimal solutions, lower gaps from the lower bound 

found by best-bound search are better than that of depth-first search.  

 

Table 4.10 Average percentage of gaps from lower bounds of 12-request instances 

 
 

On the other hand, from the recorded gaps from lower bounds of 

instances having 12 requests, an average percentage may be seen from Table 

4.10. From an initial set tolerance of 10% for the instances, only the requests 

with one request per route and all requests in one route were able to find 

satisfying optimal solutions. With instances having a combined requests of two 

and three, gaps were about 35% for best-bound search and 44% for depth-first 

search. These gaps from the lower bound are way higher than the set tolerance 

although it is important to note that this does not necessarily mean that the 

optimal solutions found were not good. There is a possibility that the model 

was not only able to find a good lower bound for the particular instance but 

the optimal solution may be the best one. Moreover, even though the gaps 

found from the lower bound are higher than the set tolerance, comparing the 

objective values found of combined requests from the typical “one-request-

per-route” service still suggest significant distance reduction. This is further 

discussed in the next section. 

1 2 3 All

Best 

Bound 

Search

5.57% 35.30% 35.47% 10.10%

Depth

First 

Search

5.39% 43.47% 44.18% 10.89%

No. of Requests per Route
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4.3 Improvement through Combining Requests 

 This section discusses the reduction of overall distances that resulted from the 

combination of two to three requests in one route as compared to the instances that 

served one request per one route. The reduction of distances are discussed separately 

between instances with six requests and instances with twelve requests. 

 

 4.3.1 Instances with six requests 

 
From Table 4.3 to Table 4.5, the percentage of distance reduction for 

instances with six requests can be seen in the 5th column for best-bound search 

method and 9th column for the depth-first search method. The distance 

reduction is obtained by comparing the instances with combined requests to 

the instances that serve only one request per one route. 

 

In Table 4.11, an average percentage between the three sets of 

instances A, B, and C is shown with each instance. Naturally, the reduction for 

each instance increased as the number of requests included in one route is 

also increased. For instances with two requests allowed per route, average 

distance reduction ranges from 23.72% to 31.61%. For instances with three 

requests allowed per route, average distance reduction ranges from 33.32% to 

41.15%. Lastly, for instances having all requests in one route, average distance 

reduction ranges from 49.09% to 56.22%.  
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Table 4.11 Average percentage of distance reduction of combined requests 
compared to ‘one request per route’ service (A6, B6, and C6) 

 
 

Instance
Best-Bound 

Search

Depth-First

Search

1-P/R

1-6/2 -31.61% -31.61%

1-6/3 -41.58% -41.58%

1-6/6 -56.15% -56.22%

2(1)-P/R

2(1)-6/2 -26.27% -26.27%

2(1)-6/3 -36.23% -36.23%

2(1)-6/6 -51.21% -51.21%

2(2)-P/R

2(2)-6/2 -30.01% -30.01%

2(2)-6/3 -41.15% -41.15%

2(2)-6/6 -55.10% -55.10%

3(1)-P/R

3(1)-6/2 -24.69% -24.76%

3(1)-6/3 -34.39% -34.40%

3(1)-6/6 -50.19% -50.17%

3(2)-P/R

3(2)-6/2 -27.29% -27.29%

3(2)-6/3 -39.43% -39.43%

3(2)-6/6 -51.85% -51.85%

3(3)-P/R

3(3)-6/2 -23.72% -23.72%

3(3)-6/3 -33.36% -33.32%

3(3)-6/6 -49.09% -49.09%
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It is apparent that combining more than one request in one particular 

route would lead into a reduction of overall distance travelled. However, 

through the instances that were tested, the huge percentage reduction is given 

emphasis. Furthermore, it is also important to note that with the combination 

of requests, the number of needed vehicles to satisfy all demands would also 

reduce as the number of combined requests is increased per route. Since the 

formulation also chooses the best depots simultaneously, it is possible that 

not all depots will be used in the network. In Table 4.12, a summary of distance 

reduction results for instances having six requests is shown for both best-bound 

search method and depth-first search method. 

 

Table 4.12 Summary of distance reduction results of six-request instances 

 
  

4.3.2 Instances with twelve requests 

 

From Table 4.6 to Table 4.8, the percentage of distance reduction for 

instances with twelve requests can be seen in the 5th column for best-bound 

search method and 9th column for the depth-first search method. In Table 4.13, 

an average percentage between the three sets of instances A, B, and C is shown 

with each instance. 

2 3 All

Best 

Bound 

Search

-27.26% -37.69% -52.26%

Depth

First 

Search

-27.28% -37.69% -52.27%

No. of Requests
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Table 4.13 Average percentage of distance reduction of combined requests 
compared to ‘one request per route’ service (A12, B12, and C12) 

 

Instance
Best-Bound 

Search

Depth-First

Search

1-P/R

1-12/2 -32.77% -34.61%

1-12/3 - -42.83%

1-12/12 -65.91% -66.27%

2(1)-P/R

2(1)-12/2 -30.56% -30.64%

2(1)-12/3 -40.70% -35.77%

2(1)-12/12 -62.81% -62.86%

2(2)-P/R

2(2)-12/2 -34.26% -37.20%

2(2)-12/3 - -45.24%

2(2)-12/12 -69.18% -69.44%

3(1)-P/R

3(1)-12/2 - -30.85%

3(1)-12/3 - -33.81%

3(1)-12/12 -62.35% -62.31%

3(2)-P/R

3(2)-12/2 - -30.02%

3(2)-12/3 - -36.32%

3(2)-12/12 -65.16% -65.37%

3(3)-P/R

3(3)-12/2 - -31.43%

3(3)-12/3 - -

3(3)-12/12 -63.51% -63.29%
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The missing percentages found under the best-bound search are those 

wherein the model was not able to find optimal solution. For instances with 

two requests allowed per route, average distance reduction ranges from 

30.02% to 37.20%. For instances with three requests allowed per route, average 

distance reduction ranges from 33.81% to 45.24%. Lastly, for instances having 

all requests in one route, average distance reduction ranges from 62.35% to 

69.44%. In Table 4.14, a summary of distance reduction results for instances 

having twelve requests is shown for both best-bound search method and 

depth-first search method. 

  

Table 4.14 Summary of distance reduction results of twelve-request 
instances 

 
 

With the instances having twelve requests, large gaps from the lower 

bounds can be observed from the optimal solutions found in Table 4.6, Table 

4.7, and Table 4.8. The gaps for the instances with combined requests range 

from about 30% to 54%. This gap from the lower bound is still very large. 

However, even if this is the case, the improvement of minimized distances from 

combining the requests is still very noticeable as shown in Table 4.13 and Table 

4.14.  

2 3 All

Best 

Bound 

Search

-32.53% -40.70% -64.82%

Depth

First 

Search

-32.46% -38.80% -64.92%

No. of Requests
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Figure 4-3 Distance reduction results from computational experiments 

 

In Figure 4-3, the distance reduction results from instances having six 

requests and twelve requests, respectively, are shown. It could be 

remembered that for instances with combined requests (2 to 3 requests per 

route), the gaps from lower bounds for six requests are very desirable (1% or 

less) while considerably large gaps were recorded from instances having twelve 

requests (around 35% for best-bound and around 44% for depth-first). However, 

even if this is the case, both sets of instances were still able to show a significant 

reduction in the overall distances computed from serving all demands. 

  

4.4 Multiple-Depot Variation 

 The effect of the number of allowed requests per route on the variation of 

multiple depots on the distance objective function in instances having six requests and 

twelve requests are shown in Figure 4-4 and Figure 4-5, respectively.  In the figures, 

results from depth-first search methods are used since the said method was able to 

find more optimal solutions than its counterpart method.  
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 Starting from the graph on the left of both figures, data are grouped according 

to the number of requests allowed in one route: (1C) one request per route, (2C) two 

requests per route, (3C) three requests per route, and (AC) all requests in one route. 

Moreover, the number of depots and its corresponding setup is also specified in the 

figures: (CL) clustered, (SC) scattered, and (AL) aligned. The number before these 

designations represent the number of depots in that particular instance. Each instance 

is graphed against its corresponding distance objective value found from 

computational experiments.  

 

 In both figures, the distance reduction is noticeable as the number of requests 

is increased in each set of instances. This is discussed in the previous section. But aside 

from significant distance reduction, the effect of the number of requests allowed per 

route on the varying number of multiple depots (1, 2, and 3) as well as its distribution 

of locations (clustered, scattered, and aligned) is also very noticeable in Figure 4-4 and 

Figure 4-5. As the number of allowed requests per route is increased, the differences 

in the distance objective values become minimal. The graphs on the left of both figures 

show a very varied series of values as their multiple depots and locations were 

modified. As the number of requests is increased, the graphs that follow on the right 

become less varied and the illustrations become more levelled than the previous case.   

 
4.5 Advantages and Disadvantages of Proposed Model 

 
 The formulated model in this paper highlights a choice of the number of 

requests that are allowed to be served in one route. In this way, the overall distance 

travelled in each instance may be compared and the most desirable result may be 
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chosen for application. Moreover, the model also simultaneously assigns the best 

depot that should serve one particular route. In this way, aside from minimizing the 

overall total distance through the combination of requests, characteristics of 

parameters such as depot location, number of serving vehicles, and cost per route 

may also be determined. Another advantage of the model is its flexible sequencing of 

pickup and delivery nodes. Once a commodity is picked up from its node, its 

corresponding delivery node does not have to come right after. Multiple pickups may 

be done first and multiple deliveries may follow depending on what results into the 

least overall distance objective value.  

 

 On the other hand, due the arc-based formulation of the model, it generally 

takes a considerable amount of time as the instances become larger. The formulated 

model may only be directly applicable to smaller instances. Moreover, only a small 

number of requests is tested to be combined in this study and each route included in 

the overall solution contains similar amount of requests. The formulated model is not 

designed to construct routes with different number of combined requests. The model 

also does not allow multiple commodities to be picked up from a single node. 

 

Between depth-first search and best-bound search, the former is preferred due 

to its speed in finding an optimal solution for a certain instance although it is also 

important to note that although best-bound search takes time, once it finds a solution, 

it is observed that the found solution improves quicker than that of depth-first search. 

Another major advantage of depth-first search is that it only takes up a small memory 

of the computer and can continuously run for hours. Best-bound search takes a 

considerable amount of memory and stops running the program once the computer 
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memory limit is reached. This hinders the method in finding a solution when ran for 

longer hours.  

 

In solving larger instances in future research, the formulated model may still 

be used by clustering the set of given requests first to break them down into smaller 

instances. In this way, the formulated model may work on the smaller instances 

separately and be able to find optimal solutions. Finally, it is suggested to use the 

model in real-life applications to analyze its feasibility and other important factors of 

the problem especially with logistics companies specializing in pickup and delivery 

services. 
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CHAPTER V 

5 SUMMARY AND CONCLUSION 

5.1 Summary 

Overall, there were three sets of instances tested in this research (A, B & C). 

Each set contained two subsets, one with six requests and one with twelve requests. 

For each instance, both best-bound search method and depth-first search method 

were performed. In total, there were 288 instances tested in the research.  

 
The performance of the model for the instances with six requests was excellent. 

Minor differences were found between the two branch-and-bound algorithm methods: 

best-bound search and depth-first search. The model was also able to find a low gap 

of 1% or less from the lower bound value for all instances tested with six requests.  

 

With instances having twelve requests, depth-first search performed better than 

best-bound search in terms of finding optimal solutions. Depth-first search performed 

better than best-bound in about 28% of the time. However, in cases wherein both 

branch-and-bound algorithm methods were able to provide optimal solutions, lower 

gaps from the lower bound found by best-bound search were found to be better than 

that of depth-first search.  

 

Comparing instances with routes having combined requests from instances with 

routes serving only one request per route, distance reduction was found to be very 

significant for both instances having six requests and twelve requests.  Even though 
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instances with twelve requests showed huge gaps from lower bounds, overall distance 

reduction was still considerably huge. 

 

In terms of depot variation, as the number of allowed requests per route is 

increased, the differences in the distance objective values become minimal. Depots 

were varied according to number (1, 2, and 3) and according to location distribution 

(clustered, scattered, and aligned). 

 

The model showed advantages in terms of having choices on the number of 

desired requests per route as well as the simultaneous generation of routes and depot 

assignment. Disadvantages included limitations of model such as handling larger 

instances and handling multiple requests from similar nodes. 

 

5.2 Conclusion 

 The model formulated in this research performs well on one-to-one static 

pickup and delivery problems with instances of up to 12 requests. It can directly be 

applied to problems of such size wherein distance is the main objective function. The 

formulation also highlights a choice for the allowed number of requests per route and 

the number of depots to be used in one particular solution set. In this way, aside from 

optimizing costs, users of the formulation may also analyze additional information such 

as depot location, number of serving vehicles and cost per route. This provides more 

flexibility on the management side in choosing what routes to implement to satisfy all 

demands. However, it is important to note that the proposed model only considers 
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distances to construct routes. It is suggested to include more parameters such as time 

windows, vehicular capacity and other important costs in future research.  

 

 Between best-bound search method and depth-first search method of the 

branch-and-bound algorithm, the latter is preferred if speed is a main priority in finding 

optimal solutions. Depth-first search method is also preferred because it takes up less 

memory from the computer compared to best-bound search method. Best-bound 

search may be more applicable for long term planning of routes wherein more time 

can be spared for computing time. 

 

 On the other hand, in solving a particular instance, different setups of multiple 

depots prove to be of much effect if requests are served individually in one route (one 

request per route). The effect of the multiple depot setup on the distance objective 

value becomes minimal as the number of combined requests in one route is increased. 

Therefore, if multiple depots are considered in one particular problem, it is strongly 

suggested to combine requests that will result into a set of routes in order to save 

costs.  

 

Additionally, with the formulation in GAMS, parameters and constraints are 

easily understood due to the structure of the model. This, in turn, gives more room 

for improvement especially for the development of more advanced heuristics.  
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5.3 Recommendations 

 The research considered Euclidean distances as the main parameter in the 

instances solved in the computational experiments. For future work, it is suggested to 

include other parameters such as time windows, vehicle capacity as well as provider 

and customer preferences. Data from field may also be gathered to have a better 

representation of the transportation network in the instances.  

 

In solving larger instances in future research, the formulated model may still 

be used by clustering the set of given requests first to break them down into smaller 

instances. In this way, the formulated model may work on smaller instances separately 

and be able to find optimal solutions.  

 
Future work for the formulated model may also concentrate on integrating it 

with other solution approaches such as nearest neighborhood algorithm, insertion 

method, as well as applying column generation. Moreover, since this paper focused 

on a static case of PDP, the research may be extended to solve its dynamic case. 

 

Finally, it is suggested to use the model in real-life applications to analyze its 

feasibility and other important factors of the problem especially with logistics 

companies specializing in pickup and delivery services. Aside from the initial motivation 

of the research in using motorcycle taxis to deliver documents and small parcels, other 

applications may also include food deliveries wherein more establishments will be 

able to provide pickup and delivery services to a wider range of customers.  
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