#### **CHAPTER IV**

### RESULTS

# 4.1 Collecting and Sampling.

In this study, the cell sample of *N. scintillans* were designed to collect in the same cruise survey especially in the inner Gulf of Thailand. There were two days different of cell samples obtained from both side of the inner Gulf of Thailand. Several clone cultures could be isolated from the study sites, there are 150 clones from 3 different locations in inner, 40 and 50 clones from 2 different locations in eastern and southern part of the Gulf of Thailand and 20-15 from 2 different locations out side the Gulf of Thailand (Table 2).

Table. 2 The sampling sites and number of clones.

| Localities             | Province                                                                       | Number<br>of clones                                                                                                                            | Date<br>dd/mm/yy                                                                                                                                                    |
|------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bangthaboon            | Petchburi                                                                      | 150                                                                                                                                            | 2/09/06                                                                                                                                                             |
| Angsila                | Chonburi                                                                       | 150                                                                                                                                            | 4/09/06                                                                                                                                                             |
| Chaophraya river mouth | Samutprakarn                                                                   | 150                                                                                                                                            | 2/09/06                                                                                                                                                             |
| Kamnoo                 | Chanthaburi                                                                    | 40                                                                                                                                             | 13/01/08                                                                                                                                                            |
| Lamkoreguang           | Chumpron                                                                       | 50                                                                                                                                             | 16/11/07                                                                                                                                                            |
| Manila Bay             | Philippine                                                                     | 20                                                                                                                                             | 21/03/04                                                                                                                                                            |
| Jakarta Bay            | Indonesia                                                                      | 15                                                                                                                                             | 16/03/06                                                                                                                                                            |
|                        | Bangthaboon  Angsila  Chaophraya river mouth  Kamnoo  Lamkoreguang  Manila Bay | Bangthaboon Petchburi  Angsila Chonburi  Chaophraya river mouth Samutprakarn  Kamnoo Chanthaburi  Lamkoreguang Chumpron  Manila Bay Philippine | Bangthaboon Petchburi 150  Angsila Chonburi 150  Chaophraya river mouth Samutprakarn 150  Kamnoo Chanthaburi 40  Lamkoreguang Chumpron 50  Manila Bay Philippine 20 |

## 4.2 Culture cells of N. scintillans

150 clones of N. scintillans from different locations in inner Gulf of Thailand, the only 20 – 30 clones could be grown and had the high cells concentration for DNA extraction method, 40 and 50 clones from 2 different locations in eastern and southern part of the Gulf of Thailand, only 7-10 clones could be grown and had the high cells concentration and 15-20 clones from 2 different locations out side the Gulf of Thailand, only 1-3 clones could grown and had the high cells concentration. The minimal cell concentration for DNA extraction was about 300 cells/ml (Fig. 8.) and size of cells of N. scintillans in the study were approximately 200-300  $\mu$  m.(Fig. 7.). The sampling clonal cultures of each station were used for preparing pink N. scintillans by culturing green N. scintillans in ESM medium(method (1)) (Fig. 7-10.) and Digo medium (method (2)) as described in 3.2 (material and method) for random screening with ISSR primer. But it is very difficult to manage the culture because in this experiment over 50 clones per station were cultured and the process of culturing pink N. scintillans is quite complicated. Considering the complicated process and time consuming in culturing pink N. scintillans and required large number of samples, it is an arduous task to complete the use of this technique in screening a large number of N. scintillans clones. Therefore, the specific markers were designed and sequencing technique was employed. This kind of marker can use DNA extracted directly from green N. scintillans because the markers are specific to N. scintillans (not its simbiont). Thus only 2 sampling clonal cultures of each station were used for screening with COX I and ITS primers.

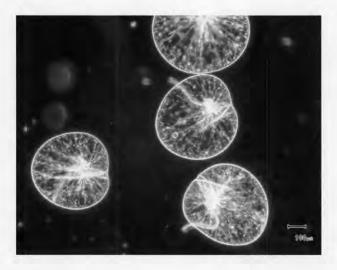



Fig. 7. Cell of pink N. scintillans in ESM medium.

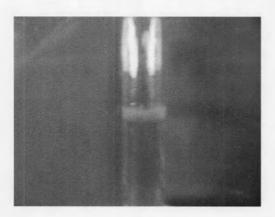
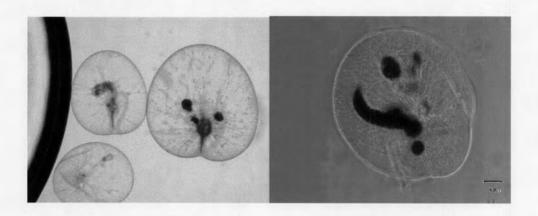
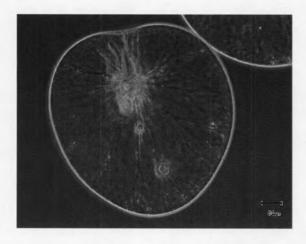





Fig. 8 The high cell concentration of *N. scintillans* for DNA extraction.

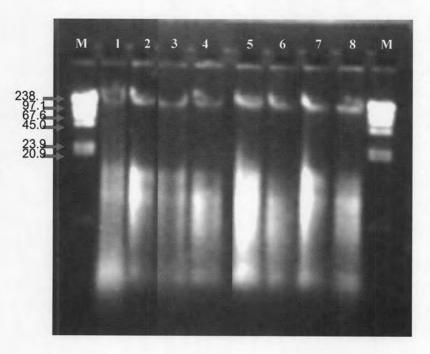


**Fig. 9** Cells of *N. scintillans* before starvation, *Dunaliella* could be observed in the food vacuoles.



**Fig. 10** Starved cells of *N. scintillans* for 4 days and no any *Dunaliella* have been found in food vacuoles.

Pink N. scintillans cells obtained from method (1) were used for DNA extraction because cells grew faster than in method (2) and there was no different of quality and quantity of extracted DNA of pink N. scintillans from both method (Table. 3.).


Table. 3. Some observations of N. scintillans in culture method (1) and method (2).

| Day   | Method (1) (Cultured cells in ESM medium)                                                                                                                                                     | Day   | Method (2) (Cultured cells in Digo medium).                                                                                                                                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | - One cell of green <i>N. scintillans</i> was added into a small culture test tube containing ESM medium.                                                                                     | 1     | - One cell of green <i>N. scintillans</i> was added into a small culture test tube containing Digo medium.                                                                                                                                                                                          |
| 7-10  | - P. noctilucae density gradually decreased and some cells of Dunaliella were added into the culture as food for N. scintillans                                                               | 15-20 | - Cells of <i>P. noctilucae</i> were still high density until <i>N. scintillans</i> was transferred to ESM culture medium. Hereafter, cells of <i>P. noctilucae</i> were gradually decreased and then some cells of <i>Dunaliella</i> were added into the culture as food for <i>N. scintillans</i> |
| 14-20 | - Pedinomonas disappeared and N. scintillans actively fed on Dunaliella. Cells of N. scintillans became pink and plenty of Dunaliella cells could be found in food vacuoles of N. scintillans | 30-45 | - Pedinomonas disappeared and N. scintillans actively fed on Dunaliella. Cells of N. scintillans became pink and plenty of Dunaliella cell could be found in food vacuoles of N. scintillans                                                                                                        |
| 20    | - The green <i>N. scintillans</i> in method (1) become pink <i>N. scintillans</i> more faster than those in method (1)                                                                        | 45    | - The green <i>N. scintillans</i> in method (2) become pink <i>N. scintillans</i> more lower than those in method (1)                                                                                                                                                                               |
| 75-90 | - Pink cells in method (1)<br>seem to grow faster than method<br>(2)                                                                                                                          | 140   | - Pink cells in method (2)<br>seem to grow lower than Method<br>(1)                                                                                                                                                                                                                                 |

## 4.3 Part genetic variation

### 4.3.1 DNA extraction

In this study, the DNA extraction of *N. scintillans* was carried out using Phenol:Chloroform, CTAB, and salting out methods The results showed that salting out method can yield good quality and quantity genomic DNA, approximately  $10 \text{ ng}/\mu 1$  (Fig. 11)



**Fig. 11** Genomic DNA samples of *N. scintillans* on 0.8% agarose gel stained with EtBr (Lane M represents λ *Hin*d III as DNA marker. Lane 1-8 show individual genomic DNA from 1PB 3ASL 5CPY 7 CHP 9JB 11MB and 13ID respectively)

# 4.3.2 PCR amplification

### 4.3.2.1 ISSR

After screening 48 ISSR primers with 6 and 4 samples of *N. scintillans*, there were 5 ISSR primers (UBC 814, HB15, UBC 827, 17898A, and 844A) providing reliable, consistent, and polymorphic ISSR profiles (see Table 3 and Fig 15-19),

**Table. 4** Primers sequences used in the ISSR amplification, concentration of MgCl<sub>2</sub>, annealing temperature (Tm.), size range of fragments and number of samples.

| Primers | Sequence (5'-3')      | MgCl <sub>2</sub> (mM) | Tm. | Size range of fragments (bp) | Number of samples |
|---------|-----------------------|------------------------|-----|------------------------------|-------------------|
| UBC 814 | (CT) <sub>8</sub> TG  | 2.0                    | 48  | 300-1200                     | 6                 |
| HB15    | (GIG) <sub>3</sub> GC | 2.0                    | 48  | 500-1000                     | 4                 |
| UBC827  | (AC) <sub>8</sub> G   | 2.0                    | 50  | <300-600                     | 6                 |
| 17898A  | (CA) <sub>6</sub> AC  | 2.0                    | 50  | 300-600                      | 6                 |
| 844A    | (GAG) <sub>4</sub> RC | 2.0                    | 50  | 300-1000                     | 4                 |

<sup>\*</sup>Y= C/T; R= A/G

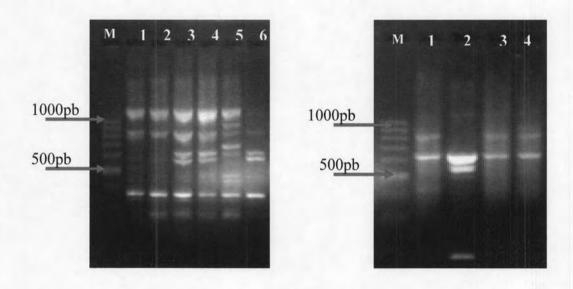
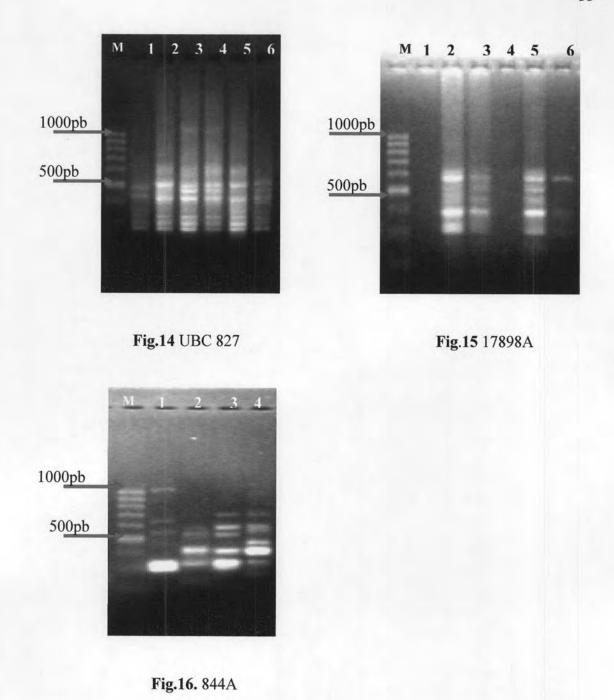




Fig. 12 UBC 814

Fig 13 HB15



**Fig. 12-16**. PCR product of ISSR primer were screened for successful amplification. Lane M represents 100 pb DNA marker. Lane1-6 show individual DNA bands from 1PB 2PB 3ASL 4ASL 5CPY and 6CPY respectively.

The use of the random primer (inter-simple sequence repeat ;ISSR) to screened N. scintillans at population level could not be continued, because there were problems in the maintenance of N. scintillans clones, especially maintaining the clones without Pedinomonas in N. scintillans cells. This is to protect the contamination of Pedinomonas DNA into PCR reaction and product artifact bands in ISSR profiles because ISSR is

a random marker. Also, the concentration of DNA extraction from mass cells was quite low making it difficult to manage the samples for this molecular technique. Therefore, the specific marker was employed in this study (Cytochrome c oxidase subunit 1 (COXI) and ITS I region) instead of ISSR markers (random primer) to determine the genetic variations of the 2 groups of *N. scintillans* in the inner Gulf of Thailand.

## 4.3.2.2 Cytochrome Oxidase subunit I (COXI)

To obtain PCR product of *N. scintillans* COXI gene, three sets of PCR primers (described in chapter1) were used. Only one set of the primers (COX\_F2 and COX\_R2) produced good PCR product. The size of the product was approximately 450 base pairs (Fig. 17.-18.). The sequence of that product were obtained (366 base pairs) and used to search for the similarity to the sequences in Genbank database using Blasts. The result shown that the sequences were 79% similarity to cytochrome oxidase subunit 1 (COXI) gene of *N. scintillans* (accession number <u>EF036583.1</u>), *Protocentrum lima* (accession number <u>EF377325.1</u>), *Protoceratium reticulatum* (accession number <u>EF036589.1</u>), *Alexandrium pseudogonyaulax* (accession number <u>AB290129.1</u>) and *Gonyaulax cochlea* (accession number <u>EF036576.1</u>) were 76% similarity. Therefore, this result confirmed that the sequence was obtained from COXI gene of *N. scintillans*.

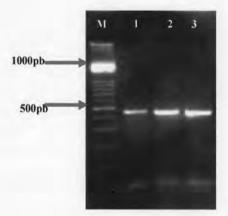
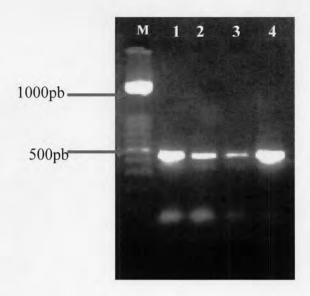
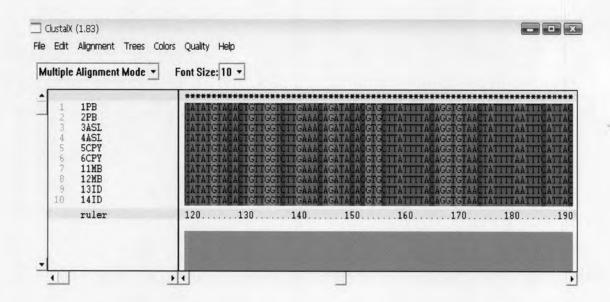




Fig. 17 COX\_F2 and COX\_R2 of these 3 sets primers on 1% agarose gel stained with EtBr, it was screened for successful amplification (Lane M represents 100 pb DNA marker. Lane 1-3 show individual PCR products from 1PB 3ASL and 5CPY respectively).




**Fig. 18** The PCR products of COX\_F2 and COX\_R2 primer on 1% agarose gel stained with EtBr, before they were purified by using a MACHEREY-NAGEL PCR clean-up, Gel extraction kit. Lane M represents 100 pb DNA marker and lane 1-4 show the products from 5CPY respectively.

After that, the primers were used to screen *N. scintillans* samples from 3 locations in the Gulf of Thailand including Indonesia and Philippine which are out of the Gulf. All sequences were aligned to find the differences. There were no differences among those sequences (see appendix2)



**Fig. 19** The result from Chromas Lite program, electropherogram of COX1 sequence of *N. scintillans* from Chonburi province. Green colors show Adenine (A). Blue colors indicate Cytocine (C), and Black colors express Guanine (G). Red colors present Thymine (T).

Therefore, the sequence of COX I gene of Philippine (11-12 MB) and Indonesia (13-14 ID) samples were brought to compared with the groups of *N. scintillans* in the inner Gulf of Thailand (1-2PB, 3-4ASL and 5-6CPY). The same result was obtained (Fig. 21).



**Fig. 20** The sample of result alignment from ClustalX program of COX1 sequence of *N. scintillans* in the inner gulf of Thailand (1-2PB, 3-4ASL and 5-6CPY) and outing group from Philippine (11-12MB) and Indonesia (13-14ID). Red colors show Adenine (A). Blue colors indicate Cytocine (C), Orange colors express Guanine (G) and Green colors present Thymine (T). Asterisks symbols (\*) expressed that all samples appear nitrogenous base (A, C, G, and T) identity.

|            | 10         | 20         | 30         | 40         | 50         |
|------------|------------|------------|------------|------------|------------|
| 1PB        | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 2PB        | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 3ASL       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 4ASL       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 5CPY       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 6CPY       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 11MB       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 12MB       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 13ID       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| 14ID       | TTCGGTATAA | TTAGTATTAT | TATTAGTGGA | GTTTCTCAAA | AGATTGTATT |
| Clustal Co | ******     | *****      | ******     | *****      | ******     |
|            |            |            |            |            |            |
|            |            |            |            |            |            |
|            | 60         | 70         | 80         | 90         | 100        |
| 1PB        | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 2PB        | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 3ASL       | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 4ASL       | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 5CPY       | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 6CPY       | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 11MB       | CGGGCATCAA | TCAATGATTT | TIGCTATGAG | CIGTATATGT | ATTTTAGGCT |
| 12MB       | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 13ID       | CGGGCATCAA | TCAATGATTT | TTGCTATGAG | CTGTATATGT | ATTTTAGGCT |
| 14ID       | CCCCCATCAA | TCAATCATTT | TTGCTATGAG | CTGTATATGT | ATTITACCET |

Fig. 21 (Continued)

Clustal Co \*\*\*\*\*\*\* \*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*

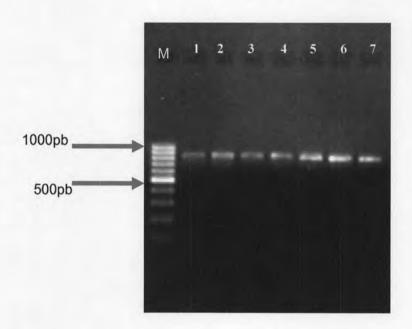
|            | 110        | 120        | 130        | 140        | 150        |
|------------|------------|------------|------------|------------|------------|
| 1PB        | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 2PB        | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 3ASL       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 4ASL       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 5CPY       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 6CPY       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 11MB       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 12MB       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 13ID       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| 14ID       | CTATTGTCTG | GGGACATCAT | ATGTACACTG | TTGGTCTTGA | AACAGATACA |
| Clustal Co | *****      | *****      | *****      | *****      | ******     |
|            |            |            |            |            |            |
|            |            |            |            |            |            |
|            |            |            |            |            |            |
|            |            |            |            |            |            |
|            |            |            |            |            |            |

|            | 160        | 170        | 180        | 190        | 200        |
|------------|------------|------------|------------|------------|------------|
| 1PB        | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 2PB        | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 3ASL       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 4ASL       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 5CPY       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 6CPY       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 11MB       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 12MB       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 13ID       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| 14ID       | CGTGCTTATT | TTACAGGTGT | AACTATTTTA | ATTTCATTAC | CAACAGGAAC |
| Clustal Co | ******     | ******     | ******     | ******     | ******     |

Fig. 21 (Continued)

|           | 210        | 220        | 230        | 240        | 250        |
|-----------|------------|------------|------------|------------|------------|
| 1PB       | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 2PB       | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 3ASL      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 4ASL      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 5CPY      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 6CPY      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 11M3      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 12MB      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 13ID      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| 14ID      | AAAAATCTTT | AATTGGATTA | GTACATACCT | CGGTAATTCT | TTATTACTCC |
| Clustal ( | Co ******* | ******     | ******     | *****      | ******     |
|           |            |            |            |            |            |
|           |            |            |            |            |            |
|           |            |            |            |            |            |
|           | 1          |            |            | 11         |            |
|           | 260        | 270        | 280        | 290        | 300        |
| 1PB       | ATATGAGGAC | TTCTTCAGCA | CTTTTTGCGT | CGCTTTTCCT | TTTAATGTTT |

Fig. 21 (Continued)


|            | 310             | 320        | 330        | 340        | 350        |
|------------|-----------------|------------|------------|------------|------------|
| 1PB        | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 2PB        | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 3ASL       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 4ASL       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 5CPY       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 6CPY       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 11M3       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 12MB       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 13ID       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| 14ID       | ACAATTGGAG      | GTTCTTCAGG | TGTTATACTT | GGAAATGCTG | CTGTTGACCT |
| Clustal Co | ******          | ******     | ******     | ******     | ******     |
|            |                 |            |            |            |            |
|            |                 | 1.         |            |            |            |
|            | 360             |            |            |            |            |
| 1PB        | TGCATTACAT      | GATACA     |            |            |            |
| 2PB        | TGCATTACAT      | GATACA     |            |            |            |
| 3ASL       | TGCATTACAT      | GATACA     |            |            |            |
| 4ASL       | TGCATTACAT      | GATACA     |            |            |            |
| 5CPY       | TGCATTACAT      | GATACA     |            |            |            |
| 6CPY       | TGCATTACAT      | GATACA     |            |            |            |
| 11MB       | TGCATTACAT      | GATACA     |            |            |            |
| 12MB       | TGCATTACAT      | GATACA     |            |            |            |
| 1010       | TO A DUTA O A D | CAMACA     |            |            |            |

**Fig. 21** The result from BioEdit program of COX1 sequence of *N. scintillans* in the inner gulf of Thailand (1-2PB, 3-4ASL and 5-6CPY) and outing group from Indonesia (11-12MB) and Philippine (13-14ID). Asterisks symbols (\*) expressed that all samples appear nitrogenous base (A, C, G, and T) identity. Green label showed outing group from Indonesia (11-12MB) and Philippine (13-14ID).

Clustal Co \*\*

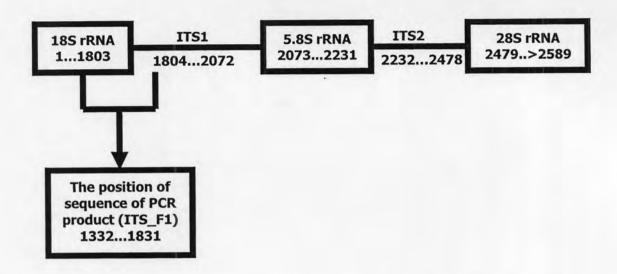
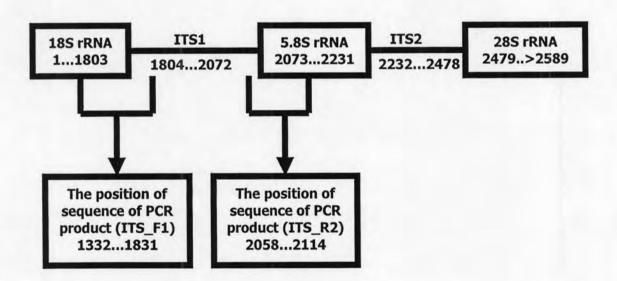
## 4.3.2.3 ITS (Inter transcribed spacer region)

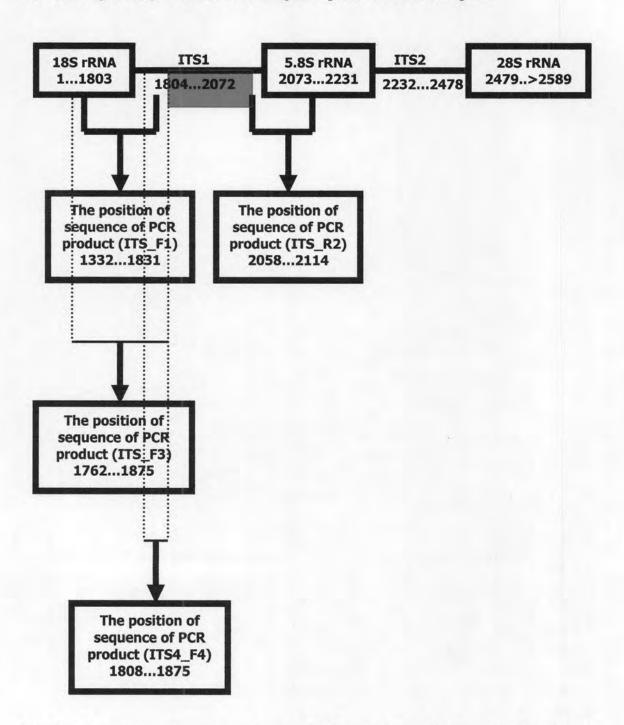
The PCR products of *N. scintillans* ITS region were successfully amplified using the forward primer 5'-GGTGGTGGTGCATGGCCGTTCTTA-3' (ITS\_F1) and reverse primer 5'-GAATTCTGCAA TTCACAATGC-3' (ITS\_R2). The size of the products was approximately 800 bp (excluding primers) (see Fig. 22)



**Fig. 22** The PCR products of ITS primer (ITS\_F1) on 1% agarose gel stained with EtBr, (lane M represents 100 bp DNA marker and lane 1-7 show the products from 1PB, 2PB, 3ASL, 4ASL, 5CPY, 6CPY, and 11MB, respectively)

In this study, the PCR product should contain partial sequences of 18s rRNA, ITS I, and 28s rRNA. Using the primer (ITS\_F1) to carry out sequencing reaction, 489 base pairs of DNA sequence were obtained. These nucleotide sequences were searched for similarity using Blasts available at <a href="http://www.ncbi.nlm.nih.gov/BLAST/Bast.cgi">http://www.ncbi.nlm.nih.gov/BLAST/Bast.cgi</a>. Blasts result showed 81% of similarity to *Pfiesteria-like dinoflagellate* (Access number <a href="http://www.ncbi.nlm.nih.gov/BLAST/Bast.cgi">AM050345.1</a>), and the sequence consisted of partial sequence of 18s rRNA (471 bases) and some part ITS region (27 bases) show in Fig. 23



Fig. 23 The position of sequence of PCR product; ITS forward primer, which were in overlapping position of terminal of 18srRNA and some part of ITS region (compared with *Pfiesteria*-like dinoflagellate position) (see appendix3).

Besides, using reverse primers to get the sequence of PCR product, 56 bases were obtained. By comparing the obtained sequence with the sequence of *Pfiesteria-like dinoflagellate* (number <u>AM050345.1</u>), it contained part of 5.8srRNA (41 bases) and part of ITS1 region (15 bases) show in Fig. 24



**Fig. 24** The position of sequence of PCR product; ITS reverse primer, which were in overlapping position of terminal of ITS1 region and some part of 5.8srRNA (compared with *Pfiesteria*-like dinoflagellate position)(see appendix4).

However, another part of ITS I region could not be analyzed (highlight position in Fig. 25), so we designed the new forward primers (ITS\_F3 and ITS\_F4) for getting the sequence of that region but the result showed the new forward primers, ITS\_F3 and ITS\_F4 produce the sequence 110 bases and 63 bases respectively, which increased the ITS I region only 44 bases from using set 1 primer showed in Fig. 25.



**Fig. 25** The position of sequences of amplified by new forward primers, set 3 and set 4 (compared with *Pfiesteria*-like dinoflagellate position) (see appendix 5).

However, the sequence obtained from primers ITS\_F1 (471 bases) were used to analyse the differences among the sample of *N. scintillans* from all collecting sites in the inner gulf of Thailand, and 2 from Indonesia and Malaysia. The result show no genetic differences among them like the result obtained COX I gene (see section result of COX I and Fig. 26)

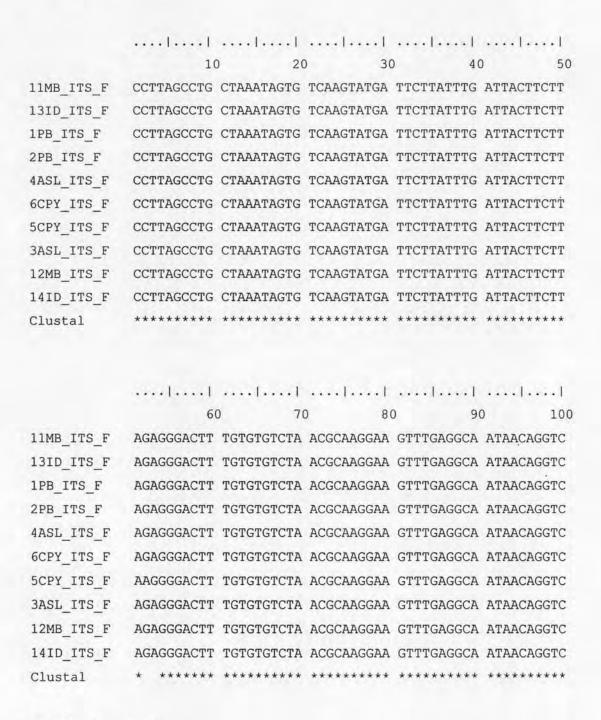



Fig. 26 (Continued)

|            | 110        | 120        | 130        | 140        | 150        |
|------------|------------|------------|------------|------------|------------|
| 11MB_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 13ID_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 1PB_ITS_F  | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 2PB_ITS_F  | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 4ASL_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 6CPY_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 5CPY_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 3ASL_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 12MB_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| 14ID_ITS_F | TGTGATGCCC | TTAGATGTTC | TGGGCTGCAC | GCGCGCTACA | CTGATGCATT |
| Clustal    | ******     | ******     | ******     | ******     | *****      |

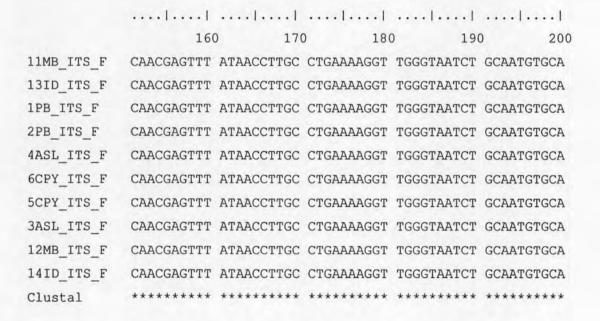



Fig. 26 (Continued)

|            |            |            | 1          |            |            |
|------------|------------|------------|------------|------------|------------|
|            | 210        | 220        | 0 23       | 0 240      | 250        |
| 11MB_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 13ID_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 1PB_ITS_F  | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 2PB_ITS_F  | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 4ASL_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 6CPY_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 5CPY_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 3ASL_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 12MB_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| 14ID_ITS_F | TCGTGATGGG | GATAGATTAT | TGCAATTATT | AATCTTCAAC | GAGGAATTCC |
| Clustal    | *****      | ******     | ******     | ******     | ******     |

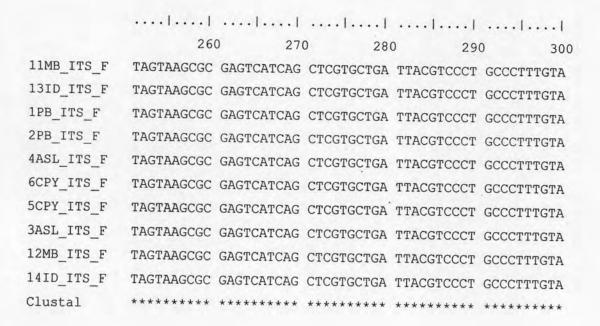
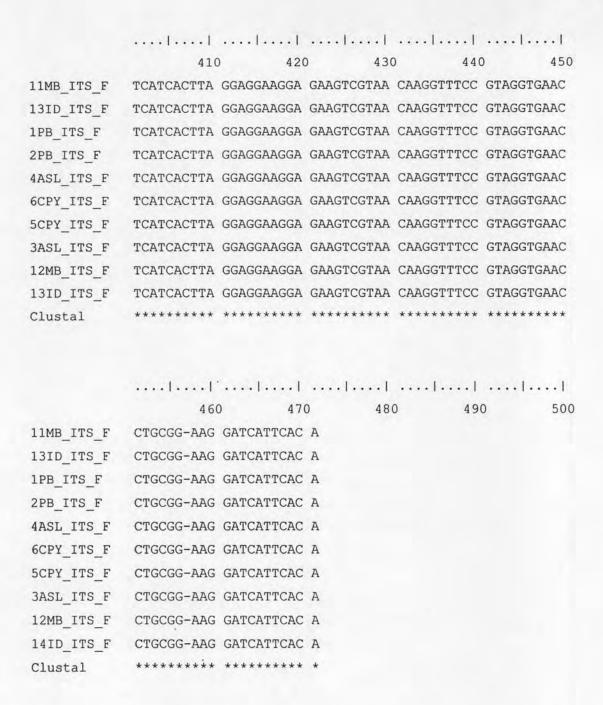




Fig. 26 (Continued)

|            | 310        | 320        | 330        | 340        | 350        |
|------------|------------|------------|------------|------------|------------|
| 11MB_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 13ID_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 1PB_ITS_F  | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 2PB_ITS_F  | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 4ASL_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 6CPY_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 5CPY_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 3ASL_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 12MB_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| 14ID_ITS_F | CACACCGCCC | GTCGCTCCTA | CCGATTGAGT | GATTCGGTGA | ATAATTCGGA |
| Clustal    | ******     | ******     | ******     | ******     | *****      |



Fig. 26 (Continued)



**Fig. 26** The result from BioEdit program of ITS forward sequence of *N. scintillans* in the inner gulf of Thailand (1-2PB, 3-4ASL and 5-6CPY) and outing group from Indonesia (11-12MB) and Philippine (13-14ID). Asterisks symbols (\*) expressed that all samples appear nitrogenous base (A, C, G, and T) identity.