Inventory Policy Improvement for a Kitchenware Trader

Miss Nutcha Joedjumnongwittayakul

# บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาๆ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย 

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

> A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Engineering Management
> Regional Centre for Manufacturing Systems Engineering
> Faculty of Engineering
> Chulalongkorn University
> Academic Year 2016
> Copyright of Chulalongkorn University

# การปรับปรุงนโยบายพัสดุคงคลังสำหรับผู้ขายเครื่องใช้ในครัว 

นางสาวณัชชา เจิดจำนงวิทยากุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาการจัดการทางวิศวกรรม ภาควิชาศูนย์ระดับภูมิภาคทางวิศวกรรมระบบการผลิต คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2559
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

| Thesis Title | Inventory Policy Improvement for a Kitchenware <br> Trader |
| :--- | :--- |
| By | Miss Nutcha Joedjumnongwittayakul |
| Field of Study | Engineering Management |
| Thesis Advisor | Pisit Jarumaneeroj, Ph.D. |

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Engineering (Associate Professor Supot Teachavorasinskun, Ph.D.)

## THESIS COMMITTEE

|  | Chairman |
| :---: | :---: |
| (Professor Parames Chutima, Ph.D.) |  |
|  | Thesis Advisor |
| (Pisit Jarumaneeroj, Ph.D.) |  |
|  | Examiner |
| (Assistant Professor Naragain Phumchusri, Ph.D.) |  |
|  | External Examiner |
| Associate Professor Vanchai | , Ph.D.) |

ณัชชา เจิดจำนงวิทยากุล : การปรับปรุงนโยบายพัสดุคงคลังสำหรับผู้ขายเครื่องใช้ในครัว (Inventory Policy Improvement for a Kitchenware Trader) อ.ที่ ปรึ กษา วิทยานิพนธ์หลัก: ดร. พิศิษฎ์ จารุมณี โรจน์, 149 หน้า.

วัตถุประสงค์หลักของวิทยานิพนธ์นี้เพื่อปรับปรุงนโยบายสินค้าคงคลังสำหรับ ผู้ประกอบการที่นำเข้าเครื่องครัวหลากหลายรายการจากประเทศญี่ปุ่น เพื่อลดระดับสินค้าคงคลัง และปรับปรุงการดำเนินงานภายใน การเคลื่อนไหวของสินค้าใน 12 เดือนในปี พ.ศ. 2558 สำหรับ สินค้า 738 ประเภท ได้รับการประเมินและจัดหมวดหมู่ ห้ากลุ่มคือ 1) ไม่เคลื่อนไหวหุ้น 2) ไม่มี การขายล่าสุด 6 เดือน 3) ระยะเวลาสั้นหุ้น 4) สต็อกสินค้าใหม่และ 5) สินค้าที่เหลือ 185 ชนิด โดยมีการเสนอนโยบายการบริหารเชิงกลยุทธ์สำหรับแต่ละกลุ่มม ส่วนที่เหลืออีก 185 SKUs จะ ถูกจำแนกตามลักษณะการดำเนินงานโดยใช้ ทฤษฎีการแบ่ง ABC ความต่อเนื่องของความต้องการ สินค้าเป็นเกณฑ์แรกสำหรับการจัดลำดับความสำคัญของผลิตภัณฑ์ เพราะสามารณแบ่งกลุ่มสินค้าที่ มีความต้องการอย่างต่อเนื่องและสินค้าที่มีความต้องการไม่ต่อเนื่อง เกณฑ์ที่สองคือจำนวนของการ สั่งซื้อในปี พ.ศ. 2558 หลักเกณฑ์ที่สามคือมูลค่าการขายและหลักเกณฑ์สุดท้ายคือมูลค่าสินค้าคง คลังเฉลี่ยตามลำดับ หลังจากนั้นทำการประเมินรูปแบบความต้องการสินค้าสำหรับแต่ละกลุ่ม และ นำเสนอวิธีการพยากรณ์และตัวชี้วัดข้อผิดพลาดและระบบสินค้าคงคลัง สำหรับน โยบายในการ สั่งซื้อสำหรับกลุ่มทั้งหมดเป็น การจัดซื้อเป็นรอบตามระยะที่กำหนด เพราะต้นทุนการขนส่งสูง นอกจากนี้มีการนำเสนอกระบวนการทำงานและขั้นตอนการสั่งซื้อสินค้าการไหลของคลังสินค้า และขั้นตอนการตรวจสอบคลังสินค้ารวมทั้งมีการเสนอเอกสารที่ใช้ประกอบกระการต่าง

ผลการทดลองของวิธีการที่นำเสนอเพื่อประเมินนโยบายโดยใช้ไปรแกรม ไมโครซอฟต์ เอกเซล (Microsoft Excel) โดยทำการเปรียบเทียบกับการดำเนินงานที่เกิดขึ้นจริงในห้าเดือน ระหว่างเดือนมกราคมถึงเดือนพฤษภาคม ปี พ.ศ. 2559 พบว่าผลของนโยบายที่นำเสนอ สามารถ ลดระดับสินค้าคงคลังสำหรับผลิตภัณฑ์ในกลุ่ม เอ และ บี ในขณะที่ระดับการให้บริการของ นโยบายที่นำเสนอสามารถดำเนินการได้โดยไม่มีระยะที่ขาดสินค้าในคลัง แต่สำหรับผลิตภัณฑ์ที่ เคลื่อนไหวช้าในกลุ่มซี ไม่สามารถสรุปผลได้ เนื่องจากพิจารณาว่ามีข้อมูลที่ไม่เพียงพอและมีช่วง การเปรียบเทียบที่สั้นเกินไป

ภาควิชา ศูนย์ระดับภูมิภาคทางวิศวกรรม
ระบบการผลิต
ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก
สาขาวิชา การจัดการทางวิศวกรรม
ปีการศึกษา 2559
\# \# 5771208021 : MAJOR ENGINEERING MANAGEMENT
KEYWORDS: INVENTORY MANAGEMENT, ABC ANALYSIS, DEMAND FORECASTING

NUTCHA JOEDJUMNONGWITTAYAKUL: Inventory Policy Improvement for a Kitchenware Trader. ADVISOR: PISIT JARUMANEEROJ, Ph.D., 149 pp.

The research objectives are to improve inventory policy for a kitchenware trader in order to reduce the inventory level and improve internal operations. The product movement in 12 months of 2015 for 738 SKUs is evaluated and categorised. Five groups are 1) Non-moving stock 2) Stock with no sales last 6 months 3) Shortperiod stock 4) New product stock and 5) Remaining 185 SKUs. Strategic managements for each group are proposed. The remaining 185 SKUs are classified based on operational aspect by using ABC Pareto. The continuity of demand is the first criteria for sequencing the importance of products, since it can divide groups of continuous and intermittent demand items. The second criteria is number of order in 2015. The third and fourth criteria are the value of sales and average inventory value, respectively. Forecasting approaches and error indicators, and inventory system are proposed. Periodic review policy is proposed for all groups because of high transportation costs. The simulations of the proposed methodology are performed for the policy assessment by using Microsoft Excel. Actual operations in five months between January to May, 2016 are compared with the implementation of the proposed policy. The results show the reduction of inventory level for group A and B, while the service level of the proposed policy can perform without stock out period. Finally, the slow moving products in group C cannot be concluded as it is considered inadequate historical data and comparison period.

| Department: | Regional Centre for | Student's Signature |
| :---: | :---: | :---: |
|  | Manufacturing Systems | Advisor's Signature |
|  | Engineering |  |
| Field of Study: | Engineering |  |
|  | Management |  |

Academic Year: 2016

## ACKNOWLEDGEMENTS

Firstly, I would like to appreciate to my thesis adviser, Pisit Jarumaneeroj, Ph. D., for his contribution and supervision for this thesis. The research completion is from his dedicated time and valued guidance including the provided comments from other committees.

Besides, I would like to express my appreciation to the studied company who kindly allow me to explore and conduct the study with supportive information and suggestions.

Finally, I would like to appreciate my family, especially my mother and my father who always love, care, support, and encourage me to pursue a master degree, and to be a better person.

## CONTENTS

Page
THAI ABSTRACT ..... iv
ENGLISH ABSTRACT ..... v
ACKNOWLEDGEMENTS ..... vi
CONTENTS ..... vii
LIST OF TABLES .....  1
LIST OF FIGURES ..... 3
Chapter 1 INTRODUCTION ..... 7
1.1 BUSINESS OVERVIEW ..... 7
1.2 PRODUCT PROFILE ..... 9
1.3 INVENTORY INFORMATION ..... 10
1.3.1 Inventory Classification by Operation ..... 10
1.3.2 Inventory Record of 2015 ..... 10
1.4 STATEMENT OF PROBLEM ..... 13
1.4.1 Problem Identification ..... 13
1.4.2 Root Causes Analysis ..... 15
1.4.3 Inventory Selection for the Study ..... 18
1.5 OBJECTIVES OF RESEARCH ..... 18
1.6 SCOPE OF RESEARCH ..... 19
1.7 EXPECTED RESULTS AND BENEFITS ..... 19
1.8 RESEARCH METHODOLOGY ..... 20
Chapter 2 LITERATURE REVIEW ..... 22
2.1 INVENTORY MANAGEMENT. ..... 22
2.1.1 Importance of Inventory Management ..... 22
2.1.2 Inventory Cost ..... 24
2.2 DEMAND FORECASTING ..... 25
2.2.1 Qualitative Methods ..... 27
2.2.2 Quantitative Methods ..... 28
2.2.3 Forecasting Error ..... 32
Page
2.3 ABC PARETO ANALYSIS ..... 34
2.4 INVENTORY SYSTEM ..... 36
2.4.1 Typical Inventory System ..... 36
2.4.2 Safety Stock ..... 38
2.4.3 Service Level Measurement ..... 40
2.5 SINGLE-PERIOD MODEL ..... 40
2.6 FIXED-ORDER QUANTITY MODEL ..... 42
2.7 FIXED-TIME PERIOD MODEL ..... 44
2.8 STORAGE MANAGEMENT ..... 46
2.8.1 Warehouse Operations ..... 46
Chapter 3 EXISTING OPERATIONS REVIEW ..... 48
3.1 OVERALL BUSINESS OPERATIONS ..... 48
3.2 EXISTING PROCESS OF OPERATION ..... 49
3.2.1 Ordering Process ..... 49
3.2.2 Warehouse Process ..... 50
3.3 JAPANESE PRODUCTS INVENTORY REVIEW ..... 52
3.3.1 Inventory Classification ..... 52
3.3.2 Proposed Strategic Management ..... 53
3.4 CHAPTER SUMMARY ..... 58
Chapter 4 PROPOSED INVENTORY POLICY ..... 59
4.1 PERFORMANCE MEASUREMENT ..... 59
4.2 PROPOSED INVENTORY POLICY IMPROVEMENT FOR REMAINING STOCK ..... 60
4.2.1 Inventory Classification for a Studied Group ..... 60
4.2.2 Single Customer Verification ..... 64
4.2.3 Inventory Classification Selection ..... 65
4.2.4 Demand Pattern ..... 66
4.2.5 Inventory Model Selection ..... 70
4.2.6 Periodic Review Policy ..... 70
Page
4.2.7 Forecasting Techniques ..... 73
4.2.8 Summary Basis of Implementation ..... 73
4.3 PROPOSED OPERATION IMPROVEMENT ..... 75
4.3.1 Ordering Process ..... 75
4.3.2 Warehouse Flows ..... 76
4.3.3 Warehouse Checking Process ..... 80
4.3.4 Summary of Proposed Documents ..... 82
4.4 CHAPTER SUMMARY ..... 82
Chapter 5 RESULTS AND ASSESSMENT ..... 84
5.1 GROUP A INVENTORY ..... 84
5.1.1 Forecasting Approach Evaluation ..... 85
5.1.2 Periodic Review Policy Simulation Results ..... 89
5.1.3 Sensitivity Analysis for the Weight Factor ..... 101
5.2 GROUP B INVENTORY ..... 102
5.2.1 Forecasting Approach Evaluation ..... 102
5.2.2 Periodic Review Policy Simulation Results ..... 106
5.3 GROUP C INVENTORY ..... 118
5.3.1 Forecasting Approach Evaluation ..... 118
5.3.2 Periodic Review Policy Simulation Results ..... 123
5.4 TOTAL ANNUAL COST ..... 134
5.5 CHAPTER SUMMARY ..... 134
Chapter 6 CONCLUSIONS AND RECOMMENDATIONS ..... 136
6.1 CONCLUSIONS ..... 136
6.2 RECOMMENDATIONS AND CONCERNS ..... 137
REFERENCES ..... 145
VITA ..... 149

## LIST OF TABLES

Table 1.1 Details of Supplier Locations and Storage Places ..... 10
Table 1.2 Inventory Record of 2015 Extracted from CD-Organizer Software ..... 11
Table 3.1 Average Holding Value of Japanese Products in 2015 ..... 53
Table 3.2 Proposed Strategic Management ..... 54
Table 3.3 Types of Short-period Stock ..... 57
Table 4.1 Options for ABC Classification ..... 61
Table 4.2 Comparison of Options for ABC Classification ..... 61
Table 4.3 Single Customer Lists ..... 65
Table 4.4 Single Customer Verification ..... 65
Table 4.5 ABC Pareto Analysis Result ..... 66
Table 4.6 Coefficient of Variation Determination for Demand ..... 70
Table 4.7 Way Forward for Inventory Policy Implementation ..... 74
Table 4.8 Summary of Proposed Documents ..... 82
Table 4.9 Summary of Proposed Policy ..... 83
Table 5.1 Group A Items - Weight Factors Analysis for Exponential Smoothing Technique ..... 86
Table 5.2 Average MAPE for Group A Items and the Minimum Error Forecasting Approach ..... 87
Table 5.3 Average MAD for Group A Items and the Minimum Error Forecasting Approach ..... 87
Table 5.4 Average MSE for Group A Items and the Minimum Error Forecasting Approach ..... 88
Table 5.5 Group A - Comparison of Forecasting Approach Resulting Minimum Error for Each Indicator ..... 88
Table 5.6 Comparison Performance Measurement for Group A Items ..... 100
Table 5.7 Results for Weight Factors Sensitivity Analysis ..... 101
Table 5.8 Group B Items - Weight Factors Analysis for Exponential Smoothing Technique ..... 103
Table 5.9 Average MASE for Group B Items and the Minimum Error Forecasting Approach ..... 104
Table 5.10 Average MAD for Group B Items and the Minimum Error Forecasting Approach ..... 105
Table 5.11 Average MSE for Group B Items and the Minimum Error Forecasting Approach ..... 105
Table 5.12 Group B - Comparison of Forecasting Approach Resulting Minimum Error for Each Indicator ..... 106
Table 5.13 Comparison Performance Measurement for Group B Items ..... 118
Table 5.14 Group C Items - Weight Factors Analysis for Exponential Smoothing Technique ..... 119
Table 5.15 Group C Items - Weight Factors Analysis for Croston's Method ..... 120
Table 5.16 Average MASE for Group C Items and the Minimum Error Forecasting Approach ..... 121
Table 5.17 Average MASE for Group C Items and the Minimum Error Forecasting Approach ..... 121
Table 5.18 Average MSE for Group C Items and the Minimum Error Forecasting Approach ..... 122
Table 5.19: Group C - Comparison of Forecasting Approach Resulting Minimum Error for Each Indicator ..... 122
Table 5.20 Comparison Performance Measurement for Group C Items ..... 134
Table 5.21 Summary for Assessment Results ..... 135
Table 6.1 Group B - Comparison of Coefficient of Variation (CV) for Monthly and Bimonthly Interval ..... 140
Table 6.2 Group C - Comparison of Coefficient of Variation (CV) for Monthly and Bimonthly Interval ..... 141
Table 6.3 Group B - Comparison of Safety Stock for Monthly and Bimonthly Review Interval ..... 142
Table 6.4 Group C - Comparison of Safety Stock for Monthly and Bimonthly Review Interval ..... 142
Table 6.5 Review Interval Comparison Analysis ..... 143

## LIST OF FIGURES

Figure 1.1 Example Products of the Studied Company based in Thailand ..... 7
Figure 1.2 Suppliers' and Customers' base of the Studied Company ..... 8
Figure 1.3 Organization Chart of the Studied Company ..... 8
Figure 1.4 Types of Product Record in 2015 (SKUs) ..... 12
Figure 1.5 Amount of Stock Record in 2015 ..... 12
Figure 1.6 Value of Stock Record in 2015 ..... 13
Figure 1.7 Examples of Overstock Record in 2015 ..... 14
Figure 1.8 Examples of Stock-out Record in 2015 ..... 15
Figure 1.9 Root Causes Analysis ..... 16
Figure 1.10 Steps of Improvement ..... 18
Figure 1.11 Outline for the Research Methodology ..... 20
Figure 2.1 Survey Result of How Important of Inventory Management to Supply Chain Management ..... 23
Figure 2.2 General Inventory Process Flow ..... 24
Figure 2.3 Forecasting Methods Category ..... 26
Figure 2.4 ABC Pareto Analysis ..... 35
Figure 2.5 A Joint Criteria Metrix ..... 36
Figure 2.6 Comparison of Fixed-Order Quantity and Fixed Time Method ..... 37
Figure 2.7 Safety Stock Formulations for Different Inventory Model ..... 39
Figure 2.8 Fixed-order Quantity Model ..... 43
Figure 2.9 Fixed-time Period Inventory Model ..... 45
Figure 2.10 Physical Process in Warehouse ..... 47
Figure 3.1 Overall Business Operation of the Studied Company ..... 48
Figure 3.2 Current Work Flow Process of Periodic Review Policy ..... 50
Figure 3.3 Current Warehouse Management ..... 51
Figure 3.4 Current Warehouse Layout ..... 51
Figure 3.5 Current Warehouse Checking Record ..... 52
Figure 3.6 Flowchart for Item Segmentation ..... 55
Figure 3.7 Steps of Liquidating Dead Stock ..... 56
Figure 4.1 Application of ABC Classification ..... 62
Figure 4.2 Inventory Level for ABC Classification in 2015 ..... 63
Figure 4.3 Inventory Value for ABC Classification in 2015 ..... 63
Figure 4.4 Value of Sales for ABC Classification in 2015 ..... 64
Figure 4.5 Monthly Demand of Group A ..... 67
Figure 4.6 Monthly Demand of Group B ..... 68
Figure 4.7 Monthly Demand of Group C ..... 69
Figure 4.8 Periodic Review Policy ..... 71
Figure 4.9 An Example of Periodic Review Simulation. ..... 72
Figure 4.10 Proposed Work Flow Process of Periodic Review Policy ..... 76
Figure 4.11 Proposed Warehouse Flows ..... 77
Figure 4.12 Receiving-Item and Location List ..... 79
Figure 4.13 Proposed Item Label ..... 79
Figure 4.14 Picking List ..... 80
Figure 4.15 Format for Monthly Warehouse Checking Record ..... 81
Figure 4.16 Proposed Warehouse Checking Process ..... 81
Figure 5.1 An Example of Solver Function used for Finding Optimum Number for Weight Factor ..... 85
Figure 5.2 Group A - Periodic Review Policy Results for Item No. 1-10 (95\% Service Level for Safety Stock) ..... 90
Figure 5.3: Group A - Periodic Review Policy Results for Item No. 11 - 20 (95\% Service Level for Safety Stock) ..... 91
Figure 5.4 Group A - Periodic Review Policy Results for Item No. 1-10 (98\% Service Level for Safety Stock) ..... 92
Figure 5.5 Group A - Periodic Review Policy Results for Item No. 11 - 20 (98\% Service Level for Safety Stock) ..... 93
Figure 5.6 Reduction of an Inventory for Group A Items - $1 / 3$ ..... 95
Figure 5.7 Reduction of an Inventory for Group A Items - 2/3 ..... 96
Figure 5.8 Reduction of an Inventory for Group A Items - 3/3 ..... 97
Figure 5.9 Inventory Results for Group A Items with Receiving Shared Information from A Single Customer ..... 98
Figure 5.10 Inventory Results for Group A Items with No Inventory Reduction for Implementing the Proposed Policy ..... 99
Figure 5.11 Group B - Periodic Review Policy Results for Item No. 1-10 (95\% Service Level for Safety Stock) ..... 107
Figure 5.12 Group B - Periodic Review Policy Results for Item No. 11-20 (95\% Service Level for Safety Stock) ..... 108
Figure 5.13 Group B - Periodic Review Policy Results for Item No. 1-10 (98\% Service Level for Safety Stock) ..... 109
Figure 5.14 Group B - Periodic Review Policy Results for Item No. 11-20 (98\% Service Level for Safety Stock) ..... 110
Figure 5.15 Reduction of an Inventory for Group B Items - 1/2 ..... 112
Figure 5.16 Reduction of an Inventory for Group B Items - $2 / 2$ ..... 113
Figure 5.17 Inventory Results for Group B Items with No Inventory Reduction for Implementing the Proposed Policy - $1 / 2$ ..... 115
Figure 5.18 Inventory Results for Group B Items with No Inventory Reduction for Implementing the Proposed Policy - $2 / 2$ ..... 116
Figure 5.19 Inventory Results for Group B Items with Inventory Increase for Implementing the Proposed Policy ..... 117
Figure 5.20 Group C - Periodic Review Policy Results for Item No. 1 - 10 (90\% Service Level for Safety Stock) ..... 124
Figure 5.21 Group C - Periodic Review Policy Results for Item No. 11 - 20 (90\% Service Level for Safety Stock) ..... 125
Figure 5.22 Group C - Periodic Review Policy Results for Item No. 1-10 (95\% Service Level for Safety Stock) ..... 126
Figure 5.23 Group C - Periodic Review Policy Results for Item No. 11 - 20 (95\% Service Level for Safety Stock) ..... 127
Figure 5.24 Reduction of an Inventory for Group C Items - 1/2 ..... 128
Figure 5.25 Reduction of an Inventory for Group C Items - $2 / 2$ ..... 129
Figure 5.26 Inventory Results for Group C Items with No Inventory Reduction for Implementing the Proposed Policy - 1/2 ..... 130
Figure 5.27 Inventory Results for Group C Items with No Inventory Reduction for Implementing the Proposed Policy $-2 / 2$.131
Figure 5.28 Inventory Results for Group B Items with Inventory Increase for Implementing the Proposed Policy ..... 132

## Chapter 1 <br> INTRODUCTION

Japanese food has become popular in Thailand in the last 16 years (Sushi, 2016), and the Japanese restaurant market in Thailand has been continually growing since then. JETRO Bangkok (JETRO, 2015) reported that, in August 2015, Japanese restaurants in Thailand are the largest market in ASEAN which experiences a 11.5 percent growth rate each year.

With the rising popularity of Japanese restaurants in Thailand, associated businesses in the supply chain are increasing in consequence such as raw materials, food products, Japanese style kitchenware and tableware.

### 1.1 BUSINESS OVERVIEW

The studied company is one of the leading traders providing various types of Japanese style kitchen products including tableware, frozen food, kitchen machines and equipment, food packaging, and miscellaneous disposable products. The company was founded in Thailand in 1993 whose headquarters is located in Japan. Figure 1.1 illustrates examples of products provided by the studied company.


Figure 1.1 Example Products of the Studied Company based in Thailand
The company value proposition is to provide convenience to customers (see Figure 1.2). The customers are ranging from restaurants, supermarkets, and food factories whereas the main suppliers are the headquarters in Japan, a subsidiary company in Singapore and 30 other companies supplying local goods in Thailand.

Kitchen products are gathered from both overseas and local suppliers. After that, the company manages its inventory and delivers the products to customers at the specified service level. As a result, it helps customers reduce their costs of inventory and transaction since they do not need to have high buffering merchandises. Moreover, customers spend less time on ordering process because most of the products used in their units are provided by the company.


Figure 1.2 Suppliers' and Customers' base of the Studied Company
Currently, 12 staff members work for the studied company under four main departments which are sales, accounting \& administration, purchasing, and warehousing. The organization chart is shown in Figure 1.3. The number in the blanket is the number of team members in the department.


Figure 1.3 Organization Chart of the Studied Company

### 1.2 PRODUCT PROFILE

The studied company, based in Thailand, provides over 1,800 SKUs (Stock Keeping Units) of products for restaurants which can be divided into four groups, sorted by usage as follows.

- Kitchen equipment and machines, such as built-in stove and sushi machine. These products are used for food preparation purposes supplied by headquarters in Japan. Generally, the product design is specific with long usage life. The company places orders of these products only on customer demand. Thus, there is no stock for the equipment and machines.
- Tableware, such as glasses, pottery, and ceramics.

The company offers Japanese-style tableware, which is for setting tables and serving food, or even decorative purposes. The products are supplied by the headquarters in Japan and local suppliers. They are generally stocked in the company warehouse (Thailand).

- Food packages and disposable products, such as paper cups and plates, and plastic bags.

These products are for containing food and drinks supplied by the headquarters in Japan, a subsidiary company in Singapore, and local suppliers. They are usually made of paper, plastic, or any disposable materials. The inventory of these types of products occupy most of the company's space in its warehouse. In addition, a concerning factor is that a long holding period deteriorates the product's quality.

- Frozen products, such as steak sauce, curry sauce, tomato sauce, and teriyaki sauce.

The frozen products, which are supplied by local suppliers, require appropriate conditions to be stored. The company has to rent a freezer room in order to keep them.

### 1.3 INVENTORY INFORMATION

### 1.3.1 Inventory Classification by Operation

The suppliers' locations, especially Japan and Singapore, directly affect to the transportation time and operational cycle. Imported goods require a longer transportation time of 45 days, while local products require a shorter transportation time of 2 to 7 days depending on the suppliers' location.

Furthermore, frozen products supplied by local suppliers require a lead time of 30 days. They are kept in a rental freezer room (outside of the company's warehouse) and have an additional constraint of the product lifespan (6-8 months). Table 1.1 illustrates the details of the various suppliers' locations and storage places.

Table 1.1 Details of Supplier Locations and Storage Places

| Groups of Product | Supplier locations | Storage |
| :--- | :--- | :--- |
| Kitchen equipment and machines | Japan | Warehouse |
| Tableware | Japan, Thailand | Warehouse |
| Food package and disposable products | Japan, Thailand, Singapore | Warehouse |
| Frozen products | Thailand | Freezer room |

In addition, there is a group of spare parts stocked in the warehouse for machine maintenance services, for non-selling purposes. Thus, there exist 5 groups of inventories classified by the operations that are as follows;

1) Products from Japan
2) Products from Thailand
3) Products from Singapore
4) Frozen products
5) Spare parts for kitchen machines

### 1.3.2 Inventory Record of 2015

The company uses CD Organizer software for accounting information system. The types of product record extracted from the software are shown in Table 1.2. Groups of product are classified as section 1.3.1. The record shows the total 1,805 SKUs in 2015. Japanese products rank the highest in terms of numbers of items ( 67 percent of the total SKUs), while frozen products rank the lowest with 1 percent of the total SKUs.

It is observable that more than half of the total SKUs ( $58 \%$ of the total SKUs) are defined as short-period inventory which the products are ordered on the customers' request only. The order quantities are typically equal to the customers' orders. In other words, these products require no stock. They are placed in the warehouse for a few days before being delivered to the customers.

Moreover, the last column shows that there is 10 percent of total SKUs having no sale record over the year. Most of them are products from Japan which are 106 SKUs.

Table 1.2 Inventory Record of 2015 Extracted from CD-Organizer Software

| Groups of Product | Types of <br> Product | \%Total | Short- period <br> inventory | \%Group | Non- <br> moving <br> inventory | \%Group |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Products from Japan | 1217 | $67 \%$ | 769 | $73 \%$ | 106 | $56 \%$ |
| Products from Thailand | 407 | $23 \%$ | 231 | $22 \%$ | 15 | $8 \%$ |
| Products from Singapore | 55 | $3 \%$ | 6 | $1 \%$ | 0 | $0 \%$ |
| Frozen products | 25 | $1 \%$ | 8 | $1 \%$ | 0 | $0 \%$ |
| Spare parts for kitchen <br> machines | 101 | $6 \%$ | 33 | $3 \%$ | 68 | $36 \%$ |
| Total | $\mathbf{1 8 0 5}$ |  | 1047 | $\mathbf{5 8 \%}$ | 189 | $\mathbf{1 0 \%}$ |

In addition, the company performs physical stock checking, on the last Saturday of every month. The periodic stock recorded by types, amount, and value are illustrated in Figure 1.4 1.5, and 1.6 respectively.


Figure 1.4 Types of Product Record in 2015 (SKUs)


Figure 1.5 Amount of Stock Record in 2015


Figure 1.6 Value of Stock Record in 2015
The graphs demonstrate that products from Japan are the highest in terms of types, amount, and stock value. Products from Thailand rank the second in terms of types and amount. However, it can be seen that frozen products have the highest value per unit since its low number of unit ranks the second in terms of value. On the other hand, products of Singapore are gradually increasing in the inventory. Lastly, the group of the spare parts records stays steady in 2015.

### 1.4 STATEMENT OF PROBLEM

### 1.4.1 Problem Identification

Regarding historical data, it is evident that some products are ordered and stocked in abundance compared to customer demands causing unnecessary expenses for stock holding such as the cost of units, warehouse cost, opportunity cost and risk of inventory holding cost. However, contrarily, stock outs also occur with some products as shown by the 2015 record. It results in shortage costs, including lost opportunity for sales and creating customer dissatisfaction. As a result, the company aims to improve its inventory system in order to improve their overall operational performance and achieve the higher profits.

In order to illustrate the problem of the current ordering system that results in high level of stock and stock out events, six examples of stock keeping units in 2015
are shown in Figure 1.7 and 1.8. Figure 1.7 shows three units that had high inventory level compared to the demand level, whereas Figure 1.8 shows three units that had their inventory level go down to zero in 2015.
a) Product ID: 250625

|  | Product ID: 250625 |  |  |
| :--- | ---: | ---: | ---: |
| Month | Order In | Sold units | Stock level in <br> 2015 |
| from 2014 |  |  | 43,900 |
| January | 12,000 | 17,000 | 38,900 |
| February | 12,000 | 17,000 | 33,900 |
| March | 24,000 | 15,400 | 42,500 |
| April | 24,000 | 12,300 | 54,200 |
| May | 1,100 | 9,400 | 45,900 |
| June | 24,000 | 10,600 | 59,300 |
| July | 24,000 | 13,300 | 70,000 |
| August | 12,000 | 10,800 | 71,200 |
| September | 12,000 | 14,100 | 69,100 |
| October | - | 15,200 | 53,900 |
| November | 12,000 | 11,800 | 54,100 |
| December | 24,000 | 8,600 | 69,500 |


b) Product ID: 223552

|  | Product ID: 223552 |  |  |
| :--- | :---: | ---: | ---: |
| Month | Order In | Sold | Stock level in <br> 2015 |
| from 2014 |  |  | 20,600 |
| January | 20,000 | 6,000 | 34,600 |
| February | - | 5,300 | 29,300 |
| March | 20,000 | 6,000 | 43,300 |
| April | - | 12,000 | 31,300 |
| May | 300 | 8,000 | 23,600 |
| June | 20,000 | 5,000 | 38,600 |
| July | - | 8,000 | 30,600 |
| August | 20,000 | 5,000 | 45,600 |
| September | 20,000 | 2,000 | 63,600 |
| October | 20,000 | 12,000 | 71,600 |
| November | - | 5,000 | 66,600 |
| December | - | 5,000 | 61,600 |


c) Product ID: 375080

|  | Product ID: 375080 |  |  |
| :--- | :---: | ---: | ---: |
| Month | Order In | Sold | Stock level in <br> 2015 |
| from 2014 |  |  | 697 |
| January | - | 24 | 673 |
| February | - | 52 | 621 |
| March | - | 10 | 611 |
| April | - | 5 | 606 |
| May | - | 80 | 526 |
| June | 180 | 22 | 684 |
| July | 180 | 76 | 788 |
| August | - | 265 | 523 |
| September | - | 12 | 511 |
| October | 720 | 61 | 1,170 |
| November | 360 | 121 | 1,409 |
| December | 120 | 11 | 1,518 |



Figure 1.7 Examples of Overstock Record in 2015
a) Product ID: 127792

|  | Product ID: 127792 |  |  |
| :--- | ---: | ---: | ---: |
| Month | Order In | Sold | Stock level <br> in 2015 |
| from 2014 |  |  | 411 |
| January | 300 | 276 | 435 |
| February | - | 186 | 249 |
| March | 360 | 168 | 441 |
| April | 180 | 348 | 273 |
| May | - | 273 | - |
| June | 240 | 240 | - |
| July | 360 | 277 | 83 |
| August | 360 | 336 | 107 |
| September | 390 | 282 | 215 |
| October | 480 | 138 | 557 |
| November | 420 | 306 | 671 |
| December | 450 | 324 | 797 |


b) Product ID: 159145

|  | Product ID: 159145 |  |  |
| :--- | :---: | ---: | ---: |
| Month | Order In | Sold | Stock level <br> in 2015 |
| from 2014 |  |  | 15 |
| January | 10 | 12 | 13 |
| February | - | 3 | 10 |
| March | - | - | 10 |
| April | - | 2 | 8 |
| May | - | 2 | 6 |
| June | 10 | 12 | 4 |
| July | - | 1 | 3 |
| August | - | 3 | - |
| September | 30 | 4 | 26 |
| October | - | - | 26 |
| November | 10 | 12 | 24 |
| December | - | - | 24 |


c) Product ID: 230136

|  | Product ID: 230136 |  |  |
| :--- | ---: | ---: | ---: |
| Month | Order In | Sold | Stock level <br> in 2015 |
| from 2014 |  |  | 1,950 |
| January | 1,800 | 300 | 3,450 |
| February | 1,800 | 1,400 | 3,850 |
| March | - | 700 | 3,150 |
| April | 600 | 2,400 | 1,350 |
| May | - | 900 | 450 |
| June | 600 | 1,050 | - |
| July | 1,200 | 1,200 | - |
| August | 1,800 | 600 | 1,200 |
| September | 1,200 |  | 2,400 |
| October | 600 | 800 | 2,200 |
| November | 1,200 | 1,200 | 2,200 |
| December | 2,400 |  | 4,600 |



Figure 1.8 Examples of Stock-out Record in 2015

### 1.4.2 Root Causes Analysis

According to the problem statement in the previous section, root causes analysis is performed, as shown in Figure 1.9, in order to identify the viable improvement. Information is collected from interviews with the manager, warehousing operators, sales, and purchasing departments' staff. The causes of current problems are separated
into internal and external factors. Internal factors concern internal operations, whereas external factors represent external environmental circumstances affecting the organization.


Figure 1.9 Root Causes Analysis
To begin with, internal operations consist of inventory management and warehousing management. The potential causes are listed in Figure 1.9. It is observable that the current inventory policy and demand forecasting are unclear. The purchasing decisions are made by a staff member, who highly relies on his experience. Additionally, there is no standard operating procedure for both inventory and warehousing management. Miscommunication and human error can also be found. For example; a stocked product is missing because someone moved it without notifying others.

External factors are change in demands and substitution from newly launched products. Long lead times impact the company's operations since the supplier is the headquarters located in Japan.

The minimum order quantity in this context means some items cannot be ordered in a single unit as they are supplied by packs or boxes. Then, the number of orders would be counted by the products' pack.

In addition, it is seen that there are many products stocked just for one single customer. Some products are screened with the customer logo which poses risks for the company. In the past, there was an incident that the customer's business had to be closed, while the company still carried a large number of the customer's stock.

Typically, external factors cannot be controlled. The operations in organization should have capabilities to cope with changes or issues from their environment, in order to survive in the industry. Hence, improvement of internal operations will be proposed.

Steps for improvement are proposed as shown in Figure 1.10. Firstly, standard operating procedure is proposed to clearly identify the roles of employees and improve internal communication. The methodology starts by reviewing the existing overall business operations. Then, the process improvement will be proposed.

Secondly, the inventory policy will be proposed regarding the specified steps. Groups of studied inventory will be identified and classified. Demand pattern will be evaluated. Lastly, the policy will be developed and assessed.


Figure 1.10 Steps of Improvement

### 1.4.3 Inventory Selection for the Study

According to the inventory classification by operations in section 1.3.1, Japanese products are the most critical items that affect the organization in terms of operations, due to their variety and their use of major areas in the warehouse. Moreover, the challenge of inventory management is the long transportation period of 45 days. It creates the risks and difficulty of the demand estimation. Thus, the products from Japan will be selected for the inventory policy improvement study.

In addition, frozen products have small fractions but high value, but they are not included in the study as the company recently reached a new agreement with the customer resulting in less inventory for this product type.

### 1.5 OBJECTIVES OF RESEARCH

The objective of the study is to propose an inventory policy improvement for a kitchenware trader based in Thailand. Three key performance index (KPIs) which are
inventory level, inventory value and service level will be evaluated the performance of the proposed policy.

### 1.6 SCOPE OF RESEARCH

This research concentrates on the improvement of inventory system based on evaluation and analysis of the relevant data. The scopes are as follows;

- Japanese products will be the focus group for the study.
- Historical data up to 12 months (2015 data) will be evaluated and used for the research
- Current inventory process and policy will be evaluated.
- Demand characteristics of the studied products will be analysed.
- The inventory policy development will be proposed as follows;
- Purchasing process improvement
- Product Classification
- Proposed managing strategy which includes proper forecasting method, safety stock with sensitivity of customer service level and inventory management policy

The results of the proposed policy will be compared with the company's actual performance for five months (January to May 2016). Discussion and recommendation will be summarised.

### 1.7 EXPECTED RESULTS AND BENEFITS

- A well-structured inventory policy for the studied company which results in a better inventory control management
- Reduction of inventory holding which results in a reduction of inventory unit cost and cost of holding inventory.
- Better internal communication


### 1.8 RESEARCH METHODOLOGY

The company overview, product profiles, inventory records, statement of problem, objectives, scope of the study, and expected benefits are demonstrated in this Chapter. This section will briefly outline the steps for the research by chapter in this thesis as illustrated in Figure 1.11.


Figure 1.11 Outline for the Research Methodology
Chapter 2: Related theories and tools for inventory and warehouse management will be explored. Forecasting techniques and inventory system will be studied.

Chapter 3: Overall business operation and current operation processes will be demonstrated. Data of Japanese products inventory gathered from physical monthly checking records and retrieved from accountancy software will be evaluated and classified. Strategic management for each group will be proposed.

Chapter 4: Performance index will be identified for the assessment phase. ABC Pareto will be used for item classification. Demand patterns will be studied in order to propose appropriate forecasting techniques and error indicators. Furthermore, basis and assumptions for proposed inventory system will be listed.

Chapter 5: Results are evaluated and summarised for all groups. Identified forecasting errors will be used for forecasting technique verification and selection. Five months (January to May 2016) comparison of actual operation will be shown in a curve of
continuous inventory level and periodic bar chart. The daily average inventory level and value will be determined and compared.

Chapter 6: Conclusions, recommendation, study limitations and future study will be described.

## Chapter 2

LITERATURE REVIEW

Related theories and studies for the research are reviewed and described in this chapter.

### 2.1 INVENTORY MANAGEMENT

### 2.1.1 Importance of Inventory Management

Inventory is a stock of items or products that provide continuity of operations. The utilization of inventory is generally applied in the business world. For example, retail stores have to stock finished goods in order to response to the demand from customers. The ability to immediately deliver products to customers is the most distinctive value proposition (Donner, 2014). Stock out does not only cause an inability to provide products to customers but also causes the company to lose their opportunity to sell their products. Moreover, it might cause the company to lose their market share due to the decrease in customer satisfaction. On the other hand, it is essential for controlling economic inventory level (just enough). If the inventory level is above necessary (over-stock), it can create excessive costs to the operation. Some products also become expired or deteriorated when holding for a period.

Several purposes of inventory are summarised by Ganesan (Ganesan, 2014) as follows;

- To be capable for the demand fluctuations or shortage
- To ensure the unreliability of supply
- To take advantage of lot size discount
- To smooth production schedules

Inventory management takes an important role in supply chain management (Acar and Gardner, 2012). Chief Supply Chain Officer (CSCO, 2011) gathers the survey on supply chain network inventory management of 225 various sizes of enterprises and business units (under $\$ 500$ million to over $\$ 10$ billion). The response of how important of inventory management to the supply chain improvement of their companies is shown in Figure 2.1. It is evident that $24 \%$ choose it as a top supply chain
management priority. More than half of organizations (52\%) consider inventory management is highly important.

Priority of "Inventory Management Excellence" in Your Company/Division


Figure 2.1 Survey Result of How Important of Inventory Management to Supply Chain Management
Source:(CSCO, 2011)
The effective inventory system, good ordering-receipt system, shorten inventory lead time and building forecasting accuracy can also increase sales production because salespeople do not have to spend time on stock reconfirmation to clients or order changing which allow them to contribute more to customer services (Jacobs and Chase, 2013).

Relph and Milner (Relph and Milner, 2015) identified three pillars (core activities) covered by inventory management;

- Inventory Planning: is about defining the optimum levels of inventory which requires an understanding of product process flow, sales volume, and demand pattern. Planning need to be identified based on variously considered parameters such as frequency of order, safety stock policy, lead time, and minimum order quantity.
- Inventory Control: is about managing the accuracy of the inventory data and physical inventory movement. Information alignment is crucial for inventory management as it can provide an effective operation. The well-structured system of record could help the organizations know where and what quantities they holding.
- Inventory Balancing: is about managing and monitoring the inventory as a plan. The good business system would help inventory balancing management such as clear inventory planning policy and accurate inventory control.

The general process flow of inventory consists of three steps; Forecast, Plan and, Execute as shown in Figure 2.2.


Figure 2.2 General Inventory Process Flow Source: Adapted from (Relph and Milner, 2015)

### 2.1.2 Inventory Cost

Inventory cost is an important factor to perform inventory management (Abbasi, 2011). Relph and Milner (Relph and Milner, 2015) identified four main types of cost related to inventory cost.

1. Inventory Unit Cost - The cost per unit of holding products. In general, the larger order is the lower unit price.
2. Ordering Inventory Cost / Cost of Set-up - Associated cost of order replacement is considered as an ordering cost such as the cost of placing an order, packaging, transporting and receiving items. The cost of set-up is a machine or workstation set-up cost including consumed time and resources. EOQ or Economic Order Quantity is a tool to find the optimum ordering cost (section 2.6).
3. Inventory Holding Cost - There are many related activities considered in inventory holding cost like warehousing, handling cost (renting, insurance,
lighting or heating), tied up cost of inventory (working capital cost), risk costs (obsolete stock, deterioration) and opportunity costs (lost opportunity to invest in other areas).

The inventory holding cost is typically estimated as a percentage of the value of an item which is inaccurate since the cost may change from one accounting period to the next. Holsenback and McGrill (Holsenback and McGill, 2007) suggested that the determination by a percentage of value of inventory normally includes only variable cost. Fixed costs such as space, capital equipment, and personnel are essentially fluctuate with inventory volume, but it also depends on the industry and type of inventory.
4. Shortage Cost - It occurs when the inventory is not enough for the demands. The costs include cost of sales and cost of lost opportunity for sales. Moreover, it could result in customer dissatisfaction and affect to the relationship in the long run. Safety stock should be used for inventory management in order to prevent inventory shortage.

### 2.2 DEMAND FORECASTING

Forecasting is a process of future estimation or prediction which involves subjective nature and uncertainties. The subjectivity of forecasting can be explained like the differentiation of forecasting method selection, variable assumptions, knowledge and considered factors which are hard to be quantified and results various forecasting outcome (Welch, 2015).

The common purpose of forecasting is to have the least number of inventories which could serve customers' demand and would minimise inventory buying cost, inventory holding cost, and changing in the master schedule (Thomopoulos, 2015). Moreover, it is critical for an organization to have effective forecasting process in order to generate forecasting accuracy and organizational capability to fast react to a deviation from forecast (Shobrys and White, 2002). Forecasts can be used for many organizational functions; marketing, sales, production/purchasing, finance, manpower and etc.

Forecasting approaches can be categorised into two types; Qualitative Forecasting Method (Subjective) and Quantitative Forecasting Method (Objective).

Figure 2.3 demonstrates forecasting types.


Figure 2.3 Forecasting Methods Category
Source: Adapted from (Welch, 2015)

Armstrong (Armstrong, 2001) compared and examined six ways of forecasting approach selection; Convenience, Market popularity, Structured judgement, Statistical Criteria, Relative track record and Guidelines from prior research.

The research found that convenience and market popularity are not recommended. Convenience is hard to demonstrate the logical details since it depends on perception decision and skills of the forecasting performer. Convenience also may lead to large errors from the large environmental change. The method could be selected based on convenience only when the situations are stable and the expectation of accuracy is not critical. Market popularity is what others do. It is not recommended because the conditions and details of what others do are not generally described. Also, their success of uses is not mentioned. Lastly, selection based on market popularity is the opponent of innovation.

Structured judgement, Statistical criteria, Relative tracking record and Guidelines from prior research can help in selecting method. Criteria of structured judgement such as accuracy, ease of use, flexibility and related cost consideration can be suitably specified for the individual system and organization. Score rating for the selection result should be made by an expert without prejudice. Statistical criteria approach is appropriate only for some situations such as a comparison between qualitative and quantitative method. It is not recommended for the narrow selecting method.

Relative track record is to compare the actual record to various forecasting techniques. It is important to have enough historical data and concern factors for the demand change in the business. Guidelines from prior research are also the useful way and result the lower cost for operations.

In addition, Acar and Gardner studies (Acar and Gardner, 2012) concluded that forecasting method selection based on the operational performance must be evaluated by trade-off between cost and service for the whole supply chain.

### 2.2.1 Qualitative Methods

The future prediction of qualitative approaches is typically based on gathered information from experiences, relationships, judgement and pattern intuition while
quantitative approaches are concerned with estimating based on historical data (Welch, 2015). Two situations which qualitative methods could be applied suggested by Welch (Welch, 2015) are;

1. When there is no qualified and reliable quantity data or new market/product development.
2. When quantitative historical data is available but there could be other factors affecting the future occurs. In the other words, there is a reason that extrapolation of the past cannot be used for predicting.

There are some concerns about the qualitative methods using. Firstly information gathering has to be clear. Questions misunderstanding of surveys can occur because it cannot be counted by numbers. Secondly, the judgement also should be carefully considered. Overconfidence can be the enemy of precise forecasting. Lastly critical evaluation of decision-making process should be developed for the predictions. In-Group decision-making may be influenced by high cohesive or strong leadership group which may lead to deviation from consensus (Welch, 2015).

### 2.2.2 Quantitative Methods

Quantitative method requires the historical data to be analysed in order to project future quantities and trends. There are two types of methods; causal and time series.

## Causal Models

The concept of causal models is knowledge of two or more variables relationships and able to identify what factors affect better prediction than others. For example; Sales volume would increase as advertising spending. Simple equation can be written;

Volume of Sales $=A+(B \times$ advertising spending $)$
Where A: sales without advertising
B: amount of unit that could increase as advertising spending

Users should concern that there is a limit of how much of advertising can raise the sales volume. Maximum cap is market size. Regression analysis is the main technique for causal models. However, causal variable identification requires long process and expensive cost. According to Armstrong (Armstrong, 2001), all seven case studies from long-term forecasts (large change) results that causal methods are more accurate than naïve method.

## Time Series Methods

Repetition of past pattern of demand relies on time series method forecasting. Then this method is suitable for steady conditions and short-period forecasting (Welch, 2015).

Hyndman et al. (Hyndman et al., 2008) suggested four types of time series pattern as follows;

- Trend ( $\boldsymbol{T}$ ): The demand gradually increasing or decreasing over the time or a long-term direction of the series.
- Seasonal (S): A demand variation that repeats by day, week, month or year
- Cycle (C): A pattern that repeats with unknown changing periodicity (such as business cycle)
- Irregular or error (E): A random demand, neither increasing nor dropping over time and average demand is relatively steady.

Several time series methods are described as follows;

1) Naïve approach: The prediction of the next review period is equal to the last period

$$
\begin{aligned}
& \qquad F_{t+1}=A_{t} \\
& \text { where } \quad F_{t+1}: \text { Forecast for next period } \\
& \\
& \\
& A_{t}: \text { Actual demand for present period }
\end{aligned}
$$

2) Simple moving average: The average of historical demand in a specific period is used such as 3 months and 5 months. The longer period suits to the steady
demand characteristic since it would result in slower to response the demand change.

$$
F_{t+1}=\frac{1}{n} \sum_{i=0}^{n-1} A_{t}=\frac{1}{n}\left(A_{t}+A_{t-1}+\cdots+A_{t-n+1}\right)
$$

where $F_{t+1}$ : Forecast in period $\mathrm{t}+1$
$A_{t}$ : Actual demand in period t
$n$ : The number of period used for forecast
3) Simple exponential smoothing: All observations are used for forecasting. The weight of observations is heaviest for the most recent data and exponential decreased for the older data. Alpha ( $\alpha$ ) is the weight factor which typically values between 0 and 1 .
a. If the alpha is equal to 1 , the previous observations are entirely neglected (Kalekar, 2004). The forecasting results will only rely on the most recent data. Thus, the forecasting will be the same Naïve method.
b. If the alpha is equal to 0 , the current observation is ignored. All forecasting results will be equal to the initial value.

```
F}\mp@subsup{F}{t+1}{}=\propto\mp@subsup{A}{t}{}+(1-\alpha)\mp@subsup{F}{t}{
where F}\mp@subsup{F}{t+1}{}\mathrm{ : Forecast in period t+1
    F}\mp@subsup{t}{\mathrm{ : Previously forecast demand in period t}}{\textrm{t}
    At: Actual demand in period t
    \propto:Weighting factor, smoothing constant
```

4) Double exponential smoothing (Holt's method): This method suits for the data that has a trend. Two dimensions which is a smoothed estimate of value and growth are considered (Kalekar, 2004). The concept works quite similar to the simple exponential smoothing except it updates two components each period.

$$
\begin{aligned}
& \qquad \begin{array}{c}
A F_{t+1}=F_{t+1}+T_{t+1} \\
F_{t+1}=\propto A_{t}+(1-\propto) F_{t} \\
T_{t+1}=\beta\left(F_{t+1}-F_{t}\right)+(1-\beta) T_{t} \\
\text { where } \\
A F_{t+1}: \text { Double exponential smoothing forecast in period } \mathrm{t}+1 \\
F_{t+1}: \text { Forecast with basic exponential smoothing } \\
F_{t}: \text { Previously forecast demand in period } \mathrm{t} \\
A_{t}: \text { Actual demand in period } \mathrm{t} \\
\propto: \text { Weighting factor, smoothing constant } \\
T_{t+1}: \text { Exponential smoothing trend factor } \\
T_{t}: \text { The last period trend factor } \\
\beta: \text { Smoothing constant for trend }
\end{array}
\end{aligned}
$$

5) Croston's method: A popular method for the data that contains many zeros or intermittent demand is developed by Croston (Croston, 1972). The method takes account of demand magnitude and inter-arrival time between demands. It applies simple exponential smoothing separately to each derived time series. The forecast result is the ratio of the non-zero forecast demand and the time gap.

$$
\begin{aligned}
& C F_{t+1}=Z_{t} / P_{t} \\
& \text { If } A_{t}=0 \\
& Z_{t}=Z_{t-1} \\
& P_{t}=P_{t-1}
\end{aligned}
$$

If $A_{t}>0$
$Z_{t}=\propto A_{t}+(1-\propto) Z_{t-1}$
$P_{t}=\alpha N_{t}+(1-\alpha) P_{t-1}$
where
$C F_{t+1}$ : Croston forecast in period $\mathrm{t}+1$
$Z_{t}$ : Forecast magnitude of the individual transaction in period t
$Z_{t-1}$ : Forecast magnitude of the individual transaction in period $\mathrm{t}-1$
$A_{t}$ : Actual demand in period t
$\propto:$ Weighting factor, smoothing constant
$P_{t}$ : Forecast number of period of trancsaction occur in period t
$P_{t-1}$ : Forecast number of period of transaction occur in period t-1 $N_{t}$ : Actual number of period since last transaction

It is common to understand that there is no universal forecasting approach. Factors and situation should be considered for method selection such as available time, data pattern, budget, the size of information intended use (control/planning), and accuracy needs. Adequate effort for forecasting should be spent. Excessive resources and time will be a waste for the organization. The importance of required forecasting accuracy needs could be based on the volume of products (vary to the value of money) and customer categorization.

The whole planning flow in the organization including production and inventory management should be analysed for defining the whole process of forecasting (Kerkkänen et al., 2009). Capacity utilization should be concerned with both planning and forecasting. Information sharing and keeping update among supply chain of planning, forecasting and inventory replenishment can improve forecasting effectiveness (Shobrys and White, 2002).

### 2.2.3 Forecasting Error

Perfectly correct forecasting is almost impossible. There are tons of different factors which could affect the actual demand. However, demand forecasting is better than do nothing. Blinding operation without critical consideration is surely not a good idea. As mention above there are many forecasting methods. Forecast error is to justify what method is suitable for each specific demand.

The forecast error (e) is the difference between the actual value (a) and forecast value (f) observed at the same period. It came from the idea that actual demand is a sum of forecast value and forecast error.

$$
e=a-f
$$

There are four main forecast error measurements (Hyndman, 2006).

- Forecast Error Metrics i.e. MAE or MAD
- Percentage Error Metrics i.e. MAPE
- Relative Error Metrics i.e. MdRAE, GMRAE
- Scale-Free Error Metrics i.e. MASE

MAE or MAD (Mean Absolute Error or Mean Absolute Deviation)

$$
\begin{aligned}
& \left.M A D=\frac{1}{n} \sum \right\rvert\, \text { actual }- \text { forecast } \mid \\
& \left.M S E=\frac{1}{n} \sum \right\rvert\, \text { actual }- \text { forecast }\left.\right|^{2}
\end{aligned}
$$

MAD determines the size of the error in units. It results in the same standard deviation of the system (scale dependent) (Donner, 2014). It suits to intermittent and low-volume data. The caution of this method is when measuring MAD for multiproducts, high volume items may dominate the results which could lead to data misinterpretation (Stellwagen, 2011). Other scale-dependent error methods are GMAE (Geometric Mean Absolute Error) and MSE (Mean Square Error).

## MAPE (Mean Absolute Percent Error)

MAPE method is to measure the size of the error in percentage.

$$
\text { MAPE }=\frac{1}{n} \sum \frac{\mid \text { actual }- \text { forecast } \mid}{\mid \text { actual } \mid} \times 100
$$

This method can illustrate error in the proportion of total units. The comparison of forecast performance between different series could be performed. MAPE is scale sensitive. It does not suit for a low number of units or data because actual is the denominator. For example, the actual value is very low, it can result greatly MAPE result. MAPE is also unidentified if the actual demand is zero (Stellwagen, 2011). Hence, MAPE is inappropriate for intermittent demand information.

## MdRAE (Median Relative Absolute Error)

Relative errors are an alternative method involves each error divided by the error from benchmarking of forecasting.
error*: forecast error obtained from benchmark method

$$
M d R A E=\operatorname{median}\left(\frac{\text { error }}{\text { error } *}\right)
$$

## MASE (Mean Absolute Scaled Error)

Scale-free error (MASE) was proposed by Hyndman (Hyndman, 2006). The method suits for intermittent series. One-period-ahead forecast is generated from each data point by naive method.

$$
\text { MASE }=\frac{1}{n} \sum \frac{\text { error }}{\left.\frac{1}{n-1} \sum_{i=2}^{n} \right\rvert\, \text { actual }_{i}-\text { actual }_{i-1} \mid}
$$

Measuring errors for multi-items can be generally seen in the real business world. MAPE method potentially creates a problem with low amount items (resulting in high MAPE). The simple solution is to weight each item MAPE. Another practical solution is product categorization (ABC Pareto Analysis) to separate groups of products by volume, activities, sales or else.

### 2.3 ABC PARETO ANALYSIS

Warehouse activity profiling or ABC analysis is a statistical measurement of warehouse activity (Bartholdi III and Hackman, 2011). The main idea for inventory management is to identify groups of product in $\mathrm{A}, \mathrm{B}$, and C by using usage value of inventory management and procurement (Richards and Grinsted, 2013). It is usual of Pareto law that a small percentage of units sold to account high percentage of value of units (Muckstadt and Sapra, 2010). The usage value is the product of usage over the period of time. The determination needs to understand workload in the facilities, consumed resources, and customers ordering pattern. The period of time could be a year, a month or a week depending on the business characteristic. Results of classification are; A (small proportion of most activity usage), B (medium usage) and C (a large fraction of few usage value).

The model can apply for several alternative criteria related to the operations such as quantity of inventory, value of sales, frequency of sales, number of customer request and etc. Figure 2.4 illustrates an example of ABC Pareto application to the sales value information.


Figure 2.4 ABC Pareto Analysis
Source: Adapted from (Muckstadt and Sapra, 2010)
ABC analysis is a beneficial tool for inventory management. It can be used for balancing between administrative effort (consumed manpower for planning and ordering) and replenishment inventory (cycle stock level and inventory holding cost) (Richards and Grinsted, 2013). Moreover, the product classification can be used as a factor for storage decision for warehouse or retail shops which benefit for the operations.

According to Flores and Clay Whybark (Flores and Clay Whybark, 1986), ABC multi-criteria approach is proposed when there is more than one important dimension for categorization. An example is given in Figure 2.5. Ten items are categorised by dollar usage and lead time. The purpose is still to reclassify the items in three groups; $\mathrm{AA}, \mathrm{BB}$, and CC. An item like part number 3 could be applied numerical combinations of two dimensions. This example reclassifies A-B and B-A as A-A, A-C and C-A as BB, and B-C and C-B as C-C. Item by item basis should be judged in order to achieve the reclassification.

The successful of the framework application was mentioned in a manufacturing in Mexico (Flores and Clay Whybark, 1986). Previously, the annual dollar usage had been the only criteria for the part classification. The company experienced shortages. The analysis showed the missing items were in C Class. Then, the company applied the
second criteria of lead time in the categorisation. The new policy apparently improved the inventory investment and availability of the items since the lead time effect to the schedule change, obsolescence, and market fluctuations.

| Part No. | Dollar Usage | Lead Time |
| :---: | :---: | :---: |
| 1 | B | A |
| 2 | C | C |
| 3 | A | C |
| 4 | B | B |
| 5 | A | A |
| 6 | B | C |
| 7 | C | B |
| 8 | C | C |
| 9 | C | B |
| 10 | C | C |



Figure 2.5 A Joint Criteria Metrix
Source: Adapted from (Flores and Clay Whybark, 1986)
Last but not least, application of the model is crucial to consider related operational and external factors like product life cycle and changes of consuming behaviour. Repetition of group classification should be performed in a suitable period of time.

### 2.4 INVENTORY SYSTEM

### 2.4.1 Typical Inventory System

Inventory planning process and replenishment policies are closely related. The ideal scenario is to establish the decision of inventory planning process which replenish the stock at the most optimum level. Jacobs and Chase (Jacobs and Chase, 2013) described three techniques for variable demand inventory management model;

Single-period model: The model is for products which have one time purchasing such as newspapers (renew every day), $t$-shirt for a sports event for one-time event, airline flights, and etc. The product demand will be zero after a specific time.

Fixed-order quantity model ( $Q$ model): The model is multi-period inventory system for maintaining in-stock items. It is a continuous review policy. The economic order quantity (EOQ) would be defined. The certain amount of order will be placed when the inventory drops to reorder level at any time.

Fixed-time period model ( $\boldsymbol{P}$ model): The model is multi-period inventory system for maintaining in-stock items. It refers to periodic review system, fixedorder interval system, and P model. The inventory would be ordered in a particular period of time. The Certain time interval delivery is beneficial for a group of items which could be ordered together. Ordering cost can be saved such as resource, warehousing moving and etc.

The comparisons between two techniques for multi-period inventory models are illustrated in Figure 2.6. Expensive items or critical spare parts best suit with fixedorder quantity system as average inventory level is lower than fixed-time period model (Klassen and Menor, 2006). Fixed-order quantity system requires monitoring closely and fast responsiveness to potential stock-out. Then fixed-order quantity system would consume more time and resources compared to the fixed-time period system.

| Feature | Q-Model <br> Fixed-Order Quantity Model | P-Model <br> Fixed-Time Period Model |
| :---: | :---: | :---: |
| Order quantity | Constant (the same amount ordered each time) | Variable (varies each time order is placed) |
| When to place order | When inventory position drops to the reorder level | When the review period arrives |
| Recordkeeping | Each time a withdrawal or addition is made | Counted only at review period |
| Size of inventory | Less than fixed-time period model | Larger than fixed-order quantity model |
| Time to maintain | Higher due to perpetual recordkeeping |  |
| Type of items | Higher-priced, critical or important items |  |

Figure 2.6 Comparison of Fixed-Order Quantity and Fixed Time Method Source: Adapted from (Jacobs and Chase, 2013)

### 2.4.2 Safety Stock

Safety stock is an amount of additionally carried items for an uncertainty of supply and demand. The intention of safety stock is to mitigate stock out event for the majority (required service level), not for all (King, 2011). Many different criteria can be used to determine safety stock. The simple approach is to identify the level of stock to be kept with consideration of variable demand.

According to Holsenback and McGrill (Holsenback and McGill, 2007), the methodology named "Statistical safety stock" is used to quantify variable factors. The result is determined based on probability, desired service level, and the product life cycle of finished goods. There are four variables considered for the study;

- The desired service level
- The variance of demand
- The lead time for replenishment
- The supplier reliability or process of manufacturing

It is found that the variance of forecast is usually the most impact to the safety stock. The second important factor is the service level. To ensure the high service level, safety stock is increased in consequence. Nevertheless, the more safety stock means the more cost. Hence, the trade-off between inventory investment and desired service level can be performed for the inventory ordering decision.

Regarding the complexity and uncertainty of variables, safety stock formulations model as Figure 2.7 is proposed by Talluri et al. (Talluri et al., 2004)


Figure 2.7 Safety Stock Formulations for Different Inventory Model Source: Adapted from (Talluri et al., 2004)

Where
SS : Safety Stock
L : Lead time for replenishment
$\bar{d} \quad$ : Average demand in a review period
$\bar{d}_{L} \quad$ : Average demand during lead time
$\sigma_{T} \quad:$ Standard deviation of demand in a review period
$\sigma_{L} \quad:$ Standard deviation of demand during lead time
$S_{L} \quad:$ Standard deviation of lead time
$Z \quad$ : Number of standard deviation for a desired service probability (Areas of the Cumulative Standard Normal Distribution, can use Excel NORMSINV function)

In addition, the application of standard deviation for inventory level estimation is not recommended for seasonal demand pattern since it can result the excessive inventory level as the demand fluctuation (Ganesan, 2014).

### 2.4.3 Service Level Measurement

Service level is a critical concern for inventory management. Excessive service level results in cost due to too much inventory. On the contrary, inadequate service level may result in loss of opportunity for sales and creating customer's dissatisfaction.

The service level measuring is not absolute depending on the context and objectives of the operation. According to Ronen (Ronen, 1983), inventory service level must be defined and measured in an effective and relevant manner. For example; the retail store measures the service level from lost sales. Unfortunately, it is very difficult to measure. When the customer does not see the product on the shelf, he may just pass by and looks for it from other shops.

There are many ways for service level measuring such as the percentage of the total demand in units, the percentage of the demand in orders, and the percentage of the time spent with stock out over a total period. Typically, there are two types of service level measuring; cycle service and fill rate (Shivsharan, 2012).

Constantin (Constantin, 2016) stated that ABC analysis which categorise groups of product based on important can be assigned its own service level. For example; Group A items are high service level ( $96-98 \%$ ), group B items are medium service level (91-95\%), and group C items are lower service level ( $85-90 \%$ ).

### 2.5 SINGLE-PERIOD MODEL

Probability approach is generally used for estimating numbers of product which can reduce the risk of stock-out. An example will be given in order to illustrate the determination.

An example is given in order to illustrate the methodology of probability approach;

Situation: The average of weekly magazine demand is 50. A few months record shows that the standard deviation is 4 . The sales probability distribution is assumed normal. If magazine retailer stock 50 every week, it will be $50 \%$
chance of stock-out and $50 \%$ over-stock. The retailer wants $80 \%$ chance of not stock out.

## Methodology:

In order to pursue $80 \%$ service level, the extra stock will be calculated.

$$
\text { The extra stock }=Z \sigma
$$

$Z$ : The cumulative standard normal distribution
$\sigma:$ The standard deviation

The cumulative standard normal distribution of $80 \%$ is 0.84 . (Microsoft Excel function also can be used $(\operatorname{NORMSINV}(0.8)=0.84162))$.

The additional stock that retailer should take is equal to $0.84162 \times 4=3.36648$ or 4.

Thus, a total stock keeping units of weekly magazine is 54 .

Moreover potential profit and loss can be considered for extra stock consideration.

## Situations of profit and loss consideration;

Cost per unit of the magazine is 20 THB (Cost per unit of demand overestimated, Co).

Profit per unit of sold magazine is 30 THB (Cost per unit of demand underestimated, Cu ).

Probability $(\mathrm{P})$ is the probability that magazine will not be sold.
Then, $1-\mathrm{P}$ is the probability that magazine will be sold.

The expected marginal cost equation is;

$$
P \leq \frac{C_{u}}{C_{o}+C_{u}}
$$

## Methodology:

The probability is $30 /(20+30)=0.6$.

The cumulative standard normal distribution of $60 \%$ is 0.253 .

Thus, the additional stock is $0.253 \times 4=1.012$ or 2 .

Therefore, the retailer should stock weekly magazine 52 each week from consideration of potential loss and profit. This model simply considers loss and profit in term of money. In reality, there will be other associated costs which are not simple to convert in value. For example; cost of underestimated may not be only 30 THB , but also customers' preference that this bookstore cannot provide required product. Customers might choose to go to other stores to find the magazine in the future.

### 2.6 FIXED-ORDER QUANTITY MODEL

The model attempts to calculate the quantity of order $(\mathrm{Q})$ and reorder point $(\mathrm{R})$. According to Jacobs and Chase (Jacobs and Chase, 2013), inventory position consists of on-hand items plus on-order minus back ordered quantity. Followings are assumptions for optimal order quantity. They are unrealistic but they represent the basic concept of the determination.

1. Product demand is constant over the period.
2. Price per unit is constant.
3. Lead time is constant.
4. Ordering cost is constant.
5. Inventory holding cost is referred to average inventory.
6. No back order is allowed

Figure 2.8 illustrates the fixed-order quantity cycle including the relation of order quantity $(\mathrm{Q})$, lead time $(\mathrm{L})$ and reorder point $(\mathrm{R})$.


Figure 2.8 Fixed-order Quantity Model
The equation for the inventory model is as follow;

Total annual cost $=$ Annual purchase cost + Annual ordering cost + Annual

$$
T C=D C+\frac{D}{Q} S+\frac{Q}{2} H
$$

Where
TC : Total annual cost
D : Annual demand
C : Cost per unit
Q : Order Quantity (EOQ, economic order quantity)
S : Set up cost or cost of placing order
R : Reorder point
L : Lead time
H : Annual holding cost (generally taken in percentage of cost per unit)

Derivation of the total annual cost by quantity and setting equation to zero results in the Economic order quantity equation (the minimum total cost, $Q_{o p t}$ ) which is helpful for optimising inventory level (Holsenback and McGill, 2007).

$$
\begin{aligned}
T C & =D C+\frac{D}{Q} S+\frac{Q}{2} H \\
\frac{d T C}{d Q} & =0+\frac{-D}{Q^{2}} S+\frac{H}{2}=0
\end{aligned}
$$

$$
Q_{o p t}=\sqrt{\frac{2 D S}{H}}
$$

Reorder point ( R ) is considered from the effect of lead time and safety stock. The safety stock is needed as the uncertainty of forecast (Thomopoulos, 2015).

Therefore;

Reorder Point $=$ Normal consumption during lead time + Safety Stock

$$
R=\bar{d} L+S S
$$

According to section 2.4.2;

$$
R=\bar{d} L+Z \sigma_{L}
$$

Where
R : Reorder point
SS : Safety Stock
L : Lead time for replenishment
$\bar{d} \quad$ : Average demand in a review period
$\sigma_{L} \quad$ : Standard deviation of demand during lead time
$Z \quad$ : Number of standard deviation for a desired service probability (Areas of the Cumulative Standard Normal Distribution, can use Excel NORMSINV function)

### 2.7 FIXED-TIME PERIOD MODEL

Particular interval time is set for inventory ordering. This model is suitable when a buyer wants to combine orders to reduce transportation cost. The stock will be counted at a specific time for review (such as every two weeks, month). It is possible to stock out when highly demand occurs. The actual operations would not be tracked until the next review period. Figure 2.9 shows fixed-time period model system. Time of review (T) and lead time (L) are constant.


Figure 2.9 Fixed-time Period Inventory Model Source:(Jacobs and Chase, 2013)

Time of review (T) must be considered in safety stock determination. Safety stock for fixed- time period model is;

$$
\text { Safety stock }=Z \sigma_{T+L}
$$

The quantity to be ordered will be demand over the period plus safety stock value and minus current inventory. Hence, the equation is;

Order Quantity = Average demand over the period + Safety stock - Current inventory

$$
q=\overline{d( } T+L)+Z \sigma_{T+L}-I
$$

Where
q : Order Quantity
$\bar{d} \quad$ : Average demand in a review period
T : The review period
L : Lead time for replenishment
$Z \quad$ : Number of Standard deviation for a desired service probability (Areas of the Cumulative Standard Normal Distribution, can use Excel NORMSINV function)
$\sigma_{T+L} \quad$ : Standard deviation of demand over the review period and lead time

I : Current inventory level (including items on order)
Note: The demand, lead time and review period can be any time units (days, weeks or months). They all need to be consistency.

### 2.8 STORAGE MANAGEMENT

Warehouse is a critical intermediate part between supply chain parties (Faber et al., 2013).Warehouse management includes the control and optimisation of warehouse and distribution process. Warehouse management system (WMS) typically improves accuracy, eliminates unnecessary operations, and creates better pick system (Sharp, 2001).

The layout designing of warehouse purpose is to achieve the most efficiency of space utilisation and minimise the unnecessary movement.

### 2.8.1 Warehouse Operations

Functions of warehouse are to provide area for storage and transfer items. Bartholdi III and Hackman (Bartholdi III and Hackman, 2011) defined the typical process in warehouse as follows;

- Inbound processes
- Receiving: is a process of unloading goods from shipment vehicles
- Put-away: is a process of transporting goods to storage place.
- Outbound processes
- Order-picking: is a process of retrieving goods when the order comes. This activity is one of the most labour-intensive operation in warehouse. Typically, order-picking account $60 \%$ of total warehouse operating cost (Abbasi, 2011).
- Checking and packing: is a process preparing orders from customers. The activity mostly rely on labour.
- Shipping :is a process of transporting goods to shipping area before delivery to customers.


Figure 2.10 Physical Process in Warehouse
Source: Adapted from (Bartholdi III and Hackman, 2011)

## Chapter 3

## EXISTING OPERATIONS REVIEW

This chapter discusses the existing operations of the studied company. Overall business operations will be described. The current operation process will be demonstrated and summarised, followed by the evaluation of the information of Japanese products inventory from 2015. Proposed strategic management for each product group will then be specified.

### 3.1 OVERALL BUSINESS OPERATIONS

The overview business operation of the studied company is illustrated in Figure 3.1.


Figure 3.1 Overall Business Operation of the Studied Company
Customers: Customers regularly place their orders to the sales department. Then, the sales staff transfer the order to the accounting and administration department in order to register the order on the computer system. In a case that the current customer regularly orders the products, the customer directly place his order to the accounting and administration staff.

Sales Department: The two main responsibilities of sales staff are searching for the new customers and retain a relationship with the existing customers.

Accounting \& Administration Department: Financial records and overall various documents are gathered and summarised by this department.

Purchasing Department: Decisions on ordering stock are made by purchasing staff. They generally retrieve inventory level information from the computer base system and also cross check with warehousing staff.

Warehousing Department: The staff is responsible for receiving, storing and off-loading items. It is found that there is no record of the storage place of every item in the warehouse.

### 3.2 EXISTING PROCESS OF OPERATION

### 3.2.1 Ordering Process

As mentioned in section 1.4.2 that the current inventory policy of the studied company is unclear, as a result, the current ordering process is observed and illustrated in Figure 3.2.

Periodic review policy is currently adopted for Japanese products since all SKUs are received from the headquarters in Japan. It results high transportation cost and long lead time. Therefore, products are ordered on intervals, in order to share the transportation cost.

When the ordering review period arrives, the purchasing staff will check the stock level from the computer system and on-site checking of the stock in the warehouse. Currently, the studied company must submit their order on the date of $22^{\text {nd }}$ of every month. Generally, the products will have arrived at the warehouse 45 days later.

Quantity of order is estimated from observations of historical data and customer information.


Figure 3.2 Current Work Flow Process of Periodic Review Policy

### 3.2.2 Warehouse Process

The warehouse management is observed as shown in Figure 3.3. Racks and shelves are used for item storage. Zones in the warehouse are divided and named as shown in Figure 3.4.

The layout shows that the office area is at the front of the item storage place. Moreover, there are shelves for small item storage in the office defined as zone $\mathrm{O}, \mathrm{P}, \mathrm{Q}$ and R. Zone A to J store items on racks, while zone K and L store items on pallets. The door on the left side of the warehouse is for receiving and offloading items.

Regarding the staff interview, there is no standard procedure for warehouse operations including storage judgement. As a preliminary evaluation of product code and storage place, it is determined that products which tend to move slowly are placed on the top of the rack and the small items are placed in the office area.


Figure 3.3 Current Warehouse Management


Figure 3.4 Current Warehouse Layout
Warehouse checking is performed on the last Saturday of each month. The checking process is also observed. Figure 3.5 illustrates the record sheet of the monthly
warehouse checking. It is observed that the storage locations were not fully recorded for all items.

Only warehouse staff know where the items are placed. This can be problematic as there was once a case where the warehouse staff could not find the products needed as someone in the office moved them without noticing others.


Figure 3.5 Current Warehouse Checking Record

### 3.3 JAPANESE PRODUCTS INVENTORY REVIEW

### 3.3.1 Inventory Classification

The last Saturday of each month are used to perform stock checking of the warehouse. According to the monthly inventory record of 2015, there are 738 SKUs of Japanese products.

Observation of the inventory flow is to be performed. There is a group of product which moves quite fast. These items stay in the warehouse only for a short period of time since they are ordered in same amount as the customers' requests. The other group is a product group which has its inventory level remains the same in 12 months record. In addition, new products are included in the record.

Five groups of holding inventory are separated for the purpose of different operational management based on its characteristic;

1) Non-moving stock: The stock level remains the same for 12 months.
2) Stock with no sales last 6 months stock
3) Short-period stock: The products are ordered equal to the customers' orders (no stock requirement).
4) New product stock: The products which have less than 12 months of historical data.
5) Remaining: The remaining SKUs for the study

Table 3.1 illustrates the average product holding value (costs of product) and number of SKUs for each inventory type. Average value of holding inventory of each SKU in 12 months is determined by an average number of holding stock multiplied by the cost per unit. The average number of holding stock is from monthly interval record of 2015 .

Table 3.1 Average Holding Value of Japanese Products in 2015

|  | Average Holding <br> Value (THB) |  | SKUs |  |
| :--- | :---: | :---: | :---: | :---: |
| Non-Moving | 985,997 | $15 \%$ | 106 | $14 \%$ |
| No sales in last 6 months | 493,747 | $7 \%$ | 34 | $5 \%$ |
| Short-period units | 927,057 | $14 \%$ | 344 | $47 \%$ |
| New Products | 328,796 | $5 \%$ | 69 | $9 \%$ |
| Remaining | $3,925,757$ | $59 \%$ | 185 | $25 \%$ |
| Total | $6,661,354$ |  | 738 |  |

Non-moving items in the 12 months record represent $15 \%$ of the total inventory value. $47 \%$ of total items in the records are short-period items which are ordered on notice from the customers. The remaining 185 SKUs which are $25 \%$ of the total Japanese items represent 59\% of total Japanese product inventory value.

### 3.3.2 Proposed Strategic Management

The strategic managements for each group of inventory except for the remaining SKUs are proposed in this section. The summary of strategy is shown in Table 3.2.

## Table 3.2 Proposed Strategic Management

|  | Proposed Strategic Management |
| :--- | ---: |
| Non-Moving | Liquidating Stock Strategy |
| No sales last 6 months | Liquidating Stock Strategy |
| Short-period units | Effective Communication with Customer |
| New Products | Recommendations for New Products Management |
| Remaining | To be verified and proposed in Chapter 4 |

## Liquidating Stock Strategy

The stock which remains in the warehouse with no sales for a long period is considered as a dead stock. Dead stock does not only affect to the financial balance of the business, but also affects resources utilisation such as space in the warehouse, labour, and other facilities.

Almost every products in the studied company's warehouse are made from paper and plastic such as paper plate and plastic wrap for food which could be deteriorated because of a long holding period. A stock which has not been moved in the last 12 months is considered potentially dead stock, while the stock which has had no movement in the last 6 months is considered as slow moving products and potentially dead stock. The strategy is to be applied to these two groups, to mitigate them from the warehouse.

The inventory is to be divided into dead stock and marketable products. Figure 3.6 is the proposed flowchart for item segmentation. Items that are broken, damaged, deteriorated, and/or screened by customer's logos are considered as dead stock. These items should be destroyed and removed from the warehouse.


Figure 3.6 Flowchart for Item Segmentation
The items which pass the screen as the flowchart are considered as marketable products. There are many ways to move these stocks. Unfortunately, returning them to the supplier cannot be done in this case because of expensive transportation cost. Following strategies are proposed to liquidate them;

- Turning them into cash by;
- Clearance sale or offering large discount
- Re-package them with active items and sell as a package deal
- Bundle them into groups and ask customers to take entire groups at a certain price or set up an auction
- Use them as promotions such as using them as a free sample when customer purchase products
- Donation: If items cannot be turned into cash, donation is another idea for liquidating the stock. It can be a benefit for others and could give a good corporate image to the organization.
- Disposal: just destroying and throwing items away can be a good idea since it consumes less cost and resources compared to other options.

In order to properly manage the dead stock in the future, the studied company can adopt four steps as proposed by Wilson (Wilson, 2005) for liquidating dead stock in warehouse management.


Figure 3.7 Steps of Liquidating Dead Stock
Source: Adapted from (Wilson, 2005)
STEP 1 Prevention: is to stop the accumulation of excessive inventory. Prevention includes the current stock management, new product management, purchasing decision (confirmation of the existing inventory number before ordering the new stock) and ensuring the appropriate level of inventory management

STEP 2 Identification: is to keep monitoring the slow moving stock and potential dead inventory. The organization should have capabilities to identify any dead stock in order to quickly respond and manage them.

STEP 3 Coordination: internal communication is crucial for inventory management. Manager, planner, sales, purchasing and warehousing staff must share information.

STEP 4 Disposition: After the dead stock is properly identified, it should be disposed of. Several ways are suggested as previously mentioned.

## Short-Period Stock Strategy

Short-period stock are the products that stay in the warehouse for a short period and no stock requirement for this product type is required. According to the historical data from 2015, three types of short-period stock can be defined as described in Table 3.3;

Table 3.3 Types of Short-period Stock

| Short-period Stock Types | Definitions |
| :--- | :--- |
| I) Short-period stock with no <br> waiting period | The company would receive the products. They are then <br> placed in the warehouse for a few days before being <br> delivered to the customers at the exact amount. |
| II) Short-period stock with <br> waiting period | The company would receive the products. They are placed in <br> the warehouse for a period of a few months before being <br> delivered to the customers at the equal amount. |
| III) Short-period stock with <br> continuous sales period | The company would be receive the products. They are <br> placed in the warehouse for a period such as a few months. <br> Then, the products are continuously delivered to the <br> customers until the stock is depleted. |

Mostly SKUs in this group are in the first type (no waiting period) which the studied company currently operates well. The second and third types are to be suggested the effective communication with the customers. The short-period stock with waiting period is expected to decrease the waiting period, while short-period stock with continuous sales period is expected to have an accurate prediction.

Customer Relationship Management (CRM) is proposed to manage the appropriate relationship and sharing information with the customers. Parvatiya and Sheth (2001) suggested the different level of customer relationship management based on customers' importance toward the organization as shown in Figure 3.8.


Figure 3.8 Customer Segmentation
Source: (Parvatiyar and Sheth, 2001)

After identified appropriate level of customer relationship, the studied company should develop and keep sharing the information, especially the customers who are the strategic partner.

Information sharing from the customer is very important. More direct and immediate information in a supply chain instantly impacts to the accuracy of forecasts (Yu et al., 2010). In addition, misunderstanding can enlarge the bullwhip effect.

## New Products Strategy

When a new product is first introduced to the market, the demand forecast is crucial. The company should classify and understand the market's and customers' needs in order to support the demand estimation more accurately. If the product is for a single customer, working closely with the customer is the most effective solution to identify the appropriate inventory level. Thereafter, historical demand data should be collected and evaluated for future plan.

## Remaining Stock Strategy

Above inventory screening process results in 185 SKUs as a remaining stock for the simulation study which will be described in Chapter 4.

### 3.4 CHAPTER SUMMARY

The overall business operations and current processes for the studied company are reviewed. Japanese products are evaluated and divided by characteristics of product flow in the operation. Strategic management for all groups of product will be proposed. The remaining 185 SKUs will be studied in the next chapter.

## Chapter 4 <br> PROPOSED INVENTORY POLICY

Key performance index (KPI) for the policy assessment will identified in Chapter 4. For starters, the inventory policy improvement for remaining 185 SKUs will be proposed. Firstly, ABC Pareto will be applied to categorise the inventory. Demand pattern will be studied. Then, a proposal on how to move forward for inventory management will be discussed. Lastly, the proposed operation processes will be described.

### 4.1 PERFORMANCE MEASUREMENT

The key performance index is set to compare the results of proposed inventory policy with the actual operations of the company during January to May 2016. The KPIs are;

- Inventory level
- Inventory value
- Service level

Due to the fluctuation of the Japanese currency, the basis of inventory value is calculated from inventory level multiplied by the average unit value during January to May 2016.

Service level can be measured in many ways depending on what the company values. The loss of sales is considered the most crucial aspect to the studied company. Unfortunately, there were no record of unfulfilled demand. Therefore, the stock out period will be considered as an indicator for the service level since the information can be retrieved from the accountancy software. It will be determined as a percentage of numbers of stock out day in 152 days ( 5 months) assessment period.

The comparison of three KPIs will be performed in the results and assessment phase (Chapter 5).

### 4.2 PROPOSED INVENTORY POLICY IMPROVEMENT FOR REMAINING STOCK

### 4.2.1 Inventory Classification for a Studied Group

185 SKUs of Japanese products are a focus group for the proposed inventory policy, and 12 months inventory record in 2015 will be analysed. ABC Pareto tool is used for stock classification, the criteria being listed in order to define the groups.

- Average inventory value: an average of 12 months record for each SKU value
- Continuity of demand: numbers of months with demands (the number will be 1 to 12 ).
- Number of order: number of order records retrieved from the company software
- Value of sales: value of sales retrieved from the company software

Microsoft Excel is used for items sequencing and grouping. Since the study aims to reduce the inventory level, average inventory value is first used to sequence the SKUs. The result shows that a mix of items which cannot be sold every month, also called intermittent demands, and items which can be sold every month, known as continuous demands. The 'zero' data may result in the high variance of data, especially a large number data, which may lead to higher safety stock than it really needs. Thus, the continuity of order is also another criteria for inventory classification.

Number of orders is considered because it represents the usage of resources in the company. Finally, the value of sales is also selected to be taken into considerations, as it represents the revenue to the company.

Four criteria are considered for sequencing item orders. Two options of group separation are studied as Table 4.1. Option 1 is to sequence items by number of order. If the number of order is equal, the second criteria for sequencing is continuity of demand. The third and fourth criteria are value of sales and average inventory value, respectively. Option 2 is to consider the continuity of demand first followed by number of order, value of sales and average inventory value.

Table 4.1 Options for ABC Classification

| Options | ABC Classification |
| :---: | :--- |
| 1 | No. of Order $>$ Continuity of demand $>$ Value of sales $>$ Average inventory value |
| 2 | Continuity of demand $>$ No. of Order $>$ Value of sales $>$ Average inventory value |


| Option 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GROUP | No. of item | No. of Order | \%No. of Order | Avg. inventory value (THB) | \%Avg. inventory value | Value of order (THB) | \%Value of order |
| A | 66 | 4,729 | 80\% | 1,498,243 | 38\% | 6,552,969 | 55\% |
| B | 55 | 888 | 15\% | 1,136,045 | 29\% | 4,143,804 | 35\% |
| C | 64 | 274 | 5\% | 1,291,469 | 33\% | 1,249,629 | 10\% |
| Total | 185 | 5,891 |  | 3,925,757 |  | 11,946,402 |  |
| Option 2 |  |  |  |  |  |  |  |
| GROUP | No. of item | No. of Order | \%No. of Order | Avg. inventory value (THB) | \%Avg. inventory value | Value of order (THB) | \%Value of order |
| A (12) | 59 | 4,270 | 71\% | 1,348,877 | 34\% | 6,097,779 | 51\% |
| B (11-8) | 54 | 1,239 | 21\% | 1,005,475 | 26\% | 3,534,279 | 30\% |
| C (7-1) | 72 | 382 | 8\% | 1,571,406 | 40\% | 2,314,344 | 19\% |
| Total | 185 | 5,891 |  | 3,925,757 |  | 11,946,402 |  |

For option 1, the 80-15-5 rule for group separation is applied. Option 2 divides groups by number of demand by month. The comparison between the two options is generated as Table 4.2 for the purpose of decision making.

Table 4.2 Comparison of Options for ABC Classification

|  | Continuity of demand |  |
| :---: | :--- | :--- |
| Group | A | B |
| Option 1 | - Mostly continuous demand data <br> (48 of 66 units) <br> - MAPE (Mean Absolute <br> Percentage Error) cannot be used <br> for error determination. | - A mix of continuous and intermittent <br> demand data (11 from 55 units are <br> continuous demand.) |
| Option 2 | - Results continuity of all data in <br> group A | - A group of intermittent demand data <br> (demand between 8 and 11 from the <br> total 12 months) |

Option 2 completely separates the data of continuous demand (A) and intermittent demand ( B and C ), whereas option 1 results in a mix of continuous and intermittent demand in both groups. Thus, option 2 will be selected since it can divide the relevant data in the same group.


Figure 4.1 Application of ABC Classification
Figure 4.1 shows the sequencing of the item as continuity of demand. X axis is the percentage of number of item, and Y -axis is the percentage of number of order. The curve conforms to the Pareto concept that a small percentage of items account for large percentage of usage.

The discontinuity of the curve is a result of the criteria of continuity of demand. There may be lower numbers of order sequenced before the higher numbers of order because the order is more distributed by month.

Group A ( $32 \%$ of total items) are continuously purchased by customers' accounts high percentage of order ( $71 \%$ of total orders). Group B which is $29 \%$ of the total items accounts $21 \%$ of total orders. Lastly, group C which is $39 \%$ of total items only accounts for $8 \%$ total orders.

Inventory data in 2015 for ABC classification is then analysed. Figure 4.2 illustrates inventory level for group A, B, and C in 2015. The chart shows that the total inventory for all groups fluctuates with low variance. Group A and C items are stocked at approximately the same level and group B items have the lowest stock.

However, the number of items is summarised directly. The data may be distorted by the high volume items. Then the value of inventory for all groups is observed as Figure 4.3. It is seen that group A and C inventory values are more or less
at the same level. Thus, the inventory level proportion in Figure 4.2 represents the inventory value in Figure 4.3.

Value of sales for all groups in 2015 is also plotted as Figure 4.4. Group A items generate the highest revenue, while group C items generate the lowest revenue. It is observed that all inventories and sales data are quite stable, without shifting trend.


Figure 4.2 Inventory Level for ABC Classification in 2015


Figure 4.3 Inventory Value for ABC Classification in 2015


Figure 4.4 Value of Sales for ABC Classification in 2015
In summary, multi-criteria is used for sequencing the item order. The continuity of demand is considered the most important criteria since it can separate continuous demand and intermittent demand. Then, number of orders is the second criteria in terms of importance for the operation. The third criteria for sequencing is value of sales. Lastly, the average inventory value is considered.

### 4.2.2 Single Customer Verification

There are 107 SKUs of the 185 SKUs supplied for only a single customer. Table 4.3 illustrates customers' name and numbers of item which the customer is the only one who orders the item. Values of sales and inventory value are also shown in the table. 'Yes' on the right column signifies that the customers who share the demand information in advance and acknowledge the stock level of the company.

Table 4.3 Single Customer Lists

| Customer Name | Numbers of <br> item | Sum of No. <br> of Order | Sum of Value of <br> sale (THB) | Sum of <br> Inventory Value <br> (THB) | Customer <br> shares <br> demand info. |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Ko-ku-ra-en (Thailand) | 20 | 132 | 131,233 | 77,046 | Yes |
| UFM Fuji Super | 19 | 312 | $1,115,870$ | 217,758 | No |
| Di-sho Food Service (Thailand) | 14 | 367 | $1,591,214$ | 188,826 | Yes |
| Betagro Retuarant | 14 | 363 | 107,277 | 119,161 | No |
| Nodu Food | 12 | 192 | $1,246,537$ | 416,398 | Yes |
| Ai-Bento YA | 10 | 61 | 138,901 | 57,408 | No |
| Thana Curry House | 3 | 6 | 8,260 | 22,171 | No |
| Big C Super Center | 2 | 14 | 152,609 | 229,480 | No |
| Thana Food and Beverage | 2 | 9 | 207,913 | 80,098 | No |
| Mi-ou Japan Food | 2 | 7 | 10,921 | 21,620 | No |
| Anniversary | 1 | 68 | 353,818 | 31,065 | No |
| lon (Thailand) | 1 | 7 | 45,461 | 23,913 | No |
| Taneeya Siam | 1 | 6 | 232,421 | 543,466 | No |
| Ex-part Enterprise | 1 | 6 | 21,087 | 10,163 | No |
| Ar-o-ai | 1 | 6 | 13,381 | 15,950 | No |
| Tanaryya Thailand | 1 | 6 | 10,884 | 4,776 | No |
| MOS Food (Thailand) | 1 | 1 | 5 | 95,308 | 96,879 |
| Nipponte | 1 | 2 | 3,487 | 11,784 | No |
| TCC Logistic and Warehouse | 1 | 12,316 | 13,126 | No |  |
| Total | 107 | 1570 | $5,498,901$ | $2,181,088$ |  |

The separation of single and multi-customer group is evaluated. Table 4.4 illustrates the proportion of single customer in each group. It implies that the items which have high numbers of orders tend to be ordered by more than one customer, while the items which have lower numbers of orders like items in group $B$ and $C$ tend to be ordered by a single customer. However, the separation of single and multicustomer group does not help for demand classification, since it results in a mix of continuous and intermittent demand for both groups.

## Table 4.4 Single Customer Verification

| GROUP | No. of <br> Item | Single <br> customer <br> item | \%Single <br> customer | \%Multi <br> customer |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{A}(12)$ | 59 | 25 | $42 \%$ | $58 \%$ |
| $\mathrm{~B}(11-8)$ | 54 | 28 | $52 \%$ | $48 \%$ |
| $\mathrm{C}(7-1)$ | 72 | 54 | $75 \%$ | $25 \%$ |
| Total | 185 | 107 |  |  |

### 4.2.3 Inventory Classification Selection

Option 2 will be selected for sequencing the items. The groups of products are divided as shown in Table 4.5.

## Table 4.5 ABC Pareto Analysis Result

| GROUP | No. of <br> Item | No. of <br> Order | Avg. holding <br> value (THB) | Value of <br> order (THB) |
| :--- | ---: | ---: | ---: | ---: |
| A (12) | 59 | 4270 | $1,348,877$ | $6,097,779$ |
| B $(11-8)$ | 54 | 1239 | $1,005,475$ | $3,534,279$ |
| $\mathrm{C}(7-1)$ | 72 | 382 | $1,571,406$ | $2,314,344$ |
| Total | 185 | 5,891 | $3,925,757$ | $11,946,402$ |

In summary, four criteria which are the monthly demand continuity, the amount of orders, the value of sales, and the inventory value are considered for ABC analysis. The inventory value is weighted the least important from the four factors. This judgement results in a mix of inventory value items in the three groups. It can be seen from Table 4.5 that the inventory holding value for group C is the highest among the three groups. However, items in group C generate the lowest revenue for the studied company compared to the others.

### 4.2.4 Demand Pattern

Demand pattern for all inventory groups is assessed. Two examples of each group will be represented in Figure 4.5, 4.6 and 4.7 for items in group A, B, and C, respectively. Trend, cycle and seasonal pattern cannot be seen from the charts. Since the historical data is limited to only 12 months, the pattern may not be captured accurately.


Figure 4.5 Monthly Demand of Group A


Figure 4.6 Monthly Demand of Group B


Figure 4.7 Monthly Demand of Group C
In order to evaluate the variability of data, coefficient of variation (CV) or relative standard deviation (RSD) is used for measuring the variability of a series of numbers. According to Abdi (Abdi, 2010), the coefficient can be applied to a ratio scale only. Negative value scale or interval scale like temperature cannot be verified by CV. The coefficient of variability is computed by the standard deviation divided by the mean of data. Typically, distribution of CV higher than 1 is considered high-variance and CV lower than 1 is considered low-variance.

$$
C V=\frac{\text { Standard Deviation }}{\text { Mean }}
$$

Coefficient of variation for six examples is determined as Table 4.6.

## Table 4.6 Coefficient of Variation Determination for Demand

| Demand |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: |
| GROUP | CODE | SD | Mean | CV |
| A | 250625 | 2719 | 12958 | 0.21 |
|  | 127792 | 65 | 263 | 0.25 |
| B | 325384 | 1029 | 2236 | 0.46 |
|  | 159145 | 4.7 | 4.6 | 1.00 |
| C | 272858 | 63 | 50 | 1.26 |
|  | 168944 | 52 | 31 | 1.69 |

In conclusion, the demand for group A is high and considered steady with low fluctuation. Group B and C show the sporadic demand as sequencing criteria in the previous section and result high variance of demand referred to a CV above 1 .

### 4.2.5 Inventory Model Selection

Factors that affect the inventory model selections are system structure, the items, market characteristics, lead time and cost (Muckstadt and Sapra, 2010). According to the theoretical review in Chapter 2, fixed-time period model is suited to the situation of the studied company because of two main reasons. Firstly, the transportation cost is high (shipping from Japan). Secondly, most items have a low unit cost. Therefore the periodic review policy will be selected for all product groups.

Periodic review policy is currently adopted by the studied company as reviewed in section 3.2.1. However, the decision-making such as order quantity, safety stock determination, and forecasting techniques are not structured.

### 4.2.6 Periodic Review Policy

The periodic review curve for the studied items is generated in Figure 4.8. The review period ( T ) is 30 days which is on the date of $22^{\text {nd }}$ every month. Lead time ( L ) is 45 days after the order is placed.

This model is proposed for group A, B and C items. 20 SKUs of each group will be randomly selected for the study. Unusual demand like large orders with advanced notice will not be included in the study.

Regarding high numbers of product which are ordered from a single customer, there are but some customers who share their demand information with the studied company. These items are also included and verified in the study.


Figure 4.8 Periodic Review Policy
The quantity of orders will be determined when one-month intervals arrive. The equation of the quantity to be ordered will be demand over the period and lead time plus safety stock value and minus the current inventory. The current inventory should be the inventory on hand and on order.

Order Quantity $=$ Average demand over the period + Safety stock - Current inventory on hand

$$
q=\overline{d( } T+L)+Z \sigma_{T+L}-I
$$

Where
q : Order Quantity
$\bar{d} \quad$ : Average demand in a review period
T : The review period
L : Lead time for replenishment
$Z \quad$ : Number of Standard deviation for a desired service probability (Areas of the Cumulative Standard Normal Distribution, can use Excel NORMSINV function)
$\sigma_{T+L} \quad:$ Standard deviation of demand over the review period and lead time

I : Current inventory level (including items on order)

Estimated monthly demand will be determined by the forecasting technique. Proposed methods will be described in section 4.2.5.

The used unit for the above equation must be consistent. The study is based on a unit of a month. Thus, the review period plus lead time is 2.5 . Safety stock will be determined based on the service level of $95 \%$ and $98 \%$.

The decision of order quantity will be decided based on the calculated order quantity and minimum order quantity (MOQ). The number will be rounded up when it is more than $50 \%$ of the minimum order. For example; if MOQ is 30 units and the calculated quantity is 34 , the ordering decision will be 30 . The decision will be 60 units if the calculated value is between 45 to 74 units.

Last but not least, Microsoft Excel will be used to develop the simulation for the model application. An example of a simulation implementation is shown in Figure 4.9.


Figure 4.9 An Example of Periodic Review Simulation

### 4.2.7 Forecasting Techniques

Monthly demand will be forecasted. Formulas shown in section 2.2 .2 will be applied for the 12 months recorded in 2015. Three techniques; Naïve, 3 months moving average, and simple exponential smoothing will be applied for items in all groups.

The empirical study conducted by Johnston and Boylan (Johnston and Boylan, 1996) resulted that Croston's method suggested for intermittent demand is always better than simple exponential smoothing only if average interval time of demand is greater than 1.25 intervals. Considering the 12 months of data, 1.25 intervals is when there is demand less than 9.6 months. Thus, the additional technique of Croston's model will be applied for group C items which have demand between 1 to 7 months within a 12 months period.

Average forecasting error will be used for evaluating the accuracy of forecasting techniques towards the demand data. MAPE, MAD and, MSE will be compared for items in group A. MASE, MAD and MSE will be compared for items in group B and C. MAPE is not applied for items in group $B$ and $C$ because it cannot be determined for zero data. MASE is selected for group B and C evaluation as it were suggested for intermittent data (Hyndman, 2006).

The forecasting technique which results in the minimum error for the most sampled items will be selected. In addition, simple exponential smoothing and Croston's method require weight factor ( $\alpha$, alpha) which is a variable number. Solver analysis in Microsoft Excel is used to find the optimum value for each identified error (MAPE, MAD, MSE, and MASE). The statistical data of weight factor will be summarised and evaluated.

Average forecasting error of month 4 to 12 for all techniques will be assessed and compared since 3 months moving average will give the first result on the $4^{\text {th }}$ month.

### 4.2.8 Summary Basis of Implementation

The steps of the policy implementation will, first of all, start on forecasting technique verifications in order to receive the estimated number of demands for the
policy review. Table 4.7 summarises the way forward for inventory policy implementation.

## Summary basis for forecasting technique verification

1. In order to compare the accuracy of the proposed forecasting techniques with the demand data, average forecasting error of month 4 to 12 will be assessed since 3 months moving average will give the first result on the $4^{\text {th }}$ month.
2. The initial value of demand size for simple exponential smoothing and Croston's method is the first value of demand.
3. The initial value of interval for Croston's method is 2 .
4. Pivot table function in Microsoft excel is used for summarize monthly data, and VLOOKUP function is used for retrieved data of the sampled items from the database.

## Table 4.7 Way Forward for Inventory Policy Implementation

| GROUP | Inventory Model | Forecasting Method | Forecasting Error |
| :---: | :---: | :---: | :---: |
| A | Periodic Model | - Naïve | MAPE |
|  |  | - 3 months moving average | MAD |
|  |  | - Simple exponential smoothing | MSE |
| B | Periodic Model | - Naïve | MASE |
|  |  | - 3 months moving average | MAD |
|  |  | - Simple exponential smoothing | MSE |
| C | Periodic Model | - Naïve | MASE |
|  |  | - 3 months moving average | MAD |
|  |  | - Simple exponential smoothing | MSE |
|  |  | - Croston Method |  |

## Summary basis for inventory simulation

1. The first review period is on the $22^{\text {nd }}$ of November 2015 in order to receive items in early January 2016.
2. Estimated monthly demands are determined from the results of the selected forecasting technique.
3. Unusual demands like large orders with advance notices will not be included in the study.
4. Safety stock will be based on the service level of $95 \%$ and $98 \%$.
5. Standard deviation for safety stock determination will be determined based on the previous data. Once the next review period arrives the additional data will be included.
6. Microsoft Excel is used to calculate standard deviation (STDEVP(range of data)).
7. The review period of demand is between the $22^{\text {nd }}$ of each month until the $21^{\text {st }}$ of the following month.
8. The inventory on hand (I) includes both on hand and on order stock.
9. The decision of order quantity will be based on the calculated number and minimum order quantity of each item. The number will be rounded up when it is more than $50 \%$ of the minimum order quantity.
10. The arrival date of items in the simulation will be the same as actual operation (approximately 45 days after submitted order).

### 4.3 PROPOSED OPERATION IMPROVEMENT

The overall process of the company remains the same. Nevertheless, flows of ordering process, warehousing process, and warehouse checking process are proposed in order to improve internal communications and reduce the chance of human error.

### 4.3.1 Ordering Process

Periodic review policy is proposed, with the reasons described in section 4.2.3. The workflow steps are the same as the current existing process. Moreover, the ordering interval of group B and C will be evaluated between monthly or bi-monthly in chapter 5.

Figure 4.10 shows that the proposed warehouse checking process will improve the accuracy of stock tracking which relates to the efficiency of ordering decision. The proposed forecasting method and quantity of order determination will provide the methodology for decision-making.


Figure 4.10 Proposed Work Flow Process of Periodic Review Policy

### 4.3.2 Warehouse Flows

The overall warehouse operating flows consist of inbound and outbound processes illustrated in Figure 4.11.


Figure 4.11 Proposed Warehouse Flows
Inbound processes consist of receiving and put-away processes. The workflow steps are described as follows;

1. Warehousing staff receive the noticing list of products that will be delivered to the warehouse. Order number, product code, name and amount shall be specified in the list. Figure 4.12 illustrates an example of receiving-Item and location list. The noticing list generated by an administrator is the left part of the form.
2. The ordered items arrive at the warehouse. They are placed in the receiving area.
3. Warehousing staff check the amount of items as per the advance noticing list and inspect the quality.
4. The items are assigned a storage location which shall be recorded on the receiving item location sheet (the right side) as Figure 4.12.
5. Item label is sticked to the pack of items. Proposed label is shown in Figure 4.13. Code, name, receiving date, and assigned location must be shown. The remaining blanks designed for amount, checked date, and location will be useful for the inventory checking process. Details will be demonstrated in section 4.3.3.
6. The items are placed at the assigned location.
7. The receiving-item location sheet is scanned and saved into the computer's public folder. The hard copy should be gathered in a file.
8. Administrator updates receiving-item details and storage location in the CD organizer program.

Generally, the administrator records the order receiving into the CD organizer software (accountancy program) which can generate details of received items into Microsoft Excel. Only the location of storage needs to be added and saved from the original work.

The existing process does not have a record of any received items' location. It means only the warehousing staff who allocates the storage place knows where the stock is kept.

The proposed methodology to record the location of receiving item may consume more labour hours due to an increase in documentation tasks, but the location record definitely reduces numbers of missing items and risks in operations (for example; when the only one warehouse staff who knows where the stock is placed is on leave, more time is consumed in order to find it). Moreover, the record improves the efficiency of purchasing process decision since the purchaser can accurately track the location of items. It decreases the labor hours of the warehouse staff as he does not need to advise and guide the purchasing staff every time.


Figure 4.12 Receiving-Item and Location List

| Product Code: | $373250$ |  |  |
| :---: | :---: | :---: | :---: |
| Product Name: | WOOD UDON PAIL \# 7 M-6 402000022 |  |  |
| Receiving date: |  | Location |  |
| Amount: | Checked on Date: | Location: |  |
| Amount: | Checked on Date: | Location: |  |
| Amount: | Checked on Date: | Location: |  |
| Amount: | Checked on Date: | Location: |  |
| Amount: | Checked on Date: | Location: |  |
| Amount: | Checked on Date: | Location: |  |

Figure 4.13 Proposed Item Label
Picking, packing and shipping processes constitute the outbound process. The workflow steps are described as follows;

1. Warehouse staffs are given the picking list by an administrator. An example of picking list is shown in Figure 4.14. Each picking list represents only one order number. Warehouse staff members use the list to check the right quantity of order and record the status Y or N . ' Y ' is when the items' quantity are available as the ordered. ' N ' is when there is no items or insufficient items as ordered. If
' N ' is on the list, warehouse staff must report to the administrator in order to inform the customer.
2. Listed items are gathered and properly packed.
3. Warehouse staff load all packed items onto the delivery vehicle.
4. The driver delivers the products to the customers.


Figure 4.14 Picking List

### 4.3.3 Warehouse Checking Process

The format for monthly warehouse checking process is proposed as Figure 4.15. Two columns are added on the right side of the original format, indicating the location and changes during the months

The CD organizer program, which records the amount of delivered and sold products during the month includes the storage place recorded from the receiving process, can generate data into Microsoft Excel program.

Warehouse checking should be performed as shown in Figure 4.16. The additional steps from the existing operation are to record the storage location into the checking form and write the remaining amount, checked date, and location on the item label. If the location is the same, '-‘(dash) can be noted.

The electronic files of checking records should be kept in the public folder of the company, where everyone has access. Location changes during the checking interval must be recorded. New moved location and name of the employee who
displaces the item should be noted．Lastly，the Excel file should be generated monthly as to follow the interval of stock checking process．

| COMPANY NAME |  |  |  |  |  |  |  |  |  |  |  |  | Proposed column |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATE of XX／XX／ 2016 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| mo | code | name | stock fw． |  | ns |  | orther in |  | out |  | Butase |  | Cbat |  | location | locamon change durno the month |
|  |  |  | QTY | AMT | Qry | AMT | QTY | amt | QTY | AMI | AMT | QTY | Qrr | DIF |  |  |
| 1 | 0135s | Clum 3exte r300－15 | 3 | 3997 | － | － | － | 。 | － | － | 3997 | 3 | 3 | $\bigcirc$ |  |  |
| 2 | 01s93 | WOODLID Qnsos 2－19900502 | 4 | 657 | － | － | － | － | － | － | 60］ | 4 | 2 | －2 |  |  |
| 3 | 019019 | ABS TRAY 30－1 | so | 12，861 | － | － | － | － | － | － | 12，761 | so | ss | 35 |  |  |
| 4 | 01928 | PS Try B4Rami | 1350 | 9，811 | － | － | － | 。 | 。 | $\bigcirc$ | 9，84 | 1350 | 1，350 | 0 | A |  |
| 5 | 019，5s | BAMBOOBLIND I－539－1A | 20 | 1，720 | － | － | － | － | － | － | 1，700 | 20 | 30 | － |  |  |
| 6 | 019166 | Hisdef far Patemy Tepot | 100 | 3，179 | － | － | － | － | － | － | 3，179 | 100 | 100 | 0 |  |  |
| 7 | 019167 | Sakazuki far Potery Tepot | 330 | 25，32 | － | － | － | － | － | － | 25,321 | 350 | 23 | －12 |  |  |
| 8 | 019168 | Cowe for Poeny Tep Pa | 100 | 7,43 | － | － | － | － | － | － | 2，433 | 100 | 87 | 13 |  |  |
| 9 | 019169 | Bady far Powey Teapot | 30 | 9，130 | － | － | － | 0 | － | － | 2，130 | 30 | 30 | $\bigcirc$ |  |  |
| 10 | 01954 | POTIERY SAKE CUP 26506 | 1 | 9 | $\bigcirc$ | － | － | $\bigcirc$ | － | － | 9 | 1 |  | －1 |  |  |
| 11 | 019545 | POTTERY SAKE CUP 273－30 | － | 1，991 | － | － | － | － | － | － | 1，691 | 6 | 6 | 0 |  |  |
| 12 | 019559 | POTtery bowl 21416 | 9 | 12,066 | － | 0 | － | － | － | $\bigcirc$ | 12，066 | ， | 2 | －7 |  |  |
| 13 | 019560 | pottery bowz so23－16 | 8 | 3，262 | $\bigcirc$ | － | － | 。 | － | － | 8，262 | 3 | 8 | $\bigcirc$ |  |  |
| 14 | 019811 | WOOD trayst | 320 | 13，150 | － | － | － | － | － | － | 133，150 | 330 |  | 330 |  |  |

Figure 4．15 Format for Monthly Warehouse Checking Record


Figure 4．16 Proposed Warehouse Checking Process

### 4.3.4 Summary of Proposed Documents

Four documents for warehousing management are proposed in section 4.3.2 and 4.3.3. The summary of document forms, number and descriptions are shown in Table 4.8. The format can be updated by revision updating. The electronic file of the index file and forms shall be saved into the public folder, where everyone can access.

Table 4.8 Summary of Proposed Documents

| Forms | Doc. No. | Rev. | Figure of example | Descriptions |
| :--- | :---: | :---: | :---: | :--- |
| Receiving-Item and Location List | THF-01 | 0 | Figure 4.12 | - An advance noticing list of receiving items <br> -Recording storage place by warehousing staff |
| Item Label | THF-02 | 0 | Figure 4.13 | - A form showing details of stock item <br> (code, number, and receiving date) |
| Picking List | THF-03 | 0 | Figure 4.14 | - A list of ordering items from customer |
| Monthly Warehouse Checking Record | THF-04 | 0 | Figure 4.15 | - A monthly warehouse checking record |

### 4.4 CHAPTER SUMMARY

In conclusion, this chapter presents the proposed development for inventory and warehouse management based on the current data and operations. The summary is shown in Table 4.9.

Performance measurements are firstly defined for the assessment. Then, items are evaluated and separated as ABC Pareto based on specified criteria. Demand pattern analysis is performed in order to apply appropriate tools and techniques. Furthermore, basis and assumptions of inventory policy assessment are described.

In addition, procedures for warehouse operation and inventory checking process are developed. Documentations for recording and item labelling are developed. Electronic files are proposed to be kept in specified public folder in the computer network.

## Table 4.9 Summary of Proposed Policy

| Management Area | Proposed Development |
| :---: | :--- |
|  | - Performance measurement |
| Inventory |  |
| Management | - Demand pattern analysis |
| - Forecasting approach analysis |  |
| - Periodic review policy |  |
| - | - Sensitivity analysis for service levels |
| - Ordering process flow |  |

Last but not least, all employees shall be consistently reminded of the procedures and roles of each other in order to operate the organization in the same direction. The proposed steps and documents will be worthless if nobody understands or follows the new directives. The meeting for workflow clarification shall be arranged before process implementation. Any feedback or recommendations from employees can be adopted if deemed suitable.

## Chapter 5 <br> RESULTS AND ASSESSMENT

The verifications and results of the proposed policy for the Japanese products from Chapter 4 will be described in this chapter based on specified performance measurement in section 4.1. Twelve months of historical data from 2015 are used to evaluate the most appropriate forecasting technique for each inventory group (A, B, and C). Five months of periodic review policy simulation and the actual operation will be assessed and compared.

Forecasting errors such as MAPE, MAD, MSE, and MASE are used for the forecasting accuracy comparison. Each error indicator is suited for the different characteristic of data as demonstrated in Chapter 2.

For example; MAPE is scale sensitive. The low number of unit applied with MAPE will result in a large error factor which may lead to misinterpretation of data. Moreover, MAPE cannot be applied for items with zero demand as the percentage result is based on the actual demand. On the other hand, MASE is suggested for intermittent demand data as it never gives infinite value (Hyndman, 2006). MAD signifying Mean Square Deviation cannot be compared across series as it scales independently. MSE is suitable for forecasting the means of the future distribution based on past observations.

Regarding a mix characteristic of demand data for the Japanese products, each indicator will be evaluated individually. The most suitable of error indicator for all data cannot be selected. Moreover, the study will weight each item equally for the analysis for all groups.

### 5.1 GROUP A INVENTORY

Twenty (20) items out of the fifty nine (59) items in group A are randomly selected to be tested for the study evaluation.

### 5.1.1 Forecasting Approach Evaluation

Regarding evaluation basis in section 4.2 and Table 4.7, three forecasting techniques, Naïve, 3 months moving average, and simple exponential smoothing will be simulated and will have their average errors of MAPE, MAD, and MSE compared, for month 4 to 12 for group A items.

Firstly, the weight factor (smoothing factor) for simple exponential smoothing approach will be assessed. Since there are three forecasting-error indicators, the solver function in Microsoft excel is used to determine the weight factor (alpha) which results in the optimum average error for each technique. An example of solver function being used is shown in Figure 5.1. The minimum and maximum number of the factor is set to 0.1 and 0.9 , respectively.


Figure 5.1 An Example of Solver Function used for Finding Optimum Number for
Weight Factor
The weight factors that give the minimum error for each indicator are shown in Table 5.1. 20 items in group A are randomly selected. The "Seq. Order" column shows the sequencing order of the data in section 4.2.1. Results show the average values of the optimum result are 0.27 for MAPE, and 0.29 for MAD and MSE indicator. The medians for all indicators are 0.1.

It can be seen from the table that 0.1 is the value which mostly results in the optimum error for all indicators. However, the average numbers show that there are
some demand data which suit for the values far from 0.1 . As the result, 0.2 is selected as a fixed-factor for all data evaluation for group A.

## Table 5.1 Group A Items - Weight Factors Analysis for Exponential Smoothing Technique

| Alpha for Simple Exponential Smoothing Method (Group A) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Group Check | Seq. Order | Optimum Weight Factor (alpha) |  |  |
|  |  |  |  | MAPE | MAD | MSE |
| 1 | 250625 | A | 2 | 0.70 | 0.70 | 0.70 |
| 2 | 322283 | A | 3 | 0.69 | 0.69 | 0.71 |
| 3 | 183114 | A | 6 | 0.32 | 0.34 | 0.41 |
| 4 | 186874 | A | 8 | 0.11 | 0.10 | 0.10 |
| 5 | 347462 | A | 9 | 0.20 | 0.20 | 0.15 |
| 6 | 127792 | A | 10 | 0.10 | 0.10 | 0.10 |
| 7 | 147246 | A | 11 | 0.90 | 0.84 | 0.70 |
| 8 | 517544 | A | 12 | 0.50 | 0.50 | 0.10 |
| 9 | 293460 | A | 15 | 0.10 | 0.10 | 0.10 |
| 10 | 184514 | A | 18 | 0.10 | 0.10 | 0.24 |
| 11 | 307112 | A | 24 | 0.10 | 0.14 | 0.10 |
| 12 | 157923 | A | 30 | 0.34 | 0.34 | 0.90 |
| 13 | 184288 | A | 33 | 0.10 | 0.10 | 0.10 |
| 14 | 375080 | A | 39 | 0.10 | 0.10 | 0.10 |
| 15 | 184336 | A | 44 | 0.10 | 0.63 | 0.64 |
| 16 | 220997 | A | 45 | 0.24 | 0.10 | 0.10 |
| 17 | 371296 | A | 46 | 0.31 | 0.31 | 0.24 |
| 18 | 223552 | A | 52 | 0.10 | 0.10 | 0.10 |
| 19 | 184624 | A | 57 | 0.10 | 0.10 | 0.10 |
| 20 | 388633 | A | 58 | 0.10 | 0.13 | 0.21 |
|  | Average |  |  | 0.27 | 0.29 | 0.29 |
|  | Median |  |  | 0.1 | 0.1 | 0.1 |

Then, the average values from specified error techniques are determined for the three forecasting methods as shown in Table 5.2, 5.3, and 5.4. The approach that result the minimum error is named on the right column of the table.

The comparison of the least error forecasting techniques with the least errors toward three forecasting indicators is shown in Table 5.5. The table shows that simple exponential smoothing approach with a fixed alpha at 0.2 appears to be a technique which results in the most accurate technique for the selected data from all three indicators.

Table 5.2 Average MAPE for Group A Items and the Minimum Error Forecasting Approach

| MAPE / month (4-12) |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. <br> Order | Naïve | 3 Months Moving Average | Exponential Smoothing (Alpha $=0.2$ ) |  |
| 1 | 250625 | 2 | 23\% | 26\% | 29\% | Naïve |
| 2 | 322283 | 3 | 54\% | 61\% | 89\% | Naïve |
| 3 | 183114 | 6 | 25\% | 14\% | 18\% | 3 Months Moving Avg |
| 4 | 186874 | 8 | 38\% | 32\% | 30\% | ES (Alpha = 0.2) |
| 5 | 347462 | 9 | 39\% | 52\% | 45\% | Naïve |
| 6 | 127792 | 10 | 35\% | 29\% | 24\% | ES (Alpha = 0.2) |
| 7 | 147246 | 11 | 72\% | 114\% | 159\% | 3 Months Moving Avg |
| 8 | 517544 | 12 | 44\% | 51\% | 53\% | 3 Months Moving Avg |
| 9 | 293460 | 15 | 44\% | 34\% | 29\% | ES (Alpha = 0.2) |
| 10 | 184514 | 18 | 52\% | 53\% | 41\% | ES (Alpha $=0.2$ ) |
| 11 | 307112 | 24 | 54\% | 37\% | 36\% | ES (Alpha $=0.2$ ) |
| 12 | 157923 | 30 | 44\% | 47\% | 37\% | ES (Alpha $=0.2$ ) |
| 13 | 184288 | 33 | 54\% | 77\% | 65\% | Naïve |
| 14 | 375080 | 39 | 426\% | 246\% | 219\% | ES (Alpha = 0.2) |
| 15 | 184336 | 44 | 36\% | 37\% | 34\% | ES (Alpha = 0.2) |
| 16 | 220997 | 45 | 217\% | 149\% | 152\% | 3 Months Moving Avg |
| 17 | 371296 | 46 | 62\% | 57\% | 57\% | ES (Alpha $=0.2$ ) |
| 18 | 223552 | 52 | 70\% | 54\% | 58\% | 3 Months Moving Avg |
| 19 | 184624 | 57 | 44\% | 39\% | 29\% | ES (Alpha $=0.2$ ) |
| 20 | 388633 | 58 | 117\% | 69\% | 62\% | ES (Alpha = 0.2) |

Table 5.3 Average MAD for Group A Items and the Minimum Error Forecasting Approach

| MAD / month (4-12) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| No. | Code | Seq. <br> Order | Naïve | 3 Months <br> Moving Average | Exponential <br> Smoothing <br> (Alpha $=0.2)$ | Approach Resulting <br> Minimum Error |
| 1 | 250625 | 2 | 2600 | 2881 | 3055 | Naïve |
| 2 | 322283 | 3 | 1711 | 1752 | 2404 | Naïve |
| 3 | 184336 | 6 | 666 | 403 | 513 | 3 Months Moving Avg |
| 4 | 293460 | 8 | 1055 | 881 | 793 | ES (Alpha $=0.2)$ |
| 5 | 183114 | 9 | 55 | 63 | 52 | ES (Alpha $=0.2)$ |
| 6 | 184288 | 10 | 85 | 65 | 55 | ES (Alpha $=0.2)$ |
| 7 | 127792 | 11 | 26 | 29 | 35 | Naïve |
| 8 | 184514 | 12 | 4.9 | 5.0 | 6.1 | Naïve |
| 9 | 157923 | 15 | 4900 | 3600 | 2946 | ES (Alpha $=0.2)$ |
| 10 | 307112 | 18 | 239 | 213 | 190 | ES (Alpha $=0.2)$ |
| 11 | 375080 | 24 | 4300 | 2667 | 2538 | ES (Alpha $=0.2)$ |
| 12 | 186874 | 30 | 25556 | 28222 | 25777 | Naïve |
| 13 | 388633 | 33 | 489 | 459 | 365 | ES (Alpha $=0.2)$ |
| 14 | 371296 | 39 | 95 | 63 | 63 | ES (Alpha $=0.2)$ |
| 15 | 147246 | 44 | 2667 | 2678 | 2857 | Naïve |
| 16 | 517544 | 45 | 5.0 | 3.7 | 3.4 | ES (Alpha $=0.2)$ |
| 17 | 223552 | 46 | 2444 | 2074 | 2149 | 3 Months Moving Avg |
| 18 | 347462 | 52 | 4333 | 2904 | 3001 | 3 Months Moving Avg |
| 19 | 220997 | 57 | 889 | 770 | 620 | ES (Alpha $=0.2)$ |
| 20 | 184624 | 58 | 1122 | 800 | 815 | 3 Months Moving Avg |

Table 5.4 Average MSE for Group A Items and the Minimum Error Forecasting Approach

| MSE / month (4-12) |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. <br> Order | Naïve | 3 Months Moving Average | Exponential Smoothing (Alpha = 0.2) |  |
| 1 | 250625 | 2 | 7,433,333 | 10,911,852 | 12,681,942 | Naïve |
| 2 | 322283 | 3 | 5,033,889 | 5,428,395 | 7,465,647 | Naïve |
| 3 | 184336 | 6 | 666,137 | 326,269 | 507,159 | 3 Months Moving Avg |
| 4 | 293460 | 8 | 1,592,646 | 1,046,463 | 885,150 | ES (Alpha = 0.2) |
| 5 | 183114 | 9 | 3,972 | 4,909 | 3,724 | ES (Alpha = 0.2) |
| 6 | 184288 | 10 | 10,685 | 6,870 | 4,977 | ES (Alpha $=0.2$ ) |
| 7 | 127792 | 11 | 1,185 | 1,306 | 1,680 | Naïve |
| 8 | 184514 | 12 | 32 | 41 | 44 | Naïve |
| 9 | 157923 | 15 | 28,530,000 | 17,980,000 | 12,891,921 | ES (Alpha $=0.2$ ) |
| 10 | 307112 | 18 | 82,500 | 88,981 | 70,983 | ES (Alpha $=0.2$ ) |
| 11 | 375080 | 24 | 23,670,000 | 14,920,000 | 11,422,119 | ES (Alpha = 0.2) |
| 12 | 186874 | 30 | 811,333,333 | 1,242,839,506 | 1,148,043,274 | Naïve |
| 13 | 388633 | 33 | 345,556 | 252,654 | 205,716 | ES (Alpha = 0.2) |
| 14 | 371296 | 39 | 14,418 | 7,327 | 7,714 | 3 Months Moving Avg |
| 15 | 147246 | 44 | 10,285,000 | 11,256,667 | 10,830,342 | Naïve |
| 16 | 517544 | 45 | 34 | 17 | 14 | ES (Alpha $=0.2$ ) |
| 17 | 223552 | 46 | 7,555,556 | 6,913,580 | 6,302,008 | ES (Alpha $=0.2$ ) |
| 18 | 347462 | 52 | 26,333,333 | 13,891,111 | 12,942,654 | ES (Alpha = 0.2) |
| 19 | 220997 | 57 | 1,422,222 | 726,914 | 536,905 | ES (Alpha = 0.2) |
| 20 | 184624 | 58 | 1,947,778 | 896,790 | 1,017,980 | 3 Months Moving Avg |

Table 5.5 Group A - Comparison of Forecasting Approach Resulting Minimum Error for Each Indicator

| No. | Code | Approach Resulting Minimum Average Error |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | MAPE | MAD | MSE |
| 1 | 250625 | Naïve | Naïve | Naïve |
| 2 | 322283 | Naïve | Naïve | Naïve |
| 3 | 183114 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 4 | 186874 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 5 | 347462 | Naïve | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 6 | 127792 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 7 | 147246 | 3 Months Moving Avg | Naïve | Naïve |
| 8 | 517544 | 3 Months Moving Avg | Naïve | Naïve |
| 9 | 293460 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 10 | 184514 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 11 | 307112 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 12 | 157923 | ES (Alpha = 0.2) | Naïve | Naïve |
| 13 | 184288 | Naïve | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 14 | 375080 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | 3 Months Moving Avg |
| 15 | 184336 | ES (Alpha = 0.2) | Naïve | Naïve |
| 16 | 220997 | 3 Months Moving Avg | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 17 | 371296 | ES (Alpha = 0.2) | 3 Months Moving Avg | ES (Alpha = 0.2) |
| 18 | 223552 | 3 Months Moving Avg | 3 Months Moving Avg | ES (Alpha = 0.2) |
| 19 | 184624 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 20 | 388633 | ES (Alpha = 0.2) | 3 Months Moving Avg | 3 Months Moving Avg |
| Naïve |  | 4 | 6 | 6 |
| 3 Months Moving Avg |  | 5 | 4 | 3 |
| ES (Alpha = 0.2) |  | 11 | 10 | 11 |

In conclusion, simple exponential smoothing with alpha 0.2 will be selected for demand estimation applied to the periodic simulation review in the next section.

### 5.1.2 Periodic Review Policy Simulation Results

The periodic review simulation is applied to 20 items from group A. Basis and assumption refers to section 4.2 .8 . $95 \%$ and $98 \%$ service level are sensitively determined for safety stock. The comparison results of actual inventory level are illustrated in Figure 5.2 and 5.3 for 95\% service level, and Figure 5.4 and 5.5 for 98\% service level. The actual inventory levels from January to May 2016 are shown in blue bold lines, and the proposed policy results are shown in red dash lines.


Figure 5.2 Group A-Periodic Review Policy Results for Item No. 1-10 (95\% Service Level for Safety Stock)


Figure 5.3: Group A-Periodic Review Policy Results for Item No. 11-20 (95\% Service Level for Safety Stock)


Figure 5.4 Group A-Periodic Review Policy Results for Item No. 1-10 (98\% Service Level for Safety Stock)


Figure 5.5 Group A - Periodic Review Policy Results for Item No. 11-20 (98\% Service Level for Safety Stock)

Periodic stock records on the date of the $21^{\text {st }}$ of every month between January and May 2016 are reviewed and plotted. Figure 5.6, 5.7, and 5.8 illustrate 14 items from group A that show a reduction in inventory due to the proposed policy implementation.


Figure 5.6 Reduction of an Inventory for Group A Items - 1/3


Figure 5.7 Reduction of an Inventory for Group A Items - 2/3


Figure 5.8 Reduction of an Inventory for Group A Items - 3/3
The inventory determined from $95 \%$ service level of safety stock is supposed to be less than the inventory determined from $98 \%$ service level of safety stock. Nevertheless, the comparisons for some items such as item number 1, 4, 16, and 18 show that the inventories of both service levels are equal. This is a result of two factors. First, the minimum order quantity makes the ordering decision the same. Second, the
current inventory level is too high compared to the demand, or it is overstocked. Therefore, it results in the decision of not ordering the same items.

The other 6 items do not result in a reduction of an inventory. Three of them (Item No. 9, 11, and 15) result in the increase of inventory due to the implementation. Nevertheless, these items are ordered from a single customer who acknowledges the inventory level and shares the ordering information with the studied company. The comparisons are illustrated in Figure 5.9.


|  | Inventory Level (unit) |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Month } \\ & (2016) \end{aligned}$ | Actual | 95\%Service level | 98\%Service level |
| Jan | 5,400 | 25,100 | 27,100 |
| Feb | 2,700 | 20,600 | 23,000 |
| Mar | 12,600 | 15,900 | 18,200 |
| Apr | 22,500 | 13,800 | 16,200 |
| May | 26,100 | 18,300 | 20,700 |
|  | Inventory Level (unit) |  |  |
| $\begin{aligned} & \hline \text { Month } \\ & (2016) \end{aligned}$ | Actual | 95\%Service level | 98\%Service level |
| Jan | 5,400 | 19,700 | 21,900 |
| Feb | - | 16,800 | 19,000 |
| Mar | 9,900 | 15,100 | 17,100 |
| Apr | 18,000 | 13,200 | 15,300 |
| May | 23,400 | 13,300 | 15,400 |
|  | Inventory Level (unit) |  |  |
| $\begin{aligned} & \hline \text { Month } \\ & (2016) \end{aligned}$ | Actual | 95\%Service level | 98\%Service level |
| Jan | 11,050 | 8,650 | 11,050 |
| Feb | 11,050 | 14,650 | 15,850 |
| Mar | 6,650 | 17,450 | 19,850 |
| Apr | 3,050 | 16,250 | 17,450 |
| May | 3,050 | 17,450 | 19,850 |

Figure 5.9 Inventory Results for Group A Items with Receiving Shared Information from A Single Customer

The other 3 items (No. 5, 8, and 12) are shown in Figure 5.10. The current operations are in the same range of the proposed policy.


|  | Inventory Level (unit) |  |  |
| :---: | ---: | ---: | ---: |
| Month <br> $(2016)$ | Actual | $95 \%$ Service <br> level | $98 \%$ Service <br> level |
| Jan | 311 | 281 | 311 |
| Feb | 239 | 269 | 299 |
| Mar | 119 | 269 | 299 |
| Apr | 173 | 173 | 203 |
| May | 186 | 179 | 209 |
| Month |  |  |  |
| (2016) | Actual | $95 \%$ Service <br> level | $98 \%$ Service |
| level |  |  |  |

Figure 5.10 Inventory Results for Group A Items with No Inventory Reduction for Implementing the Proposed Policy

Table 5.6 illustrates the comparison of actual operations and simulation results toward three key performance indexes (KPI) identified in section 4.1. These are inventory level, inventory value and service level. The table presents the inventory level and value with daily average. The actual service level is presented in percentage. The service levels are $100 \%$ since both actual operation and proposed policy maintain inventory for serving the demand except actual operation of item no. 11 (code 307112) which experienced a stock out period during February for 15 days (shown in Figure 5.3 and 5.5).

The total numbers of inventory level and value by the proposed policy for both 95 and 98 percent service level are less than the actual operation.

Since, the proposed policy does not suit with the products ordered by a single customer who shares information, the summary of total inventory level and value without these items is shown to determine the real reduction of the adopted policy.

Overall, the stock level of $95 \%$ service level is less than $98 \%$ service level. Regarding the simulation results in Figure 5.2, 5.3, 5.4, and 5.5, there is no stock-out event for both safety stocks. Hence, the service level of $95 \%$ is suggested for the policy application since the inventory holding is less than the safety stock determined from $98 \%$ service level, and it can serve the customers' demands without any stock out event occurring nor any potential unfulfilled demand.

In summary, the application of the proposed policy and forecasting technique can decrease the inventory level for group A items except for the products which are ordered by a single customer who shares ordering information. $95 \%$ service level for safety stock determination is recommended. The assessment shows that the proposed policy can reduce daily average numbers of items by $17 \%$ and reduce the average daily inventory value by $23 \%$ compared to the current operation of the studied company.

Table 5.6 Comparison Performance Measurement for Group A Items

| No. | Product ID | Average Daily Inventory Level (unit) |  |  | cost per unit <br> (THB) | Average Daily Inventory Value (THB) |  |  | Service Level Measurement |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Actual operation | $95 \%$ <br> Service level | $98 \%$ <br> Service level |  | Actual operation | $95 \%$ <br> Service level | $98 \%$ <br> Service level | Actual operation | $95 \%$ Service level | $98 \%$ <br> Service level |
| 1 | 250625 | 47,168 | 34,011 | 34,011 | 0.40 | 18,710 | 13,491 | 13,491 | 100\% | 100\% | 100\% |
| 2 | 322283 | 26,774 | 21,037 | 21,037 | 1.82 | 48,729 | 38,287 | 38,287 | 100\% | 100\% | 100\% |
| 3 | 183114 | 6,609 | 4,093 | 4,539 | 4.56 | 30,136 | 18,662 | 20,697 | 100\% | 100\% | 100\% |
| 4 | 186874 | 6,613 | 5,188 | 5,696 | 4.84 | 32,005 | 25,108 | 27,567 | 100\% | 100\% | 100\% |
| 5 | 347462 | 222 | 251 | 287 | 132 | 29,230 | 33,109 | 37,779 | 100\% | 100\% | 100\% |
| 6 | 127792 | 673 | 586 | 610 | 167 | 112,605 | 98,107 | 102,061 | 100\% | 100\% | 100\% |
| 7 | 147246 | 304 | 173 | 182 | 230 | 69,974 | 39,917 | 42,003 | 100\% | 100\% | 100\% |
| 8 | 517544 | 97 | 97 | 97 | 354 | 34,352 | 34,352 | 34,352 | 100\% | 100\% | 100\% |
| 9 | 293460 | 14,248 | 19,138 | 21,324 | 3.43 | 48,843 | 65,603 | 73,098 | 100\% | 100\% | 100\% |
| 10 | 184514 | 4,744 | 3,579 | 3,579 | 5.09 | 24,149 | 18,219 | 18,219 | 100\% | 100\% | 100\% |
| 11 | 307112 | 11,874 | 16,116 | 18,141 | 3.46 | 41,085 | 55,760 | 62,767 | 90\% | 100\% | 100\% |
| 12 | 157923 | 127,794 | 129,106 | 149,981 | 0.46 | 59,211 | 59,819 | 69,491 | 100\% | 100\% | 100\% |
| 13 | 184288 | 5,706 | 2,188 | 2,383 | 2.21 | 12,632 | 4,845 | 5,276 | 100\% | 100\% | 100\% |
| 14 | 375080 | 1,409 | 1,387 | 1,387 | 33 | 46,175 | 45,462 | 45,462 | 100\% | 100\% | 100\% |
| 15 | 184336 | 8,251 | 15,556 | 17,386 | 3.08 | 25,373 | 47,835 | 53,463 | 100\% | 100\% | 100\% |
| 16 | 220997 | 66 | 45 | 45 | 526 | 34,895 | 23,927 | 23,927 | 100\% | 100\% | 100\% |
| 17 | 371296 | 18,900 | 10,325 | 11,800 | 2.92 | 55,094 | 30,097 | 34,397 | 100\% | 100\% | 100\% |
| 18 | 223552 | 56,549 | 49,299 | 49,299 | 1.51 | 85,389 | 74,441 | 74,441 | 100\% | 100\% | 100\% |
| 19 | 184624 | 8,020 | 3,735 | 4,035 | 4.74 | 37,999 | 17,696 | 19,118 | 100\% | 100\% | 100\% |
| 20 | 388633 | 11,349 | 3,369 | 4,239 | 1.90 | 21,563 | 6,401 | 8,054 | 100\% | 100\% | 100\% |
|  | Total | 357,369 | 319,279 | 350,058 |  | 868,147 | 751,139 | 803,949 | 100\% | 100\% | 100\% |
| Reduction |  |  | 11\% | 2\% |  |  | 13\% | 7\% |  |  |  |
| $\begin{array}{\|r} \hline \text { Total (without item } \\ 9,11 \text {, and } 15 \text { ) } \\ \hline \end{array}$ |  | 322,996 | 268,470 | 293,207 |  | 752,846 | 581,940 | 614,622 |  |  |  |
| Reduction |  |  | 17\% | 9\% |  |  | 23\% | 18\% |  |  |  |

### 5.1.3 Sensitivity Analysis for the Weight Factor

Sensitivity analysis for the weight factor (alpha) affecting to the overall performance is performed in this section since the methodology of the alpha selection in section 5.1.1 neglects the variance of demand size, error, and value. All studied items are considered equal. Moreover, the overall performance of the policy adoption can be evaluated.

The weight factors of $0.1,0.2$, and 0.3 are selected for the study. Items which are ordered by single customers who share demand information are not included in the analysis. Safety Stock is determined at $95 \%$ service level for all cases.

Table 5.7 Results for Weight Factors Sensitivity Analysis

| Total (without item 9,11, and 15) | Actual | Weight Factor |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  |  | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 3}$ |
| Total Average Daily Inventory (units) | 322,996 | 240,795 | 268,470 | 276,554 |
| Reduction |  | $25 \%$ | $17 \%$ | $14 \%$ |
| Total Average Daily Value (THB) | 752,846 | 585,475 | 581,940 | 575,088 |
| Reduction |  | $22 \%$ | $23 \%$ | $24 \%$ |
| Actual Service Level | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ |

The results illustrated in Table 5.7 show that an alpha of 0.1 can reduce the most units of items, while alpha of 0.3 can reduce the most value of stock. All cases can provide $100 \%$ actual service level.

The opposite results are because of the ignorance of the item unit value during forecasting technique selection. It is possible that the items with large units tend to be fitted with weight factor of 0.1 , but its unit cost is low. However, the difference between three weight factors in in terms of value are considered marginal. The $11 \%$ difference of inventory level for weight factor of 0.1 and 0.3 cannot be accurately verified that which one is better as the volume of product or required space is not considered in this analysis. Nevertheless, the result implies that the using alpha of 0.1 and 0.3 impacts to the different sets of items.

### 5.2 GROUP B INVENTORY

Twenty (20) items out of the fifty four (54) items in group B are randomly selected to be tested for the study evaluation. The selection will cover a range of 8 to 11 months demand occurring.

### 5.2.1 Forecasting Approach Evaluation

Regarding Table 4.7, three forecasting techniques, Naïve, 3 months moving average, and simple exponential smoothing will be simulated and have their average errors of MASE, MAD, and MSE for month 4 to 12 compared.

The implementation steps are similar to group A. The weight factor (smoothing factor) for simple exponential smoothing approach will be assessed toward three forecasting-error indicators (MASE, MAD, and MSE) by using the solver function in Microsoft excel.

Table 5.8 shows the weight factors that give the minimum error for each indicator. The average and median of the optimum weight factors are in a range of 0.2 . Hence, 0.2 will be selected for the forecasting method analysis for simple exponential smoothing.

Table 5.8 Group B Items - Weight Factors Analysis for Exponential Smoothing Technique

| A Alpha for Simple Exponential Smoothing Method (Group B) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of month <br> showing <br> demand | No. | Code | Group Check | Seq. Order | Optimum Weight Factor (alpha) |  |  |
|  |  |  |  |  | MASE | MAD | MSE |
| 11 | 1 | 401079 | B | 64 | 0.19 | 0.19 | 0.29 |
|  | 2 | 226689 | B | 65 | 0.17 | 0.17 | 0.10 |
|  | 3 | 330746 | B | 66 | 0.10 | 0.10 | 0.10 |
|  | 4 | 121633 | B | 68 | 0.11 | 0.11 | 0.11 |
|  | 5 | 109427 | B | 69 | 0.10 | 0.10 | 0.10 |
|  | 6 | 325384 | B | 72 | 0.10 | 0.10 | 0.10 |
|  | 7 | 404367 | B | 76 | 0.28 | 0.28 | 0.41 |
| 10 | 8 | 429581 | B | 79 | 0.46 | 0.46 | 0.86 |
|  | 9 | 382116 | B | 80 | 0.12 | 0.12 | 0.13 |
|  | 10 | 230136 | B | 84 | 0.19 | 0.19 | 0.30 |
|  | 11 | 325388 | B | 87 | 0.38 | 0.38 | 0.53 |
| 9 | 12 | RO-028 | B | 91 | 0.33 | 0.33 | 0.32 |
|  | 13 | 159145 | B | 93 | 0.44 | 0.44 | 0.28 |
|  | 14 | 270040 | B | 101 | 0.25 | 0.25 | 0.10 |
|  | 15 | 184275 | B | 103 | 0.44 | 0.44 | 0.30 |
|  | 16 | 121680 | B | 104 | 0.10 | 0.10 | 0.12 |
| 8 | 17 | 380616 | B | 105 | 0.10 | 0.10 | 0.10 |
|  | 18 | 416437 | B | 106 | 0.10 | 0.10 | 0.10 |
|  | 19 | 326936 | B | 112 | 0.49 | 0.49 | 0.59 |
|  | 20 | 416445 | B | 113 | 0.14 | 0.14 | 0.10 |
| Average |  |  |  |  | 0.23 | 0.23 | 0.25 |
| Median |  |  |  |  | 0.18 | 0.18 | 0.12 |

Then, the average values from the specified error techniques are determined for the three forecasting methods as shown in Table 5.9, 5.10, and 5.11. The approach that results in the minimum error is named on the right column of the table.

The comparison of the least error forecasting techniques with the least error from the three forecasting indicators is shown in Table 5.12. The table presents that simple exponential smoothing approach with fixed alpha at 0.2 appears to be a technique which gives the most accurate results for the selected data from all three indicators.

Table 5.9 Average MASE for Group B Items and the Minimum Error Forecasting Approach

| MASE / month (4-12) |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. Order | Naïve | 3 Months Moving Average | Exponential Smoothing (Alpha = 0.2) |  |
| 1 | 401079 | 64 | 1.00 | 0.729 | 0.731 | 3 Months Moving Avg |
| 2 | 226689 | 65 | 1.00 | 0.772 | 0.683 | ES (Alpha = 0.2) |
| 3 | 330746 | 66 | 1.00 | 0.754 | 0.595 | ES (Alpha = 0.2) |
| 4 | 121633 | 68 | 1.00 | 0.814 | 0.631 | ES (Alpha = 0.2) |
| 5 | 109427 | 69 | 1.00 | 0.965 | 0.847 | ES (Alpha = 0.2) |
| 6 | 325384 | 72 | 1.00 | 0.751 | 0.660 | ES (Alpha = 0.2) |
| 7 | 404367 | 76 | 1.00 | 0.730 | 0.783 | 3 Months Moving Avg |
| 8 | 429581 | 79 | 1.00 | 1.333 | 1.712 | Naïve |
| 9 | 382116 | 80 | 1.00 | 0.669 | 0.659 | ES (Alpha = 0.2) |
| 10 | 230136 | 84 | 1.00 | 0.808 | 0.693 | ES (Alpha = 0.2) |
| 11 | 325388 | 87 | 1.00 | 0.944 | 1.067 | 3 Months Moving Avg |
| 12 | RO-028 | 91 | 1.00 | 0.738 | 0.789 | 3 Months Moving Avg |
| 13 | 159145 | 93 | 1.00 | 0.728 | 0.856 | 3 Months Moving Avg |
| 14 | 270040 | 101 | 1.00 | 0.725 | 0.598 | ES (Alpha = 0.2) |
| 15 | 184275 | 103 | 1.00 | 0.833 | 1.054 | 3 Months Moving Avg |
| 16 | 121680 | 104 | 1.00 | 0.833 | 0.725 | ES (Alpha = 0.2) |
| 17 | 380616 | 105 | 1.00 | 0.715 | 0.714 | ES (Alpha = 0.2) |
| 18 | 416437 | 106 | 1.00 | 0.706 | 0.685 | ES (Alpha = 0.2) |
| 19 | 326936 | 112 | 1.00 | 0.867 | 1.034 | 3 Months Moving Avg |
| 20 | 416445 | 113 | 1.00 | 0.677 | 0.609 | ES (Alpha = 0.2) |

Table 5.10 Average MAD for Group B Items and the Minimum Error Forecasting Approach

| MAD / month (4-12) |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. Order | Naïve | 3 Months Moving Average | Exponential Smoothing (Alpha $=0.2$ ) |  |
| 1 | 401079 | 64 | 7.11 | 5.19 | 5.20 | 3 Months Moving Avg |
| 2 | 226689 | 65 | 1900 | 1467 | 1298 | ES (Alpha = 0.2) |
| 3 | 330746 | 66 | 1056 | 796 | 628 | ES (Alpha = 0.2) |
| 4 | 121633 | 68 | 856 | 696 | 540 | ES (Alpha = 0.2) |
| 5 | 109427 | 69 | 12667 | 12222 | 10735 | ES (Alpha = 0.2) |
| 6 | 325384 | 72 | 1889 | 1419 | 1246 | ES (Alpha = 0.2) |
| 7 | 404367 | 76 | 4122 | 3011 | 3229 | 3 Months Moving Avg |
| 8 | 429581 | 79 | 67 | 89 | 114 | Naïve |
| 9 | 382116 | 80 | 1878 | 1256 | 1237 | ES (Alpha = 0.2) |
| 10 | 230136 | 84 | 789 | 637 | 547 | ES (Alpha = 0.2) |
| 11 | 325388 | 87 | 600 | 567 | 640 | 3 Months Moving Avg |
| 12 | RO-028 | 91 | 311 | 230 | 245 | 3 Months Moving Avg |
| 13 | 159145 | 93 | 6.0 | 4.4 | 5.1 | 3 Months Moving Avg |
| 14 | 270040 | 101 | 38 | 27 | 23 | ES (Alpha = 0.2) |
| 15 | 184275 | 103 | 178 | 148 | 187 | 3 Months Moving Avg |
| 16 | 121680 | 104 | 133 | 111 | 97 | ES (Alpha = 0.2) |
| 17 | 380616 | 105 | 390 | 279 | 279 | ES (Alpha = 0.2) |
| 18 | 416437 | 106 | 17.0 | 12.0 | 11.7 | ES (Alpha = 0.2) |
| 19 | 326936 | 112 | 111 | 96 | 115 | 3 Months Moving Avg |
| 20 | 416445 | 113 | 11.1 | 7.5 | 6.8 | ES (Alpha $=0.2$ ) |

Table 5.11 Average MSE for Group B Items and the Minimum Error Forecasting Approach

| MSE / month (4-12) |  |  |  |  |  |  |
| :---: | :---: | :---: | ---: | ---: | ---: | :--- |
| No. | Code | Seq. <br> Order | Naïve | 3 Months <br> Moving Average | Exponential <br> Smoothing <br> (Alpha $=0.2)$ | Approach Resulting <br> Minimum Error |
| 1 | 401079 | 64 | 83 | 59 | 65 | 3 Months Moving Avg |
| 2 | 226689 | 65 | $6,981,667$ | $3,819,568$ | $3,601,666$ | ES (Alpha $=0.2)$ |
| 3 | 330746 | 66 | $1,638,889$ | 867,284 | 629,098 | ES (Alpha $=0.2)$ |
| 4 | 121633 | 68 | $1,603,333$ | 898,519 | 762,726 | ES (Alpha $=0.2)$ |
| 5 | 109427 | 69 | $223,555,556$ | $174,469,136$ | $130,043,835$ | ES (Alpha $=0.2)$ |
| 6 | 325384 | 72 | $3,913,333$ | $2,616,667$ | $1,918,210$ | ES (Alpha $=0.2)$ |
| 7 | 404367 | 76 | $23,763,333$ | $15,534,444$ | $19,413,909$ | 3 Months Moving Avg |
| 8 | 429581 | 79 | 6,667 | 12,531 | 20,961 | Naïve |
| 9 | 382116 | 80 | $5,302,778$ | $2,228,086$ | $2,139,355$ | ES (Alpha $=0.2)$ |
| 10 | 230136 | 84 | 905,000 | 576,667 | 599,177 | 3 Months Moving Avg |
| 11 | 325388 | 87 | 540,000 | 470,000 | 645,536 | 3 Months Moving Avg |
| 12 | $R O-028$ | 91 | 137,778 | 79,753 | 79,020 | ES (Alpha $=0.2)$ |
| 13 | 159145 | 93 | 59 | 31 | 30 | ES (Alpha $=0.2)$ |
| 14 | 270040 | 101 | 2,378 | 1,314 | 1,009 | ES (Alpha $=0.2)$ |
| 15 | 184275 | 103 | 71,111 | 35,556 | 39,459 | 3 Months Moving Avg |
| 16 | 121680 | 104 | 40,000 | 20,000 | 17,799 | ES (Alpha $=0.2)$ |
| 17 | 380616 | 105 | 285,569 | 154,966 | 120,653 | ES (Alpha $=0.2)$ |
| 18 | 416437 | 106 | 389 | 194 | 170 | ES (Alpha $=0.2)$ |
| 19 | 326936 | 112 | 14,444 | 11,975 | 17,810 | 3 Months Moving Avg |
| 20 | 416445 | 113 | 168 | 81 | 73 | ES (Alpha $=0.2)$ |

Table 5.12 Group B - Comparison of Forecasting Approach Resulting Minimum Error for Each Indicator

| No. | Code | Approach Resulting Minimum Average Error |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | MASE | MAD | MSE |
| 1 | 401079 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 2 | 226689 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 3 | 330746 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 4 | 121633 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 5 | 109427 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 6 | 325384 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 7 | 404367 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 8 | 429581 | Naïve | Naïve | Naïve |
| 9 | 382116 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha $=0.2$ ) |
| 10 | 230136 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | 3 Months Moving Avg |
| 11 | 325388 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 12 | RO-028 | 3 Months Moving Avg | 3 Months Moving Avg | ES (Alpha = 0.2) |
| 13 | 159145 | 3 Months Moving Avg | 3 Months Moving Avg | ES (Alpha = 0.2) |
| 14 | 270040 | ES (Alpha $=0.2$ ) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 15 | 184275 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 16 | 121680 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 17 | 380616 | ES (Alpha = 0.2) | ES (Alpha $=0.2$ ) | ES (Alpha = 0.2) |
| 18 | 416437 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 19 | 326936 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 20 | 416445 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| Naïve |  | 1 | 1 | 1 |
| 3 Months Moving Avg |  | 7 | 7 | 6 |
| ES (Alpha = 0.2) |  | 12 | 12 | 13 |

In conclusion, simple exponential smoothing with alpha 0.2 will be selected for the demand estimation applied to the periodic simulation review in the next section.

### 5.2.2 Periodic Review Policy Simulation Results

The periodic review simulation is applied to 20 items from group B. Basis and assumption refers to section 4.2 .8 . $95 \%$ and $98 \%$ service level are sensitively determined for safety stock. The comparison results of actual inventory level are illustrated in Figure 5.11 and 5.12 for $95 \%$ service level, and Figure 5.13 and 5.14 for $98 \%$ service level. The actual inventory levels from January to May 2016 are shown in blue bold lines, and the proposed policy results are shown in red dash lines.


Figure 5.11 Group B - Periodic Review Policy Results for Item No. 1-10
(95\% Service Level for Safety Stock)


Figure 5.12 Group B - Periodic Review Policy Results for Item No. 11-20 (95\% Service Level for Safety Stock)


Figure 5.13 Group B - Periodic Review Policy Results for Item No. 1-10 (98\% Service Level for Safety Stock)


Figure 5.14 Group B - Periodic Review Policy Results for Item No. 11-20 (98\% Service Level for Safety Stock)

Periodic stock records on the date of the $21^{\text {st }}$ of every month between January and May 2016 are reviewed and plotted. Figure 5.15, and 5.16 illustrate 9 items in group B that show a reduction of an inventory due to the proposed policy implementation.


|  | Inventory Level (unit) |  |  |
| :---: | :---: | :---: | :---: |
| Month (2016) | Actual | 95\%Service level | 98\%Service level |
| Jan | 70 | 50 | 50 |
| Feb | 89 | 49 | 49 |
| Mar | 89 | 49 | 49 |
| Apr | 107 | 47 | 47 |
| May | 122 | 42 | 42 |
|  | Inventory Level (unit) |  |  |
| Month (2016) | Actual | 95\%Service level | 98\%Service level |
| Jan | 5,200 | 5,200 | 6,400 |
| Feb | 5,550 | 6,750 | 7,950 |
| Mar | 7,000 | 5,200 | 6,400 |
| Apr | 10,400 | 6,800 | 8,000 |
| May | 8,850 | 6,450 | 7,650 |
|  | Inventory Level (unit) |  |  |
| Month $(2016)$ | Actual | 95\%Service level | 98\%Service level |
| Jan | 8,700 | 8,700 | 8,700 |
| Feb | 8,200 | 8,200 | 8,200 |
| Mar | 8,200 | 8,200 | 8,200 |
| Apr | 13,800 | 7,800 | 7,800 |
| May | 13,000 | 7,000 | 7,000 |
|  | Inventory Level (unit) |  |  |
| Month (2016) | Actual | 95\%Service level | 98\%Service level |
| Jan | 112,000 | 112,000 | 112,000 |
| Feb | 108,000 | 108,000 | 108,000 |
| Mar | 100,000 | 100,000 | 100,000 |
| Apr | 72,000 | 72,000 | 72,000 |
| May | 104,000 | 64,000 | 64,000 |
|  | Inventory Level (unit) |  |  |
| Month $(2016)$ | Actual | 95\%Service level | 98\%Service level |
| Jan | 7,400 | 8,400 | 9,400 |
| Feb | 8,400 | 7,400 | 8,400 |
| Mar | 10,400 | 6,400 | 7,400 |
| Apr | 9,400 | 3,400 | 4,400 |
| May | 10,400 | 3,400 | 4,400 |

Figure 5.15 Reduction of an Inventory for Group B Items - 1/2


Figure 5.16 Reduction of an Inventory for Group B Items - 2/2
The other 11 items in Group B can be divided into 2 groups. First, there are 8 items that the actual operations stay in the same range as the proposed policy. They are illustrated in Figure 5.17, and 5.18. As previously mentioned for group A items, implementation results, which inventories for two service levels are equal, are because of MOQ (minimum order quantity) and current overstocked levels.

The last 3 items shown in Figure 5.19 are the items that the proposed policy has given an increase of inventory level. It is because the studied company manages them lower than the proposed service level.

However, the actual operation for item number 7 (Code 404367) has experienced a stock-out during the study period as shown in Figure 5.11 and 5.13. It implies that even the proposed policy does not decrease the inventory level, but it helps ensuring appropriate stock level from the safety stock determination.


Figure 5.17 Inventory Results for Group B Items with No Inventory Reduction for Implementing the Proposed Policy - 1/2


Figure 5.18 Inventory Results for Group B Items with No Inventory Reduction for Implementing the Proposed Policy - 2/2


Figure 5.19 Inventory Results for Group B Items with Inventory Increase for Implementing the Proposed Policy

Table 5.13 illustrates the comparison of actual operation and simulation results toward three key performance indexes (KPI) identified in section 4.1. The actual operation for item number 7 results a period of no stock. The percentage of time (calculated in numbers of day) is determined and shown as a service level in the table.

Overall, the stock level of $95 \%$ service level is smaller than $98 \%$ service level. Regarding the simulation results in Figure 5.11, 5.12, 5.13, and 5.14, there is no stock out event for both safety stocks. Hence, the service level of $95 \%$ is suggested for the policy application because inventory holding is less than the safety stock determined from $98 \%$ service level, and it can serve the customers' demands without any unfulfilled event.

In summary, the application of the proposed policy and forecasting technique can decrease the average inventory level for group B items by $7 \%$ and average inventory value by $19 \%$ at $95 \%$ service level for safety stock component compared to the current operation. The actual operation experienced a stock out period for item number 7. The proposed policy results in no stock out period, thus it shows $100 \%$ for all items.

Table 5.13 Comparison Performance Measurement for Group B Items

| No. | Product ID | Average Daily Inventory Level (unit) |  |  | $\begin{array}{\|c} \text { cost per } \\ \text { unit } \\ \text { (THB) } \end{array}$ | Average Daily Inventory Value (THB) |  |  | Service Level Measurement |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Actual operation | $\begin{array}{\|c\|} \hline 95 \% \\ \text { Service level } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 98 \% \\ \text { Service level } \\ \hline \end{array}$ |  | Actual operation | $\begin{array}{\|c\|} \hline 95 \% \\ \text { Service level } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 98 \% \\ \text { Service level } \\ \hline \end{array}$ | Actual operation | $\begin{array}{c\|} \hline 95 \% \\ \text { Service level } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 98 \% \\ \text { Service level } \\ \hline \end{array}$ |
| 1 | 401079 | 92 | 48 | 48 | 110.23 | 10,168 | 5,332 | 5,332 | 100\% | 100\% | 100\% |
| 2 | 226689 | 7,803 | 6,475 | 7,623 | 2.96 | 23,081 | 19,154 | 22,548 | 100\% | 100\% | 100\% |
| 3 | 330746 | 28,731 | 28,731 | 28,731 | 0.76 | 21,836 | 21,836 | 21,836 | 100\% | 100\% | 100\% |
| 4 | 121633 | 10,259 | 8,084 | 8,084 | 1.83 | 18,775 | 14,794 | 14,794 | 100\% | 100\% | 100\% |
| 5 | 109427 | 98,225 | 92,725 | 92,725 | 0.22 | 21,610 | 20,400 | 20,400 | 100\% | 100\% | 100\% |
| 6 | 325384 | 9,106 | 6,000 | 6,956 | 3.60 | 32,767 | 21,590 | 25,031 | 100\% | 100\% | 100\% |
| 7 | 404367 | 6,147 | 9,139 | 10,977 | 1.84 | 11,328 | 16,843 | 20,229 | 78\% | 100\% | 100\% |
| 8 | 429581 | 2,833 | 2,833 | 2,833 | 1.65 | 4,674 | 4,674 | 4,674 | 100\% | 100\% | 100\% |
| 9 | 382116 | 5,175 | 5,102 | 5,963 | 4.78 | 24,747 | 24,397 | 28,513 | 100\% | 100\% | 100\% |
| 10 | 230136 | 3,152 | 2,522 | 2,961 | 4.89 | 15,397 | 12,319 | 14,463 | 100\% | 100\% | 100\% |
| 11 | 325388 | 4,537 | 2,624 | 2,827 | 4.15 | 18,827 | 10,891 | 11,732 | 100\% | 100\% | 100\% |
| 12 | RO-028 | 2,496 | 2,496 | 2,496 | 8.70 | 21,705 | 21,705 | 21,705 | 100\% | 100\% | 100\% |
| 13 | 159145 | 25 | 19 | 27 | 951.94 | 23,418 | 17,944 | 25,738 | 100\% | 100\% | 100\% |
| 14 | 270040 | 200 | 200 | 200 | 14.28 | 2,856 | 2,856 | 2,856 | 100\% | 100\% | 100\% |
| 15 | 184275 | 1,943 | 1,943 | 1,943 | 1.32 | 2,564 | 2,564 | 2,564 | 100\% | 100\% | 100\% |
| 16 | 121680 | 5,619 | 4,314 | 4,314 | 1.95 | 10,966 | 8,419 | 8,419 | 100\% | 100\% | 100\% |
| 17 | 380616 | 1,737 | 849 | 1,041 | 28.87 | 50,151 | 24,526 | 30,048 | 100\% | 100\% | 100\% |
| 18 | 416437 | 36 | 48 | 54 | 107.88 | 3,850 | 5,212 | 5,839 | 100\% | 100\% | 100\% |
| 19 | 326936 | 462 | 462 | 462 | 12.44 | 5,748 | 5,748 | 5,748 | 100\% | 100\% | 100\% |
| 20 | 416445 | 11 | 26 | 30 | 116.02 | 1,239 | 3,038 | 3,473 | 100\% | 100\% | 100\% |
|  | Total | 188,588 | 174,642 | 180,295 |  | 325,705 | 264,241 | 295,940 | 99\% | 100\% | 100\% |
|  | duction |  | 7\% | 4\% |  |  | 19\% | 9\% |  |  |  |

### 5.3 GROUP C INVENTORY

Twenty (20) items of seventy two (72) items in group C are randomly tested for the evaluation study. The selection will cover a range of 2 to 7 months of occurring demands. The items which have only 1 demand data are not selected for the study as they are considered inadequate information for the analysis.

### 5.3.1 Forecasting Approach Evaluation

Following Table 4.7, four forecasting techniques, Naïve, 3 months moving average, simple exponential smoothing, and Croston's method will be simulated and have the average errors of MASE, MAD, and MSE compared, for month 4 to 12 for group C items.

The implementation steps are similar to group A and B. The weight factor (smoothing factor) for simple exponential smoothing approach and Croston's method
will be assessed toward three forecasting-error indicators (MASE, MAD, and MSE) by using a solver function in Microsoft excel.

Table 5.14 shows the weight factors for simple exponential smoothing technique that give the minimum error for each indicator. Table 5.15 shows the weight factors for Croston's method that give the minimum error for each indicator as well. The average and median of the optimum weight factors for both forecasting approaches are in a range of 0.2 . Hence, 0.2 will be used for for the forecasting method analysis for both simple exponential smoothing and Croston's method.

## Table 5.14 Group C Items - Weight Factors Analysis for Exponential Smoothing

 Technique| Alpha for Simple Exponential Smoothing Method (Group C) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of month <br> showing <br> demand | No. | Code | Group Check | Seq. Order | Optimum Weight Factor (alpha) |  |  |
|  |  |  |  |  | MASE | MAD | MSE |
| 7 | 1 | 394672 | C | 114 | 0.13 | 0.13 | 0.27 |
|  | 2 | 426079 | C | 115 | 0.12 | 0.12 | 0.21 |
|  | 3 | 432733 | C | 119 | 0.44 | 0.44 | 0.34 |
| 6 | 4 | 130512 | C | 122 | 0.10 | 0.10 | 0.13 |
|  | 5 | 233171 | C | 123 | 0.10 | 0.10 | 0.19 |
|  | 6 | 272858 | C | 124 | 0.10 | 0.10 | 0.10 |
|  | 7 | 434565 | C | 126 | 0.21 | 0.21 | 0.41 |
|  | 8 | 349794 | C | 130 | 0.28 | 0.28 | 0.26 |
|  | 9 | 245447 | C | 131 | 0.10 | 0.10 | 0.20 |
|  | 10 | 168944 | C | 133 | 0.21 | 0.21 | 0.35 |
| 5 | 11 | 206151 | C | 138 | 0.10 | 0.10 | 0.14 |
|  | 12 | 20781 | C | 140 | 0.10 | 0.10 | 0.10 |
|  | 13 | 452049 | C | 141 | 0.10 | 0.10 | 0.20 |
|  | 14 | 118512 | C | 143 | 0.10 | 0.10 | 0.10 |
| 4 | 15 | 445067 | C | 145 | 0.29 | 0.29 | 0.13 |
|  | 16 | 517354 | C | 149 | 0.57 | 0.57 | 0.18 |
| 3 | 17 | 332086 | C | 155 | 0.68 | 0.68 | 0.42 |
|  | 18 | 411564 | C | 161 | 0.10 | 0.10 | 0.10 |
| 2 | 19 | 214557 | C | 166 | 0.10 | 0.10 | 0.10 |
|  | 20 | 382191 | C | 171 | 0.10 | 0.10 | 0.10 |
| Average |  |  |  |  | 0.20 | 0.20 | 0.20 |
| Median |  |  |  |  | 0.10 | 0.10 | 0.18 |

Table 5.15 Group C Items - Weight Factors Analysis for Croston's Method

| Alpha for Croston Method (Group C) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of month showing demand | No. | Code | Group Check | Seq. Order | Optimum Weight Factor (alpha) |  |  |
|  |  |  |  |  | MASE | MAD | MSE |
| 7 | 1 | 394672 | C | 64 | 0.10 | 0.10 | 0.10 |
|  | 2 | 426079 | C | 65 | 0.10 | 0.10 | 0.10 |
|  | 3 | 432733 | C | 66 | 0.25 | 0.25 | 0.10 |
| 6 | 4 | 130512 | C | 68 | 0.12 | 0.12 | 0.10 |
|  | 5 | 233171 | C | 69 | 0.10 | 0.10 | 0.10 |
|  | 6 | 272858 | C | 72 | 0.10 | 0.10 | 0.13 |
|  | 7 | 434565 | C | 76 | 0.10 | 0.10 | 0.10 |
|  | 8 | 349794 | C | 79 | 0.10 | 0.10 | 0.10 |
|  | 9 | 245447 | C | 80 | 0.10 | 0.10 | 0.10 |
|  | 10 | 168944 | C | 84 | 0.47 | 0.47 | 0.90 |
| 5 | 11 | 206151 | C | 87 | 0.69 | 0.69 | 0.51 |
|  | 12 | 20781 | C | 91 | 0.50 | 0.50 | 0.19 |
|  | 13 | 452049 | C | 93 | 0.10 | 0.10 | 0.10 |
|  | 14 | 118512 | C | 101 | 0.10 | 0.10 | 0.10 |
| 4 | 15 | 445067 | C | 103 | 0.10 | 0.10 | 0.10 |
|  | 16 | 517354 | C | 104 | 0.10 | 0.10 | 0.89 |
| 3 | 17 | 332086 | C | 105 | 0.13 | 0.13 | 0.13 |
|  | 18 | 411564 | C | 106 | 0.10 | 0.10 | 0.10 |
| 2 | 19 | 214557 | C | 112 | 0.90 | 0.90 | 0.90 |
|  | 20 | 382191 | C | 113 | 0.90 | 0.90 | 0.90 |
|  |  | Average |  |  | 0.26 | 0.26 | 0.29 |
|  |  | Median |  |  | 0.10 | 0.10 | 0.10 |

Then, the average value from specified error techniques is determined for four forecasting methods as shown in Table 5.16, 5.17, and 5.18. The approach that results with the minimum error is named on the right column of the table.

The comparison of the least error forecasting techniques with the least error amongt the three forecasting indicators is shown in Table 5.19. The table presents that Croston's method with fixed alpha at 0.2 appears to be a technique which results in the most accuracy for the selected data from all three indicators.

Table 5.16 Average MASE for Group C Items and the Minimum Error Forecasting Approach

| MASE / month (4-12) |  |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. Order | Naïve | 3 Months Moving Average | Exponential <br> Smoothing <br> (Alpha = 0.2) | Croston Method <br> (Alpha = 0.2) |  |
| 1 | 394672 | 114 | 1.00 | 0.769 | 0.729 | 0.692 | Croston (Alpha = 0.2) |
| 2 | 426079 | 115 | 1.00 | 0.850 | 0.713 | 0.673 | Croston (Alpha = 0.2) |
| 3 | 432733 | 119 | 1.00 | 0.879 | 1.040 | 1.023 | 3 Months Moving Avg |
| 4 | 130512 | 122 | 1.00 | 0.719 | 0.689 | 0.600 | Croston (Alpha = 0.2) |
| 5 | 233171 | 123 | 1.00 | 1.091 | 0.911 | 0.958 | ES (Alpha = 0.2) |
| 6 | 272858 | 124 | 1.00 | 0.754 | 0.747 | 0.747 | Croston (Alpha = 0.2) |
| 7 | 434565 | 126 | 1.00 | 1.000 | 0.901 | 0.827 | Croston (Alpha = 0.2) |
| 8 | 349794 | 130 | 1.00 | 0.833 | 0.940 | 0.777 | Croston (Alpha = 0.2) |
| 9 | 245447 | 131 | 1.00 | 0.667 | 0.575 | 0.500 | Croston (Alpha = 0.2) |
| 10 | 168944 | 133 | 1.00 | 0.701 | 0.669 | 0.696 | ES (Alpha = 0.2) |
| 11 | 206151 | 138 | 1.00 | 0.952 | 0.683 | 0.889 | ES (Alpha = 0.2) |
| 12 | 20781 | 140 | 1.00 | 0.667 | 0.661 | 0.638 | Croston (Alpha = 0.2) |
| 13 | 452049 | 141 | 1.00 | 1.000 | 1.008 | 0.922 | Croston (Alpha =0.2) |
| 14 | 118512 | 143 | 1.00 | 0.948 | 0.768 | 0.723 | Croston (Alpha = 0.2) |
| 15 | 445067 | 145 | 1.00 | 0.958 | 0.967 | 0.870 | Croston (Alpha = 0.2) |
| 16 | 517354 | 149 | 1.00 | 1.000 | 1.045 | 0.941 | Croston (Alpha = 0.2) |
| 17 | 332086 | 155 | 1.00 | 0.833 | 1.313 | 1.311 | 3 Months Moving Avg |
| 18 | 411564 | 161 | 1.00 | 0.762 | 0.724 | 0.791 | ES (Alpha = 0.2) |
| 19 | 214557 | 166 | 1.00 | 1.000 | 0.778 | 1.287 | ES (Alpha = 0.2) |
| 20 | 382191 | 171 | 1.00 | 1.333 | 1.076 | 1.964 | Naïve |

Table 5.17 Average MASE for Group C Items and the Minimum Error Forecasting Approach

| MAD / month (4-12) |  |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. Order | Naïve | 3 Months Moving Average | Exponential Smoothing (Alpha $=0.2$ ) | Croston Method <br> (Alpha $=0.2$ ) |  |
| 1 | 394672 | 114 | 5.78 | 4.44 | 4.21 | 3.85 | Croston (Alpha $=0.2$ ) |
| 2 | 426079 | 115 | 544 | 463 | 388 | 360 | Croston (Alpha = 0.2) |
| 3 | 432733 | 119 | 3.67 | 3.22 | 3.81 | 3.92 | 3 Months Moving Avg |
| 4 | 130512 | 122 | 45 | 32 | 31 | 25 | Croston (Alpha = 0.2) |
| 5 | 233171 | 123 | 2,639 | 2,880 | 2,403 | 2,472 | ES (Alpha = 0.2) |
| 6 | 272858 | 124 | 84 | 64 | 63 | 56 | Croston (Alpha $=0.2$ ) |
| 7 | 434565 | 126 | 444 | 444 | 400 | 349 | Croston (Alpha = 0.2) |
| 8 | 349794 | 130 | 26,667 | 22,222 | 25,070 | 20,396 | Croston (Alpha $=0.2$ ) |
| 9 | 245447 | 131 | 2,000 | 1,333 | 1,151 | 1,000 | Croston (Alpha = 0.2) |
| 10 | 168944 | 133 | 50 | 35 | 34 | 31 | Croston (Alpha = 0.2) |
| 11 | 206151 | 138 | 62 | 59 | 43 | 52 | ES (Alpha = 0.2) |
| 12 | 20781 | 140 | 11,667 | 7,778 | 7,715 | 7,440 | Croston (Alpha $=0.2$ ) |
| 13 | 452049 | 141 | 278 | 278 | 280 | 253 | Croston (Alpha = 0.2) |
| 14 | 118512 | 143 | 1,000 | 948 | 768 | 654 | Croston (Alpha $=0.2$ ) |
| 15 | 445067 | 145 | 4.44 | 4.26 | 4.30 | 3.76 | Croston (Alpha = 0.2) |
| 16 | 517354 | 149 | 6.44 | 6.44 | 6.73 | 6.02 | Croston (Alpha = 0.2) |
| 17 | 332086 | 155 | 511 | 426 | 671 | 674 | 3 Months Moving Avg |
| 18 | 411564 | 161 | 156 | 119 | 113 | 122 | ES (Alpha = 0.2) |
| 19 | 214557 | 166 | 267 | 267 | 207 | 264 | ES (Alpha = 0.2) |
| 20 | 382191 | 171 | 133 | 178 | 143 | 214 | Naïve |

Table 5.18 Average MSE for Group C Items and the Minimum Error Forecasting Approach

| MSE / month (4-12) |  |  |  |  |  |  | Approach Resulting Minimum Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Code | Seq. Order | Naïve | 3 Months Moving Average | Exponential Smoothing (Alpha = 0.2) | Croston Method <br> (Alpha $=0.2$ ) |  |
| 1 | 394672 | 114 | 60 | 42 | 39 | 34 | Croston (Alpha $=0.2$ ) |
| 2 | 426079 | 115 | 502,778 | 345,432 | 328,476 | 295,906 | Croston (Alpha $=0.2$ ) |
| 3 | 432733 | 119 | 42 | 22 | 26 | 24 | 3 Months Moving Avg |
| 4 | 130512 | 122 | 3,350 | 2,087 | 2,035 | 1,863 | Croston (Alpha $=0.2$ ) |
| 5 | 233171 | 123 | 12,201,389 | 9,701,389 | 7,453,501 | 6,652,139 | Croston (Alpha $=0.2$ ) |
| 6 | 272858 | 124 | 12,067 | 5,926 | 5,068 | 5,142 | ES (Alpha = 0.2) |
| 7 | 434565 | 126 | 333,333 | 222,222 | 236,915 | 182,058 | Croston (Alpha $=0.2$ ) |
| 8 | 349794 | 130 | 1,066,666,667 | 572,839,506 | 680,512,706 | 431,961,287 | Croston (Alpha $=0.2$ ) |
| 9 | 245447 | 131 | 4,000,000 | 1,777,778 | 1,421,167 | 1,000,000 | Croston (Alpha $=0.2$ ) |
| 10 | 168944 | 133 | 4,975 | 3,349 | 3,489 | 3,403 | 3 Months Moving Avg |
| 11 | 206151 | 138 | 7,289 | 4,217 | 2,581 | 3,207 | ES (Alpha = 0.2) |
| 12 | 20781 | 140 | 175,000,000 | 66,666,667 | 72,194,653 | 55,778,398 | Croston (Alpha $=0.2$ ) |
| 13 | 452049 | 141 | 138,889 | 95,679 | 79,214 | 66,420 | Croston (Alpha $=0.2$ ) |
| 14 | 118512 | 143 | 3,273,333 | 2,139,753 | 1,731,422 | 1,583,539 | Croston (Alpha $=0.2$ ) |
| 15 | 445067 | 145 | 44 | 26 | 22 | 18 | Croston (Alpha = 0.2) |
| 16 | 517354 | 149 | 134 | 90 | 70 | 59 | Croston (Alpha = 0.2) |
| 17 | 332086 | 155 | 677,778 | 422,099 | 532,424 | 507,454 | 3 Months Moving Avg |
| 18 | 411564 | 161 | 44,444 | 18,519 | 18,944 | 17,011 | Croston (Alpha = 0.2) |
| 19 | 214557 | 166 | 213,333 | 118,519 | 77,137 | 119,488 | ES (Alpha = 0.2) |
| 20 | 382191 | 171 | 80,000 | 62,222 | 43,188 | 70,408 | ES (Alpha = 0.2) |

Table 5.19: Group C - Comparison of Forecasting Approach Resulting Minimum Error for Each Indicator

| No. | Code | Approach Resulting Minimum Average Error |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | MASE | MAD | MSE |
| 1 | 394672 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 2 | 426079 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 3 | 432733 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 4 | 130512 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 5 | 233171 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 6 | 272858 | Croston (Alpha = 0.2) | Croston (Alpha =0.2) | ES (Alpha = 0.2) |
| 7 | 434565 | Croston (Alpha = 0.2) | Croston (Alpha =0.2) | Croston (Alpha = 0.2) |
| 8 | 349794 | Croston (Alpha = 0.2) | Croston (Alpha =0.2) | Croston (Alpha = 0.2) |
| 9 | 245447 | Croston (Alpha = 0.2) | Croston (Alpha =0.2) | Croston (Alpha = 0.2) |
| 10 | 168944 | ES (Alpha = 0.2) | Croston (Alpha = 0.2) | 3 Months Moving Avg |
| 11 | 206151 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 12 | 20781 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 13 | 452049 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha $=0.2$ ) |
| 14 | 118512 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha $=0.2$ ) |
| 15 | 445067 | Croston (Alpha = 0.2) | Croston (Alpha $=0.2$ ) | Croston (Alpha $=0.2$ ) |
| 16 | 517354 | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 17 | 332086 | 3 Months Moving Avg | 3 Months Moving Avg | 3 Months Moving Avg |
| 18 | 411564 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | Croston (Alpha = 0.2) |
| 19 | 214557 | ES (Alpha = 0.2) | ES (Alpha = 0.2) | ES (Alpha = 0.2) |
| 20 | 382191 | Naïve | Naïve | ES (Alpha = 0.2) |
| Naïve |  | 1 | 1 | 0 |
| 3 Months Moving Avg |  | 2 | 2 | 3 |
| ES (Alpha = 0.2) |  | 5 | 4 | 4 |
| Croston (Alpha = 0.2) |  | 12 | 13 | 13 |

In conclusion, Croston's method with alpha 0.2 will be selected for demand estimation, and will be applied to the periodic simulation review in the next section.

### 5.3.2 Periodic Review Policy Simulation Results

According to Table 4.5, inventory holding value for group C items was the highest, but they generated the least revenue proportion, only $20 \%$ ( 2 million THB) of the total order value (11.9 THB). Therefore, group $C$ is less important to the company than group $A$ and $B$.

As previous sections, $95 \%$ service level for safety stock is encouraged for group A and B items. It is not reasonable to study group C for $98 \%$ service level, as its lower critical. Thus, sensitivity of service level for group C will be 90 and $95 \%$.

The periodic review simulation is applied for 20 items in group C. Basis and assumption refer to section $4.2 .8 .90 \%$ and $95 \%$ service level are sensitively determined for safety stock. The comparison results of actual inventory level are illustrated in Figure 5.20 and 5.21 for $90 \%$ service level, and Figure 5.22 and 5.23 for $95 \%$ service level. The actual inventory levels from January to May 2016 are shown in blue bold lines, and the proposed policy results are shown in red dash lines.


Figure 5.20 Group C-Periodic Review Policy Results for Item No. 1 - 10 (90\% Service Level for Safety Stock)


Figure 5.21 Group C - Periodic Review Policy Results for Item No. 11-20 (90\% Service Level for Safety Stock)


Figure 5.22 Group C-Periodic Review Policy Results for Item No. 1 - 10 (95\% Service Level for Safety Stock)


Figure 5.23 Group C - Periodic Review Policy Results for Item No. 11-20 (95\% Service Level for Safety Stock)

Periodic stock records on the date of the $21^{\text {st }}$ of every month between January and May 2016 are reviewed and plotted. Six items in group C show an inventory
reduction due to implementation of the proposed policy as illustrated in Figure 5.24, and 5.25.


|  | Inventory Level (unit) |  |  |
| :---: | :---: | :---: | :---: |
| Month $(2016)$ | Actual | 90\%Service level | 95\%Service level |
| Jan | 36 | 36 | 36 |
| Feb | 36 | 36 | 36 |
| Mar | 36 | 36 | 36 |
| Apr | 33 | 33 | 33 |
| May | 48 | 33 | 33 |
|  | Inventory Level (unit) |  |  |
| Month (2016) | Actual | 90\%Service level | 95\%Service level |
| Jan | 2,050 | 1,450 | 1,750 |
| Feb | 2,050 | 1,750 | 1,950 |
| Mar | 2,050 | 1,750 | 1,950 |
| Apr | 1,850 | 1,550 | 1,750 |
| May | 1,850 | 1,550 | 1,750 |
|  | Inventory Level (unit) |  |  |
| Month $(2016)$ | Actual | 90\%Service level | 95\%Service level |
| Jan | 4,800 | 4,800 | 4,800 |
| Feb | 4,800 | 4,800 | 4,800 |
| Mar | 5,800 | 2,800 | 2,800 |
| Apr | 3,800 | 800 | 800 |
| May | 3,800 | 3,800 | 3,800 |
|  | Inventory Level (unit) |  |  |
| Month (2016) | Actual | 90\%Service level | 95\%Service level |
| Jan | 55,000 | 55,000 | 55,000 |
| Feb | 25,000 | 25,000 | 25,000 |
| Mar | 40,000 | 25,000 | 25,000 |
| Apr | 40,000 | 40,000 | 45,000 |
| May | 40,000 | 40,000 | 45,000 |

Figure 5.24 Reduction of an Inventory for Group C Items - 1/2


Figure 5.25 Reduction of an Inventory for Group C Items - 2/2
The other 14 items of Group C can be divided into 2 groups. First, there are 9 items that the current operations are in the same range of the proposed policy. They are illustrated in Figure 5.26, and 5.27. Most SKUs assessment results are equal to the actual operation except for Item number 14 (Code 118512) and 15 (Code 445067). Their inventory level, shown in Figure 5.27, are equal to service level of $90 \%$ for safety stock determination.

The last 5 items shown in Figure 5.28 are the items that resulted in an increase of inventory level with the proposed policy. It is because the studied company manages them lower than the proposed service level. In addition, two of them (Item No. 5 and 16) are ordered by a single customer who acknowledges the inventory level and shares the ordering information with the studied company

However, with the actual operation for item number 5 (Code 233171), 11 (Code 206151), and 13 (Code 452049) experienced stock-outs during the study period as shown in Figure 5.20, 5.21, 5.22 and 5.23. It implies that even if the proposed policy does not decrease their inventory levels, it still helps ensuring appropriate stock levels from the safety stock expectation.


Figure 5.26 Inventory Results for Group C Items with No Inventory Reduction for Implementing the Proposed Policy - 1/2


Figure 5.27 Inventory Results for Group C Items with No Inventory Reduction for Implementing the Proposed Policy - 2/2


Figure 5.28 Inventory Results for Group B Items with Inventory Increase for Implementing the Proposed Policy

Table 5.20 illustrates the comparison of the actual operation and simulation results toward the three key performance indexes (KPI) identified in section 4.1. The actual operation for item number 5, 11, and 13 results in a period of no stock. The percentage of time (calculated in numbers of day) is determined and shown as a service level in the table.

Since, the proposed policy does not suit with the products ordered by a single customer who shares information, the summary of total inventory levels and values without these items is shown to determine the real reduction of the adopted policy.

Without consideration of items ordered by single customers who share the demand, it can be seen from Table 5.20 that there is no a reduction of total inventory unit and value. The suggestions for the future improvement can be service level adjustment or inventory system adjustment such as order up to level policy.

Unfortunately, group C items verification is considered as an ineffective result, due to the limited historical data of 12 months and the comparison period of 5 months. The information of intermittent demands in group C may be inadequate for accurate evaluation.

In summary, the application of proposed policy and forecasting technique for group C items cannot be concluded. The proposed policy improves the inventory performance for some items but it is considered inadequate data because of studied period for the intermittent demand assessment.

Table 5.20 Comparison Performance Measurement for Group C Items

| No. | Product ID | Average Daily Inventory Level (unit) |  |  | cost per unit <br> (THB) | Average Daily Inventory Value (THB) |  |  | Service Level Measurement |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Actual operation | $90 \%$ <br> Service level | $95 \%$ <br> Service level |  | Actual operation | $90 \%$ <br> Service level | $95 \%$ <br> Service level | Actual operation | $90 \%$ <br> Service level | $95 \%$ Service level |
| 1 | 394672 | 37 | 35 | 35 | 1,190 | 44,003 | 42,106 | 42,106 | 100\% | 100\% | 100\% |
| 2 | 426079 | 1,930 | 1,581 | 1,793 | 3.04 | 5,874 | 4,812 | 5,457 | 100\% | 100\% | 100\% |
| 3 | 432733 | 126 | 126 | 126 | 65.45 | 8,228 | 8,228 | 8,228 | 100\% | 100\% | 100\% |
| 4 | 130512 | 74 | 111 | 122 | 528.75 | 39,128 | 58,626 | 64,409 | 100\% | 100\% | 100\% |
| 5 | 233171 | 3,258 | 6,255 | 7,634 | 28.54 | 92,978 | 178,509 | 217,885 | 87\% | 100\% | 100\% |
| 6 | 272858 | 670 | 670 | 670 | 10.10 | 6,770 | 6,770 | 6,770 | 100\% | 100\% | 100\% |
| 7 | 434565 | 15,425 | 15,425 | 15,425 | 0.38 | 5,850 | 5,850 | 5,850 | 100\% | 100\% | 100\% |
| 8 | 349794 | 247,150 | 247,150 | 247,150 | 1.19 | 294,520 | 294,520 | 294,520 | 100\% | 100\% | 100\% |
| 9 | 245447 | 4,663 | 3,350 | 3,350 | 1.81 | 8,432 | 6,059 | 6,059 | 100\% | 100\% | 100\% |
| 10 | 168944 | 158 | 141 | 163 | 535.57 | 84,419 | 75,415 | 87,264 | 100\% | 100\% | 100\% |
| 11 | 206151 | 55 | 199 | 237 | 46.39 | 2,540 | 9,219 | 10,993 | 14\% | 100\% | 100\% |
| 12 | 20781 | 40,375 | 37,750 | 39,563 | 1.17 | 47,149 | 44,084 | 46,200 | 100\% | 100\% | 100\% |
| 13 | 452049 | 491 | 628 | 628 | 1.21 | 592 | 833 | 833 | 58\% | 72\% | 72\% |
| 14 | 118512 | 2,964 | 2,900 | 3,474 | 3.57 | 10,569 | 10,341 | 12,387 | 100\% | 100\% | 100\% |
| 15 | 445067 | 9 | 9 | 15 | 121.55 | 1,067 | 1,067 | 1,766 | 100\% | 100\% | 100\% |
| 16 | 517354 | 10 | 24 | 29 | 4,917 | 49,170 | 119,698 | 143,208 | 100\% | 100\% | 100\% |
| 17 | 332086 | 3,090 | 2,465 | 3,230 | 2.11 | 6,520 | 5,201 | 6,815 | 100\% | 100\% | 100\% |
| 18 | 411564 | 7,511 | 5,126 | 5,126 | 1.72 | 12,948 | 8,838 | 8,838 | 100\% | 100\% | 100\% |
| 19 | 214557 | 1,365 | 1,365 | 1,365 | 4.44 | 6,061 | 6,061 | 6,061 | 100\% | 100\% | 100\% |
| 20 | 382191 | 1,643 | 1,200 | 1,200 | 2.98 | 4,897 | 3,578 | 3,578 | 100\% | 100\% | 100\% |
|  | Total | 331,001 | 326,510 | 331,335 |  | 731,715 | 889,815 | 979,228 | 93\% | 99\% | 99\% |
| Reduction |  |  | 1\% | 0\% |  |  | -22\% | -34\% |  |  |  |
| Total (without item 5 and 16) |  | 327,733 | 320,231 | 323,671 |  | 589,567 | 591,608 | 618,135 | 93\% | 98\% | 98\% |
| Reduction |  |  | 2\% | 1\% |  |  | 0\% | -5\% |  |  |  |

### 5.4 TOTAL ANNUAL COST

According to section 2.6 , the total ordering inventory cost is a combination of Annual purchase cost, Annual ordering cost, and Annual holding cost. The existing periodic review is by monthly, while the proposed interval is the same. Hence, the annual ordering cost which is associated costs of order replacement is considered the same.

The proposed methodology for group A and B items can reduce the inventory holding level which relates to the annual purchase cost and annual inventory holding cost. Therefore, the decrease of inventory level from the proposed policy results in a reduction of the total ordering inventory cost of the studied company.

Total annual cost $=$ Annual purchase cost + Annual ordering cost + Annual holding cost

### 5.5 CHAPTER SUMMARY

The summary of results and assessment is illustrated in Table 5.21. Forecasting technique of simple exponential smoothing (weight factor 0.2) is suggested for group A and B items as the forecasting error analysis. Implementation for group A and B items shows an improvement of the operational performance. $95 \%$ Service level for
safety stock determination is advised since it can decrease the inventory levels while maintaining $100 \%$ of the measured service levels.

For group C items, the Croston's method results with the least average errors. Unfortunately, implementation of the periodic review policy does not show an overall improvement. It is considered that effective solutions for group C cannot be determined, due to inadequate historical data and limited assessment period.

Table 5.21 Summary for Assessment Results

| Group | Forecasting Approach | Inventory System | Service level for safety stock | Results | Exception |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | Simple <br> Exponential <br> Smoothing (Alpha = 0.2) | Monthly periodic review policy | 95\% | $17 \%$ reduction of inventory units and $23 \%$ reduction of inventory value | Items which purchased by a single customer who shares inventory information |
| B |  |  |  | $7 \%$ reduction of inventory units and $19 \%$ reduction of inventory value |  |
| C | Croston Method (Alpha = 0.2) | Inadequate data to propose the effective policy |  |  |  |

Items ordered by a single customer who shares demand information and acknowledges the inventory level of the studied company do not show any improvements with the policy implementation. It can be concluded that the shared information from customer is very beneficial for the inventory management. The studied company can keep ‘just enough' inventory level for these items.

Finally, the inventory levels for different service levels ( $95 \%$ and $98 \%$ ) can be equal as two main factors. First, the minimum order quantity impacts the ordering decision likewise. Second, the current inventory level is too high compared to the demand, therefore it is overstocked. Then, the decision of not ordering stays the same.

## Chapter 6 CONCLUSIONS AND RECOMMENDATIONS

### 6.1 CONCLUSIONS

The main objectives for the research are to propose new inventory policies in order to reduce the inventory level and improve internal operations in the studied company for Japanese products. This research is conducted by reviewing related theories and tools for inventory and warehouse management. Then, the evaluations of existing operations and process are performed including characteristics of inventory moving in 12 months of 2015 for 738 SKUs. Five groups are defined; 1) Non-moving stock 2) No sales last 6 months 3) Short-period stock 4) New product stock and 5) Remaining185 SKUs. Strategic managements for first four groups are proposed in Chapter 3.

Inventory for the remaining 185 SKUs are classified by using ABC Patero. Multi-criteria are considered for sequencing the importance of products. The continuity of demand is considered the most important, since it can divide groups of continuous and intermittent demand items. Moreover, 107 items which are ordered by single customers are verified. The result shows a mix of both continuous and intermittent demands for these items.

Demand patterns for all groups are assessed. Coefficient of Variation (CV) is applied to evaluate the level of data variation. Group A and B items result in low variance, while group C items result in high variance.

As identified groups of inventory and evaluation of demand pattern, forecasting approaches and error indicators, and inventory system are proposed. Periodic review policy is proposed for all groups because of high transportation costs. In addition, work flow and steps for ordering process, warehouse flow and warehouse checking process with warehouse documentations are also proposed in order to improve internal communications and system management. The communications for all procedures are importantly needed. The interpretation of roles and responsibilities shall be consistent. Arrangement of meeting is suggested in order to clarify and improve the company.

Implementation results in Chapter 5 show a reduction of inventory for Group A and B items. Simple exponential smoothing with alpha of 0.2 is recommended for forecasting. Monthly periodic review system is considered reasonable. Service level of 95\% is advised for safety stock determination.

Unfortunately, group C items which are a group of intermittent demands with high variation do not result in an improvement. Effective evaluation and assessment cannot be precisely performed as limited historical data and assessment period. However, Croston's method with alpha of 0.2 shows the most accurate forecasting.

Items which are ordered by a single customer who shares information and acknowledge the stock level do not show a reduction of inventory. The communication between the studied company and customers results in the effective inventory level management.

Finally, assessment of proposed policies for group A and B items results in a reduction of inventory levels, which is linked to holding cost and ordering cost. Therefore, total cost of inventory can be decreased by the proposed policies implementation.

### 6.2 RECOMMENDATIONS AND CONCERNS

## A mix of inventory value for Proposed ABC Pareto

Four criteria which are the continuity of monthly demand, the number of order, the value of sales, and the inventory value are considered for ABC analysis. The continuity of demand is considered of the highest importance, and the inventory value is weighted as the least important from the four factors. This judgement results in a mix items of inventory value in three groups.

During the assessment phase, all items are evaluated equally. The obvious consequences are illustrated in section 5.1.3 (Sensitivity analysis for the weight factor) that the units with high inventory value greatly influence the overall inventory performance. For instance; weight factor of 0.1 gives the least average error, and results in the least inventoried units. However, weight factor of 0.3 can reduce more inventory value with higher inventory level. Hence, the future researches are suggested to prioritize the high inventory value for each group for the evaluation.

## Items which are ordered by a single customer who shares the demand information

Items ordered by a single customer who shares demand information and acknowledge the inventory level of the studied company do not show an improvement with the policy implementation. This suggests that effective communication with customers, especially for items ordered by a single customer, result in a better performance for inventory management.

Regarding high proportion of items ordered by a single customer (107 of 185 SKUs), working closely with the customer should be the key for strategic management.

## Repetitions of forecasting

The implementation results that simple exponential smoothing technique, with recommended smoothing factor, clearly provides an improvement for inventory management. However, one absolute method should not be identified for the studied company to use indefinitely. It is crucial to understand the nature of a product's life cycle, external factors such as customer change and any special events. Repetition of information verification for appropriate forecasting technique should be performed every suitable period of time, such as every 6 or 12 months.

## Limitation of quantitative forecasting technique

The quantitative forecasting technique is based on statistic of historical data. Uncontrolled factors such as natural disaster, and political event which affect the sales of the company should be considered in conjunction with the quantitative technique. These factors cannot be predicted but they need to be considered in order to perform future forecasts, since the environment is in constant change. Straightforward decision from quantitative technique based on historical data will result in large errors.

## Limitation of the historical data

The historical data for the demand pattern verification and forecasting technique analysis is only 12 months. A longer historical data is required especially for the intermittent demand units in group C. It can be seen from the research that trends, cycles and seasonal orders cannot be captured with a 12 months record.

## Forecasting technique selection

The methodology for the forecasting technique selection and alpha selection for simple exponential smoothing method are based on the fact that each studied item have equal weights. The variance of demand error, optimum weight factor, and item values are disregarded. Future studies may be required for better result accuracy.

## Adjustment between the demand forecasting and the stock control system

This study examines the demand forecasting and the stock control system independently. Future study of detailed interactions between the two components should be reviewed and analysed since the most desired objective is the overall inventory performance, and not the separate components.

It can be demonstrated as in section 5.1.3 that the alpha factor of 0.1 which gives the least forecasting error does not result in the lesser inventory value. Moreover, the space requirements of item which can impact the warehouse operations are not considered for the overall perfromance comparison.

Four factors which can impact the overall performance of stock system (Syntetos and Boylan, 2008) are 1) hypothesized demand distribution 2) The forecast error variability 3) The employed safety factors and 4) the intentional bias of the estimator for the demand forecasting.

An empirical study of the interaction between the demand forecasting and the stock control on 786 SKUs of Royal Air Force parts with 27 control parameter combinations (such as service levels, lead times, and smoothing constant) was conducted by Syntetos and Boylan (Syntetos and Boylan, 2006). The results reveal that the parameter adjustments certainly improve the overall performance of stock control system.

## Limitation of the simulation study

This study is performed based on the simulation and comparison of the results with the actual operation. Nevertheless, the real situation may contain other uncontrolled situations. This study results are based on the assumptions mentioned in the report. Also only 60 units ( 20 of each group) of 185 items are sampled for the assessment.

Moreover, 5 months comparison of the simulation results and actual operations may not be adequate especially for the intermittent demand items since the demand may not show. Then, the comparison cannot be observed.

## Service Level Measuring

The period of stock out is identified for measuring the service level since the company has never recorded an unfulfilled order in the past. In reality, stock out period does not mean unfulfilled demand is occurring. It is just an indicator for potential missing opportunity for sales. Therefore, in the future, it is recommended to monitor and record the unsuccessful orders from the customers. Then, the service level can be determined from the loss of sales rather than stock out period.

## Future study for bimonthly review interval for items in group B and C

Bimonthly review interval is proposed to compare with monthly review for intermittent demand items. It is expected to reduce the variance of intermittent data and result in a smaller safety stock, since these items are not frequently ordered. The comparison of coefficient of variation (CV) table is developed as shown in Table 6.1 and Table 6.2. It shows that bimonthly interval reduce the variation of the data as CVs of bimonthly basis are less than CVs of monthly basis.

Table 6.1 Group B - Comparison of Coefficient of Variation (CV) for Monthly and Bimonthly Interval

| No. of month showing demand | Comparison |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | Code | Seq Order | Montly |  |  | Bimonthly |  |  |
|  |  |  |  | SD | Mean | CV | SD | Mean | CV |
| 11 | 1 | 401079 | 64 | 7 | 7 | 1.05 | 9 | 13 | 0.70 |
|  | 2 | 226689 | 65 | 1760 | 3004 | 0.59 | 1740 | 6008 | 0.29 |
|  | 3 | 330746 | 66 | 731 | 1417 | 0.52 | 553 | 2833 | 0.20 |
|  | 4 | 121633 | 68 | 692 | 600 | 1.15 | 877 | 1200 | 0.73 |
|  | 5 | 109427 | 69 | 9268 | 14333 | 0.65 | 7364 | 28667 | 0.26 |
|  | 6 | 325384 | 72 | 1163 | 2050 | 0.57 | 1461 | 4100 | 0.36 |
|  | 7 | 404367 | 76 | 3600 | 5800 | 0.62 | 4891 | 11600 | 0.42 |
| 10 | 8 | 429581 | 79 | 118 | 229 | 0.52 | 223 | 458 | 0.49 |
|  | 9 | 382116 | 80 | 1143 | 1971 | 0.58 | 1480 | 3942 | 0.38 |
|  | 10 | 230136 | 84 | 634 | 879 | 0.72 | 716 | 1758 | 0.41 |
|  | 11 | 325388 | 87 | 618 | 1050 | 0.59 | 1122 | 2100 | 0.53 |
| 9 | 12 | RO-028 | 91 | 248 | 283 | 0.87 | 386 | 567 | 0.68 |
|  | 13 | 159145 | 93 | 4.6 | 4.3 | 1.09 | 5.3 | 8.5 | 0.62 |
|  | 14 | 270040 | 101 | 27 | 25 | 1.06 | 34 | 50 | 0.67 |
|  | 15 | 184275 | 103 | 173 | 300 | 0.58 | 200 | 600 | 0.33 |
|  | 16 | 121680 | 104 | 130 | 225 | 0.58 | 150 | 450 | 0.33 |
| 8 | 17 | 380616 | 105 | 296 | 246 | 1.20 | 298 | 492 | 0.61 |
|  | 18 | 416437 | 106 | 12 | 11 | 1.03 | 15 | 23 | 0.69 |
|  | 19 | 326936 | 112 | 137 | 150 | 0.91 | 240 | 300 | 0.80 |
|  | 20 | 416445 | 113 | 7 | 6 | 1.17 | 8 | 12 | 0.70 |

Table 6.2 Group C - Comparison of Coefficient of Variation (CV) for Monthly and Bimonthly Interval

| No. of month showing demand | Comparison |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | Code | Seq Order | Montly |  |  | Bimonthly |  |  |
|  |  |  |  | SD | Mean | CV | SD | Mean | CV |
| 7 | 1 | 394672 | 114 | 8 | 4 | 1.79 | 11 | 9 | 1.28 |
|  | 2 | 426079 | 115 | 710 | 313 | 2.27 | 932 | 625 | 1.49 |
|  | 3 | 432733 | 119 | 7 | 3 | 2.34 | 7 | 6 | 1.20 |
| 6 | 4 | 130512 | 122 | 56 | 21 | 2.66 | 63 | 42 | 1.51 |
|  | 5 | 233171 | 123 | 3823 | 2063 | 1.85 | 2510 | 4125 | 0.61 |
|  | 6 | 272858 | 124 | 98 | 46 | 2.14 | 93 | 92 | 1.02 |
|  | 7 | 434565 | 128 | 656 | 375 | 1.75 | 832 | 750 | 1.11 |
|  | 8 | 349794 | 130 | 31623 | 20000 | 1.58 | 30551 | 40000 | 0.76 |
|  | 9 | 245447 | 131 | 1581 | 1000 | 1.58 | 0 | 2000 | 0.00 |
| 5 | 10 | 168944 | 133 | 80 | 33 | 2.44 | 89 | 66 | 1.35 |
|  | 11 | 206151 | 138 | 89 | 40 | 2.21 | 100 | 80 | 1.25 |
|  | 12 | 20781 | 140 | 11693 | 6250 | 1.87 | 7395 | 12500 | 0.59 |
|  | 13 | 452049 | 141 | 390 | 208 | 1.87 | 247 | 417 | 0.59 |
| 4 | 14 | 118512 | 143 | 1639 | 417 | 3.93 | 1776 | 833 | 2.13 |
|  | 15 | 445067 | 145 | 6 | 3 | 2.42 | 7 | 5 | 1.32 |
| 3 | 16 | 517354 | 149 | 11 | 3 | 3.37 | 11 | 7 | 1.76 |
|  | 17 | 332086 | 155 | 951 | 325 | 2.93 | 947 | 650 | 1.46 |
|  | 18 | 411564 | 161 | 186 | 67 | 2.80 | 182 | 133 | 1.36 |
| 2 | 19 | 214557 | 166 | 471 | 133 | 3.54 | 499 | 267 | 1.87 |
|  | 20 | 382191 | 171 | 354 | 100 | 3.54 | 374 | 200 | 1.87 |

Then, safety stock comparisons between monthly and bimonthly review are generated for both items in group B and C as shown in Table 6.3 and 6.4. The interval resulting in the less safety stock is reported on the right column. The results show that safety stock of monthly and bimonthly intervals are not highly different. Bimonthly basis for 9 items in group $B$ and 8 items in group $C$ results less safety stock than monthly basis at the same service level of $95 \%$. Therefore, bimonthly review interval reduces the variance of demand data and potentially decrease the inventory level.

Table 6.3 Group B - Comparison of Safety Stock for Monthly and Bimonthly Review Interval


Table 6.4 Group C - Comparison of Safety Stock for Monthly and Bimonthly Review Interval

|  | Safety Stock |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| showing | No. | Code | Seq Order | 95\% |  | Less SS |
| demand |  |  |  | monthly | bimonthly |  |
| 7 | 1 | 394672 | 114 | 13 | $\begin{array}{r} 18 \\ 1,533 \\ 11.5 \end{array}$ | monthly |
|  | 2 | 426079 | 115 | 1,168 |  | monthly |
|  | 3 | 432733 | 119 | 11.2 |  | monthly |
| 6 | 4 | 130512 | 122 | 91 | 103 | monthly |
|  | 5 | 233171 | 123 | 6,288 | 4,128 | bimonthly |
|  | 6 | 272858 | 124 | 161 | $\begin{array}{r} 153 \\ 1,369 \end{array}$ | bimonthly |
|  | 7 | 434565 | 128 | 1,078 |  | monthly |
|  | 8 | $\begin{aligned} & 349794 \\ & 245447 \end{aligned}$ | 130 | 52,015 | 50,251 <br> - <br> 146 | bimonthly |
|  | 9 |  | 131 | 2,601 |  | bimonthly |
| 5 | 10 | 168944 | 133 | 132 | $\begin{array}{r} 146 \\ 165 \\ 12,164 \\ 405 \\ \hline \end{array}$ | monthly |
|  | 11 | 206151 | 138 | 146 |  | monthly |
|  | 12 | 20781 | 140 | 19,233 |  | bimonthly |
|  | 13 | 452049 | 141 | 641 |  | bimonthly |
| 4 | 14 | 118512 | 143 | 2,696 | $\begin{array}{r} \hline 2,921 \\ 11 \\ \hline \end{array}$ | monthly |
|  | 15 | 445067 | 145 | 10 |  | monthly |
| 3 | 16 | 517354 | 149 | 18 | $\begin{array}{r} 19 \\ 1,558 \\ 299 \end{array}$ | monthly |
|  | 17 | 332086 | 155 | 1,565 |  | bimonthly |
|  | 18 | 411564 | 161 | 307 |  | bimonthly |
| 2 | 19 | 214557 | 166 | 775 | 821 | monthly |
|  | 20 | 382191 | 171 | 582 | 615 | monthly |
| Count |  | monthly |  |  | 12 |  |
|  |  | bimonthly |  |  | 8 |  |

Moreover, advantages and disadvantages for both intervals are listed and compared as illustrated in Table 6.5.

Table 6.5 Review Interval Comparison Analysis

|  | Advantage | Disadvantage |
| :--- | :--- | :--- |
| Monthly Review | 1. Response to the demand faster <br> 2. Less inventory compared to <br> bimonthly review <br> 3. Less used space for inventory | 1. Potential high variation for safety <br> stock from 'zero' data |
| Bimonthly Review | 1. Potential less variation for safety <br> stock <br> 2. Less ordering cost (less man hour <br> for purchasing decision) | 1. Response to the demand change <br> slower <br> 2. Higher Inventory level <br> 3. More used space for inventory |

The proposed bimonthly review potentially generates higher stock level than a monthly review. However, preliminary determinations in Table 6.3 and 6.4 show that the safety stock requirements for both intervals are not largely different. Moreover, bimonthly interval will make the company response to the demand slower than monthly reviews. Nonetheless, the positive side of bimonthly is less ordering cost compared to monthly interval and potentially decreases variance of intermittent demand pattern. Lastly, implementation analysis to compare inventory level is suggested for future study.

## Layout for the warehouse

Warehousing layout and design is not developed in this thesis since there are other groups of items, not only Japanese products which is the focus group for this study. Nevertheless, literature review are to be performed for future study. Four typical storage assignment proposed by De Koster et al. (De Koster et al., 2007) are demonstrated as follows;

Forward-reserve allocation: Travel time for picking items is reduced. The concept is to separate two areas of stock; reserve area, and forward area. Trade-off between the amount of items placed on the forward area and replenishment period shall be carefully balanced in order to receive the maximum efficiency from spent efforts.

Storage assignment policies: typical storage managements are described;

1) Random storage - Items are randomly assigned their storage location.

This technique results in a high space utilization. This policy suits for only computer-controlled environment.
2) Closet open location storage - the closet racks will be firstly filled.

There is an argument that this technique is similar to the random storage.
3) Dedicated storage - It is a fixed location for storage creating a familiar route to the warehouse staff. The disadvantage is that the space is reserved for specific item even there is no stock.
4) Full-turnover storage - The storage place is assigned based on the product's turnover. The highest sales rate items are located at the easiest accessible locations. However, the disadvantage is when the demand changes the storage locations are to change accordingly which requires to reshuffle inventory.

Class-based storage: Pareto's tool used to classify items is applied for the storage assignment. Two typical ways are suggested and shown in Figure 6.1.


Figure 6.1: Two Common Ways for Class-based Storage Implementation Source: (De Koster et al., 2007)

Family grouping: the concept is to group the similar items and locate them in the same area. The criteria can be item class, customer, type of product, items ordered together items and etc. However, this technique may consume more space in the warehouse compared to random storage assignment.

In addition, 5 S practices consisting of sort, set, shine, standardize, and sustain are suggested for warehouse management

## REFERENCES

ABBASI, M. 2011. Storage, warehousing, and inventory management. Logistics Oper Manage: Concepts Models, 181.
ABDI, H. 2010. Coefficient of variation. Encyclopedia of research design, 169-171.
ACAR, Y. \& GARDNER, E. S. 2012. Forecasting method selection in a global supply chain. International Journal of Forecasting, 28, 842-848.
ARMSTRONG, J. S. 2001. Principles of forecasting: a handbook for researchers and practitioners, Springer Science \& Business Media.
BARTHOLDI III, J. J. \& HACKMAN, S. T. 2011. Warehouse \& distribution science: release 0.92.
CONSTANTIN, A. 2016. Inventory management, service level and safety stock. Journal of Public Administration, Finance and Law, 145-153.
CROSTON, J. D. 1972. Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, 23, 289-303.
CSCO. 2011. Five strategies for improving inventory management across complex supply chain networks [Online]. Available: http://www.scdigest.com/assets/reps/exec brief_network_inventories.pdf [Accessed 02/02/ 2016].
DE KOSTER, R., LE-DUC, T. \& ROODBERGEN, K. J. 2007. Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182, 481-501.
DONNER, R. 2014. Design of logic to support logistic cost efficient purchasing decisions for a hardware wholesaler. Unpublished Msc thesis, Chulalongkorn University, Thailand.
FABER, N., DE KOSTER, M. \& SMIDTS, A. 2013. Organizing warehouse management. International Journal of Operations \& Production Management, 33, 1230-1256.
FLORES, B. E. \& CLAY WHYBARK, D. 1986. Multiple criteria ABC analysis. International Journal of Operations \& Production Management, 6, 38-46.
GANESAN, R. 2014. The Profitable Supply Chain: A Practitioner's Guide, Apress.
HOLSENBACK, J. \& MCGILL, H. J. 2007. A Survey of Inventory Holding Cost Assessment and Safety Stock Allocation. Academy of Accounting and Financial Studies Journal, 11, 111-120.
HYNDMAN, R., KOEHLER, A. B., ORD, J. K. \& SNYDER, R. D. 2008. Forecasting with exponential smoothing: the state space approach, Springer Science \& Business Media.
HYNDMAN, R. J. 2006. Another look at forecast-accuracy metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting, 4, 4346.

JACOBS, F. R. \& CHASE, R. B. 2013. Operations and supply chain management: the core, McGraw-Hill.
JETRO. 2015. The Japan external trade organization [Online]. Available: https://www.jetro.go.jp/thailand.html [Accessed 04/08/ 2016].
JOHNSTON, F. \& BOYLAN, J. E. 1996. Forecasting for items with intermittent demand. Journal of the Operational Research Society, 47, 113-121.

KALEKAR, P. S. 2004. Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi School of Information Technology, 4329008, 1-13.
KERKKäNEN, A., KORPELA, J. \& HUISKONEN, J. 2009. Demand forecasting errors in industrial context: measurement and impacts. International Journal of Production Economics, 118, 43-48.
KING, P. L. 2011. Crack the code: Understanding safety stock and mastering its equations. APICS magazine.
KLASSEN, R. D. \& MENOR, L. J. 2006. Cases in Operations Management: Building Customer Value Through World-class Operations, Sage.
MUCKSTADT, J. A. \& SAPRA, A. 2010. EOQ Model. Principles of Inventory Management. Springer.
PARVATIYAR, A. \& SHETH, J. N. 2001. Customer relationship management: Emerging practice, process, and discipline. Journal of Economic and Social research, 3, 1-34.
RELPH, G. \& MILNER, C. 2015. Inventory Management: Advanced Methods for Managing Inventory Within Business Systems, Kogan Page Publishers.
RICHARDS, G. \& GRINSTED, S. 2013. The logistics and supply chain toolkit: over 90 tools for transport, warehousing and inventory management, Kogan Page Publishers.
RONEN, D. 1983. Inventory service levels-comparison of measures. International Journal of Operations \& Production Management, 3, 37-45.
SHARP, G. P. 2001. Warehouse management. Handbook of Industrial Engineering: Technology and Operations Management, Third Edition, 2083-2109.
SHIVSHARAN, C. T. 2012. Optimizing the Safety Stock Inventory Cost Under Target Service Level Constraints. University of Massachusetts Amherst.
SHOBRYS, D. E. \& WHITE, D. C. 2002. Planning, scheduling and control systems: why cannot they work together. Computers \& chemical engineering, 26, 149160.

STELLWAGEN, E. 2011. Forecasting 101: A guide to forecast error measurement statistics and how to use them [Online]. Business Forecast Systems, Inc. Available: http://www.forecastpro.com/Trends/forecasting101August2011.html [Accessed 05/02/ 2016].
SUSHI. 2016. From Japan [Online]. Embassy of Japan in Thailand Available: http://www.th.emb-japan.go.jp/th/jis/publ/59_1.pdf [Accessed 04/08/ 2016].
SYNTETOS, A. A. \& BOYLAN, J. E. 2006. Smoothing and adjustments of demand forecasts for inventory control. IFAC Proceedings Volumes, 39, 173-178.
SYNTETOS, A. A. \& BOYLAN, J. E. 2008. Demand forecasting adjustments for service-level achievement. IMA Journal of Management Mathematics, 19, 175-192.
TALLURI, S., CETIN, K. \& GARDNER, A. 2004. Integrating demand and supply variability into safety stock evaluations. International Journal of Physical Distribution \& Logistics Management, 34, 62-69.
THOMOPOULOS, N. T. 2015. Demand forecasting for inventory control. Demand Forecasting for Inventory Control. Springer.

WELCH, D. 2015. Logistics and Operations Management - Forecasting. Warwick Manufacturing Group, University of Warwick / Chulalongkorn University Thailand IGDS Technology Management Module, Thailand.
WILSON, M. 2005. Warehouse Management: Liquidating Dead Stock, A Necessary Evil. Maintenance Supplies.
YU, M.-M., TING, S.-C. \& CHEN, M.-C. 2010. Evaluating the cross-efficiency of information sharing in supply chains. Expert Systems with Applications, 37, 2891-2897.

## VITA

Miss Nutcha Joedjumnongwittayakul was born on July 3rd, 1988 in Bangkok. She graduated her Bachelor's degree in Chemical Engineering from Chulalongkorn University in 2010. After completion, Nutcha started her professional career as a Process Engineer in oil and gas industry for 4 years. Then, she decided to pursue dual Master's degree program at Regional Centre for Manufacturing Systems Engineering (RCMSE), Chulalongkorn University in cooperation with University of Warwick in United Kingdom, in major of Engineering Business Management.

